101
|
Malard F, Mackereth CD, Campagne S. Principles and correction of 5'-splice site selection. RNA Biol 2022; 19:943-960. [PMID: 35866748 PMCID: PMC9311317 DOI: 10.1080/15476286.2022.2100971] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 07/06/2022] [Indexed: 11/04/2022] Open
Abstract
In Eukarya, immature mRNA transcripts (pre-mRNA) often contain coding sequences, or exons, interleaved by non-coding sequences, or introns. Introns are removed upon splicing, and further regulation of the retained exons leads to alternatively spliced mRNA. The splicing reaction requires the stepwise assembly of the spliceosome, a macromolecular machine composed of small nuclear ribonucleoproteins (snRNPs). This review focuses on the early stage of spliceosome assembly, when U1 snRNP defines each intron 5'-splice site (5'ss) in the pre-mRNA. We first introduce the splicing reaction and the impact of alternative splicing on gene expression regulation. Thereafter, we extensively discuss splicing descriptors that influence the 5'ss selection by U1 snRNP, such as sequence determinants, and interactions mediated by U1-specific proteins or U1 small nuclear RNA (U1 snRNA). We also include examples of diseases that affect the 5'ss selection by U1 snRNP, and discuss recent therapeutic advances that manipulate U1 snRNP 5'ss selectivity with antisense oligonucleotides and small-molecule splicing switches.
Collapse
Affiliation(s)
- Florian Malard
- Inserm U1212, CNRS UMR5320, ARNA Laboratory, University of Bordeaux, Bordeaux Cedex, France
| | - Cameron D Mackereth
- Inserm U1212, CNRS UMR5320, ARNA Laboratory, University of Bordeaux, Bordeaux Cedex, France
| | - Sébastien Campagne
- Inserm U1212, CNRS UMR5320, ARNA Laboratory, University of Bordeaux, Bordeaux Cedex, France
| |
Collapse
|
102
|
Campagne S, de Vries T, Allain FHT. Probing the Interactions of Splicing Regulatory Small Molecules and Proteins with U1 snRNP Using NMR Spectroscopy. Methods Mol Biol 2022; 2537:247-262. [PMID: 35895269 DOI: 10.1007/978-1-0716-2521-7_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Alternative RNA splicing is an essential part of gene expression that not only increases the protein diversity of metazoan but also provides an additional layer of gene expression regulation. The U1 small ribonucleoparticle (U1 snRNP) plays an essential role in seeding spliceosome assembly and its binding on weak 5'-splice sites is regulated by transient interactions with splicing factors. Recent progress in allele specific splicing correction has shown the therapeutic potential offered by small molecule splicing modifiers that specifically promotes the recruitment of U1 snRNP to modulate alternative splicing and gene expression. Here, we described a method to reconstitute U1 snRNP in vitro and to study labile interactions with protein or synthetic splicing factors using solution state NMR spectroscopy. This approach allowed us to validate direct interactions between splicing regulators and U1 snRNP and could also be useful for the screening of small molecules acting on splicing regulation.
Collapse
Affiliation(s)
- Sébastien Campagne
- ARNA Laboratory, INSERM U1212, CNRS 5320, University of Bordeaux, Bordeaux, France.
- Department of Biology, Institute of Biochemistry, Swiss Federal Institute of Technology, Zurich, Switzerland.
| | - Tebbe de Vries
- Department of Biology, Institute of Biochemistry, Swiss Federal Institute of Technology, Zurich, Switzerland
| | - Frédéric H-T Allain
- Department of Biology, Institute of Biochemistry, Swiss Federal Institute of Technology, Zurich, Switzerland.
| |
Collapse
|
103
|
Varderidou-Minasian S, Verheijen BM, Harschnitz O, Kling S, Karst H, van der Pol WL, Pasterkamp RJ, Altelaar M. Spinal Muscular Atrophy Patient iPSC-Derived Motor Neurons Display Altered Proteomes at Early Stages of Differentiation. ACS OMEGA 2021; 6:35375-35388. [PMID: 34984269 PMCID: PMC8717385 DOI: 10.1021/acsomega.1c04688] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 11/24/2021] [Indexed: 05/08/2023]
Abstract
Spinal muscular atrophy (SMA) is an autosomal recessive neurodegenerative disorder characterized by loss of motor neurons (MN) in the spinal cord leading to progressive muscle atrophy and weakness. SMA is caused by mutations in the survival motor neuron 1 (SMN1) gene, resulting in reduced levels of survival motor neuron (SMN) protein. The mechanisms that link SMN deficiency to selective motor neuron dysfunction in SMA remain largely unknown. We present here, for the first time, a comprehensive quantitative TMT-10plex proteomics analysis that covers the development of induced pluripotent stem cell-derived MNs from both healthy individuals and SMA patients. We show that the proteomes of SMA samples segregate from controls already at early stages of neuronal differentiation. The altered proteomic signature in SMA MNs is associated with mRNA splicing, ribonucleoprotein biogenesis, organelle organization, cellular biogenesis, and metabolic processes. We highlight several known SMN-binding partners and evaluate their expression changes during MN differentiation. In addition, we compared our study to human and mouse in vivo proteomic studies revealing distinct and similar signatures. Altogether, our work provides a comprehensive resource of molecular events during early stages of MN differentiation, containing potentially therapeutically interesting protein expression profiles for SMA.
Collapse
Affiliation(s)
- Suzy Varderidou-Minasian
- Biomolecular
Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular
Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Padualaan 8, 3584
CH Utrecht, The Netherlands
- Netherlands
Proteomics Center, Padualaan
8, 3584 CH Utrecht, The Netherlands
| | - Bert M. Verheijen
- Department
of Translational Neuroscience, UMC Utrecht Brain Center, University
Medical Center Utrecht, Utrecht University, 3584 CG Utrecht, The Netherlands
- Department
of Neurology and Neurosurgery, UMC Utrecht Brain Center, University
Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, The Netherlands
| | - Oliver Harschnitz
- Department
of Translational Neuroscience, UMC Utrecht Brain Center, University
Medical Center Utrecht, Utrecht University, 3584 CG Utrecht, The Netherlands
- Department
of Neurology and Neurosurgery, UMC Utrecht Brain Center, University
Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, The Netherlands
| | - Sandra Kling
- Department
of Translational Neuroscience, UMC Utrecht Brain Center, University
Medical Center Utrecht, Utrecht University, 3584 CG Utrecht, The Netherlands
- Department
of Neurology and Neurosurgery, UMC Utrecht Brain Center, University
Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, The Netherlands
| | - Henk Karst
- Department
of Translational Neuroscience, UMC Utrecht Brain Center, University
Medical Center Utrecht, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - W. Ludo van der Pol
- Department
of Neurology and Neurosurgery, UMC Utrecht Brain Center, University
Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, The Netherlands
| | - R. Jeroen Pasterkamp
- Department
of Translational Neuroscience, UMC Utrecht Brain Center, University
Medical Center Utrecht, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Maarten Altelaar
- Biomolecular
Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular
Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Padualaan 8, 3584
CH Utrecht, The Netherlands
- Netherlands
Proteomics Center, Padualaan
8, 3584 CH Utrecht, The Netherlands
| |
Collapse
|
104
|
Nguyen LD, Chau RK, Krichevsky AM. Small Molecule Drugs Targeting Non-Coding RNAs as Treatments for Alzheimer's Disease and Related Dementias. Genes (Basel) 2021; 12:2005. [PMID: 34946953 PMCID: PMC8701955 DOI: 10.3390/genes12122005] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/13/2021] [Accepted: 12/14/2021] [Indexed: 12/24/2022] Open
Abstract
Despite the enormous burden of Alzheimer's disease and related dementias (ADRD) on patients, caregivers, and society, only a few treatments with limited efficacy are currently available. While drug development conventionally focuses on disease-associated proteins, RNA has recently been shown to be druggable for therapeutic purposes as well. Approximately 70% of the human genome is transcribed into non-protein-coding RNAs (ncRNAs) such as microRNAs, long ncRNAs, and circular RNAs, which can adopt diverse structures and cellular functions. Many ncRNAs are specifically enriched in the central nervous system, and their dysregulation is implicated in ADRD pathogenesis, making them attractive therapeutic targets. In this review, we first detail why targeting ncRNAs with small molecules is a promising therapeutic strategy for ADRD. We then outline the process from discovery to validation of small molecules targeting ncRNAs in preclinical studies, with special emphasis on primary high-throughput screens for identifying lead compounds. Screening strategies for specific ncRNAs will also be included as examples. Key challenges-including selecting appropriate ncRNA targets, lack of specificity of small molecules, and general low success rate of neurological drugs and how they may be overcome-will be discussed throughout the review.
Collapse
Affiliation(s)
- Lien D Nguyen
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Rachel K Chau
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Anna M Krichevsky
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
105
|
Small molecule splicing modifiers with systemic HTT-lowering activity. Nat Commun 2021; 12:7299. [PMID: 34911927 PMCID: PMC8674292 DOI: 10.1038/s41467-021-27157-z] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 10/28/2021] [Indexed: 02/07/2023] Open
Abstract
Huntington's disease (HD) is a hereditary neurodegenerative disorder caused by expansion of cytosine-adenine-guanine (CAG) trinucleotide repeats in the huntingtin (HTT) gene. Consequently, the mutant protein is ubiquitously expressed and drives pathogenesis of HD through a toxic gain-of-function mechanism. Animal models of HD have demonstrated that reducing huntingtin (HTT) protein levels alleviates motor and neuropathological abnormalities. Investigational drugs aim to reduce HTT levels by repressing HTT transcription, stability or translation. These drugs require invasive procedures to reach the central nervous system (CNS) and do not achieve broad CNS distribution. Here, we describe the identification of orally bioavailable small molecules with broad distribution throughout the CNS, which lower HTT expression consistently throughout the CNS and periphery through selective modulation of pre-messenger RNA splicing. These compounds act by promoting the inclusion of a pseudoexon containing a premature termination codon (stop-codon psiExon), leading to HTT mRNA degradation and reduction of HTT levels.
Collapse
|
106
|
Abstract
The possibility of reprogramming human somatic cells to pluripotency has opened unprecedented opportunities for creating genuinely human experimental models of disease. Inborn errors of metabolism (IEMs) constitute a greatly heterogeneous class of diseases that appear, in principle, especially suited to be modeled by iPSC-based technology. Indeed, dozens of IEMs have already been modeled to some extent using patient-specific iPSCs. Here, we review the advantages and disadvantages of iPSC-based disease modeling in the context of IEMs, as well as particular challenges associated to this approach, together with solutions researchers have proposed to tackle them. We have structured this review around six lessons that we have learnt from those previous modeling efforts, and that we believe should be carefully considered by researchers wishing to embark in future iPSC-based models of IEMs.
Collapse
Affiliation(s)
- Rubén Escribá
- Regenerative Medicine Program, Institut d'Investigació Biomèdica de Bellvitge - IDIBELL, L'Hospitalet de Llobregat, Spain
- Program for Clinical Translation of Regenerative Medicine in Catalonia - P-[CMRC], L'Hospitalet de Llobregat, Spain
- Center for Networked Biomedical Research On Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Barcelona, Spain
| | - Raquel Ferrer-Lorente
- Regenerative Medicine Program, Institut d'Investigació Biomèdica de Bellvitge - IDIBELL, L'Hospitalet de Llobregat, Spain
- Program for Clinical Translation of Regenerative Medicine in Catalonia - P-[CMRC], L'Hospitalet de Llobregat, Spain
- Center for Networked Biomedical Research On Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Barcelona, Spain
| | - Ángel Raya
- Regenerative Medicine Program, Institut d'Investigació Biomèdica de Bellvitge - IDIBELL, L'Hospitalet de Llobregat, Spain.
- Program for Clinical Translation of Regenerative Medicine in Catalonia - P-[CMRC], L'Hospitalet de Llobregat, Spain.
- Center for Networked Biomedical Research On Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Barcelona, Spain.
- Institució Catalana de Recerca I Estudis Avançats (ICREA), Barcelona, Spain.
| |
Collapse
|
107
|
King R, Lin Z, Balbin-Cuesta G, Myers G, Friedman A, Zhu G, McGee B, Saunders TL, Kurita R, Nakamura Y, Engel JD, Reddy P, Khoriaty R. SEC23A rescues SEC23B-deficient congenital dyserythropoietic anemia type II. SCIENCE ADVANCES 2021; 7:eabj5293. [PMID: 34818036 PMCID: PMC8612686 DOI: 10.1126/sciadv.abj5293] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 10/04/2021] [Indexed: 05/12/2023]
Abstract
Congenital dyserythropoietic anemia type II (CDAII) results from loss-of-function mutations in SEC23B. In contrast to humans, SEC23B-deficient mice deletion do not exhibit CDAII but die perinatally with pancreatic degeneration. Here, we demonstrate that expression of the full SEC23A protein (the SEC23B paralog) from the endogenous regulatory elements of Sec23b completely rescues the SEC23B-deficient mouse phenotype. Consistent with these data, while mice with erythroid-specific deletion of either Sec23a or Sec23b do not exhibit CDAII, we now show that mice with erythroid-specific deletion of all four Sec23 alleles die in mid-embryogenesis with features of CDAII and that mice with deletion of three Sec23 alleles exhibit a milder erythroid defect. To test whether the functional overlap between the SEC23 paralogs is conserved in human erythroid cells, we generated SEC23B-deficient HUDEP-2 cells. Upon differentiation, these cells exhibited features of CDAII, which were rescued by increased expression of SEC23A, suggesting a novel therapeutic strategy for CDAII.
