101
|
Da Costa AA, D'Agostino H. Myelomeningocele without Associated Chiari II Malformation. Neuroradiol J 2008; 21:236-8. [DOI: 10.1177/197140090802100213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2008] [Accepted: 02/08/2008] [Indexed: 11/17/2022] Open
Affiliation(s)
- A.F. Alves Da Costa
- Dep. Radiology, Louisiane State University- Health Sciences Center; Shreveport, LA, U.S.A
| | - H. D'Agostino
- Dep. Radiology, Louisiane State University- Health Sciences Center; Shreveport, LA, U.S.A
| |
Collapse
|
102
|
Danzer E, Flake AW. In utero Repair of Myelomeningocele: Rationale, Initial Clinical Experience and a Randomized Controlled Prospective Clinical Trial. Neuroembryology Aging 2008; 4:165-174. [PMID: 22479081 PMCID: PMC2810532 DOI: 10.1159/000118926] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2007] [Accepted: 09/18/2007] [Indexed: 11/19/2022]
Abstract
Myelomeningocele (MMC), one of the most common congenital malformations, can result in severe lifelong disabilities, including paraplegia, hydrocephalus, Arnold-Chiari II malformation, incontinence, sexual dysfunction, skeletal deformations, and mental impairment. MMC was the first nonlethal anomaly to be treated by fetal surgery. Studies in animals provide compelling evidence that the primary cause of the neurological deficit associated with MMC is not simply incomplete neurulation but rather chronic mechanical injury and amniotic-fluid-induced chemical trauma that progressively damage the exposed neural tissue during gestation. Initial results suggest that the surgical repair of MMC before 25 weeks of gestation may preserve neurological function, reverse the hindbrain herniation of the Arnold-Chiari II malformation, and obviate the need for postnatal placement of a ventriculoperitoneal shunt. As it is currently unknown whether fetal surgery for MMC is truly beneficial compared to standard postnatal care, a randomized, controlled clinical trial has been initiated within the United States.
Collapse
Affiliation(s)
- Enrico Danzer
- Center for Fetal Diagnosis and Treatment and Center for Fetal Research, The Children's Hospital of Philadelphia and University of Pennsylvania School of Medicine, Philadelphia, Pa., USA
| | | |
Collapse
|
103
|
Beaudin AE, Stover PJ. Folate-mediated one-carbon metabolism and neural tube defects: balancing genome synthesis and gene expression. ACTA ACUST UNITED AC 2007; 81:183-203. [PMID: 17963270 DOI: 10.1002/bdrc.20100] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Neural tube defects (NTDs) refer to a cluster of neurodevelopmental conditions associated with failure of neural tube closure during embryonic development. Worldwide prevalence of NTDs ranges from approximately 0.5 to 60 per 10,000 births, with regional and population-specific variation in prevalence. Numerous environmental and genetic influences contribute to NTD etiology; accumulating evidence from population-based studies has demonstrated that folate status is a significant determinant of NTD risk. Folate-mediated one-carbon metabolism (OCM) is essential for de novo nucleotide biosynthesis, methionine biosynthesis, and cellular methylation reactions. Periconceptional maternal supplementation with folic acid can prevent occurrence of NTDs in the general population by up to 70%; currently several countries fortify their food supply with folic acid for the prevention of NTDs. Despite the unambiguous impact of folate status on NTD risk, the mechanism by which folic acid protects against NTDs remains unknown. Identification of the mechanism by which folate status affects neural tube closure will assist in developing more efficacious and better targeted preventative measures. In this review, we summarize current research on the relationship between folate status and NTDs, with an emphasis on linking genetic variation, folate nutriture, and specific metabolic and/or genomic pathways that intersect to determine NTD outcomes.
Collapse
Affiliation(s)
- Anna E Beaudin
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA
| | | |
Collapse
|
104
|
Elmore CL, Matthews RG. The many flavors of hyperhomocyst(e)inemia: insights from transgenic and inhibitor-based mouse models of disrupted one-carbon metabolism. Antioxid Redox Signal 2007; 9:1911-21. [PMID: 17696766 PMCID: PMC3112351 DOI: 10.1089/ars.2007.1795] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Mouse models that perturb homocysteine metabolism, including genetic mouse models that result in deficiencies of methylenetetrahydrofolate reductase, methionine synthase, methionine synthase reductase, and cystathionine beta-synthase, and a pharmaceutically induced mouse model with a transient deficiency in betainehomocysteine methyl transferase, have now been characterized and can be compared. Although each of these enzyme deficiencies is associated with moderate to severe hyperhomocyst(e)inemia, the broader metabolic profiles are profoundly different. In particular, the various models differ in the degree to which tissue ratios of S-adenosylmethionine to S-adenosylhomocysteine are reduced in the face of elevated plasma homocyst(e)ine, and in the distribution of the tissue folate pools. These different metabolic profiles illustrate the potential complexities of hyperhomocyst(e)inemia in humans and suggest that comparison of the disease phenotypes of the various mouse models may be extremely useful in dissecting the underlying risk factors associated with human hyperhomocyst(e)inemia.
Collapse
Affiliation(s)
- C Lee Elmore
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109-2216, USA
| | | |
Collapse
|
105
|
Katagiri RI, Kurome M, Teshima Y, Ueta E, Naruse I. Prevention of ochratoxin A-induced neural tube defects by folic acid in the genetic polydactyly/arhinencephaly mouse, Pdn/Pdn. Congenit Anom (Kyoto) 2007; 47:90-6. [PMID: 17688467 DOI: 10.1111/j.1741-4520.2007.00152.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The gene responsible for the polydactyly/arhinencephaly (Pdn/Pdn) mouse, which exhibits polysyndactyly and arhinencephaly and has a 13.2% risk of neural tube defects (NTD), has been identified as Gli3. Ochratoxin A (OTA) is a teratogen causing NTD in mice. When Pdn/Pdn embryos were exposed to 2 mg/kg of OTA on day 7.5, the incidence of NTD in Pdn/Pdn fetuses increased to 51.6%. Pre-treatment with folinic acid (FA), metabolically the most active form of folic acid, before OTA-treatment decreased the incidence of NTD to 20.8%. We investigated the effect of OTA and FA on gene expression in day 9 embryos using whole-mount in situ hybridization and real-time PCR. Over-expression of Fgf8 was observed at the anterior neural ridge (ANR) in the non-treated Pdn/Pdn. Over-expression at the ANR expanded in the OTA-treated Pdn/Pdn, and it was ameliorated by pretreatment with FA. Emx2 signal was observed in the dorsal forebrain in the non-treated +/+, but disappeared in the OTA-treated +/+, and was recovered by FA. The Emx2 signal was pale and the expression amount was depressed in the non-treated and OTA-treated Pdn/Pdn embryos. It was suggested that down-regulation of Gli3 induced the over-expression of Fgf8 at the ANR, that OTA treatment accelerated the over-expression, and that pretreatment with FA ameliorated the OTA-induced over-expression of Fgf8 in the Pdn/Pdn. It was also suggested that down-regulation of Gli3 induced the down-regulation of Emx2 in the Pdn/Pdn. It was further speculated that the over-expression of Fgf8 at the ANR and down-regulation of Emx2 in the dorsal forebrain may contribute to NTD induction.
Collapse
Affiliation(s)
- Ryu-ichi Katagiri
- School of Health Science, Faculty of Medicine, Tottori University, Yonago, Tottori, Japan
| | | | | | | | | |
Collapse
|
106
|
Abstract
TEAD2, one of the first transcription factors expressed at the beginning of mammalian development, appears to be required during neural development. For example, Tead2 expression is greatest in the dorsal neural crest where it appears to regulate expression of Pax3, a gene essential for brain development. Consistent with this hypothesis, we found that inactivation of the Tead2 gene in mice significantly increased the risk of exencephaly (a defect in neural tube closure). However, none of the embryos exhibited spina bifida, the major phenotype of Pax3 nullizygous embryos, and expression of Pax3 in E11.5 Tead2 nullizygous embryos was normal. Thus, Tead2 plays a role in neural tube closure that is independent of its putative role in Pax3 regulation. In addition, the risk of exencephaly was greatest with Tead2 nullizygous females, and could be suppressed either by folic acid or pifithrin-alpha. These results reveal a maternal genetic contribution to neural tube closure, and suggest that Tead2-deficient mice provide a model for anencephaly, a common human birth defect that can be prevented by folic acid.
Collapse
Affiliation(s)
- Kotaro J. Kaneko
- National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland
| | - Matthew J. Kohn
- National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland
| | - Chengyu Liu
- Genetics and Developmental Biology Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Melvin L. DePamphilis
- National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
107
|
Harris MJ, Juriloff DM. Mouse mutants with neural tube closure defects and their role in understanding human neural tube defects. ACTA ACUST UNITED AC 2007; 79:187-210. [PMID: 17177317 DOI: 10.1002/bdra.20333] [Citation(s) in RCA: 241] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND The number of mouse mutants and strains with neural tube closure defects (NTDs) now exceeds 190, including 155 involving known genes, 33 with unidentified genes, and eight "multifactorial" strains. METHODS The emerging patterns of mouse NTDs are considered in relation to the unknown genetics of the common human NTDs, anencephaly, and spina bifida aperta. RESULTS Of the 150 mouse mutants that survive past midgestation, 20% have risk of either exencephaly and spina bifida aperta or both, parallel to the majority of human NTDs, whereas 70% have only exencephaly, 5% have only spina bifida, and 5% have craniorachischisis. The primary defect in most mouse NTDs is failure of neural fold elevation. Most null mutations (>90%) produce syndromes of multiple affected structures with high penetrance in homozygotes, whereas the "multifactorial" strains and several null-mutant heterozygotes and mutants with partial gene function (hypomorphs) have low-penetrance nonsyndromic NTDs, like the majority of human NTDs. The normal functions of the mutated genes are diverse, with clusters in pathways of actin function, apoptosis, and chromatin methylation and structure. The female excess observed in human anencephaly is found in all mouse exencephaly mutants for which gender has been studied. Maternal agents, including folate, methionine, inositol, or alternative commercial diets, have specific preventative effects in eight mutants and strains. CONCLUSIONS If the human homologs of the mouse NTD mutants contribute to risk of common human NTDs, it seems likely to be in multifactorial combinations of hypomorphs and low-penetrance heterozygotes, as exemplified by mouse digenic mutants and the oligogenic SELH/Bc strain.
