101
|
Advances in research of mammalian vomeronasal pheromone perception and genetic components unique to vomeronasal signal transduction pathway. ACTA ACUST UNITED AC 2010. [DOI: 10.1007/s11434-010-3141-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
102
|
Ogura T, Krosnowski K, Zhang L, Bekkerman M, Lin W. Chemoreception regulates chemical access to mouse vomeronasal organ: role of solitary chemosensory cells. PLoS One 2010; 5:e11924. [PMID: 20689832 PMCID: PMC2912856 DOI: 10.1371/journal.pone.0011924] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2010] [Accepted: 07/09/2010] [Indexed: 11/18/2022] Open
Abstract
Controlling stimulus access to sensory organs allows animals to optimize sensory reception and prevent damage. The vomeronasal organ (VNO) detects pheromones and other semiochemicals to regulate innate social and sexual behaviors. This semiochemical detection generally requires the VNO to draw in chemical fluids, such as bodily secretions, which are complex in composition and can be contaminated. Little is known about whether and how chemical constituents are monitored to regulate the fluid access to the VNO. Using transgenic mice and immunolabeling, we found that solitary chemosensory cells (SCCs) reside densely at the entrance duct of the VNO. In this region, most of the intraepithelial trigeminal fibers innervate the SCCs, indicating that SCCs relay sensory information onto the trigeminal fibers. These SCCs express transient receptor potential channel M5 (TRPM5) and the phospholipase C (PLC) beta2 signaling pathway. Additionally, the SCCs express choline acetyltransferase (ChAT) and vesicular acetylcholine transporter (VAChT) for synthesizing and packaging acetylcholine, a potential transmitter. In intracellular Ca2+ imaging, the SCCs responded to various chemical stimuli including high concentrations of odorants and bitter compounds. The responses were suppressed significantly by a PLC inhibitor, suggesting involvement of the PLC pathway. Further, we developed a quantitative dye assay to show that the amount of stimulus fluid that entered the VNOs of behaving mice is inversely correlated to the concentration of odorous and bitter substances in the fluid. Genetic knockout and pharmacological inhibition of TRPM5 resulted in larger amounts of bitter compounds entering the VNOs. Our data uncovered that chemoreception of fluid constituents regulates chemical access to the VNO and plays an important role in limiting the access of non-specific irritating and harmful substances. Our results also provide new insight into the emerging role of SCCs in chemoreception and regulation of physiological actions.
Collapse
Affiliation(s)
- Tatsuya Ogura
- Department of Biological Sciences, University of Maryland, Baltimore County, Baltimore, Maryland, United States of America
| | - Kurt Krosnowski
- Department of Biological Sciences, University of Maryland, Baltimore County, Baltimore, Maryland, United States of America
| | - Lana Zhang
- Department of Biological Sciences, University of Maryland, Baltimore County, Baltimore, Maryland, United States of America
| | - Mikhael Bekkerman
- Department of Biological Sciences, University of Maryland, Baltimore County, Baltimore, Maryland, United States of America
| | - Weihong Lin
- Department of Biological Sciences, University of Maryland, Baltimore County, Baltimore, Maryland, United States of America
| |
Collapse
|
103
|
Wang G, Shi P, Zhu Z, Zhang YP. More functional V1R genes occur in nest-living and nocturnal terricolous mammals. Genome Biol Evol 2010; 2:277-83. [PMID: 20624732 PMCID: PMC2997545 DOI: 10.1093/gbe/evq020] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/05/2010] [Indexed: 11/13/2022] Open
Abstract
Size of the vomeronasal type 1 receptor (V1R) gene repertoire may be a good indicator for examining the relationship between animal genomes and their environmental niche specialization, especially the relationship between ecological factors and the molecular evolutionary history of the sensory system. Recently, Young et al. (Young JM, Massa HF, Hsu L, Trask BJ. 2009. Extreme variability among mammalian V1R gene families. Genome Res.) concluded that no single ecological factor could explain the extreme variability of the V1R gene repertoire in mammalian genomes. In contrast, we found a significant positive correlation between the size and percentage of intact V1R genes in 32 species that represent the phylogenetic diversity of terricolous mammals and two ecological factors: spatial activity and rhythm activity. Nest-living species possessed a greater number of intact V1R genes than open-living species, and nocturnal terricolous mammals tended to possess more intact V1R genes than did diurnal species. Moreover, our analysis reveals that the evolutionary mechanisms underlying these observations likely resulted from the rapid gene birth and accelerated amino acid substitutions in nest-living and nocturnal mammals, likely a functional requirement for exploiting narrow, dark environments. Taken together, these results reveal how adaptation to divergent circadian rhythms and spatial activity were manifested at the genomic scale. Size of the V1R gene family might have indicated how this gene family adapts to ecological factors.
Collapse
Affiliation(s)
- Guodong Wang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Peng Shi
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Zhouhai Zhu
- Laboratory for Conservation and Utilization of Bio-resources, Yunnan University, Kunming, China
| | - Ya-ping Zhang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- Laboratory for Conservation and Utilization of Bio-resources, Yunnan University, Kunming, China
| |
Collapse
|
104
|
Sela L, Sobel N. Human olfaction: a constant state of change-blindness. Exp Brain Res 2010; 205:13-29. [PMID: 20603708 PMCID: PMC2908748 DOI: 10.1007/s00221-010-2348-6] [Citation(s) in RCA: 121] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2010] [Accepted: 06/21/2010] [Indexed: 12/01/2022]
Abstract
Paradoxically, although humans have a superb sense of smell, they don’t trust their nose. Furthermore, although human odorant detection thresholds are very low, only unusually high odorant concentrations spontaneously shift our attention to olfaction. Here we suggest that this lack of olfactory awareness reflects the nature of olfactory attention that is shaped by the spatial and temporal envelopes of olfaction. Regarding the spatial envelope, selective attention is allocated in space. Humans direct an attentional spotlight within spatial coordinates in both vision and audition. Human olfactory spatial abilities are minimal. Thus, with no olfactory space, there is no arena for olfactory selective attention. Regarding the temporal envelope, whereas vision and audition consist of nearly continuous input, olfactory input is discreet, made of sniffs widely separated in time. If similar temporal breaks are artificially introduced to vision and audition, they induce “change blindness”, a loss of attentional capture that results in a lack of awareness to change. Whereas “change blindness” is an aberration of vision and audition, the long inter-sniff-interval renders “change anosmia” the norm in human olfaction. Therefore, attentional capture in olfaction is minimal, as is human olfactory awareness. All this, however, does not diminish the role of olfaction through sub-attentive mechanisms allowing subliminal smells a profound influence on human behavior and perception.
Collapse
Affiliation(s)
- Lee Sela
- Department of Neurobiology, The Weizmann Institute of Science, Rehovot, 76100 Israel
| | - Noam Sobel
- Department of Neurobiology, The Weizmann Institute of Science, Rehovot, 76100 Israel
| |
Collapse
|
105
|
Bonthuis P, Cox K, Searcy B, Kumar P, Tobet S, Rissman E. Of mice and rats: key species variations in the sexual differentiation of brain and behavior. Front Neuroendocrinol 2010; 31:341-58. [PMID: 20457175 PMCID: PMC2910167 DOI: 10.1016/j.yfrne.2010.05.001] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2010] [Revised: 05/04/2010] [Accepted: 05/05/2010] [Indexed: 12/25/2022]
Abstract
Mice and rats are important mammalian models in biomedical research. In contrast to other biomedical fields, work on sexual differentiation of brain and behavior has traditionally utilized comparative animal models. As mice are gaining in popularity, it is essential to acknowledge the differences between these two rodents. Here we review neural and behavioral sexual dimorphisms in rats and mice, which highlight species differences and experimental gaps in the literature, that are needed for direct species comparisons. Moving forward, investigators must answer fundamental questions about their chosen organism, and attend to both species and strain differences as they select the optimal animal models for their research questions.