Collapse
Affiliation(s)
- Richard King
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
- University of Michigan Rogel Cancer Center, Ann Arbor, MI, USA
| | - Zesen Lin
- Department of Pharmacology, University of Michigan, Ann Arbor, MI, USA
| | - Ginette Balbin-Cuesta
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI, USA
- Medical Scientist Training Program, University of Michigan, Ann Arbor, MI, USA
| | - Gregg Myers
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Ann Friedman
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Guojing Zhu
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
| | - Beth McGee
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Thomas L. Saunders
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
- Transgenic Animal Model Core, University of Michigan, Ann Arbor, MI, USA
| | - Ryo Kurita
- Department of Research and Development, Central Blood Institute, Blood Service Headquarters, Japanese Red Cross Society, Tokyo, Japan
| | - Yukio Nakamura
- Cell Engineering Division, RIKEN BioResource Research Center, Ibaraki, Japan
| | - James Douglas Engel
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Pavan Reddy
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
- University of Michigan Rogel Cancer Center, Ann Arbor, MI, USA
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI, USA
| | - Rami Khoriaty
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
- University of Michigan Rogel Cancer Center, Ann Arbor, MI, USA
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI, USA
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
108
|
Manigrasso J, Marcia M, De Vivo M. Computer-aided design of RNA-targeted small molecules: A growing need in drug discovery. Chem 2021. [DOI: 10.1016/j.chempr.2021.05.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
109
|
Kray KM, McGovern VL, Chugh D, Arnold WD, Burghes AHM. Dual SMN inducing therapies can rescue survival and motor unit function in symptomatic ∆7SMA mice. Neurobiol Dis 2021; 159:105488. [PMID: 34425216 PMCID: PMC8502210 DOI: 10.1016/j.nbd.2021.105488] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 08/06/2021] [Accepted: 08/16/2021] [Indexed: 11/24/2022] Open
Abstract
Spinal muscular atrophy (SMA) is an autosomal recessive disease characterized by survival motor neuron (SMN) protein deficiency which results in motor neuron loss and muscle atrophy. SMA is caused by a mutation or deletion of the survival motor neuron 1 (SMN1) gene and retention of the nearly identical SMN2 gene. SMN2 contains a C to T change in exon 7 that results in exon 7 exclusion from 90% of transcripts. SMN protein lacking exon 7 is unstable and rapidly degraded. The remaining full-length transcripts from SMN2 are insufficient for normal motor neuron function leading to the development of SMA. Three different therapeutic approaches that increase full-length SMN (FL-SMN) protein production are approved for treatment of SMA patients. Studies in both animal models and humans have demonstrated increasing SMN levels prior to onset of symptoms provides the greatest therapeutic benefit. Treatment of SMA, after some motor neuron loss has occurred, is also effective but to a lesser degree. The SMN∆7 mouse model is a well characterized model of severe or type 1 SMA, dying at 14 days of age. Here we treated three groups of ∆7SMA mice starting before, roughly during, and after symptom onset to determine if combining two mechanistically distinct SMN inducing therapies could improve the therapeutic outcome both before and after motor neuron loss. We found, compared with individual therapies, that morpholino antisense oligonucleotide (ASO) directed against ISS-N1 combined with the small molecule compound RG7800 significantly increased FL-SMN transcript and protein production resulting in improved survival and weight of ∆7SMA mice. Moreover, when give late symptomatically, motor unit function was completely rescued with no loss in function at 100 days of age in the dual treatment group. We have therefore shown that this dual therapeutic approach successfully increases SMN protein and rescues motor function in symptomatic ∆7SMA mice.
Collapse
Affiliation(s)
- Kaitlyn M Kray
- Department of Biological Chemistry and Pharmacology, The Ohio State University Wexner Medical Center, 1060 Carmack Road, Columbus, OH 43210, USA.
| | - Vicki L McGovern
- Department of Biological Chemistry and Pharmacology, The Ohio State University Wexner Medical Center, 1060 Carmack Road, Columbus, OH 43210, USA.
| | - Deepti Chugh
- Department of Neurology, Neuromuscular Division, The Ohio State University Wexner Medical Center, 395 W. 12(th) Ave, Columbus, OH 43210, USA
| | - W David Arnold
- Department of Neurology, Neuromuscular Division, The Ohio State University Wexner Medical Center, 395 W. 12(th) Ave, Columbus, OH 43210, USA.
| | - Arthur H M Burghes
- Department of Biological Chemistry and Pharmacology, The Ohio State University Wexner Medical Center, 1060 Carmack Road, Columbus, OH 43210, USA; Department of Neurology, Neuromuscular Division, The Ohio State University Wexner Medical Center, 395 W. 12(th) Ave, Columbus, OH 43210, USA.
| |
Collapse
|
110
|
Taniguchi-Ikeda M, Koyanagi-Aoi M, Maruyama T, Takaori T, Hosoya A, Tezuka H, Nagase S, Ishihara T, Kadoshima T, Muguruma K, Ishigaki K, Sakurai H, Mizoguchi A, Novitch BG, Toda T, Watanabe M, Aoi T. Restoration of the defect in radial glial fiber migration and cortical plate organization in a brain organoid model of Fukuyama muscular dystrophy. iScience 2021; 24:103140. [PMID: 34632335 PMCID: PMC8487058 DOI: 10.1016/j.isci.2021.103140] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 08/11/2021] [Accepted: 09/14/2021] [Indexed: 01/05/2023] Open
Abstract
Fukuyama congenital muscular dystrophy (FCMD) is a severe, intractable genetic disease that affects the skeletal muscle, eyes, and brain and is attributed to a defect in alpha dystroglycan (αDG) O-mannosyl glycosylation. We previously established disease models of FCMD; however, they did not fully recapitulate the phenotypes observed in human patients. In this study, we generated induced pluripotent stem cells (iPSCs) from a human FCMD patient and differentiated these cells into three-dimensional brain organoids and skeletal muscle. The brain organoids successfully mimicked patient phenotypes not reliably reproduced by existing models, including decreased αDG glycosylation and abnormal radial glial (RG) fiber migration. The basic polycyclic compound Mannan-007 (Mn007) restored αDG glycosylation in the brain and muscle models tested and partially rescued the abnormal RG fiber migration observed in cortical organoids. Therefore, our study underscores the importance of αDG O-mannosyl glycans for normal RG fiber architecture and proper neuronal migration in corticogenesis.
Collapse
Affiliation(s)
- Mariko Taniguchi-Ikeda
- Department of Clinical Genetics, Fujita Health University Hospital, 1-98 Dengakugakubo, Kutsukake-chou, Toyoake, Aichi 470-1192, Japan
- Division of Molecular Genetics, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Aichi 470-1192, Japan
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Hyogo 650-0017, Japan
| | - Michiyo Koyanagi-Aoi
- Division of Advanced Medical Science, Graduate School of Science, Technology and Innovation, Kobe University, Kobe, Hyogo 650-0017, Japan
- Department of iPS Cell Applications, Graduate School of Medicine, Kobe University, Kobe, Hyogo 650-0017, Japan
- Center for Human Resource Development for Regenerative Medicine, Kobe University Hospital, Kobe, Hyogo 650-0017, Japan
| | - Tatsuo Maruyama
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, Kobe, Hyogo 657-8501, Japan
| | - Toru Takaori
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Sakyo-ku, Kyoto 606-8507, Japan
- Department of Pediatrics, Kyoto University Graduate School of Medicine, Sakyo-ku, Kyoto 606-8507, Japan
| | - Akiko Hosoya
- Division of Advanced Medical Science, Graduate School of Science, Technology and Innovation, Kobe University, Kobe, Hyogo 650-0017, Japan
- Department of iPS Cell Applications, Graduate School of Medicine, Kobe University, Kobe, Hyogo 650-0017, Japan
- Center for Human Resource Development for Regenerative Medicine, Kobe University Hospital, Kobe, Hyogo 650-0017, Japan
| | - Hiroyuki Tezuka
- Department of Cellular Function Analysis, Research Promotion and Support Headquarters, Fujita Health University, Toyoake, Aichi 470-1192, Japan
| | | | - Takuma Ishihara
- Innovative and Clinical Research Promotion Center, Gifu University Hospital, Yanagido, Gifu 501-1194, Japan
| | | | - Keiko Muguruma
- Laboratory for Cell Asymmetry, RIKEN Center for Developmental Biology, Kobe, Hyogo 650-0047, Japan
- Department of iPS Cell Applied Medicine, Graduate School of Medicine, Kansai Medical University, Hirakata, Osaka 573-1010, Japan
| | - Keiko Ishigaki
- Department of Pediatrics, Tokyo Women’s Medical University, School of Medicine, Shinjuku-ku, Tokyo 162-8666, Japan
| | - Hidetoshi Sakurai
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Sakyo-ku, Kyoto 606-8507, Japan
| | - Akira Mizoguchi
- Department of Personalized Cancer Immunotherapy, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan
| | - Bennett G. Novitch
- Department of Neurobiology, David Geffen School of Medicine at the University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, UCLA, Los Angeles, CA, USA
- Intellectual and Developmental Disabilities Research Center, UCLA, Los Angeles, CA 90095, USA
| | - Tatsushi Toda
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Momoko Watanabe
- Department of Anatomy and Neurobiology, School of Medicine, University of California, Irvine, Irvine, CA 92697, USA
- Sue & Bill Gross Stem Cell Research Center, School of Medicine, University of California, Irvine, Irvine, CA 92697, USA
| | - Takashi Aoi
- Division of Advanced Medical Science, Graduate School of Science, Technology and Innovation, Kobe University, Kobe, Hyogo 650-0017, Japan
- Department of iPS Cell Applications, Graduate School of Medicine, Kobe University, Kobe, Hyogo 650-0017, Japan
- Center for Human Resource Development for Regenerative Medicine, Kobe University Hospital, Kobe, Hyogo 650-0017, Japan
| |
Collapse
|
111
|
Choi K, Yang A, Baek J, Jeong H, Kang Y, Baek W, Kim JC, Kang M, Choi M, Ham Y, Son MJ, Han SB, Kim J, Jang JH, Ahn JS, Shen H, Woo SH, Kim JH, Cho S. Regulation of Survival Motor Neuron Gene Expression by Calcium Signaling. Int J Mol Sci 2021; 22:ijms221910234. [PMID: 34638572 PMCID: PMC8508836 DOI: 10.3390/ijms221910234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/07/2021] [Accepted: 09/16/2021] [Indexed: 11/21/2022] Open
Abstract
Spinal muscular atrophy (SMA) is caused by homozygous survival of motor neurons 1 (SMN1) gene deletion, leaving a duplicate gene, SMN2, as the sole source of SMN protein. However, a defect in SMN2 splicing, involving exon 7 skipping, results in a low level of functional SMN protein. Therefore, the upregulation of SMN protein expression from the SMN2 gene is generally considered to be one of the best therapeutic strategies to treat SMA. Most of the SMA drug discovery is based on synthetic compounds, and very few natural compounds have been explored thus far. Here, we performed an unbiased mechanism-independent and image-based screen of a library of microbial metabolites in SMA fibroblasts using an SMN-specific immunoassay. In doing so, we identified brefeldin A (BFA), a well-known inhibitor of ER-Golgi protein trafficking, as a strong inducer of SMN protein. The profound increase in SMN protein was attributed to, in part, the rescue of the SMN2 pre-mRNA splicing defect. Intriguingly, BFA increased the intracellular calcium concentration, and the BFA-induced exon 7 inclusion of SMN2 splicing, was abrogated by the depletion of intracellular calcium and by the pharmacological inhibition of calcium/calmodulin-dependent kinases (CaMKs). Moreover, BFA considerably reduced the expression of Tra2-β and SRSF9 proteins in SMA fibroblasts and enhanced the binding of PSF and hnRNP M to an exonic splicing enhancer (ESE) of exon 7. Together, our results demonstrate a significant role for calcium and its signaling on the regulation of SMN splicing, probably through modulating the expression/activity of splicing factors.
Collapse
Affiliation(s)
- Kwangman Choi
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 28116, Korea; (K.C.); (A.Y.); (J.B.); (H.J.); (M.K.); (M.C.); (Y.H.)
- Department of Medical Biotechnology, SoonChunHyang University, Asan 31538, Korea
| | - Ansook Yang
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 28116, Korea; (K.C.); (A.Y.); (J.B.); (H.J.); (M.K.); (M.C.); (Y.H.)
- College of Pharmacy, Chungbuk National University, Cheongju 28160, Korea;
| | - Jiyeon Baek
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 28116, Korea; (K.C.); (A.Y.); (J.B.); (H.J.); (M.K.); (M.C.); (Y.H.)
- College of Pharmacy, Chungbuk National University, Cheongju 28160, Korea;
| | - Hyejeong Jeong
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 28116, Korea; (K.C.); (A.Y.); (J.B.); (H.J.); (M.K.); (M.C.); (Y.H.)
- College of Pharmacy, Chungbuk National University, Cheongju 28160, Korea;
| | - Yura Kang
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang 10408, Korea; (Y.K.); (W.B.)
- Cancer Molecular Biology Branch, Division of Cancer Biology, Research Institute, National Cancer Center, Goyang 10408, Korea
| | - Woosun Baek
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang 10408, Korea; (Y.K.); (W.B.)
- Cancer Molecular Biology Branch, Division of Cancer Biology, Research Institute, National Cancer Center, Goyang 10408, Korea
| | - Joon-Chul Kim
- College of Pharmacy, Chungnam National University, Daejeon 34134, Korea; (J.-C.K.); (M.-J.S.)
| | - Mingu Kang
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 28116, Korea; (K.C.); (A.Y.); (J.B.); (H.J.); (M.K.); (M.C.); (Y.H.)
- College of Pharmacy, Chungbuk National University, Cheongju 28160, Korea;
| | - Miri Choi
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 28116, Korea; (K.C.); (A.Y.); (J.B.); (H.J.); (M.K.); (M.C.); (Y.H.)
- College of Pharmacy, Chungbuk National University, Cheongju 28160, Korea;
| | - Youngwook Ham
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 28116, Korea; (K.C.); (A.Y.); (J.B.); (H.J.); (M.K.); (M.C.); (Y.H.)
