101
|
Abstract
Calcium channels are critical to normal cardiac function. They are involved in the generation and conduction of the action potential and in contraction. Three surface membrane channels have been identified. The L-type Ca channel is most abundant and is responsible for Ca entry into the cell that triggers contraction. T-type Ca channels are most prevalent in the conduction system and are probably involved in automaticity. A newly described TTX-sensitive calcium current may be important in "boosting" or enhancing conduction and contraction. The main intracellular Ca channel resides in the sarcoplasmic reticulum and is responsible for the release of the Ca that activates contraction. Oscillatory behavior of this channel influences the sarcolemmal membrane, causing delayed aftercontractions and arrhythmias such as those seen in digoxin toxicity. The on-going molecular characterization of these channels will enhance our knowledge of their normal function and dysfunction in disease states, leading to the development of new therapeutic agents to treat arrhythmias and contractile dysfunction.
Collapse
Affiliation(s)
- S R Shorofsky
- Departments of Physiology and Medicine, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| | | |
Collapse
|
102
|
Krebs J, Klemenz R. The ALG-2/AIP-complex, a modulator at the interface between cell proliferation and cell death? A hypothesis. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1498:153-61. [PMID: 11108958 DOI: 10.1016/s0167-4889(00)00091-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
During the development of an organism cell proliferation, differentiation and cell death are tightly balanced, and are controlled by a number of different regulators. Alterations in this balance are often observed in a variety of human diseases. The role of Ca(2+) as one of the key regulators of the cell is discussed with respect to two recently discovered proteins, ALG-2 and AIP, of which the former is a Ca(2+)-binding protein, and the latter is substrate to various kinases. The two proteins interact with each other in a Ca(2+)-dependent manner, and the role of the complex ALG-2/AIP as a possible modulator at the interface between cell proliferation and cell death is discussed.
Collapse
Affiliation(s)
- J Krebs
- Institute of Biochemistry, Swiss Federal Institute of Technology, Zurich, Switzerland.
| | | |
Collapse
|
103
|
da Silva CP, Guse AH. Intracellular Ca(2+) release mechanisms: multiple pathways having multiple functions within the same cell type? BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1498:122-33. [PMID: 11108956 DOI: 10.1016/s0167-4889(00)00089-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The elevation of the cytosolic and nuclear Ca(2+) concentration is a fundamental signal transduction mechanism in almost all eukaryotic cells. Interestingly, three Ca(2+)-mobilising second messengers, D-myo-inositol 1,4,5-trisphosphate (InsP(3)), cyclic adenosine diphosphoribose (cADPR), and nicotinic acid adenine dinucleotide phosphate (NAADP(+)) were identified in a phylogenetically wide range of different organisms. Moreover, in an as yet very limited number of cell types, sea urchin eggs, mouse pancreatic acinar cells, and human Jurkat T-lymphocytes, all three Ca(2+)-mobilising ligands have been shown to be involved in the generation of Ca(2+) signals. This situation raises the question why during evolution all three messengers have been conserved in the same cell type. From a theoretical point of view the following points may be considered: (i) redundant mechanisms ensuring intact Ca(2+) signalling even if one system does not work, (ii) the need for subcellularly localised Ca(2+) elevations to obtain a certain physiological response of the cell, and (iii) tight control of a physiological response of the cell by a temporal sequence of Ca(2+) signalling events. These theoretical considerations are compared to the current knowledge regarding the three messengers in sea urchin eggs, mouse pancreatic acinar cells, and human Jurkat T lymphocytes.
Collapse
Affiliation(s)
- C P da Silva
- University of Hamburg, University Clinic Hamburg-Eppendorf, Institute for Medical Biochemistry and Molecular Biology, Division of Cellular Signal Transduction, Grindelallee 117, D-20146, Hamburg, Germany
| | | |
Collapse
|
104
|
Zhang BX, Yeh CK, Hymer TK, Lifschitz MD, Katz MS. EGF inhibits muscarinic receptor-mediated calcium signaling in a human salivary cell line. Am J Physiol Cell Physiol 2000; 279:C1024-33. [PMID: 11003583 DOI: 10.1152/ajpcell.2000.279.4.c1024] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The effects of epidermal growth factor (EGF) on intracellular calcium ([Ca(2+)](i)) responses to the muscarinic agonist carbachol were studied in a human salivary cell line (HSY). Carbachol (10(-4) M)-stimulated [Ca(2+)](i) mobilization was inhibited by 40% after 48-h treatment with 5 x 10(-10) M EGF. EGF also reduced carbachol-induced [Ca(2+)](i) in Ca(2+)-free medium and Ca(2+) influx following repletion of extracellular Ca(2+). Under Ca(2+)-free conditions, thapsigargin, an inhibitor of Ca(2+) uptake to internal stores, induced similar [Ca(2+)](i) signals in control and EGF-treated cells, indicating that internal Ca(2+) stores were unaffected by EGF; however, in cells exposed to thapsigargin, Ca(2+) influx following Ca(2+) repletion was reduced by EGF. Muscarinic receptor density, assessed by binding of the muscarinic receptor antagonist L-[benzilic-4,4'-(3)HCN]quinuclidinyl benzilate ([(3)H]QNB), was decreased by 20% after EGF treatment. Inhibition of the carbachol response by EGF was not altered by phorbol ester-induced downregulation of protein kinase C (PKC) but was enhanced upon PKC activation by a diacylglycerol analog. Phosphorylation of mitogen-activated protein kinase (MAP kinase) and inhibition of the carbachol response by EGF were both blocked by the MAP kinase pathway inhibitor PD-98059. The results suggest that EGF decreases carbachol-induced Ca(2+) release from internal stores and also exerts a direct inhibitory action on Ca(2+) influx. A decline in muscarinic receptor density may contribute to EGF inhibition of carbachol responsiveness. The inhibitory effect of EGF is mediated by the MAP kinase pathway and is potentiated by a distinct modulatory cascade involving activation of PKC. EGF may play a physiological role in regulating muscarinic receptor-stimulated salivary secretion.
Collapse
Affiliation(s)
- B X Zhang
- Medical Research Service, Texas 78284, USA
| | | | | | | | | |
Collapse
|
105
|
Affiliation(s)
- A R Marks
- Center for Molecular Cardiology, Departments of Medicine and Pharmacology, Columbia University College of Physicians and Surgeons, New York, NY, USA.
| |
Collapse
|
106
|
Chen XP, Ding X, Daynes RA. Ganglioside control over IL-4 priming and cytokine production in activated T cells. Cytokine 2000; 12:972-85. [PMID: 10880242 DOI: 10.1006/cyto.1999.0596] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Our previous studies have shown that the enzymatic activities of Neu-1, an endogenous sialidase encoded in the murine MHC, are involved in promoting IL-4 synthesis by naive CD4(+)T cells. Our present studies have characterized responsible sialoconjugate targets of Neu-1 and questioned possible biochemical mechanisms responsible for their regulatory influences on IL-4 gene expression. These studies determined that treatment of T cells with the naturally occurring ganglioside GM3 inhibited the production of IL-4 without affecting the production of IL-2. An analysis of IL-4-primed CD4(+)T cells further demonstrated that GM3 treatment specifically inhibited the restimulated production of IL-4, IL-5 and IL-13, without inhibiting the production of IL-2 and IFN-gamma. The inhibitory effects of GM3 could be overcome by treatment with thapsigargin or ionomycin, suggesting ganglioside regulation occurs upstream of activation-induced calcium mobilization. GM3 treatment attenuated the level of calcium influx following CD3epsilon crosslinking, and CD4(+)T cells from Neu-1-deficient B10.SM strain mice (neu-1(a)and IL-4-deficient) expressed reduced levels of intracellular calcium following activation. Our results indicate that activities by membrane gangliosides can influence the cytokine programs in CD4(+)T cells, possibly through the modulation of calcium responses induced by T cell activation.
Collapse
Affiliation(s)
- X P Chen
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84132, USA
| | | | | |
Collapse
|
107
|
Sato K, Tokmakov AA, Fukami Y. Fertilization signalling and protein-tyrosine kinases. Comp Biochem Physiol B Biochem Mol Biol 2000; 126:129-48. [PMID: 10874161 DOI: 10.1016/s0305-0491(00)00192-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Fertilization is initiated by species-specific gamete cell recognition, i.e. sperm-egg interaction, followed by a rapid and sustained activation of multiple cellular and biochemical events, collectively called 'egg activation', which is indispensable for successful formation of zygotic nucleus and later embryogenesis. It is well known that sperm-induced egg activation is mediated by a transient release of calcium ions that originates from the sperm entry point and propagates through the entire egg cytoplasm. It is unclear, however, what kind of upstream events prelude to the calcium transient after sperm-egg interaction. Recently, much attention has been paid to the role of protein-tyrosine phosphorylation in egg activation process by a number of studies on some well-established model organisms. These includes marine invertebrates, frogs, and mammals. In this review, we will summarize the recent findings that begin to uncover a 'missing link' between sperm-egg interaction and egg activation with emphasis on the role of egg protein-tyrosine kinases (PTKs) in Xenopus egg fertilization.