Collapse
Affiliation(s)
- Muriel J Harris
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada.
| | | |
Collapse
|
108
|
Lin HL, Chen CJ, Tsai WC, Yen JH, Liu HW. In vitrofolate deficiency induces apoptosis by a p53, Fas (Apo-1, CD95) independent, bcl-2 related mechanism in phytohaemagglutinin-stimulated human peripheral blood lymphocytes. Br J Nutr 2007; 95:870-8. [PMID: 16611376 DOI: 10.1079/bjn20051579] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Invitrofolate deficiency is associated with S phase accumulation and apoptosis in various cell types. To investigate the role of p53 and two apoptosis-related molecules, bcl-2 and Fas antigen (Apo-1, CD95), in the mechanism whereby folate-deficient lymphocytes accumulate and undergo apoptosis in the S phase, normal human peripheral blood lymphocytes were cultured for 3–9 d in control medium or in specially ordered and formulated HAM’ F-10 medium lacking folic acid, thymidine and hypoxanthine. Cells were stimulated with phytohaemagglutinin for the final 72 h prior to harvesting. The results indicate that p53 expression was downregulated in folate-deficient lymphocytes when compared with the control lymphocytes during the relevant period of S phase accumulation and apoptosis. In addition, folate deficiency was also found to downregulate IL-2, Fas antigen and bcl-2 expression, in terms of either mRNA or protein levels. The downregulation of Fas antigen suggests that folate deficiency-induced apoptosis probably does not occur via the Fas pathway. As IL-2 is a known inducer of bcl-2, and the downregulation of bcl-2 induces apoptosis, the downregulation of IL-2 and bcl-2 is suggested to play an important role in apoptosis. The complete rescue of folate-deficient lymphocytes from apoptosis was achieved by folic acid, thymidine or hypoxanthine alone or thymidine and hypoxanthine in combination. These results suggest that IL-2 depletion by folate deficiency in lymphocytes reduces the bcl-2 level, thereby triggering deoxynucleoside triphosphate pool imbalance and p53-independent apoptosis.
Collapse
Affiliation(s)
- Hui-Li Lin
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan, ROC
| | | | | | | | | |
Collapse
|
109
|
Anthony TE, Heintz N. The folate metabolic enzyme ALDH1L1 is restricted to the midline of the early CNS, suggesting a role in human neural tube defects. J Comp Neurol 2007; 500:368-83. [PMID: 17111379 DOI: 10.1002/cne.21179] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Folate supplementation prevents up to 70% of human neural tube defects (NTDs), although the precise cellular and metabolic sites of action remain undefined. One possibility is that folate modulates the function of metabolic enzymes expressed in cellular populations involved in neural tube closure. Here we show that the folate metabolic enzyme ALDH1L1 is cell-specifically expressed in PAX3-negative radial glia at the midline of the neural tube during early murine embryogenesis. Midline restriction is not a general property of this branch of folate metabolism, as MTHFD1 displays broad and apparently ubiquitous expression throughout the neural tube. Consistent with previous work showing antiproliferative effects in vitro, ALDH1L1 upregulation during central nervous system (CNS) development correlates with reduced proliferation and most midline ALDH1L1(+) cells are quiescent. These data provide the first evidence for localized differences in folate metabolism within the early neural tube and suggest that folate might modulate proliferation via effects on midline Aldh1l1(+) cells. To begin addressing its role in neurulation, we analyzed a microdeletion mouse strain lacking Aldh1l1 and observed neither increased failure of neural tube closure nor detectable proliferation defects. Although these results indicate that loss-of-function Aldh1l1 mutations do not impair these processes in mice, the specific midline expression of ALDH1L1 and its ability to dominantly suppress proliferation in a folate responsive manner may suggest that mutations contributing to disease are gain-of-function, rather than loss-of-function. Moreover, a role for loss-of-function mutations in human NTDs remains possible, as Mthfr null mice do not develop NTDs even though MTHFR mutations increase human NTD risk.
Collapse
Affiliation(s)
- Todd E Anthony
- Laboratory of Molecular Biology, Howard Hughes Medical Institute, Rockefeller University, New York, New York, USA
| | | |
Collapse
|
110
|
Hrubec TC, Yan M, Ye K, Salafia CM, Holladay SD. Valproic acid-induced fetal malformations are reduced by maternal immune stimulation with granulocyte-macrophage colony-stimulating factor or interferon-gamma. THE ANATOMICAL RECORD. PART A, DISCOVERIES IN MOLECULAR, CELLULAR, AND EVOLUTIONARY BIOLOGY 2006; 288:1303-9. [PMID: 17075842 PMCID: PMC2567843 DOI: 10.1002/ar.a.20397] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Valproic acid, a drug commonly used to treat seizures and other psychiatric disorders, causes neural tube defects (NTDs) in exposed fetuses at a rate 20 times higher than in the general population. Failure of the neural tube to close during development results in exencephaly or anencephaly, as well as spina bifida. In mice, nonspecific activation of the maternal immune system can reduce fetal abnormalities caused by diverse etiologies, including diabetes-induced NTDs. We hypothesized that nonspecific activation of the maternal immune system with interferon-gamma (IFN-gamma) and granulocyte-macrophage colony-stimulating factor (GM-CSF) could reduce valproic acid (VA)-induced defects as well. Female CD-1 mice were given immune stimulant prebreeding: either IFN-gamma or GM-CSF. Approximately half of the control and immune-stimulated pregnant females were then exposed to 500 mg/kg VA on the morning of gestational day 8. The incidence of developmental defects was determined on gestational day 17 from at least eight litters in each of the following treatment groups: control, VA only, IFN-gamma only, IFN-gamma+VA, GM-CSF only, and GM-CSF+VA. The incidence of NTDs was 18% in fetuses exposed to VA alone, compared to 3.7% and 2.9% in fetuses exposed to IFN-gamma+VA, or GM-CSF+VA respectively. Ocular defects were also significantly reduced from 28.0% in VA exposed groups to 9.8% in IFN-gamma+VA and 12.5% in GM-CSF+VA groups. The mechanisms by which maternal immune stimulation prevents birth defects remain unclear, but may involve maternal or fetal production of cytokines or growth factors which protect the fetus from the dysregulatory effects of teratogens.
Collapse
Affiliation(s)
- Terry C Hrubec
- Department of Biomedical Science, E. Via Virginia College of Osteopathic Medicine, Blacksburg, Virginia 24060, USA.
| | | | | | | | | |
Collapse
|
111
|
Ernest S, Carter M, Shao H, Hosack A, Lerner N, Colmenares C, Rosenblatt DS, Pao YH, Ross ME, Nadeau JH. Parallel changes in metabolite and expression profiles in crooked-tail mutant and folate-reduced wild-type mice. Hum Mol Genet 2006; 15:3387-93. [PMID: 17050573 DOI: 10.1093/hmg/ddl415] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Anomalies in homocysteine (HCY) and folate metabolism are associated with common birth defects and adult diseases, several of which can be suppressed with dietary folate supplementation. Although supplementation reduces the occurrence and severity of neural tube defects (NTDs), many cases are resistant to these beneficial effects. The basis for variable response and biomarkers that predict responsiveness are unknown. Crooked-tail (Cd) mutant mice are an important model of folate-responsive NTDs. To identify features that are diagnostic for responsiveness versus resistance to dietary folate supplementation, we surveyed metabolite and expression levels in liver samples from folate-supplemented, folate-reduced and control diets in Cd mutant and wild-type adult females. Cd homozygotes had normal total homocysteine (tHcy) levels suggesting that folate suppresses NTDs through a mechanism that does not involve modulating serum tHcy levels. Instead, parallel changes in metabolite and expression profiles in folate-supplemented Cd/Cd homozygotes and folate-reduced+/+and Cd/+mice suggest that Crooked-tail homozygotes have a defect in the utilization of intracellular folate. Then, by combining these expression and metabolite profile results with published results for other models and their controls, two clusters were found, one of which included several folate-responsive NTD models and the other previously untested and presumably folate-resistant models. The predictive value of these profiles was verified by demonstrating that NTDs of Ski-/-mutant mice, whose profile suggested resistance to folate supplementation, were not suppressed with dietary folate supplementation. These results raise the possibility of using metabolite and expression profiles to distinguish folate-responsive and resistance adult females who are at risk for bearing fetuses with an NTD.
Collapse
Affiliation(s)
- Sheila Ernest
- Department of Genetics, Center for Computational Genomics, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
112
|
Stottmann RW, Berrong M, Matta K, Choi M, Klingensmith J. The BMP antagonist Noggin promotes cranial and spinal neurulation by distinct mechanisms. Dev Biol 2006; 295:647-63. [PMID: 16712836 PMCID: PMC3001110 DOI: 10.1016/j.ydbio.2006.03.051] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2005] [Revised: 03/23/2006] [Accepted: 03/31/2006] [Indexed: 10/24/2022]
Abstract
Here we characterize the consequences of elevated bone morphogenetic protein (BMP) signaling on neural tube morphogenesis by analyzing mice lacking the BMP antagonist, Noggin. Noggin is expressed dorsally in the closing neural folds and ventrally in the notochord and somites. All Noggin-/- pups are born with lumbar spina bifida; depending on genetic background, they may also have exencephaly. The exencephaly is due to a primary failure of neurulation, resulting from a lack of mid/hindbrain dorsolateral hinge point (DLHP) formation. Thus, as previously shown for Shh signaling at spinal levels, BMP activity may inhibit cranial DLHP morphogenesis. However, the increased BMP signaling observed in the Noggin-/- dorsal neural tube is not sufficient to cause exencephaly; it appears to also depend on the action of a genetic modifier, which may act to increase dorsal Shh signaling. The spinal neural tube defect results from a different mechanism: increased BMP signaling in the mesoderm between the limb buds leads to abnormal somite differentiation and axial skeletal malformation. The resulting lack of mechanical support for the neural tube causes spina bifida. We show that this defect is due to elevated BMP4 signaling. Thus, Noggin is required for mammalian neurulation in two contexts, dependent on position along the rostrocaudal axis.
