101
|
Singh OP, Björkroth B, Masich S, Wieslander L, Daneholt B. The intranuclear movement of Balbiani ring premessenger ribonucleoprotein particles. Exp Cell Res 1999; 251:135-46. [PMID: 10438579 DOI: 10.1006/excr.1999.4490] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Specific premessenger ribonucleoprotein (pre-mRNP) particles, the Balbiani ring (BR) granules in the salivary glands of the dipteran Chironomus tentans, can be visualized in the electron microscope when they assemble on the genes, move through nucleoplasm, and bind to and translocate through the nuclear pores. As shown by BrUTP labeling and immunoelectron microscopy, newly synthesized BR RNP particles, released from the BR genes, appear early in all nucleoplasmic regions of the cell nucleus and they saturate the nucleoplasmic pool of BR particles after 2 h of labelling. It is concluded that within the nucleus the BR particles move randomly. Furthermore, estimates of minimum diffusion coefficients for the BR particles are compatible with the view that the particles diffuse freely in the interchromosomal space, although it is not excluded that the random movement could be slightly retarded. Once the particles get bound to the nuclear pore complexes, they seem committed to translocation through the nuclear pores.
Collapse
Affiliation(s)
- O P Singh
- Medical Nobel Institute, Karolinska Institutet, Stockholm, SE-17177, Sweden
| | | | | | | | | |
Collapse
|
102
|
Wang JP, Enjoji M, Tiebel M, Ochsner S, Chan L, Teng BB. Hammerhead ribozyme cleavage of apolipoprotein B mRNA generates a truncated protein. J Biol Chem 1999; 274:24161-70. [PMID: 10446190 DOI: 10.1074/jbc.274.34.24161] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Target substrate-specific hammerhead ribozyme cleaves the specific mRNA and results in the inhibition of gene expression. In humans, overproduction of apolipoprotein B (apoB) is positively associated with premature coronary artery diseases. To modulate apoB gene expression, we designed hammerhead ribozymes targeted at AUA(6665) and GUA(6679) of apoB mRNA, designated RB16 and RB15, respectively, and investigated their effects on apoB mRNA in HepG2 cells. The results demonstrated that RB15 and RB16 ribozyme RNAs cleaved apoB RNA efficiently in vitro. Both ribozymes, RB15 and RB16, were used to construct recombinant adenoviral vectors, designated AvRB15 and AvRB16, respectively, for in vivo gene transfer. HepG2 cells were infected with 2 x 10(5) plaque-forming units of AvRB15 for 5, 10, 15, and 24 h. An RNase protection assay showed that the expression of the RB15 transcript was time-dependent; it increased approximately 300-fold from 5 to 24 h. Using reverse ligation-mediated polymerase chain reaction, the 3' cleavage product of apoB mRNA was detected, and the exact cleavage site of apoB mRNA was confirmed by sequencing. Importantly, the levels of apoB mRNA in HepG2 cells decreased approximately 80% after AvRB15 infection. Pulse/chase experiments on HepG2 cells treated with AvRB15 and AvRB16 demonstrated that ribozyme cleavage produced a truncated protein that was secreted at a density of 1. 063-1.210 g/ml. The cleavage activity of RB15 on apoB mRNA was more efficient than that of RB16. Moreover, pulse/chase experiments in HepG2 cells treated with AvRB15 revealed that most of the truncated apoB protein was degraded intracellularly. We conclude that hammerhead ribozyme targeted at GUA(6679) of apoB mRNA cleaves apoB mRNA, results in decreased apoB mRNA levels, and generates a truncated apoB of the expected size in vivo. Thus, the therapeutic application of ribozyme in regulating apoB production holds promise.