Collapse
Affiliation(s)
- K Sato
- Laboratory of Molecular Biology, Biosignal Research Center, Kobe University, Nada, Japan.
| | | | | |
Collapse
|
108
|
Tolloczko B, Tao FC, Zacour ME, Martin JG. Tyrosine kinase-dependent calcium signaling in airway smooth muscle cells. Am J Physiol Lung Cell Mol Physiol 2000; 278:L1138-45. [PMID: 10835318 DOI: 10.1152/ajplung.2000.278.6.l1138] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Contractile agonists may stimulate mitogenic responses in airway smooth muscle by mechanisms that involve tyrosine kinases. The role of contractile agonist-evoked activation of tyrosine kinases in contractile signaling is not clear. We addressed this issue using cultured rat airway smooth muscle cells. In these cells, serotonin (5-HT, 1 microM) caused contraction (quantitated by a decrease in cell area), which was blocked by the tyrosine kinase inhibitor genistein (40 microM). Genistein and tyrphostin 23 (40 and 10 microM, respectively) significantly decreased 5-HT-evoked peak Ca(2+) responses, and the effect of genistein could be observed in the absence of extracellular Ca(2+). The specific inhibitor of mitogen-activated protein kinase kinase PD-98059 (30 microM) had no significant effect on peak Ca(2+) levels. Western analysis of cell extracts revealed that 5-HT caused a significant increase in tyrosine phosphorylation of proteins with molecular masses of approximately 70 kDa within 10 s of stimulation but no measurable tyrosine phosphorylation of the gamma isoform of phospholipase C (PLC-gamma). Tyrosine phosphorylation was inhibited by genistein. Furthermore, genistein (40 microM) significantly attenuated 5-HT-induced inositol phosphate production. We conclude that in airway smooth muscle contractile agonists acting on G protein-coupled receptors may activate tyrosine kinase(s), which in turn modulate calcium signaling by affecting, directly or indirectly, PLC-beta activity. It is unlikely that PLC-gamma or the mitogen-activated protein kinase pathway is involved in Ca(2+) signaling to 5-HT.
Collapse
Affiliation(s)
- B Tolloczko
- Seymour Heisler Laboratory of the Montreal Chest Institute Research Centre and Meakins-Christie Laboratories, Department of Medicine, McGill University, Montreal, Quebec, Canada
| | | | | | | |
Collapse
|
109
|
Santos AN, Langner J, Herrmann M, Riemann D. Aminopeptidase N/CD13 is directly linked to signal transduction pathways in monocytes. Cell Immunol 2000; 201:22-32. [PMID: 10805970 DOI: 10.1006/cimm.2000.1629] [Citation(s) in RCA: 94] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In the present study, we characterized in monocytes the rise in [Ca(2+)](i) evoked by monoclonal antibodies (mAbs) to aminopeptidase N (APN)/CD13, showing a two-phase calcium increase with a small-belled [Ca(2+)](i) rise due to the release of calcium from intracellular stores and a more sustained plateau due to the influx of calcium from the extracellular environment. Tyrosine kinase inhibitors were able to inhibit the rise in [Ca(2+)](i) induced by ligation APN/CD13, as were inhibitors of the phosphatidylinositol 3-kinase. For the first time we can show that mAbs to APN/CD13 provoke phosphorylation of the mitogen-activated protein kinases ERK1/2, JNK, and p38. Furthermore, we show that mRNA of the chemotactic cytokine IL-8 is upregulated under the influence of APN/CD13 ligation. Although the in vivo ligand as well as possible cooperating membrane molecules remains to be identified, our results suggest that the membrane ectoenzyme APN/CD13 is a novel signal transduction molecule in monocytes.
Collapse
Affiliation(s)
- A N Santos
- Institute of Medical Immunology, Martin Luther University, Strasse der OdF 6, Halle, D-06097, Germany
| | | | | | | |
Collapse
|
110
|
Johnson JD, Chang JP. Function- and agonist-specific Ca2+signalling: The requirement for and mechanism of spatial and temporal complexity in Ca2+signals. Biochem Cell Biol 2000. [DOI: 10.1139/o00-012] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Calcium signals have been implicated in the regulation of many diverse cellular processes. The problem of how information from extracellular signals is delivered with specificity and fidelity using fluctuations in cytosolic Ca2+concentration remains unresolved. The capacity of cells to generate Ca2+signals of sufficient spatial and temporal complexity is the primary constraint on their ability to effectively encode information through Ca2+. Over the past decade, a large body of literature has dealt with some basic features of Ca2+-handling in cells, as well as the multiplicity and functional diversity of intracellular Ca2+stores and extracellular Ca2+influx pathways. In principle, physiologists now have the necessary information to attack the problem of function- and agonist-specificity in Ca2+signal transduction. This review explores the data indicating that Ca2+release from diverse sources, including many types of intracellular stores, generates Ca2+signals with sufficient complexity to regulate the vast number of cellular functions that have been reported as Ca2+-dependent. Some examples where such complexity may relate to neuroendocrine regulation of hormone secretion/synthesis are discussed. We show that the functional and spatial heterogeneity of Ca2+stores generates Ca2+signals with sufficient spatiotemporal complexity to simultaneously control multiple Ca2+-dependent cellular functions in neuroendocrine systems.Key words: signal coding, IP3receptor, ryanodine receptor, endoplasmic reticulum, Golgi, secretory granules, mitochondria, exocytosis.
Collapse
|
111
|
Tasker L, Marshall-Clarke S. Antigen receptor signalling in apoptosis-resistant mutants of WEHI 231 cells. Immunology 2000; 99:385-93. [PMID: 10712668 PMCID: PMC2327163 DOI: 10.1046/j.1365-2567.2000.00976.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Ligation of membrane immunoglobulin M (mIgM) induces cell cycle arrest and apoptosis in the WEHI 231 B-lymphoma cell line. The molecular mechanisms which link receptor ligation and the nuclear events that underlie this response, have yet to be fully elucidated. Here we have examined the signals induced following mIgM cross-linking in variants of WEHI 231 that no longer undergo apoptosis in response to this stimulus. Tyrosine phosphorylation of cellular substrates in two of the variants is identical to that seen in wild-type cells but in one of the mutants, VS2.12, a restricted set of substrates becomes tyrosine phosphorylated. In a second variant (E8), mIgM cross-linking does not induce elevation of intracellular Ca2+, although tyrosine phosphorylation of PLCgamma2 is induced to an equivalent extent to that seen in WEHI 231 cells. A third variant, 2E10.F9, is resistant to apoptosis despite the fact that all signals analysed appear to be similar to those induced in wild-type cells. Our findings show that resistance to apoptosis can arise as a result of mutations affecting discrete stages of the mIgM signalling pathway. The mutant lines reported here show defects that have not yet been identified in previous studies and are likely to be useful tools in dissecting the signalling of cell death in B lymphocytes.
Collapse
Affiliation(s)
- L Tasker
- Department of Human Anatomy and Cell Biology, The University of Liverpool, New Medical School, Liverpool, UK
| | | |
Collapse
|
112
|
Berts A, Minneman KP. Tyrosine kinase inhibitors and Ca2+ signaling: direct interactions with fura-2. Eur J Pharmacol 2000; 389:35-40. [PMID: 10686293 DOI: 10.1016/s0014-2999(99)00854-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Selective inhibitors were used to study the role of tyrosine kinases in alpha(1A)-adrenoceptor-mediated responses in transfected PC12 cells. Ca(2+) responses to noradrenaline were measured using fura-2, and the effects of genistein, tyrphostin A25, and herbimycin A were examined. Neither genistein nor herbimycin A pretreatment altered noradrenaline-induced Ca(2+) responses, although tyrphostin A25 pretreatment caused some reduction. However, acute addition of genistein quickly reversed the apparent noradrenaline response, apparently, through a direct interaction with cytoplasmic fura-2. Both genistein and tyrphostin A25, at concentrations similar to those used to inhibit tyrosine kinases, markedly reduced fluorescence of fura-2 excited by both 340 and 380 nm, and genistein also reduced the 340/380 ratio. Tyrosine kinase inhibitors did not alter noradrenaline stimulated inositol phosphate formation in alpha(1A)-PC12 cells. These results suggest that tyrosine kinases are not involved in second messenger responses to alpha(1A)-adrenoceptors, but that tyrosine kinase inhibitors can interact directly with fura-2.