- Department of Biomolecular Science, KRIBB School of Bioscience, Korea University of Science and Technology, Daejeon 34113, Korea; (J.-H.J.); (J.S.A.)
| | - Min-Jeong Son
- College of Pharmacy, Chungnam National University, Daejeon 34134, Korea; (J.-C.K.); (M.-J.S.)
| | - Sang-Bae Han
- College of Pharmacy, Chungbuk National University, Cheongju 28160, Korea;
| | - Janghwan Kim
- Stem Cell Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea;
| | - Jae-Hyuk Jang
- Department of Biomolecular Science, KRIBB School of Bioscience, Korea University of Science and Technology, Daejeon 34113, Korea; (J.-H.J.); (J.S.A.)
- Anticancer Agent Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 28116, Korea
| | - Jong Seog Ahn
- Department of Biomolecular Science, KRIBB School of Bioscience, Korea University of Science and Technology, Daejeon 34113, Korea; (J.-H.J.); (J.S.A.)
- Anticancer Agent Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 28116, Korea
| | - Haihong Shen
- Gwangju Institute of Science and Technology, School of life Sciences, Gwangju 61005, Korea;
| | - Sun-Hee Woo
- College of Pharmacy, Chungnam National University, Daejeon 34134, Korea; (J.-C.K.); (M.-J.S.)
- Correspondence: (S.-H.W.); (J.H.K.); (S.C.); Tel.: +82-42-821-5924 (S.-H.W.); +82-31-920-2204 (J.H.K.); +82-43-240-6105 (S.C.); Fax: +82-42-823-6566 (S.-H.W.); +82-31-920-2006 (J.H.K.); +82-43-240-6159 (S.C)
| | - Jong Heon Kim
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang 10408, Korea; (Y.K.); (W.B.)
- Cancer Molecular Biology Branch, Division of Cancer Biology, Research Institute, National Cancer Center, Goyang 10408, Korea
- Correspondence: (S.-H.W.); (J.H.K.); (S.C.); Tel.: +82-42-821-5924 (S.-H.W.); +82-31-920-2204 (J.H.K.); +82-43-240-6105 (S.C.); Fax: +82-42-823-6566 (S.-H.W.); +82-31-920-2006 (J.H.K.); +82-43-240-6159 (S.C)
| | - Sungchan Cho
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 28116, Korea; (K.C.); (A.Y.); (J.B.); (H.J.); (M.K.); (M.C.); (Y.H.)
- Department of Biomolecular Science, KRIBB School of Bioscience, Korea University of Science and Technology, Daejeon 34113, Korea; (J.-H.J.); (J.S.A.)
- Correspondence: (S.-H.W.); (J.H.K.); (S.C.); Tel.: +82-42-821-5924 (S.-H.W.); +82-31-920-2204 (J.H.K.); +82-43-240-6105 (S.C.); Fax: +82-42-823-6566 (S.-H.W.); +82-31-920-2006 (J.H.K.); +82-43-240-6159 (S.C)
| |
Collapse
|
112
|
Abstract
Autosomal-recessive spinal muscular atrophy (SMA) is characterized by the loss of specific motor neurons of the spinal cord and skeletal muscle atrophy. SMA is caused by mutations or deletions of the survival motor neuron 1 (SMN1) gene, and disease severity correlates with the expression levels of the nearly identical copy gene, SMN2. Both genes ubiquitously express SMN protein, but SMN2 generates only low levels of protein that do not fully compensate for the loss-of-function of SMN1. SMN protein forms a multiprotein complex essential for the cellular assembly of ribonucleoprotein particles involved in diverse aspects of RNA metabolism. Other studies using animal models revealed a spatio-temporal requirement of SMN that is high during the development of the neuromuscular system and later, in the general maintenance of cellular and tissues homeostasis. These observations define a period for maximum therapeutic efficiency of SMN restoration, and suggest that cells outside the central nervous system may also participate in the pathogenesis of SMA. Finally, recent innovative therapies have been shown to mitigate SMN deficiency and have been approved to treat SMA patients. We briefly review major findings from the past twenty-five years of SMA research. © 2020 French Society of Pediatrics. Published by Elsevier Masson SAS. All rights reserved.
Collapse
Affiliation(s)
- S Lefebvre
- T3S INSERM UMR 1124, Toxicité Environnementale, Cibles Thérapeutiques, Signalisation Cellulaire et Biomarqueurs, UFR des Sciences Fondamentales et Biomédicales, Campus Saint-Germain-des-prés, Université de Paris, Paris, France.
| | - C Sarret
- Centre de compétence maladies rares des pathologies neuromusculaires, service de génétique médicale, Hôpital Estaing, CHU Clermont-Ferrand, France.
| |
Collapse
|
113
|
Tegtmeyer M, Nehme R. Leveraging the Genetic Diversity of Human Stem Cells in Therapeutic Approaches. J Mol Biol 2021; 434:167221. [PMID: 34474087 DOI: 10.1016/j.jmb.2021.167221] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 08/17/2021] [Accepted: 08/23/2021] [Indexed: 01/14/2023]
Abstract
Since their discovery 15 years ago, human pluripotent stem cell (hPSC) technologies have begun to revolutionize science and medicine, rapidly expanding beyond investigative research to drug discovery and development. Efforts to leverage hPSCs over the last decade have focused on increasing both the complexity and in vivo fidelity of human cellular models through enhanced differentiation methods. While these evolutions have fostered novel insights into disease mechanisms and influenced clinical drug discovery and development, there are still several considerations that limit the utility of hPSC models. In this review, we highlight important, yet underexplored avenues to broaden their reach. We focus on (i) the importance of diversifying existing hPSC collections, and their utilization to investigate therapeutic strategies in individuals from different genetic backgrounds, ancestry and sex; (ii) considerations for the selection of therapeutically relevant hPSC-based models; (iii) strategies to adequately increase the scale of cell-based studies; and (iv) the advances and constraints of clinical trials in a dish. Moreover, we advocate for harnessing the translational capabilities of hPSC models along with the use of innovative, scalable approaches for understanding genetic biases and the impact of sex and ancestry on disease mechanisms and drug efficacy and response. The next decade of hPSC innovation is poised to provide vast insights into the genetic basis of human disease and enable rapid advances to develop, repurpose, and ensure the safety of the next generation of disease therapies across diverse human populations.
Collapse
Affiliation(s)
- Matthew Tegtmeyer
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Centre for Stem Cells and Regenerative Medicine, King's College London, London, UK
| | - Ralda Nehme
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA.
| |
Collapse
|
114
|
Lejman J, Zieliński G, Gawda P, Lejman M. Alternative Splicing Role in New Therapies of Spinal Muscular Atrophy. Genes (Basel) 2021; 12:1346. [PMID: 34573328 PMCID: PMC8468182 DOI: 10.3390/genes12091346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/24/2021] [Accepted: 08/25/2021] [Indexed: 11/17/2022] Open
Abstract
It has been estimated that 80% of the pre-mRNA undergoes alternative splicing, which exponentially increases the flow of biological information in cellular processes and can be an attractive therapeutic target. It is a crucial mechanism to increase genetic diversity. Disturbed alternative splicing is observed in many disorders, including neuromuscular diseases and carcinomas. Spinal Muscular Atrophy (SMA) is an autosomal recessive neurodegenerative disease. Homozygous deletion in 5q13 (the region coding for the motor neuron survival gene (SMN1)) is responsible for 95% of SMA cases. The nearly identical SMN2 gene does not compensate for SMN loss caused by SMN1 gene mutation due to different splicing of exon 7. A pathologically low level of survival motor neuron protein (SMN) causes degeneration of the anterior horn cells in the spinal cord with associated destruction of α-motor cells and manifested by muscle weakness and loss. Understanding the regulation of the SMN2 pre-mRNA splicing process has allowed for innovative treatment and the introduction of new medicines for SMA. After describing the concept of splicing modulation, this review will cover the progress achieved in this field, by highlighting the breakthrough accomplished recently for the treatment of SMA using the mechanism of alternative splicing.
Collapse
Affiliation(s)
- Jan Lejman
- Student Scientific Society, Laboratory of Genetic Diagnostics, Medical University of Lublin, 20-093 Lublin, Poland;
| | - Grzegorz Zieliński
- Department of Sports Medicine, Medical University of Lublin, 20-093 Lublin, Poland; (G.Z.); (P.G.)
| | - Piotr Gawda
- Department of Sports Medicine, Medical University of Lublin, 20-093 Lublin, Poland; (G.Z.); (P.G.)
| | - Monika Lejman
- Laboratory of Genetic Diagnostics, Medical University of Lublin, 20-093 Lublin, Poland
| |
Collapse
|
115
|
Tang Z, Akhter S, Ramprasad A, Wang X, Reibarkh M, Wang J, Aryal S, Thota SS, Zhao J, Douglas JT, Gao P, Holmstrom ED, Miao Y, Wang J. Recognition of single-stranded nucleic acids by small-molecule splicing modulators. Nucleic Acids Res 2021; 49:7870-7883. [PMID: 34283224 PMCID: PMC8373063 DOI: 10.1093/nar/gkab602] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 06/24/2021] [Accepted: 07/01/2021] [Indexed: 12/16/2022] Open
Abstract
Risdiplam is the first approved small-molecule splicing modulator for the treatment of spinal muscular atrophy (SMA). Previous studies demonstrated that risdiplam analogues have two separate binding sites in exon 7 of the SMN2 pre-mRNA: (i) the 5'-splice site and (ii) an upstream purine (GA)-rich binding site. Importantly, the sequence of this GA-rich binding site significantly enhanced the potency of risdiplam analogues. In this report, we unambiguously determined that a known risdiplam analogue, SMN-C2, binds to single-stranded GA-rich RNA in a sequence-specific manner. The minimum required binding sequence for SMN-C2 was identified as GAAGGAAGG. We performed all-atom simulations using a robust Gaussian accelerated molecular dynamics (GaMD) method, which captured spontaneous binding of a risdiplam analogue to the target nucleic acids. We uncovered, for the first time, a ligand-binding pocket formed by two sequential GAAG loop-like structures. The simulation findings were highly consistent with experimental data obtained from saturation transfer difference (STD) NMR and structure-affinity-relationship studies of the risdiplam analogues. Together, these studies illuminate us to understand the molecular basis of single-stranded purine-rich RNA recognition by small-molecule splicing modulators with an unprecedented binding mode.
Collapse
Affiliation(s)
- Zhichao Tang
- Department of Medicinal Chemistry, University of Kansas, Lawrence, KS 66047, USA
| | - Sana Akhter
- Center for Computational Biology and Department of Molecular Biosciences, University of Kansas, Lawrence, KS 66047, USA
| | - Ankita Ramprasad
- Department of Medicinal Chemistry, University of Kansas, Lawrence, KS 66047, USA
| | - Xiao Wang
- Analytical Research & Development, Merck and Co., Inc., Kenilworth, NJ 07033, USA
| | - Mikhail Reibarkh
- Analytical Research & Development, Merck and Co., Inc., Kenilworth, NJ 07033, USA
| | - Jinan Wang
- Center for Computational Biology and Department of Molecular Biosciences, University of Kansas, Lawrence, KS 66047, USA
| | - Sadikshya Aryal
- Department of Medicinal Chemistry, University of Kansas, Lawrence, KS 66047, USA
| | - Srinivas S Thota
- Department of Medicinal Chemistry, University of Kansas, Lawrence, KS 66047, USA
| | - Junxing Zhao
- Department of Medicinal Chemistry, University of Kansas, Lawrence, KS 66047, USA
| | - Justin T Douglas
- Nuclear Magnetic Resonance Lab, University of Kansas, Lawrence, KS 66045, USA
| | - Philip Gao
- Protein Production Group, University of Kansas, Lawrence, KS 66047, USA
| | - Erik D Holmstrom
- Department of Molecular Biosciences and Department of Chemistry, University of Kansas, Lawrence, KS 66045, USA
| | - Yinglong Miao
- Center for Computational Biology and Department of Molecular Biosciences, University of Kansas, Lawrence, KS 66047, USA
| | - Jingxin Wang
- Department of Medicinal Chemistry, University of Kansas, Lawrence, KS 66047, USA
| |
Collapse
|
116
|
Zhao X, Feng Z, Risher N, Mollin A, Sheedy J, Ling KKY, Narasimhan J, Dakka A, Baird JD, Ratni H, Lutz C, Chen K, Naryshkin N, Ko CP, Welch E, Metzger F, Weetall M. SMN protein is required throughout life to prevent spinal muscular atrophy disease progression. Hum Mol Genet 2021; 31:82-96. [PMID: 34368854 DOI: 10.1093/hmg/ddab220] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/19/2021] [Accepted: 07/22/2021] [Indexed: 11/12/2022] Open
Abstract
Spinal muscular atrophy (SMA) is caused by the loss of the survival motor neuron 1 (SMN1) gene function. The related SMN2 gene partially compensates but produces insufficient levels of SMN protein due to alternative splicing of exon 7. Evrysdi™ (risdiplam), recently approved for the treatment of SMA, and related compounds promote exon 7 inclusion to generate full-length SMN2 mRNA and increase SMN protein levels. SMNΔ7 type I SMA mice survive without treatment for ~ 17 days. SMN2 mRNA splicing modulators increase survival of SMN∆7 mice with treatment initiated at postnatal day 3 (PND3). To define SMN requirements for adult mice, SMNΔ7 mice were dosed with a SMN2 mRNA splicing modifier from PND3 to PND40, then dosing was stopped. Mice not treated after PND40 showed progressive weight loss, necrosis, and muscle atrophy after ~ 20 days. Male mice presented a more severe phenotype than female mice. Mice dosed continuously did not show disease symptoms. The estimated half-life of SMN protein is 2 days indicating that the SMA phenotype reappeared after SMN protein levels returned to baseline. Although SMN protein levels decreased with age in mice and SMN protein levels were higher in brain than in muscle, our studies suggest that SMN protein is required throughout the life of the mouse and is especially essential in adult peripheral tissues including muscle. These studies indicate that drugs such as risdiplam will be optimally therapeutic when given as early as possible after diagnosis and potentially will be required for the life of an SMA patient.