Collapse
Affiliation(s)
- P.J. Bonthuis
- Neuroscience Graduate Program, University of Virginia, Charlottesville, VA
| | - K.H. Cox
- Neuroscience Graduate Program, University of Virginia, Charlottesville, VA
| | - B.T. Searcy
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO
| | - P. Kumar
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO
| | - S. Tobet
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO
| | - E.F. Rissman
- Neuroscience Graduate Program, University of Virginia, Charlottesville, VA
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA
| |
Collapse
|
106
|
Xia J, Broad KD, Emson PC, Keverne EB. Epigenetic modification of vomeronasal (V2r) precursor neurons by histone deacetylation. Neuroscience 2010; 169:1462-72. [PMID: 20594945 DOI: 10.1016/j.neuroscience.2010.05.071] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2010] [Revised: 05/11/2010] [Accepted: 05/27/2010] [Indexed: 12/14/2022]
Abstract
Vomeronasal neurons undergo continuous neurogenesis throughout development and adult life. These neurons originate as stem cells in the apical zone of the lumen of the vomeronasal organ (VNO) and are described as nestin-expressing glia-like progenitor cells (Murdoch and Roskams, 2008). They then migrate horizontally along the basal zone where they differentiate into functional VNO neurons (Kaba et al., 1988). We harvested progenitor cells from the adult VNO and, after 3-6 months of invitro culture, these VNO neurons remained in a stable undifferentiated state expressing nestin, beta-tubulin III and vomeronasal type 2 (V2r), but not vomeronasal type 1 (V1r) receptors. Application of histone-deacetylase inhibitors induced development of a neural phenotype that expressed V2r receptors, a down-regulation of nestin expression and no change in any specific genetic markers associated with glial cells. Treatment with valproic acid induced extensive changes in gene expression in the axon guidance pathway. The adult VNO is known to functionally adapt throughout life as a consequence of changes in both a mouse's physiological status and its social environment. These pluripotent cultured neurons may provide valuable insights into how changes in both physiology and environment, exert epigenetic effects on vomeronasal neurons as they undergo continuous neurogenesis and development throughout the life of a mouse.
Collapse
Affiliation(s)
- J Xia
- Babraham Institute, Babraham, Cambridge CB22 4AT, UK
| | | | | | | |
Collapse
|
107
|
Abstract
O paradigma intruso-residente vem sendo intensamente empregado em estudos para avaliar a memória de reconhecimento social em roedores. Tipicamente, ratos adultos (residentes) são expostos a dois encontros de 5 minutos cada com um mesmo intruso juvenil ou com juvenis diferentes; o intervalo entre encontros é usualmente 30 minutos. A quantidade de comportamentos sociais do residente, no segundo encontro, em relação a um intruso familiar é substancialmente menor do que o observado no primeiro encontro, o que não ocorre quando o segundo encontro envolve um juvenil novo; esse resultado caracteriza memória de reconhecimento social. Neste estudo discutimos achados recentes sobre os tipos de comportamentos usualmente incluídos nas categorias social e não-social, a influência da fase temporal, a interferência de rotinas laboratoriais na memória de reconhecimento social, modalidades sensoriais usualmente empregadas por roedores no processamento de informações na memória social e alternativas adicionais para o estudo da socialidade em roedores.
Collapse
|
108
|
Osi A, Prondvai E, Frey E, Pohl B. New interpretation of the palate of Pterosaurs. Anat Rec (Hoboken) 2010; 293:243-58. [PMID: 19957339 DOI: 10.1002/ar.21053] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
On the basis of a new, three-dimensionally preserved specimen of the Early Jurassic pterosaur Dorygnathus banthensis we present a reinterpretation of the pterosaur palate. The hard palate is formed by the extensive palatal plate of the maxilla and not by the palatine as has been generally reconstructed. This palatal plate of the maxilla emarginates the choana rostrally and rostrolaterally as in other archosaurs and lepidosaurs. The longitudinally elongate and dorsoventrally flat palatine in Dorygnathus is an isolated bone caudal to the palatal plate of the maxilla and morphologically and topographically it resembles that of crocodilians and birds, respectively. The palatine separates the choana laterally from the suborbital fenestra demonstrating the homologous nature of the (primary) choana in all archosaurs and lepidosaurs. Our study indicates that in basal pterosaurs the pterygo-ectopterygoid fenestra existed caudal to the suborbital fenestra, which became confluent with the adductor chamber in pterodactyloids thereby increasing the relative size of the adductor chamber and hence the mass of the jaw adductors. The choana in basal pterosaurs was relatively small compared with the interpterygoid vacuity. With increasing rostroventral inclination of the quadrates in more derived pterosaurs, the interpterygoid vacuity was reduced considerably, whereas the choana increased in size. This exceptional Dorygnathus specimen also shows a hitherto unknown pair of fenestrae situated at the palatal contact of the premaxilla-maxilla and might represent the aperture for the vomeronasal organ.
Collapse
Affiliation(s)
- Attila Osi
- Hungarian Academy of Sciences-Hungarian Natural History Museum, Budapest, Hungary.
| | | | | | | |
Collapse
|
109
|
Yang C, Delay RJ. Calcium-activated chloride current amplifies the response to urine in mouse vomeronasal sensory neurons. ACTA ACUST UNITED AC 2010; 135:3-13. [PMID: 20038523 PMCID: PMC2806418 DOI: 10.1085/jgp.200910265] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The vomeronasal organ (VNO) is an odor detection system that mediates many pheromone-sensitive behaviors. Vomeronasal sensory neurons (VSNs), located in the VNO, are the initial site of interaction with odors/pheromones. However, how an individual VSN transduces chemical signals into electrical signals is still unresolved. Here, we show that a Ca2+-activated Cl− current contributes ∼80% of the response to urine in mouse VSNs. Using perforated patch clamp recordings with gramicidin, which leaves intracellular chloride undisrupted, we found that the urine-induced inward current (Vhold = −80 mV) was decreased in the presence of chloride channel blockers. This was confirmed using whole cell recordings and altering extracellular chloride to shift the reversal potential. Further, the urine-induced currents were eliminated when both extracellular Ca2+ and Na+ were removed. Using inside-out patches from dendritic tips, we recorded Ca2+-activated Cl− channel activity. Several candidates for this Ca2+-activated Cl− channel were detected in VNO by reverse transcription–polymerase chain reaction. In addition, a chloride cotransporter, Na+-K+-2Cl− isoform 1, was detected and found to mediate much of the chloride accumulation in VSNs. Collectively, our data demonstrate that chloride acts as a major amplifier for signal transduction in mouse VSNs. This amplification would increase the responsiveness to pheromones or odorants.
Collapse
Affiliation(s)
- Chun Yang
- Department of Biology, University of Vermont, Burlington, VT 05405, USA
| | | |
Collapse
|
110
|
Abstract
Adaptive shifts associated with human origins are brought to light as we examine the human fossil record and study our own genome and that of our closest ape relatives. However, the more ancient roots of many human characteristics are revealed through the study of a broader array of living anthropoids and the increasingly dense fossil record of the earliest anthropoid radiations. Genomic data and fossils of early primates in Asia and Africa clarify relationships among the major clades of primates. Progress in comparative anatomy, genomics, and molecular biology point to key changes in sensory ecology and brain organization that ultimately set the stage for the emergence of the human lineage.
Collapse
|
111
|
Hasen NS, Gammie SC. Trpc2 gene impacts on maternal aggression, accessory olfactory bulb anatomy and brain activity. GENES BRAIN AND BEHAVIOR 2010; 8:639-49. [PMID: 19799641 DOI: 10.1111/j.1601-183x.2009.00511.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The Trpc2 gene codes for an ion channel found in the vomeronasal organ (VNO). Studies using the Trpc2(-/-) (KO) mouse have exploited the gene's role in signal transduction to explore the VNO's role in pheromonally mediated behaviors. To date, no study has evaluated the impact of the Trpc2 gene on activity within the brain. In this study, we examine the gene's effect on brain regions governing maternal aggression. We intruder-tested lactating dams and then quantified Fos immunoreactivity (Fos-IR) in the vomeronasal amygdala, hypothalamus, olfactory regions and accessory olfactory bulb (AOB). Our data confirm previous reports that loss of the Trpc2 gene severely diminishes maternal aggression. We also show that deletion of the gene results in differential hypotrophy of the glomerular layer (GlA) of the AOB, with the anterior portion the GlA resembling that of wild-type mice, and the posterior portion reduced or absent. This anatomy is suggestive of residual functioning in the apical VNO of these animals. Our Fos study describes an impact of the deletion on a network of 21 brain regions involved in emotion, aggression and olfaction, suggesting that signals from the VNO mediate activity throughout the brain. Home-cage observations of KO dams show specific deficits in nest-building, suggesting a role for pup pheromones in inducing and maintaining pup-directed maternal behaviors as well as maternal aggression.