Collapse
MESH Headings
- Animals
- Benzoquinones
- Calcium Signaling/drug effects
- Cells, Cultured
- Dose-Response Relationship, Drug
- Enzyme Inhibitors/administration & dosage
- Enzyme Inhibitors/pharmacology
- Fura-2/metabolism
- Genistein/pharmacology
- Inositol Phosphates/biosynthesis
- Lactams, Macrocyclic
- Norepinephrine/pharmacology
- PC12 Cells
- Protein-Tyrosine Kinases/antagonists & inhibitors
- Protein-Tyrosine Kinases/physiology
- Quinones/pharmacology
- Rats
- Receptors, Adrenergic, alpha-1/genetics
- Receptors, Adrenergic, alpha-1/metabolism
- Receptors, Adrenergic, alpha-1/physiology
- Rifabutin/analogs & derivatives
- Spectrometry, Fluorescence
- Transfection
- Tyrphostins/pharmacology
Collapse
Affiliation(s)
- A Berts
- Department of Pharmacology, Emory University School of Medicine, Atlanta, GA, USA
| | | |
Collapse
|
113
|
Dotto GP. Signal transduction pathways controlling the switch between keratinocyte growth and differentiation. CRITICAL REVIEWS IN ORAL BIOLOGY AND MEDICINE : AN OFFICIAL PUBLICATION OF THE AMERICAN ASSOCIATION OF ORAL BIOLOGISTS 2000; 10:442-57. [PMID: 10634582 DOI: 10.1177/10454411990100040201] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Self-renewing epithelia are characterized by a high turnover rate and a fine balance between growth and differentiation. Such a balance is influenced by many exogenous factors, including gradients of diffusible molecules, cell/substrate adhesion contacts, and direct cell-cell communication. The inter-connection between these various extracellular signals and underlying intracellular pathways is clearly of great interest. Primary keratinocytes of either human or murine origin provide an ideal experimental system to elucidate early signaling events involved in the control of epithelial differentiation. Relative to established cell lines, use of a primary system eliminates the possibility of alterations in critical regulatory events which may occur during prolonged propagation in culture. Primary keratinocytes are easily grown in large numbers, and their differentiation can be induced under well-defined culture conditions. The ensuing rapid and homogeneous response is amenable to careful biochemical analysis. Gene transfer technology (transient transfections, adenoviral and retroviral vectors), together with the use of keratinocytes derived from gene knockout and transgenic mice, makes it possible to assess the specific contribution of individual genes to the control of the differentiation process. This review focuses on the significant progress that has been made over the last few years in our understanding of the specific signals that trigger keratinocyte differentiation, the underlying signaling pathways, and how they impinge on specific transcription and cell-cycle control mechanisms associated with the onset of keratinocyte differentiation. Recent developments and future directions in this important area of research will be highlighted.
Collapse
Affiliation(s)
- G P Dotto
- Cutaneous Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown 02129, USA
| |
Collapse
|
114
|
Pelassy C, Breittmayer JP, Aussel C. Regulation of phosphatidylserine synthesis in Jurkat T cell clones: caffeine bypasses CD3/TCR-induced protein tyrosine kinases and calcium signals. Biochem Biophys Res Commun 1999; 266:497-503. [PMID: 10600531 DOI: 10.1006/bbrc.1999.1841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Phosphatidylserine synthesis as measured by the incorporation of [(3)H]serine into phosphatidylserine (PtdSer) through the serine-base exchange enzyme system (serine-BEES) is markedly inhibited in Jurkat cells treated with caffeine. The caffeine-induced inhibition was compared to that observed in cells treated with either CD3 mAb or thapsigargin. While CD3- and thapsigargin-induced inhibition was related to the release of Ca(2+) from the endoplasmic reticulum (ER), a process that deprives the serine-BEES of its major cofactor, caffeine modified PtdSer synthesis in the absence of decreased Ca(2+) content of ER. Using Jurkat clones differing by the expression of cell surface markers or protein tyrosine kinases implicated in the CD3/TCR signal transmission pathway, we have shown that CD3 mAb-induced inhibition of PtdSer synthesis necessitates the expression of both the CD3/TCR and the protein tyrosine phosphatase CD45 at the cell surface as well as the presence of p56(lck) and ZAP-70 protein tyrosine kinases. By contrast, thapsigargin, a blocker of the Ca(2+)-ATPase of the ER, known for its Ca(2+) releasing properties, inhibited PtdSer synthesis in all the Jurkat clones tested, indicating that this compound bypasses the CD3/TCR-induced signals. Despite its lack of effect on Ca(2+) release from ER and on protein tyrosine phosphorylations, caffeine inhibited PtdSer synthesis in all the Jurkat clones. The use of several cAMP-inducing drugs and of others xanthine derivatives indicated that caffeine modify PtdSer synthesis either by a direct action on the serine-BEES or by a modification of the structure of the phospholipids used as substrate by the enzyme.
Collapse
Affiliation(s)
- C Pelassy
- INSERM U343, Hôpital de l'Archet, Nice cedex 03, 06202, France
| | | | | |
Collapse
|
115
|
Foti M, Cartier L, Piguet V, Lew DP, Carpentier JL, Trono D, Krause KH. The HIV Nef protein alters Ca(2+) signaling in myelomonocytic cells through SH3-mediated protein-protein interactions. J Biol Chem 1999; 274:34765-72. [PMID: 10574946 DOI: 10.1074/jbc.274.49.34765] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Human immunodeficiency virus Nef plays an important role in AIDS pathogenesis. In addition to the well known down-regulation of cell surface receptors (CD4, MHCI), Nef is able to alter cellular signaling. Of particular interest for this study is the ability of Nef to bind with a very high affinity to SH3 domains of myelomonocyte-specific protein-tyrosine kinases of the Src family (Src-like PTK). We have therefore investigated Ca(2+) signaling in HL60 cells retrovirally transduced with wild type Nef or with a Nef mutant deficient in the SH3-interacting proline-rich motif (Nef((PXXP)4(-))). In differentiated HL60 cells, Nef markedly altered cellular Ca(2+) signaling; the amount of intracellularly stored Ca(2+) was increased, and as a consequence, store-operated Ca(2+)-influx was decreased. This effect was not observed in undifferentiated HL60 cells or in CEM T-lymphocytes and correlated with the differentiation-induced up-regulation of Src-like PTK. The Nef effect on Ca(2+) signaling depended entirely on the integrity of its PXXP motif. The Src-like PTK p56/59(hck) co-immunoprecipitated with both Nef and with the inositol 1,4,5-trisphosphate receptor, providing a possible mechanistic link between the viral protein and intracellular Ca(2+) stores of the host cell. Collectively, our results demonstrate that the human immunodeficiency virus 1 Nef protein manipulates intracellular Ca(2+) stores through SH3-mediated interactions in myelomonocytic cells.
Collapse
Affiliation(s)
- M Foti
- Department of Morphology, Geneva Medical School, University of Geneva, CH-1225 Geneva, Switzerland
| | | | | | | | | | | | | |
Collapse
|
116
|
Van Den Brink GR, Bloemers SM, Van Den Blink B, Tertoolen LG, Van Deventer SJ, Peppelenbosch MP. Study of calcium signaling in non-excitable cells. Microsc Res Tech 1999; 46:418-33. [PMID: 10504218 DOI: 10.1002/(sici)1097-0029(19990915)46:6<418::aid-jemt9>3.0.co;2-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The fundamental importance of calcium signaling in the control of cellular physiology is widely recognized. A dramatic illustration of this is the fact that a Medline search for review articles containing the word "calcium" in the title reveals 4,629 hits, whereas the whole body of calcium signaling literature (approximately 2 x 10(6) pages) is more than enough to fill a decent-sized library. Most of this literature deals with calcium signaling in excitable cells types (mainly neurons and muscle cells), but non-excitable cell types are capable of calcium signaling as well. Although calcium fluxes in the latter cell types have attracted much less interest, the literature involved is still vast. Nevertheless, in this review article we hope to contribute some valuable insights to the field. First we shall discuss the experimental techniques available to the researcher interested in calcium signaling in non-excitable cell types with special attention to patch clamp electrophysiology. Subsequently, we shall review some of the results obtained with these techniques by focussing on the calcium-regulating mechanisms in non-excitable cells and discussing the importance of these mechanisms for physiology.
Collapse
Affiliation(s)
- G R Van Den Brink
- Laboratory for Experimental Internal Medicine, Academic Medical Center, NL-1105 AZ Amsterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|
117
|
Ron D, Napolitano EW, Voronova A, Vasquez NJ, Roberts DN, Calio BL, Caothien RH, Pettiford SM, Wellik S, Mandac JB, Kauvar LM. Direct interaction in T-cells between thetaPKC and the tyrosine kinase p59fyn. J Biol Chem 1999; 274:19003-10. [PMID: 10383400 DOI: 10.1074/jbc.274.27.19003] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The protein kinase C (PKC) family has been clearly implicated in T-cell activation as have several nonreceptor protein-tyrosine kinases associated with the T-cell receptor, including p59fyn. This report demonstrates that thetaPKC and p59fyn specifically interact in vitro, in the yeast two-hybrid system, and in T-cells. Further indications of direct interaction are that p59fyn potentiates thetaPKC catalytic activity and that thetaPKC is a substrate for tyrosine phosphorylation by p59fyn. This interaction may account for the localization of thetaPKC following T-cell activation, pharmacological disruption of which results in specific cell-signaling defects. The demonstration of a physical interaction between a PKC and a protein-tyrosine kinase expands the class of PKC-anchoring proteins (receptors for activated C kinases (RACKs)) and demonstrates a direct connection between these two major T-cell-signaling pathways.
Collapse
Affiliation(s)
- D Ron
- Telik, Inc., South San Francisco, California 94080, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
118
|
Abstract
In B lymphocytes, a signaling complex that contributes to cell fate decisions is the B cell antigen receptor (BCR). Data from knockout experiments in cell lines and mice have revealed distinct functions for the intracellular protein tyrosine kinases (Lyn, Syk, Btk) in BCR signaling and B cell development. Combinations of intracellular signaling pathways downstream of these PTKs determine the quality and quantity of BCR signaling. For example, concerted actions of the PLC-gamma 2 and PI3-K pathways are required for proper calcium responses. Similarly, the regulation of ERK and JNK responses involves both PLC-gamma 2 and GTPases pathways. Since the immune response in vivo is regulated by alteration of these signaling outcomes, achieving a precise understanding of intracellular molecular events leading to B lymphocyte proliferation, deletion, anergy, receptor editing, and survival still remains a challenge for the future.