Collapse
Affiliation(s)
| | - Mark Berrong
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
| | - Karen Matta
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
| | - Murim Choi
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
| | - John Klingensmith
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
113
|
Bennett GD, Vanwaes J, Moser K, Chaudoin T, Starr L, Rosenquist TH. Failure of homocysteine to induce neural tube defects in a mouse model. ACTA ACUST UNITED AC 2006; 77:89-94. [PMID: 16528705 DOI: 10.1002/bdrb.20071] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND Folate deficiencies have been associated with many adverse congenital abnormalities. It is not clear, however, whether these defects are due to a folate deficiency or to an increase in homocysteine. Homocysteine has been shown to be teratogenic in the chicken-embryo model and it has been suggested that homocysteine-induced defects are mediated by inhibiting the N-methyl-D-aspartate (NMDA) receptor on neural crest cells. The majority of the teratology studies have been carried out using the chicken embryo model. In an effort to develop a murine model of homocysteine-induced neural tube defects, several inbred mouse strains were treated with homocysteine or the NMDA inhibitor MK801 and the fetuses examined for any induced-NTD. METHODS Several in-bred mouse strains were administered homocysteine once on gestational day (GD) E8.5 or once daily on GD 6.5-10.5. Additionally, because homocysteine was been reported to mediate its effects through the NMDA receptor, the effect of MK801, an antagonist of this receptor, was also investigated. RESULTS Regardless of the mouse treatment time, homocysteine failed to induce neural tube defects in our in-bred mouse strains. Homocysteine also failed to increase the number of neural tube defects in the splotch strain, regardless of the genotype. CONCLUSIONS Irrespective of the mouse strain or treatment, homocysteine failed to induce neural tube defects in our mouse models, which is in contrast to what has been reported in the chicken embryo models.
Collapse
Affiliation(s)
- Gregory D Bennett
- Department of Genetics Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, Nebraska 68198-5805, USA.
| | | | | | | | | | | |
Collapse
|
114
|
Norton HL, Friedlaender JS, Merriwether DA, Koki G, Mgone CS, Shriver MD. Skin and hair pigmentation variation in Island Melanesia. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2006; 130:254-68. [PMID: 16374866 DOI: 10.1002/ajpa.20343] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Skin and hair pigmentation are two of the most easily visible examples of human phenotypic variation. Selection-based explanations for pigmentation variation in humans have focused on the relationship between melanin and ultraviolet radiation, which is largely dependent on latitude. In this study, skin and hair pigmentation were measured as the melanin (M) index, using narrow-band reflectance spectroscopy for 1,135 individuals from Island Melanesia. Overall, the results show remarkable pigmentation variation, given the small geographic region surveyed. This variation is discussed in terms of differences between males and females, among islands, and among neighborhoods within those islands. The relationship of pigmentation to age, latitude, and longitude is also examined. We found that male skin pigmentation was significantly darker than females in 5 of 6 islands examined. Hair pigmentation showed a negative, but weak, correlation with age, while skin pigmentation showed a positive, but also weak, correlation with age. Skin and hair pigmentation varied significantly between islands as well as between neighborhoods within those islands. Bougainvilleans showed significantly darker skin than individuals from any other island considered, and are darker than a previously described African-American population. These findings are discussed in relation to prevailing hypotheses about the role of natural selection in shaping pigmentation variation in the human species, as well as the role of demographic processes such as admixture and drift in Island Melanesia.
Collapse
Affiliation(s)
- Heather L Norton
- Department of Anthropology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | | | | | | | | | | |
Collapse
|
115
|
Dunlevy LPE, Burren KA, Chitty LS, Copp AJ, Greene NDE. Excess methionine suppresses the methylation cycle and inhibits neural tube closure in mouse embryos. FEBS Lett 2006; 580:2803-7. [PMID: 16674949 DOI: 10.1016/j.febslet.2006.04.020] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2006] [Revised: 04/04/2006] [Accepted: 04/06/2006] [Indexed: 01/20/2023]
Abstract
Suppression of one-carbon metabolism or insufficient methionine intake are suggested to increase risk of neural tube defects (NTD). Here, exogenous methionine unexpectedly caused frequent NTD in cultured mouse embryos. NTD were associated with reduced cranial mesenchyme cell density, which may result from a preceding reduction in proliferation. The abundance ratio of S-adenosylmethionine to S-adenosylhomocysteine was also decreased in treated embryos, suggesting methylation reactions may be suppressed. Such an effect is potentially causative as NTD were also observed when DNA methylation was specifically inhibited. Thus, reduced cranial mesenchyme density and impairment of critical methylation reactions may contribute to development of methionine-induced NTD.
Collapse
Affiliation(s)
- Louisa P E Dunlevy
- Neural Development Unit, Institute of Child Health, University College London, 30 Guilford Street, London WC1N 1EA, UK
| | | | | | | | | |
Collapse
|
116
|
Chen S, Yakunin AF, Proudfoot M, Kim R, Kim SH. Structural and functional characterization of a 5,10-methenyltetrahydrofolate synthetase from Mycoplasma pneumoniae (GI: 13508087). Proteins 2006; 61:433-43. [PMID: 16104022 DOI: 10.1002/prot.20591] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Mycoplasma pneumoniae 5,10-methenyltetrahydrofolate synthetase [MTHFS; also known as 5-formyltetrahydrofolate cycloligase; Enzyme Commission (EC) 6.3.3.2] belongs to a large cycloligase protein family with 97 sequence homologues from bacteria to human. To help define the molecular (biochemical and biophysical) function of the M. pneumoniae MTHFS, we have previously determined its crystal structure at 2.2 A resolution (Chen et al., Proteins 2004;56:839-843). In this current study, activity assays confirmed the functionality of the recombinant protein, with K(m) = 165 microM for 5-formyltetrahydrofolate (5-FTHF) and K(m) = 166 microM for MgATP. The methenyltetrahydrofolate activity of M. pneumoniae MTHFS has a requirement for divalent metal ions with Mg2+ being most effective, and an absolute requirement for nucleoside 5'-triphosphates with adenosine triphosphate (ATP) being most effective. Crystallization in the presence of substrates (MgATP, with or without 5-FTHF) produced the complex structures of the protein with adenosine diphosphate (ADP) and phosphate at 2.2 A resolution; with ADP, phosphate, and 5-FTHF at 2.5 A resolution. These structures directly demonstrated that the role of Mg2+ in the reaction is to form the ATP--Mg2+-enzyme complex.
Collapse
Affiliation(s)
- Shengfeng Chen
- Department of Chemistry, University of California, Berkeley, California 94720, USA
| | | | | | | | | |
Collapse
|
117
|
Li D, Pickell L, Liu Y, Rozen R. Impact of methylenetetrahydrofolate reductase deficiency and low dietary folate on the development of neural tube defects in splotch mice. ACTA ACUST UNITED AC 2006; 76:55-9. [PMID: 16397891 DOI: 10.1002/bdra.20223] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND The etiology of neural tube defects (NTDs) is multifactorial, with environmental and genetic determinants. Folate supplementation prevents the majority of NTDs, and a polymorphism in methylenetetrahydrofolate reductase (MTHFR) has become recognized as a genetic risk factor. The mechanisms by which folate affects NTD development are unclear. The Splotch (Sp) mouse is a well-characterized mouse model for studying spontaneous NTDs. To assess the potential interaction between folate metabolism and the Sp mutant in NTD development, we studied mice with both Sp and Mthfr mutations, as well as the interaction between Sp and low dietary folate. METHODS Wild-type, single Mthfr+/-mutant, single Sp/+mutant, and double mutant (Mthfr+/-, Sp/+) female mice were mated with males of the same genotype. Embryos were examined for NTDs on gestational day (GD) 13.5. To investigate the effects of folate deficiency on Sp mice, Sp/+female mice were fed a control diet (CD), a moderately folic acid-deficient diet (MFADD), or a severely folic acid-deficient diet (SFADD). They were mated with Sp/+males and the embryos were examined. RESULTS There were no differences in the incidence or severity of NTDs in embryos from double-mutant mating pairs compared to those from single Sp mutants. Embryos from Mthfr+/-dams did not exhibit NTDs. Diets deficient in folate did not influence the incidence or severity of NTDs in embryos from Sp/+mice. CONCLUSIONS We did not observe an interaction between Sp and Mthfr mutations, or between the Sp mutation and low dietary folate, in NTD development in Splotch mice.
Collapse
Affiliation(s)
- Deqiang Li
- Department of Human Genetics, McGill University-Montreal Children's Hospital Research Institute, Montreal, Canada
| | | | | | | |
Collapse
|
118
|
Sato K, Kanno J, Tominaga T, Matsubara Y, Kure S. De novo and salvage pathways of DNA synthesis in primary cultured neurall stem cells. Brain Res 2006; 1071:24-33. [PMID: 16409993 DOI: 10.1016/j.brainres.2005.11.039] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2005] [Revised: 10/20/2005] [Accepted: 11/06/2005] [Indexed: 11/27/2022]
Abstract
We studied the de novo and salvage pathways of DNA synthesis in sphere-forming neural stem cells obtained from mouse embryos by a neurosphere method. The former pathway needs folic acid (FA) for nucleotide biosynthesis, while the latter requires deoxyribonucleosides (dNS). We examined the proliferative activity of sphere-forming cells in E14.5 embryos by counting the number of spheres formed in media that lacked FA and/or dNS. Proliferation failure and apoptosis occurred in a deficient medium lacking of both FA and dNS. Spheres formed in the deficient medium supplemented with dNS, without FA, did not produce neuron, but rather only seem to generate astrocytes and oligodendrocytes when plated under differentiation condition in culture. On the other hand, a subpopulation of cultured cells formed spheres in the deficient medium supplemented with FA alone in an appropriate concentration, and did possess the self-renewing and multipotential characteristics of neural stem cells. Spheres formed in the media containing low dose Azathioprine and methotrexate, inhibitors of de novo DNA synthesis, were selectively prevented from producing neurons even in the presence of FA. These results suggested that activating de novo DNA synthesis was needed for neural stem cells to proliferate with multipotentiality.
