101
|
Lebrun JD, El Kouch S, Guenne A, Tournebize J. Screening potential toxicity of currently used herbicides in the freshwater amphipod Gammarus fossarum based on multi-level biomarker responses to field-realistic exposures. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 320:120985. [PMID: 36592881 DOI: 10.1016/j.envpol.2022.120985] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/16/2022] [Accepted: 12/29/2022] [Indexed: 06/17/2023]
Abstract
Herbicides are widely used to control weeds and maximize crop growth. Because of agricultural runoff, these chemicals are potentially hazardous to aquatic wildlife. However, their ecotoxicity and resulting disturbance in individual performance remain scarcely documented in freshwater crustaceans. This study aimed to screen the potential toxicity of currently used herbicides in the ecosystem engineer Gammarus fossarum using multi-level biomarkers. In microcosms, gammarids were exposed for 72 h to 12 herbicides individually (quinmerac, mesotrione, bentazone, isoproturon, chlortoluron, metazachlor, chloridazone, diflufenican, flufenacet, aclonifen, prosulfocarb and metolachlor) at a field-realistic concentration (i.e. 10 μg/L). The sublethal effects were assessed by monitoring several biochemical, physiological and behavioural traits. In exposed gammarids, alterations in behavioural activities were observed, i.e. increased locomotion and respiration as a general trend. Moreover, biochemical biomarkers suggested herbicide-dependent disruptions in moulting, antioxidant responses and cell integrity. Integrating multi-metric variations through statistical analyses allowed us to identify herbicide clusters likely to trigger common sets of biological responses. Depressed antioxidant defence at the cell level and impaired respiration at the individual level were the predominant toxic effects of herbicides, related to their hydrophobic feature. Furthermore, establishing relationships between sublethal alterations in gammarids and acute lethality or chronic toxicity values defined for regulatory purposes supports the relevance of these alterations as early warnings of toxicity. Our findings demonstrate that currently used herbicides have unexpected toxicological effects in a non-target wild animal, with possible long-term alterations in population dynamics and associated ecological functions, which constitute promising diagnostic tools for risk assessment in agricultural areas.
Collapse
Affiliation(s)
- Jérémie D Lebrun
- University of Paris-Saclay, INRAE, UR HYCAR - Artemhys, 92761 Antony, France.
| | - Sabry El Kouch
- University of Paris-Saclay, INRAE, UR HYCAR - Artemhys, 92761 Antony, France
| | - Angéline Guenne
- University of Paris-Saclay, INRAE, UR PROSE - Pôle Chimie, 92761 Antony, France
| | - Julien Tournebize
- University of Paris-Saclay, INRAE, UR HYCAR - Artemhys, 92761 Antony, France
| |
Collapse
|
102
|
Supekar SC, Gramapurohit NP. Does atrazine induce changes in predator recognition, growth, morphology, and metamorphic traits of larval skipper frogs (Euphlyctis cyanophlyctis)? JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2023; 339:125-137. [PMID: 36245429 DOI: 10.1002/jez.2661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 08/20/2022] [Accepted: 09/16/2022] [Indexed: 11/07/2022]
Abstract
Atrazine, an info disruptor, interferes with the olfaction of aquatic organisms by impairing the chemosensory system. Consequently, it affects behavior, physiology, and growth increases mortality and infections, and suppresses the immune system of aquatic animals. In this study, we wanted to determine the sensitivity of larval Euphlyctis cyanophlyctis to different concentrations of atrazine by assessing their antipredator behavior, growth, morphology, and metamorphic traits. The results indicate that exposure to atrazine did not affect the survival of tadpoles. However, it caused retarded growth at higher concentrations. Interestingly, the antipredator behavior of tadpoles toward conspecific alarm cues decreased in a dose-dependent manner with an increase in the concentration of atrazine. Tadpoles exposed to low concentrations of atrazine had deeper, wider bodies and tails while those exposed to higher concentrations had shallower and narrower bodies with shallower tail muscles. However, at low and moderate concentrations atrazine did not affect size at metamorphosis, it extended the larval duration at higher concentrations.
Collapse
|
103
|
Spodoptera exigua Multiple Nucleopolyhedrovirus Increases the Susceptibility to Insecticides: A Promising Efficient Way for Pest Resistance Management. BIOLOGY 2023; 12:biology12020260. [PMID: 36829536 PMCID: PMC9953395 DOI: 10.3390/biology12020260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/30/2023] [Accepted: 02/02/2023] [Indexed: 02/09/2023]
Abstract
Spodoptera exigua is a polyphagous pest of diverse crops and causes considerable economic losses. The overuse of chemical insecticides for controlling this pest results in insecticide resistance, environmental pollution and toxicity to other non-target organisms. Therefore, a sustainable and efficient way for pest management is urgently required. In this study, laboratory bioassays of eleven commonly used insecticides, the specific entomopathogen of S. exigua (Spodoptera exigua multiple nucleopolyhedrovirus, SeMNPV), and SeMNPV-insecticide combinations against the S. exigua laboratory population and two field populations were tested. Our results indicated that the two field populations had developed resistance to almost half of the tested insecticides, while SeMNPV had good virulence in all populations. Interestingly, the combined use of SeMNPV enhanced the toxicity of the tested insecticides against all populations to a different extent and considerably reduced the insecticide resistance of S. exigua field populations or even recovered the susceptibility to above insecticides. Furthermore, the field trial showed that the combined application of SeMNPV contributed to promoting the control efficacy of emamectin benzonate and chlorfenapyr. These results provide a promising efficient way for pest resistance management and an environmentally friendly approach for controlling S. exigua with the combined application of nucleopolyhedroviruses and insecticides.
Collapse
|
104
|
Drenker C, El Mazouar D, Bücker G, Weißhaupt S, Wienke E, Koch E, Kunz S, Reineke A, Rondot Y, Linkies A. Characterization of a Disease-Suppressive Isolate of Lysobacter enzymogenes with Broad Antagonistic Activity against Bacterial, Oomycetal and Fungal Pathogens in Different Crops. PLANTS (BASEL, SWITZERLAND) 2023; 12:682. [PMID: 36771766 PMCID: PMC9920595 DOI: 10.3390/plants12030682] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/23/2023] [Accepted: 01/30/2023] [Indexed: 06/18/2023]
Abstract
Although synthetic pesticides play a major role in plant protection, their application needs to be reduced because of their negative impact on the environment. This applies also to copper preparations, which are used in organic farming. For this reason, alternatives with less impact on the environment are urgently needed. In this context, we evaluated eight isolates of the genus Lysobacter (mainly Lysobacter enzymogenes) for their activity against plant pathogens. In vitro, the investigated Lysobacter isolates showed broad antagonistic activity against several phytopathogenic fungi, oomycetes and bacteria. Enzyme assays revealed diverse activities for the tested isolates. The most promising L. enzymogenes isolate (LEC) was used for further detailed analyses of its efficacy and effective working concentrations. The experiments included in vitro spore and sporangia germination tests and leaf disc assays as well as ad planta growth chamber trials against Alternaria solani and Phytophthora infestans on tomato plants, Pseudoperonospora cubensis on cucumbers and Venturia inaequalis on young potted apple trees. When applied on leaves, dilutions of a culture suspension of LEC had a concentration-dependent, protective effect against the tested pathogens. In all pathosystems tested, the effective concentrations were in the range of 2.5-5% and similarly efficacious to common plant protection agents containing copper hydroxide, wettable sulphur or fenhexamid. Thus, the isolate of L. enzymogenes identified in this study exhibits a broad activity against common plant pathogens and is therefore a promising candidate for the development of a microbial biocontrol agent.
Collapse
Affiliation(s)
- Christian Drenker
- Julius Kühn-Institute (JKI), Federal Research Centre for Cultivated Plants, Institute for Biological Control, 69221 Dossenheim, Germany
| | - Doris El Mazouar
- Julius Kühn-Institute (JKI), Federal Research Centre for Cultivated Plants, Institute for Biological Control, 69221 Dossenheim, Germany
| | - Gerrit Bücker
- Julius Kühn-Institute (JKI), Federal Research Centre for Cultivated Plants, Institute for Biological Control, 69221 Dossenheim, Germany
- Department of Crop Protection, Hochschule Geisenheim University, 65366 Geisenheim, Germany
| | | | | | - Eckhard Koch
- Julius Kühn-Institute (JKI), Federal Research Centre for Cultivated Plants, Institute for Biological Control, 69221 Dossenheim, Germany
| | | | - Annette Reineke
- Department of Crop Protection, Hochschule Geisenheim University, 65366 Geisenheim, Germany
| | - Yvonne Rondot
- Department of Crop Protection, Hochschule Geisenheim University, 65366 Geisenheim, Germany
| | - Ada Linkies
- Julius Kühn-Institute (JKI), Federal Research Centre for Cultivated Plants, Institute for Biological Control, 69221 Dossenheim, Germany
| |
Collapse
|
105
|
Loken LC, Corsi SR, Alvarez DA, Ankley GT, Baldwin AK, Blackwell BR, De Cicco LA, Nott MA, Oliver SK, Villeneuve DL. Prioritizing Pesticides of Potential Concern and Identifying Potential Mixture Effects in Great Lakes Tributaries Using Passive Samplers. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2023; 42:340-366. [PMID: 36165576 PMCID: PMC10107608 DOI: 10.1002/etc.5491] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/06/2022] [Accepted: 09/22/2022] [Indexed: 05/24/2023]
Abstract
To help meet the objectives of the Great Lakes Restoration Initiative with regard to increasing knowledge about toxic substances, 223 pesticides and pesticide transformation products were monitored in 15 Great Lakes tributaries using polar organic chemical integrative samplers. A screening-level assessment of their potential for biological effects was conducted by computing toxicity quotients (TQs) for chemicals with available US Environmental Protection Agency (USEPA) Aquatic Life Benchmark values. In addition, exposure activity ratios (EAR) were calculated using information from the USEPA ToxCast database. Between 16 and 81 chemicals were detected per site, with 97 unique compounds detected overall, for which 64 could be assessed using TQs or EARs. Ten chemicals exceeded TQ or EAR levels of concern at two or more sites. Chemicals exceeding thresholds included seven herbicides (2,4-dichlorophenoxyacetic acid, diuron, metolachlor, acetochlor, atrazine, simazine, and sulfentrazone), a transformation product (deisopropylatrazine), and two insecticides (fipronil and imidacloprid). Watersheds draining agricultural and urban areas had more detections and higher concentrations of pesticides compared with other land uses. Chemical mixtures analysis for ToxCast assays associated with common modes of action defined by gene targets and adverse outcome pathways (AOP) indicated potential activity on biological pathways related to a range of cellular processes, including xenobiotic metabolism, extracellular signaling, endocrine function, and protection against oxidative stress. Use of gene ontology databases and the AOP knowledgebase within the R-package ToxMixtures highlighted the utility of ToxCast data for identifying and evaluating potential biological effects and adverse outcomes of chemicals and mixtures. Results have provided a list of high-priority chemicals for future monitoring and potential biological effects warranting further evaluation in laboratory and field environments. Environ Toxicol Chem 2023;42:340-366. Published 2022. This article is a U.S. Government work and is in the public domain in the USA. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- Luke C. Loken
- US Geological SurveyUpper Midwest Water Science CenterMadisonWisconsinUSA
| | - Steven R. Corsi
- US Geological SurveyUpper Midwest Water Science CenterMadisonWisconsinUSA
| | - David A. Alvarez
- US Geological SurveyColumbia Environmental Research CenterColombiaMissouriUSA
| | - Gerald T. Ankley
- US Environmental Protection Agency, Center for Computational Toxicology and ExposureGreat Lakes Toxicology and Ecology DivisionDuluthMinnesotaUSA
| | | | - Brett R. Blackwell
- US Environmental Protection Agency, Center for Computational Toxicology and ExposureGreat Lakes Toxicology and Ecology DivisionDuluthMinnesotaUSA
| | - Laura A. De Cicco
- US Geological SurveyUpper Midwest Water Science CenterMadisonWisconsinUSA
| | - Michele A. Nott
- US Geological SurveyUpper Midwest Water Science CenterMadisonWisconsinUSA
| | - Samantha K. Oliver
- US Geological SurveyUpper Midwest Water Science CenterMadisonWisconsinUSA
| | - Daniel L. Villeneuve
- US Environmental Protection Agency, Center for Computational Toxicology and ExposureGreat Lakes Toxicology and Ecology DivisionDuluthMinnesotaUSA
| |
Collapse
|
106
|
Girotto L, Freitas IBF, Yoshii MPC, Goulart BV, Montagner CC, Schiesari LC, Espíndola ELG, Freitas JS. Using mesocosms to evaluate the impacts of pasture intensification and pasture-sugarcane conversion on tadpoles in Brazil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:21010-21024. [PMID: 36264462 DOI: 10.1007/s11356-022-23691-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 10/13/2022] [Indexed: 06/16/2023]
Abstract
This study evaluated the effects of environmental contamination caused by pasture intensification and pasture-sugarcane conversion on oxidative stress, biotransformation, esterase enzymes, and development of Scinax fuscovarious and Physalaemus nattereri. Tadpoles were exposed in mesocosms allocated in three treatments: (1) untreated extensive pasture (EP); (2) intensive-pasture conversion (IP) (2,4-D herbicide + fertilizers); and (3) pasture-sugarcane conversion (SC) (fipronil + 2,4-D + fertilizers). After 7 days of exposure, IP reduced catalase (CAT) and increased malondialdehyde (MDA) levels in P. nattereri, while this treatment decreased glucose-6-phosphate dehydrogenase (G6PDH) and CAT activities in S. fuscovarious. SC decreased CAT, G6PDH, and glutathione S-transferase (GST) activities in P. nattereri. In S. fuscovarius, SC reduced G6PDH, acetylcholinesterase (AChE), and carboxylesterase (CbE) activities. MDA was raised in both tadpole species exposed to SC, evidencing oxidative stress. Integrated biomarker responses showed higher scores in both species exposed to SC. Our results warn that management practices currently applied to sugarcane cultivation in Brazil can negatively impact the functional responses of amphibians at natural systems.
Collapse
Affiliation(s)
- Lais Girotto
- NEEA/CRHEA/SHS, São Carlos Engineering School, University of São Paulo, Av. Trabalhador São Carlense, 400, 13, São Carlos, 560-970, Brazil
| | - Isabele Baima Ferreira Freitas
- NEEA/CRHEA/SHS, São Carlos Engineering School, University of São Paulo, Av. Trabalhador São Carlense, 400, 13, São Carlos, 560-970, Brazil
| | - Maria Paula Cardoso Yoshii
- NEEA/CRHEA/SHS, São Carlos Engineering School, University of São Paulo, Av. Trabalhador São Carlense, 400, 13, São Carlos, 560-970, Brazil
| | - Bianca Veloso Goulart
- Analytical Chemistry Department, Institute of Chemistry, University of Campinas, Campinas, , São Paulo, Brazil
| | - Cassiana Carolina Montagner
- Analytical Chemistry Department, Institute of Chemistry, University of Campinas, Campinas, , São Paulo, Brazil
| | - Luis César Schiesari
- EACH, USP - School of Arts, Sciences and Humanities, University of São Paulo, Av. Arlindo Bétio 1000, São Paulo, SP, 03828-000, Brazil
| | - Evaldo Luiz Gaeta Espíndola
- NEEA/CRHEA/SHS, São Carlos Engineering School, University of São Paulo, Av. Trabalhador São Carlense, 400, 13, São Carlos, 560-970, Brazil
| | - Juliane Silberschmidt Freitas
- Department of Agricultural and Natural Sciences, Minas Gerais State University (UEMG), R. Ver. Geraldo Moisés da Silva, S/N - Universitário, Ituiutaba, MG, 38302-192, Brazil.
| |
Collapse
|
107
|
McCaffrey KR, Paulukonis EA, Raimondo S, Sinnathamby S, Purucker ST, Oliver LM. A multi-scale approach for identification of potential pesticide use sites impacting vernal pool critical habitat in California. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159274. [PMID: 36208758 PMCID: PMC9884490 DOI: 10.1016/j.scitotenv.2022.159274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 09/30/2022] [Accepted: 10/02/2022] [Indexed: 06/16/2023]
Abstract
Spatially explicit ecological risk assessment (ERA) requires estimating the overlap between chemical and receptor distribution to evaluate the potential impacts of exposure on nontarget organisms. Pesticide use estimation at field level is prone to error due to inconsistencies between ground-reporting and geospatial data coverage; attempts to rectify these inconsistencies have been limited in approach and rarely scaled to multiple crop types. We built upon a previously developed Bayesian approach to combine multiple crop types for a probabilistic determination of field-crop assignments and to examine co-occurrence of critical vernal pool habitats and bifenthrin application within a 5-county area in California (Madera, Merced, Sacramento, San Joaquin, and Stanislaus counties). We incorporated a multi-scale repeated sampling approach with an area constraint to improve the delineation of field boundaries and better capture variability in crop assignments and rotation schemes. After comparing the accuracy of the spatial probabilistic approach to USDA Census of Agriculture crop acreage data, we found our approach allows more specificity in the combination of crop types represented by the potential application area and improves acreage estimates when compared to traditional deterministic approaches. In addition, our multi-scale sampling scheme improved estimates of bifenthrin acreage variability for co-occurrence analysis and allowed for estimates of crop rotations that were previously uncaptured. Our approach could be leveraged for more realistic, spatially resolved exposure and effects models both in and outside of California.