Collapse
Affiliation(s)
- T Kurosaki
- Department of Molecular Genetics, Kansai Medical University, Moriguchi, Japan.
| |
Collapse
|
119
|
Iwabuchi S, Marton LS, Zhang JH. Role of protein tyrosine phosphorylation in erythrocyte lysate-induced intracellular free calcium concentration elevation in cerebral smooth-muscle cells. J Neurosurg 1999; 90:743-51. [PMID: 10193620 DOI: 10.3171/jns.1999.90.4.0743] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECT Tyrosine kinases play an important role in the regulation of systemic vascular smooth-muscle tone. The authors studied the involvement of protein tyrosine kinase activity in erythrocyte lysate-mediated signal transduction in cerebral smooth-muscle cells. METHODS Tyrosine kinase phosphorylation and intracellular free Ca++ ([Ca++]i) were measured in rat aortic and basilar artery smooth-muscle cells by using Western blot and fura 2-acetoxymethyl ester microfluorimetry. Erythrocyte lysate enhanced tyrosine phosphorylation in cultured rat aortic and basilar smooth-muscle cells and induced a rapid transient and a prolonged plateau phase of [Ca++]i response in rat basilar smooth-muscle cells. The tyrosine kinase inhibitors genistein and tyrphostin A51 (administered at concentrations of 30 or 100 microM) attenuated both phases of erythrocyte lysate-induced [Ca++]i elevation. Erythrocyte lysate was separated into low- (<10 kD, which contains adenine nucleotides) and high- (>10 kD, which contains hemoglobin) molecular-weight fractions; these fractions were tested separately in these cells. The low-molecular-weight fraction produced a similar [Ca++]i response to that of erythrocyte lysate and the high-molecular-weight fraction produced a small response. The [Ca++]i responses from both fractions were inhibited by tyrosine kinase inhibitors. CONCLUSIONS To the authors' knowledge, this is the first report to show that tyrosine phosphorylation may be involved in erythrocyte lysate-induced signal transduction and [Ca++]i responses in cerebral smooth-muscle cells.
Collapse
Affiliation(s)
- S Iwabuchi
- Department of Neurosurgery, University of Mississippi Medical Center, Jackson 39216-4505, USA
| | | | | |
Collapse
|
120
|
Haug LS, Jensen V, Hvalby O, Walaas SI, Ostvold AC. Phosphorylation of the inositol 1,4,5-trisphosphate receptor by cyclic nucleotide-dependent kinases in vitro and in rat cerebellar slices in situ. J Biol Chem 1999; 274:7467-73. [PMID: 10066812 DOI: 10.1074/jbc.274.11.7467] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have examined cyclic nucleotide-regulated phosphorylation of the neuronal type I inositol 1,4,5-trisphosphate (IP3) receptor immunopurified from rat cerebellar membranes in vitro and in rat cerebellar slices in situ. The isolated IP3 receptor protein was phosphorylated by both cAMP- and cGMP-dependent protein kinases on two distinct sites as determined by thermolytic phosphopeptide mapping, phosphopeptide 1, representing Ser-1589, and phosphopeptide 2, representing Ser-1756 in the rat protein (Ferris, C. D., Cameron, A. M., Bredt, D. S., Huganir, R. L., and Snyder, S. H. (1991) Biochem. Biophys. Res. Commun. 175, 192-198). Phosphopeptide maps show that cAMP-dependent protein kinase (PKA) labeled both sites with the same time course and same stoichiometry, whereas cGMP-dependent protein kinase (PKG) phosphorylated Ser-1756 with a higher velocity and a higher stoichiometry than Ser-1589. Synthetic decapeptides corresponding to the two phosphorylation sites (peptide 1, AARRDSVLAA (Ser-1589), and peptide 2, SGRRESLTSF (Ser-1756)) were used to determine kinetic constants for the phosphorylation by PKG and PKA, and the catalytic efficiencies were in agreement with the results obtained by in vitro phosphorylation of the intact protein. In cerebellar slices prelabeled with [32P]orthophosphate, activation of endogenous kinases by incubation in the presence of cAMP/cGMP analogues and specific inhibitors of PKG and PKA induced in both cases a 3-fold increase in phosphorylation of the IP3 receptor. Thermolytic phosphopeptide mapping of in situ labeled IP3 receptor by PKA showed labeling on the same sites (Ser-1589 and Ser-1756) as in vitro. In contrast to the findings in vitro, PKG preferentially phosphorylated Ser-1589 in situ. Because both PKG and the IP3 receptor are specifically enriched in cerebellar Purkinje cells, PKG may be an important IP3 receptor regulator in vivo.
Collapse
Affiliation(s)
- L S Haug
- Neurochemical Laboratory, P. O. Box 1115 Blindern, Department Group of Basic Medical Sciences, University of Oslo, N-0317 Oslo, Norway
| | | | | | | | | |
Collapse
|
121
|
Gaburjáková M, Schlossmann J, Ondrias K. Properties of a new calcium-permeable single channel from tracheal microsomes. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1417:25-31. [PMID: 10076032 DOI: 10.1016/s0005-2736(98)00246-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
After the incorporation of the tracheal microsomal membrane into bilayer lipid membrane (BLM), a new single channel permeable for calcium was observed. Using the BLM conditions, 53 mM Ca2+ in trans solution versus 200 nM Ca2+ in cis solution, the single calcium channel current at 0 mV was 1.4-2.1 pA and conductance was 62-75 pS. The channel Ca2+/K+ permeability ratio was 4.8. The open probability (P-open) was in the range of 0.7-0.97. The P-open, measured at -10 mV to +30 mV (trans-cis), was not voltage dependent. The channel was neither inhibited by 10-20 microM ruthenium red, a specific blocker of ryanodine calcium release channel, nor by 10-50 microM heparin, a specific blocker of IP3 receptor calcium release channel, and its activity was not influenced by addition of 0.1 mM MgATP. We suggest that the observed new channel is permeable for calcium, and it is neither identical with the known type 1 or 2 ryanodine calcium release channel, nor type 1 or 2 IP3 receptor calcium release channel.
Collapse
Affiliation(s)
- M Gaburjáková
- Institute of Molecular Physiology and Genetics, Slovak Academy of Sciences, Vlárska 5, 83334, Bratislava, Slovak Republic
| | | | | |
Collapse
|
122
|
Tsai W, Morielli AD, Cachero TG, Peralta EG. Receptor protein tyrosine phosphatase alpha participates in the m1 muscarinic acetylcholine receptor-dependent regulation of Kv1.2 channel activity. EMBO J 1999; 18:109-18. [PMID: 9878055 PMCID: PMC1171107 DOI: 10.1093/emboj/18.1.109] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The phosphorylation state of a given tyrosine residue is determined by both protein tyrosine kinase (PTK) and protein tyrosine phosphatase (PTP) activities. However, little is known about the functional interaction of these opposing activities at the level of an identified effector molecule. G protein-coupled receptors (GPCRs), including the m1 muscarinic acetylcholine receptor (mAChR), regulate a tyrosine kinase activity that phosphorylates and suppresses current generated by the Kv1.2 potassium channel. We examined the possibility that PTPs also participate in this signaling pathway since the tyrosine phosphatase inhibitor vanadate increases the extent of both Kv1.2 phosphorylation and suppression. We show that an endogenous transmembrane tyrosine phosphatase, receptor tyrosine phosphatase alpha (RPTPalpha), becomes tyrosine phosphorylated and co-immunoprecipitates with Kv1.2 in a manner dependent on m1 receptor activation. The N- and C-termini of Kv1.2 are shown to bind RPTPalpha in vitro. Overexpression of RPTPalpha in Xenopus oocytes increases resting Kv1.2 current. Biochemical and electrophysiological analysis reveals that recruiting RPTPalpha to Kv1.2 functionally reverses the tyrosine kinase-induced phosphorylation and suppression of Kv1.2 current in mammalian cells. Taken together, these results identify RPTPalpha as a new target of m1 mAChR signaling and reveal a novel regulatory mechanism whereby GPCR-mediated suppression of a potassium channel depends on the coordinate and parallel regulation of PTK and PTP activities.
Collapse
Affiliation(s)
- W Tsai
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | | | | | | |
Collapse
|
123
|
Evans GJ, Pocock JM. Modulation of neurotransmitter release by dihydropyridine-sensitive calcium channels involves tyrosine phosphorylation. Eur J Neurosci 1999; 11:279-92. [PMID: 9987031 DOI: 10.1046/j.1460-9568.1999.00427.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Cultured rat cerebellar granule cells depolarized by high KCl, display a large component of Ca2+ influx through L-type voltage-dependent Ca2+ channels as defined by a sensitivity to 1 microM nifedipine. This Ca2+ influx is not coupled to neurotransmitter exocytosis but has implications for neuronal development. KCl stimulation in the absence of external Ca2+ followed by the readdition of Ca2+ allows the coupling of a class of L-type Ca2+ channels to neurotransmitter exocytosis as assessed by loading of glutamatergic pools with [3H]-D-aspartate. KCl stimulation in the absence of external Ca2+ ('predepolarization') enhances tyrosine phosphorylation of several cellular proteins, and inhibitors of tyrosine kinases block both phosphorylation and the neurotransmitter release coupled to the L-type Ca2+ channel. More specifically, an inhibitor of src family tyrosine kinases, PP1, blocks the effects of predepolarization suggesting a role for a src family kinase in the process. Furthermore, L-type Ca2+ channel recruitment and modulation of release could be activated with the tyrosine phosphatase inhibitor sodium orthovanadate. The phosphoproteins enhanced by predepolarization, which include the cytoskeletal proteins focal adhesion kinase (FAK) and vinculin, are also highly phosphorylated early on in culture when neurite outgrowth occurs. As the neurons develop a network of neurites, both tyrosine phosphorylation and L-type Ca2+ channel activity decrease. These results show a novel mechanism for the recruitment of L-type Ca2+ channels and their coupling to neurotransmitter release which involves tyrosine phosphorylation. This phenomenon has a role in cerebellar granule cell development.