Collapse
Affiliation(s)
- J P Wang
- Departments of Medicine and Cell Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | | | | | |
Collapse
|
103
|
Gross SD, Loijens JC, Anderson RA. The casein kinase Ialpha isoform is both physically positioned and functionally competent to regulate multiple events of mRNA metabolism. J Cell Sci 1999; 112 ( Pt 16):2647-56. [PMID: 10413673 DOI: 10.1242/jcs.112.16.2647] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Casein kinase I is a highly conserved family of serine/threonine protein kinases present in every organism tested from yeast to humans. To date, little is known about the function of the higher eukaryotic isoforms in this family. The CKI isoforms in Saccharomyces cerevisiae, however, have been genetically linked to the regulation of DNA repair, cell cycle progression and cytokinesis. It has also been established that the nuclear localization of two of these isoforms is essential for their function. The work presented here demonstrates that the higher eukaryotic CKIalpha isoform is also present within nuclei of certain established cell lines and associated with discrete nuclear structures. The nature of its nuclear localization was characterized. In this regard, CKIalpha was shown to colocalize with factors involved in pre-mRNA splicing at nuclear speckles and that its association with these structures exhibited several biochemical properties in common with known splicing factors. The kinase was also shown to be associated with a complex that contained certain splicing factors. Finally, in vitro, CKIalpha was shown to be capable of phosphorylating particular splicing factors within a region rich in serine/arginine dipeptide repeat motifs suggesting that it has both the opportunity and the capacity to regulate one or more steps of mRNA metabolism.
Collapse
Affiliation(s)
- S D Gross
- Department of Pharmacology, University of Wisconsin Medical School, Madison, WI, USA
| | | | | |
Collapse
|
104
|
Wei X, Somanathan S, Samarabandu J, Berezney R. Three-dimensional visualization of transcription sites and their association with splicing factor-rich nuclear speckles. J Cell Biol 1999; 146:543-58. [PMID: 10444064 PMCID: PMC2150559 DOI: 10.1083/jcb.146.3.543] [Citation(s) in RCA: 131] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/1998] [Accepted: 06/25/1999] [Indexed: 11/22/2022] Open
Abstract
Transcription sites are detected by labeling nascent transcripts with BrUTP in permeabilized 3T3 mouse fibroblasts followed by laser scanning confocal microscopy. Inhibition and enzyme digestion studies confirm that the labeled sites are from RNA transcripts and that RNA polymerase I (RP I) and II (RP II) are responsible for nucleolar and extranucleolar transcription, respectively. An average of 2,000 sites are detected per nucleus with over 90% in the extranucleolar compartment where they are arranged in clusters and three-dimensional networklike arrays. The number of transcription sites, their three-dimensional organization and arrangement into functional zones (Wei et al. 1998) is strikingly maintained after extraction for nuclear matrix. Significant levels of total RP II mediated transcription sites (45%) were associated with splicing factor-rich nuclear speckles even though the speckles occupied <10% of the total extranucleolar space. Moreover, the vast majority of nuclear speckles (>90%) had moderate to high levels of associated transcription activity. Transcription sites were found along the periphery as well as inside the speckles themselves. These spatial relations were confirmed in optical sections through individual speckles and after in vivo labeling of nascent transcripts. Our results demonstrate that nuclear speckles and their surrounding regions are major sites of RP II-mediated transcription in the cell nucleus, and support the view that both speckle- and nonspeckle-associated regions of the nucleus contain sites for the coordination of transcription and splicing processes.
Collapse
Affiliation(s)
- Xiangyun Wei
- Department of Biological Sciences, State University of New York at Buffalo, Buffalo, New York 14260
| | - Suryanarayan Somanathan
- Department of Biological Sciences, State University of New York at Buffalo, Buffalo, New York 14260
| | - Jagath Samarabandu
- Department of Biological Sciences, State University of New York at Buffalo, Buffalo, New York 14260
| | - Ronald Berezney
- Department of Biological Sciences, State University of New York at Buffalo, Buffalo, New York 14260
| |
Collapse
|
105
|
Cramer P, Cáceres JF, Cazalla D, Kadener S, Muro AF, Baralle FE, Kornblihtt AR. Coupling of transcription with alternative splicing: RNA pol II promoters modulate SF2/ASF and 9G8 effects on an exonic splicing enhancer. Mol Cell 1999; 4:251-8. [PMID: 10488340 DOI: 10.1016/s1097-2765(00)80372-x] [Citation(s) in RCA: 251] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Alternative mRNA splicing of the fibronectin EDI exon is controlled by a purine-rich exonic splicing enhancer (ESE), postulated as a binding site for SR proteins. By using a transient expression alternative splicing assay combined with promoter swapping, we have demonstrated that the promoter can also control EDI splicing, arguing for coupling between the transcription and splicing machineries. We now report that the SR proteins SF2/ASF and 9G8 stimulate EDI splicing in vivo and that their effect requires an intact EDI ESE. Most importantly, we show that sensitivity to these SR proteins critically depends on the promoter structure, suggesting that the transcription machinery modulates their recruitment to the ESE.