Collapse
Affiliation(s)
- Kelly R McCaffrey
- US Environmental Protection Agency, Office of Research and Development, Center for Environmental Measurement and Modeling, Gulf Ecosystem Measurement and Modeling Division, 1 Sabine Island Drive, Gulf Breeze, FL 32561, USA
| | - Elizabeth Anne Paulukonis
- US Environmental Protection Agency, Office of Research and Development, Center for Computational Toxicology and Exposure, Great Lakes Toxicology and Ecology Division, Molecular Indicators Branch, 109 T.W. Alexander Dr., Research Triangle Park, NC 27711, USA; Oak Ridge Institute for Science and Education (ORISE), PO Box 117, Oak Ridge, TN, USA
| | - Sandy Raimondo
- US Environmental Protection Agency, Office of Research and Development, Center for Environmental Measurement and Modeling, Gulf Ecosystem Measurement and Modeling Division, 1 Sabine Island Drive, Gulf Breeze, FL 32561, USA
| | - Sumathy Sinnathamby
- US Environmental Protection Agency, Office of Chemical Safety and Pollution Prevention, Office of Pesticide Programs, One Potomac Yard, 2777 Crystal Drive, Arlington, VA 22202, USA
| | - S Thomas Purucker
- US Environmental Protection Agency, Office of Research and Development, Center for Computational Toxicology and Exposure, Great Lakes Toxicology and Ecology Division, Molecular Indicators Branch, 109 T.W. Alexander Dr., Research Triangle Park, NC 27711, USA
| | - Leah M Oliver
- US Environmental Protection Agency, Office of Research and Development, Center for Environmental Measurement and Modeling, Gulf Ecosystem Measurement and Modeling Division, 1 Sabine Island Drive, Gulf Breeze, FL 32561, USA.
| |
Collapse
|
108
|
Torquetti CG, de Carvalho TP, de Freitas RMP, Freitas MB, Guimarães ATB, Soto-Blanco B. Influence of landscape ecology and physiological implications in bats from different trophic guilds. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159631. [PMID: 36280059 DOI: 10.1016/j.scitotenv.2022.159631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 09/28/2022] [Accepted: 10/18/2022] [Indexed: 06/16/2023]
Abstract
Bats may serve as bioindicators of human impact on landscape ecology. This study aimed to evaluate the health condition of bats from different food guilds captured in two areas with different land use profiles in Brazil and to compare data on the oxidant-antioxidant balance and histopathological changes due to different anthropogenic pressures. Bats were collected from a protected area in Serra do Cipó National Park (SCNP), MG, Brazil, and an area with intense agricultural activity in the municipality of Uberaba (UB), MG, Brazil. Despite the differences in land use and occupation between the studied areas, bats showed similar responses. However, the trophic guilds were affected differently. Frugivorous bats in both areas showed lower activities of the enzymes superoxide dismutase (SOD), catalase (CAT), and glutathione S-transferase (GST) and concentrations of malondialdehyde (MDA) than other guilds, which can be explained by the greater intake of antioxidants from the diet in addition to the lower production of reactive oxygen species (ROS). Histopathological analysis of the livers revealed that the animals had a similar prevalence in the two areas, with some differences related to guilds. Compared with other bats, hematophagous bats from SCNP had a higher prevalence of steatosis and, together with frugivorous bats from Uberaba, had higher frequencies of ballooning degeneration, suggesting that these animals are subjected to anthropogenic factors capable of inducing disturbances in hepatic metabolism. Hematophagous bats from Uberaba had a higher prevalence of portal inflammation, while insectivorous bats from Uberaba had a higher prevalence of lobular and portal inflammation. The profiles of use and occupation of the areas are different; Uberaba bats seem to face worse conditions because they show more liver damage owing to lipoperoxidation.
Collapse
Affiliation(s)
- Camila Guimarães Torquetti
- Programa de Pós-Graduação em Ciência Animal, Escola de Veterinária, Universidade Federal de Minas Gerais (UFMG), Avenida Antônio Carlos 6627, Belo Horizonte, MG 30123-970, Brazil
| | - Thaynara Parente de Carvalho
- Programa de Pós-Graduação em Ciência Animal, Escola de Veterinária, Universidade Federal de Minas Gerais (UFMG), Avenida Antônio Carlos 6627, Belo Horizonte, MG 30123-970, Brazil
| | - Renata Maria Pereira de Freitas
- Programa de Pós-Graduação em Ciências Ambientais, Universidade Federal de Goiás (UFG), Avenida Esperança s/n, Goiânia, GO 74690-900, Brazil
| | - Mariella Bontempo Freitas
- Departamento de Biologia Animal, Universidade Federal de Viçosa (UFV), Av. P.H. Rolfs s/n, Viçosa, MG 36570-000, Brazil
| | - Ana Tereza Bittencourt Guimarães
- Laboratório de Investigações Biológicas, Centro de Ciências Biológicas e da Saúde, Universidade Estadual do Oeste do Paraná, Rua Universitária 2069, Cascavel, PR 85819-110, Brazil
| | - Benito Soto-Blanco
- Programa de Pós-Graduação em Ciência Animal, Escola de Veterinária, Universidade Federal de Minas Gerais (UFMG), Avenida Antônio Carlos 6627, Belo Horizonte, MG 30123-970, Brazil.
| |
Collapse
|
109
|
Gunathilaka MDKL, Bao S, Liu X, Li Y, Pan Y. Antibiotic Pollution of Planktonic Ecosystems: A Review Focused on Community Analysis and the Causal Chain Linking Individual- and Community-Level Responses. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:1199-1213. [PMID: 36628989 DOI: 10.1021/acs.est.2c06787] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Antibiotic pollution has become one of the most challenging environmental issues in aquatic ecosystems, with adverse effects on planktonic organisms that occupy the base of the aquatic food chain. However, research regarding this topic has not been systematically reviewed, especially in terms of community-level responses. In this review, we provide an overview of current antibiotic pollution in aquatic environments worldwide. Then, we summarize recent studies concerning the responses of planktonic communities to antibiotics, ranging from individual- to community-level responses. Studies have shown that extremely high concentrations of antibiotics can directly harm the growth and survival of plankton; however, such concentrations are rarely found in natural freshwater. It is more likely that environmentally relevant concentrations of antibiotics will affect the physiological, morphological, and behavioral characteristics of planktonic organisms; influence interspecific interactions among plankton species via asymmetrical responses in species traits; and thus alter the structure and function of the entire planktonic ecosystem. This review highlights the importance of community analysis in revealing antibiotic toxicity. We also encourage the establishment of the causal relationships between impacts at multiple scales in the future for predicting the community-level consequences of antibiotics based on the currently available individual-level evidence.
Collapse
Affiliation(s)
- M D K Lakmali Gunathilaka
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, School of Ecology and Environmental Sciences, Yunnan University, Kunming, Yunnan 650091, China
- Yunnan International Cooperative Center of Plateau Lake Ecological Restoration and Watershed Management and Yunnan Think Tank of Ecological Civilization, Kunming, Yunnan 650091, China
- Department of Geography, University of Colombo, Colombo 00300, Sri Lanka
| | - Siyi Bao
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, School of Ecology and Environmental Sciences, Yunnan University, Kunming, Yunnan 650091, China
- Yunnan International Cooperative Center of Plateau Lake Ecological Restoration and Watershed Management and Yunnan Think Tank of Ecological Civilization, Kunming, Yunnan 650091, China
| | - Xiaoxuan Liu
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, School of Ecology and Environmental Sciences, Yunnan University, Kunming, Yunnan 650091, China
- Yunnan International Cooperative Center of Plateau Lake Ecological Restoration and Watershed Management and Yunnan Think Tank of Ecological Civilization, Kunming, Yunnan 650091, China
- Institute of International Rivers and Eco-security, Yunnan Key Laboratory of International Rivers and Trans-Boundary Eco-security, Yunnan University, Kunming 650091, People's Republic of China
| | - Ya Li
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, School of Ecology and Environmental Sciences, Yunnan University, Kunming, Yunnan 650091, China
- Yunnan International Cooperative Center of Plateau Lake Ecological Restoration and Watershed Management and Yunnan Think Tank of Ecological Civilization, Kunming, Yunnan 650091, China
| | - Ying Pan
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, School of Ecology and Environmental Sciences, Yunnan University, Kunming, Yunnan 650091, China
- Yunnan International Cooperative Center of Plateau Lake Ecological Restoration and Watershed Management and Yunnan Think Tank of Ecological Civilization, Kunming, Yunnan 650091, China
| |
Collapse
|
110
|
Collares LJ, Turchen LM, Guedes RNC. Research Trends, Biases, and Gaps in Phytochemicals as Insecticides: Literature Survey and Meta-Analysis. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12020318. [PMID: 36679031 PMCID: PMC9866902 DOI: 10.3390/plants12020318] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/03/2023] [Accepted: 01/06/2023] [Indexed: 05/26/2023]
Abstract
A 76-year literature survey and meta-analyses were carried out to recognize the trends, biases, and knowledge gaps of studies focusing on major groups of compounds of botanical origin, or phytochemicals, as insecticides. The survey found that the main phytochemicals prospected as insecticides belong to the following major chemical groups: terpenoids, terpenes, and carbonyl, all of which were tested, mainly against beetles (Coleoptera), caterpillars (i.e., larvae of Lepidoptera), and mosquitoes and other flies (i.e., Diptera). These studies are burgeoning at an exponential rate, with an evident focus on mortality endpoint estimates, but they are also neglecting sublethal assessments. China and India in Asia, as well as Brazil in the Americas, were responsible for most studies. The majority of the papers used stored grain insects as experimental models, which limits the applicability and representativeness of the findings. As a result, the main modes of exposure tested were fumigation and contact, which leads to the prevalence of estimates of lethal concentration in these studies. Therefore, a broader range of insect species deserves testing, with suitable modes of exposure identifying and characterizing the main molecules responsible for the insecticidal activity, which is seldom performed. Attention to these needs will circumvent current biases and allow the recognition of the main patterns of association between the origin and structure of phytochemicals and their insecticidal effects.
Collapse
Affiliation(s)
- Lara J. Collares
- Departamento de Entomologia, Universidade Federal de Viçosa, Viçosa 3657-900, MG, Brazil
- Neo Ventures, Rua Alameda Vicente Pinzon, 54, 9° Andar, Vila Olímpia, São Paulo 04547-130, SP, Brazil
| | - Leonardo M. Turchen
- Departamento de Entomologia, Universidade Federal de Viçosa, Viçosa 3657-900, MG, Brazil
| | - Raul Narciso C. Guedes
- Departamento de Entomologia, Universidade Federal de Viçosa, Viçosa 3657-900, MG, Brazil
| |
Collapse
|
111
|
Dai W, Holmstrup M, Slotsbo S, Bakker R, Damgaard C, van Gestel CAM. Heat stress delays detoxification of phenanthrene in the springtail Folsomia candida. CHEMOSPHERE 2023; 311:137119. [PMID: 36334742 DOI: 10.1016/j.chemosphere.2022.137119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 10/29/2022] [Accepted: 10/31/2022] [Indexed: 06/16/2023]
Abstract
Climate change has intensified the occurrence of heat waves, resulting in organisms being exposed to thermal and chemical stress at the same time. The effects of mild heat shock combined with sublethal concentrations of phenanthrene (PHE) on defense mechanisms in springtails Folsomia candida were investigated. The transcription of Heat Shock Protein 70 (HSP70) was significantly upregulated by heat shock but tended to reach the control levels after 42 h of recovery. The transcription of cytochrome P450 3A13 (CYP3A13) was upregulated 3-13 fold by PHE but suppressed by heat shock. The suppression by heat shock might contribute to the reduced detoxification of PHE during high-temperature exposure. In line with this, we found that the internal PHE concentration was approximately 70% higher in heat-shocked springtails than in animals kept at control temperature. In general, the transcription of genes encoding enzymes of detoxification phase Ⅱ (glutathione S-transferase 3) and phase Ⅲ (ABC transporter 1) and the activity of antioxidant defense enzymes (superoxide dismutase and catalase) were less influenced than genes encoding phase I detoxification mechanisms (CYP3A13). These results indicate that heat shock delays the detoxification of PHE in springtails.
Collapse
Affiliation(s)
- Wencai Dai
- College of Resources and Environment, Southwest University, Chongqing, 400715, China; Section of Terrestrial Ecology, Department of Ecoscience, Aarhus University, C.F. Møllers Alle 4-6, 8000, Aarhus, Denmark.
| | - Martin Holmstrup
- Section of Terrestrial Ecology, Department of Ecoscience, Aarhus University, C.F. Møllers Alle 4-6, 8000, Aarhus, Denmark
| | - Stine Slotsbo
- Section of Terrestrial Ecology, Department of Ecoscience, Aarhus University, C.F. Møllers Alle 4-6, 8000, Aarhus, Denmark
| | - Ruben Bakker
- Amsterdam Institute for Life and Environment (A-LIFE), Faculty of Science, Vrije Universiteit, De Boelelaan 1085, 1081 HV, Amsterdam, the Netherlands
| | - Christian Damgaard
- Section of Terrestrial Ecology, Department of Ecoscience, Aarhus University, C.F. Møllers Alle 4-6, 8000, Aarhus, Denmark
| | - Cornelis A M van Gestel
- Amsterdam Institute for Life and Environment (A-LIFE), Faculty of Science, Vrije Universiteit, De Boelelaan 1085, 1081 HV, Amsterdam, the Netherlands
| |
Collapse
|
112
|
Brulle F, Amossé J, Bart S, Conrad A, Mazerolles V, Nélieu S, Lamy I, Péry A, Pelosi C. Toward a harmonized methodology to analyze field side effects of two pesticide products on earthworms at the EU level. INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2023; 19:254-271. [PMID: 35703133 PMCID: PMC10084329 DOI: 10.1002/ieam.4650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 05/05/2022] [Accepted: 06/03/2022] [Indexed: 06/15/2023]
Abstract
Before plant protection product (PPP) marketing authorization, a risk assessment for nontarget soil organisms (e.g., earthworms) is required as part of Regulation (EC) No. 1107/2009. Following a stepwise approach, higher tier earthworm field studies are needed if they cannot demonstrate low long-term risk based on laboratory studies. The European guidance for terrestrial ecotoxicology refers to ISO guideline 11268-3 as a standard to conduct earthworm field studies. Assessment of such studies may be challenging, as no European harmonized guidance is available to properly analyze the accuracy, representativeness, and appropriateness of experimental designs, as well as the statistical analysis robustness of results and their scientific reliability. Following the ISO guideline 11268-3, a field study was performed in 2016-2017 (Versailles, France). An assessment of the first year of this field study was performed in agreement with the quality criteria provided in 2006 in the guidance document published by de Jong and collaborators and recommendations by Kula and collaborators that allows describing the protocol and results of earthworm field studies. Not only did we underline the importance of a detailed analysis of raw data on the effects of pesticides on earthworms in field situations, but we also provided recommendations to harmonize protocols for assessing higher tier field studies devoted to earthworms to advance a better assessment of PPP fate and ecotoxicity. In particular, we provided practical field observations related to the study design, pesticide applications, and earthworm sampling. Concurrently, in addition to the conventional earthworm community study, we propose carrying out an assessment of soil function (i.e., organic matter decomposition, soil structuration, etc.) and calculating diversity indices to obtain information about earthworm community dynamics after the application of PPPs. Finally, through field observations, any relevant observation of external and/or internal recovery should be reported. Integr Environ Assess Manag 2023;19:254-271. © 2022 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals LLC on behalf of Society of Environmental Toxicology & Chemistry (SETAC).