Collapse
Affiliation(s)
- G J Evans
- Department of Neurochemistry, Institute of Neurology, University College London, UK
| | | |
Collapse
|
124
|
Shears SB. The versatility of inositol phosphates as cellular signals. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1436:49-67. [PMID: 9838040 DOI: 10.1016/s0005-2760(98)00131-3] [Citation(s) in RCA: 136] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Cells from across the phylogenetic spectrum contain a variety of inositol phosphates. Many different functions have been ascribed to this group of compounds. However, it is remarkable how frequently several of these different inositol phosphates have been linked to various aspects of signal transduction. Therefore, this review assesses the evidence that inositol phosphates have evolved into a versatile family of second messengers.
Collapse
Affiliation(s)
- S B Shears
- Inositide Signalling Section, Laboratory of Signal Transduction, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA.
| |
Collapse
|
125
|
Koleske AJ, Gifford AM, Scott ML, Nee M, Bronson RT, Miczek KA, Baltimore D. Essential roles for the Abl and Arg tyrosine kinases in neurulation. Neuron 1998; 21:1259-72. [PMID: 9883720 DOI: 10.1016/s0896-6273(00)80646-7] [Citation(s) in RCA: 343] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The Abl and Arg tyrosine kinases play fundamental roles in the development and function of the central nervous system. Arg is most abundant in adult mouse brain, especially in synapse-rich regions. arg(-/-) mice develop normally but exhibit multiple behavioral abnormalities, suggesting that arg(-/-) brains suffer from defects in neuronal function. Embryos deficient in both Abl and Arg suffer from defects in neurulation and die before 11 days postcoitum (dpc). Although they divide normally, abl(-/-)arg(-/-) neuroepithelial cells display gross alterations in their actin cytoskeleton. We find that Abl and Arg colocalize with each other and with actin microfilaments at the apical surface of the developing neuroepithelium. Thus, Abl and Arg play essential roles in neurulation and can regulate the structure of the actin cytoskeleton.
Collapse
Affiliation(s)
- A J Koleske
- Department of Biology, Massachusetts Institute of Technology, Cambridge 02139, USA.
| | | | | | | | | | | | | |
Collapse
|
126
|
Hughes AD, Wijetunge S. Role of tyrosine phosphorylation in excitation-contraction coupling in vascular smooth muscle. ACTA PHYSIOLOGICA SCANDINAVICA 1998; 164:457-69. [PMID: 9887969 DOI: 10.1046/j.1365-201x.1998.00446.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Increasingly it is recognized that tyrosine phosphorylation plays an important part in the regulation of function in differentiated contractile vascular smooth muscle. Tyrosine kinases and phosphatases are present in large amounts in vascular smooth muscle and have been reported to influence a number of processes crucial to contraction, including ion channel gating, calcium homeostasis and sensitization of the contractile process to [Ca2+]i. This review summarizes current understanding regarding the role of tyrosine phosphorylation in excitation-contraction coupling in blood vessels.
Collapse
Affiliation(s)
- A D Hughes
- National Heart and Lung Institute, Imperial College of Science, Technology and Medicine, St Mary's Hospital, London, UK
| | | |
Collapse
|
127
|
Hutchcroft JE, Slavik JM, Lin H, Watanabe T, Bierer BE. Uncoupling Activation-Dependent HS1 Phosphorylation from Nuclear Factor of Activated T Cells Transcriptional Activation in Jurkat T Cells: Differential Signaling Through CD3 and the Costimulatory Receptors CD2 and CD28. THE JOURNAL OF IMMUNOLOGY 1998. [DOI: 10.4049/jimmunol.161.9.4506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Abstract
CD3, CD2, and CD28 are functionally distinct receptors on T lymphocytes. Engagement of any of these receptors induces the rapid tyrosine phosphorylation of a shared group of intracellular signaling proteins, including Vav, Cbl, p85 phosphoinositide 3-kinase, and the Src family kinases Lck and Fyn. Ligation of CD3 also induces the tyrosine phosphorylation of HS1, a 75-kDa hematopoietic cell-specific intracellular signaling protein of unknown function. We have examined changes in HS1 phosphorylation after differential stimulation of CD3, CD2, and CD28 to elucidate its role in T cells and to further delineate the signaling pathways recruited by these receptors. Unlike ligation of CD3, stimulation with anti-CD28 mAb or CHO cells expressing the CD28 ligands CD80 or CD86 did not lead to tyrosine phosphorylation of HS1 in Jurkat T cells. Additionally, no tyrosine phosphorylation of HS1 was induced by mitogenic pairs of anti-CD2 mAbs capable of activating the transcription factor NFAT (nuclear factor of activated T cells). Costimulation through CD28 and/or CD2 did not modulate the CD3-dependent phosphorylation of HS1. In vivo studies indicated that CD3-induced HS1 phosphorylation was dependent upon both the Src family tyrosine kinase Lck and the tyrosine phosphatase CD45, did not require MEK1 kinase activity, and was regulated by protein kinase C activation. Thus, although CD3, CD28, and CD2 activate many of the same signaling molecules, they differed in their capacity to induce the tyrosine phosphorylation of HS1. Furthermore, activation-dependent tyrosine phosphorylation of HS1 was not required for NFAT transcriptional activation.
Collapse
Affiliation(s)
- Jill E. Hutchcroft
- *Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02115
| | - Jacqueline M. Slavik
- *Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02115
| | - Huamao Lin
- *Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02115
| | - Takeshi Watanabe
- †Department of Molecular Immunology, Kyushu University, Fukuoka, Japan; and
| | - Barbara E. Bierer
- *Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02115
- ‡Department of Pediatrics and Medicine, Harvard Medical School, Boston, MA 02115
| |
Collapse
|
128
|
Wilcox RA, Primrose WU, Nahorski SR, Challiss RA. New developments in the molecular pharmacology of the myo-inositol 1,4,5-trisphosphate receptor. Trends Pharmacol Sci 1998; 19:467-75. [PMID: 9850611 DOI: 10.1016/s0165-6147(98)01260-7] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Receptor-mediated activation of phospholipase C to generate inositol 1,4,5-trisphosphate [Ins(1,4,5)P3] is a ubiquitous signalling pathway in mammalian systems. A family of three IP3 receptor subtype monomers form functional tetramers, which act as effectors for Ins(1,4,5)P3, providing a ligand-gated channel that allows Ca2+ ions to move between cellular compartments. As IP3 receptors are located principally, although not exclusively, in the endoplasmic reticular membrane, Ins(1,4,5)P3 is considered to be a second messenger that mobilizes Ca2+ from intracellular stores. Ca2+ store mobilization by Ins(1,4,5)P3 can be shown to contribute to a variety of physiological and pathophysiological phenomena, and therefore the IP3 receptor represents a novel, potential pharmacological target. In this article, Rob Wilcox and colleagues review recent developments in IP3 receptor pharmacology, with particular emphasis on ligand molecular recognition by this receptor-channel complex. The potential for designing non-inositol phosphate-based agonists and antagonists is also discussed.
Collapse
Affiliation(s)
- R A Wilcox
- School of Medicine, Flinders University, Adelaide, Australia
| | | | | | | |
Collapse
|
129
|
|
130
|
Pettit EJ, Fay FS. Cytosolic free calcium and the cytoskeleton in the control of leukocyte chemotaxis. Physiol Rev 1998; 78:949-67. [PMID: 9790567 DOI: 10.1152/physrev.1998.78.4.949] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
In response to a chemotactic gradient, leukocytes extravasate and chemotax toward the site of pathogen invasion. Although fundamental in the control of many leukocyte functions, the role of cytosolic free Ca2+ in chemotaxis is unclear and has been the subject of debate. Before becoming motile, the cell assumes a polarized morphology, as a result of modulation of the cytoskeleton by G protein and kinase activation. This morphology may be reinforced during chemotaxis by the intracellular redistribution of Ca2+ stores, cytoskeletal constituents, and chemoattractant receptors. Restricted subcellular distributions of signaling molecules, such as Ca2+, Ca2+/calmodulin, diacylglycerol, and protein kinase C, may also play a role in some types of leukocyte. Chemotaxis is an essential function of most cells at some stage during their development, and a deeper understanding of the molecular signaling and structural components involved will enable rational design of therapeutic strategies in a wide variety of diseases.
Collapse
Affiliation(s)
- E J Pettit
- Biomedical Imaging Group, University of Massachusetts Medical Center, Worcester, USA
| | | |
Collapse
|
131
|
Abstract
The nuclear factor of activated T cells (NFAT) plays an important role in T-cell biology. Activation of T cells results in the rapid calcineurin-dependent translocation of NFAT transcription factors from the cytoplasm to the nucleus. This translocation process coupled to the subsequent active maintenance of NFAT in the nucleus compartment is critical for the induction of expression of several genes encoding cytokines and membrane proteins that modulate immune responses. The molecular cloning of the NFAT family of transcription factors has facilitated rapid progress in the understanding of the signalling mechanisms that control the activity of NFAT.
