101
|
Lenz G, Onzi GR, Lenz LS, Buss JH, Santos JAF, Begnini KR. The Origins of Phenotypic Heterogeneity in Cancer. Cancer Res 2021; 82:3-11. [PMID: 34785576 DOI: 10.1158/0008-5472.can-21-1940] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 09/14/2021] [Accepted: 11/10/2021] [Indexed: 11/16/2022]
Abstract
Heterogeneity is a pervasive feature of cancer, and understanding the sources and regulatory mechanisms underlying heterogeneity could provide key insights to help improve the diagnosis and treatment of cancer. In this review, we discuss the origin of heterogeneity in the phenotype of individual cancer cells. Genotype-phenotype (G-P) maps are widely used in evolutionary biology to represent the complex interactions of genes and the environment that lead to phenotypes that impact fitness. Here, we present the rationale of an extended G-P (eG-P) map with a cone structure in cancer. The eG-P cone is formed by cells that are similar at the genome layer but gradually increase variability in the epigenome, transcriptome, proteome, metabolome and signalome layers to produce large variability at the phenome layer. Experimental evidence from single-cell -omics analyses supporting the cancer eG-P cone concept is presented, and the impact of epimutations and the interaction of cancer and tumor microenvironmental eG-P cones are integrated with the current understanding of cancer biology. The eG-P cone concept uncovers potential therapeutic strategies to reduce cancer evolution and improve cancer treatment. More methods to study phenotypes in single cells will be key to better understand cancer cell fitness in tumor biology and therapeutics.
Collapse
|
102
|
Krishna S, Arrojo E Drigo R, Capitanio JS, Ramachandra R, Ellisman M, Hetzer MW. Identification of long-lived proteins in the mitochondria reveals increased stability of the electron transport chain. Dev Cell 2021; 56:2952-2965.e9. [PMID: 34715012 DOI: 10.1016/j.devcel.2021.10.008] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 07/28/2021] [Accepted: 10/08/2021] [Indexed: 11/17/2022]
Abstract
In order to combat molecular damage, most cellular proteins undergo rapid turnover. We have previously identified large nuclear protein assemblies that can persist for years in post-mitotic tissues and are subject to age-related decline. Here, we report that mitochondria can be long lived in the mouse brain and reveal that specific mitochondrial proteins have half-lives longer than the average proteome. These mitochondrial long-lived proteins (mitoLLPs) are core components of the electron transport chain (ETC) and display increased longevity in respiratory supercomplexes. We find that COX7C, a mitoLLP that forms a stable contact site between complexes I and IV, is required for complex IV and supercomplex assembly. Remarkably, even upon depletion of COX7C transcripts, ETC function is maintained for days, effectively uncoupling mitochondrial function from ongoing transcription of its mitoLLPs. Our results suggest that modulating protein longevity within the ETC is critical for mitochondrial proteome maintenance and the robustness of mitochondrial function.
Collapse
Affiliation(s)
- Shefali Krishna
- Molecular and Cell Biology Laboratory (MCBL), Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Rafael Arrojo E Drigo
- Molecular and Cell Biology Laboratory (MCBL), Salk Institute for Biological Studies, La Jolla, CA 92037, USA; National Center for Microscopy and Imaging Research (NCMIR), University of California, San Diego School of Medicine (UCSD), La Jolla, CA 92093, USA
| | - Juliana S Capitanio
- Molecular and Cell Biology Laboratory (MCBL), Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Ranjan Ramachandra
- National Center for Microscopy and Imaging Research (NCMIR), University of California, San Diego School of Medicine (UCSD), La Jolla, CA 92093, USA; Department of Neurosciences, University of California, San Diego School of Medicine (UCSD), La Jolla, CA 92093, USA
| | - Mark Ellisman
- National Center for Microscopy and Imaging Research (NCMIR), University of California, San Diego School of Medicine (UCSD), La Jolla, CA 92093, USA; Department of Neurosciences, University of California, San Diego School of Medicine (UCSD), La Jolla, CA 92093, USA
| | - Martin W Hetzer
- Molecular and Cell Biology Laboratory (MCBL), Salk Institute for Biological Studies, La Jolla, CA 92037, USA.
| |
Collapse
|
103
|
Wessendarp M, Watanabe-Chailland M, Liu S, Stankiewicz T, Ma Y, Kasam RK, Shima K, Chalk C, Carey B, Rosendale LR, Dominique Filippi M, Arumugam P. Role of GM-CSF in regulating metabolism and mitochondrial functions critical to macrophage proliferation. Mitochondrion 2021; 62:85-101. [PMID: 34740864 DOI: 10.1016/j.mito.2021.10.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 10/14/2021] [Accepted: 10/28/2021] [Indexed: 12/14/2022]
Abstract
Granulocyte-macrophage colony-stimulating factor (GM-CSF) exerts pleiotropic effects on macrophages and is required for self-renewal but the mechanisms responsible are unknown. Using mouse models with disrupted GM-CSF signaling, we show GM-CSF is critical for mitochondrial turnover, functions, and integrity. GM-CSF signaling is essential for fatty acid β-oxidation and markedly increased tricarboxylic acid cycle activity, oxidative phosphorylation, and ATP production. GM-CSF also regulated cytosolic pathways including glycolysis, pentose phosphate pathway, and amino acid synthesis. We conclude that GM-CSF regulates macrophages in part through a critical role in maintaining mitochondria, which are necessary for cellular metabolism as well as proliferation and self-renewal.
Collapse
Affiliation(s)
- Matthew Wessendarp
- Translational Pulmonary Science Center, Children's Hospital Medical Center (CCHMC), Cincinnati, OH, USA; Division of Pulmonary Biology, CCHMC, OH, USA
| | | | - Serena Liu
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | | | - Yan Ma
- Translational Pulmonary Science Center, Children's Hospital Medical Center (CCHMC), Cincinnati, OH, USA; Division of Pulmonary Biology, CCHMC, OH, USA
| | | | - Kenjiro Shima
- Translational Pulmonary Science Center, Children's Hospital Medical Center (CCHMC), Cincinnati, OH, USA; Division of Pulmonary Biology, CCHMC, OH, USA
| | - Claudia Chalk
- Translational Pulmonary Science Center, Children's Hospital Medical Center (CCHMC), Cincinnati, OH, USA; Division of Pulmonary Biology, CCHMC, OH, USA
| | - Brenna Carey
- Translational Pulmonary Science Center, Children's Hospital Medical Center (CCHMC), Cincinnati, OH, USA; Division of Pulmonary Biology, CCHMC, OH, USA
| | | | | | - Paritha Arumugam
- Translational Pulmonary Science Center, Children's Hospital Medical Center (CCHMC), Cincinnati, OH, USA; Division of Pulmonary Biology, CCHMC, OH, USA.
| |
Collapse
|
104
|
Kukita T, Hiura H, Gu JY, Zhang JQ, Kyumoto-Nakamura Y, Uehara N, Murata S, Sonoda S, Yamaza T, Takahashi I, Kukita A. Modulation of osteoclastogenesis through adrenomedullin receptors on osteoclast precursors: initiation of differentiation by asymmetric cell division. J Transl Med 2021; 101:1449-1457. [PMID: 34611305 DOI: 10.1038/s41374-021-00633-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 05/26/2021] [Accepted: 06/18/2021] [Indexed: 11/08/2022] Open
Abstract
Adrenomedullin (ADM), a member of the calcitonin family of peptides, is a potent vasodilator and was shown to have the ability to modulate bone metabolism. We have previously found a unique cell surface antigen (Kat1 antigen) expressed in rat osteoclasts, which is involved in the functional regulation of the calcitonin receptor (CTR). Cross-linking of cell surface Kat1 antigen with anti-Kat1 antigen monoclonal antibody (mAbKat1) stimulated osteoclast formation only under conditions suppressed by calcitonin. Here, we found that ADM provoked a significant stimulation in osteoclastogenesis only in the presence of calcitonin; a similar biological effect was seen with mAbKat1 in the bone marrow culture system. This stimulatory effect on osteoclastogenesis mediated by ADM was abolished by the addition of mAbKat1. 125I-labeled rat ADM (125I-ADM)-binding experiments involving micro-autoradiographic studies demonstrated that mononuclear precursors of osteoclasts abundantly expressed ADM receptors, and the specific binding of 125I-ADM was markedly inhibited by the addition of mAbKat1, suggesting a close relationship between the Kat1 antigen and the functional ADM receptors expressed on cells in the osteoclast lineage. ADM receptors were also detected in the osteoclast progenitor cells in the late mitotic phase, in which only one daughter cell of the dividing cell express ADM receptors, suggesting the semiconservative cell division of the osteoclast progenitors in the initiation of osteoclastogenesis. Messenger RNAs for the receptor activity-modifying-protein 1 (RAMP1) and calcitonin receptor-like receptor (CRLR) were expressed in cells in the osteoclast lineage; however, the expression of RAMP2 or RAMP3 was not detected in these cells. It is suggested that the Kat1 antigen is involved in the functional ADM receptor distinct from the general ADM receptor, consisting of CRLR and RAMP2 or RAMP3. Modulation of osteoclastogenesis through functional ADM receptors abundantly expressed on mononuclear osteoclast precursors is supposed to be important in the fine regulation of osteoclast differentiation in a specific osteotrophic hormonal condition with a high level of calcitonin in blood.
Collapse
Affiliation(s)
- Toshio Kukita
- Department of Molecular Cell Biology and Oral Anatomy, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Fukuoka, Fukuoka, 812-8582, Japan.
| | - Hidenobu Hiura
- Department of Molecular Cell Biology and Oral Anatomy, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Fukuoka, Fukuoka, 812-8582, Japan
- Division of Oral Health, Growth, and Development, Department of Orthodontics and Dental Orthopedics, Graduate School of Dental Science, Kyushu University, 3-3-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Jiong-Yan Gu
- Department of Molecular Cell Biology and Oral Anatomy, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Fukuoka, Fukuoka, 812-8582, Japan
| | - Jing-Qi Zhang
- Department of Molecular Cell Biology and Oral Anatomy, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Fukuoka, Fukuoka, 812-8582, Japan
| | - Yukari Kyumoto-Nakamura
- Department of Molecular Cell Biology and Oral Anatomy, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Fukuoka, Fukuoka, 812-8582, Japan
| | - Norihisa Uehara
- Department of Molecular Cell Biology and Oral Anatomy, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Fukuoka, Fukuoka, 812-8582, Japan
| | - Sara Murata
- Department of Molecular Cell Biology and Oral Anatomy, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Fukuoka, Fukuoka, 812-8582, Japan
- Division of Oral Health, Growth, and Development, Department of Orthodontics and Dental Orthopedics, Graduate School of Dental Science, Kyushu University, 3-3-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Soichiro Sonoda
- Department of Molecular Cell Biology and Oral Anatomy, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Fukuoka, Fukuoka, 812-8582, Japan
| | - Takayoshi Yamaza
- Department of Molecular Cell Biology and Oral Anatomy, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Fukuoka, Fukuoka, 812-8582, Japan
| | - Ichiro Takahashi
- Division of Oral Health, Growth, and Development, Department of Orthodontics and Dental Orthopedics, Graduate School of Dental Science, Kyushu University, 3-3-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Akiko Kukita
- Department of Research Center of Arthroplasty, Faculty of Medicine, Saga University, 5-1-1 Nabeshima, Saga, Saga, 849-0937, Japan
| |
Collapse
|
105
|
Samoilova EM, Belopasov VV, Ekusheva EV, Zhang C, Troitskiy AV, Baklaushev VP. Epigenetic Clock and Circadian Rhythms in Stem Cell Aging and Rejuvenation. J Pers Med 2021; 11:1050. [PMID: 34834402 PMCID: PMC8620936 DOI: 10.3390/jpm11111050] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/12/2021] [Accepted: 10/14/2021] [Indexed: 12/12/2022] Open
Abstract
This review summarizes the current understanding of the interaction between circadian rhythms of gene expression and epigenetic clocks characterized by the specific profile of DNA methylation in CpG-islands which mirror the senescence of all somatic cells and stem cells in particular. Basic mechanisms of regulation for circadian genes CLOCK-BMAL1 as well as downstream clock-controlled genes (ССG) are also discussed here. It has been shown that circadian rhythms operate by the finely tuned regulation of transcription and rely on various epigenetic mechanisms including the activation of enhancers/suppressors, acetylation/deacetylation of histones and other proteins as well as DNA methylation. Overall, up to 20% of all genes expressed by the cell are subject to expression oscillations associated with circadian rhythms. Additionally included in the review is a brief list of genes involved in the regulation of circadian rhythms, along with genes important for cell aging, and oncogenesis. Eliminating some of them (for example, Sirt1) accelerates the aging process, while the overexpression of Sirt1, on the contrary, protects against age-related changes. Circadian regulators control a number of genes that activate the cell cycle (Wee1, c-Myc, p20, p21, and Cyclin D1) and regulate histone modification and DNA methylation. Approaches for determining the epigenetic age from methylation profiles across CpG islands in individual cells are described. DNA methylation, which characterizes the function of the epigenetic clock, appears to link together such key biological processes as regeneration and functioning of stem cells, aging and malignant transformation. Finally, the main features of adult stem cell aging in stem cell niches and current possibilities for modulating the epigenetic clock and stem cells rejuvenation as part of antiaging therapy are discussed.