Collapse
Affiliation(s)
- Xin Zhao
- PTC Therapeutics, Inc., South Plainfield, NJ 07080, USA
| | - Zhihua Feng
- Section of Neurobiology, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Nicole Risher
- PTC Therapeutics, Inc., South Plainfield, NJ 07080, USA
| | - Anna Mollin
- PTC Therapeutics, Inc., South Plainfield, NJ 07080, USA
| | | | - Karen K Y Ling
- Section of Neurobiology, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | | | - Amal Dakka
- PTC Therapeutics, Inc., South Plainfield, NJ 07080, USA
| | - John D Baird
- PTC Therapeutics, Inc., South Plainfield, NJ 07080, USA
| | - Hasane Ratni
- F. Hoffmann-La Roche, Pharmaceutical Research and Early Development, Roche Innovation Center Basel, Grenzacherstrasse 124, 4070 Basel, Switzerland
| | | | | | | | - Chien-Ping Ko
- Section of Neurobiology, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Ellen Welch
- PTC Therapeutics, Inc., South Plainfield, NJ 07080, USA
| | - Friedrich Metzger
- F. Hoffmann-La Roche, Pharmaceutical Research and Early Development, Roche Innovation Center Basel, Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Marla Weetall
- PTC Therapeutics, Inc., South Plainfield, NJ 07080, USA
| |
Collapse
|
117
|
Blatnik AJ, McGovern VL, Burghes AHM. What Genetics Has Told Us and How It Can Inform Future Experiments for Spinal Muscular Atrophy, a Perspective. Int J Mol Sci 2021; 22:8494. [PMID: 34445199 PMCID: PMC8395208 DOI: 10.3390/ijms22168494] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/28/2021] [Accepted: 08/04/2021] [Indexed: 02/06/2023] Open
Abstract
Proximal spinal muscular atrophy (SMA) is an autosomal recessive neurodegenerative disorder characterized by motor neuron loss and subsequent atrophy of skeletal muscle. SMA is caused by deficiency of the essential survival motor neuron (SMN) protein, canonically responsible for the assembly of the spliceosomal small nuclear ribonucleoproteins (snRNPs). Therapeutics aimed at increasing SMN protein levels are efficacious in treating SMA. However, it remains unknown how deficiency of SMN results in motor neuron loss, resulting in many reported cellular functions of SMN and pathways affected in SMA. Herein is a perspective detailing what genetics and biochemistry have told us about SMA and SMN, from identifying the SMA determinant region of the genome, to the development of therapeutics. Furthermore, we will discuss how genetics and biochemistry have been used to understand SMN function and how we can determine which of these are critical to SMA moving forward.
Collapse
Affiliation(s)
| | | | - Arthur H. M. Burghes
- Department of Biological Chemistry & Pharmacology, The Ohio State University Wexner Medical Center, Rightmire Hall, Room 168, 1060 Carmack Road, Columbus, OH 43210, USA; (A.J.B.III); (V.L.M.)
| |
Collapse
|
118
|
Regulated control of gene therapies by drug-induced splicing. Nature 2021; 596:291-295. [PMID: 34321659 PMCID: PMC8966400 DOI: 10.1038/s41586-021-03770-2] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 06/23/2021] [Indexed: 01/13/2023]
Abstract
So far, gene therapies have relied on complex constructs that cannot be finely controlled1,2. Here we report a universal switch element that enables precise control of gene replacement or gene editing after exposure to a small molecule. The small-molecule inducers are currently in human use, are orally bioavailable when given to animals or humans and can reach both peripheral tissues and the brain. Moreover, the switch system, which we denote Xon, does not require the co-expression of any regulatory proteins. Using Xon, the translation of the desired elements for controlled gene replacement or gene editing machinery occurs after a single oral dose of the inducer, and the robustness of expression can be controlled by the drug dose, protein stability and redosing. The ability of Xon to provide temporal control of protein expression can be adapted for cell-biology applications and animal studies. Additionally, owing to the oral bioavailability and safety of the drugs used, the Xon switch system provides an unprecedented opportunity to refine and tailor the application of gene therapies in humans.
Collapse
|
119
|
Activation of Muscle-Specific Kinase (MuSK) Reduces Neuromuscular Defects in the Delta7 Mouse Model of Spinal Muscular Atrophy (SMA). Int J Mol Sci 2021; 22:ijms22158015. [PMID: 34360794 PMCID: PMC8348537 DOI: 10.3390/ijms22158015] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/22/2021] [Accepted: 07/23/2021] [Indexed: 02/07/2023] Open
Abstract
Spinal muscular atrophy (SMA) is a motor neuron disease caused by insufficient levels of the survival motor neuron (SMN) protein. One of the most prominent pathological characteristics of SMA involves defects of the neuromuscular junction (NMJ), such as denervation and reduced clustering of acetylcholine receptors (AChRs). Recent studies suggest that upregulation of agrin, a crucial NMJ organizer promoting AChR clustering, can improve NMJ innervation and reduce muscle atrophy in the delta7 mouse model of SMA. To test whether the muscle-specific kinase (MuSK), part of the agrin receptor complex, also plays a beneficial role in SMA, we treated the delta7 SMA mice with an agonist antibody to MuSK. MuSK agonist antibody #13, which binds to the NMJ, significantly improved innervation and synaptic efficacy in denervation-vulnerable muscles. MuSK agonist antibody #13 also significantly increased the muscle cross-sectional area and myofiber numbers in these denervation-vulnerable muscles but not in denervation-resistant muscles. Although MuSK agonist antibody #13 did not affect the body weight, our study suggests that preservation of NMJ innervation by the activation of MuSK may serve as a complementary therapy to SMN-enhancing drugs to maximize the therapeutic effectiveness for all types of SMA patients.
Collapse
|
120
|
Ajiro M, Awaya T, Kim YJ, Iida K, Denawa M, Tanaka N, Kurosawa R, Matsushima S, Shibata S, Sakamoto T, Studer R, Krainer AR, Hagiwara M. Therapeutic manipulation of IKBKAP mis-splicing with a small molecule to cure familial dysautonomia. Nat Commun 2021; 12:4507. [PMID: 34301951 PMCID: PMC8302731 DOI: 10.1038/s41467-021-24705-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 06/21/2021] [Indexed: 01/10/2023] Open
Abstract
Approximately half of genetic disease-associated mutations cause aberrant splicing. However, a widely applicable therapeutic strategy to splicing diseases is yet to be developed. Here, we analyze the mechanism whereby IKBKAP-familial dysautonomia (FD) exon 20 inclusion is specifically promoted by a small molecule splice modulator, RECTAS, even though IKBKAP-FD exon 20 has a suboptimal 5' splice site due to the IVS20 + 6 T > C mutation. Knockdown experiments reveal that exon 20 inclusion is suppressed in the absence of serine/arginine-rich splicing factor 6 (SRSF6) binding to an intronic splicing enhancer in intron 20. We show that RECTAS directly interacts with CDC-like kinases (CLKs) and enhances SRSF6 phosphorylation. Consistently, exon 20 splicing is bidirectionally manipulated by targeting cellular CLK activity with RECTAS versus CLK inhibitors. The therapeutic potential of RECTAS is validated in multiple FD disease models. Our study indicates that small synthetic molecules affecting phosphorylation state of SRSFs is available as a new therapeutic modality for mechanism-oriented precision medicine of splicing diseases.
Collapse
Affiliation(s)
- Masahiko Ajiro
- Department of Drug Discovery Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan.,Department of Anatomy and Developmental Biology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Tomonari Awaya
- Department of Anatomy and Developmental Biology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Young Jin Kim
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Kei Iida
- Medical Research Support Center, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Masatsugu Denawa
- Medical Research Support Center, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Nobuo Tanaka
- Medical Research Support Center, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Ryo Kurosawa
- Department of Anatomy and Developmental Biology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Shingo Matsushima
- Department of Drug Discovery Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan.,Department of Anatomy and Developmental Biology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Saiko Shibata
- Department of Drug Discovery Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan.,Department of Anatomy and Developmental Biology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Tetsunori Sakamoto
- Department of Anatomy and Developmental Biology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Rolenz Studer
- Center for Stem Cell Biology, Sloan Kettering Institute, New York, NY, USA
| | | | - Masatoshi Hagiwara
- Department of Drug Discovery Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan. .,Department of Anatomy and Developmental Biology, Kyoto University Graduate School of Medicine, Kyoto, Japan.
| |
Collapse
|
121
|
Chaytow H, Faller KM, Huang YT, Gillingwater TH. Spinal muscular atrophy: From approved therapies to future therapeutic targets for personalized medicine. Cell Rep Med 2021; 2:100346. [PMID: 34337562 PMCID: PMC8324491 DOI: 10.1016/j.xcrm.2021.100346] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Spinal muscular atrophy (SMA) is a devastating childhood motor neuron disease that, in the most severe cases and when left untreated, leads to death within the first two years of life. Recent therapeutic advances have given hope to families and patients by compensating for the deficiency in survival motor neuron (SMN) protein via gene therapy or other genetic manipulation. However, it is now apparent that none of these therapies will cure SMA alone. In this review, we discuss the three currently licensed therapies for SMA, briefly highlighting their respective advantages and disadvantages, before considering alternative approaches to increasing SMN protein levels. We then explore recent preclinical research that is identifying and targeting dysregulated pathways secondary to, or independent of, SMN deficiency that may provide adjunctive opportunities for SMA. These additional therapies are likely to be key for the development of treatments that are effective across the lifespan of SMA patients.
Collapse
Affiliation(s)
- Helena Chaytow
- Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, UK
- Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Edinburgh, UK
| | - Kiterie M.E. Faller
- Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, UK
- Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Edinburgh, UK
- Royal (Dick) School of Veterinary Studies, University of Edinburgh, UK
| | - Yu-Ting Huang
- Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, UK
- Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Edinburgh, UK
| | - Thomas H. Gillingwater
- Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, UK
- Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
122
|
Bush JA, Williams CC, Meyer SM, Tong Y, Haniff HS, Childs-Disney JL, Disney MD. Systematically Studying the Effect of Small Molecules Interacting with RNA in Cellular and Preclinical Models. ACS Chem Biol 2021; 16:1111-1127. [PMID: 34166593 PMCID: PMC8867596 DOI: 10.1021/acschembio.1c00014] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The interrogation and manipulation of biological systems by small molecules is a powerful approach in chemical biology. Ideal compounds selectively engage a target and mediate a downstream phenotypic response. Although historically small molecule drug discovery has focused on proteins and enzymes, targeting RNA is an attractive therapeutic alternative, as many disease-causing or -associated RNAs have been identified through genome-wide association studies. As the field of RNA chemical biology emerges, the systematic evaluation of target validation and modulation of target-associated pathways is of paramount importance. In this Review, through an examination of case studies, we outline the experimental characterization, including methods and tools, to evaluate comprehensively the impact of small molecules that target RNA on cellular phenotype.
Collapse
Affiliation(s)
- Jessica A Bush
- The Scripps Research Institute, Department of Chemistry, 130 Scripps Way, Jupiter, Florida 33458, United States
| | - Christopher C Williams
- The Scripps Research Institute, Department of Chemistry, 130 Scripps Way, Jupiter, Florida 33458, United States
| | - Samantha M Meyer
- The Scripps Research Institute, Department of Chemistry, 130 Scripps Way, Jupiter, Florida 33458, United States
| | - Yuquan Tong
- The Scripps Research Institute, Department of Chemistry, 130 Scripps Way, Jupiter, Florida 33458, United States
| | - Hafeez S Haniff
- The Scripps Research Institute, Department of Chemistry, 130 Scripps Way, Jupiter, Florida 33458, United States
| | - Jessica L Childs-Disney
- The Scripps Research Institute, Department of Chemistry, 130 Scripps Way, Jupiter, Florida 33458, United States
| | - Matthew D Disney
- The Scripps Research Institute, Department of Chemistry, 130 Scripps Way, Jupiter, Florida 33458, United States
| |
Collapse
|
123
|
Campagne S, de Vries T, Malard F, Afanasyev P, Dorn G, Dedic E, Kohlbrecher J, Boehringer D, Cléry A, Allain FHT. An in vitro reconstituted U1 snRNP allows the study of the disordered regions of the particle and the interactions with proteins and ligands. Nucleic Acids Res 2021; 49:e63. [PMID: 33677607 PMCID: PMC8216277 DOI: 10.1093/nar/gkab135] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 02/11/2021] [Accepted: 02/17/2021] [Indexed: 11/17/2022] Open
Abstract
U1 small nuclear ribonucleoparticle (U1 snRNP) plays a central role during RNA processing. Previous structures of U1 snRNP revealed how the ribonucleoparticle is organized and recognizes the pre-mRNA substrate at the exon–intron junction. As with many other ribonucleoparticles involved in RNA metabolism, U1 snRNP contains extensions made of low complexity sequences. Here, we developed a protocol to reconstitute U1 snRNP in vitro using mostly full-length components in order to perform liquid-state NMR spectroscopy. The accuracy of the reconstitution was validated by probing the shape and structure of the particle by SANS and cryo-EM. Using an NMR spectroscopy-based approach, we probed, for the first time, the U1 snRNP tails at atomic detail and our results confirm their high degree of flexibility. We also monitored the labile interaction between the splicing factor PTBP1 and U1 snRNP and validated the U1 snRNA stem loop 4 as a binding site for the splicing regulator on the ribonucleoparticle. Altogether, we developed a method to probe the intrinsically disordered regions of U1 snRNP and map the interactions controlling splicing regulation. This approach could be used to get insights into the molecular mechanisms of alternative splicing and screen for potential RNA therapeutics.