Collapse
Affiliation(s)
- N S Hasen
- Center for Women's Health Research, University of Wisconsin-Madison, WI 53706, USA.
| | | |
Collapse
|
112
|
Yu L, Jin W, Wang JX, Zhang X, Chen MM, Zhu ZH, Lee H, Lee M, Zhang YP. Characterization of TRPC2, an essential genetic component of VNS chemoreception, provides insights into the evolution of pheromonal olfaction in secondary-adapted marine mammals. Mol Biol Evol 2010; 27:1467-77. [PMID: 20142439 DOI: 10.1093/molbev/msq027] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Pheromones are chemical cues released and sensed by individuals of the same species, which are of major importance in regulating reproductive and social behaviors of mammals. Generally, they are detected by the vomeronasal system (VNS). Here, we first investigated and compared an essential genetic component of vomeronasal chemoreception, that is, TRPC2 gene, of four marine mammals varying the degree of aquatic specialization and related terrestrial species in order to provide insights into the evolution of pheromonal olfaction in the mammalian transition from land to water. Our results based on sequence characterizations and evolutionary analyses, for the first time, show the evidence for the ancestral impairment of vomeronasal pheromone signal transduction pathway in fully aquatic cetaceans, supporting a reduced or absent dependence on olfaction as a result of the complete adaptation to the marine habitat, whereas the amphibious California sea lion was found to have a putatively functional TRPC2 gene, which is still under strong selective pressures, reflecting the reliance of terrestrial environment on chemical recognition among the semiadapted marine mammals. Interestingly, our study found that, unlike that of the California sea lion, TRPC2 genes of the harbor seal and the river otter, both of which are also semiaquatic, are pseudogenes. Our data suggest that other unknown selective pressures or sensory modalities might have promoted the independent absence of a functional VNS in these two species. In this respect, the evolution of pheromonal olfaction in marine mammals appears to be more complex and confusing than has been previously thought. Our study makes a useful contribution to the current understanding of the evolution of pheromone perception of mammals in response to selective pressures from an aquatic environment.
Collapse
Affiliation(s)
- Li Yu
- Laboratory for Conservation and Utilization of Bio-resource and Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming, People's Republic of China.
| | | | | | | | | | | | | | | | | |
Collapse
|
113
|
Abstract
It is controversial whether or not humans convey specific compounds within their body odours which can potentially affect the physiology and behaviour of others. Such compounds are called pheromones and have been discovered in many other species, including mammals. It has been suggested that humans might have a special organ within their nose that can transmit such chemosensory information. However, the evidence for this organ is highly questionable. In any case, the main olfactory system is a highly diverse system, capable of transmitting pheromonal information. So far, no single substance has been found that acts as a chemical messenger for erotic attraction. On the other hand, studies investigating the pheromonal properties of natural complex body odour have proven that it does deliver information about the sender and that it has an effect on the physiology and likely behaviour of other humans. Its significance for human mating preferences probably lies not in driving them to choose the right mate but rather in warning them not to choose the wrong one.
Collapse
Affiliation(s)
- Bettina M Pause
- Institute of Psychology, Christian-Albrechts-University Kiel, Germany.
| |
Collapse
|
114
|
Delaney KR, Qnais EY, Hardy AB. Short-term synaptic plasticity at the main and vomeronasal olfactory receptor to mitral cell synapse in frog. Eur J Neurosci 2009; 30:2077-88. [PMID: 20128846 DOI: 10.1111/j.1460-9568.2009.06997.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Synaptic responses resulting from stimulation of the main olfactory and vomeronasal (VN) nerves were measured in main and accessory olfactory bulb (AOB) of frog, Rana pipiens, to test the hypothesis that properties of these synapses would reflect the distinct differences in the time course of odour delivery to each of these olfactory structures. Paired-pulse depression dominated responses to repetitive stimulation of the main olfactory nerve for interstimulus intervals (ISI) up to several seconds. Inhibition of voltage-gated Ca(2+) channels by GABAb receptors contributes significantly to this inhibition of transmitter release, particularly for ISI > 0.5 s. In contrast, the monosynaptic connection between VN sensory neurons and mitral cells in the AOB showed enhancement with pairs or short trains of stimuli for ISI of 0.5 to > 10 s. A small inhibitory effect of GABAb receptors on presynaptic Ca(2+) influx and release was only evident when a large proportion of the VN axons were stimulated simultaneously but even with inhibition present an overall enhancement of release was observed. Increasing the number of conditioning stimuli from one to five increased residual [Ca(2+)] and enhancement but a direct correlation between residual [Ca(2+)] and either the magnitude or the time course of enhancement was not observed. Enhanced transmitter release from VN afferent terminals results in effective integration of sustained low-frequency activity, which may play a role in the detection of low-intensity odourant stimuli by the VN system.
Collapse
Affiliation(s)
- K R Delaney
- Department of Biology, University of Victoria, Victoria, BC V8W 3N5, Canada.
| | | | | |
Collapse
|
115
|
Hacquemand R, Buron G, Pourié G, Karrer M, Jacquot L, Brand G. Effects of CO2 inhalation exposure on mice vomeronasal epithelium. Cell Biol Toxicol 2009; 26:309-17. [PMID: 19924548 DOI: 10.1007/s10565-009-9143-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2009] [Accepted: 11/03/2009] [Indexed: 10/20/2022]
Abstract
Nasal epitheliums are the first sites of the respiratory tract in contact with the external environment and may therefore be susceptible to damage from exposure to many toxic volatile substances (i.e., volatile organic components, vapors, and gases). In the field of inhalation toxicology, a number of studies have considered the main olfactory epithelium, but few have dealt with the epithelium of the vomeronasal organ (VNO). However, in several species such as in rodents, the VNO (an organ of pheromone detection) plays an important role in social interactions, and alterations of this organ are known to induce adaptative behavioral disturbances. Among volatile toxicants, health effects of inhaled gases have been thoroughly investigated, especially during CO(2) inhalation because of its increasing atmospheric concentration. Therefore, this work was designed to examine the effects of 3% CO(2) inhalation on VNO in two different exposure conditions (5 h/day and 12 h/day) in mice. Behavioral sensitivity tests to urine of congener and histological measurements of VNO were conducted before, during (weeks 1-4), and after (weeks 5-8) CO(2) inhalation exposures. Results showed no significant modifications of behavioral responses to urine, but there were significant changes of both cell number and thickness of the VNO epithelium. Moreover, the findings indicated a selectively dose-dependent effect of CO(2), and further research could use other gases in the same manner for comparison.
Collapse
Affiliation(s)
- Romain Hacquemand
- Laboratoire de Neurosciences, Université de Franche-Comté, Besançon, France
| | | | | | | | | | | |
Collapse
|
116
|
Yonezawa T, Koori M, Kikusui T, Mori Y. Appeasing Pheromone Inhibits Cortisol Augmentation and Agonistic Behaviors During Social Stress in Adult Miniature Pigs. Zoolog Sci 2009; 26:739-44. [DOI: 10.2108/zsj.26.739] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
117
|
Masini CV, Garcia RJ, Sasse SK, Nyhuis TJ, Day HEW, Campeau S. Accessory and main olfactory systems influences on predator odor-induced behavioral and endocrine stress responses in rats. Behav Brain Res 2009; 207:70-7. [PMID: 19800371 DOI: 10.1016/j.bbr.2009.09.038] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2009] [Revised: 09/23/2009] [Accepted: 09/25/2009] [Indexed: 01/29/2023]
Abstract
Exposures to predator odors are very effective methods to evoke a variety of stress responses in rodents. We have previously found that ferret odor exposure leads to changes in endocrine hormones (corticosterone and ACTH) and behavior. To distinguish the contributions of the main and accessory olfactory systems in these responses, studies were designed to interfere with these two systems either independently, or simultaneously. Male Sprague-Dawley rats were treated with 10% zinc sulfate (ZnSO(4)), which renders rodents anosmic (unable to smell) while leaving the accessory olfactory areas intact, or saline, in Experiment 1. In Experiment 2, the vomeronasal organs of rats were surgically removed (VNX) to block accessory olfactory processing, while leaving the main olfactory system intact. And in the third experiment both the main and accessory olfactory areas were disrupted by combining the two procedures in the same rats. Neither ZnSO(4) treatment nor VNX alone reliably reduced the increased corticosterone response to ferret odor compared to strawberry odor, but in combination, they did. This suggests that processing through the main or the accessory olfactory system can elicit the endocrine stress response to ferret odor. VNX alone also did not affect the behavioral responses to the ferret odor. ZnSO(4) treatment, alone and in combination with VNX, led to changes in behavior in response to both ferret and strawberry odor, making the behavioral results less clearly interpretable. Overall these studies suggest that both the main and accessory olfactory systems mediate the neuroendocrine response to predator odor.