Collapse
Affiliation(s)
- Ekaterina M. Samoilova
- Federal Research and Clinical Center of Specialized Medical Care and Medical Technologies, FMBA of Russia, 115682 Moscow, Russia; (A.V.T.); (V.P.B.)
| | | | - Evgenia V. Ekusheva
- Academy of Postgraduate Education of the Federal Scientific and Clinical Center for Specialized Types of Medical Care and Medical Technologies, FMBA of Russia, 125371 Moscow, Russia;
| | - Chao Zhang
- Tianjin’s Clinical Research Center for Cancer, Tianjin 300060, China;
| | - Alexander V. Troitskiy
- Federal Research and Clinical Center of Specialized Medical Care and Medical Technologies, FMBA of Russia, 115682 Moscow, Russia; (A.V.T.); (V.P.B.)
| | - Vladimir P. Baklaushev
- Federal Research and Clinical Center of Specialized Medical Care and Medical Technologies, FMBA of Russia, 115682 Moscow, Russia; (A.V.T.); (V.P.B.)
| |
Collapse
|
106
|
Li Y, Li W, Hoffman AR, Cui J, Hu JF. The Nucleus/Mitochondria-Shuttling LncRNAs Function as New Epigenetic Regulators of Mitophagy in Cancer. Front Cell Dev Biol 2021; 9:699621. [PMID: 34568319 PMCID: PMC8455849 DOI: 10.3389/fcell.2021.699621] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 08/20/2021] [Indexed: 12/18/2022] Open
Abstract
Mitophagy is a specialized autophagic pathway responsible for the selective removal of damaged or dysfunctional mitochondria by targeting them to the autophagosome in order to maintain mitochondria quality. The role of mitophagy in tumorigenesis has been conflicting, with the process both supporting tumor cell survival and promoting cell death. Cancer cells may utilize the mitophagy pathway to augment their metabolic requirements and resistance to cell death, thereby leading to increased cell proliferation and invasiveness. This review highlights major regulatory pathways of mitophagy involved in cancer. In particular, we summarize recent progress regarding how nuclear-encoded long non-coding RNAs (lncRNAs) function as novel epigenetic players in the mitochondria of cancer cells, affecting the malignant behavior of tumors by regulating mitophagy. Finally, we discuss the potential application of regulating mitophagy as a new target for cancer therapy.
Collapse
Affiliation(s)
- Yan Li
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Cancer Center, First Hospital of Jilin University, Changchun, China.,Stanford University Medical School, VA Palo Alto Health Care System, Palo Alto, CA, United States
| | - Wei Li
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Cancer Center, First Hospital of Jilin University, Changchun, China
| | - Andrew R Hoffman
- Stanford University Medical School, VA Palo Alto Health Care System, Palo Alto, CA, United States
| | - Jiuwei Cui
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Cancer Center, First Hospital of Jilin University, Changchun, China
| | - Ji-Fan Hu
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Cancer Center, First Hospital of Jilin University, Changchun, China.,Stanford University Medical School, VA Palo Alto Health Care System, Palo Alto, CA, United States
| |
Collapse
|
107
|
In situ observation of mitochondrial biogenesis as the early event of apoptosis. iScience 2021; 24:103038. [PMID: 34553131 PMCID: PMC8441175 DOI: 10.1016/j.isci.2021.103038] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 07/28/2021] [Accepted: 08/22/2021] [Indexed: 12/25/2022] Open
Abstract
Mitochondrial biogenesis is a cell response to external stimuli which is generally believed to suppress apoptosis. However, during the process of apoptosis, whether mitochondrial biogenesis occurs in the early stage of the apoptotic cells remains unclear. To address this question, we constructed the COX8-EGFP-ACTIN-mCherry HeLa cells with recombinant fluorescent proteins respectively tagged on the nucleus and mitochondria and monitored the mitochondrial changes in the living cells exposed to gamma-ray radiation. Besides in situ detection of mitochondrial fluorescence changes, we also examined the cell viability, nuclear DNA damage, reactive oxygen species (ROS), mitochondrial superoxide, citrate synthase activity, ATP, cytoplasmic and mitochondrial calcium, mitochondrial mass, mitochondrial morphology, and protein expression related to mitochondrial biogenesis, as well as the apoptosis biomarkers. As a result, we confirmed that significant mitochondrial biogenesis took place preceding the radiation-induced apoptosis, and it was closely correlated with the apoptotic cells at late stage. The involved mechanism was also discussed. Dual fluorescence approach was used for in situ observation of living cell processes Radiation-induced effects of mitochondrial biogenesis and apoptosis were observed Relationship between mitochondrial biogenesis and apoptosis was revisited Assessing early mitochondrial biogenesis is critical for predicting later fate of cells
Collapse
|
108
|
Lin W, Chen S, Wang Y, Wang M, Lee WYW, Jiang X, Li G. Dynamic regulation of mitochondrial-endoplasmic reticulum crosstalk during stem cell homeostasis and aging. Cell Death Dis 2021; 12:794. [PMID: 34400615 PMCID: PMC8368094 DOI: 10.1038/s41419-021-03912-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 05/11/2021] [Accepted: 05/13/2021] [Indexed: 02/07/2023]
Abstract
Cellular therapy exerts profound therapeutic potential for curing a broad spectrum of diseases. Adult stem cells reside within a specified dynamic niche in vivo, which is essential for continuous tissue homeostatic maintenance through balancing self-renewal with lineage selection. Meanwhile, adult stem cells may be multipotent or unipotent, and are present in both quiescent and actively dividing states in vivo of the mammalians, which may switch to each other state in response to biophysical cues through mitochondria-mediated mechanisms, such as alterations in mitochondrial respiration and metabolism. In general, stem cells facilitate tissue repair after tissue-specific homing through various mechanisms, including immunomodulation of local microenvironment, differentiation into functional cells, cell "empowerment" via paracrine secretion, immunoregulation, and intercellular mitochondrial transfer. Interestingly, cell-source-specific features have been reported between different tissue-derived adult stem cells with distinct functional properties due to the different microenvironments in vivo, as well as differential functional properties in different tissue-derived stem cell-derived extracellular vehicles, mitochondrial metabolism, and mitochondrial transfer capacity. Here, we summarized the current understanding on roles of mitochondrial dynamics during stem cell homeostasis and aging, and lineage-specific differentiation. Also, we proposed potential unique mitochondrial molecular signature features between different source-derived stem cells and potential associations between stem cell aging and mitochondria-endoplasmic reticulum (ER) communication, as well as potential novel strategies for anti-aging intervention and healthy aging.
Collapse
Affiliation(s)
- Weiping Lin
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong SAR, China.
- Stem Cells and Regenerative Medicine Laboratory, Department of Orthopaedics and Traumatology, Li Ka Shing Institute of Health Sciences, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, China.
| | - Shuxun Chen
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR, China
| | - Yan Wang
- Stem Cells and Regenerative Medicine Laboratory, Department of Orthopaedics and Traumatology, Li Ka Shing Institute of Health Sciences, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Ming Wang
- Stem Cells and Regenerative Medicine Laboratory, Department of Orthopaedics and Traumatology, Li Ka Shing Institute of Health Sciences, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Wayne Yuk-Wai Lee
- Stem Cells and Regenerative Medicine Laboratory, Department of Orthopaedics and Traumatology, Li Ka Shing Institute of Health Sciences, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, China
- SH Ho Scoliosis Research Laboratory, Joint Scoliosis Research Center of the Chinese University of Hong Kong and Nanjing University, Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, China
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| | - Xiaohua Jiang
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
- Faculty of Medicine, MOE Key Laboratory for Regenerative Medicine, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Gang Li
- Stem Cells and Regenerative Medicine Laboratory, Department of Orthopaedics and Traumatology, Li Ka Shing Institute of Health Sciences, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, China.
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China.
- Faculty of Medicine, MOE Key Laboratory for Regenerative Medicine, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
109
|
Jayashankar V, Selwan E, Hancock SE, Verlande A, Goodson MO, Eckenstein KH, Milinkeviciute G, Hoover BM, Chen B, Fleischman AG, Cramer KS, Hanessian S, Masri S, Turner N, Edinger AL. Drug-like sphingolipid SH-BC-893 opposes ceramide-induced mitochondrial fission and corrects diet-induced obesity. EMBO Mol Med 2021; 13:e13086. [PMID: 34231322 PMCID: PMC8350895 DOI: 10.15252/emmm.202013086] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 06/02/2021] [Accepted: 06/09/2021] [Indexed: 02/06/2023] Open
Abstract
Ceramide-induced mitochondrial fission drives high-fat diet (HFD)-induced obesity. However, molecules targeting mitochondrial dynamics have shown limited benefits in murine obesity models. Here, we reveal that these compounds are either unable to block ceramide-induced mitochondrial fission or require extended incubation periods to be effective. In contrast, targeting endolysosomal trafficking events important for mitochondrial fission rapidly and robustly prevented ceramide-induced disruptions in mitochondrial form and function. By simultaneously inhibiting ARF6- and PIKfyve-dependent trafficking events, the synthetic sphingolipid SH-BC-893 blocked palmitate- and ceramide-induced mitochondrial fission, preserved mitochondrial function, and prevented ER stress in vitro. Similar benefits were observed in the tissues of HFD-fed mice. Within 4 h of oral administration, SH-BC-893 normalized mitochondrial morphology in the livers and brains of HFD-fed mice, improved mitochondrial function in white adipose tissue, and corrected aberrant plasma leptin and adiponectin levels. As an interventional agent, SH-BC-893 restored normal body weight, glucose disposal, and hepatic lipid levels in mice consuming a HFD. In sum, the sphingolipid analog SH-BC-893 robustly and acutely blocks ceramide-induced mitochondrial dysfunction, correcting diet-induced obesity and its metabolic sequelae.
Collapse
Affiliation(s)
- Vaishali Jayashankar
- Department of Developmental and Cell BiologyUniversity of California IrvineIrvineCAUSA
| | - Elizabeth Selwan
- Department of Developmental and Cell BiologyUniversity of California IrvineIrvineCAUSA
| | - Sarah E Hancock
- School of Medical SciencesUniversity of New South WalesSydneyNSWAustralia
| | - Amandine Verlande
- Department of Biological ChemistryUniversity of California IrvineIrvineCAUSA
| | - Maggie O Goodson
- Department of Biological ChemistryUniversity of California IrvineIrvineCAUSA
| | - Kazumi H Eckenstein
- Department of Developmental and Cell BiologyUniversity of California IrvineIrvineCAUSA
| | | | - Brianna M Hoover
- Division of Hematology/OncologyDepartment of MedicineUniversity of CaliforniaIrvineCAUSA
| | - Bin Chen
- Department of ChemistryUniversité de MontréalMontréalQCCanada
| | - Angela G Fleischman
- Division of Hematology/OncologyDepartment of MedicineUniversity of CaliforniaIrvineCAUSA
| | - Karina S Cramer
- Department of Neurobiology and BehaviorUniversity of California IrvineIrvineCAUSA
| | | | - Selma Masri
- Department of Biological ChemistryUniversity of California IrvineIrvineCAUSA
| | - Nigel Turner
- School of Medical SciencesUniversity of New South WalesSydneyNSWAustralia
| | - Aimee L Edinger
- Department of Developmental and Cell BiologyUniversity of California IrvineIrvineCAUSA
| |
Collapse
|
110
|
Basu H, Pekkurnaz G, Falk J, Wei W, Chin M, Steen J, Schwarz TL. FHL2 anchors mitochondria to actin and adapts mitochondrial dynamics to glucose supply. J Cell Biol 2021; 220:212527. [PMID: 34342639 PMCID: PMC8340551 DOI: 10.1083/jcb.201912077] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 05/05/2021] [Accepted: 07/08/2021] [Indexed: 01/24/2023] Open
Abstract
Mitochondrial movement and distribution are fundamental to their function. Here we report a mechanism that regulates mitochondrial movement by anchoring mitochondria to the F-actin cytoskeleton. This mechanism is activated by an increase in glucose influx and the consequent O-GlcNAcylation of TRAK (Milton), a component of the mitochondrial motor-adaptor complex. The protein four and a half LIM domains protein 2 (FHL2) serves as the anchor. FHL2 associates with O-GlcNAcylated TRAK and is both necessary and sufficient to drive the accumulation of F-actin around mitochondria and to arrest mitochondrial movement by anchoring to F-actin. Disruption of F-actin restores mitochondrial movement that had been arrested by either TRAK O-GlcNAcylation or forced direction of FHL2 to mitochondria. This pathway for mitochondrial immobilization is present in both neurons and non-neuronal cells and can thereby adapt mitochondrial dynamics to changes in glucose availability.
Collapse
Affiliation(s)
- Himanish Basu
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA.,Division of Medical Sciences, Harvard Medical School, Boston, MA.,Department of Neurobiology, Harvard Medical School, Boston, MA
| | - Gulcin Pekkurnaz
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA.,Department of Neurobiology, Harvard Medical School, Boston, MA
| | - Jill Falk
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA.,Department of Neurobiology, Harvard Medical School, Boston, MA
| | - Wei Wei
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA
| | - Morven Chin
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA.,Division of Medical Sciences, Harvard Medical School, Boston, MA.,Department of Neurobiology, Harvard Medical School, Boston, MA
| | - Judith Steen
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA
| | - Thomas L Schwarz
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA.,Department of Neurobiology, Harvard Medical School, Boston, MA
| |
Collapse
|
111
|
Nair S, Rocha‐Ferreira E, Fleiss B, Nijboer CH, Gressens P, Mallard C, Hagberg H. Neuroprotection offered by mesenchymal stem cells in perinatal brain injury: Role of mitochondria, inflammation, and reactive oxygen species. J Neurochem 2021; 158:59-73. [PMID: 33314066 PMCID: PMC8359360 DOI: 10.1111/jnc.15267] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 12/03/2020] [Accepted: 12/03/2020] [Indexed: 12/11/2022]
Abstract
Preclinical studies have shown that mesenchymal stem cells have a positive effect in perinatal brain injury models. The mechanisms that cause these neurotherapeutic effects are not entirely intelligible. Mitochondrial damage, inflammation, and reactive oxygen species are considered to be critically involved in the development of injury. Mesenchymal stem cells have immunomodulatory action and exert mitoprotective effects which attenuate production of reactive oxygen species and promote restoration of tissue function and metabolism after perinatal insults. This review summarizes the present state, the underlying causes, challenges and possibilities for effective clinical translation of mesenchymal stem cell therapy.