Collapse
Affiliation(s)
- Sébastien Campagne
- Institute of Biochemistry, Department of Biology, ETH Zurich, Hönggerbergring 64, CH-8093 Zürich, Switzerland
| | - Tebbe de Vries
- Institute of Biochemistry, Department of Biology, ETH Zurich, Hönggerbergring 64, CH-8093 Zürich, Switzerland
| | - Florian Malard
- Institute of Biochemistry, Department of Biology, ETH Zurich, Hönggerbergring 64, CH-8093 Zürich, Switzerland
| | - Pavel Afanasyev
- Cryo-EM Knowledge Hub (CEMK), ETH Zurich, Hönggerbergring 64, CH-8093 Zürich, Switzerland
| | - Georg Dorn
- Institute of Biochemistry, Department of Biology, ETH Zurich, Hönggerbergring 64, CH-8093 Zürich, Switzerland
| | - Emil Dedic
- Institute of Biochemistry, Department of Biology, ETH Zurich, Hönggerbergring 64, CH-8093 Zürich, Switzerland
| | | | - Daniel Boehringer
- Cryo-EM Knowledge Hub (CEMK), ETH Zurich, Hönggerbergring 64, CH-8093 Zürich, Switzerland
| | - Antoine Cléry
- Institute of Biochemistry, Department of Biology, ETH Zurich, Hönggerbergring 64, CH-8093 Zürich, Switzerland
| | - Frédéric H-T Allain
- Institute of Biochemistry, Department of Biology, ETH Zurich, Hönggerbergring 64, CH-8093 Zürich, Switzerland
| |
Collapse
|
124
|
Kong L, Valdivia DO, Simon CM, Hassinan CW, Delestrée N, Ramos DM, Park JH, Pilato CM, Xu X, Crowder M, Grzyb CC, King ZA, Petrillo M, Swoboda KJ, Davis C, Lutz CM, Stephan AH, Zhao X, Weetall M, Naryshkin NA, Crawford TO, Mentis GZ, Sumner CJ. Impaired prenatal motor axon development necessitates early therapeutic intervention in severe SMA. Sci Transl Med 2021; 13:13/578/eabb6871. [PMID: 33504650 DOI: 10.1126/scitranslmed.abb6871] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 09/18/2020] [Indexed: 12/21/2022]
Abstract
Gene replacement and pre-mRNA splicing modifier therapies represent breakthrough gene targeting treatments for the neuromuscular disease spinal muscular atrophy (SMA), but mechanisms underlying variable efficacy of treatment are incompletely understood. Our examination of severe infantile onset human SMA tissues obtained at expedited autopsy revealed persistence of developmentally immature motor neuron axons, many of which are actively degenerating. We identified similar features in a mouse model of severe SMA, in which impaired radial growth and Schwann cell ensheathment of motor axons began during embryogenesis and resulted in reduced acquisition of myelinated axons that impeded motor axon function neonatally. Axons that failed to ensheath degenerated rapidly postnatally, specifically releasing neurofilament light chain protein into the blood. Genetic restoration of survival motor neuron protein (SMN) expression in mouse motor neurons, but not in Schwann cells or muscle, improved SMA motor axon development and maintenance. Treatment with small-molecule SMN2 splice modifiers beginning immediately after birth in mice increased radial growth of the already myelinated axons, but in utero treatment was required to restore axonal growth and associated maturation, prevent subsequent neonatal axon degeneration, and enhance motor axon function. Together, these data reveal a cellular basis for the fulminant neonatal worsening of patients with infantile onset SMA and identify a temporal window for more effective treatment. These findings suggest that minimizing treatment delay is critical to achieve optimal therapeutic efficacy.
Collapse
Affiliation(s)
- Lingling Kong
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - David O Valdivia
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Christian M Simon
- Center for Motor Neuron Biology and Disease, Department of Pathology and Cell Biology, Columbia University, New York, NY 10032, USA
| | - Cera W Hassinan
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Nicolas Delestrée
- Center for Motor Neuron Biology and Disease, Department of Pathology and Cell Biology, Columbia University, New York, NY 10032, USA
| | - Daniel M Ramos
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Jae Hong Park
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Celeste M Pilato
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Xixi Xu
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Melissa Crowder
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Chloe C Grzyb
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Zachary A King
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | - Kathryn J Swoboda
- Center for Genomic Medicine, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Crystal Davis
- Genetic Resource Science, The Jackson Laboratory, Bar Harbor, ME 04609, USA
| | - Cathleen M Lutz
- Genetic Resource Science, The Jackson Laboratory, Bar Harbor, ME 04609, USA
| | - Alexander H Stephan
- F. Hoffmann-La Roche Ltd., pRED, Pharma & Early Development, Roche Innovation Center Basel, Basel CH-4070, Switzerland
| | - Xin Zhao
- PTC Therapeutics, 100 Corporate Court, South Plainfield, NJ 07080, USA
| | - Marla Weetall
- PTC Therapeutics, 100 Corporate Court, South Plainfield, NJ 07080, USA
| | | | - Thomas O Crawford
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - George Z Mentis
- Center for Motor Neuron Biology and Disease, Department of Pathology and Cell Biology, Columbia University, New York, NY 10032, USA.,Department of Neurology, Columbia University, New York, NY 10032, USA
| | - Charlotte J Sumner
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA. .,Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
125
|
Van Alstyne M, Tattoli I, Delestree N, Recinos Y, Workman E, Shihabuddin LS, Zhang C, Mentis GZ, Pellizzoni L. Gain of toxic function by long-term AAV9-mediated SMN overexpression in the sensorimotor circuit. Nat Neurosci 2021; 24:930-940. [PMID: 33795885 PMCID: PMC8254787 DOI: 10.1038/s41593-021-00827-3] [Citation(s) in RCA: 117] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 02/24/2021] [Indexed: 02/01/2023]
Abstract
The neurodegenerative disease spinal muscular atrophy (SMA) is caused by deficiency in the survival motor neuron (SMN) protein. Currently approved SMA treatments aim to restore SMN, but the potential for SMN expression beyond physiological levels is a unique feature of adeno-associated virus serotype 9 (AAV9)-SMN gene therapy. Here, we show that long-term AAV9-mediated SMN overexpression in mouse models induces dose-dependent, late-onset motor dysfunction associated with loss of proprioceptive synapses and neurodegeneration. Mechanistically, aggregation of overexpressed SMN in the cytoplasm of motor circuit neurons sequesters components of small nuclear ribonucleoproteins, leading to splicing dysregulation and widespread transcriptome abnormalities with prominent signatures of neuroinflammation and the innate immune response. Thus, long-term SMN overexpression interferes with RNA regulation and triggers SMA-like pathogenic events through toxic gain-of-function mechanisms. These unanticipated, SMN-dependent and neuron-specific liabilities warrant caution on the long-term safety of treating individuals with SMA with AAV9-SMN and the risks of uncontrolled protein expression by gene therapy.
Collapse
Affiliation(s)
- Meaghan Van Alstyne
- Center for Motor Neuron Biology and Disease, Columbia University, New York, NY, 10032,Department of Pathology and Cell Biology, Columbia University, New York, NY, 10032,Department of Neurology, Columbia University, New York, NY, 10032
| | - Ivan Tattoli
- Center for Motor Neuron Biology and Disease, Columbia University, New York, NY, 10032,Department of Pathology and Cell Biology, Columbia University, New York, NY, 10032
| | - Nicolas Delestree
- Center for Motor Neuron Biology and Disease, Columbia University, New York, NY, 10032,Department of Pathology and Cell Biology, Columbia University, New York, NY, 10032,Department of Neurology, Columbia University, New York, NY, 10032
| | - Yocelyn Recinos
- Center for Motor Neuron Biology and Disease, Columbia University, New York, NY, 10032,Department of Systems Biology, Columbia University, New York, NY 10032,Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032
| | - Eileen Workman
- Center for Motor Neuron Biology and Disease, Columbia University, New York, NY, 10032,Department of Pathology and Cell Biology, Columbia University, New York, NY, 10032
| | | | - Chaolin Zhang
- Center for Motor Neuron Biology and Disease, Columbia University, New York, NY, 10032,Department of Systems Biology, Columbia University, New York, NY 10032,Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032
| | - George Z. Mentis
- Center for Motor Neuron Biology and Disease, Columbia University, New York, NY, 10032,Department of Pathology and Cell Biology, Columbia University, New York, NY, 10032,Department of Neurology, Columbia University, New York, NY, 10032
| | - Livio Pellizzoni
- Center for Motor Neuron Biology and Disease, Columbia University, New York, NY, 10032,Department of Pathology and Cell Biology, Columbia University, New York, NY, 10032,Department of Neurology, Columbia University, New York, NY, 10032,Address correspondence to: Livio Pellizzoni, Center for Motor Neuron Biology and Disease, Department of Pathology and Cell Biology, Columbia University, 630 West 168TH Street, New York, NY, 10032. Phone: +1 212-305-3046;
| |
Collapse
|
126
|
Martin WJ, Grandi P, Marcia M. Screening strategies for identifying RNA- and ribonucleoprotein-targeted compounds. Trends Pharmacol Sci 2021; 42:758-771. [PMID: 34215444 DOI: 10.1016/j.tips.2021.06.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 05/16/2021] [Accepted: 06/02/2021] [Indexed: 12/23/2022]
Abstract
The past few years have witnessed important breakthroughs in the identification of compounds that specifically bind and regulate RNAs and in optimizing them for therapeutic use. Here, we review successful and unsuccessful approaches in screening for RNA-targeted small molecules. We discuss advantages and disadvantages of the different screening techniques and variables that affect the outcome of RNA-screening projects. We also highlight key challenges that hamper the development of quality RNA ligands, especially the still-low availability of RNA-specific compound libraries and the poor understanding of RNA structural dynamics. We conclude that the development of new RNA-targeting drugs would greatly benefit from integration of the power of high-throughput screening technologies with improved biochemical, structural, and computational characterization of RNA targets.
Collapse
Affiliation(s)
- William J Martin
- Cellzome GmbH, Functional Genomics R&D, GlaxoSmithKline, 69117 Heidelberg, Germany; European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Paola Grandi
- Cellzome GmbH, Functional Genomics R&D, GlaxoSmithKline, 69117 Heidelberg, Germany
| | - Marco Marcia
- European Molecular Biology Laboratory (EMBL) Grenoble, 71 Avenue des Martyrs, Grenoble 38042, France.
| |
Collapse
|
127
|
LeBlanc RM, Kasprzak WK, Longhini AP, Olenginski LT, Abulwerdi F, Ginocchio S, Shields B, Nyman J, Svirydava M, Del Vecchio C, Ivanic J, Schneekloth JS, Shapiro BA, Dayie TK, Le Grice SFJ. Structural insights of the conserved "priming loop" of hepatitis B virus pre-genomic RNA. J Biomol Struct Dyn 2021; 40:9761-9773. [PMID: 34155954 PMCID: PMC10167916 DOI: 10.1080/07391102.2021.1934544] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 05/20/2021] [Indexed: 12/16/2022]
Abstract
Initiation of protein-primed (-) strand DNA synthesis in hepatitis B virus (HBV) requires interaction of the viral polymerase with a cis-acting regulatory signal, designated epsilon (ε), located at the 5'-end of its pre-genomic RNA (pgRNA). Binding of polymerase to ε is also necessary for pgRNA encapsidation. While the mechanistic basis of this interaction remains elusive, mutagenesis studies suggest its internal 6-nt "priming loop" provides an important structural contribution. ε might therefore be considered a promising target for small molecule interventions to complement current nucleoside-analog based anti-HBV therapies. An ideal prerequisite to any RNA-directed small molecule strategy would be a detailed structural description of this important element. Herein, we present a solution NMR structure for HBV ε which, in combination with molecular dynamics and docking simulations, reports on a flexible ligand "pocket", reminiscent of those observed in proteins. We also demonstrate the binding of the selective estrogen receptor modulators (SERMs) Raloxifene, Bazedoxifene, and a de novo derivative to the priming loop.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Regan M. LeBlanc
- Basic Research Laboratory, National Cancer Institute, Frederick, MD, USA
- Vertex Pharmaceuticals, Boston, MA, USA
| | - Wojciech K. Kasprzak
- Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Andrew P. Longhini
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, USA
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA, USA
| | - Lukasz T. Olenginski
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, USA
| | - Fardokht Abulwerdi
- Basic Research Laboratory, National Cancer Institute, Frederick, MD, USA
| | - Stefano Ginocchio
- Basic Research Laboratory, National Cancer Institute, Frederick, MD, USA
| | - Brigit Shields
- RNA Biology Laboratory, National Cancer Institute, Frederick, MD, USA
| | - Julie Nyman
- Basic Research Laboratory, National Cancer Institute, Frederick, MD, USA
| | - Maryia Svirydava
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, USA
| | | | - Joseph Ivanic
- Advanced Biomedical Computational Science, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | | | - Bruce A. Shapiro
- RNA Biology Laboratory, National Cancer Institute, Frederick, MD, USA
| | - Theodore Kwaku Dayie
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, USA
| | | |
Collapse
|
128
|
Barron JC, Hurley EP, Parsons MP. Huntingtin and the Synapse. Front Cell Neurosci 2021; 15:689332. [PMID: 34211373 PMCID: PMC8239291 DOI: 10.3389/fncel.2021.689332] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 05/24/2021] [Indexed: 12/16/2022] Open
Abstract
Huntington disease (HD) is a monogenic disease that results in a combination of motor, psychiatric and cognitive symptoms. HD is caused by a CAG trinucleotide repeat expansion in the huntingtin (HTT) gene, which results in the production of a pathogenic mutant HTT protein (mHTT). Although there is no cure at present for HD, a number of RNA-targeting therapies have recently entered clinical trials which aim to lower mHTT production through the use of antisense oligonucleotides (ASOs) and RNAi. However, many of these treatment strategies are non-selective in that they cannot differentiate between non-pathogenic wild type HTT (wtHTT) and the mHTT variant. As HD patients are already born with decreased levels of wtHTT, these genetic therapies may result in critically low levels of wtHTT. The consequence of wtHTT reduction in the adult brain is currently under debate, and here we argue that wtHTT loss is not well-tolerated at the synaptic level. Synaptic dysfunction is an extremely sensitive measure of subsequent cell death, and is known to precede neurodegeneration in numerous brain diseases including HD. The present review focuses on the prominent role of wtHTT at the synapse and considers the consequences of wtHTT loss on both pre- and postsynaptic function. We discuss how wtHTT is implicated in virtually all major facets of synaptic neurotransmission including anterograde and retrograde transport of proteins to/from terminal buttons and dendrites, neurotransmitter release, endocytic vesicle recycling, and postsynaptic receptor localization and recycling. We conclude that wtHTT presence is essential for proper synaptic function.