Collapse
Affiliation(s)
- Cher V Masini
- Department of Psychology and Neuroscience & Center for Neuroscience, University of Colorado, Boulder, CO 80309, USA.
| | | | | | | | | | | |
Collapse
|
118
|
Abstract
Apoptosis occurs widely during brain development, and p73 transcription factors are thought to play essential roles in this process. The p73 transcription factors are present in two forms, the full length TAp73 and the N-terminally truncated DeltaNp73. In cultured sympathetic neurons, overexpression of DeltaNp73 inhibits apoptosis induced by nerve growth factor withdrawal or p53 overexpression. To probe the function of DeltaNp73 in vivo, we generated a null allele and inserted sequences encoding the recombinase Cre and green fluorescent protein (EGFP). We show that DeltaNp73 is heavily expressed in the thalamic eminence (TE) that contributes neurons to ventral forebrain, in vomeronasal neurons, Cajal-Retzius cells (CRc), and choroid plexuses. In DeltaNp73(-/-) mice, cells in preoptic areas, vomeronasal neurons, GnRH-positive cells, and CRc were severely reduced in number, and choroid plexuses were atrophic. This phenotype was enhanced when DeltaNp73-positive cells were ablated by diphtheria toxin expression. However, ablation of cells that express DeltaNp73 and Wnt3a did neither remove all CRc, nor did they abolish Reelin secretion or generate a reeler-like cortical phenotype. Our data emphasize the role of DeltaNp73 in neuronal survival in vivo and in choroid plexus development, the importance of the TE as a source of neurons in ventral forebrain, and the multiple origins of CRc, with redundant production of Reelin.
Collapse
|
119
|
Abstract
Olfactory bulbs (OBs) are one of the few brain areas, which show active neurogenesis and neuronal migration processes in adult rats. We constructed a proteome map of the 21 days old rat OBs and identified total 196 proteins, out of which 76 proteins were not reported earlier from rat brain. This includes 24 neuronal activity-specific proteins present at high levels, 7 of which are reported for the first time from OBs.
Collapse
Affiliation(s)
- Devendra Kumar Maurya
- Centre for Cellular and Molecular Biology, Council of Scientific and Industrial Research, Hyderabad, India
| | | | | |
Collapse
|
120
|
Tian X, Pascal G, Monget P. Evolution and functional divergence of NLRP genes in mammalian reproductive systems. BMC Evol Biol 2009; 9:202. [PMID: 19682372 PMCID: PMC2735741 DOI: 10.1186/1471-2148-9-202] [Citation(s) in RCA: 138] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2009] [Accepted: 08/14/2009] [Indexed: 12/31/2022] Open
Abstract
Background NLRPs (Nucleotide-binding oligomerization domain, Leucine rich Repeat and Pyrin domain containing Proteins) are members of NLR (Nod-like receptors) protein family. Recent researches have shown that NLRP genes play important roles in both mammalian innate immune system and reproductive system. Several of NLRP genes were shown to be specifically expressed in the oocyte in mammals. The aim of the present work was to study how these genes evolved and diverged after their duplication, as well as whether natural selection played a role during their evolution. Results By using in silico methods, we have evaluated the evolution and functional divergence of NLRP genes, in particular of mouse reproduction-related Nlrp genes. We found that (1) major NLRP genes have been duplicated before the divergence of mammals, with certain lineage-specific duplications in primates (NLRP7 and 11) and in rodents (Nlrp1, 4 and 9 duplicates); (2) tandem duplication events gave rise to a mammalian reproduction-related NLRP cluster including NLRP2, 4, 5, 7, 8, 9, 11, 13 and 14 genes; (3) the function of mammalian oocyte-specific NLRP genes (NLRP4, 5, 9 and 14) might have diverged during gene evolution; (4) recent segmental duplications concerning Nlrp4 copies and vomeronasal 1 receptor encoding genes (V1r) have been undertaken in the mouse; and (5) duplicates of Nlrp4 and 9 in the mouse might have been subjected to adaptive evolution. Conclusion In conclusion, this study brings us novel information on the evolution of mammalian reproduction-related NLRPs. On the one hand, NLRP genes duplicated and functionally diversified in mammalian reproductive systems (such as NLRP4, 5, 9 and 14). On the other hand, during evolution, different lineages adapted to develop their own NLRP genes, particularly in reproductive function (such as the specific expansion of Nlrp4 and Nlrp9 in the mouse).
Collapse
Affiliation(s)
- Xin Tian
- Physiologie de la Reproduction et des Comportements, UMR 6175 INRA-CNRS-Université François Rabelais de Tours-Haras Nationaux, 37380 Nouzilly, France.
| | | | | |
Collapse
|
121
|
Taha M, McMillon R, Napier A, Wekesa KS. Extracts from salivary glands stimulate aggression and inositol-1, 4, 5-triphosphate (IP3) production in the vomeronasal organ of mice. Physiol Behav 2009; 98:147-55. [PMID: 19460393 PMCID: PMC4286211 DOI: 10.1016/j.physbeh.2009.05.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2008] [Revised: 05/06/2009] [Accepted: 05/11/2009] [Indexed: 11/25/2022]
Abstract
Mammals use chemical cues to coordinate social and reproductive behaviors. Chemical cues are detected by the VNO organ (VNO), which is a cartilage-encased elongated organ associated with the vomer bone in the rostral nasal cavity. The resident intruder paradigm was utilized to examine the ability of saliva and its feeder exocrine glands, the submaxillary, parotid, and sublingual glands to mediate aggression in mice. Saliva and extracts from submaxillary and parotid glands, but not extracts from sublingual glands of male CD-1 mice, induced a greater number of attacks and lower latencies to sniff and attack (p<0.05) and significantly increased IP(3) production (p<0.05) versus vehicle (PBS) in CD-1 male mice VNO. We further show that CD-1 male mouse saliva and submaxillary gland extract induced significantly more attacks and a lower latency to attack in lactating female CD-1 mice and produced significantly more inositol triphosphate (IP(3)), indicative of phospholipase C(beta) signaling which mediates pheromonal activity, in CD-1 female VNO compared to PBS. Castrated CD-1 male mouse saliva, and exocrine gland extracts induced significantly less IP(3) production in male VNO and less aggression by CD-1 males and lactating females compared to responses to normal CD-1 male mouse saliva and gland extracts. Thus, chemical cues present in saliva, submaxillary and parotid glands of CD-1 male mice are capable of stimulating aggression in male and female congenic mice which are correlated with significant production of IP(3) in the VNO. Additionally, these stimulations of aggression and IP(3) production are shown to be androgen-dependent.
Collapse
Affiliation(s)
- Murtada Taha
- Department of Biological Sciences, Alabama State University, Montgomery, Alabama 36101-0271, USA
| | | | | | | |
Collapse
|
122
|
Keller M, Baum MJ, Brock O, Brennan PA, Bakker J. The main and the accessory olfactory systems interact in the control of mate recognition and sexual behavior. Behav Brain Res 2009; 200:268-76. [PMID: 19374011 DOI: 10.1016/j.bbr.2009.01.020] [Citation(s) in RCA: 128] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In the field of sensory perception, one noticeable fact regarding olfactory perception is the existence of several olfactory subsystems involved in the detection and processing of olfactory information. Indeed, the vomeronasal or accessory olfactory system is usually conceived as being involved in the processing of pheromones as it is closely connected to the hypothalamus, thereby controlling reproductive function. By contrast, the main olfactory system is considered as a general analyzer of volatile chemosignals, used in the context of social communication, for the identification of the status of conspecifics. The respective roles played by the main and the accessory olfactory systems in the control of mate recognition and sexual behavior are at present still controversial. We summarize in this review recent results showing that both the main and accessory olfactory systems are able to process partially overlapping sets of sexual chemosignals and that both systems support complimentary aspects in mate recognition and in the control of sexual behavior.