Collapse
Affiliation(s)
- Franck Brulle
- Ecotoxicological and Environmental Fate Unit for Pesticides and Fertilisers, Regulated Products Assessment DepartmentANSESMaisons‐AlfortFrance
| | - Joël Amossé
- Université Paris‐Saclay, INRAE, AgroParisTech, UMR ECOSYSVersaillesFrance
| | - Sylvain Bart
- Université Paris‐Saclay, INRAE, AgroParisTech, UMR ECOSYSVersaillesFrance
- MOECO (modeling and data analyses for ecology and ecotoxicology)ParisFrance
| | - Arnaud Conrad
- Ecotoxicological and Environmental Fate Unit for Pesticides and Fertilisers, Regulated Products Assessment DepartmentANSESMaisons‐AlfortFrance
| | - Vanessa Mazerolles
- Ecotoxicological and Environmental Fate Unit for Pesticides and Fertilisers, Regulated Products Assessment DepartmentANSESMaisons‐AlfortFrance
| | - Sylvie Nélieu
- Université Paris‐Saclay, INRAE, AgroParisTech, UMR ECOSYSVersaillesFrance
| | - Isabelle Lamy
- Université Paris‐Saclay, INRAE, AgroParisTech, UMR ECOSYSVersaillesFrance
| | - Alexandre Péry
- Université Paris‐Saclay, INRAE, AgroParisTech, UMR ECOSYSVersaillesFrance
| | - Céline Pelosi
- Université Paris‐Saclay, INRAE, AgroParisTech, UMR ECOSYSVersaillesFrance
- INRAE, Avignon Université, UMR EMMAHAvignonFrance
| |
Collapse
|
113
|
Murphy SM, Hathcock CD, Espinoza TN, Fresquez PR, Berryhill JT, Stanek JE, Sutter BJ, Gaukler SM. Comparative spatially explicit approach for testing effects of soil chemicals on terrestrial wildlife bioindicator demographics. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 316:120541. [PMID: 36336177 DOI: 10.1016/j.envpol.2022.120541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 10/07/2022] [Accepted: 10/27/2022] [Indexed: 06/16/2023]
Abstract
Wildlife species are often used as bioindicators to evaluate the extent and severity of environmental contamination and the effectiveness of remediation practices. A common approach for investigating population- or community-level impacts on bioindicators compares demographic parameter estimates (e.g., population size or density) between sites that were subjected to different levels of contamination. However, the traditional analytical method used in such studies is nonspatial capture-recapture, which results in conclusions about potential relationships between demographics and contaminants being inferred indirectly. Here, we extend this comparative approach to the spatially explicit framework, allowing direct estimation of said relationships and comparisons between study areas, by applying spatial capture-recapture (SCR) models to bioindicator (deer mice [Peromyscus spp.]) detection data from two study areas that were subjected to different industrial activities and remediation practices. Bioindicator density differed by 178% between the neighboring study areas, and the area with the highest soil concentrations of polychlorinated biphenyls, chromium, and zinc had the highest bioindicator density. Under the traditional nonspatial approach, we might have concluded that soil chemical levels had negligible influences on demographics. However, by modeling density as a spatial function of select chemical concentrations using SCR models, we found strong support for a positive relationship between density and soil chromium concentrations in one study area (β = 0.82), which was not masked by or associated with habitat-related metrics. To obtain reliable inferences about potential effects of environmental contamination on bioindicator demographics, we contend that a comparative spatially explicit approach using SCR ought to become standard.
Collapse
Affiliation(s)
- Sean M Murphy
- Department of Forestry and Natural Resources, University of Kentucky, Lexington, KY, USA.
| | - Charles D Hathcock
- Environmental Stewardship Group, Los Alamos National Laboratory, Los Alamos, NM, USA.
| | - Tatiana N Espinoza
- Environmental Stewardship Group, Los Alamos National Laboratory, Los Alamos, NM, USA; Space Science and Applications Group, Los Alamos National Laboratory, Los Alamos, NM, USA.
| | - Philip R Fresquez
- Environmental Stewardship Group, Los Alamos National Laboratory, Los Alamos, NM, USA.
| | - Jesse T Berryhill
- Environmental Stewardship Group, Los Alamos National Laboratory, Los Alamos, NM, USA.
| | - Jenna E Stanek
- Environmental Stewardship Group, Los Alamos National Laboratory, Los Alamos, NM, USA.
| | - Benjamin J Sutter
- Infrastructure Program Office, Los Alamos National Laboratory, Los Alamos, NM, USA.
| | - Shannon M Gaukler
- Environmental Stewardship Group, Los Alamos National Laboratory, Los Alamos, NM, USA.
| |
Collapse
|
114
|
C. Muñoz C, Charles S, McVey EA, Vermeiren P. The ATTAC guiding principles to openly and collaboratively share wildlife ecotoxicology data. MethodsX 2022; 10:101987. [PMID: 36624730 PMCID: PMC9823217 DOI: 10.1016/j.mex.2022.101987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 12/26/2022] [Indexed: 12/31/2022] Open
Abstract
The inability to quantitatively integrate scattered data regarding potential threats posed by the increasing total amount and diversity of chemical substances in our environment limits our ability to understand whether existing regulations and management actions sufficiently protect wildlife. Systematic literature reviews and meta-analyses are great scientific tools to build upon the current push for accessibility under the Open Science and FAIR movements. Despite the potential of such integrative analyses, the emergence of innovative findings in wildlife ecology and ecotoxicology is still too rare relative to the potential that is hidden within the entirety of the available scattered data. To promote the reuse of wildlife ecotoxicology data, we propose the ATTAC workflow which comprises five key steps (Access, Transparency, Transferability, Add-ons, and Conservation sensitivity) along the chain of collecting, homogenizing, and integrating data for subsequent meta-analyses. The ATTAC workflow brings together guidelines supporting both the data prime movers and re-users. As such, the ATTAC workflow could promote an open and collaborative wildlife ecotoxicology able to reach a major objective in this applied field, namely, providing strong scientific support for regulations and management actions to protect and preserve wildlife species.
Collapse
Affiliation(s)
- Cynthia C. Muñoz
- Department of Environmental Science, Radboud University, Nijmegen, GL 6500, the Netherlands,Corresponding author.
| | - Sandrine Charles
- CNRS, UMR 5558, Laboratory of Biometry and Evolutionary Biology, University of Lyon, University Lyon 1, Villeurbanne F-69622, France
| | - Emily A. McVey
- College for the Authorization of Pesticides and Biocides, Ede, LL 6717, the Netherlands
| | - Peter Vermeiren
- Department of Environmental Science, Radboud University, Nijmegen, GL 6500, the Netherlands,Department of Natural Sciences and Environmental Health, University of South-Eastern Norway, 3800 Bø, Norway
| |
Collapse
|
115
|
Pan TT, Guo M, Lu P, Hu D. Real-time and in situ monitoring of organosilicon-induced thiram penetration into cabbage leaves by surface-enhanced Raman scattering mapping. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:7405-7413. [PMID: 35789490 DOI: 10.1002/jsfa.12109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 06/29/2022] [Accepted: 07/01/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Understanding pesticide penetration behavior is important for effective application of pesticides. However, there is a lack of an effective method to monitor pesticide penetration behavior and its changing process. In the present study, a novel surface-enhanced Raman scattering (SERS) mapping method was used for real-time and in situ tracking of the penetration behaviors of thiram and thiram-organosilicon mixture on cabbage leaves. RESULTS The results suggest that thiram has very weak ability to penetrate into cabbage leaves. However, when the thiram-organosilicon mixture was placed on leaf surfaces, a clear thiram signal was detected inside the leaf after 2 h of exposure, a strong signal was observed after 12 h, and the penetration depth of thiram was approximately 200 μm after 48 h. CONCLUSION SERS mapping was demonstrated to be a reliable method for in situ monitoring of organosilicon-induced thiram penetration into cabbage leaf over time. The present study provides a new reference for rationally selecting adjuvants, effectively applying pesticides, and reducing pesticides residue in food. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Ting-Tiao Pan
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
- College of Biological Sciences and Agriculture, Qiannan Normal University for Nationalities, Duyun, China
| | - Meiting Guo
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
| | - Ping Lu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
| | - Deyu Hu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
| |
Collapse
|
116
|
Alliot C, Mc Adams-Marin D, Borniotto D, Baret PV. The social costs of pesticide use in France. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2022. [DOI: 10.3389/fsufs.2022.1027583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The modern agricultural production system relies heavily on the use of synthetic pesticides, but over the course of recent decades various concerns have been raised on the associated negative externalities touching a variety of dimensions, such as human health and the environment. Yet, the magnitude of those effects is still unclear and data availability is scattered and heterogenous across dimensions, regions, and time. The public sector is called upon to develop and implement strategies to face those externalities and their associated social costs. This study aims to provide an assessment of social costs of pesticides in France in the prospect of an integration to the public budget spending, helping public authorities to identify financial flows of public funding with an impact perspective, within a methodological framework based on the social norms at the core of the public system. The results show that the social costs attributable to synthetic pesticide use in France amounted to 372 million euros, of which environmental costs are estimated at least at 291.5 million euros, health costs at least at 48.5 million euros, regulation at least at 31.9 million euros and public financial support to the sector at least at 0.4 million euros. For comparison, this total value of social costs represents more than 10% of the annual budget in 2017 of the French Ministry of Agriculture and Food (3,587 million euros). The analysis can be used as a monitoring indicator for the implementation of public policies in the context of the growing social and environmental issues they face.
Collapse
|
117
|
Wei J, Liu S, Wang K, Sun C, Li S, Liu X, Yin X, Bai S, Liang G, Crickmore N, An S. Cyclosporin A acts as a novel insecticide against Cry1Ac-susceptible and -resistant Helicoverpa armigera. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2022; 188:105283. [PMID: 36464338 DOI: 10.1016/j.pestbp.2022.105283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 10/25/2022] [Accepted: 11/02/2022] [Indexed: 06/17/2023]
Abstract
Cotton bollworm (Helicoverpa armigera) is an economically important pest, which is difficult to manage due to its biological and ecological traits, and resistance to most insecticides. Alternative compounds for the sustainable management of H. armigera are needed. As a fungal metabolite, Cyclosporin A (CsA) has not been applied in agriculture pests. Here, CsA was evaluated as a propective insecticide for H. armigera. The results showed that CsA displayed high insecticidal activity against both Cry1Ac-susceptible and -resistant populations of H. armigera. Moreover, lower concentrations of CsA had clear effects, including significantly reduced pupal weight, pupation rate, emergence rate, ovary size, female fecundity and egg hatchability. Further study confirmed that CsA suppressed calcineurin activity and the subsequent expression of endogenous antimicrobial peptide genes (APMs), leading to impaired immunity, ultimately resulting in delayed development and increased mortality. Thus, CsA treatment could control the cotton bollworm population and even showed efficacy against those with Bt resistance. In addition, the morphological changes observed in insects fed CsA with lower concentrations provide insight into insect immunity, regulation of growth and development, regulation of body color, ovary development and sexual selection under external pressure. Overall, our study provides information on biological control potential of Cry1Ac-susceptible and -resistant populations of H. armigera to develop novel bioinsecticides.
Collapse
Affiliation(s)
- Jizhen Wei
- State key Laboratory of Wheat and Maize Crop Science/College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China
| | - Shaokai Liu
- State key Laboratory of Wheat and Maize Crop Science/College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China
| | - Kai Wang
- State key Laboratory of Wheat and Maize Crop Science/College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China
| | - Chengxian Sun
- State key Laboratory of Wheat and Maize Crop Science/College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China
| | - Shunjia Li
- State key Laboratory of Wheat and Maize Crop Science/College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China
| | - Xiaoguang Liu
- State key Laboratory of Wheat and Maize Crop Science/College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China
| | - Xinming Yin
- State key Laboratory of Wheat and Maize Crop Science/College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China
| | - Sufen Bai
- State key Laboratory of Wheat and Maize Crop Science/College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China.
| | - Gemei Liang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Neil Crickmore
- School of Life Sciences, University of Sussex, Brighton BN1 9QG, UK
| | - Shiheng An
- State key Laboratory of Wheat and Maize Crop Science/College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China.
| |
Collapse
|
118
|
Rapid detection of thiabendazole in food using SERS coupled with flower-like AgNPs and PSL-based variable selection algorithms. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.105016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
119
|
Li W, Li X, Wang W, Zhang S, Cui J, Peng Y, Zhao Y. Impact of Sulfoxaflor Exposure on Bacterial Community and Developmental Performance of the Predatory Ladybeetle Propylea japonica. MICROBIAL ECOLOGY 2022:10.1007/s00248-022-02122-5. [PMID: 36242623 DOI: 10.1007/s00248-022-02122-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 09/30/2022] [Indexed: 06/16/2023]
Abstract
Insects maintain a vast number of symbiotic bacteria, and these symbionts play key roles in the hosts' life processes. Propylea japonica (Coleoptera: Coccinellidae) is an abundant and widespread ladybeetle in agricultural fields in Asia. Both larvae and adults of P. japonica are likely to be exposed to insecticide residue in the field during their predatory activity. Sulfoxaflor is a highly powerful insecticide that has strong efficacy in controlling sap-sucking pests. To date, there have been several studies on the acute and long-term toxicity of sulfoxaflor to insects, but few studies have reported the impact of sulfoxaflor on the predators' micro-ecosystems. This study was to determine the impact of sulfoxaflor on the symbiotic bacteria and developmental performance of P. japonica. In the present study, two concentrations (1 mg/L and 5 mg/L) and two exposure periods (1 day and 5 days) were set for P. japonica under sulfoxaflor exposure. The survival rate, developmental duration, pupation rate, emergence rate, and body weight of P. japonica were examined. Moreover, the bacterial community of P. japonica was investigated by high-throughput 16S ribosomal RNA gene sequencing. Our results indicated that bacterial community of P. japonica was mainly composed of Staphylococcus, Pantoea, Acinetobacter, Rhodococcus, and Ralstonia at the genus level. The bacterial community of P. japonica in 1 mg/L and 5 mg/L sulfoxaflor groups was significantly altered on day 1, compared with that in control group. The results also showed that the larval duration was significantly prolonged but the pupal duration was significantly shortened in both sulfoxaflor groups. Meanwhile, the pupation and emergence rate was not significantly changed, but the body weights of adults were significantly decreased in both sulfoxaflor groups. Our study will provide a new perspective for evaluating the safety of pesticides to beneficial arthropods.
Collapse
Affiliation(s)
- Wei Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China
- Hubei Key Laboratory of Regional Development and Environmental Response, Faculty of Resources and Environmental Science, Hubei University, Wuhan, 430062, China
| | - Xueqing Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Wenrong Wang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Shichang Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Jinjie Cui
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China.
| | - Yu Peng
- Hubei Key Laboratory of Regional Development and Environmental Response, Faculty of Resources and Environmental Science, Hubei University, Wuhan, 430062, China.
| | - Yao Zhao
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China.
| |
Collapse
|
120
|
Gu YG, Gao YP, Chen F, Huang HH, Yu SH, Jordan RW, Jiang SJ. Risk assessment of heavy metal and pesticide mixtures in aquatic biota using the DGT technique in sediments. WATER RESEARCH 2022; 224:119108. [PMID: 36122448 DOI: 10.1016/j.watres.2022.119108] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 09/03/2022] [Accepted: 09/11/2022] [Indexed: 06/15/2023]
Abstract
Heavy metals and pesticides (HMPs) are common contaminants due to their extensive use worldwide. Diffusive gradients in thin films (DGT) are a good method for measuring the bioavailable concentration of pollutants. This study represents the first evaluation of HMP toxicity in aquatic biota using the DGT technique in sediments. Zhelin Bay was selected as the case study site because it has been contaminated by pollutants. Nonmetric multidimensional scaling (NMS) analysis reveals that a diverse range of pollutants (V, Cr, Ni, Cu, Zn, As, Se, InHg, Mo, Cd, Sb, W, Pb, CLP, PYR) are mainly influenced by sediment characteristics. Assessment of single HMP toxicity found that the risk quotient (RQ) values for Mn, Cu, inorganic Hg (InHg), chlorpyrifos (CLP) and diuron (DIU) are significantly higher than 1, indicating that the adverse effects of these single HMPs should not be ignored. The combined toxicity of HMP mixtures based on probabilistic ecotoxicological risk assessment shows that Zhelin Bay surface sediments had a medium probability (54.6%) of toxic effects to aquatic biota.