Collapse
Affiliation(s)
- Jessica C Barron
- Division of Biomedical Sciences, Faculty of Medicine, Memorial University, St. John's, NL, Canada
| | - Emily P Hurley
- Division of Biomedical Sciences, Faculty of Medicine, Memorial University, St. John's, NL, Canada
| | - Matthew P Parsons
- Division of Biomedical Sciences, Faculty of Medicine, Memorial University, St. John's, NL, Canada
| |
Collapse
|
129
|
Karpe Y, Chen Z, Li XJ. Stem Cell Models and Gene Targeting for Human Motor Neuron Diseases. Pharmaceuticals (Basel) 2021; 14:565. [PMID: 34204831 PMCID: PMC8231537 DOI: 10.3390/ph14060565] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/05/2021] [Accepted: 06/08/2021] [Indexed: 12/17/2022] Open
Abstract
Motor neurons are large projection neurons classified into upper and lower motor neurons responsible for controlling the movement of muscles. Degeneration of motor neurons results in progressive muscle weakness, which underlies several debilitating neurological disorders including amyotrophic lateral sclerosis (ALS), hereditary spastic paraplegias (HSP), and spinal muscular atrophy (SMA). With the development of induced pluripotent stem cell (iPSC) technology, human iPSCs can be derived from patients and further differentiated into motor neurons. Motor neuron disease models can also be generated by genetically modifying human pluripotent stem cells. The efficiency of gene targeting in human cells had been very low, but is greatly improved with recent gene editing technologies such as zinc-finger nucleases (ZFN), transcription activator-like effector nucleases (TALEN), and CRISPR-Cas9. The combination of human stem cell-based models and gene editing tools provides unique paradigms to dissect pathogenic mechanisms and to explore therapeutics for these devastating diseases. Owing to the critical role of several genes in the etiology of motor neuron diseases, targeted gene therapies have been developed, including antisense oligonucleotides, viral-based gene delivery, and in situ gene editing. This review summarizes recent advancements in these areas and discusses future challenges toward the development of transformative medicines for motor neuron diseases.
Collapse
Affiliation(s)
- Yashashree Karpe
- Department of Biomedical Sciences, University of Illinois College of Medicine, Rockford, IL 61107, USA; (Y.K.); (Z.C.)
| | - Zhenyu Chen
- Department of Biomedical Sciences, University of Illinois College of Medicine, Rockford, IL 61107, USA; (Y.K.); (Z.C.)
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Xue-Jun Li
- Department of Biomedical Sciences, University of Illinois College of Medicine, Rockford, IL 61107, USA; (Y.K.); (Z.C.)
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL 60607, USA
| |
Collapse
|
130
|
Ratni H, Scalco RS, Stephan AH. Risdiplam, the First Approved Small Molecule Splicing Modifier Drug as a Blueprint for Future Transformative Medicines. ACS Med Chem Lett 2021; 12:874-877. [PMID: 34141064 DOI: 10.1021/acsmedchemlett.0c00659] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 01/19/2021] [Indexed: 12/17/2022] Open
Abstract
Not too long ago, the concept of selectively targeting mRNA with small molecules was perceived as a formidable scientific challenge. The discovery of small molecule splicing modifiers and the development of risdiplam for the treatment of spinal muscular atrophy (SMA) have firmly established proof of concept for this exciting new platform and transformed a scientific curiosity into a viable technology to target disease. Today, several approaches to target mRNA with small molecules, supported by biophysical and screening methods, are in place to deliver new drugs with high therapeutic relevance.
Collapse
Affiliation(s)
- Hasane Ratni
- pRED, Pharma Research & Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Renata S. Scalco
- pRED, Pharma Research & Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Alexander H. Stephan
- pRED, Pharma Research & Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland
| |
Collapse
|
131
|
A deep learning approach to identify gene targets of a therapeutic for human splicing disorders. Nat Commun 2021; 12:3332. [PMID: 34099697 PMCID: PMC8185002 DOI: 10.1038/s41467-021-23663-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 05/07/2021] [Indexed: 01/16/2023] Open
Abstract
Pre-mRNA splicing is a key controller of human gene expression. Disturbances in splicing due to mutation lead to dysregulated protein expression and contribute to a substantial fraction of human disease. Several classes of splicing modulator compounds (SMCs) have been recently identified and establish that pre-mRNA splicing represents a target for therapy. We describe herein the identification of BPN-15477, a SMC that restores correct splicing of ELP1 exon 20. Using transcriptome sequencing from treated fibroblast cells and a machine learning approach, we identify BPN-15477 responsive sequence signatures. We then leverage this model to discover 155 human disease genes harboring ClinVar mutations predicted to alter pre-mRNA splicing as targets for BPN-15477. Splicing assays confirm successful correction of splicing defects caused by mutations in CFTR, LIPA, MLH1 and MAPT. Subsequent validations in two disease-relevant cellular models demonstrate that BPN-15477 increases functional protein, confirming the clinical potential of our predictions.
Collapse
|
132
|
Julio AR, Backus KM. New approaches to target RNA binding proteins. Curr Opin Chem Biol 2021; 62:13-23. [PMID: 33535093 PMCID: PMC8823266 DOI: 10.1016/j.cbpa.2020.12.006] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 12/15/2020] [Accepted: 12/29/2020] [Indexed: 12/13/2022]
Abstract
RNA binding proteins (RBPs) are a large and diverse class of proteins that regulate all aspects of RNA biology. As RBP dysregulation has been implicated in a number of human disorders, including cancers and neurodegenerative disease, small molecule chemical probes that target individual RBPs represent useful tools for deciphering RBP function and guiding the production of new therapeutics. While RBPs are often thought of as tough-to-drug, the discovery of a number of small molecules that target RBPs has spurred considerable recent interest in new strategies for RBP chemical probe discovery. Here we review current and emerging technologies for high throughput RBP-small molecule screening that we expect will help unlock the full therapeutic potential of this exciting protein class.
Collapse
Affiliation(s)
- Ashley R Julio
- Department of Chemistry and Biochemistry, College of Arts and Sciences, UCLA, Los Angeles, CA, 90095, USA
| | - Keriann M Backus
- Department of Chemistry and Biochemistry, College of Arts and Sciences, UCLA, Los Angeles, CA, 90095, USA; Department of Biological Chemistry, David Geffen School of Medicine, UCLA, Los Angeles, CA, 90095, USA; Molecular Biology Institute, UCLA, Los Angeles, CA, 90095, USA; DOE Institute for Genomics and Proteomics, UCLA, Los Angeles, CA, 90095, USA; Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, CA, 90095, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, UCLA, Los Angeles, CA, 90095, USA.
| |
Collapse
|
133
|
Baisden JT, Childs-Disney JL, Ryan LS, Disney MD. Affecting RNA biology genome-wide by binding small molecules and chemically induced proximity. Curr Opin Chem Biol 2021; 62:119-129. [PMID: 34118759 PMCID: PMC9264282 DOI: 10.1016/j.cbpa.2021.03.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/24/2021] [Accepted: 03/25/2021] [Indexed: 01/08/2023]
Abstract
The ENCODE and genome-wide association projects have shown that much of the genome is transcribed into RNA and much less is translated into protein. These and other functional studies suggest that the druggable transcriptome is much larger than the druggable proteome. This review highlights approaches to define druggable RNA targets and structure-activity relationships across genomic RNA. Binding compounds can be identified and optimized into structure-specific ligands by using sequence-based design with various modes of action, for example, inhibiting translation or directing pre-mRNA splicing outcomes. In addition, strategies to direct protein activity against an RNA of interest via chemically induced proximity is a burgeoning area that has been validated both in cells and in preclinical animal models, and we describe that it may allow rapid access to new avenues to affect RNA biology. These approaches and the unique modes of action suggest that more RNAs are potentially amenable to targeting than proteins.
Collapse
Affiliation(s)
- Jared T Baisden
- Department of Chemistry, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458 USA
| | - Jessica L Childs-Disney
- Department of Chemistry, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458 USA
| | - Lucas S Ryan
- Department of Chemistry, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458 USA
| | - Matthew D Disney
- Department of Chemistry, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458 USA.
| |
Collapse
|
134
|
El Marabti E, Abdel-Wahab O. Therapeutic Modulation of RNA Splicing in Malignant and Non-Malignant Disease. Trends Mol Med 2021; 27:643-659. [PMID: 33994320 DOI: 10.1016/j.molmed.2021.04.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 04/11/2021] [Accepted: 04/13/2021] [Indexed: 01/24/2023]
Abstract
RNA splicing is the enzymatic process by which non-protein coding sequences are removed from RNA to produce mature protein-coding mRNA. Splicing is thereby a major mediator of proteome diversity as well as a dynamic regulator of gene expression. Genetic alterations disrupting splicing of individual genes or altering the function of splicing factors contribute to a wide range of human genetic diseases as well as cancer. These observations have resulted in the development of therapies based on oligonucleotides that bind to RNA sequences and modulate splicing for therapeutic benefit. In parallel, small molecules that bind to splicing factors to alter their function or modify RNA processing of individual transcripts are being pursued for monogenic disorders as well as for cancer.
Collapse
Affiliation(s)
- Ettaib El Marabti
- Clinical Transplant Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Omar Abdel-Wahab
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Leukemia Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| |
Collapse
|
135
|
Star E, Stevens M, Gooding C, Smith CWJ, Li L, Ayine ML, Harper SJ, Bates DO, Oltean S. A drug-repositioning screen using splicing-sensitive fluorescent reporters identifies novel modulators of VEGF-A splicing with anti-angiogenic properties. Oncogenesis 2021; 10:36. [PMID: 33941763 PMCID: PMC8093282 DOI: 10.1038/s41389-021-00323-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 03/25/2021] [Accepted: 04/09/2021] [Indexed: 12/30/2022] Open
Abstract
Alternative splicing of the vascular endothelial growth factor A (VEGF-A) terminal exon generates two protein families with differing functions. Pro-angiogenic VEGF-Axxxa isoforms are produced via selection of the proximal 3' splice site of the terminal exon. Use of an alternative distal splice site generates the anti-angiogenic VEGF-Axxxb proteins. A bichromatic splicing-sensitive reporter was designed to mimic VEGF-A alternative splicing and was used as a molecular tool to further investigate this alternative splicing event. Part of VEGF-A's terminal exon and preceding intron were inserted into a minigene construct followed by the coding sequences for two fluorescent proteins. A different fluorescent protein is expressed depending on which 3' splice site of the exon is used during splicing (dsRED denotes VEGF-Axxxa and EGFP denotes VEGF-Axxxb). The fluorescent output can be used to follow splicing decisions in vitro and in vivo. Following successful reporter validation in different cell lines and altering splicing using known modulators, a screen was performed using the LOPAC library of small molecules. Alterations to reporter splicing were measured using a fluorescent plate reader to detect dsRED and EGFP expression. Compounds of interest were further validated using flow cytometry and assessed for effects on endogenous VEGF-A alternative splicing at the mRNA and protein level. Ex vivo and in vitro angiogenesis assays were used to demonstrate the anti-angiogenic effect of the compounds. Furthermore, anti-angiogenic activity was investigated in a Matrigel in vivo model. To conclude, we have identified a set of compounds that have anti-angiogenic activity through modulation of VEGF-A terminal exon splicing.