Collapse
Affiliation(s)
- Syam Nair
- Centre of Perinatal Medicine and Health, Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
- Institute of Neuroscience and PhysiologySahlgrenska Academy, University of GothenburgGothenburgSweden
- Institute of Clinical SciencesSahlgrenska Academy, University of GothenburgGothenburgSweden
| | - Eridan Rocha‐Ferreira
- Centre of Perinatal Medicine and Health, Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
- Institute of Neuroscience and PhysiologySahlgrenska Academy, University of GothenburgGothenburgSweden
- Institute of Clinical SciencesSahlgrenska Academy, University of GothenburgGothenburgSweden
| | - Bobbi Fleiss
- School of Health and Biomedical SciencesRMIT UniversityBundooraVictoriaAustralia
- Université de Paris, NeuroDiderotParisFrance
| | - Cora H Nijboer
- Department for Developmental Origins of DiseaseUniversity Medical Center Utrecht Brain Center and Wilhelmina Children’s Hospital, Utrecht UniversityUtrechtNetherlands
| | | | - Carina Mallard
- Centre of Perinatal Medicine and Health, Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
- Institute of Neuroscience and PhysiologySahlgrenska Academy, University of GothenburgGothenburgSweden
| | - Henrik Hagberg
- Centre of Perinatal Medicine and Health, Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
- Institute of Clinical SciencesSahlgrenska Academy, University of GothenburgGothenburgSweden
| |
Collapse
|
112
|
Liu D, Sun Z, Ye T, Li J, Zeng B, Zhao Q, Wang J, Xing HR. The mitochondrial fission factor FIS1 promotes stemness of human lung cancer stem cells via mitophagy. FEBS Open Bio 2021; 11:1997-2007. [PMID: 34051059 PMCID: PMC8406485 DOI: 10.1002/2211-5463.13207] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/11/2021] [Accepted: 05/26/2021] [Indexed: 12/14/2022] Open
Abstract
Mitophagy, a form of autophagy, plays a role in cancer development, progression and recurrence. Cancer stem cells (CSCs) also play a key role in these processes, although it not known whether mitophagy can regulate the stemness of CSCs. Here, we employed the A549-SD human non-small cell lung adenocarcinoma CSC model that we have developed and characterized to investigate the effect of mitophagy on the stemness of CSCs. We observed a positive relationship between mitophagic activity and the stemness of lung CSCs. At the mechanistic level, our results suggest that augmentation of mitophagy in lung CSCs can be induced by FIS1 through mitochondrial fission. In addition, we assessed the clinical relevance of FIS1 in lung adenocarcinoma using The Cancer Genome Atlas database. An elevation in FIS1, when observed together with other prognostic markers for lung cancer progression, was found to correlate with shorter overall survival.
Collapse
Affiliation(s)
- Doudou Liu
- State Key Laboratory of Ultrasound Engineering in Medicine Co-Founded by Chongqing and the Ministry of Science and Technology, School of Biomedical Engineering, Chongqing Medical University, China
| | - Zhiwei Sun
- State Key Laboratory of Ultrasound Engineering in Medicine Co-Founded by Chongqing and the Ministry of Science and Technology, School of Biomedical Engineering, Chongqing Medical University, China
| | - Ting Ye
- State Key Laboratory of Ultrasound Engineering in Medicine Co-Founded by Chongqing and the Ministry of Science and Technology, School of Biomedical Engineering, Chongqing Medical University, China
| | - Jingyuan Li
- State Key Laboratory of Ultrasound Engineering in Medicine Co-Founded by Chongqing and the Ministry of Science and Technology, School of Biomedical Engineering, Chongqing Medical University, China
| | - Bin Zeng
- State Key Laboratory of Ultrasound Engineering in Medicine Co-Founded by Chongqing and the Ministry of Science and Technology, School of Biomedical Engineering, Chongqing Medical University, China
| | - Qiting Zhao
- State Key Laboratory of Ultrasound Engineering in Medicine Co-Founded by Chongqing and the Ministry of Science and Technology, School of Biomedical Engineering, Chongqing Medical University, China
| | - Jianyu Wang
- Institute of Life Sciences, Chongqing Medical University, China
| | - Hongmei Rosie Xing
- State Key Laboratory of Ultrasound Engineering in Medicine Co-Founded by Chongqing and the Ministry of Science and Technology, School of Biomedical Engineering, Chongqing Medical University, China
| |
Collapse
|
113
|
Autophagy a Close Relative of AML Biology. BIOLOGY 2021; 10:biology10060552. [PMID: 34207482 PMCID: PMC8235674 DOI: 10.3390/biology10060552] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/10/2021] [Accepted: 06/18/2021] [Indexed: 12/12/2022]
Abstract
Simple Summary Acute myeloid leukemia (AML) is the most common acute leukemia in adults. Despite a high rate of complete remission following conventional chemotherapy, the prognosis remains poor due to frequent relapses caused by relapse-initiating leukemic cells (RICs), which are resistant to chemotherapies. While the development of new targeted therapies holds great promise (e.g., molecules targeting IDH1/2, FLT3, BCL2), relapses still occur. Therefore, a paramount issue in the elimination of RICs is to decipher the AML resistance mechanisms. Thus, it has been recently shown that AML cells exhibit metabolic changes in response to chemotherapy or targeted therapies. Autophagy is a major regulator of cell metabolism, involved in maintaining cancer state, metastasis, and resistance to anticancer therapy. However, whether autophagy acts as a tumor suppressor or promoter in AML is still a matter of debate. Therefore, depending on molecular AML subtypes or treatments used, a better understanding of the role of autophagy is needed to determine whether its modulation could result in a clinical benefit. Abstract Autophagy, which literally means “eat yourself”, is more than just a lysosomal degradation pathway. It is a well-known regulator of cellular metabolism and a mechanism implicated in tumor initiation/progression and therapeutic resistance in many cancers. However, whether autophagy acts as a tumor suppressor or promoter is still a matter of debate. In acute myeloid leukemia (AML), it is now proven that autophagy supports cell proliferation in vitro and leukemic progression in vivo. Mitophagy, the specific degradation of mitochondria through autophagy, was recently shown to be required for leukemic stem cell functions and survival, highlighting the prominent role of this selective autophagy in leukemia initiation and progression. Moreover, autophagy in AML sustains fatty acid oxidation through lipophagy to support mitochondrial oxidative phosphorylation (OxPHOS), a hallmark of chemotherapy-resistant cells. Nevertheless, in the context of therapy, in AML, as well as in other cancers, autophagy could be either cytoprotective or cytotoxic, depending on the drugs used. This review summarizes the recent findings that mechanistically show how autophagy favors leukemic transformation of normal hematopoietic stem cells, as well as AML progression and also recapitulates its ambivalent role in resistance to chemotherapies and targeted therapies.
Collapse
|
114
|
Jauković A, Abadjieva D, Trivanović D, Stoyanova E, Kostadinova M, Pashova S, Kestendjieva S, Kukolj T, Jeseta M, Kistanova E, Mourdjeva M. Specificity of 3D MSC Spheroids Microenvironment: Impact on MSC Behavior and Properties. Stem Cell Rev Rep 2021; 16:853-875. [PMID: 32681232 DOI: 10.1007/s12015-020-10006-9] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Mesenchymal stem cells (MSC) have been considered the promising candidates for the regenerative and personalized medicine due to their self-renewal potential, multilineage differentiation and immunomodulatory capacity. Although these properties have encouraged profound MSC studies in recent years, the majority of research has been based on standard 2D culture utilization. The opportunity to resemble in vivo characteristics of cells native niche has been provided by implementation of 3D culturing models such as MSC spheroid formation assesed through cells self-assembling. In this review, we address the current literature on physical and biochemical features of 3D MSC spheroid microenvironment and their impact on MSC properties and behaviors. Starting with the reduction in the cells' dimensions and volume due to the changes in adhesion molecules expression and cytoskeletal proteins rearrangement resembling native conditions, through the microenvironment shifts in oxygen, nutrients and metabolites gradients and demands, we focus on distinctive and beneficial features of MSC in spheroids compared to cells cultured in 2D conditions. By summarizing the data for 3D MSC spheroids regarding cell survival, pluripotency, differentiation, immunomodulatory activities and potential to affect tumor cells growth we highlighted advantages and perspectives of MSC spheroids use in regenerative medicine. Further detailed analyses are needed to deepen our understanding of mechanisms responsible for modified MSC behavior in spheroids and to set future directions for MSC clinical application.
Collapse
Affiliation(s)
- Aleksandra Jauković
- Laboratory for Experimental Hematology and Stem Cells, Institute for Medical Research, University of Belgrade, Dr. Subotića 4, PO BOX 102, Belgrade, 11129, Serbia
| | - Desislava Abadjieva
- Institute of Biology and Immunology of Reproduction, Bulgarian Academy of Sciences, 73 Tzarigradsko shoes, 1113, Sofia, Bulgaria
| | - Drenka Trivanović
- Laboratory for Experimental Hematology and Stem Cells, Institute for Medical Research, University of Belgrade, Dr. Subotića 4, PO BOX 102, Belgrade, 11129, Serbia.,IZKF Group Tissue Regeneration in Musculoskeletal Diseases, University Clinics, Röntgenring 11, D-97070, Wuerzburg, Germany.,Bernhard-Heine-Center for Locomotion Research, University Wuerzburg, Wuerzburg, Germany
| | - Elena Stoyanova
- Institute of Biology and Immunology of Reproduction, Bulgarian Academy of Sciences, 73 Tzarigradsko shoes, 1113, Sofia, Bulgaria
| | - Milena Kostadinova
- Institute of Biology and Immunology of Reproduction, Bulgarian Academy of Sciences, 73 Tzarigradsko shoes, 1113, Sofia, Bulgaria
| | - Shina Pashova
- Institute of Biology and Immunology of Reproduction, Bulgarian Academy of Sciences, 73 Tzarigradsko shoes, 1113, Sofia, Bulgaria
| | - Snejana Kestendjieva
- Institute of Biology and Immunology of Reproduction, Bulgarian Academy of Sciences, 73 Tzarigradsko shoes, 1113, Sofia, Bulgaria
| | - Tamara Kukolj
- Laboratory for Experimental Hematology and Stem Cells, Institute for Medical Research, University of Belgrade, Dr. Subotića 4, PO BOX 102, Belgrade, 11129, Serbia
| | - Michal Jeseta
- Department of Obstetrics and Gynecology, University Hospital and Masaryk University, Obilní trh 11, 602 00, Brno, Czech Republic.,Department of Veterinary Sciences, Czech University of Life Sciences in Prague, Kamýcká 129, 165 00, Suchdol, Praha 6, Czech Republic
| | - Elena Kistanova
- Institute of Biology and Immunology of Reproduction, Bulgarian Academy of Sciences, 73 Tzarigradsko shoes, 1113, Sofia, Bulgaria
| | - Milena Mourdjeva
- Institute of Biology and Immunology of Reproduction, Bulgarian Academy of Sciences, 73 Tzarigradsko shoes, 1113, Sofia, Bulgaria.
| |
Collapse
|
115
|
PINK1 and parkin shape the organism-wide distribution of a deleterious mitochondrial genome. Cell Rep 2021; 35:109203. [PMID: 34077728 DOI: 10.1016/j.celrep.2021.109203] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 03/23/2021] [Accepted: 04/16/2021] [Indexed: 12/14/2022] Open
Abstract
In multiple species, certain tissue types are prone to acquiring greater loads of mitochondrial genome (mtDNA) mutations relative to others, but the mechanisms that drive these heteroplasmy differences are unknown. We find that the conserved PTEN-induced putative kinase (PINK1/PINK-1) and the E3 ubiquitin-protein ligase parkin (PDR-1), which are required for mitochondrial autophagy (mitophagy), underlie stereotyped differences in heteroplasmy of a deleterious mitochondrial genome mutation (ΔmtDNA) between major somatic tissues types in Caenorhabditis elegans. We demonstrate that tissues prone to accumulating ΔmtDNA have lower mitophagy responses than those with low mutation levels. Moreover, we show that ΔmtDNA heteroplasmy increases when proteotoxic species that are associated with neurodegenerative disease and mitophagy inhibition are overexpressed in the nervous system. These results suggest that PINK1 and parkin drive organism-wide patterns of heteroplasmy and provide evidence of a causal link between proteotoxicity, mitophagy, and mtDNA mutation levels in neurons.
Collapse
|
116
|
Maar K, Hetenyi R, Maar S, Faskerti G, Hanna D, Lippai B, Takatsy A, Bock-Marquette I. Utilizing Developmentally Essential Secreted Peptides Such as Thymosin Beta-4 to Remind the Adult Organs of Their Embryonic State-New Directions in Anti-Aging Regenerative Therapies. Cells 2021; 10:1343. [PMID: 34071596 PMCID: PMC8228050 DOI: 10.3390/cells10061343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/07/2021] [Accepted: 05/20/2021] [Indexed: 01/10/2023] Open
Abstract
Our dream of defeating the processes of aging has occupied the curious and has challenged scientists globally for hundreds of years. The history is long, and sadly, the solution is still elusive. Our endeavors to reverse the magnitude of damaging cellular and molecular alterations resulted in only a few, yet significant advancements. Furthermore, as our lifespan increases, physicians are facing more mind-bending questions in their routine practice than ever before. Although the ultimate goal is to successfully treat the body as a whole, steps towards regenerating individual organs are even considered significant. As our initial approach to enhance the endogenous restorative capacity by delivering exogenous progenitor cells appears limited, we propose, utilizing small molecules critical during embryonic development may prove to be a powerful tool to increase regeneration and to reverse the processes associated with aging. In this review, we introduce Thymosin beta-4, a 43aa secreted peptide fulfilling our hopes and capable of numerous regenerative achievements via systemic administration in the heart. Observing the broad capacity of this small, secreted peptide, we believe it is not the only molecule which nature conceals to our benefit. Hence, the discovery and postnatal administration of developmentally relevant agents along with other approaches may result in reversing the aging process.
Collapse
Affiliation(s)
- Klaudia Maar
- Department of Biochemistry and Medical Chemistry, Medical School, University of Pecs, Szigeti Street 12., H-7624 Pecs, Hungary; (K.M.); (R.H.); (S.M.); (G.F.); (D.H.); (A.T.)
- Szentagothai Research Centre, Research Group of Regenerative Science, Sport and Medicine, University of Pecs, Ifjusag Street 20. C301, H-7624 Pecs, Hungary;
| | - Roland Hetenyi
- Department of Biochemistry and Medical Chemistry, Medical School, University of Pecs, Szigeti Street 12., H-7624 Pecs, Hungary; (K.M.); (R.H.); (S.M.); (G.F.); (D.H.); (A.T.)