Collapse
Affiliation(s)
- Yang-Guang Gu
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, Guangzhou 510300, China; Key Laboratory of Open-Sea Fishery Development, Ministry of Agriculture and Rural Affairs, Guangzhou 510300, China; Key Laboratory of Big Data for South China Sea Fishery Resources and Environment, Chinese Academy of Fishery Sciences, China.
| | - Yan-Peng Gao
- Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Fang Chen
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Hong-Hui Huang
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China; Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, Guangzhou 510300, China; Key Laboratory of Open-Sea Fishery Development, Ministry of Agriculture and Rural Affairs, Guangzhou 510300, China; Key Laboratory of Big Data for South China Sea Fishery Resources and Environment, Chinese Academy of Fishery Sciences, China
| | - Shao-Hua Yu
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Richard W Jordan
- Faculty of Science, Yamagata University, Yamagata 990-8560, Japan
| | - Shi-Jun Jiang
- College of Oceanography, Hohai University, Nanjing 210024, China
| |
Collapse
|
121
|
Kong R, Yang C, Huang K, Han G, Sun Q, Zhang Y, Zhang H, Letcher RJ, Liu C. Application of agricultural pesticides in a peak period induces an abundance decline of metazoan zooplankton in a lake ecosystem. WATER RESEARCH 2022; 224:119040. [PMID: 36099761 DOI: 10.1016/j.watres.2022.119040] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 08/22/2022] [Accepted: 08/29/2022] [Indexed: 06/15/2023]
Abstract
The contamination of pesticides has been recognized as a major stressor in fresh water ecosystems in terms of the losses of services and population declines and extinctions. However, information on the adverse effects of pesticides on zooplankton communities under natural field conditions are still lacking, although zooplankton is quite sensitive to most of pesticides in laboratory studies. In this study, a natural lake ecosystem (Liangzi Lake) was used to determine the relationship between pesticide contamination and abundance decline of metazoan zooplankton. In August 2020, the comprehensive trophic level indexes and the abundance of phytoplankton in the 14 sampling sites of Liangzi Lake were comparable, but the abundance of metazoan zooplankton showed significant variations across two orders of magnitude. These results suggested that other factors, such as pesticide contamination, might be responsible for the variations of metazoan zooplankton community. Furthermore, the responsible pesticides were screened, and totally 29 pesticides were obtained. Finally, five pesticides were identified to provide more than 99.4% toxic contributions and chlorpyrifos and cypermethrin were two main causal agents. These results were further supported by laboratory exposure experiments using D. magna and field study in November 2020, where the concentrations of the 29 pesticides were strongly decreased and the abundance of metazoan zooplankton was comparable across the 14 sites of Liangzi Lake. Taken together, this work provided an evidence that the contamination of pesticides might be responsible for the abundance decline of metazoan zooplankton in a natural freshwater ecosystem.
Collapse
Affiliation(s)
- Ren Kong
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, China; College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Chunxiang Yang
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Kai Huang
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Guixin Han
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Qian Sun
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Yongkang Zhang
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Hui Zhang
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China.
| | - Robert J Letcher
- Departments of Chemistry and Biology, Carleton University, Ottawa K1S 5B6, Ontario, Canada
| | - Chunsheng Liu
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, China; College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
122
|
Guedegba NL, Ben Ammar I, Houndji A, Toko II, Van De Merckt L, Agbohessi PT, Mandiki SNM, Scippo ML, Kestemont P. Integrated biomarker response to assess the effects of pesticide residues on Nile Tilapia in aquatic ecosystems contaminated by cotton-field effluents. CHEMOSPHERE 2022; 305:135407. [PMID: 35732206 DOI: 10.1016/j.chemosphere.2022.135407] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 05/29/2022] [Accepted: 06/15/2022] [Indexed: 06/15/2023]
Abstract
An in-situ study combined with an integrated biomarker response was used to evaluate the impact of agricultural effluents in the physiological responses of Nile tilapia reared in cages and enclosures of water reservoirs in North Benin. Fish were distributed in fish farming systems at two sites: Songhai located outside the cotton basin and Batran located in the most productive commune. They were sampled for blood and organs before (BST), during (DST) and after (AST) pesticide treatment. Pesticide residues were analysed in water, sediments and fish muscles. Several biomarkers were investigated related to the immune (peroxidase, lysozyme and complement activities, superoxide anion production) and reproductive (sex steroids and vitellogenin levels) responses as well as neurotoxicity (cholinesterase activity) and tissue alterations. Biomarkers were assessed and analysed via the integrated biomarker response (IBR). The results showed that Batran water reservoir was a more harmful ecosystem for fish than Songhai one, especially by depressing some immune and reproductive functions in relation to a higher-level of pesticide contamination. They also demonstrated that the contact of fish to sediments in enclosures aggravated the pesticide burden on fish. Therefore, using males as bioindicators would improve the sensitivity of the used biomarkers since males seemed more affected than females especially due to pesticide estrogenic induction impacting their reproductive system.
Collapse
Affiliation(s)
- Nicresse Léa Guedegba
- Research Unit in Environmental and Evolutionary Biology (URBE), Institute of Life, Earth & Environment (ILEE), University of Namur, 61 rue de Bruxelles, 5000, Namur, Belgium; Research Laboratory in Aquaculture and Aquatic Ecotoxicology (LaRAEAq), University of Parakou, Faculty of Agronomy, 03 BP 61 Parakou-University, Benin
| | - Imen Ben Ammar
- Research Unit in Environmental and Evolutionary Biology (URBE), Institute of Life, Earth & Environment (ILEE), University of Namur, 61 rue de Bruxelles, 5000, Namur, Belgium.
| | - Alexis Houndji
- Research Unit in Environmental and Evolutionary Biology (URBE), Institute of Life, Earth & Environment (ILEE), University of Namur, 61 rue de Bruxelles, 5000, Namur, Belgium; Research Laboratory in Aquaculture and Aquatic Ecotoxicology (LaRAEAq), University of Parakou, Faculty of Agronomy, 03 BP 61 Parakou-University, Benin
| | - Ibrahim Imorou Toko
- Research Laboratory in Aquaculture and Aquatic Ecotoxicology (LaRAEAq), University of Parakou, Faculty of Agronomy, 03 BP 61 Parakou-University, Benin
| | - Lara Van De Merckt
- Research Unit in Environmental and Evolutionary Biology (URBE), Institute of Life, Earth & Environment (ILEE), University of Namur, 61 rue de Bruxelles, 5000, Namur, Belgium
| | - Prudencio Tachégnon Agbohessi
- Research Laboratory in Aquaculture and Aquatic Ecotoxicology (LaRAEAq), University of Parakou, Faculty of Agronomy, 03 BP 61 Parakou-University, Benin
| | - Syaghalirwa N M Mandiki
- Research Unit in Environmental and Evolutionary Biology (URBE), Institute of Life, Earth & Environment (ILEE), University of Namur, 61 rue de Bruxelles, 5000, Namur, Belgium
| | - Marie-Louise Scippo
- Laboratory of Food Analysis, Fundamental and Applied Research for Animals & Health (FARAH), Veterinary Public Health, University of Liège, bât. B43bis, 10 Avenue de Cureghem, Sart-Tilman, B-4000, Liège, Belgium
| | - Patrick Kestemont
- Research Unit in Environmental and Evolutionary Biology (URBE), Institute of Life, Earth & Environment (ILEE), University of Namur, 61 rue de Bruxelles, 5000, Namur, Belgium.
| |
Collapse
|
123
|
Moreau J, Rabdeau J, Badenhausser I, Giraudeau M, Sepp T, Crépin M, Gaffard A, Bretagnolle V, Monceau K. Pesticide impacts on avian species with special reference to farmland birds: a review. ENVIRONMENTAL MONITORING AND ASSESSMENT 2022; 194:790. [PMID: 36107257 DOI: 10.1007/s10661-022-10394-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 08/12/2022] [Indexed: 06/15/2023]
Abstract
For decades, we have observed a major biodiversity crisis impacting all taxa. Avian species have been particularly well monitored over the long term, documenting their declines. In particular, farmland birds are decreasing worldwide, but the contribution of pesticides to their decline remains controversial. Most studies addressing the effects of agrochemicals are limited to their assessment under controlled laboratory conditions, the determination of lethal dose 50 (LD50) values and testing in a few species, most belonging to Galliformes. They often ignore the high interspecies variability in sensitivity, delayed sublethal effects on the physiology, behaviour and life-history traits of individuals and their consequences at the population and community levels. Most importantly, they have entirely neglected to test for the multiple exposure pathways to which individuals are subjected in the field (cocktail effects). The present review aims to provide a comprehensive overview for ecologists, evolutionary ecologists and conservationists. We aimed to compile the literature on the effects of pesticides on bird physiology, behaviour and life-history traits, collecting evidence from model and wild species and from field and lab experiments to highlight the gaps that remain to be filled. We show how subtle nonlethal exposure might be pernicious, with major consequences for bird populations and communities. We finally propose several prospective guidelines for future studies that may be considered to meet urgent needs.
Collapse
Affiliation(s)
- Jérôme Moreau
- Équipe Écologie Évolutive, UMR CNRS 6282 Biogéosciences, Université Bourgogne Franche-Comté, Dijon, France
- UMR CNRS 7372 Centre d'Études Biologiques de Chizé, La Rochelle Université, 79360, Villiers-en-Bois, France
| | - Juliette Rabdeau
- UMR CNRS 7372 Centre d'Études Biologiques de Chizé, La Rochelle Université, 79360, Villiers-en-Bois, France
| | - Isabelle Badenhausser
- Unité de Recherche Pluridisciplinaire Prairies Plantes Fourragères, INRAE, 86600, Lusignan, France
| | - Mathieu Giraudeau
- UMR IRD, CREEC, Université de Montpellier, 224-CNRS 5290, Montpellier, France
- Centre de Recherche en Écologie Et Évolution de La Sante (CREES), Montpellier, France
- Littoral Environnement Et Sociétés (LIENSs), UMR 7266, CNRS- La Rochelle Université, La Rochelle, France
| | - Tuul Sepp
- Department of Zoology, University of Tartu, Tartu, Estonia
| | - Malaury Crépin
- UMR CNRS 7372 Centre d'Études Biologiques de Chizé, La Rochelle Université, 79360, Villiers-en-Bois, France
| | - Agathe Gaffard
- UMR CNRS 7372 Centre d'Études Biologiques de Chizé, La Rochelle Université, 79360, Villiers-en-Bois, France
| | - Vincent Bretagnolle
- UMR CNRS 7372 Centre d'Études Biologiques de Chizé, La Rochelle Université, 79360, Villiers-en-Bois, France
- LTSER "Zone Atelier Plaine & Val de Sèvre", CNRS, 79360, Villiers-en-Bois, France
| | - Karine Monceau
- UMR CNRS 7372 Centre d'Études Biologiques de Chizé, La Rochelle Université, 79360, Villiers-en-Bois, France.
| |
Collapse
|
124
|
Fernandez-de-Simon J, Díaz-Ruiz F, Jareño D, Domínguez JC, Lima-Barbero JF, de Diego N, Santamaría AE, Herrero-Villar M, Camarero PR, Olea PP, García JT, Mateo R, Viñuela J. Weasel exposure to the anticoagulant rodenticide bromadiolone in agrarian landscapes of southwestern Europe. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:155914. [PMID: 35569667 DOI: 10.1016/j.scitotenv.2022.155914] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 05/05/2022] [Accepted: 05/09/2022] [Indexed: 06/15/2023]
Abstract
Bromadiolone is an anticoagulant rodenticide (AR) commonly used as a plant protection product (PPP) against rodent pests in agricultural lands. ARs can be transferred trophically to predators/scavengers when they consume intoxicated live or dead rodents. ARs exposure in weasels Mustela nivalis, small mustelids specialized on rodent predation, is poorly known in southern Europe. Moreover, in this species there is no information on bioaccumulation of AR diastereomers e.g., cis- and trans-bromadiolone. Trans-bromadiolone is more persistent in the rodent liver and thus, is expected to have a greater probability of trophic transfer to predators. Here, we report on bromadiolone occurrence, total concentrations and diastereomers proportions (trans- and cis-bromadiolone) in weasels from Castilla y León (north-western Spain) collected in 2010-2017, where bromadiolone was irregularly applied to control outbreaks of common voles Microtus arvalis mainly with cereal grain bait distributed by the regional government. We also tested variables possibly associated with bromadiolone occurrence and concentration, such as individual features (e.g., sex), spatio-temporal variables (e.g., year), and exposure risk (e.g., vole outbreaks). Overall bromadiolone occurrence in weasels was 22% (n = 32, arithmetic mean of concentration of bromadiolone positives = 0.072 mg/kg). An individual showed signs of bromadiolone intoxication (i.e., evidence of macroscopic hemorrhages or hyperaemia and hepatic bromadiolone concentration > 0.1 mg/kg). All the exposed weasels (n = 7) showed only trans-bromadiolone diastereomer in liver, whilst a single analyzed bait from those applied in Castilla y León contained trans- and cis-bromadiolone at 65/35%. Bromadiolone occurrence and concentration in weasels varied yearly. Occurrence was higher in 2012 (100% of weasels), when bromadiolone was widely distributed, compared to 2016-2017 (2016: 20%; 2017: 8.33%) when bromadiolone was exceptionally permitted. The highest concentrations happened in 2014 and 2017, both years with vole outbreaks. Our findings indicate that specialist rodent predators could be exposed to bromadiolone in areas and periods with bromadiolone treatments against vole outbreaks.
Collapse
Affiliation(s)
- Javier Fernandez-de-Simon
- Instituto de Investigación en Recursos Cinegéticos, IREC (CSIC-UCLM-JCCM), Ronda de Toledo 12, 13071 Ciudad Real, Spain; DITEG Research Group, Facultad de Ciencias Ambientales y Bioquímica, Universidad de Castilla-La Mancha, Avenida de Carlos III s/n., 45071 Toledo, Spain.
| | - Francisco Díaz-Ruiz
- Instituto de Investigación en Recursos Cinegéticos, IREC (CSIC-UCLM-JCCM), Ronda de Toledo 12, 13071 Ciudad Real, Spain; Biogeography, Diversity, and Conservation Research Team, Dept. Biología Animal, Facultad de Ciencias, Universidad de Málaga, 29071 Málaga, Spain
| | - Daniel Jareño
- Instituto de Investigación en Recursos Cinegéticos, IREC (CSIC-UCLM-JCCM), Ronda de Toledo 12, 13071 Ciudad Real, Spain
| | - Julio C Domínguez
- Instituto de Investigación en Recursos Cinegéticos, IREC (CSIC-UCLM-JCCM), Ronda de Toledo 12, 13071 Ciudad Real, Spain
| | - José F Lima-Barbero
- Instituto de Investigación en Recursos Cinegéticos, IREC (CSIC-UCLM-JCCM), Ronda de Toledo 12, 13071 Ciudad Real, Spain; Sabiotec, Camino de Moledores s/n., 13071 Ciudad Real, Spain
| | - Noelia de Diego
- Instituto de Investigación en Recursos Cinegéticos, IREC (CSIC-UCLM-JCCM), Ronda de Toledo 12, 13071 Ciudad Real, Spain
| | - Ana E Santamaría
- Instituto de Investigación en Recursos Cinegéticos, IREC (CSIC-UCLM-JCCM), Ronda de Toledo 12, 13071 Ciudad Real, Spain; Terrestrial Ecology Group (TEG), Departamento de Ecología, Facultad de Ciencias, Universidad Autónoma de Madrid, C/Darwin 2, 28049 Madrid, Spain
| | - Marta Herrero-Villar
- Instituto de Investigación en Recursos Cinegéticos, IREC (CSIC-UCLM-JCCM), Ronda de Toledo 12, 13071 Ciudad Real, Spain
| | - Pablo R Camarero
- Instituto de Investigación en Recursos Cinegéticos, IREC (CSIC-UCLM-JCCM), Ronda de Toledo 12, 13071 Ciudad Real, Spain
| | - Pedro P Olea
- Terrestrial Ecology Group (TEG), Departamento de Ecología, Facultad de Ciencias, Universidad Autónoma de Madrid, C/Darwin 2, 28049 Madrid, Spain; Centro de Investigación en Biodiversidad y Cambio Global (CIBC-UAM), Univ. Autónoma de Madrid, Madrid, Spain
| | - Jesús T García
- Instituto de Investigación en Recursos Cinegéticos, IREC (CSIC-UCLM-JCCM), Ronda de Toledo 12, 13071 Ciudad Real, Spain
| | - Rafael Mateo
- Instituto de Investigación en Recursos Cinegéticos, IREC (CSIC-UCLM-JCCM), Ronda de Toledo 12, 13071 Ciudad Real, Spain
| | - Javier Viñuela
- Instituto de Investigación en Recursos Cinegéticos, IREC (CSIC-UCLM-JCCM), Ronda de Toledo 12, 13071 Ciudad Real, Spain
| |
Collapse
|
125
|
Wang X, Chi Y, Li F. Exploring China stepping into the dawn of chemical pesticide-free agriculture in 2050. FRONTIERS IN PLANT SCIENCE 2022; 13:942117. [PMID: 36161034 PMCID: PMC9504061 DOI: 10.3389/fpls.2022.942117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 08/15/2022] [Indexed: 06/16/2023]
Abstract
China has implemented a series of policies to reduce the usage of chemical pesticides to maintain food production safety and to reduce water and soil pollution. However, there is still a huge gap in developing biological pesticides to replace chemical agents or managing pests to prevent crop production loss. It is necessary to predict the future use of chemical pesticides and to exploit the potential ways to control pests and crop diseases. Pesticide usage is affected by seasonal changes and analyzed by using a seasonal autoregressive integrated moving average (ARIMA) model (a statistical model that predicts future trends using time-series data). The future development of biopesticides in China was predicted using the compound annual growth rate (CAGR), which is calculated via the equation [(Final value/Starting value)1/years - 1] according to the annual growth rate of target products over time. According to the reducing trend of pesticide and biological pesticide usage annually, China is predicted possibly step into the era of pesticide-free agriculture in 2050 based on the analysis of the ARIMA model. With CAGR calculation, China will produce from 500 thousand to one million tons of biopesticides in 2050, which can meet the need to replace chemical pesticides in agriculture to prevent the present crop production loss. To achieve the goal, China still has the greatest challenges to develop biopesticides and use various strategies to control pest and crop diseases. China may step into the dawn of chemical pesticide-free agriculture in 2050 if biopesticides can be developed smoothly and pests can be controlled well using various strategies.