Collapse
Affiliation(s)
- E S Masuda
- Department of Cell Signalling, DNAX Research Institute of Molecular and Cellular Biology, Palo Alto, CA 94304, USA.
| | | | | | | | | |
Collapse
|
132
|
Campbell KS, Cooper S, Dessing M, Yates S, Buder A. Interaction of p59 fyn Kinase with the Dynein Light Chain, Tctex-1, and Colocalization During Cytokinesis. THE JOURNAL OF IMMUNOLOGY 1998. [DOI: 10.4049/jimmunol.161.4.1728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Abstract
The protein tyrosine kinase p59fyn (Fyn) plays important roles in both lymphocyte Ag receptor signaling and cytokinesis of proB cells. We utilized yeast two-hybrid cloning to identify the product of the tctex-1 gene as a protein that specifically interacts with Fyn, but not with other Src family kinases. Tctex-1 was recently identified as a component of the dynein cytoskeletal motor complex. The capacity of a Tctex-1-glutathione S-transferase fusion protein to effectively bind Fyn from cell lysates confirmed the authenticity of this interaction. Tctex-1 binding required the first 19 amino acids of Fyn and integrity of two lysine residues within this sequence that were previously shown to be important for Fyn interactions with the immunoreceptor tyrosine-based activation motifs (ITAMs) of lymphocyte Ag receptors. Expression of tctex-1 mRNA and protein was observed in all lymphoma lines analyzed, and immunofluorescence confocal microscopy localized the protein to the perinuclear region. Analysis of a T cell hybridoma revealed prominent colocalization of Tctex-1 and Fyn at the cleavage furrow and mitotic spindles in cells undergoing cytokinesis. Our results provide a unique insight into a mechanism by which Tctex-1 might mediate specific recruitment of Fyn to the dynein complex in lymphocytes, which may be a critical event in mediating the previously defined role of Fyn in cytokinesis.
Collapse
Affiliation(s)
| | | | - Mark Dessing
- Basel Institute for Immunology, Basel, Switzerland
| | - Sol Yates
- Basel Institute for Immunology, Basel, Switzerland
| | - Annie Buder
- Basel Institute for Immunology, Basel, Switzerland
| |
Collapse
|
133
|
Kim CJ, Kim KW, Park JW, Lee JC, Zhang JH. Role of tyrosine kinase in erythrocyte lysate-induced contraction in rabbit cerebral arteries. J Neurosurg 1998; 89:289-96. [PMID: 9688125 DOI: 10.3171/jns.1998.89.2.0289] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECT This study was undertaken to explore whether erythrocyte lysate, a proposed cause of vasospasm, produces vasoconstriction by activation of tyrosine kinase in rabbit cerebral arteries. METHODS Isometric tension was used to monitor contractions in rabbit basilar arteries induced by erythrocyte lysate, 5-hydroxytryptamine (5-HT), or KCl in the absence or presence of tyrosine kinase inhibitors. Erythrocyte lysate, 5-HT, or KCl produced concentration-dependent contractions in rabbit basilar arteries. Preincubation with the tyrosine kinase inhibitors tyrphostin A23 and genistein (30 and 100 microM), but not diadzein, an inactive analog of genistein, attenuated significantly the contraction induced by erythrocyte lysate (p < 0.05). Tyrphostin A23, genistein, and diadzein (30 microM) failed to reduce the contraction caused by 5-HT. Genistein, but not tyrphostin A23 or diadzein (30 microM), attenuated significantly the contraction induced by KCl (p < 0.05). In another series, arterial rings were initially contracted with erythrocyte lysate, 5-HT, or KCl and the relaxant effect of genistein was then tested. Genistein relaxed rabbit basilar arteries that had been contracted by exposure to erythrocyte lysate, 5-HT, or KCl (30-100 microM; p < 0.05). CONCLUSIONS These data indicate that tyrosine kinase may play a role in the regulation of cerebral arterial contraction and tyrosine kinase inhibitors may be useful in the management of cerebral vasospasm.
Collapse
Affiliation(s)
- C J Kim
- Department of Neurosurgery, Institute for Medical Sciences, Chonbuk National University, Chonju, Korea.
| | | | | | | | | |
Collapse
|
134
|
Bunnell SC, Berg LJ. The signal transduction of motion and antigen recognition: factors affecting T cell function and differentiation. GENETIC ENGINEERING 1998; 20:63-110. [PMID: 9666556 DOI: 10.1007/978-1-4899-1739-3_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- S C Bunnell
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | | |
Collapse
|
135
|
Tsunoda Y. Receptor-operated calcium influx mediated by protein tyrosine kinase pathways. J Recept Signal Transduct Res 1998; 18:281-310. [PMID: 9879062 DOI: 10.3109/10799899809047748] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Calcium influx from the extracellular space elicited by activation of heterotrimeric G protein-coupled and heptahelical receptors plays a critical role in transmembrane signal transduction in a wide variety of cell systems. In nonexcitable cells, the precise voltage-independent mechanism by which calcium enters the cell remains unknown. Multiple mechanisms appear to be operating in different cell types (1-3): 1. G protein-operated calcium influx, 2. Second messenger-operated calcium influx, 3. Capacitative calcium influx, and 4. Phosphorylation of calcium channels. Receptor-operated calcium channels have a fundamental role in stimulus-secretion coupling in many different cells, but these channels remain to be purified and cloned. This review proposes that receptor-operated calcium influx is mediated by protein tyrosine kinase pathways. The function of protein tyrosine kinase pathways and their interactions with other receptor-operated calcium influx mechanisms are described.
Collapse
Affiliation(s)
- Y Tsunoda
- Department of Internal Medicine, University of Michigan, Ann Arbor 48109-0682, USA
| |
Collapse
|
136
|
Soares LRB, Tsavaler L, Rivas A, Engleman EG. V7 (CD101) Ligation Inhibits TCR/CD3-Induced IL-2 Production by Blocking Ca2+ Flux and Nuclear Factor of Activated T Cell Nuclear Translocation. THE JOURNAL OF IMMUNOLOGY 1998. [DOI: 10.4049/jimmunol.161.1.209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Abstract
Ligation of the V7 (CD101) molecule on T cells with anti-V7 mAb blocks TCR/CD3-induced proliferation by inhibiting IL-2 transcription. To explore the basis for this observation, we analyzed the effects of V7 ligation on CD3/TCR-induced changes in intracellular free Ca2+ and Ca2+-dependent nuclear factor of activated T cells (NF-AT) translocation to the nucleus, which is required for IL-2 transcription. T cells exposed to anti-V7 mAb fluxed Ca2+ transiently, but did not flux Ca2+ in response to subsequent treatment with anti-CD3; however, they recovered the capacity to flux Ca2+ after treatment with pervanadate, indicating that tyrosine dephosphorylation of a critical V7-related substrate is required in the desensitization process. One such substrate, phospholipase C (PLC)-γ1, becomes tyrosine phosphorylated on CD3/TCR activation and mediates inositol triphosphate-dependent Ca2+ flux. Co-cross-linking of T cells with anti-CD3 and anti-V7 resulted in selective inhibition of PLC-γ1 tyrosine phosphorylation, which may explain V7-mediated blockade of anti-CD3-induced Ca2+ flux. Moreover, anti-CD3-induced binding of transcription factors to a consensus NF-AT-binding oligonucleotide, which is dependent on Ca2+, was blocked completely by treatment of the cells with anti-V7, whereas binding to a consensus-activating protein-1 oligonucleotide was unaffected. Western blot analysis of cytoplasmic and nuclear extracts confirmed that anti-V7 prevented nuclear translocation of NF-ATc induced by anti-CD3. We conclude that V7 ligation interferes with T cell activation and IL-2 secretion through a Ca2+ and tyrosine kinase-dependent pathway that inhibits PLC-γ1 phosphorylation and prevents NF-AT translocation to the nucleus.
Collapse
Affiliation(s)
- Luis R. B. Soares
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305
| | - Larisa Tsavaler
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305
| | - Alberto Rivas
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305
| | - Edgar G. Engleman
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305
| |
Collapse
|
137
|
Helmeste DM, Tang SW. The role of calcium in the etiology of the affective disorders. JAPANESE JOURNAL OF PHARMACOLOGY 1998; 77:107-16. [PMID: 9681567 DOI: 10.1254/jjp.77.107] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Calcium abnormalities are some of the more consistent findings in platelets of affective disorder patients. While medication status does not correlate with this finding, antidepressants do modulate intracellular calcium. This, in combination with reports that calcium channel inhibitors may have antidepressant potential, suggests that calcium may play an important role in this disorder. This paper reviews the specificity of calcium abnormalities for the affective disorders and also discusses possible mechanisms of action.