Collapse
Affiliation(s)
- Matthieu Keller
- Behavioral & Reproductive Physiology, UMR 6175 INRA/CNRS/University of Tours, Nouzilly, France.
| | | | | | | | | |
Collapse
|
123
|
Mast TG, Samuelsen CL. Human pheromone detection by the vomeronasal organ: unnecessary for mate selection? Chem Senses 2009; 34:529-31. [PMID: 19477954 DOI: 10.1093/chemse/bjp030] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Recently, Foltan and Sedy proposed a hypothesis stating that the adult human VNO is integral to the prevention of inappropriate mate selection. In this commentary, we address the authors' assumption that humans have a functional VNO, that pheromones are detected exclusively by the VNO, and that human pheromones are responsible for negative stimuli during mate selection. After examining the published literature on human vomeronasal function, we argue that their hypothesis is critically flawed. We offer a brief review of the adult human VNO in support of our argument.
Collapse
|
124
|
|
125
|
Foltán R, Sedý J. Behavioral changes of patients after orthognathic surgery develop on the basis of the loss of vomeronasal organ: a hypothesis. Head Face Med 2009; 5:5. [PMID: 19161592 PMCID: PMC2653472 DOI: 10.1186/1746-160x-5-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2008] [Accepted: 01/22/2009] [Indexed: 11/18/2022] Open
Abstract
We introduce a hypothesis which presumes that damage to the vomeronasal organ during a Le Fort I osteotomy of the maxilla for the purpose of orthognathic surgical treatment of congenital or acquired jaw deformities affects the patient's social life in terms of the selection of mates and establishment of relationships. The vomeronasal organ is chemosensory for pheromones, and thus registers unconscious olfactory information which might subsequently act on the limbic system of an individual and influence the selection of mates. We believe it is connected to an inhibitory feedback mechanism which is responsible for the exclusion of inappropriate mates. When the vomeronasal organ is removed or damaged during a maxillary osteotomy, the inhibitory function is lost, the patient loses the involuntary ability to exclude inappropriate mates, may become less committed to an existing mate, or even become promiscuous.
Collapse
Affiliation(s)
- René Foltán
- Department of Stomatology, First Faculty of Medicine and General Teaching Hospital, Charles University, Prague, Czech Republic.
| | | |
Collapse
|
126
|
Shi P, Zhang J. Extraordinary diversity of chemosensory receptor gene repertoires among vertebrates. Results Probl Cell Differ 2009; 47:1-23. [PMID: 19145414 DOI: 10.1007/400_2008_4] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Chemosensation (smell and taste) is important to the survival and reproduction of vertebrates and is mediated by specific bindings of odorants, pheromones, and tastants by chemoreceptors that are encoded by several large gene families. This review summarizes recent comparative genomic and evolutionary studies of vertebrate chemoreceptor genes. It focuses on the remarkable diversity of chemoreceptor gene repertoires in terms of gene number and gene sequence across vertebrates and the evolutionary mechanisms that are responsible for generating this diversity. We argue that the great among-species variation of chemoreceptor gene repertoires is a result of adaptations of individual species to their environments and diets.
Collapse
Affiliation(s)
- P Shi
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, The Chinese Academy of Sciences, Arthur-Scheunert-Allee 114-116, 650223, Kunming, China.
| | | |
Collapse
|
127
|
Hollister-Smith JA, Alberts SC, Rasmussen L. Do male African elephants, Loxodonta africana, signal musth via urine dribbling? Anim Behav 2008. [DOI: 10.1016/j.anbehav.2008.05.033] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
128
|
Abstract
Mammalian vomeronasal receptors respond to pheromones conveying information on gender, reproductive status and individual recognition. The question arises as to how this information is coded, which parts of the code require combinatorial activity and whether or not there are specific receptor neurons committed to sex discrimination. Are there receptor neurons that are committed to responding for female or male pheromones? Is there a sex difference for the proportion of these receptors, bearing in mind that it is very much in the male's interest to distinguish the restricted oestrous phase of the female's cycle in order to successfully mate? Perhaps more intriguing is the complexity of individual recognition and whether or not the vomeronasal receptors actually possess this capacity. A recent paper in Science by Ron Yu and colleagues addresses these issues by literally visualising patterns of activity in VNO slices and determining what information is common across different individuals and what distinguishes them.
Collapse
Affiliation(s)
- Eric B Keverne
- Subdepartment of Animal Behaviour, University of Cambridge, Madingley, Cambridge CB238AA, UK.
| |
Collapse
|
129
|
Salazar I, Sánchez-Quinteiro P, Alemañ N, Prieto D. Anatomical, immnunohistochemical and physiological characteristics of the vomeronasal vessels in cows and their possible role in vomeronasal reception. J Anat 2008; 212:686-96. [PMID: 18430091 DOI: 10.1111/j.1469-7580.2008.00889.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The general morphology of the vomeronasal vessels in adult cows was studied following a classic protocol, including optical, confocal and ultrastructural approaches. This anatomical work was completed immunohistochemically. The vomeronasal organ in cows is well developed, and its vessels are considerable in size. This fact allowed some functional properties of the vomeronasal arteries to be evaluated and, for the first time, their isometric tension to be recorded. Our functional studies were in agreement with the immunohistochemistry, and both corroborated the morphological data on the similarity between the vomeronasal vessels and those of the typical erectile tissue. In consequence, the vasoconstriction and vasodilation of the vomeronasal vessels would facilitate an influx and outflow of fluids in the vomeronasal organ, that is to say, this organ in cows would be able to work as a pump mechanism to send chemical signals to the vomeronasal receptor neurones.
Collapse
Affiliation(s)
- Ignacio Salazar
- Department of Anatomy and Animal Production, Unit of Anatomy and Embryology, Veterinary Faculty, University of Santiago de Compostela, Spain.
| | | | | | | |
Collapse
|
130
|
SÁNCHEZ-VILLAGRA MARCELOR. Ontogenetic and phylogenetic transformations of the vomeronasal complex and nasal floor elements in marsupial mammals. Zool J Linn Soc 2008. [DOI: 10.1111/j.1096-3642.2001.tb01322.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
131
|
Gelperin A. Neural Computations with Mammalian Infochemicals. J Chem Ecol 2008; 34:928-42. [DOI: 10.1007/s10886-008-9483-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2007] [Revised: 12/28/2007] [Accepted: 04/23/2008] [Indexed: 12/22/2022]
|
132
|
|
133
|
Takatoh J, Kudoh H, Kondo S, Hanaoka K. Loss of short dystrophin isoform Dp71 in olfactory ensheathing cells causes vomeronasal nerve defasciculation in mouse olfactory system. Exp Neurol 2008; 213:36-47. [PMID: 18586242 DOI: 10.1016/j.expneurol.2008.04.041] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2007] [Revised: 04/14/2008] [Accepted: 04/20/2008] [Indexed: 10/22/2022]
Abstract
The Duchenne muscular dystrophy (DMD) gene encodes dystrophin, which is a protein defective in DMD patients, as well as a number of shorter isoforms, which have been shown to be expressed in various non-muscle, primarily neural, tissues. As of yet, the physiological function of the various dystrophin isoforms is not fully understood. In the present study, we investigated the neurological phenotype that arises in the DMD-null mice, where expression of all dystrophin isoforms had been disrupted. We demonstrate that vomeronasal axons in the DMD-null mice are defasciculated, and some of the defasciculated vomeronasal axons aberrantly entered into the main olfactory bulb, which indicates that the product(s) of the DMD gene plays an important role in vomeronasal nerve organization. Through western blot and immunofluorescence analyses, we determined that the dystrophin isoform Dp71 was exclusively expressed in the mouse olfactory system: mainly in the olfactory ensheathing cells (OECs), an olfactory system-specific glia cell that ensheaths fascicles of the olfactory nerve. In the OECs, Dp71 was co-localized with beta-dystroglycan, utrophin, laminin, and perlecan. Since beta-dystroglycan and perlecan expression was decreased in the OECs of DMD-null mice, we hypothesize that Dp71 expressed in the OECs participates in fasciculation of the vomeronasal nerve, most likely through interactions with extracellular matrix.