Collapse
Affiliation(s)
- Kenichi Sato
- Department of Medical Genetics, Tohoku University School of Medicine, 1-1 Seiryo-machi, Sendai 980-8574, Japan
| | | | | | | | | |
Collapse
|
119
|
Patterson AD, Hildesheim J, Fornace AJ, Hollander MC. Neural tube development requires the cooperation of p53- and Gadd45a-associated pathways. ACTA ACUST UNITED AC 2006; 76:129-32. [PMID: 16470852 DOI: 10.1002/bdra.20217] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND Numerous genetically engineered mouse models for neural tube defects (NTDs) exist, and some of the implicated proteins are functionally related. For example, the growth arrest and DNA damage-inducible protein Gadd45a and tumor suppressor p53 are functionally similar, and both are involved in neural tube development (Gadd45a- and Trp53-null embryos show low levels of exencephaly). To assess their roles in neural tube development, we generated double-null mice from Gadd45a- and Trp53-null mice, as well as from cyclin-dependent kinase inhibitor (Cdkn1a) (p21)-null and xeroderma pigmentosum group C (XPC)-null mice that do not show spontaneous exencephaly. METHODS Gadd45a-, Trp53-, Cdkn1a-, and XPC-null mice were crossed to generate several double-null mouse models. Embryos (embryonic day [ED] 16-18) from the single- and double-null crosses were scored for NTDs. RESULTS Deletion of both Gadd45a and Trp53 in mice increased exencephaly frequencies compared to the deletion of either single gene (34.0% in Gadd45a/Trp53-null compared to 8.4% and 9.1% in the Gadd45a- and Trp53-null embryos, respectively). Furthermore, although deletion of another p53-regulated gene, Cdkn1a, is not associated with exencephaly, in conjunction with Gadd45a deletion, the exencephaly frequencies are increased (30.5% in the Gadd45a/Cdkn1a-null embryos) and are similar to those in the Gadd45a/Trp53-null embryos. Although XPC deletion increased exencephaly frequencies in Trp53-null embryos, XPC deletion did not increase the exencephaly frequencies in Gadd45a-null embryos. CONCLUSIONS The increased genetic liability to exencephaly in the Gadd45a/Trp53- and Gadd45a/Cdkn1a-null embryos may be related to the disruption of multiple cellular pathways associated with Gadd45a and p53.
Collapse
Affiliation(s)
- Andrew D Patterson
- National Institutes of Health-George Washington University Graduate Partnerships Program in Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD 20889, USA
| | | | | | | |
Collapse
|
120
|
Santoso MIE, Rohman MS. Decreased TGF-β1 and IGF-1 protein expression in rat embryo skull bone in folic acid-restricted diet. J Nutr Biochem 2006; 17:51-6. [PMID: 16111879 DOI: 10.1016/j.jnutbio.2005.05.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2005] [Accepted: 05/11/2005] [Indexed: 11/20/2022]
Abstract
Folic acid deficiency during conception up to the end of the third month of gestation is believed to play the most important factor in neural tube defects (NTDs). However, the exact molecular mechanism remains to be elucidated. It has been suggested that transforming growth factor-beta (TGF-beta1) and insulin-like growth factor-1 (IGF-1) play a critical role in supporting bone formation. Therefore, folic acid deficiency may contribute to NTD occurrence via decreased TGF-beta1 and IGF-1 expression. This study aimed to determine the correlation between folic acid deficiency and the expression of TGF-beta1 and IGF-1 in rat skull bone. Thirty female Sprague-Dawley rats were divided into three groups. Purified diet containing 5 (restricted), 15 (low) and 30 microg (normal) of folic acid was given to the first, second and third groups, respectively. At 16 weeks of a given diet, blood samples were taken to examine folic acid (folate immunoassay method), TGF-beta1 and IGF-1 (enzyme-linked immunosorbent assay method) levels. After forced mating, on the 18th-19th day of gestation (E18-19), the pregnant rats were subjected to hysterectomy. The skull bone samples of E18-19 rats were taken to examine the TGF-beta1 and IGF-1 protein expression by immunohistochemistry. The folic acid-restricted diet (5 microg) resulted in decreased serum TGF-beta1 and IGF-1 levels. Furthermore, protein expression of TGF-beta1 and IGF-1 in E18-19 rat skull bones was also significantly lower in the folic acid-restricted diet than in the normal diet. Folic acid deficiency could result in reduction of TGF-beta1 and IGF-1 protein levels and might contribute to formation of defects in the skull bone as observed in mengingocele patients.
Collapse
|
121
|
Wlodarczyk BJ, Tang LS, Triplett A, Aleman F, Finnell RH. Spontaneous neural tube defects in splotch mice supplemented with selected micronutrients. Toxicol Appl Pharmacol 2005; 213:55-63. [PMID: 16226775 DOI: 10.1016/j.taap.2005.09.008] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2005] [Revised: 08/29/2005] [Accepted: 09/06/2005] [Indexed: 01/24/2023]
Abstract
Splotch (Sp/Sp) mice homozygous for a mutation in the Pax3 gene inevitably present with neural tube defects (NTDs), along with other associated congenital anomalies. The affected mutant embryos usually die by gestation days (E) 12-13. In the present study, the effect of modifier genes from a new genetic background (CXL-Sp) and periconceptional supplementation with selected micronutrients (folic acid, 5-formyltetrahydrofolate, 5-methyltetrahydrofolate, methionine, myoinositol, thiamine, thymidine, and alpha-tocopherol) was determined with respect to the incidence of NTDs. In order to explore how different exposure parameters (time, dose, and route of compound administration) modulate the beneficial effects of micronutrient supplementation, female mice received either short- or long-term nutrient supplements via enteral or parenteral routes. Embryos were collected on E12.5 and examined for the presence of anterior or posterior NTDs. Additionally, whole mount in situ hybridization studies were conducted in order to reveal/confirm normal expression patterns of the Pax3 gene during neurulation in the wild-type and Sp/Sp homozygous mutant mouse embryos utilized in this study. A strong Pax3 signal was demonstrated in CXL-Sp embryos during neural tube closure (E9.5 to E10.5). The intensity and spatial pattern of expression were similar to other Splotch mutant mice. Of all the micronutrients tested, only supplementation with folic acid or 5-methyltetrahydrofolate rescued the normal phenotype in Sp/Sp embryos. When the folate supplementation dose was increased to 200 mg/kg in the diet, the incidence of rescued splotch homozygotes reached 30%; however, this was accompanied by six-fold increased resorption rate.
Collapse
Affiliation(s)
- Bogdan J Wlodarczyk
- Center for Environmental and Genetic Medicine, Institute of Biosciences and Technology, Texas A&M University System Health Science Center, Houston, TX 77030, USA.
| | | | | | | | | |
Collapse
|
122
|
Makova K, Norton H. Worldwide polymorphism at the MC1R locus and normal pigmentation variation in humans. Peptides 2005; 26:1901-8. [PMID: 15979202 DOI: 10.1016/j.peptides.2004.12.032] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2004] [Accepted: 12/16/2004] [Indexed: 11/24/2022]
Abstract
While there have been many advances in our understanding of the genetics of pathological skin pigmentation in humans, our knowledge about what determines variation in normal skin color is still incomplete. Variation in one gene, melanocortin 1 receptor (MC1R), has been associated with red hair and fair skin in Europeans. However, this gene might also play an important role in shaping pigmentation of other human populations, where it experiences different selective pressures. Below we review what is currently known about polymorphism and selection at the MC1R coding and promoter regions in human populations, the pattern of MC1R evolution in nonhuman primates, and the interaction of MC1R with other genes.
Collapse
Affiliation(s)
- Kateryna Makova
- Department of Biology, The Pennsylvania State University, 518 Mueller Lab, University Park, PA 16802, USA.
| | | |
Collapse
|
123
|
Greene NDE, Copp AJ. Mouse models of neural tube defects: investigating preventive mechanisms. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2005; 135C:31-41. [PMID: 15800852 DOI: 10.1002/ajmg.c.30051] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Neural tube defects (NTD), including anencephaly and spina bifida, are a group of severe congenital abnormalities in which the future brain and/or spinal cord fail to close. In mice, NTD may result from genetic mutations or knockouts, or from exposure to teratogenic agents, several of which are known risk factors in humans. Among the many mouse NTD models that have been identified to date, a number have been tested for possible primary prevention of NTD by exogenous agents, such as folic acid. In genetic NTD models such as Cart1, splotch, Cited2, and crooked tail, and NTD induced by teratogens including valproic acid and fumonisins, the incidence of defects is reduced by maternal folic acid supplementation. These folate-responsive models provide an opportunity to investigate the possible mechanisms underlying prevention of NTD by folic acid in humans. In another group of mouse models, that includes curly tail, axial defects, and the Ephrin-A5 knockout, NTD are not preventable by folic acid, reflecting the situation in humans in which a subset of NTD appear resistant to folic acid therapy. In this group of mutants alternative preventive agents, including inositol and methionine, have been shown to be effective. Overall, the data from mouse models suggests that a broad-based in utero therapy may offer scope for prevention of a greater proportion of NTD than is currently possible.