- Szentagothai Research Centre, Research Group of Regenerative Science, Sport and Medicine, University of Pecs, Ifjusag Street 20. C301, H-7624 Pecs, Hungary;
| | - Szabolcs Maar
- Department of Biochemistry and Medical Chemistry, Medical School, University of Pecs, Szigeti Street 12., H-7624 Pecs, Hungary; (K.M.); (R.H.); (S.M.); (G.F.); (D.H.); (A.T.)
- Szentagothai Research Centre, Research Group of Regenerative Science, Sport and Medicine, University of Pecs, Ifjusag Street 20. C301, H-7624 Pecs, Hungary;
| | - Gabor Faskerti
- Department of Biochemistry and Medical Chemistry, Medical School, University of Pecs, Szigeti Street 12., H-7624 Pecs, Hungary; (K.M.); (R.H.); (S.M.); (G.F.); (D.H.); (A.T.)
- Szentagothai Research Centre, Research Group of Regenerative Science, Sport and Medicine, University of Pecs, Ifjusag Street 20. C301, H-7624 Pecs, Hungary;
| | - Daniel Hanna
- Department of Biochemistry and Medical Chemistry, Medical School, University of Pecs, Szigeti Street 12., H-7624 Pecs, Hungary; (K.M.); (R.H.); (S.M.); (G.F.); (D.H.); (A.T.)
- Szentagothai Research Centre, Research Group of Regenerative Science, Sport and Medicine, University of Pecs, Ifjusag Street 20. C301, H-7624 Pecs, Hungary;
| | - Balint Lippai
- Szentagothai Research Centre, Research Group of Regenerative Science, Sport and Medicine, University of Pecs, Ifjusag Street 20. C301, H-7624 Pecs, Hungary;
| | - Aniko Takatsy
- Department of Biochemistry and Medical Chemistry, Medical School, University of Pecs, Szigeti Street 12., H-7624 Pecs, Hungary; (K.M.); (R.H.); (S.M.); (G.F.); (D.H.); (A.T.)
- Szentagothai Research Centre, Research Group of Regenerative Science, Sport and Medicine, University of Pecs, Ifjusag Street 20. C301, H-7624 Pecs, Hungary;
| | - Ildiko Bock-Marquette
- Department of Biochemistry and Medical Chemistry, Medical School, University of Pecs, Szigeti Street 12., H-7624 Pecs, Hungary; (K.M.); (R.H.); (S.M.); (G.F.); (D.H.); (A.T.)
- Szentagothai Research Centre, Research Group of Regenerative Science, Sport and Medicine, University of Pecs, Ifjusag Street 20. C301, H-7624 Pecs, Hungary;
| |
Collapse
|
117
|
Tang M, Yang M, Wu G, Mo S, Wu X, Zhang S, Yu R, Hu Y, Xu Y, Li Z, Liao X, Li J, Song L. Epigenetic Induction of Mitochondrial Fission Is Required for Maintenance of Liver Cancer-Initiating Cells. Cancer Res 2021; 81:3835-3848. [PMID: 34049973 DOI: 10.1158/0008-5472.can-21-0436] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 04/20/2021] [Accepted: 05/27/2021] [Indexed: 11/16/2022]
Abstract
Mitochondrial dynamics play vital roles in the tumorigenicity and malignancy of various types of cancers by promoting the tumor-initiating potential of cancer cells, suggesting that targeting crucial factors that drive mitochondrial dynamics may lead to promising anticancer therapies. In the current study, we report that overexpression of mitochondrial fission factor (MFF), which is upregulated significantly in liver cancer-initiating cells (LCIC), promotes mitochondrial fission and enhances stemness and tumor-initiating capability in non-LCICs. MFF-induced mitochondrial fission evoked mitophagy and asymmetric stem cell division and promoted a metabolic shift from oxidative phosphorylation to glycolysis that decreased mitochondrial reactive oxygen species (ROS) production, which prevented ROS-mediated degradation of the pluripotency transcription factor OCT4. CRISPR affinity purification in situ of regulatory elements showed that T-box transcription factor 19 (TBX19), which is overexpressed uniquely in LCICs compared with non-LCICs and liver progenitor cells, forms a complex with PRMT1 on the MFF promoter in LCICs, eliciting epigenetic histone H4R3me2a/H3K9ac-mediated transactivation of MFF. Targeting PRMT1 using furamidine, a selective pharmacologic inhibitor, suppressed TBX19-induced mitochondrial fission, leading to a profound loss of self-renewal potential and tumor-initiating capacity of LCICs. These findings unveil a novel mechanism underlying mitochondrial fission-mediated cancer stemness and suggest that regulation of mitochondrial fission via inhibition of PRMT1 may be an attractive therapeutic option for liver cancer treatment. SIGNIFICANCE: These findings show that TBX19/PRMT1 complex-mediated upregulation of MFF promotes mitochondrial fission and tumor-initiating capacity in liver cancer cells, identifying PRMT1 as a viable therapeutic target in liver cancer.
Collapse
Affiliation(s)
- Miaoling Tang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Meisongzhu Yang
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Geyan Wu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Shuang Mo
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Xingui Wu
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Shuxia Zhang
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Ruyuan Yu
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Yameng Hu
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Yingru Xu
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Ziwen Li
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Xinyi Liao
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Jun Li
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.
| | - Libing Song
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China.
| |
Collapse
|
118
|
Bertan F, Wischhof L, Scifo E, Guranda M, Jackson J, Marsal-Cots A, Piazzesi A, Stork M, Peitz M, Prehn JHM, Ehninger D, Nicotera P, Bano D. Comparative analysis of CI- and CIV-containing respiratory supercomplexes at single-cell resolution. CELL REPORTS METHODS 2021; 1:100002. [PMID: 35474694 PMCID: PMC9017192 DOI: 10.1016/j.crmeth.2021.100002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 02/03/2021] [Accepted: 03/03/2021] [Indexed: 12/29/2022]
Abstract
Mitochondria sustain the energy demand of the cell. The composition and functional state of the mitochondrial oxidative phosphorylation system are informative indicators of organelle bioenergetic capacity. Here, we describe a highly sensitive and reproducible method for a single-cell quantification of mitochondrial CI- and CIV-containing respiratory supercomplexes (CI∗CIV-SCs) as an alternative means of assessing mitochondrial respiratory chain integrity. We apply a proximity ligation assay (PLA) and stain CI∗CIV-SCs in fixed human and mouse brains, tumorigenic cells, induced pluripotent stem cells (iPSCs) and iPSC-derived neural precursor cells (NPCs), and neurons. Spatial visualization of CI∗CIV-SCs enables the detection of mitochondrial lesions in various experimental models, including complex tissues undergoing degenerative processes. We report that comparative assessments of CI∗CIV-SCs facilitate the quantitative profiling of even subtle mitochondrial variations by overcoming the confounding effects that mixed cell populations have on other measurements. Together, our PLA-based analysis of CI∗CIV-SCs is a sensitive and complementary technique for detecting cell-type-specific mitochondrial perturbations in fixed materials.
Collapse
Affiliation(s)
- Fabio Bertan
- German Center for Neurodegenerative Diseases (DZNE), Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Venusberg-Campus 1, Gebäude 99, Bonn, North Rhine-Westphalia 53127, Germany
| | - Lena Wischhof
- German Center for Neurodegenerative Diseases (DZNE), Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Venusberg-Campus 1, Gebäude 99, Bonn, North Rhine-Westphalia 53127, Germany
| | - Enzo Scifo
- German Center for Neurodegenerative Diseases (DZNE), Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Venusberg-Campus 1, Gebäude 99, Bonn, North Rhine-Westphalia 53127, Germany
| | - Mihaela Guranda
- German Center for Neurodegenerative Diseases (DZNE), Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Venusberg-Campus 1, Gebäude 99, Bonn, North Rhine-Westphalia 53127, Germany
| | - Joshua Jackson
- German Center for Neurodegenerative Diseases (DZNE), Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Venusberg-Campus 1, Gebäude 99, Bonn, North Rhine-Westphalia 53127, Germany
| | - Anaïs Marsal-Cots
- German Center for Neurodegenerative Diseases (DZNE), Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Venusberg-Campus 1, Gebäude 99, Bonn, North Rhine-Westphalia 53127, Germany
| | - Antonia Piazzesi
- German Center for Neurodegenerative Diseases (DZNE), Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Venusberg-Campus 1, Gebäude 99, Bonn, North Rhine-Westphalia 53127, Germany
| | - Miriam Stork
- German Center for Neurodegenerative Diseases (DZNE), Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Venusberg-Campus 1, Gebäude 99, Bonn, North Rhine-Westphalia 53127, Germany
| | - Michael Peitz
- Institute of Reconstructive Neurobiology, University of Bonn Medical Faculty and University Hospital Bonn, Bonn, North Rhine-Westphalia 53127, Germany
- Cell Programming Core Facility, University of Bonn Medical Faculty, Bonn, North Rhine-Westphalia 53127, Germany
| | - Jochen Herbert Martin Prehn
- Royal College of Surgeons in Ireland, Department of Physiology and Medical Physics Department, D02 YN77 Dublin, Ireland
| | - Dan Ehninger
- German Center for Neurodegenerative Diseases (DZNE), Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Venusberg-Campus 1, Gebäude 99, Bonn, North Rhine-Westphalia 53127, Germany
| | - Pierluigi Nicotera
- German Center for Neurodegenerative Diseases (DZNE), Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Venusberg-Campus 1, Gebäude 99, Bonn, North Rhine-Westphalia 53127, Germany
| | - Daniele Bano
- German Center for Neurodegenerative Diseases (DZNE), Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Venusberg-Campus 1, Gebäude 99, Bonn, North Rhine-Westphalia 53127, Germany
| |
Collapse
|
119
|
Age-Related Changes in Bone-Marrow Mesenchymal Stem Cells. Cells 2021; 10:cells10061273. [PMID: 34063923 PMCID: PMC8223980 DOI: 10.3390/cells10061273] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/14/2021] [Accepted: 05/17/2021] [Indexed: 12/12/2022] Open
Abstract
The use of stem cells is part of a strategy for the treatment of a large number of diseases. However, the source of the original stem cells for use is extremely important and determines their therapeutic potential. Mesenchymal stromal cells (MSC) have proven their therapeutic effectiveness when used in a number of pathological models. However, it remains an open question whether the chronological age of the donor organism affects the effectiveness of the use of MSC. The asymmetric division of stem cells, the result of which is some residential stem cells acquiring a non-senile phenotype, means that stem cells possess an intrinsic ability to preserve juvenile characteristics, implying an absence or at least remarkable retardation of senescence in stem cells. To test whether residential MSC senesce, we evaluated the physiological changes in the MSC from old rats, with a further comparison of the neuroprotective properties of MSC from young and old animals in a model of traumatic brain injury. We found that, while the effect of administration of MSC on lesion volume was minimal, functional recovery was remarkable, with the highest effect assigned to fetal cells; the lowest effect was recorded for cells isolated from adult rats and postnatal cells, having intermediate potency. MSC from the young rats were characterized by a faster growth than adult MSC, correlating with levels of proliferating cell nuclear antigen (PCNA). However, there were no differences in respiratory activity of MSC from young and old rats, but young cells showed much higher glucose utilization than old ones. Autophagy flux was almost the same in both types of cells, but there were remarkable ultrastructural differences in old and young cells.
Collapse
|
120
|
Majstrowicz K, Honnert U, Nikolaus P, Schwarz V, Oeding SJ, Hemkemeyer SA, Bähler M. Coordination of mitochondrial and cellular dynamics by the actin-based motor Myo19. J Cell Sci 2021; 134:268312. [PMID: 34013964 PMCID: PMC8186483 DOI: 10.1242/jcs.255844] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 04/12/2021] [Indexed: 12/16/2022] Open
Abstract
Myosin XIX (Myo19) is an actin-based motor that competes with adaptors of microtubule-based motors for binding to the outer mitochondrial transmembrane proteins Miro1 and Miro2 (collectively Miro, also known as RhoT1 and RhoT2, respectively). Here, we investigate which mitochondrial and cellular processes depend on the coordination of Myo19 and microtubule-based motor activities. To this end, we created Myo19-deficient HEK293T cells. Mitochondria in these cells were not properly fragmented at mitosis and were partitioned asymmetrically to daughter cells. Respiratory functions of mitochondria were impaired and ROS generation was enhanced. On a cellular level, cell proliferation, cytokinesis and cell-matrix adhesion were negatively affected. On a molecular level, Myo19 regulates focal adhesions in interphase, and mitochondrial fusion and mitochondrially associated levels of fission protein Drp1 and adaptor proteins dynactin and TRAK1 at prometaphase. These alterations were due to a disturbed coordination of Myo19 and microtubule-based motor activities by Miro.
Collapse
Affiliation(s)
- Katarzyna Majstrowicz
- Institute of Molecular Cell Biology, Westfalian Wilhelms University Münster, 48149 Münster, Germany
| | - Ulrike Honnert
- Institute of Molecular Cell Biology, Westfalian Wilhelms University Münster, 48149 Münster, Germany
| | - Petra Nikolaus
- Institute of Molecular Cell Biology, Westfalian Wilhelms University Münster, 48149 Münster, Germany
| | - Vera Schwarz
- Institute of Molecular Cell Biology, Westfalian Wilhelms University Münster, 48149 Münster, Germany
| | - Stefanie J Oeding
- Institute of Molecular Cell Biology, Westfalian Wilhelms University Münster, 48149 Münster, Germany
| | - Sandra A Hemkemeyer
- Institute of Molecular Cell Biology, Westfalian Wilhelms University Münster, 48149 Münster, Germany
| | - Martin Bähler
- Institute of Molecular Cell Biology, Westfalian Wilhelms University Münster, 48149 Münster, Germany
| |
Collapse
|
121
|
Chakrabarty RP, Chandel NS. Mitochondria as Signaling Organelles Control Mammalian Stem Cell Fate. Cell Stem Cell 2021; 28:394-408. [PMID: 33667360 DOI: 10.1016/j.stem.2021.02.011] [Citation(s) in RCA: 243] [Impact Index Per Article: 60.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Recent evidence supports the notion that mitochondrial metabolism is necessary for the determination of stem cell fate. Historically, mitochondrial metabolism is linked to the production of ATP and tricarboxylic acid (TCA) cycle metabolites to support stem cell survival and growth, respectively. However, it is now clear that beyond these canonical roles, mitochondria as signaling organelles dictate stem cell fate and function. In this review, we focus on key conceptual ideas on how mitochondria control mammalian stem cell fate and function through reactive oxygen species (ROS) generation, TCA cycle metabolite production, NAD+/NADH ratio regulation, pyruvate metabolism, and mitochondrial dynamics.