Collapse
Affiliation(s)
- Jun Takatoh
- Laboratory of Molecular Embryology, Department of Bioscience, Kitasato University School of Science, 1-15-1 Kitasato, Sagamihara, Kanagawa 228-8555, Japan
| | | | | | | |
Collapse
|
134
|
Abstract
The mammalian vomeronasal organ detects complex chemical signals that convey information about gender, strain, and the social and reproductive status of an individual. How these signals are encoded is poorly understood. We developed transgenic mice expressing the calcium indicator G-CaMP2 and analyzed population responses of vomeronasal neurons to urine from individual animals. A substantial portion of cells was activated by either male or female urine, but only a small population of cells responded exclusively to gender-specific cues shared across strains and individuals. Female cues activated more cells and were subject to more complex hormonal regulations than male cues. In contrast to gender, strain and individual information was encoded by the combinatorial activation of neurons such that urine from different individuals activated distinctive cell populations.
Collapse
Affiliation(s)
- Jie He
- Stowers Institute for Medical Research, 1000 East 50th Street, Kansas City, MO 64110, USA
| | | | | | | | | |
Collapse
|
135
|
Expression of nonclassical class I major histocompatibility genes defines a tripartite organization of the mouse vomeronasal system. J Neurosci 2008; 28:2332-41. [PMID: 18322080 DOI: 10.1523/jneurosci.4807-07.2008] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The epithelium of the mouse vomeronasal organ (VNO) consists of apical and basal layers of neuronal cell bodies. Vomeronasal sensory neurons (VSNs) with cell bodies in the basal layer express the G-protein subunit G alpha(o) and members of the V2R superfamily of vomeronasal receptor genes and project their axons to the posterior accessory bulb (AOB). V2R(+) VSNs also express particular patterns of a family of nine nonclassical class I major histocompatibility Mhc genes, the H2-Mv genes. The function of H2-Mv molecules remains unknown. H2-Mv molecules have been reported to be associated with V2R molecules and have been proposed to participate in pheromone detection. Here, we find that a substantial fraction of V2R(+) VSNs does not express these nine H2-Mv genes. The cell bodies of H2-Mv(+) and H2-Mv(-) VSNs reside in the lower and upper sublayers of the basal layer, respectively. This spatial segregation is maintained at the level of the AOB: H2-Mv(+) and H2-Mv(-) VSNs project their axons to the posterior and anterior subdomains of the posterior AOB, respectively. By generating a C-terminal green fluorescent protein fusion protein with M10.2 in gene-targeted mice, we observe subcellular localization of M10.2 not only in dendrites but also in axons of VSNs. Our results reveal a tripartite organization of the VNO and AOB, question the generality of the requirement of these nine H2-Mv molecules for V2R surface expression, and suggest that H2-Mvs can function in both dendrites and axons.
Collapse
|
136
|
Bakker J, Baum MJ. Role for estradiol in female-typical brain and behavioral sexual differentiation. Front Neuroendocrinol 2008; 29:1-16. [PMID: 17720235 PMCID: PMC2373265 DOI: 10.1016/j.yfrne.2007.06.001] [Citation(s) in RCA: 130] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2007] [Revised: 05/29/2007] [Accepted: 06/19/2007] [Indexed: 12/01/2022]
Abstract
The importance of estrogens in controlling brain and behavioral sexual differentiation in female rodents is an unresolved issue in the field of behavioral neuroendocrinology. Whereas, the current dogma states that the female brain develops independently of estradiol, many studies have hinted at possible roles of estrogen in female sexual differentiation. Accordingly, it has been proposed that alpha-fetoprotein, a fetal plasma protein that binds estrogens with high affinity, has more than a neuroprotective role and specifically delivers estrogens to target brain cells to ensure female differentiation. Here, we review new results obtained in aromatase and alpha-fetoprotein knockout mice showing that estrogens can have both feminizing and defeminizing effects on the developing neural mechanisms that control sexual behavior. We propose that the defeminizing action of estradiol normally occurs prenatally in males and is avoided in fetal females because of the protective actions of alpha-fetoprotein, whereas the feminizing action of estradiol normally occurs postnatally in genetic females.
Collapse
Affiliation(s)
- Julie Bakker
- Center for Cellular & Molecular Neurobiology, University of Liège, Belgium.
| | | |
Collapse
|
137
|
Pierman S, Douhard Q, Bakker J. Evidence for a role of early oestrogens in the central processing of sexually relevant olfactory cues in female mice. Eur J Neurosci 2008; 27:423-31. [PMID: 18215238 PMCID: PMC2258409 DOI: 10.1111/j.1460-9568.2007.06016.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We previously found that female aromatase knockout (ArKO) mice showed less investigation of socially relevant odours as well as reduced sexual behaviour. We now ask whether these behavioural deficits might be due to an inadequate processing of odours in female ArKO mice. Therefore, we exposed female ArKO mice to same- and opposite-sex urinary odours and determined the expression of the immediate early gene c-Fos along the main and accessory olfactory projection pathways. We included ArKO males in the present study as we previously observed that they show female-typical detection thresholds of urinary odours, suggesting a role for perinatal oestrogens in these behavioural responses. No sex or genotype differences were observed in the olfactory bulb after urine exposure. By contrast, sex differences in c-Fos responses were observed in wild-type (WT) mice following exposure to male urine in the more central regions of the olfactory pathway; only WT females showed a significant Fos induction in the amygdala, central medial pre-optic area and ventromedial hypothalamus. However, ArKO females did not show a c-Fos response to male odours in the ventromedial hypothalamus, suggesting that the processing of male odours is affected in ArKO females and thus that oestrogens may be necessary for the development of neural responses to sexually relevant odours in female mice. By contrast, c-Fos responses to either male or oestrous female urine were very similar between ArKO and WT males, pointing to a central role of androgen vs. oestrogen signalling in the male circuits that control olfactory investigation and preferences.
Collapse
Affiliation(s)
- Sylvie Pierman
- Centre for Cellular and Molecular Neurobiology, University of Liège, Avenue de l'Hopital 1 (B36), 4000 Liège, Belgium
| | | | | |
Collapse
|
138
|
Lévy F, Keller M. Chapter 8 Neurobiology of Maternal Behavior in Sheep. ADVANCES IN THE STUDY OF BEHAVIOR 2008. [DOI: 10.1016/s0065-3454(08)00008-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
|
139
|
Kelliher KR. The combined role of the main olfactory and vomeronasal systems in social communication in mammals. Horm Behav 2007; 52:561-70. [PMID: 17959176 PMCID: PMC2756530 DOI: 10.1016/j.yhbeh.2007.08.012] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2007] [Revised: 08/14/2007] [Accepted: 08/15/2007] [Indexed: 11/16/2022]
Abstract
The main olfactory and the vomeronasal systems are the two systems by which most vertebrates detect chemosensory cues that mediate social behavior. Much research has focused on how one system or the other is critical for particular behaviors. This has lead to a vision of two distinct and complexly autonomous olfactory systems. A closer look at research over the past 30 years reveals a different picture however. These two seemingly distinct systems are much more integrated than previously thought. One novel set of chemosensory cues in particular (MHC Class I peptide ligands) can show us how both systems are capable of detecting the same chemosensory cues, through different mechanisms yet provide the same general information (genetic individuality). Future research will need to now focus on how two seemingly distinct chemosensory systems together detect pheromones and mediate social behaviors. Do these systems work independently, synergistically or competitively in communicating between individuals of the same species?