Collapse
Affiliation(s)
- Nicholas D E Greene
- Neural Development Unit, Institute of Child Health, University College London, UK.
| | | |
Collapse
|
124
|
Sadler TW. Embryology of neural tube development. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2005; 135C:2-8. [PMID: 15806586 DOI: 10.1002/ajmg.c.30049] [Citation(s) in RCA: 134] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Neurulation is the process of forming the neural tube, which will become the brain and spinal cord. This article reviews the various cellular processes involved in neurulation and discusses possible roles of folate in this process.
Collapse
Affiliation(s)
- T W Sadler
- University of North Carolina School of Medicine in Chapel Hill, NC, USA.
| |
Collapse
|
125
|
Picker JD, Coyle JT. Do maternal folate and homocysteine levels play a role in neurodevelopmental processes that increase risk for schizophrenia? Harv Rev Psychiatry 2005; 13:197-205. [PMID: 16126606 DOI: 10.1080/10673220500243372] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
OBJECTIVE Evidence from many different lines of research supports the hypothesis that schizophrenia is a disorder of development with etiological factors implicated as early as the second trimester in utero. We suggest that low maternal folate, acting to increase homocysteine levels, may provide a functional link between many of the identified prenatal risk factors and the hypothesized mechanisms whereby neurodevelopmental patterning deviates toward a schizophrenic potential. METHODS PubMed was searched from the present back to 1963, when elevated homocysteine was identified as a pathogen in homocystinuria as first described by Carson and colleagues (Arch Dis Child 1963;38:425-36). All articles for homocystinuria, homocysteine, folate, and development with schizophrenia were evaluated. RESULTS The findings from this review support the hypothesis that maternal low folate and high homocysteine levels may provide a potential teratogenic mechanism that increases the risk for developing schizophrenia. CONCLUSION The potential role of maternal folate deficiency and hyperhomocystinemia in the genesis of schizophrenia would extend the range of their known teratogenic effects. Given the potential for preventive treatment offered by this hypothesis, we believe further investigation into this mechanism is warranted.
Collapse
Affiliation(s)
- Jonathan D Picker
- Department of Genetics, Harvard Medical School; McLean Hospital, Belmont, MA, USA.
| | | |
Collapse
|
126
|
Kappen C. Folate supplementation in three genetic models: implications for understanding folate-dependent developmental pathways. AMERICAN JOURNAL OF MEDICAL GENETICS. PART C, SEMINARS IN MEDICAL GENETICS 2005; 135C:24-30. [PMID: 15800896 PMCID: PMC3938158 DOI: 10.1002/ajmg.c.30050] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Supplementation of a pregnant mother's diet with folate has been shown to protect the developing embryo from birth defects in humans as well as rodent animal models. Folate supplementation not only reverses a potential nutritional deficiency; folate effectively prevents defects even when the mother's nutritional status is normal. These findings indicate that folate is able to interact with the molecular pathways that control normal embryonic development. Supplementation studies in animals provide the experimental starting point for the identification of such folate-responsive pathways. This review summarizes the progress to date in understanding the folate response in genetic models of birth defects in the mouse.
Collapse
Affiliation(s)
- Claudia Kappen
- Department of Genetics, Cell Biology and Anatomy, Munroe-Meyer Institute for Genetics and Rehabilitation, University of Nebraska Medical Center, Omaha 68198-5455, USA.
| |
Collapse
|
127
|
Prater MR, Zimmerman KL, Ward DL, Holladay SD. Reduced birth defects caused by maternal immune stimulation in methylnitrosourea-exposed mice: association with placental improvement. ACTA ACUST UNITED AC 2005; 70:862-9. [PMID: 15526292 DOI: 10.1002/bdra.20082] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND Methylnitrosourea (MNU) is a potent carcinogen and teratogen that is associated with central nervous system, craniofacial, skeletal, ocular, and appendicular birth defects following transplacental exposure at critical time points during development, and preliminary studies have suggested that nonspecific maternal immunostimulation may offer protection against development of these birth defects. METHODS Our study examined morphologic alterations in fetal limb and digital development and placental integrity following maternal exposure to MNU on GD 9 in CD-1 mice, and characterized the improvement in placental integrity and abrogation of fetal defects following maternal immune stimulation with interferon-gamma (IFN-gamma) on GD 7. RESULTS Fetal limbs were significantly shortened (p < 0.0001) and incidence of limb and digital defects (syndactyly, polydactyly, oligodactyly, clubbing, and webbing) was dramatically increased following mid-gestational maternal MNU exposure. Maternal immune stimulation with IFN-gamma on GD 7 lessened incidence of fetal limb shortening and maldevelopment on GD 12 and 14. Further, disruption of placental spongiotrophoblast integrity, increased cell death in placental trophoblasts with increased intercellular spaces in the spongiotrophoblast layer and minimal inflammation, and increased loss of fetal labyrinthine endothelial cells from MNU-exposed dams suggested that MNU-induced placental breakdown may contribute to fetal limb and digital maldevelopment. MNU + IFN-gamma was associated with diminished cell death within all layers of the placenta, especially in the labyrinthine layer. CONCLUSIONS These data verify improved distal limb development in MNU-exposed mice as a result of maternal IFN-gamma administration, and suggest a link between placental integrity and proper fetal development.
Collapse
MESH Headings
- Abnormalities, Drug-Induced/embryology
- Abnormalities, Drug-Induced/etiology
- Abnormalities, Drug-Induced/immunology
- Abnormalities, Drug-Induced/prevention & control
- Alkylating Agents/toxicity
- Animals
- Drug Therapy, Combination
- Ear, Inner/drug effects
- Ear, Inner/immunology
- Ear, Inner/pathology
- Endothelial Cells/drug effects
- Endothelial Cells/immunology
- Endothelial Cells/pathology
- Female
- Immune System/drug effects
- Interferon-gamma/pharmacology
- Limb Deformities, Congenital/chemically induced
- Limb Deformities, Congenital/immunology
- Limb Deformities, Congenital/prevention & control
- Male
- Maternal-Fetal Exchange
- Methylnitrosourea/toxicity
- Mice
- Placenta/immunology
- Pregnancy
- Trophoblasts/drug effects
- Trophoblasts/immunology
- Trophoblasts/pathology
Collapse
Affiliation(s)
- Mary Renee Prater
- Edward Via Virginia College of Osteopathic Medicine, Blacksburg, Virginia 24061, USA.
| | | | | | | |
Collapse
|
128
|
Anguera MC, Liu X, Stover PJ. Cloning, expression, and purification of 5,10-methenyltetrahydrofolate synthetase from Mus musculus. Protein Expr Purif 2005; 35:276-83. [PMID: 15135403 DOI: 10.1016/j.pep.2004.02.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2003] [Revised: 12/16/2003] [Indexed: 12/31/2022]
Abstract
Folate metabolism is necessary for the biosyntheses of purine nucleotides and thymidylate and for the synthesis of S-adenosylmethionine, a cofactor required for cellular methylation reactions and a precursor of spermidine and spermine syntheses. Disruption of folate metabolism is associated with several pathologies and developmental anomalies including cancer and neural tube defects. The enzyme 5,10-methenyltetrahydrofolate synthetase (MTHFS, EC 6.3.3.2) catalyzes the ATP-dependent conversion of 5-formyltetrahydrofolate to 5,10-methenyltetrahydrofolate, and has been shown to affect intracellular folate concentrations by accelerating folate degradation. Mammalian MTHFS proteins described to date are not stable and no recombinant mammalian MTHFS protein has been successfully expressed in Escherichia coli. The three-dimensional structure of MTHFS has not been solved. The cDNA coding for Mus musculus MTHFS was isolated and expressed in E. coli with a hexa-histidine tag. Milligram quantities of recombinant mouse MTHFS were purified using metal affinity chromatography and the protein was stabilized with Tween 20. Mouse MTHFS has a molecular mass of 23kDa and is 84% identical in amino acid sequence to the human enzyme. Activity assays confirmed the functionality of the recombinant protein, with Km =5 microM for (6S)-5-formyltetrahydrofolate and Km=769 microM for Mg-ATP. This is the first example of a mammalian form of MTHFS expressed in E. coli that yielded sufficient quantities of stable purified protein to allow for detailed characterization of its three-dimensional structure and kinetic properties.
Collapse
Affiliation(s)
- Montserrat C Anguera
- Cornell University, Graduate Field of Biochemistry, Molecular and Cellular Biology, Ithaca, NY 14853, USA.
| | | | | |
Collapse
|
129
|
Kappen C, Mello MA, Finnell RH, Salbaum JM. Folate modulates Hox gene-controlled skeletal phenotypes. Genesis 2005; 39:155-66. [PMID: 15282741 PMCID: PMC3938166 DOI: 10.1002/gene.20036] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Hox genes are well-known regulators of pattern formation and cell differentiation in the developing vertebrate skeleton. Although skeletal variations are not uncommon in humans few mutations in human HOX genes have been described. If such mutations are compatible with life, there may be physiological modifiers for the manifestation of Hox gene-controlled phenotypes, masking underlying mutations. Here we present evidence that the essential nutrient folate modulates genetically induced skeletal defects in Hoxd4 transgenic mice. We also show that chondrocytes require folate for growth and differentiation and that they express folate transport genes, providing evidence for a direct effect of folate on skeletal cells. To our knowledge, this is the first report of nutritional influence on Hox gene-controlled phenotypes, and implicates gene-environment interactions as important modifiers of Hox gene function. Taken together, our results demonstrate a beneficial effect of folate on skeletal development that may also be relevant to disorders and variations of the human skeleton.