Collapse
Affiliation(s)
- P Cramer
- Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Argentina
| | | | | | | | | | | | | |
Collapse
|
106
|
Jolly C, Vourc'h C, Robert-Nicoud M, Morimoto RI. Intron-independent association of splicing factors with active genes. J Cell Biol 1999; 145:1133-43. [PMID: 10366587 PMCID: PMC2133154 DOI: 10.1083/jcb.145.6.1133] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/1998] [Revised: 03/31/1999] [Indexed: 11/22/2022] Open
Abstract
The cell nucleus is organized as discrete domains, often associated with specific events involved in chromosome organization, replication, and gene expression. We have examined the spatial and functional relationship between the sites of heat shock gene transcription and the speckles enriched in splicing factors in primary human fibroblasts by combining immunofluorescence and fluorescence in situ hybridization (FISH). The hsp90alpha and hsp70 genes are inducibly regulated by exposure to stress from a low basal level to a high rate of transcription; additionally the hsp90alpha gene contains 10 introns whereas the hsp70 gene is intronless. At 37 degrees C, only 30% of hsp90alpha transcription sites are associated with speckles whereas little association is detected with the hsp70 gene, whose constitutive expression is undetectable relative to the hsp90alpha gene. Upon exposure of cells to heat shock, the heavy metal cadmium, or the amino acid analogue azetidine, transcription at the hsp90alpha and hsp70 gene loci is strongly induced, and both hsp transcription sites become associated with speckles in >90% of the cells. These results reveal a clear disconnection between the presence of intervening sequences at specific gene loci and the association with splicing factor-rich regions and suggest that subnuclear structures containing splicing factors are associated with sites of transcription.
Collapse
Affiliation(s)
- C Jolly
- Department of Biochemistry, Molecular Biology, and Cell Biology, Northwestern University, Evanston, Illinois 60208, USA.
| | | | | | | |
Collapse
|
107
|
Abstract
The interphase nucleus is a topologically ordered, three-dimensional structure. While it remains unclear whether this structural organization also represents compartmentalization of function, the presence of the latter would likely be reflected in the spatial coupling of molecular factors involved in related events. This review summarizes morphological evidence, derived from in situ experiments, which indicates the existence of compartmentalization of both chromatin and non-chromatin components in the interphase nucleus. Moreover, the review addresses the spatial relationships of these components relative to each other and correlates these spatial relationships with such nuclear functions as transcription, splicing and nucleo-cytoplasmic transport of pre-mRNA. Given that it is increasingly recognized that such spatial relationships are dynamic, the review also addresses the emerging concept that the spatial intranuclear organization changes with changes in cell function, a concept which supports the hypothesis that the spatial organization of the interphase nucleus may represent one of the fundamental control mechanisms in gene expression.
Collapse
Affiliation(s)
- P C Park
- Department of Physiology, Faculty of Medicine, University of Toronto, ON, Canada
| | | |
Collapse
|
108
|
Stein GS, van Wijnen AJ, Stein JL, Lian JB, Pockwinse SH, McNeil S. Implications for interrelationships between nuclear architecture and control of gene expression under microgravity conditions. FASEB J 1999; 13 Suppl:S157-66. [PMID: 10352158 DOI: 10.1096/fasebj.13.9001.s157] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Components of nuclear architecture are functionally interrelated with control of gene expression. There is growing appreciation that multiple levels of nuclear organization integrate the regulatory cues that support activation and suppression of genes as well as the processing of gene transcripts. The linear representation of genes and promoter elements provide the potential for responsiveness to physiological regulatory signals. Parameters of chromatin structure and nucleosome organization support synergism between activities at independent regulatory sequences and render promoter elements accessible or refractory to transcription factors. Association of genes, transcription factors, and the machinery for transcript processing with the nuclear matrix facilitates fidelity of gene expression within the three-dimensional context of nuclear architecture. Mechanisms must be defined that couple nuclear morphology with enzymatic parameters of gene expression. The recent characterization of factors that mediate chromatin remodeling and identification of intranuclear targeting signals that direct transcription factors to subnuclear domains where gene expression occurs link genetic and structural components of transcriptional control. Nuclear reorganization and aberrant intranuclear trafficking of transcription factors for developmental and tissue-specific control occurs in tumor cells and in neurological disorders. Compromises in nuclear structure-function interrelationships can occur as a consequence of microgravity-mediated perturbations in cellular architecture.