Collapse
Affiliation(s)
- Kevin R Kelliher
- Department of Biological Sciences, University of Idaho, Moscow, ID 83844, USA.
| |
Collapse
|
140
|
Mohedano-Moriano A, Pro-Sistiaga P, Ubeda-Bañón I, Crespo C, Insausti R, Martinez-Marcos A. Segregated pathways to the vomeronasal amygdala: differential projections from the anterior and posterior divisions of the accessory olfactory bulb. Eur J Neurosci 2007; 25:2065-80. [PMID: 17419754 DOI: 10.1111/j.1460-9568.2007.05472.x] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Apically and basally located receptor neurons in the vomeronasal sensory epithelium express G(i2 alpha)- and G(o alpha)-proteins, V1R and V2R vomeronasal receptors, project to the anterior and posterior accessory olfactory bulb and respond to different stimuli, respectively. The extent to which secondary projections from the two portions of the accessory olfactory bulb are convergent in the vomeronasal amygdala is controversial. This issue is addressed by using anterograde and retrograde tract-tracing methods in rats including electron microscopy. Injections of dextran-amines, Fluoro Gold, cholera toxin-B subunit and Fast Blue were delivered to the anterior and posterior accessory olfactory bulb, bed nucleus of the stria terminalis, dorsal anterior amygdala and bed nucleus of the accessory olfactory tract/anteroventral medial amygdaloid nucleus. We have demonstrated that, apart from common vomeronasal-recipient areas, only the anterior accessory olfactory bulb projects to the bed nucleus of the stria terminalis, medial division, posteromedial part, and only the posterior accessory olfactory bulb projects to the dorsal anterior amygdala and deep cell layers of the bed nucleus of the accessory olfactory tract and the anteroventral medial amygdaloid nucleus. These results provide evidence that, excluding areas of convergence, the V1R and V2R vomeronasal pathways project to specific areas of the amygdala. These two vomeronasal subsystems are therefore anatomically and functionally separated in the telencephalon.
Collapse
Affiliation(s)
- Alicia Mohedano-Moriano
- Laboratorio de Neuroanatomía Humana, Departamento de Ciencias Médicas, Facultad de Medicina, Centro Regional de Investigaciones Biomédicas, Universidad de Castilla-La Mancha, 02006 Albacete, Spain
| | | | | | | | | | | |
Collapse
|
141
|
Mitropoulos C, Papachatzopoulou A, Menounos PG, Kolonelou C, Pappa M, Bertolis G, Gerou S, Patrinos GP. Association Study of HumanVN1R1Pheromone Receptor Gene Alleles and Gender. ACTA ACUST UNITED AC 2007; 11:128-32. [PMID: 17627382 DOI: 10.1089/gte.2006.0516] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Pheromones are water-soluble chemicals that elicit neuroendocrine and physiological changes, while they also provide information about gender within individuals of the same species. VN1R1 is the only functional pheromone receptor in humans. We have undertaken a large mutation screening approach in 425 adult individuals from the Hellenic population to investigate whether the allelic differences, namely alleles 1a and 1b present in the human VN1R1 gene, are gender specific. Here we show that both VN1R1 1a and 1b alleles are found in chromosomes of both male and female subjects at frequency of 26.35% and 73.65%, respectively. Given the fact that those allelic differences potentially cause minor changes in the protein conformation and its transmembrane domains, as simulated by the TMHMM software, our data suggest that the allelic differences in the human VN1R1 gene are unlikely to be associated with gender and hence to contribute to distinct gender-specific behavior.
Collapse
|
142
|
Ebbs ML, Amrein H. Taste and pheromone perception in the fruit fly Drosophila melanogaster. Pflugers Arch 2007; 454:735-47. [PMID: 17473934 DOI: 10.1007/s00424-007-0246-y] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2006] [Revised: 01/04/2007] [Accepted: 01/15/2007] [Indexed: 01/25/2023]
Abstract
Taste is an essential sense for detection of nutrient-rich food and avoidance of toxic substances. The Drosophila melanogaster gustatory system provides an excellent model to study taste perception and taste-elicited behaviors. "The fly" is unique in the animal kingdom with regard to available experimental tools, which include a wide repertoire of molecular-genetic analyses (i.e., efficient production of transgenics and gene knockouts), elegant behavioral assays, and the possibility to conduct electrophysiological investigations. In addition, fruit flies, like humans, recognize sugars as a food source, but avoid bitter tasting substances that are often toxic to insects and mammals alike. This paper will present recent research progress in the field of taste and contact pheromone perception in the fruit fly. First, we shall describe the anatomical properties of the Drosophila gustatory system and survey the family of taste receptors to provide an appropriate background. We shall then review taste and pheromone perception mainly from a molecular genetic perspective that includes behavioral, electrophysiological and imaging analyses of wild type flies and flies with genetically manipulated taste cells. Finally, we shall provide an outlook of taste research in this elegant model system for the next few years.
Collapse
Affiliation(s)
- Michelle L Ebbs
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, 252 CARL Bldg./Research Drive, Durham, NC 27710, USA
| | | |
Collapse
|
143
|
Abstract
Molecular approaches and genetic manipulations have provided novel insights into the processing of pheromone-mediated information by the olfactory and vomeronasal systems of mammals. We will review and discuss the specific contribution of each of the two chemosensory systems that ensure specific behavioral responses to conspecific animals.
Collapse
Affiliation(s)
- C Dulac
- Howard Hughes Medical Institute, Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 02138, USA.
| | | |
Collapse
|
144
|
Shi P, Zhang J. Comparative genomic analysis identifies an evolutionary shift of vomeronasal receptor gene repertoires in the vertebrate transition from water to land. Genome Res 2007; 17:166-74. [PMID: 17210926 PMCID: PMC1781348 DOI: 10.1101/gr.6040007] [Citation(s) in RCA: 153] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Two evolutionarily unrelated superfamilies of G-protein coupled receptors, V1Rs and V2Rs, bind pheromones and "ordinary" odorants to initiate vomeronasal chemical senses in vertebrates, which play important roles in many aspects of an organism's daily life such as mating, territoriality, and foraging. To study the macroevolution of vomeronasal sensitivity, we identified all V1R and V2R genes from the genome sequences of 11 vertebrates. Our analysis suggests the presence of multiple V1R and V2R genes in the common ancestor of teleost fish and tetrapods and reveals an exceptionally large among-species variation in the sizes of these gene repertoires. Interestingly, the ratio of the number of intact V1R genes to that of V2R genes increased by approximately 50-fold as land vertebrates evolved from aquatic vertebrates. A similar increase was found for the ratio of the number of class II odorant receptor (OR) genes to that of class I genes, but not in other vertebrate gene families. Because V1Rs and class II ORs have been suggested to bind to small airborne chemicals, whereas V2Rs and class I ORs recognize water-soluble molecules, these increases reflect a rare case of adaptation to terrestrial life at the gene family level. Several gene families known to function in concert with V2Rs in the mouse are absent outside rodents, indicating rapid changes of interactions between vomeronasal receptors and their molecular partners. Taken together, our results demonstrate the exceptional evolutionary fluidity of vomeronasal receptors, making them excellent targets for studying the molecular basis of physiological and behavioral diversity and adaptation.
Collapse
Affiliation(s)
- Peng Shi
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Jianzhi Zhang
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan 48109, USA
- Corresponding author.E-mail ; fax (734) 763-0544
| |
Collapse
|
145
|
Gould EM, Holmes SJ, Tempero GW. The potential of an insect pheromone lure, Z‐7‐dodecen‐1‐yl acetate, compared with peanut butter to attract laboratory and wild rats and mice. NEW ZEALAND JOURNAL OF ZOOLOGY 2007. [DOI: 10.1080/03014220709510096] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
146
|
Abstract
TRPC (canonical transient receptor potential) channels are the closest mammalian homologs of Drosophila TRP and TRP-like channels. TRPCs are rather nonselective Ca2+ permeable cation channels and affect cell functions through their ability to mediate Ca2+ entry into cells and their action to collapse the plasma membrane potentials. In neurons the latter function leads to action potentials. The mammalian genome codes for seven TRPCs of which TRPC2 is the largest with the most restricted pattern of expression and has several alternatively spliced variants. Expressed in model cells, TRPC2 mediates both receptor- and store depletion-triggered Ca2+ entry. TRPC2 is unique among TRPCs in that its complete gene has been lost from the Old World monkey and human genomes, in which its remnants constitute a pseudogene. Physiological roles for TRPC2 have been studied in mature sperm and the vomeronasal sensory system. In sperm, TRPC2 is activated by the sperm's interaction with the oocyte's zona pellucida, leading to entry of Ca2+ and activation of the acrosome reaction. In the vomeronasal sensory organ (VNO), TRPC2 was found to constitute the transduction channel activated through signaling cascade initiated by the interaction of pheromones with V1R and V2R G protein-coupled receptors on the dendrites of the sensory neurons. V1Rs and V2Rs, the latter working in conjunction with class I MHC molecules, activate G(i)- and G(o)-type G proteins which in turn trigger activation of TRPC2, initiating an axon potential that travels to the axonal terminals. The signal is then projected to the glomeruli of the auxiliary olfactory bulb from where it is carried first to the amygdala and then to higher cortical cognition centers. Immunocytochemistry and gene deletion studies have shown that (1) the V2R-G(o)-MHCIb-beta2m pathway mediates male aggressive behavior in response to pheromones; (2) the V1R-G(i2) pathway mediates mating partner recognition, and (3) these differences have an anatomical correlate in that these functional components are located in anatomically distinct compartments of the VNO. Interestingly, these anatomically segregated signaling pathways use a common transduction channel, TRPC2.