Collapse
Affiliation(s)
- Xuejiang Wang
- Wuzhoufeng Agricultural Science & Technology Co., Ltd., Yantai, China
| | | | | |
Collapse
|
126
|
Zheng Q, Wen X, Xiu X, Yang X, Chen Q. Can the Part Replace the Whole? A Choice Experiment on Organic and Pesticide-Free Labels. Foods 2022; 11:foods11172564. [PMID: 36076749 PMCID: PMC9455461 DOI: 10.3390/foods11172564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/19/2022] [Accepted: 08/20/2022] [Indexed: 11/24/2022] Open
Abstract
Chemical pesticides are a serious impediment to agricultural sustainability. A large-scale reduction in their use to secure food supplies requires more innovative and flexible production systems. Pesticide-free production standards bring together the strengths of all participants in the food value chain and could be the catalyst for this transition. Using a choice experiment approach and green tea as an example, this study investigated consumers’ preferences for organic and pesticide-free labels. According to the findings, organic and pesticide-free labels and brands are all major factors that affect consumers’ purchase decisions. Consumers are more willing to pay for organic labels than pesticide-free labels. There is a substitution effect between organic labels and pesticide-free labels. Complementary effects exist between organic labels and national brands, pesticide-free labels, and national brands. Consumer trust has an impact on consumers’ choice of organic labels and pesticide-free labels. The use of pesticide-free labels is an alternate approach for small- and medium-sized businesses in a specific market to lower the cost of organic certification.
Collapse
Affiliation(s)
- Qiuqin Zheng
- College of Economics and Management, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xiaoting Wen
- College of Economics and Management, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xintian Xiu
- College of Resource and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xiaoke Yang
- School of Humanities, Fujian University of Technology, Fuzhou 350002, China
| | - Qiuhua Chen
- College of Economics and Management, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Correspondence:
| |
Collapse
|
127
|
Isolation and Molecular Identification of Serratia Strains Producing Chitinases, Glucanases, Cellulases, and Prodigiosin and Determination of Their Antifungal Effect against Colletotrichum siamense and Alternaria alternata In Vitro and on Mango Fruit. INTERNATIONAL JOURNAL OF PLANT BIOLOGY 2022. [DOI: 10.3390/ijpb13030024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Microorganisms represent a viable option for the control of phytopathogens. From the surface of healthy mangoes, different bacteria were isolated. For all isolated bacterial strains, we determined their antimicrobial activity against a fungal strain that caused anthracnose in mangoes and against Alternaria alternata, both in the culture medium and directly on mangoes. The bacterial strains with the highest antifungal activity were identified by sequencing the 16s rRNA gene. Two species of Serratia were identified: marcescens and nematodiphila. Finally, the chitinolytic, glucanolytic, and cellulolytic activity and prodigiosin production of bacteria with antifungal activity was determined. Five fungal strains were isolated from mangoes with anthracnose. Only one strain was responsible for anthracnose in mangoes. This fungal strain was identified as Colletotrichum siamense. Against C. siamense and A. alternata in vitro and in mango selected strains of Serratia showed antifungal activity. Finally, the Serratia strains produced chitinases, glucanases, cellulases and prodigiosin, and the two S. marcescens strains did not produce hemolysins. The three Serratia strains isolated in this study can potentially be used in the biological control of anthracnose caused by C. siamense and A. alternata on mango.
Collapse
|
128
|
Badry A, Schenke D, Brücher H, Chakarov N, Grünkorn T, Illner H, Krüger O, Marczak T, Müskens G, Nachtigall W, Zollinger R, Treu G, Krone O. Spatial variation of rodenticides and emerging contaminants in blood of raptor nestlings from Germany. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:60908-60921. [PMID: 35435551 PMCID: PMC9427910 DOI: 10.1007/s11356-022-20089-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 04/01/2022] [Indexed: 05/11/2023]
Abstract
Wildlife exposures to pest controlling substances have resulted in population declines of many predatory species during the past decades. Many pesticides were subsequently classified as persistent, bioaccumulative, and toxic (PBT) and banned on national or global scales. However, despite their risks for non-target vertebrate wildlife, PBT substances such as anticoagulant rodenticides (ARs) are still permitted for use in Europe and have shown to threaten raptors. Whereas risks of ARs are known, much less information is available on emerging agrochemicals such as currently used PPPs and medicinal products (MPs) in higher trophic level species. We expect that currently used PPPs are relatively mobile (vs. lipophilic) as a consequence of the PBT criteria and thus more likely to be present in aqueous matrices. We therefore analyzed blood of 204 raptor nestlings of three terrestrial (red kite, common buzzard, Montagu's harrier) and two aquatic species (white-tailed sea eagle, osprey) from Germany. In total, we detected ARs in 22.6% of the red kites and 8.6% of the buzzards, whereas no Montagu's harriers or aquatic species were exposed prior to sampling. ΣAR concentration tended to be higher in North Rhine-Westphalia (vs. North-Eastern Germany) where population density is higher and intense livestock farming more frequent. Among the 90 targeted and currently used PPPs, we detected six substances from which bromoxynil (14.2%) was most frequent. Especially Montagu's harrier (31%) and red kites (22.6%) were exposed and concentrations were higher in North Rhine-Westphalia as well. Among seven MPs, we detected ciprofloxacin (3.4%), which indicates that risk mitigation measures may be needed as resistance genes were already detected in wildlife from Germany. Taken together, our study demonstrates that raptors are exposed to various chemicals during an early life stage depending on their sampling location and underpins that red kites are at particular risk for multiple pesticide exposures in Germany.
Collapse
Affiliation(s)
- Alexander Badry
- Department of Wildlife Diseases, Leibniz Institute for Zoo and Wildlife Research, Alfred-Kowalke-Straße 17, 10315, Berlin, Germany.
| | - Detlef Schenke
- Institute for Ecological Chemistry, Plant Analysis and Stored Product Protection, Julius Kühn-Institut, Königin-Luise-Straße 19, 14195, Berlin, Germany
| | - Helmut Brücher
- Wiesenweihenschutz Brandenburg, Hauptstraße 11, 14913, Rohrbeck, Germany
| | - Nayden Chakarov
- Department of Animal Behaviour, Bielefeld University, Morgenbreede 45, 33615, Bielefeld, Germany
| | | | - Hubertus Illner
- Arbeitsgemeinschaft Biologischer Umweltschutz/Biologische Station Soest, Teichstraße 19, 59505, Bad Sassendorf, Germany
| | - Oliver Krüger
- Department of Animal Behaviour, Bielefeld University, Morgenbreede 45, 33615, Bielefeld, Germany
| | | | - Gerard Müskens
- Müskens Fauna, van Nispenstraat 4, 6561 BG, Groesbeek, The Netherlands
| | | | - Ronald Zollinger
- Natuurplaza, P.O. Box 1413, NL-6501, BK, Nijmegen, The Netherlands
| | - Gabriele Treu
- Department Chemicals, Umweltbundesamt, Wörlitzer Platz 1, 06844, Dessau-Roßlau, Germany
| | - Oliver Krone
- Department of Wildlife Diseases, Leibniz Institute for Zoo and Wildlife Research, Alfred-Kowalke-Straße 17, 10315, Berlin, Germany
| |
Collapse
|
129
|
Shinya S, Sashika M, Minamikawa M, Itoh T, Yohannes YB, Nakayama SMM, Ishizuka M, Nimako C, Ikenaka Y. Estimation of the Effects of Neonicotinoid Insecticides on Wild Raccoon, Procyon lotor, in Hokkaido, Japan: Urinary Concentrations and Hepatic Metabolic Capability of Neonicotinoids. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2022; 41:1865-1874. [PMID: 35452528 PMCID: PMC9544187 DOI: 10.1002/etc.5349] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/07/2022] [Accepted: 04/19/2022] [Indexed: 06/14/2023]
Abstract
Toxicological effects of neonicotinoid insecticides (NNIs) have been reported for mammals, such as humans, rats, and mice. However, there are limited reports on their toxic effects on wild mammals. To predict NNI-induced toxic effects on wild mammals, it is necessary to determine the exposure levels and metabolic ability of these species. We considered that raccoons could be an animal model for evaluating NNI-induced toxicities on wildlife because they live near agricultural fields and eat crops treated with NNIs. The objective of the present study was to estimate the effects of NNI exposure on wild raccoons. Urinary concentrations of NNI compounds (n = 59) and cytochrome P450-dependent metabolism of NNIs (n = 3) were evaluated in wild raccoons captured in Hokkaido, Japan, in 2020. We detected either one of the six NNIs or one metabolite, including acetamiprid, imidacloprid, clothianidin, dinotefuran, thiacloprid, thiamethoxam, and desmethyl-acetamiprid in 90% of raccoons (53/59); the average cumulative concentration of the seven NNI compounds was 3.1 ng/ml. The urinary concentrations were not much different from those reported previously for humans. Furthermore, we performed an in vitro assessment of the ability of raccoons to metabolize NNIs using hepatic microsomes. The amounts of NNI metabolites were measured using liquid chromatography-electrospray ionization-tandem mass spectrometry and compared with those in rats. Raccoons showed much lower metabolic ability; the maximum velocity/Michaelis-Menten constant (Vmax /Km ) values for raccoons were one-tenth to one-third of those for rats. For the first time, we show that wild raccoons could be frequently exposed to NNIs in the environment, and that the cytochrome P450-dependent metabolism of NNIs in the livers of raccoons might be low. Our results contribute to a better understanding of the effects of NNIs on raccoons, leading to better conservation efforts for wild mammals. Environ Toxicol Chem 2022;41:1865-1874. © 2022 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- So Shinya
- Laboratory of Toxicology, Graduate School of Veterinary MedicineHokkaido UniversitySapporoJapan
| | - Mariko Sashika
- Laboratory of Wildlife Biology and Medicine, Graduate School of Veterinary MedicineHokkaido UniversitySapporoJapan
| | - Miku Minamikawa
- Laboratory of Wildlife Biology and Medicine, Graduate School of Veterinary MedicineHokkaido UniversitySapporoJapan
| | - Tetsuji Itoh
- Laboratory of Wildlife Management, Department of Environmental and SymbiosisRakuno Gakuen UniversityEbetsuJapan
| | - Yared Beyene Yohannes
- Laboratory of Toxicology, Graduate School of Veterinary MedicineHokkaido UniversitySapporoJapan
| | - Shouta M. M. Nakayama
- Laboratory of Toxicology, Graduate School of Veterinary MedicineHokkaido UniversitySapporoJapan
- Biomedical Science Department, School of Veterinary MedicineThe University of ZambiaLusakaZambia
| | - Mayumi Ishizuka
- Laboratory of Toxicology, Graduate School of Veterinary MedicineHokkaido UniversitySapporoJapan
| | - Collins Nimako
- Laboratory of Toxicology, Graduate School of Veterinary MedicineHokkaido UniversitySapporoJapan
| | - Yoshinori Ikenaka
- Laboratory of Toxicology, Graduate School of Veterinary MedicineHokkaido UniversitySapporoJapan
- Translational Research Unit, Veterinary Teaching Hospital, Faculty of Veterinary MedicineHokkaido UniversitySapporoJapan
- One Health Research CenterHokkaido UniversitySapporoJapan
- Water Research Group, Unit for Environmental Sciences and ManagementNorth‐West University, PotchefstroomSouth Africa
| |
Collapse
|
130
|
Schor J, Scheibe P, Bernt M, Busch W, Lai C, Hackermüller J. AI for predicting chemical-effect associations at the chemical universe level-deepFPlearn. Brief Bioinform 2022; 23:6645490. [PMID: 35849097 PMCID: PMC9487703 DOI: 10.1093/bib/bbac257] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 05/17/2022] [Accepted: 06/02/2022] [Indexed: 11/20/2022] Open
Abstract
Many chemicals are present in our environment, and all living species are exposed to them. However, numerous chemicals pose risks, such as developing severe diseases, if they occur at the wrong time in the wrong place. For the majority of the chemicals, these risks are not known. Chemical risk assessment and subsequent regulation of use require efficient and systematic strategies. Lab-based methods—even if high throughput—are too slow to keep up with the pace of chemical innovation. Existing computational approaches are designed for specific chemical classes or sub-problems but not usable on a large scale. Further, the application range of these approaches is limited by the low amount of available labeled training data. We present the ready-to-use and stand-alone program deepFPlearn that predicts the association between chemical structures and effects on the gene/pathway level using a combined deep learning approach. deepFPlearn uses a deep autoencoder for feature reduction before training a deep feed-forward neural network to predict the target association. We received good prediction qualities and showed that our feature compression preserves relevant chemical structural information. Using a vast chemical inventory (unlabeled data) as input for the autoencoder did not reduce our prediction quality but allowed capturing a much more comprehensive range of chemical structures. We predict meaningful—experimentally verified—associations of chemicals and effects on unseen data. deepFPlearn classifies hundreds of thousands of chemicals in seconds. We provide deepFPlearn as an open-source and flexible tool that can be easily retrained and customized to different application settings at https://github.com/yigbt/deepFPlearn.
Collapse
Affiliation(s)
- Jana Schor
- Department Computational Biology, Helmholtz Centre for environmental research - UFZ, Permoserstr. 15, 04318 Leipzig, Saxony, Germany
| | - Patrick Scheibe
- Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstraβe 1a, 04103 Leipzig, Saxony, Germany
| | - Matthias Bernt
- Department Computational Biology, Helmholtz Centre for environmental research - UFZ, Permoserstr. 15, 04318 Leipzig, Saxony, Germany
| | - Wibke Busch
- Department of Bioanalytical Ecotoxicology, Helmholtz Centre for environmental research - UFZ, Permoserstr. 15, 04318 Leipzig, Saxony, Germany
| | - Chih Lai
- Graduate Program in Software & School of Engineering, University of St. Thomas, 2115 Summit Ave, St. Paul, MN 55105, Minnesota, USA
| | - Jörg Hackermüller
- Department Computational Biology, Helmholtz Centre for environmental research - UFZ, Permoserstr. 15, 04318 Leipzig, Saxony, Germany.,Department of Computer Science, Leipzig University, Augustuspl. 10, 04109 Leipzig, Saxony, Germany
| |
Collapse
|
131
|
Paredes D, Rosenheim JA, Karp DS. The causes and consequences of pest population variability in agricultural landscapes. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2022; 32:e2607. [PMID: 35366039 DOI: 10.1002/eap.2607] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 12/16/2021] [Accepted: 01/19/2022] [Indexed: 06/14/2023]
Abstract
Variability in population densities is key to the ecology of natural systems but also has great implications for agriculture. Farmers' decisions are heavily influenced by their risk aversion to pest outbreaks that result in major yield losses. However, the need for long-term pest population data across many farms has prevented researchers from exploring the drivers and implications of pest population variability (PV). Here, we demonstrate the critical importance of PV for sustainable farming by analyzing 13 years of pest densities across >1300 Spanish olive groves and vineyards. Variable populations were more likely to cause major yield losses, but also occasionally created temporal windows when densities fell below insecticide spray thresholds. Importantly, environmental factors regulating pest variability were very distinct from factors regulating mean density, suggesting variability needs to be uniquely managed. Finally, we found diversifying landscapes may be a win-win situation for conservation and farmers, as diversified landscapes promote less abundant and less variable pest populations. Therefore, we encourage agricultural stakeholders to increase the complexity of the landscapes surrounding their farms through conserving/restoring natural habitat and/or diversifying crops.