Collapse
Affiliation(s)
- Ram Prosad Chakrabarty
- Department of Medicine, Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Navdeep S Chandel
- Department of Medicine, Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA.
| |
Collapse
|
122
|
Aretz I, Jakubke C, Osman C. Power to the daughters - mitochondrial and mtDNA transmission during cell division. Biol Chem 2021; 401:533-546. [PMID: 31812944 DOI: 10.1515/hsz-2019-0337] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 11/08/2019] [Indexed: 11/15/2022]
Abstract
Mitochondria supply virtually all eukaryotic cells with energy through ATP production by oxidative phosphoryplation (OXPHOS). Accordingly, maintenance of mitochondrial function is fundamentally important to sustain cellular health and various diseases have been linked to mitochondrial dysfunction. Biogenesis of OXPHOS complexes crucially depends on mitochondrial DNA (mtDNA) that encodes essential subunits of the respiratory chain and is distributed in multiple copies throughout the mitochondrial network. During cell division, mitochondria, including mtDNA, need to be accurately apportioned to daughter cells. This process requires an intimate and coordinated interplay between the cell cycle, mitochondrial dynamics and the replication and distribution of mtDNA. Recent years have seen exciting advances in the elucidation of the mechanisms that facilitate these processes and essential key players have been identified. Moreover, segregation of qualitatively distinct mitochondria during asymmetric cell division is emerging as an important quality control step, which secures the maintenance of a healthy cell population.
Collapse
Affiliation(s)
- Ina Aretz
- Department of Biology II, Ludwig-Maximilians-University Munich, Großhaderner Str. 2, 82152Planegg-Martinsried, Germany
| | - Christopher Jakubke
- Department of Biology II, Ludwig-Maximilians-University Munich, Großhaderner Str. 2, 82152Planegg-Martinsried, Germany
| | - Christof Osman
- Department of Biology II, Ludwig-Maximilians-University Munich, Großhaderner Str. 2, 82152Planegg-Martinsried, Germany
| |
Collapse
|
123
|
|
124
|
Comparison of the Donor Age-Dependent and In Vitro Culture-Dependent Mesenchymal Stem Cell Aging in Rat Model. Stem Cells Int 2021; 2021:6665358. [PMID: 34093710 PMCID: PMC8140846 DOI: 10.1155/2021/6665358] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 01/12/2021] [Accepted: 04/27/2021] [Indexed: 12/14/2022] Open
Abstract
Clinical experiments suggest that mesenchymal stem cells (MSCs) may be useful for tissue repair therapies or treatment of the autoimmune disorders. There is still lack of consensus concerning the age limit of MSC donors, majority of researchers suggest the autologous MSC therapies of patients not exceeding age limit of 55-60 yrs. The purpose of our study was to compare the selected parameters of MSCs from adipose tissue (adipose stem cell, ASC) collected from young and old rats of ages corresponding to patient's ages 25 yrs. and 80 yrs., respectively. The differences of parameters of ASCs from young and old animals were compared with the differences between ASCs from short-term (3 passage) and long-term (30 passage) in vitro culture. Cell morphology, surface marker expression, growth potential, metabolic activity, β-galactosidase activity, clonogenic potential, angiogenic potential, and differentiation ability of ASCs from young and aged animals and from in vitro cultures at 3rd and 30th passages were compared and analyzed. It may be concluded that ASCs may be applied for autologous transplantations in aged patients. Comparison of ASC aging dynamics depending on host aging or in vitro culture duration suggests that long-term in vitro culture may affect ASCs more than natural aging process of their host. We suggest that ASCs expanded in vitro prior to their clinical use must be carefully screened for the possible aging effects resulting not only from donor age, but from the duration of their in vitro culture.
Collapse
|
125
|
Mahendralingam MJ, Kim H, McCloskey CW, Aliar K, Casey AE, Tharmapalan P, Pellacani D, Ignatchenko V, Garcia-Valero M, Palomero L, Sinha A, Cruickshank J, Shetty R, Vellanki RN, Koritzinsky M, Stambolic V, Alam M, Schimmer AD, Berman HK, Eaves CJ, Pujana MA, Kislinger T, Khokha R. Mammary epithelial cells have lineage-rooted metabolic identities. Nat Metab 2021; 3:665-681. [PMID: 34031589 DOI: 10.1038/s42255-021-00388-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 03/29/2021] [Indexed: 02/07/2023]
Abstract
Cancer metabolism adapts the metabolic network of its tissue of origin. However, breast cancer is not a disease of a single origin. Multiple epithelial populations serve as the culprit cell of origin for specific breast cancer subtypes, yet our knowledge of the metabolic network of normal mammary epithelial cells is limited. Using a multi-omic approach, here we identify the diverse metabolic programmes operating in normal mammary populations. The proteomes of basal, luminal progenitor and mature luminal cell populations revealed enrichment of glycolysis in basal cells and of oxidative phosphorylation in luminal progenitors. Single-cell transcriptomes corroborated lineage-specific metabolic identities and additional intra-lineage heterogeneity. Mitochondrial form and function differed across lineages, with clonogenicity correlating with mitochondrial activity. Targeting oxidative phosphorylation and glycolysis with inhibitors exposed lineage-rooted metabolic vulnerabilities of mammary progenitors. Bioinformatics indicated breast cancer subtypes retain metabolic features of their putative cell of origin. Thus, lineage-rooted metabolic identities of normal mammary cells may underlie breast cancer metabolic heterogeneity and targeting these vulnerabilities could advance breast cancer therapy.
Collapse
Affiliation(s)
- Mathepan Jeya Mahendralingam
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Hyeyeon Kim
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Curtis William McCloskey
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Kazeera Aliar
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | | | - Pirashaanthy Tharmapalan
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Davide Pellacani
- Terry Fox Laboratory, BC Cancer, Vancouver, British Columbia, Canada
| | - Vladimir Ignatchenko
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Mar Garcia-Valero
- ProCURE, Catalan Institute of Oncology, Oncobell, Bellvitge Institute for Biomedical Research (IDIBELL), L'Hospitalet del Llobregat, Barcelona, Spain
| | - Luis Palomero
- ProCURE, Catalan Institute of Oncology, Oncobell, Bellvitge Institute for Biomedical Research (IDIBELL), L'Hospitalet del Llobregat, Barcelona, Spain
| | - Ankit Sinha
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Jennifer Cruickshank
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Ronak Shetty
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Ravi N Vellanki
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Marianne Koritzinsky
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
- Department of Radiation Oncology, University of Toronto, Toronto, Ontario, Canada
| | - Vid Stambolic
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Mina Alam
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Aaron David Schimmer
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Hal Kenneth Berman
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Connie J Eaves
- Terry Fox Laboratory, BC Cancer, Vancouver, British Columbia, Canada
| | - Miquel Angel Pujana
- ProCURE, Catalan Institute of Oncology, Oncobell, Bellvitge Institute for Biomedical Research (IDIBELL), L'Hospitalet del Llobregat, Barcelona, Spain
| | - Thomas Kislinger
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada.
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.
| | - Rama Khokha
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada.
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
126
|
Lambert AW, Weinberg RA. Linking EMT programmes to normal and neoplastic epithelial stem cells. Nat Rev Cancer 2021; 21:325-338. [PMID: 33547455 DOI: 10.1038/s41568-021-00332-6] [Citation(s) in RCA: 329] [Impact Index Per Article: 82.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/06/2021] [Indexed: 02/07/2023]
Abstract
Epithelial stem cells serve critical physiological functions in the generation, maintenance and repair of diverse tissues through their ability to self-renew and spawn more specialized, differentiated cell types. In an analogous fashion, cancer stem cells have been proposed to fuel the growth, progression and recurrence of many carcinomas. Activation of an epithelial-mesenchymal transition (EMT), a latent cell-biological programme involved in development and wound healing, has been linked to the formation of both normal and neoplastic stem cells, but the mechanistic basis underlying this connection remains unclear. In this Perspective, we outline the instances where aspects of an EMT have been implicated in normal and neoplastic epithelial stem cells and consider the involvement of this programme during tissue regeneration and repair. We also discuss emerging concepts and evidence related to the heterogeneous and plastic cell states generated by EMT programmes and how these bear on our understanding of cancer stem cell biology and cancer metastasis. A more comprehensive accounting of the still-elusive links between EMT programmes and the stem cell state will surely advance our understanding of both normal stem cell biology and cancer pathogenesis.
Collapse
Affiliation(s)
| | - Robert A Weinberg
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA.
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA.
- MIT Ludwig Center for Molecular Oncology, Cambridge, MA, USA.
| |
Collapse
|
127
|
Deonath A. Evolution of eukaryotes as a story of survival and growth of mitochondrial DNA over two billion years. Biosystems 2021; 206:104426. [PMID: 33857537 DOI: 10.1016/j.biosystems.2021.104426] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 04/04/2021] [Accepted: 04/05/2021] [Indexed: 02/07/2023]
Abstract
Mitochondria's significance in human diseases and in functioning, health and death of eukaryotic cell has been acknowledged widely. Yet our perspective in cell biology and evolution remains nucleocentric. Mitochondrial DNA, by virtue of its omnipresence and species-level conservation, is used as a barcode in animal taxonomy. This article analyses various levels of containment structures that enclose mitochondrial DNA and advocates a fresh perspective wherein evolution of organic structures of the eukarya domain seem to support and facilitate survival and proliferation of mitochondrial DNA by splitting containers as they age and by directing them along two distinct pathways: destruction of containers with more mutant mitochondrial DNA and rejuvenation of containers with less mutant mitochondrial DNA.
Collapse
Affiliation(s)
- Abhijit Deonath
- Department of Agriculture, Water and the Environment, Australian Government, Canberra, Australia.
| |
Collapse
|
128
|
Jaiswal A, Xudong Z, Zhenyu J, Saretzki G. Mitochondrial sirtuins in stem cells and cancer. FEBS J 2021; 289:3393-3415. [PMID: 33866670 DOI: 10.1111/febs.15879] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 04/13/2021] [Indexed: 12/15/2022]
Abstract
The mammalian sirtuin family consists of seven proteins, three of which (SIRT3, SIRT4, and SIRT5) localise specifically within mitochondria and preserve mitochondrial function and homeostasis. Mitochondrial sirtuins are involved in diverse functions such as deacetylation, ADP-ribosylation, demalonylation and desuccinylation, thus affecting various aspects of cell fate. Intriguingly, mitochondrial sirtuins are able to manage these delicate processes with accuracy mediated by crosstalk between the nucleus and mitochondria. Previous studies have provided ample information about their substrates and targets, whereas less is known about their role in cancer and stem cells. Here, we review and discuss recent advances in our understanding of the structural and functional properties of mitochondrial sirtuins, including their targets in cancer and stem cells. These advances could help to improve the understanding of their interplay with signalling cascades and pathways, leading to new avenues for developing novel drugs for sirtuin-related disease treatments. We also highlight the complex network of mitochondrial sirtuins in cancer and stem cells, which may be important in deciphering the molecular mechanism for their activation and inhibition.
Collapse
Affiliation(s)
- Amit Jaiswal
- Institute of Ageing Research, School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang, China.,Faculty of Biological Sciences, Friedrich Schiller University, Jena, Germany
| | - Zhu Xudong
- Faculty of Biological Sciences, Friedrich Schiller University, Jena, Germany
| | - Ju Zhenyu
- Institute of Ageing Research, School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang, China.,Key Laboratory of Regenerative Medicine of Ministry of Education, Institute of Ageing and Regenerative Medicine, Jinan University, Guangzhou, Guangdong, China
| | - Gabriele Saretzki
- Campus for Ageing and Vitality, Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
129
|
Yde SE, Kadzik RS, Kovar DR. Stir it up: The role of actin in mitochondrial mixing during mitosis. Dev Cell 2021; 56:1080-1082. [PMID: 33878298 DOI: 10.1016/j.devcel.2021.03.028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
During symmetric cell division, it is important that daughter cells receive not only equal genetic information, but also equal allocations of organelles. Recently, in Nature,Moore et al. (2021) identify three complementary F-actin networks that help ensure proper mixing and distribution of functionally equivalent mitochondria to daughter cells.
Collapse
Affiliation(s)
- Sarah E Yde
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637, USA
| | - Rachel S Kadzik
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637, USA
| | - David R Kovar
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637, USA; Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
130
|
Abstract
Cells use mitophagy to remove dysfunctional or excess mitochondria, frequently in response to imposed stresses, such as hypoxia and nutrient deprivation. Mitochondrial cargo receptors (MCR) induced by these stresses target mitochondria to autophagosomes through interaction with members of the LC3/GABARAP family. There are a growing number of these MCRs, including BNIP3, BNIP3L, FUNDC1, Bcl2-L-13, FKBP8, Prohibitin-2, and others, in addition to mitochondrial protein targets of PINK1/Parkin phospho-ubiquitination. There is also an emerging link between mitochondrial lipid signaling and mitophagy where ceramide, sphingosine-1-phosphate, and cardiolipin have all been shown to promote mitophagy. Here, we review the upstream signaling mechanisms that regulate mitophagy, including components of the mitochondrial fission machinery, AMPK, ATF4, FoxOs, Sirtuins, and mtDNA release, and address the significance of these pathways for stress responses in tumorigenesis and metastasis. In particular, we focus on how mitophagy modulators intersect with cell cycle control and survival pathways in cancer, including following ECM detachment and during cell migration and metastasis. Finally, we interrogate how mitophagy affects tissue atrophy during cancer cachexia and therapy responses in the clinic.