Collapse
Affiliation(s)
- E Yildirim
- Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, 111 T.W. Alexander Drive, Research Triangle Park, NC 27709, USA
| | | |
Collapse
|
147
|
Salazar I, Quinteiro PS, Alemañ N, Cifuentes JM, Troconiz PF. Diversity of the vomeronasal system in mammals: The singularities of the sheep model. Microsc Res Tech 2007; 70:752-62. [PMID: 17394199 DOI: 10.1002/jemt.20461] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The enormous morphological diversity and heterogeneity of the vomeronasal system (VNS) in mammals--as well as its complete absence in some cases--complicates the extrapolation of data from one species to another, making any physiological and functional conclusions valid for the whole Mammalian Class difficult and risky to draw. Some highly-evolved macrosmatic mammals, like sheep, have been previously used in interesting behavioral studies concerning the main and accessory olfactory systems. However, in this species, certain crucial morphological peculiarities have not until now been considered. Following histological, histochemical and immunohistochemical procedures, we have studied the vomeronasal organ (VNO) and the accessory olfactory bulb (AOB) of adult sheep. We have determined: (1) that all structures which classically define the VNO in mammals are present and well developed, providing the morphological basis for functional activity. (2) that, conversely, there is only a scant population of scattered mitral/tufted cells. One morphological consequence of both details is that the strata of the AOB in adult sheep are not as sharply defined as in other species; moreover, the small number of the mitral/tufted cells in the AOB may imply that the VNS of adult sheep is not capable of functioning in the way a well-developed VNS does in other species. (3) the zone to zone projection from the apical and basal sensory epithelium of the VNO to the anterior and posterior part of the AOB, respectively, typical in rodents, lagomorphs and marsupials, is not present in adult sheep.
Collapse
Affiliation(s)
- Ignacio Salazar
- Department of Anatomy and Animal Production, Unit of Anatomy and Embryology, Faculty of Veterinary, University of Santiago de Compostela, 27002 Lugo, Spain.
| | | | | | | | | |
Collapse
|
148
|
Broad K, Curley J, Keverne E. Mother-infant bonding and the evolution of mammalian social relationships. Philos Trans R Soc Lond B Biol Sci 2006; 361:2199-214. [PMID: 17118933 PMCID: PMC1764844 DOI: 10.1098/rstb.2006.1940] [Citation(s) in RCA: 142] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
A wide variety of maternal, social and sexual bonding strategies have been described across mammalian species, including humans. Many of the neural and hormonal mechanisms that underpin the formation and maintenance of these bonds demonstrate a considerable degree of evolutionary conservation across a representative range of these species. However, there is also a considerable degree of diversity in both the way these mechanisms are activated and in the behavioural responses that result. In the majority of small-brained mammals (including rodents), the formation of a maternal or partner preference bond requires individual recognition by olfactory cues, activation of neural mechanisms concerned with social reward by these cues and gender-specific hormonal priming for behavioural output. With the evolutionary increase of neocortex seen in monkeys and apes, there has been a corresponding increase in the complexity of social relationships and bonding strategies together with a significant redundancy in hormonal priming for motivated behaviour. Olfactory recognition and olfactory inputs to areas of the brain concerned with social reward are downregulated and recognition is based on integration of multimodal sensory cues requiring an expanded neocortex, particularly the association cortex. This emancipation from olfactory and hormonal determinants of bonding has been succeeded by the increased importance of social learning that is necessitated by living in a complex social world and, especially in humans, a world that is dominated by cultural inheritance.
Collapse
Affiliation(s)
| | | | - E.B Keverne
- Sub-Department of Animal Behaviour, University of CambridgeMadingley, Cambridge CB3 8AA, UK
| |
Collapse
|
149
|
Xia J, Sellers LA, Oxley D, Smith T, Emson P, Keverne EB. Urinary pheromones promote ERK/Akt phosphorylation, regeneration and survival of vomeronasal (V2R) neurons. Eur J Neurosci 2006; 24:3333-42. [PMID: 17229082 DOI: 10.1111/j.1460-9568.2006.05244.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The G protein-coupled pheromone receptor neurons (V1R and V2R) of the vomeronasal organ (VNO) are continually replaced throughout the lifetime of the mouse. Moreover, active signalling of V2Rs via the transient receptor potential 2(TRPC2) channel is necessary for regeneration of receptors, as the TRPC2 null mutant mouse showed a 75% reduction of V2Rs by the age of two months. Here we describe V2R mediated signalling in a neuronal line established from vomeronasal stem cells taken from postnatal female mice. Cells were immunoreactive for Galpha(o) and V2R, whereas V1R and Galpha(i) immunoreactivity could not be detected. Biological ligands (dilute urine and its protein fractions) were found to increase proliferation and survival of these neurons. Dilute mouse urine but not artificial urine also induced ERK, Akt and CREB signalling in a dose dependent way. The volatile fraction of male mouse urine alone was without effect while the fraction containing peptides (> 5 kDa) also stimulated ERK and Akt phosphorylation. The ERK, Akt and CREB phosphorylation response was sensitive to pertussis toxin, confirming the involvement of V2R linked Galpha(o). Dilute mouse urine or its high molecular weight protein fraction increased survival and proliferation of these neurons. Hence, urinary pheromones, which signal important social information via mature neurons, also promote survival and proliferation of their regenerating precursors. These data show that regenerating V2Rs respond to urine and the urinary peptides by activation of the Ras-ERK and PI3-Akt pathways, which appear to be important for vomeronasal neural survival and proliferation.
Collapse
Affiliation(s)
- Jing Xia
- Laboratories of Molecular Neuroscience and Protein Technology, The Babraham Institute, Babraham, Cambridge, UK
| | | | | | | | | | | |
Collapse
|
150
|
Leroy B, Toubeau G, Falmagne P, Wattiez R. Identification and characterization of new protein chemoattractants in the frog skin secretome. Mol Cell Proteomics 2006; 5:2114-23. [PMID: 16899539 DOI: 10.1074/mcp.m600205-mcp200] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The vomeronasal organ is a chemosensory organ present in most vertebrates and involved in chemical communication. In the last decade, the deciphering of the signal transduction process of this organ has progressed. However, less is known about the vomeronasal organ ligands and their structure-function relationships. Snakes possess a highly developed vomeronasal system that is used in various behaviors such as mating, predator detection, or prey selection, making this group a suitable model for study of the vomeronasal chemoreception. In this work, we used a proteomics approach to identify and characterize proteins from frog cutaneous mucus proteome involved in prey recognition by snakes of the genus Thamnophis. Herein we report the purification and characterization of two proteins isolated from the frog skin secretome that elicit the vomeronasal organ-mediated predatory behavior of Thamnophis marcianus. These proteins are members of the parvalbumin family, which are calcium-binding proteins generally associated to muscular and nervous tissues. This is the first report that demonstrates parvalbumins are not strictly restricted to intracellular compartments and can also be isolated from exocrine secretions. Purified parvalbumins from frog muscle and mucus revealed identical chemoattractive properties for T. marcianus. Snake bioassay revealed the Ca(2+)/Mg(2+) dependence of the bioactivity of parvalbumins. So parvalbumins appear to be new candidate ligands of the vomeronasal organ.
Collapse
Affiliation(s)
- Baptiste Leroy
- Departments of Proteomics and Protein Biochemistry, University of Mons-Hainaut, Av. du Champs de Mars, 6, B-7000 Mons, Belgium
| | | | | | | |
Collapse
|