Collapse
Affiliation(s)
- D M Helmeste
- Department of Psychiatry, University of California, Irvine, 92697-1681, USA
| | | |
Collapse
|
138
|
Neylon CB, Nickashin A, Tkachuk VA, Bobik A. Heterotrimeric Gi protein is associated with the inositol 1,4,5-trisphosphate receptor complex and modulates calcium flux. Cell Calcium 1998; 23:281-9. [PMID: 9681191 DOI: 10.1016/s0143-4160(98)90024-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
In vascular smooth muscle, pertussis toxin (PT) inhibits thrombin-induced Ca2+ release by a mechanism independent of its effect on IP3 formation. Thus, the possibility of a direct role of G alpha i proteins in regulating IP3-sensitive Ca2+ release was investigated by examining whether G alpha i proteins are associated with the IP3 receptor complex. Purified microsomal membranes were prepared and separated by sucrose density gradient centrifugation. The relative density of [3H]-IP3 binding sites between the microsomal fractions was inversely related to the distribution of the plasma membrane marker. The relative distribution of G alpha i3 determined by immunoblotting was closely correlated with the density of [3H]-IP3 binding. Levels of G alpha i2 were more evenly distributed with highest levels present in plasma membrane-enriched fractions. IP3 receptor immunoprecipitated from triton-solubilized microsomal membranes contained G alpha i3 immunoreactivity. To determine whether G alpha i proteins influence IP3-induced Ca2+ release, the effect of PT on Ca2+ release from digitonin-permeabilized cell suspensions using Fluo-3 was examined. Exposure to PT (0.1 microgram/ml, 5 min) attenuated the initial rate of IP3 (1 microM)-induced Ca2+ release. Together, these findings are consistent with the hypothesis that a heterotrimeric G alpha i protein directly regulates IP3-dependent Ca2+ release.
Collapse
MESH Headings
- Adenosine Diphosphate Ribose/metabolism
- Animals
- Aorta/cytology
- Calcium/metabolism
- Calcium Channels/drug effects
- Calcium Channels/physiology
- Cell Membrane Permeability/drug effects
- Cells, Cultured
- Digitonin/pharmacology
- GTP-Binding Protein alpha Subunits, Gi-Go/chemistry
- GTP-Binding Protein alpha Subunits, Gi-Go/physiology
- Inositol 1,4,5-Trisphosphate/physiology
- Inositol 1,4,5-Trisphosphate Receptors
- Ion Transport/drug effects
- Macromolecular Substances
- Microsomes/drug effects
- Microsomes/metabolism
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Pertussis Toxin
- Rats
- Rats, Inbred WKY
- Receptors, Cytoplasmic and Nuclear/drug effects
- Receptors, Cytoplasmic and Nuclear/physiology
- Signal Transduction/physiology
- Virulence Factors, Bordetella/pharmacology
Collapse
Affiliation(s)
- C B Neylon
- Baker Medical Research Institute, Prahran, Victoria, Australia.
| | | | | | | |
Collapse
|
139
|
Hunter T. The Croonian Lecture 1997. The phosphorylation of proteins on tyrosine: its role in cell growth and disease. Philos Trans R Soc Lond B Biol Sci 1998; 353:583-605. [PMID: 9602534 PMCID: PMC1692245 DOI: 10.1098/rstb.1998.0228] [Citation(s) in RCA: 304] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The reversible phosphorylation of tyrosines in proteins plays a key role in regulating many different processes in eukaryotic organisms, such as growth control, cell cycle control, differentiation cell shape and movement, gene transcription, synaptic transmission, and insulin action. Phosphorylation of proteins is brought about by enzymes called protein-tyrosine kinases that add phosphate to specific tyrosines in target proteins; phosphate is removed from phosphorylated tyrosines by enzymes called protein-tyrosine phosphatases. Phosphorylated tyrosines are recognized by specialized binding domains on other proteins, and such interactions are used to initiate intracellular signaling pathways. Currently, more than 95 protein-tyrosine kinases and more than 55 protein-tyrosine phosphatase genes are known in Homo sapiens. Aberrant tyrosine phosphorylation is a hallmark of many types of cancer and other human diseases. Drugs are being developed that antagonize the responsible protein-tyrosine kinases and phosphatases in order to combat these diseases.
Collapse
Affiliation(s)
- T Hunter
- Molecular Biology and Virology Laboratory, Salk Institute, La Jolla, CA 92037, USA
| |
Collapse
|
140
|
|
141
|
Kitazono T, Ibayashi S, Nagao T, Fujii K, Kagiyama T, Fujishima M. Role of tyrosine kinase in dilator responses of rat basilar artery in vivo. Hypertension 1998; 31:861-5. [PMID: 9495273 DOI: 10.1161/01.hyp.31.3.861] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
We tested the hypothesis that dilator responses of the basilar artery to endothelium-dependent vasodilators are mediated by activation of tyrosine kinase in vivo. Using a cranial window in anesthetized rats, we examined responses of the basilar artery to acetylcholine and bradykinin. Topical application of acetylcholine and bradykinin increased diameter of the basilar artery in a concentration-related manner. Genistein, an inhibitor of tyrosine kinase, did not affect baseline diameter of the basilar artery but inhibited vasodilatation in response to acetylcholine and bradykinin, without affecting vasodilatation produced by sodium nitroprusside. Tyrphostin 47, another inhibitor of tyrosine kinase, attenuated acetylcholine-induced dilatation of the basilar artery without affecting vasodilatation in response to sodium nitroprusside. Tyrphostin 63, an inactive analogue of tyrphostin 47, did not affect acetylcholine-induced vasodilatation. Sodium orthovanadate, an inhibitor of tyrosine phosphatase, enhanced acetylcholine-induced dilatation of the basilar artery. These results suggest that dilator responses of the basilar artery to endothelium-dependent agonists, acetylcholine and bradykinin, are mediated in large part by activation of tyrosine kinase. Because vasodilatation produced by these agonists is mediated primarily by nitric oxide, activation of tyrosine kinase may have an important role in nitric oxide production in the basilar artery in vivo.
Collapse
Affiliation(s)
- T Kitazono
- Second Department of Internal Medicine, Faculty of Medicine, Kyushu University, Fukuoka, Japan.
| | | | | | | | | | | |
Collapse
|
142
|
Affiliation(s)
- A Revelli
- Department of Obstetrical and Gynecological Sciences, University of Torino, Italy
| | | | | |
Collapse
|
143
|
Talmor A, Kinsey WH, Shalgi R. Expression and immunolocalization of p59c-fyn tyrosine kinase in rat eggs. Dev Biol 1998; 194:38-46. [PMID: 9473330 DOI: 10.1006/dbio.1997.8816] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Fertilization overcomes meiotic arrest by triggering a series of biochemical events, resulting in activation of the egg. A small group of protein tyrosine kinases (PTKs) have been identified in eggs of invertebrates and lower vertebrates and inhibitor studies have suggested that they play a role in late events of egg activation. A recent study using the sea urchin system demonstrated that Fyn kinase was expressed in eggs and was activated within minutes of fertilization. In the present study, Western blot analysis as well as immune complex kinase assay demonstrated that p59(c-fyn) kinase was expressed in both unfertilized and fertilized rat eggs. Immunofluorescence confocal microscopy demonstrated that Fyn kinase was localized to the egg cortex but also to the polar body and the fertilizing cone which are elevated from the cortical cytoplasm of the activated egg. Surprisingly, Fyn was also found to be highly concentrated over the meiotic and mitotic spindles. To date, Fyn is the first PTK demonstrated to be present in the mammalian egg. Localization of Fyn to the egg cortex as well as the spindle microtubules indicates that this protein kinase may have multiple functions within the egg.
Collapse
Affiliation(s)
- A Talmor
- Sackler Faculty of Medicine, Tel-Aviv University, Ramat-Aviv, 69978, Israel
| | | | | |
Collapse
|
144
|
Wasik MA, Nowak I, Zhang Q, Shaw LM. Suppression of proliferation and phosphorylation of Jak3 and STAT5 in malignant T-cell lymphoma cells by derivatives of octylamino-undecyl-dimethylxanthine. Leuk Lymphoma 1998; 28:551-60. [PMID: 9613985 DOI: 10.3109/10428199809058363] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
IL-2R signal transduction involves tyrosine phosphorylation of several proteins including Jak3 and STAT5. In the present study we examined the effect of two octylamino-undecyl-dimethylxanthine (OUDMX) derivatives, designated CT2576 and CT5589, on proliferation and protein tyrosine phosphorylation in human malignant T-cell lymphoma lines. These T-cell lines (PB-1, 2A, and 2B), obtained from a progressive T-cell lymphoma involving skin, are IL-2 independent but have constitutively activated IL-2R-associated signal transduction pathway common to IL-2 and several other cytokines: IL-4, IL-7, IL-9, and IL-15. CT2576, characterized previously on the functional level as an inhibitor of IL-2 signaling and, on the biochemical level, as an inhibitor of phosphatidic acid biosynthesis, suppressed completely growth of the malignant T cell lymphoma lines. CT5589 which is a novel analog of the CT2576, displayed a similar, although weaker, effect. Furthermore, both CT compounds inhibited constitutive tyrosine phosphorylation of two proteins: Jak3 and STAT5 which are key downstream elements in the signal transduction pathway activated by IL-2 and the other cytokines. The CT compounds inhibited also Jak3 phosphorylation induced by IL-2 in the IL-2 dependent SZ-4 cells. Inhibition of phosphorylation by CT2576 and CT5589 was only partially selective since phosphorylation of several other proteins was also affected. Phosphorylation of many others was, however, unaffected. These findings demonstrate that the OUDMX derivatives suppress proliferation of malignant T lymphocytes. Furthermore, they suggest that this suppression may be mediated by inhibition of the IL-2R-associated Jak/STAT signaling pathway. A potential role for OUDMX derivatives in therapy of human T-cell lymphoma should be further explored.