Collapse
Affiliation(s)
- Claudia Kappen
- Center for Human Molecular Genetics, Munroe-Meyer Institute, Omaha, Nebraska 68198-5455, USA.
| | | | | | | |
Collapse
|
130
|
Harris MJ, Juriloff DM. Maternal diet alters exencephaly frequency in SELH/Bc strain mouse embryos. ACTA ACUST UNITED AC 2005; 73:532-40. [PMID: 15968625 DOI: 10.1002/bdra.20170] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND The SELH/Bc mouse inbred strain, with a high frequency of nonsyndromic, genetically-multifactorial exencephaly, is a model for human cranial neural tube defects (NTDs). Maternal diet affects risk of human NTDs. METHODS Exencephaly frequencies in SELH/Bc embryos were compared in 8 studies in which dams were fed alternative commercial Purina diets (5015 and 5001) or semisynthetic diets, and in several studies in which maternal diet was supplemented with a specific nutrient, either in drinking water or food before and during pregnancy, or by intraperitoneal injection on E7 and/or E8. RESULTS The exencephaly frequency in SELH/Bc embryos was 2- to 8-fold higher when the dams were fed Purina 5015 (averaging 23% exencephaly) or a semisynthetic diet modeled on Purina 5015 (averaging 28%) or NIH-31 standard diet (23%), compared with Purina 5001 (averaging 7%). The exencephaly frequency remained high (41%) on a semisynthetic diet modeled on Purina 5001. The exencephaly frequency was not reduced significantly by maternal supplementation with folic acid, nor with each of zinc, methionine, niacin, brewers' yeast, riboflavin, vitamin B12, or inositol. Nor was it reduced by maternal diets with supplemental methyl donors and cofactors or with reduced fat. CONCLUSIONS The frequency of exencephaly in SELH/Bc embryos is strongly influenced by a specific unidentified aspect of the commercial ration Purina 5001 that prevents 55-85% of exencephaly in SELH/Bc embryos, when directly compared with an alternative commercial ration Purina 5015 or its semisynthetic mimic. This strong maternal diet effect on NTD frequency may point to novel nutritional approaches to prevention of human NTDs.
Collapse
Affiliation(s)
- Muriel J Harris
- Department of Medical Genetics, University of British Columbia, Vancouver, Canada.
| | | |
Collapse
|
131
|
Abstract
Spina bifida results from failure of fusion of the caudal neural tube, and is one of the most common malformations of human structure. The causes of this disorder are heterogeneous and include chromosome abnormalities, single gene disorders, and teratogenic exposures. However, the cause is not known in most cases. Up to 70% of spina bifida cases can be prevented by maternal, periconceptional folic acid supplementation. The mechanism underlying this protective effect is unknown, but it is likely to include genes that regulate folate transport and metabolism. Individuals with spina bifida need both surgical and medical management. Although surgical closure of the malformation is generally done in the neonatal period, a randomised clinical trial to assess in utero closure of spina bifida has been initiated in the USA. Medical management is a lifelong necessity for individuals with spina bifida, and should be provided by a multidisciplinary team.
Collapse
Affiliation(s)
- Laura E Mitchell
- Institute of Bioscience and Technology, The Texas A&M University System Health Science Center, TX 77030-3303, USA.
| | | | | | | | | | | |
Collapse
|
132
|
Affiliation(s)
- Nina G. Jablonski
- Department of Anthropology, California Academy of Sciences, San Francisco, California 98103;
| |
Collapse
|
133
|
Abstract
Folate is a water-soluble B-vitamin and enzymatic cofactor that is necessary for the synthesis of purine and thymidine nucleotides and for the synthesis of methionine from homocysteine. Impairment of folate-mediated one-carbon metabolic pathways can result from B-vitamin deficiencies and/or single nucleotide polymorphisms, and increases risk for pathologies, including cancer and cardiovascular disease, and developmental anomalies including neural tube defects. Although several well validated metabolic and genomic biomarkers for folate deficiency exist, our understanding of the biochemical and genetic mechanisms whereby impaired folate metabolism increases risk for developmental anomalies and disease is limited, as are the mechanisms whereby elevated folate intake protects against these pathologies. Therefore, current initiatives to increase folate intakes in human populations to ameliorate developmental anomalies and prevent disease, while effective, lack predictive value with respect to unintended adverse outcomes.
Collapse
Affiliation(s)
- Patrick J Stover
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
134
|
Ichinohe A, Kure S, Mikawa S, Ueki T, Kojima K, Fujiwara K, Iinuma K, Matsubara Y, Sato K. Glycine cleavage system in neurogenic regions. Eur J Neurosci 2004; 19:2365-70. [PMID: 15128390 DOI: 10.1111/j.0953-816x.2004.03345.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The glycine cleavage system (GCS) is the essential enzyme complex for degrading glycine and supplying 5,10-methylenetetrahydrofolate for DNA synthesis. Inherited deficiency of this system causes nonketotic hyperglycinemia, characterized by severe neurological symptoms and frequent association of brain malformations. Although high levels of glycine have been considered to cause the above-mentioned problems, the detailed pathogenesis of this disease is still unknown. Here we show that GCS is abundantly expressed in rat embryonic neural stem/progenitor cells in the neuroepithelium, and this expression is transmitted to the radial glia-astrocyte lineage, with prominence in postnatal neurogenic regions. These data indicate that GCS plays important roles in neurogenesis, and suggest that disturbance of neurogenesis induced by deficiency of GCS may be the main pathogenesis of nonketotic hyperglycinemia.
Collapse
Affiliation(s)
- Akiko Ichinohe
- Department of Medical Genetics, Tohoku University School of Medicine, Sendai 980-8574, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
135
|
Abstract
The authors review current views on of the embryogenesis of the neural tube defects (NTDs) myelomeningocele and anencephaly. In this context, the following four approaches to the study of NTDs are discussed: normal morphogenesis and timing of early human neural development from conception to the ascent of the conus medullaris; mechanical and molecular biology of neural tube closure derived from experimental and animal models; morphological and biomechanical features of the NTDs myelomeningocele and anencephaly; and the experimental evidence for the importance of both genetic and environmental influences on human NTDs. Although considerable insight into both normal neural tube closure and the factor(s) by which this process may be disrupted has been reported in recent years, the exact mechanism(s) by which human myelomeningoceles and anencephaly arise remain elusive.
Collapse
Affiliation(s)
- Mark S Dias
- Department of Neurological Surgery, Penn State Milton S. Hershey Medical Center, Penn State University College of Medicine, Hershey, Pennsylvania 17033, USA.
| | | |
Collapse
|
136
|
Groenen PM, Peer PG, Wevers RA, Swinkels DW, Franke B, Mariman EC, Steegers-Theunissen RP. Maternal myo-inositol, glucose, and zinc status is associated with the risk of offspring with spina bifida. Am J Obstet Gynecol 2003; 189:1713-9. [PMID: 14710103 DOI: 10.1016/s0002-9378(03)00807-x] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
OBJECTIVE The purpose of this study was to investigate the maternal and children's myo-inositol, glucose, and zinc status in association with spina bifida risk. STUDY DESIGN Sixty-three mothers and 70 children with spina bifida and 102 control mothers and 85 control children were investigated. The maternal and child serum myo-inositol, serum glucose, and red blood cell zinc concentrations were measured when the child was between 1 and 3 years old. These data were compared between cases and control subjects. The association with spina bifida was expressed by the ratio of geometric means and by odds ratios and 95% CI for a cutoff value at the extreme 10th percentile of the control group. RESULTS The geometric mean of the maternal myo-inositol concentration tended to be 5% (95% CI, -1% to 11%) lower in cases. Interestingly, the odds ratio for the extreme low maternal myo-inositol concentration was 2.6 (95% CI, 1.1-6.0). The glucose and zinc concentrations were significantly higher at 7% (95% CI, 4%-10%) and significantly lower at 5% (95% CI, 0%-9%), in case mothers compared with control mothers. The odds ratios (95% CI) for maternal high glucose and low zinc concentrations were 4.6 (2.0-10.5) and 2.9 (1.2-7.0), respectively. The geometric mean of the myo-inositol concentration tended to be 7% (95% CI, 0%-14%) lower in children with spina bifida; the glucose and zinc concentrations were comparable. CONCLUSION Maternal myo-inositol, glucose, and zinc status are associated with the risk of spina bifida in offspring. Furthermore, the myo-inositol status of the child seems to contribute to this risk as well.
Collapse
Affiliation(s)
- Pascal M Groenen
- Department of Epidemiology and Biostatistics, University Medical Center Nijmegen, PO Box 9101, 6500 HB Nijmegen, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
137
|
Santos-Guzmán J, Arnhold T, Nau H, Wagner C, Fahr SH, Mao GE, Caudill MA, Wang JC, Henning SM, Swendseid ME, Collins MD. Antagonism of Hypervitaminosis A-Induced Anterior Neural Tube Closure Defects with a Methyl-Donor Deficiency in Murine Whole-Embryo Culture. J Nutr 2003; 133:3561-70. [PMID: 14608074 DOI: 10.1093/jn/133.11.3561] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The interaction of a dietary excess of vitamin A (retinoid) and deficiency of methyl-donor compounds was examined in murine early-organogenesis embryonic development. Female mice were fed one of six diets from the time of vaginal plug detection until gestational d 8.0, when embryos were removed and grown in whole embryo culture for 46 h, using serum from rats fed the same diet for 36 d as the culture medium. The six diets were either methyl-donor deficient (designated -FCM: devoid of folic acid, choline and supplemental L-methionine, but having methionine as a component of the protein portion of the diet) or methyl-donor sufficient (designated +FCM: containing folic acid, choline and L-methionine supplementation), in combination with one of three concentrations of retinyl palmitate (0.016, 0.416 or 4.016 g/kg diet). The high dose of retinyl palmitate induced a failure of anterior neuropore closure and hypoplasia of the visceral arches, both of which were significantly ameliorated by simultaneous administration of the methyl-donor-deficient diet. The primary acidic retinoid detected in the rat serum was 9,13-di-cis-retinoic acid, although we hypothesize that teratogenic retinoids were formed by embryonic biotransformation of the retinyl esters to toxic metabolites. Biochemical measurements of metabolites in relevant pathways were performed. We propose that the amelioration of these malformations may be used to determine biochemical pathways critical for retinoid teratogenesis.