Collapse
Affiliation(s)
- Daniel Paredes
- Department of Wildlife, Fish and Conservation Biology, University of California, Davis, California, USA
- Environmental Resources Analysis Research Group, Department of Plant Biology, Ecology and Earth Sciences, Universidad de Extremadura, Badajoz, Spain
| | - Jay A Rosenheim
- Department of Entomology and Nematology, University of California, Davis, California, USA
| | - Daniel S Karp
- Department of Wildlife, Fish and Conservation Biology, University of California, Davis, California, USA
| |
Collapse
|
132
|
Jiang J, He B, Wei Y, Cui J, Zhang Q, Liu X, Liu D, Wang P, Zhou Z. The toxic effects of combined exposure of chlorpyrifos and p, p'-DDE to zebrafish (Danio rerio) and tissue bioaccumulation. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 248:106194. [PMID: 35623197 DOI: 10.1016/j.aquatox.2022.106194] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 04/23/2022] [Accepted: 05/10/2022] [Indexed: 06/15/2023]
Abstract
Pesticides are widely used and frequently detected in the environment. The evaluation on the toxic effects of the co-exposure of two or more pesticides or related metabolites could reflect the real situation of the exposing risks. In this study, zebrafish was used as a model to investigate the potential toxic interactions of chlorpyrifos and 1,1-dichloro-2,2-bis(p-chlorophenyl)ethylene (p,p'-DDE) on the survival rate, oxidative stress response and neurotoxicity, as well as their bioaccumulation and distribution in tissues. Co-exposure of chlorpyrifos and p,p'-DDE resulted in significant additive acute toxic effects on adult zebrafish with model deviation ratio (MDR) = 1.64. Both 7-day short-term at 1% LC50 and 35-day long-term at 0.5% LC50 co-exposure of chlorpyrifos with p,p'-DDE (50 and 100 µg/L) significantly reduced the survival rate of zebrafish colony to 75 and 82.5%. Co-exposure of chlorpyrifos and p,p'-DDE contributed to increased activity of antioxidant enzyme CAT, SOD and GST and excessive MDA generation, and decreased activity of CarE, CYP450 and AChE, compared with either single exposure of them. In co-exposure, the bioaccumulation of chlorpyrifos and p,p'-DDE was significantly different from the single exposure group. Overall, this study unraveled the potential toxic interaction of chlorpyrifos and p,p'-DDE on zebrafish and provided reference for environmental risk assessment of pesticide mixture.
Collapse
Affiliation(s)
- Jiangong Jiang
- Beijing Advanced Innovation Centre for Food Nutrition and Human Health, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, PR China
| | - Bingying He
- Beijing Advanced Innovation Centre for Food Nutrition and Human Health, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, PR China
| | - Yimu Wei
- Beijing Advanced Innovation Centre for Food Nutrition and Human Health, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, PR China
| | - Jingna Cui
- Beijing Advanced Innovation Centre for Food Nutrition and Human Health, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, PR China
| | - Qiang Zhang
- Beijing Advanced Innovation Centre for Food Nutrition and Human Health, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, PR China
| | - Xueke Liu
- Beijing Advanced Innovation Centre for Food Nutrition and Human Health, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, PR China
| | - Donghui Liu
- Beijing Advanced Innovation Centre for Food Nutrition and Human Health, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, PR China
| | - Peng Wang
- Beijing Advanced Innovation Centre for Food Nutrition and Human Health, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, PR China.
| | - Zhiqiang Zhou
- Beijing Advanced Innovation Centre for Food Nutrition and Human Health, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, PR China
| |
Collapse
|
133
|
Chen H, Zhi H, Feng B, Cui B, Zhao X, Sun C, Wang Y, Cui H, Zhang B, Zeng Z. Thermo-Responsive Quaternary Ammonium Chitosan Nanocapsules with On-Demand Controlled Pesticide Release and Maximally Synergistic Biological Activity. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:7653-7661. [PMID: 35698843 DOI: 10.1021/acs.jafc.2c01791] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Pesticides play an important role in pest control. However, they can be limited due to low utilization efficiency, causing substantial losses to the environment and ecological damage. Nanotechnology is an active area of research regarding encapsulation of pesticides for sustainable pest control. Here, we developed intelligent formulations of avermectin (Av) quaternary ammonium chitosan surfactant (QACS) nanocapsules (i.e., Av-Th@QACS) with on-demand controlled release properties, toward ambient temperature and maximal synergistic biological activity of Av and QACS. The Av-Th@QACS regulated the quantity of pesticide release in accordance with the ambient temperature changes and, insofar as this release is a means of responding to variations in pest populations, maximized the synergistic activity. In addition, the Av-Th@QACS were highly adhesive to crop leaves as a result of the prolonged retention time on the crop leaves. Therefore, Av-Th@QACS exhibited greater control against aphids at 35 °C than at 15 and 25 °C. Compared with commercial formulations, Av-Th@QACS was more toxic at 35 °C and less toxic at 15 °C. Thus, researchers can apply Av-Th@QACS as intelligent nanopesticides with an on-demand, controlled release and synergistic biological activity and, in so doing, prolong pesticide duration and improve the utilization efficiency.
Collapse
Affiliation(s)
- Hongyan Chen
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Heng Zhi
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Boyuan Feng
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Bo Cui
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Xiang Zhao
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Changjiao Sun
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Yan Wang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Haixin Cui
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Baohong Zhang
- Department of Biology, East Carolina University, Greenville, North Carolina 27858, United States
| | - Zhanghua Zeng
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| |
Collapse
|
134
|
Elliott JR, Compton RG. Modeling Transcuticular Uptake from Particle-Based Formulations of Lipophilic Products. ACS AGRICULTURAL SCIENCE & TECHNOLOGY 2022; 2:603-614. [PMID: 35756577 PMCID: PMC9214695 DOI: 10.1021/acsagscitech.2c00029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 04/14/2022] [Accepted: 04/20/2022] [Indexed: 12/04/2022]
Abstract
![]()
We
report a mathematical model for the uptake of lipophilic agrochemicals
from dispersed spherical particles within a formulation droplet across
the leaf cuticle. Two potential uptake pathways are identified: direct
uptake via physical contact between the cuticle and particle and indirect
uptake via initial release of material into the formulation droplet
followed by partition across the cuticle-formulation interface. Numerical
simulation is performed to investigate the relevance of the particle-cuticle
contact angle, the release kinetics of the particle, and the particle
size relative to the cuticle thickness. Limiting cases for each pathway
are identified and investigated. The input of typical physicochemical
parameters suggests that the indirect pathway is generally dominant
unless pesticide release is under strict kinetic control. Evidence
is presented for a hitherto unrecognized “leaching effect”
and the mutual exclusivity of the two pathways.
Collapse
Affiliation(s)
- Joseph R. Elliott
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QZ, Great Britain
| | - Richard G. Compton
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QZ, Great Britain
| |
Collapse
|
135
|
Locke S, Naidoo V, Hassan I, Duncan N. Effect of cytochrome P450 inhibition on toxicity of diclofenac in chickens: Unravelling toxicity in Gyps vultures. Onderstepoort J Vet Res 2022; 89:e1-e8. [PMID: 35792606 PMCID: PMC9257893 DOI: 10.4102/ojvr.v89i1.1978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 04/20/2022] [Indexed: 12/05/2022] Open
Abstract
Diclofenac was responsible for the decimation of Gyps vulture species on the Indian subcontinent during the 1980s and 1990s. Gyps vultures are extremely sensitive (the lethal dose 50 [LD50] ~ 0.1 mg/kg – 0.2 mg/kg), with toxicity appearing to be linked to metabolic deficiency, demonstrated by the long T1/2 (~12 h – 17 h). This is in striking comparison to the domestic chicken (Gallus gallus domesticus), in which the LD50 is ~10 mg/kg and the T1/2 is ~1 h. The phase 1 cytochrome P450 (CYP) 2C subfamily has been cited as a possible reason for metabolic deficiency. The aim of this study was to determine if CYP2C9 homolog pharmacogenomic differences amongst avian species is driving diclofenac toxicity in Gyps vultures. We exposed each of 10 CYP-inhibited test group chickens to a unique dose of diclofenac (as per the Organisation for Economic Co-operation and Development [OECD] toxicity testing guidelines) and compared the toxicity and pharmacokinetic results to control group birds that received no CYP inhibitor. Although no differences were noted in the LD50 values for each group (11.92 mg/kg in the CYP-inhibited test group and 11.58 mg/kg in the control group), the pharmacokinetic profile of the test group was suggestive of partial inhibition of CYP metabolism. Evaluation of the metabolite peaks produced also suggested partial metabolic inhibition in test group birds, as they produced lower amounts of metabolites for one of the three peaks demonstrated and had higher diclofenac exposure. This pilot study supports the hypothesis that CYP metabolism is varied amongst bird species and may explain the higher resilience to diclofenac in the chicken versus vultures.
Collapse
Affiliation(s)
- Sara Locke
- Department of Paraclinical Sciences, Faculty of Veterinary Science, University of Pretoria, Pretoria.
| | | | | | | |
Collapse
|
136
|
Lips S, Larras F, Schmitt-Jansen M. Community metabolomics provides insights into mechanisms of pollution-induced community tolerance of periphyton. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 824:153777. [PMID: 35150676 DOI: 10.1016/j.scitotenv.2022.153777] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 01/29/2022] [Accepted: 02/06/2022] [Indexed: 06/14/2023]
Abstract
Chemical pollution is a major concern for freshwater ecosystems, but the impact and mechanisms of chemical stressors on communities are barely understood. Pollution stress beyond natural homeostatic capacities can trigger succession of tolerant species within a community, enhancing the overall community tolerance. This process was operationalized in the Pollution-Induced Community Tolerance (PICT) concept and applied in many case studies, however, the molecular mechanisms of community tolerance and implications for ecological functions remain largely unexplored. Our study aimed to demonstrate that 1) community metabolomics can unravel potential mechanisms of PICT in periphyton and 2) induced tolerance helps to maintain primary production under re-occuring pollution. To this end, we grew periphyton for 5 weeks with and without the model herbicide diuron in microcosms, quantified PICT, and determined the related metabolic fingerprint of periphyton by GC-MS-based untargeted metabolomics. Further, we explored the autotrophic community based on pigment composition and functional parameters including photosynthesis and gross primary production. Chronic diuron exposure resulted in a shift in pigment composition, higher community tolerance and an individual metabolic fingerprint in the contaminated communities. Opposing responses of selected metabolites during a short-term exposure indicated differences in diuron pre-adaptation in the different communities. Metabolites (threonic acid and two sugar acid lactones) were found to be related to tolerance development, suggesting that ascorbate metabolism was induced in contaminated communities. Despite these compensating mechanism, contaminated communities were compromised in production-to-respiration ratio and biomass. A ranking of sensitivity thresholds of different biological endpoints revealed that metabolites were less sensitive than photosynthetic parameters, which reflects the mode-of-action of the herbicide. In conclusion, we could demonstrate that community metabolomics is able to unravel complex biochemical changes and allows mechanistic insights into community tolerance. Moreover, we were able to show that induced community tolerance was insufficient to safeguard functions like primary production.
Collapse
Affiliation(s)
- Stefan Lips
- Helmholtz-Centre for Environmental Research UFZ, Department of Bioanalytical Ecotoxicology, Permoserstraße 15, 04318 Leipzig, Germany
| | - Floriane Larras
- Helmholtz-Centre for Environmental Research UFZ, Department of Bioanalytical Ecotoxicology, Permoserstraße 15, 04318 Leipzig, Germany; INRAE, Directorate for Collective Scientific Assessment, Foresight and Advanced Studies, Paris, 75338, France
| | - Mechthild Schmitt-Jansen
- Helmholtz-Centre for Environmental Research UFZ, Department of Bioanalytical Ecotoxicology, Permoserstraße 15, 04318 Leipzig, Germany.
| |
Collapse
|
137
|
PestOn: An Ontology to Make Pesticides Information Easily Accessible and Interoperable. SUSTAINABILITY 2022. [DOI: 10.3390/su14116673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Globally, present regulations treat pesticide use with a light touch, leaving users with scarce reporting requirements in the field. However, numerous initiatives have been undertaken to reduce risks from pesticide product use and provide the public with sufficient information. Nevertheless, food chain actors are not required to disclose much information on hazards, with many undervalued safety aspects. This situation has resulted in information gaps concerning the production, authorization, use, and impact of pesticide products for both consumers and regulatory stakeholders. Often, the public cannot directly access relevant information about pesticides with respect to retail products and their farm origins. National authorities have poor legal tools to efficiently carry out complete investigations and take action to mitigate pesticide externalities. We created the ontology PestOn to bridge these gaps and directly access pesticide product information, making existing data more useful and improving information flow in food value chains. This demonstration project shows how to integrate various existing ontologies to maximize interoperability with related information on the semantic web. As a semantic tool, it can help address food quality, food safety, and information disclosure challenges, opening up several opportunities for food value chain actors and the public. In its first version, the ontology PestOn accounts for more than 16,000 pesticide products that were authorized in Italy during the last 50 years and retrieved from the public pesticide register. The ontology includes information about active ingredients contained in pesticide products, roles, hazards, production companies, authorization status, and regulatory dates. These pieces of information can support agri-food stakeholders in classifying information in the domain of pesticide products and their active ingredients, while reducing unnecessary repetition in research. PestOn can support the addition of food attributes in the domains of human health, resource depletion, and eco-social impact, turning the spotlight on each possible improper use of pesticide products.
Collapse
|
138
|
Abstract
The widespread application of nuclear magnetic resonance (NMR) spectroscopy in detection is currently hampered by its inherently low sensitivity and complications resulting from the undesired signal overlap. Here, we report a detection scheme to address these challenges, where analytes are recognized by 19F-labeled probes to induce characteristic shifts of 19F resonances that can be used as "chromatographic" signatures to pin down each low-concentration analyte in complex mixtures. This unique signal transduction mechanism allows detection sensitivity to be enhanced by using massive chemically equivalent 19F atoms, which was achieved through the proper installation of nonafluoro-tert-butoxy groups on probes of high structural symmetry. It is revealed that the binding of an analyte to the probe can be sensed by as many as 72 chemically equivalent 19F atoms, allowing the quantification of analytes at nanomolar concentrations to be routinely performed by NMR. Applications on the detection of trace amounts of prohibited drug molecules and water contaminants were demonstrated. The high sensitivity and robust resolving ability of this approach represent a first step toward extending the application of NMR to scenarios that are now governed by chromatographic and mass spectrometry techniques. The detection scheme also makes possible the highly sensitive non-invasive multi-component analysis that is difficult to achieve by other analytical methods.