Collapse
Affiliation(s)
- Eleanor Star
- grid.8391.30000 0004 1936 8024Institute of Biomedical & Clinical Sciences, Medical School, College of Medicine and Health, University of Exeter, St Luke’s Campus, Exeter, EX1 2LU UK
| | - Megan Stevens
- grid.8391.30000 0004 1936 8024Institute of Biomedical & Clinical Sciences, Medical School, College of Medicine and Health, University of Exeter, St Luke’s Campus, Exeter, EX1 2LU UK
| | - Clare Gooding
- grid.5335.00000000121885934Department of Biochemistry, University of Cambridge, Hopkins Building, Tennis Court Road, Cambridge, CB2 1QW UK
| | - Christopher W. J. Smith
- grid.5335.00000000121885934Department of Biochemistry, University of Cambridge, Hopkins Building, Tennis Court Road, Cambridge, CB2 1QW UK
| | - Ling Li
- grid.8391.30000 0004 1936 8024Institute of Biomedical & Clinical Sciences, Medical School, College of Medicine and Health, University of Exeter, St Luke’s Campus, Exeter, EX1 2LU UK
| | - Monica Lamici Ayine
- grid.8391.30000 0004 1936 8024Institute of Biomedical & Clinical Sciences, Medical School, College of Medicine and Health, University of Exeter, St Luke’s Campus, Exeter, EX1 2LU UK
| | - Steve J. Harper
- grid.8391.30000 0004 1936 8024Institute of Biomedical & Clinical Sciences, Medical School, College of Medicine and Health, University of Exeter, St Luke’s Campus, Exeter, EX1 2LU UK
| | - David O. Bates
- grid.415598.40000 0004 0641 4263Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Queen’s Medical Centre, West Block, D floor, Nottingham, NG7 2UH UK
| | - Sebastian Oltean
- grid.8391.30000 0004 1936 8024Institute of Biomedical & Clinical Sciences, Medical School, College of Medicine and Health, University of Exeter, St Luke’s Campus, Exeter, EX1 2LU UK
| |
Collapse
|
136
|
Impairment of the neurotrophic signaling hub B-Raf contributes to motoneuron degeneration in spinal muscular atrophy. Proc Natl Acad Sci U S A 2021; 118:2007785118. [PMID: 33931501 DOI: 10.1073/pnas.2007785118] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Spinal muscular atrophy (SMA) is a motoneuron disease caused by deletions of the Survival of Motoneuron 1 gene (SMN1) and low SMN protein levels. SMN restoration is the concept behind a number of recently approved drugs which result in impressive yet limited effects. Since SMN has already been enhanced in treated patients, complementary SMN-independent approaches are needed. Previously, a number of altered signaling pathways which regulate motoneuron degeneration have been identified as candidate targets. However, signaling pathways form networks, and their connectivity is still unknown in SMA. Here, we used presymptomatic SMA mice to elucidate the network of altered signaling in SMA. The SMA network is structured in two clusters with AKT and 14-3-3 ζ/δ in their centers. Both clusters are connected by B-Raf as a major signaling hub. The direct interaction of B-Raf with 14-3-3 ζ/δ is important for an efficient neurotrophic activation of the MEK/ERK pathway and crucial for motoneuron survival. Further analyses in SMA mice revealed that both proteins were down-regulated in motoneurons and the spinal cord with B-Raf being reduced at presymptomatic stages. Primary fibroblasts and iPSC-derived motoneurons from SMA patients both showed the same pattern of down-regulation. This mechanism is conserved across species since a Caenorhabditis elegans SMA model showed less expression of the B-Raf homolog lin-45 Accordingly, motoneuron survival was rescued by a cell autonomous lin-45 expression in a C. elegans SMA model resulting in improved motor functions. This rescue was effective even after the onset of motoneuron degeneration and mediated by the MEK/ERK pathway.
Collapse
|
137
|
Liu H, Rauch S, Dickinson BC. Programmable technologies to manipulate gene expression at the RNA level. Curr Opin Chem Biol 2021; 64:27-37. [PMID: 33930627 DOI: 10.1016/j.cbpa.2021.03.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 03/15/2021] [Accepted: 03/17/2021] [Indexed: 12/26/2022]
Abstract
RNA has long been an enticing therapeutic target, but is now garnering increased attention, largely driven by clinical successes of RNA interference-based drugs. While gene knockdown by well-established RNA interference- and other oligonucleotide-based strategies continues to advance in the clinic, the repertoire of targetable effectors capable of altering gene expression at the RNA level is also rapidly expanding. In this review, we focus on several recently developed bifunctional molecular technologies that both interact with and act upon a target RNA. These new approaches for programmable RNA knockdown, editing, splicing, translation, and chemical modifications stand to provide impactful new modalities for therapeutic development in the coming decades.
Collapse
Affiliation(s)
- Huachun Liu
- Department of Chemistry, The University of Chicago, Chicago, IL, USA
| | - Simone Rauch
- Department of Chemistry, The University of Chicago, Chicago, IL, USA
| | - Bryan C Dickinson
- Department of Chemistry, The University of Chicago, Chicago, IL, USA.
| |
Collapse
|
138
|
Thavarajah W, Hertz LM, Bushhouse DZ, Archuleta CM, Lucks JB. RNA Engineering for Public Health: Innovations in RNA-Based Diagnostics and Therapeutics. Annu Rev Chem Biomol Eng 2021; 12:263-286. [PMID: 33900805 PMCID: PMC9714562 DOI: 10.1146/annurev-chembioeng-101420-014055] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
RNA is essential for cellular function: From sensing intra- and extracellular signals to controlling gene expression, RNA mediates a diverse and expansive list of molecular processes. A long-standing goal of synthetic biology has been to develop RNA engineering principles that can be used to harness and reprogram these RNA-mediated processes to engineer biological systems to solve pressing global challenges. Recent advances in the field of RNA engineering are bringing this to fruition, enabling the creation of RNA-based tools to combat some of the most urgent public health crises. Specifically, new diagnostics using engineered RNAs are able to detect both pathogens and chemicals while generating an easily detectable fluorescent signal as an indicator. New classes of vaccines and therapeutics are also using engineered RNAs to target a wide range of genetic and pathogenic diseases. Here, we discuss the recent breakthroughs in RNA engineering enabling these innovations and examine how advances in RNA design promise to accelerate the impact of engineered RNA systems.
Collapse
Affiliation(s)
- Walter Thavarajah
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, USA; .,Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, USA.,Center for Water Research, Northwestern University, Evanston, Illinois 60208, USA
| | - Laura M Hertz
- Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, USA.,Interdisciplinary Biological Sciences Graduate Program, Northwestern University, Evanston, Illinois 60208, USA
| | - David Z Bushhouse
- Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, USA.,Interdisciplinary Biological Sciences Graduate Program, Northwestern University, Evanston, Illinois 60208, USA
| | - Chloé M Archuleta
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, USA; .,Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, USA.,Center for Water Research, Northwestern University, Evanston, Illinois 60208, USA
| | - Julius B Lucks
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, USA; .,Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, USA.,Center for Water Research, Northwestern University, Evanston, Illinois 60208, USA.,Center for Engineering Sustainability and Resilience, Northwestern University, Evanston, Illinois 60208, USA
| |
Collapse
|
139
|
RNA-Targeting Splicing Modifiers: Drug Development and Screening Assays. Molecules 2021; 26:molecules26082263. [PMID: 33919699 PMCID: PMC8070285 DOI: 10.3390/molecules26082263] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/05/2021] [Accepted: 04/09/2021] [Indexed: 02/06/2023] Open
Abstract
RNA splicing is an essential step in producing mature messenger RNA (mRNA) and other RNA species. Harnessing RNA splicing modifiers as a new pharmacological modality is promising for the treatment of diseases caused by aberrant splicing. This drug modality can be used for infectious diseases by disrupting the splicing of essential pathogenic genes. Several antisense oligonucleotide splicing modifiers were approved by the U.S. Food and Drug Administration (FDA) for the treatment of spinal muscular atrophy (SMA) and Duchenne muscular dystrophy (DMD). Recently, a small-molecule splicing modifier, risdiplam, was also approved for the treatment of SMA, highlighting small molecules as important warheads in the arsenal for regulating RNA splicing. The cellular targets of these approved drugs are all mRNA precursors (pre-mRNAs) in human cells. The development of novel RNA-targeting splicing modifiers can not only expand the scope of drug targets to include many previously considered “undruggable” genes but also enrich the chemical-genetic toolbox for basic biomedical research. In this review, we summarized known splicing modifiers, screening methods for novel splicing modifiers, and the chemical space occupied by the small-molecule splicing modifiers.
Collapse
|
140
|
Servais L, Baranello G, Scoto M, Daron A, Oskoui M. Therapeutic interventions for spinal muscular atrophy: preclinical and early clinical development opportunities. Expert Opin Investig Drugs 2021; 30:519-527. [PMID: 33749510 DOI: 10.1080/13543784.2021.1904889] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Spinal muscular atrophy (SMA) is an autosomal recessive neurodegenerative neuromuscular disease that presents primarily in children. Abnormalities in the SMN1 gene cause reduced levels of the survival motor neuron (SMN) protein, while a second gene, SMN2, produces low levels of functional SMN protein. Currently available drugs do not cure, so a significant unmet need remains for patients treated after symptom onset. AREAS COVERED Drugs available in the clinic, investigational agents and key questions for researchers are discussed. A pragmatic search of the literature was performed to identify therapies in late stages of preclinical, or in early stages of clinical development. This list was compared to the CureSMA pipeline for completeness. Drugs approved for indications that have potential for impact for SMA were included. These drugs target the primary deficiency in SMN protein or other pathways involved in SMA pathophysiology that are not SMN-protein dependent. EXPERT OPINION Children treated after the onset of symptoms continue to have significant disability. Given the heterogeneity of the population phenotype evidenced by variable response to initial therapy, age at treatment onset and the need to demonstrate added value beyond approved therapeutics, the clinical development of new drugs will be challenging.
Collapse
Affiliation(s)
- Laurent Servais
- MDUK Neuromuscular Center, Department of Paediatrics, University of Oxford, Oxford, UK.,Neuromuscular Reference Center Disease, Department of Paediatrics, Liege, Belgium and University of Liege, Liège, Belgium
| | - Giovanni Baranello
- Dubowitz Neuromuscular Centre, NIHR Great Ormond Street Hospital Biomedical Research Centre, Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Mariacristina Scoto
- Dubowitz Neuromuscular Centre, NIHR Great Ormond Street Hospital Biomedical Research Centre, Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Aurore Daron
- Neuromuscular Reference Center Disease, Department of Paediatrics, Liege, Belgium and University of Liege, Liège, Belgium
| | - Maryam Oskoui
- Departments of Pediatrics and Neurology & Neurosurgery, McGill University, Montreal, QC, Canada
| |
Collapse
|
141
|
Quancard J, Bach A, Cox B, Craft R, Finsinger D, Guéret SM, Hartung IV, Laufer S, Messinger J, Sbardella G, Koolman HF. The European Federation for Medicinal Chemistry and Chemical Biology (EFMC) Best Practice Initiative: Phenotypic Drug Discovery. ChemMedChem 2021; 16:1736-1739. [PMID: 33825353 DOI: 10.1002/cmdc.202100041] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Indexed: 12/16/2022]
Abstract
Phenotypic drug discovery has a long track record of delivering innovative drugs and has received renewed attention in the last few years. The promise of this approach, however, comes with several challenges that should be addressed to avoid wasting time and resources on drugs with undesired modes of action or, worse, false-positive hits. In this set of best practices, we go over the essential steps of phenotypic drug discovery and provide guidance on how to increase the chance of success in identifying validated and relevant chemical starting points for optimization: selecting the right assay, selecting the right compound screening library and developing appropriate hit validation assays. Then, we highlight the importance of initiating studies to determine the mode of action of the identified hits early and present the current state of the art.
Collapse
Affiliation(s)
- Jean Quancard
- Global Discovery Chemistry, Novartis Institute For Biomedical Research, Novartis Pharma AG, Novartis Campus, 4056, Basel, Switzerland
| | - Anders Bach
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100, Copenhagen, Denmark
| | - Brian Cox
- Pharmaceutical Chemistry, School of Life Sciences, University of Sussex, Falmer, East Sussex, BN1 9RH, UK
| | - Russell Craft
- Medicinal Chemistry, Symeres, Kadijk 3, 9747AT, Groningen (The, Netherlands
| | - Dirk Finsinger
- Medicinal Chemistry, Global R&D, Merck Healthcare KGaA, Frankfurter Straße 250, 64293, Darmstadt, Germany
| | - Stéphanie M Guéret
- Medicinal Chemistry, Research and Early Development Cardiovascular, Renal and Metabolism BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Ingo V Hartung
- Medicinal Chemistry, Global R&D, Merck Healthcare KGaA, Frankfurter Straße 250, 64293, Darmstadt, Germany
| | - Stefan Laufer
- Pharmaceutical&Medicinal Chemistry, Institute of Pharmacy & Biochemistry, Tübingen Center for Academic Drug Discovery, Auf der Morgenstelle 8, 72070 Tuebingen, Germany
| | - Josef Messinger
- Medicine Design, Orionpharma, Orionintie 1, 02101, Espoo, Finland
| | - Gianluca Sbardella
- Department of Pharmacy, Epigenetic Med Chem Lab., University of Salerno, Via Giovanni Paolo II 132, 84084, Fisciano-SA, Italy
| | - Hannes F Koolman
- Medicinal Chemistry, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Straße 65, 88397, Biberach an der Riss, Germany
| |
Collapse
|
142
|
Axford J, Sung MJ, Manchester J, Chin D, Jain M, Shin Y, Dix I, Hamann LG, Cheung AK, Sivasankaran R, Briner K, Dales NA, Hurley B. Use of Intramolecular 1,5-Sulfur-Oxygen and 1,5-Sulfur-Halogen Interactions in the Design of N-Methyl-5-aryl- N-(2,2,6,6-tetramethylpiperidin-4-yl)-1,3,4-thiadiazol-2-amine SMN2 Splicing Modulators. J Med Chem 2021; 64:4744-4761. [PMID: 33822618 DOI: 10.1021/acs.jmedchem.0c02173] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Spinal muscular atrophy (SMA) is a debilitating neuromuscular disease caused by low levels of functional survival motor neuron protein (SMN) resulting from a deletion or loss of function mutation of the survival motor neuron 1 (SMN1) gene. Branaplam (1) elevates levels of full-length SMN protein in vivo by modulating the splicing of the related gene SMN2 to enhance the exon-7 inclusion and increase levels of the SMN. The intramolecular hydrogen bond present in the 2-hydroxyphenyl pyridazine core of 1 enforces a planar conformation of the biaryl system and is critical for the compound activity. Scaffold morphing revealed that the pyridazine could be replaced by a 1,3,4-thiadiazole, which provided additional opportunities for a conformational constraint of the biaryl through intramolecular 1,5-sulfur-oxygen (S···O) or 1,5-sulfur-halogen (S···X) noncovalent interactions. Compound 26, which incorporates a 2-fluorophenyl thiadiazole motif, demonstrated a greater than 50% increase in production of full-length SMN protein in a mouse model of SMA.