Collapse
|
138
|
Abstract
More than 80 mutant mouse genes disrupt neurulation and allow an in-depth analysis of the underlying developmental mechanisms. Although many of the genetic mutants have been studied in only rudimentary detail, several molecular pathways can already be identified as crucial for normal neurulation. These include the planar cell-polarity pathway, which is required for the initiation of neural tube closure, and the sonic hedgehog signalling pathway that regulates neural plate bending. Mutant mice also offer an opportunity to unravel the mechanisms by which folic acid prevents neural tube defects, and to develop new therapies for folate-resistant defects.
Collapse
Affiliation(s)
- Andrew J Copp
- Neural Development Unit, Institute of Child Health, University College London, London WC1N 1EH, UK.
| | | | | |
Collapse
|
139
|
Afman LA, Blom HJ, Van der Put NMJ, Van Straaten HWM. Homocysteine interference in neurulation: a chick embryo model. BIRTH DEFECTS RESEARCH. PART A, CLINICAL AND MOLECULAR TERATOLOGY 2003; 67:421-8. [PMID: 12962286 DOI: 10.1002/bdra.10040] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND Periconceptional folic acid supplementation reduces the occurrence and recurrence risk of neural tube defects (NTD). Mothers of children with NTD have elevated plasma homocysteine levels. Administering homocysteine to chick embryos is reported to cause 27% NTD. Therefore, elevated plasma homocysteine levels per se or a disturbed homocysteine metabolism may be teratogenic to the embryo and may interfere with neural tube closure. Our aim was to obtain a chick embryo model to explore the interference of homocysteine in neural tube closure. METHODS Homocysteine or saline was administered to chick embryos in ovo at 3 hr, 30 hr, and 60 hr of incubation and harvested at 74 hr. Homocysteine was then applied to chick embryos in vitro at a defined time window of four to six somites and followed for 6 hr. RESULTS Homocysteine administration to chick embryos in ovo resulted in several malformations but not in an increased number of NTDs. Homocysteine administration to chick embryos in vitro resulted in a transient, dose-dependent widening of the anterior neuropore and closure delay of the rhombencephalic neuropore. After 16 hr of incubation the neural tube was closed. CONCLUSIONS The in vitro chick embryo model appears a good model to explore the interference of a disturbed homocysteine metabolism in neurulation.
Collapse
Affiliation(s)
- L A Afman
- Department of Pediatrics, University Medical Center Nijmegen, The Netherlands.
| | | | | | | |
Collapse
|
140
|
Boot MJ, Steegers-Theunissen RPM, Poelmann RE, Van Iperen L, Lindemans J, Gittenberger-de Groot AC. Folic acid and homocysteine affect neural crest and neuroepithelial cell outgrowth and differentiation in vitro. Dev Dyn 2003; 227:301-8. [PMID: 12761857 DOI: 10.1002/dvdy.10303] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The beneficial effect of additional folic acid in the periconceptional period to prevent neural tube defects, orofacial clefts, and conotruncal heart defects in the offspring has been shown. Folate shortage results in homocysteine accumulation. Elevated levels of homocysteine have been related to neural tube defects. We studied the behavior of neuroepithelial cells and cranial and cardiac neural crest cells in vitro. Neural tube explants were cultured for 24 and 48 hr in medium after addition of folic acid and/or homocysteine. Folic acid addition increased neuroepithelial cell outgrowth and increased neural crest cell differentiation into nerve and smooth muscle cells. Addition of homocysteine increased neural crest cell outgrowth and migration from the neural tube and inhibited neural crest cell differentiation. Our findings suggest that neural tube defects caused by folate deficiency and hyperhomocysteinemia develop due to increased neuroepithelial to neural crest cell transformation. This increased transformation leads to a shortage of neuroepithelial cells in the neural tube. Defects in orofacial and conotruncal development are explained by abnormal differentiation of neural crest cells in the presence of high homocysteine concentrations. Our findings supports a critical role for folic acid and homocysteine in the development of neural tube defects and neural crest related heart malformations.
Collapse
Affiliation(s)
- Marit J Boot
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, The Netherlands
| | | | | | | | | | | |
Collapse
|
141
|
Tang LS, Finnell RH. Neural and orofacial defects in Folp1 knockout mice [corrected]. BIRTH DEFECTS RESEARCH. PART A, CLINICAL AND MOLECULAR TERATOLOGY 2003; 67:209-18. [PMID: 12854656 DOI: 10.1002/bdra.10045] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
BACKGROUND Folic acid is essential for the development of the nervous system and other associated structures. Mice deficient in the folic acid-binding protein one (Folbp1) gene display multiple developmental abnormalities, including neural and craniofacial defects. To better understand potential interactions between Folbp1 gene and selected genes involved in neural and craniofacial morphogenesis, we evaluated the expression patterns of a panel of crucial differentiation markers (Pax-3, En-2, Hox-a1, Shh, Bmp-4, Wnt-1, and Pax-1). METHODS Folbp1 mice were supplemented with low dosages of folinic add to rescue nullizygotes from dying in utero before gestational day 10. The gene marker analyses were carried out by in situ hybridization. RESULTS In nullizygote embryos with open cranial neural tube defects, the downregulation of Pax-3 and En-2 in the impaired midbrain, along with an observed upregulation of the ventralizing marker Shh in the expanded floor plate, suggested an important regulatory interaction among these three genes. Moreover, the nullizygotes also exhibit craniofacial abnormalities, such as cleft lip and palate. Pax-3 signals in the impaired medial nasal primordia were significantly increased, whereas Pax-1 showed no expression in the undeveloped lateral nasal processes. Although Shh was downregulated, Bmp-4 was strongly expressed in the medial and lateral nasal processes, highlighting the antagonistic activities of these molecules. CONCLUSIONS Impairment of Folbp1 gene function adversely impacts the expression of several critical signaling molecules. Mis-expression of these molecules, perhaps mediated by Shh, may potentially contribute to the observed failure of neural tube closure and the development of craniofacial defects in the mutant mice.
Collapse
Affiliation(s)
- Louisa S Tang
- Center for Environmental and Genetic Medicine, Institute of Biosciences and Technology, Texas A&M University System Health Science Center, Houston, Texas 77030-3303, USA
| | | |
Collapse
|
142
|
Mao GE, Collins MD. Quantification and localization of expression of the retinoic acid receptor-beta and -gamma mRNA isoforms during neurulation in mouse embryos with or without spina bifida. TERATOLOGY 2002; 66:331-43. [PMID: 12486767 DOI: 10.1002/tera.10101] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND Previous studies observed that retinoic acid receptor-gamma (RARgamma) is expressed in the open caudal neuroepithelium but that RARbeta is expressed in the closed neural tube. Furthermore, retinoic acid (RA) induces RARbeta expression, a molecular event associated with neural tube closure, but treatment with RA at the appropriate gestation time causes failure of neural tube closure. Since there are four isoforms of RARbeta, perhaps the isoforms expressed in the closed neural tube and induced by RA are different. To investigate the hypothesis that the switch from RARgamma to RARbeta is mechanistically linked to neural tube closure, this study determined the concentrations and distributions of RARbeta and RARgamma isoforms in mouse embryos with RA-induced neural tube defects and in splotch (Sp) mutant embryos with spina bifida. METHODS Absolute concentrations of RARbeta and RARgamma isoforms were determined throughout primary neurulation (gestational day 8.5-10.0) in treated or untreated C57BL/6J mouse whole embryos by ribonuclease protection analysis. Treatment consisted of an oral dose of 100 mg/kg of all-trans-RA on gestational day 8.5. Spatial distributions of RARbeta and RARgamma were examined in RA-treated and Sp mutant embryos by in situ hybridization. RESULTS RARbeta2, gamma1, and gamma2 were expressed in untreated embryos and were induced 4.5-, 1.6-, and 4.0-fold, respectively, 4 hr after treatment with RA. In embryos with RA-induced spina bifida, RARbeta2 was expressed in the closed neural tube while RARgamma1 and RARgamma2 were expressed in the open caudal neuroepithelium. In splotch mice with spina bifida, the boundary between RARbeta and RARgamma did not correspond to the site of neural tube closure. CONCLUSIONS In RA-treated embryos, the relationship between RARbeta expression in the closed and RARgamma in the open caudal neuroepithelium was not altered. However, in splotch embryos with spina bifida, the juncture between RARbeta and RARgamma expression remained in the same anatomical position in the neuroepithelium irrespective of the neural tube closure status and suggests that the switch from RARgamma to RARbeta expression in the closing caudal neuroepithelium may not be causally linked to neural tube closure in the splotch mutant.
Collapse
Affiliation(s)
- Gloria E Mao
- Department of Environmental Health Sciences, School of Public Health, University of California, Los Angeles, California 90095, USA
| | | |
Collapse
|
143
|
Abstract
DNA methylation at cytosines in CpG dinucleotides can lead to changes in gene expression and function without altering the primary sequence of the DNA. Methylation can be affected by dietary levels of methyl-donor components, such as folic acid. This may be an important mechanism for environmentally induced changes in gene expression. Recent literature supports a role for DNA-methylation changes in a number of adult-onset disorders and during development. These changes may be significant for better understanding certain birth defects (e.g., neural tube defects) and the long-term consequences of early environmental influences on gene expression (metabolic programming). Optimal "methylation diets" should be investigated as part of the prevention and treatment of all these conditions, as well as in disorders such as Rett syndrome, whose primary defects may lie in DNA methylation-dependent gene regulation.