Collapse
Affiliation(s)
- Lixian Wen
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai 200032, China
| | - Huan Meng
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai 200032, China
| | - Siyi Gu
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai 200032, China
| | - Jian Wu
- Instrumental Analysis Center, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai 200032, P. R. China
| | - Yanchuan Zhao
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai 200032, China.,Key Laboratory of Energy Regulation Materials, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai 200032, China
| |
Collapse
|
139
|
Bilal M, Sial MU, Cao L, Huang Q. Effects of Methoxyfenozide-Loaded Fluorescent Mesoporous Silica Nanoparticles on Plutella xylostella (L.) (Lepidoptera: Plutellidae) Mortality and Detoxification Enzyme Levels Activities. Int J Mol Sci 2022; 23:ijms23105790. [PMID: 35628599 PMCID: PMC9144591 DOI: 10.3390/ijms23105790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/14/2022] [Accepted: 05/16/2022] [Indexed: 12/04/2022] Open
Abstract
The diamond back moth, Plutella xylostella, causes severe damage at all crop stages, beside its rising resistance to all insecticides. The objective of this study was to look for a new control strategy such as application of insecticide-loaded carbon dot-embedded fluorescent mesoporous silica nanoparticles (FL-SiO2 NPs). Two different-sized methoxyfenozide-loaded nanoparticles (Me@FL-SiO2 NPs-70 nm, Me@FL-SiO2 NPs-150 nm) were prepared, with loading content 15% and 16%. Methoxyfenozide was released constantly from Me@FL-SiO2 NPs only at specific optimum pH 7.5. The release of methoxyfenozide from Me@FL-SiO2 NPs was not observed other than this optimum pH, and therefore, we checked and controlled a single release condition to look out for the different particle sizes of insecticide-loaded NPs. This pH-responsive release pattern can find potential application in sustainable plant protection. Moreover, the lethal concentration of the LC50 value was 24 mg/L for methoxyfenozide (TC), 14 mg/L for Me@FL-SiO2 NPs-70 nm, and 15 mg/L for Me@FL-SiO2 NPs-150 nm after 72 h exposure, respectively. After calculating the LC50, the results predicted that Me@FL-SiO2 NPs-70 nm and Me@FL-SiO2 NPs-150 nm exhibited better insecticidal activity against P. xylostella than methoxyfenozide under the same concentrations of active ingredient applied. Moreover, the activities of detoxification enzymes of P. xylostella were suppressed by treatment with insecticide-loaded NPs, which showed that NPs could also be involved in reduction of enzymes. Furthermore, the entering of FL-SiO2 NPs into the midgut of P. xylostella was confirmed by confocal laser scanning microscope (CLSM). For comparison, P. xylostella under treatment with water as control was also observed under CLSM. The control exhibited no fluorescent signal, while the larvae treated with FL-SiO2 NPs showed strong fluorescence under a laser excitation wavelength of 448 nm. The reduced enzyme activities as well as higher cuticular penetration in insects indicate that the nano-based delivery system of insecticide could be potentially applied in insecticide resistance management.
Collapse
Affiliation(s)
- Muhammad Bilal
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (M.B.); (L.C.)
| | - Muhammad Umair Sial
- Department of Entomology, University of Agriculture, Faisalabad 38000, Pakistan;
| | - Lidong Cao
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (M.B.); (L.C.)
| | - Qiliang Huang
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (M.B.); (L.C.)
- Correspondence:
| |
Collapse
|
140
|
Miniaturized QuEChERS extraction method for the detection of multi-residue pesticides in bat muscle tissue. Sci Rep 2022; 12:7164. [PMID: 35505235 PMCID: PMC9065137 DOI: 10.1038/s41598-022-11352-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 04/22/2022] [Indexed: 11/29/2022] Open
Abstract
Habitat loss and fragmentation are among the greatest threats to biodiversity and ecosystem stability, with physiological implications on wild fauna. Bats (Microchiroptera) are small mammals with a wide variety of eating habits, and the well-being of these animals is disturbed by exposure to pesticides. This study aimed to develop a miniaturized QuEChERS (Quick, Easy, Cheap, Effective, Rugged, and Safe) extraction method for the detection of multi-residue pesticides in bat muscle tissue using gas chromatography coupled with mass spectrometry (GC–MS). A total of 48 pesticides were tested in 250 mg of bat muscle tissue. The developed analytical method was applied to 148 bats collected from two different areas in Minas Gerais State, Southeast Region of Brazil. The method presented good sensitivity and allowed the determination of residues of 48 pesticides in bat muscle using GC–MS. The miniaturized extraction method makes the analysis feasible even when the sample volume is limited. However, no pesticide residues were detected in bats from the two areas investigated.
Collapse
|
141
|
Sun J, Xiao PF, Yin XH, Zhang K, Zhu GN, Brock TCM. Species Sensitivity Distributions of Benthic Macroinvertebrates in Fludioxonil-Spiked Sediment Toxicity Tests. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2022; 82:569-580. [PMID: 35460350 DOI: 10.1007/s00244-022-00933-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 04/04/2022] [Indexed: 06/14/2023]
Abstract
The fungicide fludioxonil, given its physicochemical properties, potentially accumulates and persists in sediments. Fludioxonil has a widespread agricultural use to control various fungal diseases. Its residues may cause toxic effects to benthic aquatic fauna, thereby impacting ecosystem service functions of aquatic ecosystems. To assess the potential environmental effects of fludioxonil in the sediment compartment of edge-of-field surface waters, sediment-spiked single-species toxicity tests with benthic macroinvertebrates were performed. In all experiments artificial sediment was used with an organic carbon content of 2.43% on dry weight basis. The single-species tests were conducted with 8 benthic macroinvertebrates covering different taxonomic groups typical for the Yangtze River Delta, China. The 28d-EC10 and 28-LC10 values thus obtained were used to construct species sensitivity distributions (SSDs). In addition, our dataset was supplemented with 28d-EC10 and 28-LC10 values for 8 different benthic invertebrates from a study in the Netherlands that used field-collected sediment. Based on SSDs constructed with 28d-EC10 or 28d-LC10 values hazardous concentrations to 5% of the species tested (HC5's) were obtained. The HC5 values based on the toxicity tests from China were lower than those from the Netherlands, although 95% confidence bands overlapped. The HC5 values derived from the separate datasets from China and the Netherlands, as well as from the combined dataset, were compared to the Tier-3 Regulatory Acceptable Concentrations (RAC) for fludioxonil and the benthic invertebrate community derived from a sediment-spiked outdoor microcosm experiment conducted in the Netherlands. The HC5 values obtained appeared to be lower than this Tier-3 RAC when expressed in terms of total sediment concentration, but not always when expressed in terms of pore water concentrations.
Collapse
Affiliation(s)
- Jian Sun
- College of Advanced Agriculture Science, Zhe Jiang Agriculture and Forestry University, 666 Wu Su Street, Lin'an, Hangzhou, 311300, Zhe Jiang, China
| | - Peng Fei Xiao
- JiYang College of Zhe Jiang Agriculture and Forestry University, 77 Pu Yang road, Zhu Ji, Hang Zhou, 311800, China.
| | - Xiao Hui Yin
- College of Advanced Agriculture Science, Zhe Jiang Agriculture and Forestry University, 666 Wu Su Street, Lin'an, Hangzhou, 311300, Zhe Jiang, China.
| | - Kun Zhang
- Center for Administration of Equine Disease-Free Zone in Tonglu County, Hang Zhou, 311500, China
| | - Guo Nian Zhu
- College of Advanced Agriculture Science, Zhe Jiang Agriculture and Forestry University, 666 Wu Su Street, Lin'an, Hangzhou, 311300, Zhe Jiang, China
- JiYang College of Zhe Jiang Agriculture and Forestry University, 77 Pu Yang road, Zhu Ji, Hang Zhou, 311800, China
| | - Theo C M Brock
- Wageningen Environmental Research, Wageningen University and Research, P.O. Box 47, 6700 AA, Wageningen, The Netherlands
| |
Collapse
|
142
|
Evans MN, Waller S, Müller CT, Goossens B, Smith JA, Bakar MSA, Kille P. The price of persistence: Assessing the drivers and health implications of metal levels in indicator carnivores inhabiting an agriculturally fragmented landscape. ENVIRONMENTAL RESEARCH 2022; 207:112216. [PMID: 34656630 DOI: 10.1016/j.envres.2021.112216] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 09/17/2021] [Accepted: 10/11/2021] [Indexed: 06/13/2023]
Abstract
Patterns and practices of agricultural expansion threaten the persistence of global biodiversity. Wildlife species surviving large-scale land use changes can be exposed to a suite of contaminants that may deleteriously impact their health. There is a paucity of data concerning the ecotoxicological impacts associated with the global palm oil (Elaeis guineensis) industry. We sampled wild Malay civets (Viverra tangalunga) across a patchwork landscape degraded by oil palm agriculture in Sabah, Malaysian Borneo. Using a non-lethal methodology, we quantified the levels of 13 essential and non-essential metals within the hair of this adaptable small carnivore. We robustly assessed the biological and environmental drivers of intrapopulation variation in measured levels. Metal concentrations were associated with civet age, weight, proximity to a tributary, and access to oxbow lakes. In a targeted case study, the hair metal profiles of 16 GPS-collared male civets with differing space use patterns were contrasted. Civets that entered oil palm plantations expressed elevated aluminium, cadmium, and lead, and lower mercury hair concentrations compared to civets that remained exclusively within the forest. Finally, we paired hair metal concentrations with 34 blood-based health markers to evaluate the possible sub-lethal physiological effects associated with varied hair metal levels. Our multi-facetted approach establishes these adaptable carnivores as indicator species within an extensively altered ecosystem, and provides critical and timely evidence for future studies.
Collapse
Affiliation(s)
- Meaghan N Evans
- School of Biosciences, Cardiff University, Cardiff, CF10 3AX, UK; Danau Girang Field Centre, Kota Kinabalu, 88100, Malaysia.
| | - Simon Waller
- School of Chemistry, Cardiff University, Cardiff, CF10 3AT, UK
| | - Carsten T Müller
- School of Biosciences, Cardiff University, Cardiff, CF10 3AX, UK
| | - Benoit Goossens
- School of Biosciences, Cardiff University, Cardiff, CF10 3AX, UK; Danau Girang Field Centre, Kota Kinabalu, 88100, Malaysia; Sustainable Places Institute, Cardiff University, Cardiff, CF10 3BA, UK; Sabah Wildlife Department, Kota Kinabalu, 88100, Malaysia
| | - Jeremy A Smith
- School of Applied Sciences, University of South Wales, CF37 4BB, UK
| | | | - Peter Kille
- School of Biosciences, Cardiff University, Cardiff, CF10 3AX, UK.
| |
Collapse
|
143
|
Watthaisong P, Kamutira P, Kesornpun C, Pongsupasa V, Phonbuppha J, Tinikul R, Maenpuen S, Wongnate T, Nishihara R, Ohmiya Y, Chaiyen P. Luciferin Synthesis and Pesticide Detection by Luminescence Enzymatic Cascades. Angew Chem Int Ed Engl 2022; 61:e202116908. [PMID: 35138676 DOI: 10.1002/anie.202116908] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Indexed: 12/24/2022]
Abstract
D-Luciferin (D-LH2 ), a substrate of firefly luciferase (Fluc), is important for a wide range of bioluminescence applications. This work reports a new and green method using enzymatic reactions (HELP, HadA Enzyme for Luciferin Preparation) to convert 19 phenolic derivatives to 8 D-LH2 analogues with ≈51 % yield. The method can synthesize the novel 5'-methyl-D-LH2 and 4',5'-dimethyl-D-LH2 , which have never been synthesized or found in nature. 5'-Methyl-D-LH2 emits brighter and longer wavelength light than the D-LH2 . Using HELP, we further developed LUMOS (Luminescence Measurement of Organophosphate and Derivatives) technology for in situ detection of organophosphate pesticides (OPs) including parathion, methyl parathion, EPN, profenofos, and fenitrothion by coupling the reactions of OPs hydrolase and Fluc. The LUMOS technology can detect these OPs at parts per trillion (ppt) levels. The method can directly detect OPs in food and biological samples without requiring sample pretreatment.
Collapse
Affiliation(s)
- Pratchaya Watthaisong
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley, Rayong, 21210, Thailand
| | - Philaiwarong Kamutira
- Department of Biochemistry and Center for Excellence in Protein and Enzyme Technology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Chatchai Kesornpun
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley, Rayong, 21210, Thailand
| | - Vinutsada Pongsupasa
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley, Rayong, 21210, Thailand
| | - Jittima Phonbuppha
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley, Rayong, 21210, Thailand
| | - Ruchanok Tinikul
- Department of Biochemistry and Center for Excellence in Protein and Enzyme Technology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Somchart Maenpuen
- Department of Biochemistry, Faculty of Science, Burapha University, Chonburi, 20131, Thailand
| | - Thanyaporn Wongnate
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley, Rayong, 21210, Thailand
| | - Ryo Nishihara
- National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, 305-8566, Japan
| | - Yoshihiro Ohmiya
- National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, 305-8566, Japan
| | - Pimchai Chaiyen
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley, Rayong, 21210, Thailand
| |
Collapse
|
144
|
Billet LS, Belskis A, Hoverman JT. Temperature affects the toxicity of pesticides to cercariae of the trematode Echinostoma trivolvis. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 245:106102. [PMID: 35151071 DOI: 10.1016/j.aquatox.2022.106102] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 01/18/2022] [Accepted: 01/23/2022] [Indexed: 06/14/2023]
Abstract
Global climate change is predicted to have significant impacts on ecological interactions such as host-parasite relationships. Increased temperatures may also interact with other anthropogenic stressors, such as chemical contaminants, to exacerbate or reduce parasite transmission. However, studies on the effects of pesticides on non-target species are typically conducted at one standard temperature, despite the toxicity of many agrochemicals being temperature-dependent. Furthermore, most studies assessing the effects of temperature on pesticide toxicity have been conducted on host organisms, limiting our understanding of how temperature affects the toxicity of pesticides to free-living parasite stages as they move through the environment in search of a host. Using the free-swimming cercariae stage of the trematode Echinostoma trivolvis, we examined how the toxicities of three different pesticides (a carbamate insecticide, strobilurin fungicide, and triazine herbicide) vary by temperature by monitoring cercarial swimming activity over time. Our three main findings were: 1) a strong main effect of temperature across all pesticide trials - higher temperatures caused cercariae to cease swimming activity earlier, likely due to an increased rate of energy expenditure, 2) atrazine, azoxystrobin, and carbaryl were directly toxic to cercariae to some degree, but not in a predictable dose-dependent manner, and 3) the temperature at which pesticide exposure occurs could affect its toxicity to cercariae. The interaction between pesticide and temperature was most evident in the azoxystrobin exposure; azoxystrobin caused cercariae to cease swimming activity earlier at 30 °C but caused cercariae to maintain swimming activity longer at 18 °C relative to their respective pesticide-free control treatments. These findings highlight the importance of conducting toxicity assays at multiple temperatures and suggest that the combined effects of pesticides and temperature on host-parasite interactions may be difficult to generalize.
Collapse
Affiliation(s)
- Logan S Billet
- Department of Forestry and Natural Resources, Purdue University, West Lafayette, IN 47907, United States
| | - Alice Belskis
- Stockton University, Galloway, NJ 08205, United States
| | - Jason T Hoverman
- Department of Forestry and Natural Resources, Purdue University, West Lafayette, IN 47907, United States
| |
Collapse
|
145
|
Ogura AP, Moreira RA, da Silva LCM, Negro GS, Freitas JS, da Silva Pinto TJ, Lopes LFDP, Yoshii MPC, Goulart BV, Montagner CC, Espíndola ELG. Irrigation with Water Contaminated by Sugarcane Pesticides and Vinasse Can Inhibit Seed Germination and Crops Initial Growth. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2022; 82:330-340. [PMID: 35138446 DOI: 10.1007/s00244-022-00914-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 01/13/2022] [Indexed: 06/14/2023]
Abstract
Sugarcane crops are dependent on chemicals for maintaining plantations. Therefore, environmental consequences concern adjacent areas that can be affected by contaminants in common use, including pesticides and vinasse (i.e., a by-product from the ethanol industry). This study aimed to evaluate phytotoxicity through two plant bioassays with water from mesocosms contaminated with the herbicide 2,4-D (447.0 μg L-1), the insecticide fipronil (63.5 μg L-1), and sugarcane vinasse (1.3%). First, the germination test (4 d) with Eruca sativa L. assessed water samples collected three times after the contamination (2 h, 14 d, and 30 d), considering germination, shoot, and root growth. The results from this bioassay indicated higher phytotoxicity for 2,4-D as it fully inhibited the shoot and root growth even in low concentrations (0.2 μg L-1). However, no significant effect was reported for fipronil and vinasse. Also, the 2,4-D effects drastically decreased due to an expressive concentration reduction (99.4% after 30 d in mixture with vinasse). Second, the irrigation test with Phaseolus vulgaris L. and Zea mays L. considered shoot and root growth and biomass under 21 days after plants emergence. The herbicide 2,4-D inhibited the initial growth of tested species, especially the roots (up to 45% inhibition). Furthermore, sugarcane vinasse caused harmful effects on plant growth (up to 31% inhibition). Therefore, our data showed that these contaminants could inhibit plant germination and initial growth under our tested conditions. These evaluations can endorse risk assessments and water management in sugarcane crops surrounding areas.