Collapse
Affiliation(s)
- Logan P Poole
- The Ben May Department for Cancer Research, The Gordon Center for Integrative Sciences, W-338, The University of Chicago, 929 E 57th Street, Chicago, IL, 60637, USA
- The Committee on Cancer Biology, The University of Chicago, Chicago, USA
| | - Kay F Macleod
- The Ben May Department for Cancer Research, The Gordon Center for Integrative Sciences, W-338, The University of Chicago, 929 E 57th Street, Chicago, IL, 60637, USA.
- The Committee on Cancer Biology, The University of Chicago, Chicago, USA.
| |
Collapse
|
131
|
Talukdar S, Das SK, Emdad L, Fisher PB. Autophagy and senescence: Insights from normal and cancer stem cells. Adv Cancer Res 2021; 150:147-208. [PMID: 33858596 DOI: 10.1016/bs.acr.2021.01.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Autophagy is a fundamental cellular process, which allows cells to adapt to metabolic stress through the degradation and recycling of intracellular components to generate macromolecular precursors and produce energy. Autophagy is also critical in maintaining cellular/tissue homeostasis, as well preserving immunity and preventing human disease. Deregulation of autophagic processes is associated with cancer, neurodegeneration, muscle and heart disease, infectious diseases and aging. Research on a variety of stem cell types establish that autophagy plays critical roles in normal and cancer stem cell quiescence, activation, differentiation, and self-renewal. Considering its critical function in regulating the metabolic state of stem cells, autophagy plays a dual role in the regulation of normal and cancer stem cell senescence, and cellular responses to various therapeutic strategies. The relationships between autophagy, senescence, dormancy and apoptosis frequently focus on responses to various forms of stress. These are interrelated processes that profoundly affect normal and abnormal human physiology that require further elucidation in cancer stem cells. This review provides a current perspective on autophagy and senescence in both normal and cancer stem cells.
Collapse
Affiliation(s)
- Sarmistha Talukdar
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States
| | - Swadesh K Das
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States
| | - Luni Emdad
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States
| | - Paul B Fisher
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States.
| |
Collapse
|
132
|
Mitochondria are mixed during cell division. Nature 2021. [DOI: 10.1038/d41586-021-00511-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
133
|
Castellano-Pellicena I, Morrison CG, Bell M, O’Connor C, Tobin DJ. Melanin Distribution in Human Skin: Influence of Cytoskeletal, Polarity, and Centrosome-Related Machinery of Stratum basale Keratinocytes. Int J Mol Sci 2021; 22:ijms22063143. [PMID: 33808676 PMCID: PMC8003549 DOI: 10.3390/ijms22063143] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 03/13/2021] [Accepted: 03/14/2021] [Indexed: 12/12/2022] Open
Abstract
Melanin granules cluster within supra-nuclear caps in basal keratinocytes (KCs) of the human epidermis, where they protect KC genomic DNA against ultraviolet radiation (UVR) damage. While much is known about melanogenesis in melanocytes (MCs) and a moderate amount about melanin transfer from MC to KC, we know little about the fate of melanin once inside KCs. We recently reported that melanin fate in progenitor KCs is regulated by rare asymmetric organelle movement during mitosis. Here, we explore the role of actin, microtubules, and centrosome-associated machinery in distributing melanin within KCs. Short-term cultures of human skin explants were treated with cytochalasin-B and nocodazole to target actin filaments and microtubules, respectively. Treatment effects on melanin distribution were assessed by the Warthin-Starry stain, on centrosome-associated proteins by immunofluorescence microscopy, and on co-localisation with melanin granules by brightfield microscopy. Cytochalasin-B treatment disassembled supra-nuclear melanin caps, while nocodazole treatment moved melanin from the apical to basal KC domain. Centrosome and centriolar satellite-associated proteins showed a high degree of co-localisation with melanin. Thus, once melanin granules are transferred to KCs, their preferred apical distribution appears to be facilitated by coordinated movement of centrosomes and centriolar satellites. This mechanism may control melanin's strategic position within UVR-exposed KCs.
Collapse
Affiliation(s)
- Irene Castellano-Pellicena
- The Charles Institute of Dermatology, School of Medicine, University College Dublin, D04 V1W8 Dublin, Ireland;
| | - Ciaran G. Morrison
- Centre for Chromosome Biology, School of Natural Sciences, National University of Ireland Galway, H91 W2TY Galway, Ireland;
| | - Mike Bell
- Walgreens Boots Alliance, Nottingham NG90 1BS, UK; (M.B.); (C.O.)
| | - Clare O’Connor
- Walgreens Boots Alliance, Nottingham NG90 1BS, UK; (M.B.); (C.O.)
| | - Desmond J. Tobin
- The Charles Institute of Dermatology, School of Medicine, University College Dublin, D04 V1W8 Dublin, Ireland;
- The Conway Institute of Biomolecular and Biomedical Research, University College Dublin, D04 V1W8 Dublin, Ireland
- Correspondence: ; Tel.: +353-(0)-1-716-6262
| |
Collapse
|
134
|
Lyamzaev KG, Knorre DA, Chernyak BV. Mitoptosis, Twenty Years After. BIOCHEMISTRY (MOSCOW) 2021; 85:1484-1498. [PMID: 33705288 DOI: 10.1134/s0006297920120020] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
In 1999 V. P. Skulachev proposed the term "mitoptosis" to refer to the programmed elimination of mitochondria in living cells. According to the initial thought, mitoptosis serves to protect cells from malfunctioning of the damaged mitochondria. At the same time, a new mechanism of the complete mitochondria elimination was found under the conditions of massive mitochondrial damage associated with oxidative stress. In this experimental model, mitochondrial cluster formation in the perinuclear region leads to the formation of "mitoptotic body" surrounded by a single-layer membrane and subsequent release of mitochondria from the cell. Later, it was found that mitoptosis plays an important role in various normal and pathological processes that are not necessarily associated with the mitochondrial damage. It was found that mitoptosis takes place during cell differentiation, self-maintenance of hematopoietic stem cells, metabolic remodelling, and elimination of the paternal mitochondria in organisms with the maternal inheritance of the mitochondrial DNA. Moreover, the associated with mitoptosis release of mitochondrial components into the blood may be involved in the transmission of signals between cells, but also leads to the development of inflammatory and autoimmune diseases. Mitoptosis can be attributed to the asymmetric inheritance of mitochondria in the division of yeast and some animal cells, when the defective mitochondria are transferred to one of the newly formed cells. Finally, a specific form of mitoptosis appears to be selective elimination of mitochondria with deleterious mutations in whole follicular ovarian cells in mammals. During formation of the primary follicle, the mitochondrial DNA copy number is significantly reduced. After division, the cells that receive predominantly mitochondria with deleterious mutations in their mtDNA die, thereby reducing the likelihood of transmission of these mutations to offspring. Further study of the mechanisms of mitoptosis in normal and pathological conditions is important both for understanding the processes of development and aging, and for designing therapeutic approaches for inflammatory, neurodegenerative and other diseases.
Collapse
Affiliation(s)
- K G Lyamzaev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - D A Knorre
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia.,Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow, 119991, Russia
| | - B V Chernyak
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia.
| |
Collapse
|
135
|
Actin cables and comet tails organize mitochondrial networks in mitosis. Nature 2021; 591:659-664. [PMID: 33658713 PMCID: PMC7990722 DOI: 10.1038/s41586-021-03309-5] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 01/29/2021] [Indexed: 12/01/2022]
Abstract
Symmetric cell division requires the even partitioning of genetic information and cytoplasmic contents between daughter cells. While the mechanisms coordinating the segregation of the genome are well known, the processes which ensure organelle segregation between daughter cells remain less well-understood1. Here, we identify multiple actin assemblies that play distinct but complementary roles in mitochondrial organization and inheritance in mitosis. First, we find a dense meshwork of subcortical actin cables assembled throughout the mitotic cytoplasm. This network scaffolds the endoplasmic reticulum and organizes three-dimensional mitochondrial positioning to ensure the equal segregation of mitochondrial mass at cytokinesis. Second, we identify a dynamic wave of actin filaments reversibly assembling on the surface of mitochondria through mitosis. Mitochondria sampled by this wave are enveloped within actin clouds that can spontaneously break symmetry to form elongated comet tails. Mitochondrial comet tails promote randomly directed bursts of movement that shuffle mitochondrial position within the mother cell to randomize inheritance of healthy and damaged mitochondria between daughter cells. Thus, parallel mechanisms mediated by the actin cytoskeleton ensure both equal and random inheritance of mitochondria in symmetrically dividing cells.
Collapse
|
136
|
Mohrin M. Mito-managing ROS & redox to reboot the immune system: Tapping mitochondria & redox management to extend the reach of hematopoietic stem cell transplantation. Free Radic Biol Med 2021; 165:38-53. [PMID: 33486089 DOI: 10.1016/j.freeradbiomed.2021.01.034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/11/2021] [Accepted: 01/13/2021] [Indexed: 12/31/2022]
Abstract
Hematopoietic stem cells (HSCs) are responsible for life-long production of blood and immune cells. HSC transplantation (HSCT) is the original cell therapy which can cure hematological disorders but also has the potential to treat other diseases if technical and safety barriers are overcome. To maintain homeostatic hematopoiesis or to restore hematopoiesis during transplantation HSCs must perform both self-renewal, replication of themselves, and differentiation, generation of mature blood and immune cells. These are just two of the cell fate choices HSCs have; the transitional phases where HSCs undergo these cell fate decisions are regulated by reduction-oxidation (redox) signaling, mitochondrial activity, and cellular metabolism. Recent studies revealed that mitochondria, a key source of redox signaling components, are central to HSC cell fate decisions. Here we highlight how mitochondria serve as hubs in HSCs to manage redox signaling and metabolism and thus guide HSC fate choices. We focus on how mitochondrial activity is modulated by their clearance, biogenesis, dynamics, distribution, and quality control in HSCs. We also note how modulating mitochondria in HSCs can help overcome technical barriers limiting further use of HSCT.
Collapse
Affiliation(s)
- Mary Mohrin
- Immunology Discovery, Genentech, Inc. 1 DNA Way, South San Francisco, CA, 94080, USA.
| |
Collapse
|
137
|
"Empowering" Cardiac Cells via Stem Cell Derived Mitochondrial Transplantation- Does Age Matter? Int J Mol Sci 2021; 22:ijms22041824. [PMID: 33673127 PMCID: PMC7918132 DOI: 10.3390/ijms22041824] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/08/2021] [Accepted: 02/09/2021] [Indexed: 12/19/2022] Open
Abstract
With cardiovascular diseases affecting millions of patients, new treatment strategies are urgently needed. The use of stem cell based approaches has been investigated during the last decades and promising effects have been achieved. However, the beneficial effect of stem cells has been found to being partly due to paracrine functions by alterations of their microenvironment and so an interesting field of research, the “stem- less” approaches has emerged over the last years using or altering the microenvironment, for example, via deletion of senescent cells, application of micro RNAs or by modifying the cellular energy metabolism via targeting mitochondria. Using autologous muscle-derived mitochondria for transplantations into the affected tissues has resulted in promising reports of improvements of cardiac functions in vitro and in vivo. However, since the targeted treatment group represents mainly elderly or otherwise sick patients, it is unclear whether and to what extent autologous mitochondria would exert their beneficial effects in these cases. Stem cells might represent better sources for mitochondria and could enhance the effect of mitochondrial transplantations. Therefore in this review we aim to provide an overview on aging effects of stem cells and mitochondria which might be important for mitochondrial transplantation and to give an overview on the current state in this field together with considerations worthwhile for further investigations.
Collapse
|
138
|
Courtois S, de Luxán-Delgado B, Penin-Peyta L, Royo-García A, Parejo-Alonso B, Jagust P, Alcalá S, Rubiolo JA, Sánchez L, Sainz B, Heeschen C, Sancho P. Inhibition of Mitochondrial Dynamics Preferentially Targets Pancreatic Cancer Cells with Enhanced Tumorigenic and Invasive Potential. Cancers (Basel) 2021; 13:698. [PMID: 33572276 PMCID: PMC7914708 DOI: 10.3390/cancers13040698] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 01/31/2021] [Accepted: 02/05/2021] [Indexed: 12/11/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the deadliest tumors, partly due to its intrinsic aggressiveness, metastatic potential, and chemoresistance of the contained cancer stem cells (CSCs). Pancreatic CSCs strongly rely on mitochondrial metabolism to maintain their stemness, therefore representing a putative target for their elimination. Since mitochondrial homeostasis depends on the tightly controlled balance between fusion and fission processes, namely mitochondrial dynamics, we aim to study this mechanism in the context of stemness. In human PDAC tissues, the mitochondrial fission gene DNM1L (DRP1) was overexpressed and positively correlated with the stemness signature. Moreover, we observe that primary human CSCs display smaller mitochondria and a higher DRP1/MFN2 expression ratio, indicating the activation of the mitochondrial fission. Interestingly, treatment with the DRP1 inhibitor mDivi-1 induced dose-dependent apoptosis, especially in CD133+ CSCs, due to the accumulation of dysfunctional mitochondria and the subsequent energy crisis in this subpopulation. Mechanistically, mDivi-1 inhibited stemness-related features, such as self-renewal, tumorigenicity, and invasiveness and chemosensitized the cells to the cytotoxic effects of Gemcitabine. In summary, mitochondrial fission is an essential process for pancreatic CSCs and represents an attractive target for designing novel multimodal treatments that will more efficiently eliminate cells with high tumorigenic potential.