Collapse
Affiliation(s)
- Jake Axford
- Novartis Institutes for BioMedical Research, 181 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Moo Je Sung
- Novartis Institutes for BioMedical Research, 181 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - John Manchester
- Novartis Institutes for BioMedical Research, 181 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Donovan Chin
- Novartis Institutes for BioMedical Research, 181 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Monish Jain
- Novartis Institutes for BioMedical Research, 181 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Youngah Shin
- Novartis Institutes for BioMedical Research, 181 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Ina Dix
- Novartis Institutes for BioMedical Research, 181 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Lawrence G Hamann
- Novartis Institutes for BioMedical Research, 181 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Atwood K Cheung
- Novartis Institutes for BioMedical Research, 181 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Rajeev Sivasankaran
- Novartis Institutes for BioMedical Research, 181 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Karin Briner
- Novartis Institutes for BioMedical Research, 181 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Natalie A Dales
- Novartis Institutes for BioMedical Research, 181 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Brian Hurley
- Novartis Institutes for BioMedical Research, 181 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
143
|
Zafferani M, Hargrove AE. Small molecule targeting of biologically relevant RNA tertiary and quaternary structures. Cell Chem Biol 2021; 28:594-609. [PMID: 33823146 DOI: 10.1016/j.chembiol.2021.03.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 02/03/2021] [Accepted: 03/10/2021] [Indexed: 02/06/2023]
Abstract
Initial successes in developing small molecule ligands for non-coding RNAs have underscored their potential as therapeutic targets. More recently, these successes have been aided by advances in biophysical and structural techniques for identification and characterization of more complex RNA structures; these higher-level folds present protein-like binding pockets that offer opportunities to design small molecules that could achieve a degree of selectivity often hard to obtain at the primary and secondary structure level. More specifically, identification and small molecule targeting of RNA tertiary and quaternary structures have allowed researchers to probe several human diseases and have resulted in promising clinical candidates. In this review we highlight a selection of diverse and exciting successes and the experimental approaches that led to their discovery. These studies include examples of recent developments in RNA-centric assays and ligands that provide insight into the features responsible for the affinity and biological outcome of RNA-targeted chemical probes. This report highlights the potential and emerging opportunities to selectively target RNA tertiary and quaternary structures as a route to better understand and, ultimately, treat many diseases.
Collapse
|
144
|
Dahlin JL, Auld DS, Rothenaigner I, Haney S, Sexton JZ, Nissink JWM, Walsh J, Lee JA, Strelow JM, Willard FS, Ferrins L, Baell JB, Walters MA, Hua BK, Hadian K, Wagner BK. Nuisance compounds in cellular assays. Cell Chem Biol 2021; 28:356-370. [PMID: 33592188 PMCID: PMC7979533 DOI: 10.1016/j.chembiol.2021.01.021] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 01/02/2021] [Accepted: 01/27/2021] [Indexed: 12/17/2022]
Abstract
Compounds that exhibit assay interference or undesirable mechanisms of bioactivity ("nuisance compounds") are routinely encountered in cellular assays, including phenotypic and high-content screening assays. Much is known regarding compound-dependent assay interferences in cell-free assays. However, despite the essential role of cellular assays in chemical biology and drug discovery, there is considerably less known about nuisance compounds in more complex cell-based assays. In our view, a major obstacle to realizing the full potential of chemical biology will not just be difficult-to-drug targets or even the sheer number of targets, but rather nuisance compounds, due to their ability to waste significant resources and erode scientific trust. In this review, we summarize our collective academic, government, and industry experiences regarding cellular nuisance compounds. We describe assay design strategies to mitigate the impact of nuisance compounds and suggest best practices to efficiently address these compounds in complex biological settings.
Collapse
Affiliation(s)
- Jayme L Dahlin
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850, USA.
| | - Douglas S Auld
- Novartis Institutes for Biomedical Research, Cambridge, MA 02139, USA
| | - Ina Rothenaigner
- Assay Development and Screening Platform, Helmholtz Zentrum Muenchen, 85764 Neuherberg, Germany
| | - Steve Haney
- Indiana Biosciences Research Institute, Indianapolis, IN 46202, USA
| | - Jonathan Z Sexton
- Department of Internal Medicine, Gastroenterology, Michigan Medicine at the University of Michigan, Ann Arbor, MI 48109, USA
| | | | - Jarrod Walsh
- Hit Discovery, Discovery Sciences, R&D, AstraZeneca, Alderley Park SK10 4TG, UK
| | | | | | | | - Lori Ferrins
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA 02115, USA
| | - Jonathan B Baell
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia; School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, People's Republic of China
| | - Michael A Walters
- Institute for Therapeutics Discovery and Development, University of Minnesota, Minneapolis, MN 55414, USA
| | - Bruce K Hua
- Chemical Biology and Therapeutics Science Program, Broad Institute, Cambridge, MA 02140, USA; Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02140, USA
| | - Kamyar Hadian
- Assay Development and Screening Platform, Helmholtz Zentrum Muenchen, 85764 Neuherberg, Germany
| | - Bridget K Wagner
- Chemical Biology and Therapeutics Science Program, Broad Institute, Cambridge, MA 02140, USA
| |
Collapse
|
145
|
Wiesenfeldt MP, Moock D, Paul D, Glorius F. Enantioselective hydrogenation of annulated arenes: controlled formation of multiple stereocenters in adjacent rings. Chem Sci 2021; 12:5611-5615. [PMID: 34163775 PMCID: PMC8179591 DOI: 10.1039/d0sc07099h] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 03/03/2021] [Indexed: 11/21/2022] Open
Abstract
We report a method for the enantioselective hydrogenation of annulated arenes using 4H-pyrido[1,2-a]pyrimidinones as substrates. The method selectively generates multiple stereocenters in adjacent rings leading to architecturally complex motifs, which resemble bioactive molecules. The mechanistic study of the stereochemical outcome revealed that the catalyst is able to overcome substrate stereocontrol providing all-cis-substituted products predominantly. In a sequential protocol, a matching interaction between catalyst and substrate stereocontrol is achieved that facilitates diastereo- and enantioselective access to trans-products.
Collapse
Affiliation(s)
- Mario P Wiesenfeldt
- Westfälische Wilhelms-Universität Münster, Organisch-Chemisches Institut Corrensstraße 40 48149 Münster Germany
| | - Daniel Moock
- Westfälische Wilhelms-Universität Münster, Organisch-Chemisches Institut Corrensstraße 40 48149 Münster Germany
| | - Daniel Paul
- Westfälische Wilhelms-Universität Münster, Organisch-Chemisches Institut Corrensstraße 40 48149 Münster Germany
| | - Frank Glorius
- Westfälische Wilhelms-Universität Münster, Organisch-Chemisches Institut Corrensstraße 40 48149 Münster Germany
| |
Collapse
|
146
|
Natua S, Ashok C, Shukla S. Hypoxia-induced alternative splicing in human diseases: the pledge, the turn, and the prestige. Cell Mol Life Sci 2021; 78:2729-2747. [PMID: 33386889 PMCID: PMC11072330 DOI: 10.1007/s00018-020-03727-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 11/24/2020] [Accepted: 11/28/2020] [Indexed: 12/30/2022]
Abstract
Maintenance of oxygen homeostasis is an indispensable criterion for the existence of multicellular life-forms. Disruption of this homeostasis due to inadequate oxygenation of the respiring tissues leads to pathological hypoxia, which acts as a significant stressor in several pathophysiological conditions including cancer, cardiovascular defects, bacterial infections, and neurological disorders. Consequently, the hypoxic tissues develop necessary adaptations both at the tissue and cellular level. The cellular adaptations involve a dramatic alteration in gene expression, post-transcriptional and post-translational modification of gene products, bioenergetics, and metabolism. Among the key responses to oxygen-deprivation is the skewing of cellular alternative splicing program. Herein, we discuss the current concepts of oxygen tension-dependent alternative splicing relevant to various pathophysiological conditions. Following a brief description of cellular response to hypoxia and the pre-mRNA splicing mechanism, we outline the impressive number of hypoxia-elicited alternative splicing events associated with maladies like cancer, cardiovascular diseases, and neurological disorders. Furthermore, we discuss how manipulation of hypoxia-induced alternative splicing may pose promising strategies for novel translational diagnosis and therapeutic interventions.
Collapse
Affiliation(s)
- Subhashis Natua
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, 462066, Madhya Pradesh, India
| | - Cheemala Ashok
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, 462066, Madhya Pradesh, India
| | - Sanjeev Shukla
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, 462066, Madhya Pradesh, India.
| |
Collapse
|
147
|
Sun J, Roy S. Gene-based therapies for neurodegenerative diseases. Nat Neurosci 2021; 24:297-311. [PMID: 33526943 PMCID: PMC8394447 DOI: 10.1038/s41593-020-00778-1] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Accepted: 12/15/2020] [Indexed: 02/06/2023]
Abstract
Gene therapy is making a comeback. With its twin promise of targeting disease etiology and 'long-term correction', gene-based therapies (defined here as all forms of genome manipulation) are particularly appealing for neurodegenerative diseases, for which conventional pharmacologic approaches have been largely disappointing. The recent success of a viral-vector-based gene therapy in spinal muscular atrophy-promoting survival and motor function with a single intravenous injection-offers a paradigm for such therapeutic intervention and a platform to build on. Although challenges remain, the newfound optimism largely stems from advances in the development of viral vectors that can diffusely deliver genes throughout the CNS, as well as genome-engineering tools that can manipulate disease pathways in ways that were previously impossible. Surely spinal muscular atrophy cannot be the only neurodegenerative disease amenable to gene therapy, and one can imagine a future in which the toolkit of a clinician will include gene-based therapeutics. The goal of this Review is to highlight advances in the development and application of gene-based therapies for neurodegenerative diseases and offer a prospective look into this emerging arena.
Collapse
Affiliation(s)
- Jichao Sun
- Department of Geriatrics, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, Guangdong, China
| | - Subhojit Roy
- Department of Pathology, University of California, San Diego, La Jolla, CA,Department of Neurosciences, University of California, San Diego, La Jolla, CA,Correspondence:
| |
Collapse
|
148
|
In Search of a Cure: The Development of Therapeutics to Alter the Progression of Spinal Muscular Atrophy. Brain Sci 2021; 11:brainsci11020194. [PMID: 33562482 PMCID: PMC7915832 DOI: 10.3390/brainsci11020194] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/29/2021] [Accepted: 02/01/2021] [Indexed: 12/19/2022] Open
Abstract
Until the recent development of disease-modifying therapeutics, spinal muscular atrophy (SMA) was considered a devastating neuromuscular disease with a poor prognosis for most affected individuals. Symptoms generally present during early childhood and manifest as muscle weakness and progressive paralysis, severely compromising the affected individual’s quality of life, independence, and lifespan. SMA is most commonly caused by the inheritance of homozygously deleted SMN1 alleles with retention of one or more copies of a paralog gene, SMN2, which inversely correlates with disease severity. The recent advent and use of genetically targeted therapies have transformed SMA into a prototype for monogenic disease treatment in the era of genetic medicine. Many SMA-affected individuals receiving these therapies achieve traditionally unobtainable motor milestones and survival rates as medicines drastically alter the natural progression of this disease. This review discusses historical SMA progression and underlying disease mechanisms, highlights advances made in therapeutic research, clinical trials, and FDA-approved medicines, and discusses possible second-generation and complementary medicines as well as optimal temporal intervention windows in order to optimize motor function and improve quality of life for all SMA-affected individuals.
Collapse
|
149
|
Ravi B, Chan-Cortés MH, Sumner CJ. Gene-Targeting Therapeutics for Neurological Disease: Lessons Learned from Spinal Muscular Atrophy. Annu Rev Med 2021; 72:1-14. [PMID: 33502897 DOI: 10.1146/annurev-med-070119-115459] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The last few decades have seen an explosion in identification of genes that cause monogenetic neurological diseases, as well as advances in gene-targeting therapeutics. Neurological conditions that were once considered incurable are now increasingly tractable. At the forefront is the motor neuron disease spinal muscular atrophy (SMA), historically the leading inherited cause of infant mortality. In the last 5 years, three SMA treatments have been approved by the US Food and Drug Administration (FDA): intrathecally delivered splice-switching antisense oligonucleotide (nusinersen), systemically delivered AAV9-based gene replacement therapy (onasemnogene abeparvovec), and an orally bioavailable, small-molecule, splice-switching drug (risdiplam). Despite this remarkable progress, clinical outcomes in patients are variable. Therapeutic optimization will require improved understanding of drug pharmacokinetics and target engagement in neurons, potential toxicities, and long-term effects. We review current progress in SMA therapeutics, clinical trials, shortcomings of current treatments, and implications for the treatment of other neurogenetic diseases.
Collapse
Affiliation(s)
- Bhavya Ravi
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA;
| | | | - Charlotte J Sumner
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA; .,Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland 21202, USA
| |
Collapse
|
150
|
Malandraki-Miller S, Riley PR. Use of artificial intelligence to enhance phenotypic drug discovery. Drug Discov Today 2021; 26:887-901. [PMID: 33484947 DOI: 10.1016/j.drudis.2021.01.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 12/28/2020] [Accepted: 01/15/2021] [Indexed: 01/17/2023]
Abstract
Research and development (R&D) productivity across the pharmaceutical industry has received close scrutiny over the past two decades, especially taking into consideration reports of attrition rates and the colossal cost for drug development. The respective merits of the two main drug discovery approaches, phenotypic and target based, have divided opinion across the research community, because each hold different advantages for identifying novel molecular entities with a successful path to the market. Nevertheless, both have low translatability in the clinic. Artificial intelligence (AI) and adoption of machine learning (ML) tools offer the promise of revolutionising drug development, and overcoming obstacles in the drug discovery pipeline. Here, we assess the potential of target-driven and phenotypic-based approaches and offer a holistic description of the current state of the field, from both a scientific and industry perspective. With the emerging partnerships between AI/ML and pharma still in their relative infancy, we investigate the potential and current limitations with a particular focus on phenotypic drug discovery. Finally, we emphasise the value of public-private partnerships (PPPs) and cross-disciplinary collaborations to foster innovation and facilitate efficient drug discovery programmes.
Collapse
Affiliation(s)
| | - Paul R Riley
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK.
| |
Collapse
|