Collapse
Affiliation(s)
- Allan Pretti Ogura
- PPG-SEA and NEEA/CRHEA/SHS, São Carlos School of Engineering, University of São Paulo, Trabalhador Sancarlense Avenue, 400, São Carlos, São Paulo, 13560-970, Brazil.
| | - Raquel Aparecida Moreira
- PPG-SEA and NEEA/CRHEA/SHS, São Carlos School of Engineering, University of São Paulo, Trabalhador Sancarlense Avenue, 400, São Carlos, São Paulo, 13560-970, Brazil
| | - Laís Conceição Menezes da Silva
- PPG-SEA and NEEA/CRHEA/SHS, São Carlos School of Engineering, University of São Paulo, Trabalhador Sancarlense Avenue, 400, São Carlos, São Paulo, 13560-970, Brazil
| | - Giovana Spinelli Negro
- PPG-SEA and NEEA/CRHEA/SHS, São Carlos School of Engineering, University of São Paulo, Trabalhador Sancarlense Avenue, 400, São Carlos, São Paulo, 13560-970, Brazil
| | - Juliane Silberschmidt Freitas
- PPG-SEA and NEEA/CRHEA/SHS, São Carlos School of Engineering, University of São Paulo, Trabalhador Sancarlense Avenue, 400, São Carlos, São Paulo, 13560-970, Brazil
- Department of Biological Sciences, Minas Gerais State University (UEMG), Ituiutaba, Minas Gerais, Brazil
| | - Thandy Junio da Silva Pinto
- PPG-SEA and NEEA/CRHEA/SHS, São Carlos School of Engineering, University of São Paulo, Trabalhador Sancarlense Avenue, 400, São Carlos, São Paulo, 13560-970, Brazil
| | - Laís Fernanda de Palma Lopes
- PPG-SEA and NEEA/CRHEA/SHS, São Carlos School of Engineering, University of São Paulo, Trabalhador Sancarlense Avenue, 400, São Carlos, São Paulo, 13560-970, Brazil
| | - Maria Paula Cardoso Yoshii
- PPG-SEA and NEEA/CRHEA/SHS, São Carlos School of Engineering, University of São Paulo, Trabalhador Sancarlense Avenue, 400, São Carlos, São Paulo, 13560-970, Brazil
| | - Bianca Veloso Goulart
- Analytical Chemistry Department, Institute of Chemistry, University of Campinas, São Paulo, Brazil
| | | | - Evaldo Luiz Gaeta Espíndola
- PPG-SEA and NEEA/CRHEA/SHS, São Carlos School of Engineering, University of São Paulo, Trabalhador Sancarlense Avenue, 400, São Carlos, São Paulo, 13560-970, Brazil
| |
Collapse
|
146
|
Passos LC, Ricupero M, Gugliuzzo A, Soares MA, Desneux N, Carvalho GA, Zappalà L, Biondi A. Does the dose make the poison? Neurotoxic insecticides impair predator orientation and reproduction even at low concentrations. PEST MANAGEMENT SCIENCE 2022; 78:1698-1706. [PMID: 34994495 PMCID: PMC9306720 DOI: 10.1002/ps.6789] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 12/24/2021] [Accepted: 01/07/2022] [Indexed: 05/02/2023]
Abstract
BACKGROUND Pesticides can be noxious to non-target beneficial arthropods and their negative effects have been recently recognized even at low doses. The predator Nesidiocoris tenuis (Reuter) (Hemiptera: Miridae) plays an important role in controlling insect pests in solanaceous crops, but its concurrent herbivory often poses relevant concerns for tomato production. Although insecticide side effects on N. tenuis have been previously studied, little is known on the potential implications of neurotoxic chemicals at low concentrations. We assessed the baseline toxicity of three neurotoxic insecticides (lambda-cyhalothrin, spinosad and chlorpyrifos) on N. tenuis by topical contact exposure. The behavioral and reproduction capacity of the predator was then investigated upon exposure to three estimated low-lethal concentrations (LC1 , LC10 and LC30 ). RESULTS Predator survival varied among insecticides and concentrations, with LC30 /label rate ratios ranging from 8.45% to 65.40% for spinosad and lambda-cyhalothrin, respectively. All insecticides reduced the fertility of N. tenuis females at all estimated low-lethal concentrations. Chlorpyrifos seriously compromised predator orientation towards a host plant even at LC1 , while the same effect was observed for lambda-cyhalothrin and spinosad solely at LC30 . Lambda-cyhalothrin (at all concentrations) and chlorpyrifos (at LC10 and LC30 ) also affected the time taken by N. tenuis females to make a choice. CONCLUSION The results indicate that all three insecticides can be detrimental to N. tenuis and should be avoided when presence of the predator is desirable. © 2022 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Luis C Passos
- Laboratório de Ecotoxicologia e MIP, Departamento de EntomologiaUniversidade Federal de LavrasLavrasBrazil
- Department of Agriculture, Food and EnvironmentUniversity of CataniaCataniaItaly
| | - Michele Ricupero
- Department of Agriculture, Food and EnvironmentUniversity of CataniaCataniaItaly
| | - Antonio Gugliuzzo
- Department of Agriculture, Food and EnvironmentUniversity of CataniaCataniaItaly
| | - Marianne A Soares
- Laboratório de Ecotoxicologia e MIP, Departamento de EntomologiaUniversidade Federal de LavrasLavrasBrazil
| | | | - Geraldo A Carvalho
- Laboratório de Ecotoxicologia e MIP, Departamento de EntomologiaUniversidade Federal de LavrasLavrasBrazil
| | - Lucia Zappalà
- Department of Agriculture, Food and EnvironmentUniversity of CataniaCataniaItaly
| | - Antonio Biondi
- Department of Agriculture, Food and EnvironmentUniversity of CataniaCataniaItaly
| |
Collapse
|
147
|
Nasri A, Lafon PA, Mezni A, Clair P, Cubedo N, Mahmoudi E, Beyrem H, Rossel M, Perrier V. Developmental exposure to the A6-pesticide causes changes in tyrosine hydroxylase gene expression, neurochemistry, and locomotors behavior in larval zebrafish. Toxicol Mech Methods 2022; 32:569-579. [PMID: 35313786 DOI: 10.1080/15376516.2022.2056100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
In recent years, the increase in the synthesis of biopesticides for alternative agricultural uses has necessitated the study of their impacts. Among these compounds, several of them are known to exert endocrine-disrupting effects causing deregulation of a variety of physiological functions affecting cell signaling pathways involved in neural cell differentiation leading to developmental neurotoxicity. In this current paper, we thus determined the impact of the biopesticide A6 on zebrafish larvae, which is structurally linked to estrogenic endocrine disruptors. The objective of this study was to define the toxicity of A6, the mechanisms responsible, and to evaluate its effects on the locomotors activity at nanomolar concentrations (0, 0.5, 5, and 50 nM). We show through its blue fluorescence properties that A6 accumulates in different parts of the body as intestine, adipose tissue, muscle, yolk sac and head. We display also that A6 disrupt the development and affects the function of the central nervous system, especially the expression of tyrosine hydroxylase (TH) in dopaminergic neurons. We studied whether A6 disturbs the target genes expression and recorded that it downregulated genes embroiled in TH expression, suggesting that A6's neurotoxic effect may be the result of its binding propinquity to the estrogen receptor.
Collapse
Affiliation(s)
- Ahmed Nasri
- Laboratory of Environment Biomonitoring, Unit of coastal Ecology and Ecotoxicology, Faculty of Sciences of Bizerte, University of Carthage, 7021 Zarzouna, Tunisia.,U1198 MMDN (Molecular Mechanisms of Neurodegenerative Diseases), Inserm (National Institute for Health and Medical Research), MGX (Montpellier GenomiX), BioCampus, University of Montpellier, 34095 Montpellier, France
| | - Pierre-André Lafon
- U1198 MMDN (Molecular Mechanisms of Neurodegenerative Diseases), Inserm (National Institute for Health and Medical Research), MGX (Montpellier GenomiX), BioCampus, University of Montpellier, 34095 Montpellier, France
| | - Amine Mezni
- Department of Chemistry, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Philippe Clair
- U1198 MMDN (Molecular Mechanisms of Neurodegenerative Diseases), Inserm (National Institute for Health and Medical Research), MGX (Montpellier GenomiX), BioCampus, University of Montpellier, 34095 Montpellier, France
| | - Nicolas Cubedo
- U1198 MMDN (Molecular Mechanisms of Neurodegenerative Diseases), Inserm (National Institute for Health and Medical Research), MGX (Montpellier GenomiX), BioCampus, University of Montpellier, 34095 Montpellier, France
| | - Ezzeddine Mahmoudi
- Laboratory of Environment Biomonitoring, Unit of coastal Ecology and Ecotoxicology, Faculty of Sciences of Bizerte, University of Carthage, 7021 Zarzouna, Tunisia
| | - Hamouda Beyrem
- Laboratory of Environment Biomonitoring, Unit of coastal Ecology and Ecotoxicology, Faculty of Sciences of Bizerte, University of Carthage, 7021 Zarzouna, Tunisia
| | - Mireille Rossel
- U1198 MMDN (Molecular Mechanisms of Neurodegenerative Diseases), Inserm (National Institute for Health and Medical Research), MGX (Montpellier GenomiX), BioCampus, University of Montpellier, 34095 Montpellier, France
| | - Véronique Perrier
- U1198 MMDN (Molecular Mechanisms of Neurodegenerative Diseases), Inserm (National Institute for Health and Medical Research), MGX (Montpellier GenomiX), BioCampus, University of Montpellier, 34095 Montpellier, France
| |
Collapse
|
148
|
Krief S, Iglesias-González A, Appenzeller BMR, Rachid L, Beltrame M, Asalu E, Okimat JP, Kane-Maguire N, Spirhanzlova P. Chimpanzee exposure to pollution revealed by human biomonitoring approaches. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 233:113341. [PMID: 35217306 DOI: 10.1016/j.ecoenv.2022.113341] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 02/14/2022] [Accepted: 02/20/2022] [Indexed: 06/14/2023]
Abstract
Wildlife is increasingly exposed to environmental pollution, but data illustrating to what extent this exposure can impact health and survival of endangered species is missing. In humans, hair matrix analysis is a reliable tool for assessing cumulative exposure to organic pollutants such as pesticides but has rarely been used in other primates for this purpose. LC/MS-MS and GC/MS-MS multi-residue methods were used to screen the presence of 152 organic pollutants and their metabolites belonging to 21 different chemical families in hair samples from our closest relative, the chimpanzee. Samples were collected from 20 wild chimpanzees in Sebitoli, Kibale National Park, Uganda and 9 captive chimpanzees in the Réserve Africaine de Sigean, France. In total, 90 chemicals were detected, 60 in wild chimpanzees and 79 in captive chimpanzees. The median concentrations of detected chemicals in captive individuals were significantly higher than those in wild chimpanzees. Hair from the captive individuals at RAS was sampled a second time after 6 months in an environment of reduced exposure to these pollutants (diet of organic food, decreased use of plastic food and water containers). The number of chemicals detected in captive chimpanzees reduced from 79 to 63, and their concentrations were also significantly reduced. In the present study we report for the first time the use of hair analysis to detect organic pollutants in primate hair. We conclude that both wild and captive chimpanzees are exposed to a large range of different chemicals through their diet. Our study provides surprising and alarming evidence that besides the direct threats of poaching, deforestation and diseases, wild chimpanzees might be endangered by indirect consequences of anthropic activities. As chimpanzees are our closest relatives, our results should be considered as an alert for human health as well.
Collapse
Affiliation(s)
- Sabrina Krief
- UMR7206, Eco-Anthropologie, Muséum national d'Histoire naturelle/CNRS/Paris VII, 17 place du Trocadéro, Paris, France; Sebitoli Chimpanzee Project, Fort Portal, Uganda.
| | - Alba Iglesias-González
- Human Biomonitoring Research Unit, Department of Precision Health, Luxembourg Institute of Health (LIH), 1 A-B, Rue Thomas Edison, L-1445 Strassen, Luxembourg.
| | - Brice M R Appenzeller
- Human Biomonitoring Research Unit, Department of Precision Health, Luxembourg Institute of Health (LIH), 1 A-B, Rue Thomas Edison, L-1445 Strassen, Luxembourg.
| | - Lyna Rachid
- Réserve Africaine de Sigean, 19 Hameau du Lac D6009, 11130 Sigean, France.
| | - Marielle Beltrame
- Réserve Africaine de Sigean, 19 Hameau du Lac D6009, 11130 Sigean, France.
| | - Edward Asalu
- Uganda Wildlife Authority, Plot, 7 Kira Rd, Kampala, Uganda.
| | | | | | - Petra Spirhanzlova
- UMR7206, Eco-Anthropologie, Muséum national d'Histoire naturelle/CNRS/Paris VII, 17 place du Trocadéro, Paris, France; Sebitoli Chimpanzee Project, Fort Portal, Uganda; Laboratoire de Métrologie et d'Essais 1, rue Gaston Boissier, 75724 Paris, France.
| |
Collapse
|
149
|
de Montaigu CT, Goulson D. Field evidence of UK wild bird exposure to fludioxonil and extrapolation to other pesticides used as seed treatments. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:22151-22162. [PMID: 34780016 PMCID: PMC8930954 DOI: 10.1007/s11356-021-17097-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 10/13/2021] [Indexed: 06/13/2023]
Abstract
We determine the exposure of wild birds to pesticides via consumption of fludioxonil-treated winter wheat seeds following autumn drilling. We recorded the density of seeds left on the soil surface, bird density, and consumption of pesticide-treated seed by birds using camera traps. We calculated the dose ingested by each bird species in a single feeding bout and if they ate treated seeds exclusively for 1 day. We extrapolated this for an additional 19 pesticides commonly used as seed treatments, assuming equal consumption rates. All three fields contained grains on the soil surface (mean 7.14 seeds/m2 on sowing day). In total, 1,374 granivorous birds spanning 18 different species were observed in the fields, with 11 species filmed eating the seeds. Fludioxonil appears to pose a low risk to birds, with <1.14% of the LD50 potentially ingested by a bird for a daily maximum amount of seeds. Analysis of the further 19 pesticides commonly used as seed dressings suggests that the neonicotinoid insecticides imidacloprid, clothianidin, and thiamethoxam represent the highest risk for granivorous birds. For example, chaffinch (Fringilla coelebs) could consume 63% of LD50 of imidacloprid in a single feeding bout, and 370% in a day. Further investigation is clearly required to determine whether seeds treated with these other pesticides are consumed as readily as those treated with fludioxonil, as if so this is likely to cause significant harm.
Collapse
Affiliation(s)
| | - Dave Goulson
- School of Life Sciences, University of Sussex, Falmer, East Sussex, UK
| |
Collapse
|
150
|
Watthaisong P, Kamutira P, Kesornpun C, Pongsupasa V, Phonbuppha J, Tinikul R, Maenpuen S, Wongnate T, Nishihara R, Ohmiya Y, Chaiyen P. Luciferin Synthesis and Pesticide Detection by Luminescence Enzymatic Cascades. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202116908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Pratchaya Watthaisong
- School of Biomolecular Science and Engineering Vidyasirimedhi Institute of Science and Technology (VISTEC) Wangchan Valley Rayong 21210 Thailand
| | - Philaiwarong Kamutira
- Department of Biochemistry and Center for Excellence in Protein and Enzyme Technology Faculty of Science Mahidol University Bangkok 10400 Thailand
| | - Chatchai Kesornpun
- School of Biomolecular Science and Engineering Vidyasirimedhi Institute of Science and Technology (VISTEC) Wangchan Valley Rayong 21210 Thailand
| | - Vinutsada Pongsupasa
- School of Biomolecular Science and Engineering Vidyasirimedhi Institute of Science and Technology (VISTEC) Wangchan Valley Rayong 21210 Thailand
| | - Jittima Phonbuppha
- School of Biomolecular Science and Engineering Vidyasirimedhi Institute of Science and Technology (VISTEC) Wangchan Valley Rayong 21210 Thailand
| | - Ruchanok Tinikul
- Department of Biochemistry and Center for Excellence in Protein and Enzyme Technology Faculty of Science Mahidol University Bangkok 10400 Thailand
| | - Somchart Maenpuen
- Department of Biochemistry Faculty of Science Burapha University Chonburi 20131 Thailand
| | - Thanyaporn Wongnate
- School of Biomolecular Science and Engineering Vidyasirimedhi Institute of Science and Technology (VISTEC) Wangchan Valley Rayong 21210 Thailand
| | - Ryo Nishihara
- National Institute of Advanced Industrial Science and Technology (AIST) Tsukuba Ibaraki 305-8566 Japan
| | - Yoshihiro Ohmiya
- National Institute of Advanced Industrial Science and Technology (AIST) Tsukuba Ibaraki 305-8566 Japan
| | - Pimchai Chaiyen
- School of Biomolecular Science and Engineering Vidyasirimedhi Institute of Science and Technology (VISTEC) Wangchan Valley Rayong 21210 Thailand
| |
Collapse
|