Collapse
Affiliation(s)
- Ignatia B Van den Veyver
- Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine, Baylor College of Medicine, Houston, Texas 77030, USA.
| |
Collapse
|
144
|
Stover PJ, Garza C. Molecular and genetic considerations for long-term nutrition interventions. Asia Pac J Clin Nutr 2002. [DOI: 10.1046/j.1440-6047.11.s.6.3.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
145
|
Tran P, Hiou-Tim F, Frosst P, Lussier-Cacan S, Bagley P, Selhub J, Bottiglieri T, Rozen R. The curly-tail (ct) mouse, an animal model of neural tube defects, displays altered homocysteine metabolism without folate responsiveness or a defect in Mthfr. Mol Genet Metab 2002; 76:297-304. [PMID: 12208134 DOI: 10.1016/s1096-7192(02)00108-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Maternal mild hyperhomocysteinemia is associated with increased risk for bearing children with neural tube defects (NTD). Folate intake corrects hyperhomocysteinemia and prevents up to 70% of NTD. The curly-tail (ct) mouse, an animal model for NTD, has been suggested to display features that closely resemble the human defect. We therefore investigated folate metabolism in ct mice. On control and folate-/choline-deficient diets, ct mice exhibited higher plasma homocysteine levels than control C57Bl/6 mice. This increase was associated with increased liver S-Adenosylhomocysteine and decreased S-adenosylmethionine:S-adenosylhomocysteine (SAM/SAH) ratios. Since the ct locus maps in close proximity to the gene for methylenetetrahydrofolate reductase (Mthfr), a modifier of homocysteine levels in man, we also assayed Mthfr activity and sequenced the 5(') regulatory region; these experiments suggested that Mthfr is not defective in the ct strain. Finally, we examined the influence of dietary folate on NTD incidence in the ct strain, but did not identify significant differences among the four diets used in the study. Our work suggests that altered homocysteine metabolism may contribute to the pathogenetic mechanism of the ct defect, but, unlike human NTD, nutritional or genetic deficiencies in folate metabolism do not appear to play a significant direct role.
Collapse
Affiliation(s)
- Pamela Tran
- Department of Human Genetics, McGill University-Montreal Children's Hospital Research Institute, 4060 St.Catherine St. West, Room 200, QC, Canada
| | | | | | | | | | | | | | | |
Collapse
|
146
|
Abstract
The data generated from the human genome project offers unprecedented opportunities to elucidate the etiology of chronic diseases and developmental anomalies that arise from deleterious genome-diet interactions. Folate metabolism is an attractive system to explore such relationships. Folate is necessary for the synthesis of purine and thymidine deoxyribonucleotides and S-adenosylmethionine, a cofactor required for DNA methylation. Impaired folate metabolism results from primary folate deficiency, alcohol, gastrointestinal disorders that result in malabsorption, single nucleotide polymorphisms, increased folate catabolism and secondary nutrient deficiencies in vitamin B-6, vitamin B-12 and iron arising from a variety of pathologies. Any of these conditions singly or in combination influence DNA synthesis, DNA integrity, allelic-specific gene expression, chromatin structure and DNA mutation rates. Biochemical manifestations of impaired folate metabolism include increased uracil uptake into DNA, altered DNA methylation status and elevated homocysteine and S-adenosylhomocysteine in serum and tissues. These biochemical changes are associated with risk for cancer, cardiovascular disease, neural tube defects and some neuropathies and anemia, although direct causative mechanisms have not been established in all cases. Interactions between folate and the genome are reciprocal; polymorphisms in key genes influence folate nutritional requirements, indicating that dietary folate adequacy likely exerts selective pressure and thereby influences genetic variation. Other studies indicate that exposure to excess folate, perhaps at levels that occur at the upper end of the intake distribution curve, may have unintended consequences in promoting embryo viability. Therefore individualizing folic acid dietary recommendations necessitates a detailed understanding of all genetic and physiological variables that influence the interaction of folate with the genome and their relationship to the disease process.
Collapse
Affiliation(s)
- Patrick J Stover
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA.
| | | |
Collapse
|
147
|
Burgoon JM, Selhub J, Nadeau M, Sadler TW. Investigation of the effects of folate deficiency on embryonic development through the establishment of a folate deficient mouse model. TERATOLOGY 2002; 65:219-27. [PMID: 11967921 DOI: 10.1002/tera.10040] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
BACKGROUND Folic acid (FA) has been shown to reduce the incidence of neural tube, craniofacial, and cardiovascular defects and low birth weight. The mechanism(s) by which the vitamin is effective, however, has not been determined. Therefore, a folic acid deficient mouse model was developed. METHODS To create a folic acid deficiency, ICR female mice were placed on a diet containing no FA and including 1% succinyl sulfathiazole (SS) for 4 weeks before mating. Control mice were fed diets with either: 1) FA and 1% SS [+SS only diet]; 2) FA [normal diet]; or 3) a breeding diet. Dams and fetuses were examined during various days of gestation. RESULTS Blood analysis showed that by gestational day 18, plasma folate concentrations in the -FA+SS fed dams decreased to 1.13 ng/ml, a concentration approximately 3% of that in breeding diet fed dams (33.24 ng/ml) and 8% of that in +SS only/normal fed dams (13.59 ng/ml). RBC folate levels showed a similar decrease, whereas homocysteine concentrations increased. Reproductive outcome in the -FA+SS fed dams was poor with increased fetal deaths, decreased fetal weight, and delays in palate and heart development. CONCLUSIONS Female mice fed a folic acid deficient diet and 1% succinyl sulfathiazole exhibited many of the characteristics common to human folic acid deficiency, including decreased plasma and RBC folate, increased plasma homocysteine, and poor reproductive outcomes. Thus, an excellent model has been created to investigate the mechanism(s) underlying the origin of birth defects related to folic acid deficiency.
Collapse
Affiliation(s)
- Jennifer M Burgoon
- Department of Cell and Developmental Biology, School of Medicine, University of North Carolina, Chapel Hill 27599-7090, USA
| | | | | | | |
Collapse
|
148
|
Holladay SD, Sharova LV, Punareewattana K, Hrubec TC, Gogal RM, Prater MR, Sharov AA. Maternal immune stimulation in mice decreases fetal malformations caused by teratogens. Int Immunopharmacol 2002; 2:325-32. [PMID: 11811935 DOI: 10.1016/s1567-5769(01)00183-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
For unknown reasons, non-specific stimulation of the maternal immune system in pregnant mice has what appears to be a broad-spectrum efficacy for reducing birth defects. Immune stimulation by diverse procedures has proven effective, including footpad injection with Freund's complete adjuvant (FCA), intraperitoneal (IP) injection with inert particles to activate resident macrophages, IP injection with attenuated Bacillus Calmette-Guerin (BCG), and intrauterine injection with allogeneic or zenogeneic lymphocytes. Morphologic lesions that were significantly reduced included cleft palate and associated craniofacial defects, digit and limb defects, tail malformations, and neural tube defect (NTD). Teratogenic stimuli to induce these lesions included chemical agents (2,3,7,8-tetrachlorodibenzo-p-dioxin [TCDD], ethyl carbamate [urethane], methylnitrosourea [MNU], cyclophosphamide [CP], and valproic acid [VA]), physical agents (X-rays, hyperthermia), and streptozocin (STZ)-induced diabetes mellitus. Limited information is available regarding mechanisms by which such immune stimulation reduced fetal dysmorphogenesis. The collective literature suggests the possibility that immunoregulatory cytokines of maternal origin may be the effector molecules in this phenomenon.
Collapse
Affiliation(s)
- S D Holladay
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland Regional College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blackshurg 24061-0442, USA.
| | | | | | | | | | | | | |
Collapse
|
149
|
Gefrides LA, Bennett GD, Finnell RH. Effects of folate supplementation on the risk of spontaneous and induced neural tube defects in Splotch mice. TERATOLOGY 2002; 65:63-9. [PMID: 11857507 DOI: 10.1002/tera.10019] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND Neural tube defects (NTDs) are among the most common human congenital malformations. Although clinical investigations have reported that periconceptional folic acid supplementation can reduce the occurrence of these defects, its mechanism remains unknown. Therefore, the murine mutant Splotch, which has a high incidence of spontaneous NTDs, along with the inbred strains SWV and LM/Bc, were used to investigate the relationship between folate and NTDs. METHODS To investigate whether folates could reduce spontaneous NTDs, heterozygous Splotch dams (+/Sp) were treated with either folate or folinic acid throughout neurulation, gestational day (GD) 6.5 to 10.5. On GD 18.5 the dams were sacrificed and the fetuses examined for any neural tube defects. Subsequently, Sp/+ dams were treated with arsenic while receiving either a folate or folinic acid supplementation. Similar experiments were performed in the LM/Bc and SWV strains. RESULTS Neither folate nor folinic acid supplements reduced the frequency of spontaneous NTDs in the embryos from Splotch heterozygote crosses. Arsenic increased the frequency of NTDs and embryonic death in the Splotch, LM/Bc and SWV litters and folinic acid failed to ameliorate the teratogenic effect of this metal. A folate supplement given to arsenic-treated dams proved to be maternally lethal in all three strains. CONCLUSIONS Splotch embryos were not protected from either spontaneous or arsenic-induced NTDs by folinic or folic acid supplementation. Furthermore, folinic acid supplements did not reduce the incidence of arsenic-induced NTDs in either the LM/Bc or SWV litters.
Collapse
Affiliation(s)
- Lisa A Gefrides
- Department of Veterinary Anatomy and Public Heath, Texas A&M University, College Station, Texas 77843-4458, USA
| | | | | |
Collapse
|
150
|
Abstract
Folate catabolism has been assumed to result from the nonenzymatic oxidative degradation of labile folate cofactors. Increased rates of folate catabolism and simultaneous folate deficiency occur in several physiological states, including pregnancy, cancer, and when anticonvulsant drugs are used. These studies have introduced the possibility that folate catabolism may be a regulated cellular process that influences intracellular folate concentrations. Recent studies have demonstrated that the iron storage protein ferritin can catabolize folate in vitro and in vivo, and increased heavy-chain ferritin synthesis decreases intracellular folate concentrations independent of exogenous folate levels in cell culture models. Ferritin levels are elevated in most physiological states associated with increased folate catabolism. Therefore, folate catabolism is emerging as an important component in the regulation of intracellular folate concentrations and whole-body folate status.
Collapse
Affiliation(s)
- J R Suh
- Division of Nutritional Sciences, Cornell University, Ithaca, New York 14853, USA.
| | | | | |
Collapse
|