Collapse
Affiliation(s)
- M A Wasik
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia 19104, USA
| | | | | | | |
Collapse
|
145
|
Abstract
Src family protein tyrosine kinases are activated following engagement of many different classes of cellular receptors and participate in signaling pathways that control a diverse spectrum of receptor-induced biological activities. While several of these kinases have evolved to play distinct roles in specific receptor pathways, there is considerable redundancy in the functions of these kinases, both with respect to the receptor pathways that activate these kinases and the downstream effectors that mediate their biological activities. This chapter reviews the evidence implicating Src family kinases in specific receptor pathways and describes the mechanisms leading to their activation, the targets that interact with these kinases, and the biological events that they regulate.
Collapse
Affiliation(s)
- S M Thomas
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02115, USA.
| | | |
Collapse
|
146
|
Pettit EJ, Hallett MB. Ca2+ signalling delays in neutrophils: effects of prior exposure to platelet activating factor or formyl-met-leu-phe. Cell Signal 1998; 10:49-53. [PMID: 9502117 DOI: 10.1016/s0898-6568(97)00073-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Rapid-time confocal scanning of fluo3-loaded neutrophils revealed that in individual cells there were grossly heterogeneous time intervals between stimulation with either f-met-leu-phe or platelet activating factor (PAF) and the initiation of Ca2+ influx, ranging from 75 msec to several seconds. The distribution of lag times after stimulation with f-met-leu-phe (100 nM) was influenced by prior stimulation with either f-met-leu-phe or PAF. However, whereas prior stimulation with f-met-leu-phe (50 nM) caused the subsequent cytosolic free Ca2+ response to second challenge with f-met-leu-phe to be delayed, prior stimulation with PAF (100 nM) caused an increase in the rapidity of the onset of the second response to f-met-leu-phe. With both stimuli, the cytosolic free Ca2+ in some neutrophils (non-Ca2+ responders) in the population did not increase significantly. However, some of these cells responded to the subsequent challenge. However, with both pre-treatment stimuli, those cells in which a significant Ca2+ response was provoked by the first stimulus, responded significantly faster than the initial 'non-Ca2+ responders.' However, the reduced lag time provoked by pre-stimulation was not inhibited in neutrophils in which cytosolic free Ca2+ changes were dampened by intracellular BAPTA. These data point to post-receptor events, other than prior cytosolic free Ca2+ elevation, being important in determining the response Ca2+ delay to subsequent stimulation.
Collapse
Affiliation(s)
- E J Pettit
- Department of Surgery, University of Wales College of Medicine, Heath Park, Cardiff, UK
| | | |
Collapse
|
147
|
Abstract
The phosphorylation of proteins on tyrosine residues, initially believed to be primarily involved in cell growth and differentiation, is now recognized as having a critical role in regulating the function of mature cells. The brain exhibits one of the highest levels of tyrosine kinase activity in the adult animal and the synaptic region is particularly rich in tyrosine kinases and tyrosine phosphorylated proteins. Recent studies have described the effects of tyrosine phosphorylation on the activities of a number of proteins which are potentially involved in the regulation of synaptic function. Furthermore, it is becoming apparent that tyrosine phosphorylation is involved in the modification of synaptic activity, such as occurs during depolarization, the induction of long-term potentiation or long-term depression, and ischemia. Changes in the activities of tyrosine kinases and/or protein tyrosine phosphatases which are associated with synaptic structures may result in altered tyrosine phosphorylation of proteins located at the synapse leading to both short-term and long-lasting changes in synaptic and neuronal function.
Collapse
Affiliation(s)
- J W Gurd
- Division of Life Sciences, University of Toronto at Scarborough, Ontario, Canada.
| |
Collapse
|
148
|
Melford SK, Turner M, Briddon SJ, Tybulewicz VL, Watson SP. Syk and Fyn are required by mouse megakaryocytes for the rise in intracellular calcium induced by a collagen-related peptide. J Biol Chem 1997; 272:27539-42. [PMID: 9346887 DOI: 10.1074/jbc.272.44.27539] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Stimulation of platelets by collagen leads to activation of a tyrosine kinase cascade resulting in secretion and aggregation. We have recently shown that this pathway involves rapid tyrosine phosphorylation of an Fc receptor gamma chain, which contains an immunoreceptor tyrosine-based activation motif (ITAM), enabling interaction with the tandem SH2 domains of the tyrosine kinase Syk. Activation of Syk lies upstream of tyrosine phosphorylation of phospholipase Cgamma2. In the present study we sought to test directly the role of the ITAM/Syk interaction and the role of the Src-related kinases in collagen receptor signaling using mouse megakaryocytes. We demonstrate that the calcium-mobilizing action of a collagen-related peptide (CRP) is kinase-dependent, inhibited by the microinjection of the tandem SH2 domains of Syk and abolished in Syk-deficient mice. Furthermore, the CRP response is abolished by the Src family kinase inhibitor PP1 and inhibited in Fyn-deficient mice. In contrast, the calcium response to the G-protein-linked receptor agonist thrombin is not significantly altered under these conditions. These results provide direct evidence of the functional importance of Fyn and Syk in collagen receptor signaling and support the megakaryocyte as a model for the study of proteins involved in this pathway.
Collapse
Affiliation(s)
- S K Melford
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, United Kingdom
| | | | | | | | | |
Collapse
|
149
|
Fadool DA, Holmes TC, Berman K, Dagan D, Levitan IB. Tyrosine phosphorylation modulates current amplitude and kinetics of a neuronal voltage-gated potassium channel. J Neurophysiol 1997; 78:1563-73. [PMID: 9310443 DOI: 10.1152/jn.1997.78.3.1563] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The modulation of the Kv1.3 potassium channel by tyrosine phosphorylation was studied. Kv1.3 was expressed in human embryonic kidney (HEK 293) cells, and its activity was measured by cell-attached patch recording. The amplitude of the characteristic C-type inactivating Kv1.3 current is reduced by >95%, in all cells tested, when the channel is co-expressed with the constitutively active nonreceptor tyrosine kinase, v-Src. This v-Src-induced suppression of current is accompanied by a robust tyrosine phosphorylation of the channel protein. No suppression of current or tyrosine phosphorylation of Kv1.3 protein is observed when the channel is co-expressed with R385A v-Src, a mutant with severely impaired tyrosine kinase activity. v-Src-induced suppression of Kv1.3 current is relieved by pretreatment of the HEK 293 cells with two structurally different tyrosine kinase inhibitors, herbimycin A and genistein. Furthermore, Kv1.3 channel protein is processed properly and targeted to the plasma membrane in v-Src cotransfected cells, as demonstrated by confocal microscopy using an antibody directed against an extracellular epitope on the channel. Thus v-Src-induced suppression of Kv1.3 current is not mediated through decreased channel protein expression or interference with its targeting to the plasma membrane. v-Src co-expression also slows the C-type inactivation and speeds the deactivation of the residual Kv1.3 current. Mutational analysis demonstrates that each of these modulatory changes, in current amplitude and kinetics, requires the phosphorylation of Kv1.3 at multiple tyrosine residues. Furthermore, a different combination of tyrosine residues is involved in each of the modulatory changes. These results emphasize the complexity of signal integration at the level of a single ion channel.
Collapse
Affiliation(s)
- D A Fadool
- Department of Biochemistry and Volen Center for Complex Systems, Brandeis University, Waltham, Massachusetts 02254, USA
| | | | | | | | | |
Collapse
|
150
|
Dean WL, Chen D, Brandt PC, Vanaman TC. Regulation of platelet plasma membrane Ca2+-ATPase by cAMP-dependent and tyrosine phosphorylation. J Biol Chem 1997; 272:15113-9. [PMID: 9182531 DOI: 10.1074/jbc.272.24.15113] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
As a consequence of its central role in the regulation of calcium metabolism in the platelet, the plasma membrane Ca2+-ATPase (PMCA) was assessed for cAMP-dependent and tyrosine phosphorylation. Addition of forskolin or prostaglandin E1, agents known to elevate platelet cAMP and calcium efflux, to platelets pre-labeled with [32P]PO4 resulted in the direct phosphorylation of platelet PMCA. Similarly, addition of the catalytic subunit of protein kinase A to platelet plasma membranes resulted in a 1.4-fold stimulation of activity. Thus, the previously reported inhibition of platelet activation by elevated intracellular cAMP may be accomplished in part by stimulation of PMCA, likely resulting in a decrease in intracellular calcium. Treatment with thrombin evoked tyrosine phosphorylation of platelet PMCA, while PMCA from resting platelets exhibited little tyrosine phosphorylation. Phosphorylation of platelet plasma membranes by pp60(src) resulted in 75% inhibition of PMCA activity within 15 min. Similarly, membranes isolated from thrombin-treated platelets exhibited 40% lower PMCA activity than those from resting platelets. Phosphorylation of erythrocyte ghosts and purified PMCA by pp60(src) also resulted in up to 75% inhibition of Ca2+-ATPase activity, and inhibition was correlated with tyrosine phosphorylation. Sequencing of a peptide obtained after 32P labeling of purified erythrocyte PMCA in vitro showed that tyrosine 1176 of PMCA4b is phosphorylated by pp60(src). These results indicate that tyrosine phosphorylation of platelet PMCA may serve as positive feedback to inhibit PMCA and increase intracellular calcium during platelet activation.
Collapse
Affiliation(s)
- W L Dean
- Department of Biochemistry, University of Louisville School of Medicine, Louisville, Kentucky 40292, USA
| | | | | | | |
Collapse
|