Collapse
Affiliation(s)
- Sarah Courtois
- Translational Research Unit, Hospital Universitario Miguel Servet, IIS Aragon, 50009 Zaragoza, Spain; (S.C.); (A.R.-G.); (B.P.-A.)
| | - Beatriz de Luxán-Delgado
- Centre for Stem Cells in Cancer & Ageing, Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, UK; (B.d.L.-D.); (L.P.-P.); (P.J.)
| | - Laure Penin-Peyta
- Centre for Stem Cells in Cancer & Ageing, Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, UK; (B.d.L.-D.); (L.P.-P.); (P.J.)
| | - Alba Royo-García
- Translational Research Unit, Hospital Universitario Miguel Servet, IIS Aragon, 50009 Zaragoza, Spain; (S.C.); (A.R.-G.); (B.P.-A.)
| | - Beatriz Parejo-Alonso
- Translational Research Unit, Hospital Universitario Miguel Servet, IIS Aragon, 50009 Zaragoza, Spain; (S.C.); (A.R.-G.); (B.P.-A.)
| | - Petra Jagust
- Centre for Stem Cells in Cancer & Ageing, Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, UK; (B.d.L.-D.); (L.P.-P.); (P.J.)
| | - Sonia Alcalá
- Department of Biochemistry, School of Medicine, Instituto de Investigaciones Biomédicas (IIBm) “Alberto Sols” CSIC-UAM, Autónoma University of Madrid (UAM), 28029 Madrid, Spain; (S.A.); (B.S.J.)
- Chronic Diseases and Cancer, Area 3, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28029 Madrid, Spain
| | - Juan A. Rubiolo
- Department of Zoology, Genetics and Physical Anthropology, Veterinary Faculty, Universidad de Santiago de Compostela, 27002 Lugo, Spain; (J.A.R.); (L.S.)
| | - Laura Sánchez
- Department of Zoology, Genetics and Physical Anthropology, Veterinary Faculty, Universidad de Santiago de Compostela, 27002 Lugo, Spain; (J.A.R.); (L.S.)
| | - Bruno Sainz
- Department of Biochemistry, School of Medicine, Instituto de Investigaciones Biomédicas (IIBm) “Alberto Sols” CSIC-UAM, Autónoma University of Madrid (UAM), 28029 Madrid, Spain; (S.A.); (B.S.J.)
- Chronic Diseases and Cancer, Area 3, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28029 Madrid, Spain
| | - Christopher Heeschen
- Center for Single-Cell Omics, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Patricia Sancho
- Translational Research Unit, Hospital Universitario Miguel Servet, IIS Aragon, 50009 Zaragoza, Spain; (S.C.); (A.R.-G.); (B.P.-A.)
| |
Collapse
|
139
|
Weiner-Gorzel K, Murphy M. Mitochondrial dynamics, a new therapeutic target for Triple Negative Breast Cancer. Biochim Biophys Acta Rev Cancer 2021; 1875:188518. [PMID: 33545296 DOI: 10.1016/j.bbcan.2021.188518] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 01/14/2021] [Accepted: 01/29/2021] [Indexed: 12/11/2022]
Abstract
Triple Negative Breast Cancer (TNBC) is an aggressive tumour with patients survival rarely exceeding five years. TNBC tumours are larger in size, more chemoresistant, highly proliferative and usually more enriched in stem and immune cells comparing to other breast cancer subtypes. Functionally, these changes are dependent on a high-quality mitochondrial pool. Mitochondrial health is constantly assessed and appropriately improved by mitochondrial dynamics (cycles of mitochondrial fusion and division). Recent advances in understanding of mitochondrial dynamics in TNBC has demonstrated its critical importance in tumour growth and metastasis. This review explores current knowledge of mitochondrial dynamics in TNBC and discusses targeting this pathway clinically to improve outcomes for patients.
Collapse
Affiliation(s)
- K Weiner-Gorzel
- Conway Institute, UCD School of Medicine, University College Dublin, Belfield, Dublin, Ireland; Department of General Medicine, St. Vincent University Hospital, Elm Park, Dublin, Ireland.
| | - M Murphy
- Conway Institute, UCD School of Medicine, University College Dublin, Belfield, Dublin, Ireland
| |
Collapse
|
140
|
Ren K, Zhou D, Wang M, Li E, Hou C, Su Y, Zou Q, Zhou P, Liu X. RACGAP1 modulates ECT2-Dependent mitochondrial quality control to drive breast cancer metastasis. Exp Cell Res 2021; 400:112493. [PMID: 33485843 DOI: 10.1016/j.yexcr.2021.112493] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 01/13/2021] [Accepted: 01/16/2021] [Indexed: 02/08/2023]
Abstract
Most cancer deaths are due to the colonization of tumor cells in distant organs. More evidence indicates that overexpression of RACGAP1 plays a critical role in cancer metastasis. However, the underlying mechanism still remains poorly understood. Here we found that RACGAP1 promoted breast cancer metastasis through regulating mitochondrial quality control. Overexpression of RACGAP1 in breast cancer cells led to the fragmentation of mitochondria, increased mitophagy intensity, mitochondrial turnover, and aerobic glycolysis ATP production. We showed that RACGAP1 promoted mitochondrial fission through recruiting ECT2 during anaphase and subsequently had activated ERK-DRP1 pathway. We further demonstrated the phosphorylation of RACGAP1 is essential for its ability of binding with ECT2 and its downstream effects. RACGAP1 overexpression also increased the expression of PGC-1a, a key mitochondrial biogenesis regulator, presumably by the increased mitophagy intensity induced by RACGAP1. PGC-1a increased the enrichment of DNMT1 in mitochondria, mitochondrial DNMT1 augmented mitochondrial DNA methylation and upregulated mitochondrial genome transcription. Our data indicated that RACGAP1 simultaneously facilitated mitophagy and mitochondrial biogenesis through regulating DRP1 phosphorylation and PGC-1a expression, eventually improved mitochondrial quality control in breast cancer cells. Our study provided a new angle in understanding the RACGAP1-overexpression related malignancy in breast cancer patients.
Collapse
Affiliation(s)
- Kehan Ren
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Danmei Zhou
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Meili Wang
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China; Department of Pathology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, 200240, China
| | - Ermin Li
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Chenjian Hou
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Ying Su
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Qiang Zou
- Department of Surgery, Huashan Hospital, Fudan University, Shanghai, 200032, China
| | - Ping Zhou
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Xiuping Liu
- Department of Pathology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, 200240, China.
| |
Collapse
|
141
|
Royall LN, Jessberger S. How stem cells remember their past. Curr Opin Cell Biol 2021; 69:17-22. [PMID: 33429112 DOI: 10.1016/j.ceb.2020.12.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 11/26/2020] [Accepted: 12/12/2020] [Indexed: 12/16/2022]
Abstract
Somatic stem cells are required for tissue development, homeostasis, and repair. Recent data suggested that previous biographical experiences of individual stem cells influence their behavior in the context of tissue formation and govern stem cell responses to external stimuli. Here we provide a concise review how a cell's biography, for example, previous rounds of cell divisions or the age-dependent accumulation of cellular damage, is remembered in stem cells and how previous experiences affect the segregation of cellular components, thus guiding cellular behavior in vertebrate stem cells. Further, we suggest future directions of research that may help to unravel the molecular underpinnings of how past experiences guide future cellular behavior.
Collapse
Affiliation(s)
- Lars N Royall
- Laboratory of Neural Plasticity, Faculties of Medicine and Science, Brain Research Institute, University of Zurich, 8057, Zurich, Switzerland
| | - Sebastian Jessberger
- Laboratory of Neural Plasticity, Faculties of Medicine and Science, Brain Research Institute, University of Zurich, 8057, Zurich, Switzerland.
| |
Collapse
|
142
|
Lenz LS, Faccioni JL, Bracco PA, Santos JAF, Pereira LC, Buss JH, Tamborindeguy MT, Torgo D, Monteiro T, Mantovani GB, Santo CN, Marcolin JC, Dalsin E, Vigo A, Callegari-Jacques SM, Silva AO, Onzi GR, Begnini KR, Lenz G. Cancer Cell Fitness Is Dynamic. Cancer Res 2020; 81:1040-1051. [PMID: 33355182 DOI: 10.1158/0008-5472.can-20-2488] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 09/22/2020] [Accepted: 12/18/2020] [Indexed: 11/16/2022]
Abstract
Several phenotypes that impact the capacity of cancer cells to survive and proliferate are dynamic. Here we used the number of cells in colonies as an assessment of fitness and devised a novel method called Dynamic Fitness Analysis (DynaFit) to measure the dynamics in fitness over the course of colony formation. DynaFit is based on the variance in growth rate of a population of founder cells compared with the variance in growth rate of colonies with different sizes. DynaFit revealed that cell fitness in cancer cell lines, primary cancer cells, and fibroblasts under unhindered growth conditions is dynamic. Key cellular mechanisms such as ERK signaling and cell-cycle synchronization differed significantly among cells in colonies after 2 to 4 generations and became indistinguishable from randomly sampled cells regarding these features. In the presence of cytotoxic agents, colonies reduced their variance in growth rate when compared with their founder cell, indicating a dynamic nature in the capacity to survive and proliferate in the presence of a drug. This finding was supported by measurable differences in DNA damage and induction of senescence among cells of colonies. The presence of epigenetic modulators during the formation of colonies stabilized their fitness for at least four generations. Collectively, these results support the understanding that cancer cell fitness is dynamic and its modulation is a fundamental aspect to be considered in comprehending cancer cell biology and its response to therapeutic interventions. SIGNIFICANCE: Cancer cell fitness is dynamic over the course of the formation of colonies. This dynamic behavior is mediated by asymmetric mitosis, ERK activity, cell-cycle duration, and DNA repair capacity in the absence or presence of a drug.
Collapse
Affiliation(s)
- Luana S Lenz
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
- Departamento de Biofísica, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
| | - Juliano L Faccioni
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
- Departamento de Biofísica, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
| | - Paula A Bracco
- Programa de Pós-Graduação em Epidemiologia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
| | - Jephesson A F Santos
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
- Departamento de Biofísica, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
| | - Luiza C Pereira
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
- Departamento de Biofísica, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
| | - Julieti H Buss
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
- Departamento de Biofísica, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
| | - Mauricio T Tamborindeguy
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
- Departamento de Biofísica, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
| | - Daphne Torgo
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
- Departamento de Biofísica, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
| | - Thayana Monteiro
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
- Departamento de Biofísica, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
| | - Giovana B Mantovani
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
- Departamento de Biofísica, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
| | - Carolina N Santo
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
- Departamento de Biofísica, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
| | - Julia C Marcolin
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
- Departamento de Biofísica, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
| | - Eloisa Dalsin
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
- Departamento de Biofísica, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
| | - Alvaro Vigo
- Programa de Pós-Graduação em Epidemiologia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
- Departamento de Estatística, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
| | - Sidia M Callegari-Jacques
- Departamento de Estatística, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
| | - Andrew O Silva
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
- Departamento de Biofísica, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
| | - Giovana R Onzi
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
- Departamento de Biofísica, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
| | - Karine R Begnini
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
- Departamento de Biofísica, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
| | - Guido Lenz
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil.
- Departamento de Biofísica, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
| |
Collapse
|
143
|
Cairns G, Thumiah-Mootoo M, Burelle Y, Khacho M. Mitophagy: A New Player in Stem Cell Biology. BIOLOGY 2020; 9:E481. [PMID: 33352783 PMCID: PMC7766552 DOI: 10.3390/biology9120481] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 12/02/2020] [Accepted: 12/03/2020] [Indexed: 02/06/2023]
Abstract
The fundamental importance of functional mitochondria in the survival of most eukaryotic cells, through regulation of bioenergetics, cell death, calcium dynamics and reactive oxygen species (ROS) generation, is undisputed. However, with new avenues of research in stem cell biology these organelles have now emerged as signaling entities, actively involved in many aspects of stem cell functions, including self-renewal, commitment and differentiation. With this recent knowledge, it becomes evident that regulatory pathways that would ensure the maintenance of mitochondria with state-specific characteristics and the selective removal of organelles with sub-optimal functions must play a pivotal role in stem cells. As such, mitophagy, as an essential mitochondrial quality control mechanism, is beginning to gain appreciation within the stem cell field. Here we review and discuss recent advances in our knowledge pertaining to the roles of mitophagy in stem cell functions and the potential contributions of this specific quality control process on to the progression of aging and diseases.
Collapse
Affiliation(s)
- George Cairns
- Interdisciplinary School of Health Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, ON K1N 7K4, Canada;
| | - Madhavee Thumiah-Mootoo
- Department of Cellular & Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada;
| | - Yan Burelle
- Interdisciplinary School of Health Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, ON K1N 7K4, Canada;
- Department of Cellular & Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada;
| | - Mireille Khacho
- Center for Neuromuscular Disease, Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, Ottawa Institute of Systems Biology (OISB), University of Ottawa, Ottawa, ON K1H 8M5, Canada
| |
Collapse
|
144
|
Broxmeyer HE, Liu Y, Kapur R, Orschell CM, Aljoufi A, Ropa JP, Trinh T, Burns S, Capitano ML. Fate of Hematopoiesis During Aging. What Do We Really Know, and What are its Implications? Stem Cell Rev Rep 2020; 16:1020-1048. [PMID: 33145673 PMCID: PMC7609374 DOI: 10.1007/s12015-020-10065-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/19/2020] [Indexed: 12/11/2022]
Abstract
There is an ongoing shift in demographics such that older persons will outnumber young persons in the coming years, and with it age-associated tissue attrition and increased diseases and disorders. There has been increased information on the association of the aging process with dysregulation of hematopoietic stem (HSC) and progenitor (HPC) cells, and hematopoiesis. This review provides an extensive up-to date summary on the literature of aged hematopoiesis and HSCs placed in context of potential artifacts of the collection and processing procedure, that may not be totally representative of the status of HSCs in their in vivo bone marrow microenvironment, and what the implications of this are for understanding aged hematopoiesis. This review covers a number of interactive areas, many of which have not been adequately explored. There are still many unknowns and mechanistic insights to be elucidated to better understand effects of aging on the hematopoietic system, efforts that will take multidisciplinary approaches, and that could lead to means to ameliorate at least some of the dysregulation of HSCs and HPCs associated with the aging process. Graphical Abstract.
Collapse
Affiliation(s)
- Hal E Broxmeyer
- Department of Microbiology and Immunology, Indiana University School of Medicine, 950 West Walnut Street, R2-302, Indianapolis, IN, 46202-5181, USA.
| | - Yan Liu
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Reuben Kapur
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Christie M Orschell
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Arafat Aljoufi
- Department of Microbiology and Immunology, Indiana University School of Medicine, 950 West Walnut Street, R2-302, Indianapolis, IN, 46202-5181, USA
| | - James P Ropa
- Department of Microbiology and Immunology, Indiana University School of Medicine, 950 West Walnut Street, R2-302, Indianapolis, IN, 46202-5181, USA
| | - Thao Trinh
- Department of Microbiology and Immunology, Indiana University School of Medicine, 950 West Walnut Street, R2-302, Indianapolis, IN, 46202-5181, USA
| | - Sarah Burns
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Maegan L Capitano
- Department of Microbiology and Immunology, Indiana University School of Medicine, 950 West Walnut Street, R2-302, Indianapolis, IN, 46202-5181, USA.
| |
Collapse
|
145
|
Praharaj PP, Panigrahi DP, Bhol CS, Patra S, Mishra SR, Mahapatra KK, Behera BP, Singh A, Patil S, Bhutia SK. Mitochondrial rewiring through mitophagy and mitochondrial biogenesis in cancer stem cells: A potential target for anti-CSC cancer therapy. Cancer Lett 2020; 498:217-228. [PMID: 33186655 DOI: 10.1016/j.canlet.2020.10.036] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 10/12/2020] [Accepted: 10/23/2020] [Indexed: 02/06/2023]
Abstract
Cancer stem cells (CSCs) are distinct subpopulations of cancer cells with stem cell-like abilities and are more resilient to chemotherapy, causing tumor relapse. Mitophagy, a selective form of autophagy, removes damaged unwanted mitochondria from cells through a lysosome-based degradation pathway to maintain cellular homeostasis. CSCs use mitophagy as a chief survival response mechanism for their growth, propagation, and tumorigenic ability. Mitochondrial biogenesis is a crucial cellular event replacing damaged mitochondria through the coordinated regulation of several transcription factors to achieve the bioenergetic demands of the cell. Because of the high mitochondrial content in CSCs, mitochondrial biogenesis is an interesting target to address the resistance mechanisms of anti-CSC therapy. However, to what extent both mitophagy and mitochondrial biogenesis are vital in promoting stemness, metabolic reprogramming, and drug resistance in CSCs has yet to be established. Therefore, in this review, we focus on understanding the interesting aspects of mitochondrial rewiring that involve mitophagy and mitochondrial biogenesis in CSCs. We also discuss their coordinated regulation in the elimination of CSCs, with respect to stemness and differentiation of the CSC phenotype, and the different aspects of tumorigenesis such as cancer initiation, progression, resistance, and tumor relapse. Finally, we address several other unanswered questions relating to targeted anti-CSC cancer therapy, which improves patient survival.
Collapse
Affiliation(s)
- Prakash Priyadarshi Praharaj
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology, Rourkela, 769008, Odisha, India
| | - Debasna Pritimanjari Panigrahi
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology, Rourkela, 769008, Odisha, India
| | - Chandra Sekhar Bhol
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology, Rourkela, 769008, Odisha, India
| | - Srimanta Patra
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology, Rourkela, 769008, Odisha, India
| | - Soumya Ranjan Mishra
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology, Rourkela, 769008, Odisha, India
| | - Kewal Kumar Mahapatra
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology, Rourkela, 769008, Odisha, India
| | - Bishnu Prasad Behera
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology, Rourkela, 769008, Odisha, India
| | - Amruta Singh
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology, Rourkela, 769008, Odisha, India
| | - Shankargouda Patil
- Department of Maxillofacial Surgery and Diagnostic Sciences, Division of Oral Pathology, College of Dentistry, Jazan University, Saudi Arabia
| | - Sujit Kumar Bhutia
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology, Rourkela, 769008, Odisha, India.
| |
Collapse
|
146
|
Goodman JS, King GA, Ünal E. Cellular quality control during gametogenesis. Exp Cell Res 2020; 396:112247. [PMID: 32882217 PMCID: PMC7572901 DOI: 10.1016/j.yexcr.2020.112247] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 08/18/2020] [Accepted: 08/23/2020] [Indexed: 12/12/2022]
Abstract
A hallmark of aging is the progressive accumulation of cellular damage. Age-induced damage arises due to a decrease in organelle function along with a decline in protein quality control. Although somatic tissues deteriorate with age, the germline must maintain cellular homeostasis in order to ensure the production of healthy progeny. While germline quality control has been primarily studied in multicellular organisms, recent evidence suggests the existence of gametogenesis-specific quality control mechanisms in unicellular eukaryotes, highlighting the evolutionary conservation of meiotic events beyond chromosome morphogenesis. Notably, budding yeast eliminates age-induced damage during meiotic differentiation, employing novel organelle and protein quality control mechanisms to produce young and healthy gametes. Similarly, organelle and protein quality control is present in metazoan gametogenesis; however, whether and how these mechanisms contribute to cellular rejuvenation requires further investigation. Here, we summarize recent findings that describe organelle and protein quality control in budding yeast gametogenesis, examine similar quality control mechanisms in metazoan development, and identify research directions that will improve our understanding of meiotic cellular rejuvenation.
Collapse
Affiliation(s)
- Jay S Goodman
- Department of Molecular and Cell Biology, University of California Berkeley, 94720, USA
| | - Grant A King
- Department of Molecular and Cell Biology, University of California Berkeley, 94720, USA
| | - Elçin Ünal
- Department of Molecular and Cell Biology, University of California Berkeley, 94720, USA.
| |
Collapse
|
147
|
Sánchez-Alvarez R, De Francesco EM, Fiorillo M, Sotgia F, Lisanti MP. Mitochondrial Fission Factor (MFF) Inhibits Mitochondrial Metabolism and Reduces Breast Cancer Stem Cell (CSC) Activity. Front Oncol 2020; 10:1776. [PMID: 33194575 PMCID: PMC7642822 DOI: 10.3389/fonc.2020.01776] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Accepted: 08/10/2020] [Indexed: 12/25/2022] Open
Abstract
Elevated mitochondrial biogenesis and metabolism represent key features of breast cancer stem cells (CSCs), whose propagation is conducive to disease onset and progression. Therefore, interfering with mitochondria biology and function may be regarded as a useful approach to eradicate CSCs. Here, we used the breast cancer cell line MCF7 as a model system to interrogate how mitochondrial fission contributes to the development of mitochondrial dysfunction toward the inhibition of metabolic flux and stemness. We generated an isogenic MCF7 cell line transduced with Mitochondrial Fission Factor (MCF7-MFF), which is primarily involved in mitochondrial fission. We evaluated the biochemical, molecular and functional properties of MCF7-MFF cells, as compared to control MCF7 cells transduced with the empty vector (MCF7-Control). We observed that MFF over-expression reduces both mitochondrial mass and activity, as evaluated using the mitochondrial probes MitroTracker Red and MitoTracker Orange, respectively. The analysis of metabolic flux using the Seahorse XFe96 revealed the inhibition of OXPHOS and glycolysis in MCF7-MFF cells, suggesting that increased mitochondrial fission may impair the biochemical properties of these organelles. Notably, CSCs activity, assessed by 3D-tumorsphere assays, was reduced in MCF7-MFF cells. A similar trend was observed for the activity of ALDH, a well-established marker of stemness. We conclude that enhanced mitochondrial fission may compromise CSCs propagation, through the impairment of mitochondrial function, possibly leading to a quiescent cell phenotype. Unbiased proteomic analysis revealed that proteins involved in mitochondrial dysfunction, oxidative stress-response, fatty acid metabolism and hypoxia signaling are among the most highly up-regulated in MCF7-MFF cells. Of note, integrated analysis of top regulatory networks obtained from unbiased proteomics in MCF7-MFF cells predicts that this cell phenotype activates signaling systems and effectors involved in the inhibition of cell survival and adhesion, together with the activation of specific breast cancer cell death programs. Overall, our study shows that unbalanced and abnormal activation of mitochondrial fission may drive the impairment of mitochondrial metabolic function, leading to inhibition of CSC propagation, and the activation of quiescence programs. Exploiting the potential of mitochondria to control pivotal events in tumor biology may, therefore, represent a useful tool to prevent disease progression.
Collapse
Affiliation(s)
- Rosa Sánchez-Alvarez
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, School of Medical Sciences, University of Manchester, Manchester, United Kingdom
| | - Ernestina Marianna De Francesco
- Translational Medicine, School of Science, Engineering and Environment (SEE), Biomedical Research Centre (BRC), University of Salford, Greater Manchester, United Kingdom.,Department of Clinical and Experimental Medicine, University of Catania, and ARNAS Garibaldi, Catania, Italy
| | - Marco Fiorillo
- Translational Medicine, School of Science, Engineering and Environment (SEE), Biomedical Research Centre (BRC), University of Salford, Greater Manchester, United Kingdom
| | - Federica Sotgia
- Translational Medicine, School of Science, Engineering and Environment (SEE), Biomedical Research Centre (BRC), University of Salford, Greater Manchester, United Kingdom
| | - Michael P Lisanti
- Translational Medicine, School of Science, Engineering and Environment (SEE), Biomedical Research Centre (BRC), University of Salford, Greater Manchester, United Kingdom
| |
Collapse
|
148
|
De R, Mazumder S, Bandyopadhyay U. Mediators of mitophagy that regulate mitochondrial quality control play crucial role in diverse pathophysiology. Cell Biol Toxicol 2020; 37:333-366. [PMID: 33067701 DOI: 10.1007/s10565-020-09561-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 10/05/2020] [Indexed: 02/06/2023]
Abstract
Mitochondria are double membrane-bound cellular work-horses constantly functioning to regulate vital aspects of cellular metabolism, bioenergetics, proliferation and death. Biogenesis, homeostasis and regulated turnover of mitochondria are stringently regulated to meet the bioenergetic requirements. Diverse external and internal stimuli including oxidative stress, diseases, xenobiotics and even age profoundly affect mitochondrial integrity. Damaged mitochondria need immediate segregation and selective culling to maintain physiological homeostasis. Mitophagy is a specialised form of macroautophagy that constantly checks mitochondrial quality followed by elimination of rogue mitochondria by lysosomal targeting through multiple pathways tightly regulated and activated in context-specific manners. Mitophagy is implicated in diverse oxidative stress-associated metabolic, proliferating and degenerative disorders owing to the centrality of mitopathology in diseases as well as the common mandate to eliminate damaged mitochondria for restoring physiological homeostasis. With improved health care and growing demand for precision medicine, specifically targeting the keystone factors in pathogenesis, more exploratory studies are focused on mitochondrial quality control as underlying guardian of cellular pathophysiology. In this context, mitophagy emerged as a promising area to focus biomedical research for identifying novel therapeutic targets against diseases linked with physiological redox perturbation. The present review provides a comprehensive account of the recent developments on mitophagy along with precise discussion on its impact on major diseases and possibilities of therapeutic modulation.
Collapse
Affiliation(s)
- Rudranil De
- Amity Institute of Biotechnology, Amity University, Kolkata, Plot No: 36, 37 & 38, Major Arterial Road, Action Area II, Kadampukur Village, Newtown, Kolkata, West Bengal, 700135, India
| | - Somnath Mazumder
- Division of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, 4 Raja S.C. Mullick Road, Kolkata, West Bengal, 700032, India
- Department of Zoology, Raja Peary Mohan College, 1 Acharya Dhruba Pal Road, Uttarpara, West Bengal, 712258, India
| | - Uday Bandyopadhyay
- Division of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, 4 Raja S.C. Mullick Road, Kolkata, West Bengal, 700032, India.
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Rd, Scheme VIIM, Kankurgachi, Kolkata, West Bengal, 700054, India.
| |
Collapse
|
149
|
Webb M, Sideris DP. Intimate Relations-Mitochondria and Ageing. Int J Mol Sci 2020; 21:ijms21207580. [PMID: 33066461 PMCID: PMC7589147 DOI: 10.3390/ijms21207580] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 10/05/2020] [Accepted: 10/06/2020] [Indexed: 12/14/2022] Open
Abstract
Mitochondrial dysfunction is associated with ageing, but the detailed causal relationship between the two is still unclear. We review the major phenomenological manifestations of mitochondrial age-related dysfunction including biochemical, regulatory and energetic features. We conclude that the complexity of these processes and their inter-relationships are still not fully understood and at this point it seems unlikely that a single linear cause and effect relationship between any specific aspect of mitochondrial biology and ageing can be established in either direction.
Collapse
Affiliation(s)
- Michael Webb
- Mitobridge Inc., an Astellas Company, 1030 Massachusetts Ave, Cambridge, MA 02138, USA
| | - Dionisia P Sideris
- Mitobridge Inc., an Astellas Company, 1030 Massachusetts Ave, Cambridge, MA 02138, USA
| |
Collapse
|
150
|
Wan Y, Finkel T. The mitochondria regulation of stem cell aging. Mech Ageing Dev 2020; 191:111334. [PMID: 32818514 PMCID: PMC7541753 DOI: 10.1016/j.mad.2020.111334] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 08/09/2020] [Accepted: 08/11/2020] [Indexed: 01/07/2023]
Abstract
Mitochondrial dysfunction and stem cell exhaustion are among the nine separate hallmarks of aging. Emerging evidence however suggests that mitochondrial activity can have a profound influence on the self-renewal and function of stem cells, thus mechanistically linking mitochondrial function and stem cell decline. In this review, we discuss how accumulation of mtDNA mutations or alterations in mitochondrial dynamics, turnover, and signaling can modulate age-dependent stem cell function. Finally, we also describe how mitochondrial substrate utilization influences stem and progenitor activity. Together, this growing body of evidence suggests that modulation of mitochondrial activity might provide a strategy to slow or reverse age-dependent stem cell decline, and potentially, slow or reverse human aging.
Collapse
Affiliation(s)
- Yong Wan
- Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh/UPMC, USA; Aging Institute, University of Pittsburgh/UPMC, Pittsburgh, PA 15219, USA
| | - Toren Finkel
- Aging Institute, University of Pittsburgh/UPMC, Pittsburgh, PA 15219, USA; Division of Cardiology, Department of Medicine, University of Pittsburgh/UPMC, USA.
| |
Collapse
|