Collapse
Affiliation(s)
- G S Stein
- Department of Cell Biology and Cancer Center, University of Massachusetts Medical Center, Worcester, Massachusetts, USA.
| | | | | | | | | | | |
Collapse
|
109
|
Abstract
It has been difficult to establish whether pre-messenger ribonucleoprotein (pre-mRNP) particles move from the gene towards the periphery of the nucleus in a directed or random manner. Two recent in vivo studies indicate that most pre-mRNP particles move randomly in the nucleus, apparently by free diffusion.
Collapse
Affiliation(s)
- B Daneholt
- Department of Cell and Molecular Biology, Medical Nobel Institute, Karolinska Institute, SE-17177 Stockholm, Sweden.
| |
Collapse
|
110
|
Szeles A, Falk KI, Imreh S, Klein G. Visualization of alternative Epstein-Barr virus expression programs by fluorescent in situ hybridization at the cell level. J Virol 1999; 73:5064-9. [PMID: 10233969 PMCID: PMC112551 DOI: 10.1128/jvi.73.6.5064-5069.1999] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Epstein-Barr virus (EBV) transforms human B lymphocytes into immortalized lymphoblastoid cell lines (LCLs). They regularly express six virally encoded nuclear proteins (EBNA1 to EBNA6) and three membrane proteins (LMP1, LMP2A, and LMP2B). In contrast, EBV-carrying Burkitt lymphoma (BL) cells in vivo and derived type I cell lines that maintain the BL phenotype express only EBNA1. During prolonged in vitro culturing, most EBV-carrying BL lines drift toward a more immunoblastic (type II or III) phenotype. Their viral antigen expression is upregulated in parallel. We have used fluorescent in situ hybridization to visualize viral transcripts in type I and III BL lines and LCLs. In type I cells, EBNA1 is encoded by a monocistronic message that originates from the Qp promoter. In type III cells, the EBNA1 transcript is spliced from a giant polycistronic message that originates from one of several alternative Wp or Cp promoters and encodes all six EBNAs. We have obtained a "track" signal with a BamHI W DNA probe that could hybridize with the polycistronic but not with the monocistronic message in two type III BL lines (Namalwa-Cl8 and MUTU III) and three LCLs (LCL IB4-D, LCL-970402, and IARC-171). A BamHI K probe that can hybridize to both the monocistronic and the polycistronic message visualized the same pattern in the type III BLs and the LCLs as the BamHI W probe. A positive signal was obtained with the BamHI K but not the BamHI W probe in the type I BL lines MUTU I and Rael. The RNA track method can thus distinguish between cells that use a type III and those that use a type I program. The former cells hybridize with both the W and the K probes, but the latter cells hybridize with only the K probe. Our findings may open the way for studies of the important but still unanswered question of whether cells with type I latency arise from immunoblasts with a full type III program or are generated by a separate pathway during primary infection.
Collapse
Affiliation(s)
- A Szeles
- Microbiology and Tumor Biology Center, Karolinska Institute, Stockholm, Sweden
| | | | | | | |
Collapse
|
111
|
Custódio N, Carmo-Fonseca M, Geraghty F, Pereira HS, Grosveld F, Antoniou M. Inefficient processing impairs release of RNA from the site of transcription. EMBO J 1999; 18:2855-66. [PMID: 10329631 PMCID: PMC1171366 DOI: 10.1093/emboj/18.10.2855] [Citation(s) in RCA: 171] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We describe here for the first time the site of retention within the nucleus of pre-mRNA processing mutants unable to be exported to the cytoplasm. Fluorescence in situ hybridization was used to detect transcripts from human beta-globin genes that are either normal or defective in splicing or 3' end formation. Nuclear transcripts of both wild-type and mutant RNAs are detected only as intranuclear foci that colocalize with the template gene locus. The kinetics of transcript release from the site of transcription was assessed by treatment of cells with the transcriptional inhibitors actinomycin D, alpha-amanitin and DRB. These drugs induce the rapid disappearance of nuclear foci corresponding to wild-type human beta-globin RNA. In contrast, pre-mRNA mutants defective in either splicing or 3' end formation and which fail to be transported to the cytoplasm, are retained at the site of transcription. Therefore, 3' end processing and splicing appear to be rate limiting for release of mRNA from the site of transcription.
Collapse
Affiliation(s)
- N Custódio
- Institute of Histology and Embryology, Faculty of Medicine, University of Lisbon, 1699 Lisbon codex, Portugal
| | | | | | | | | | | |
Collapse
|
112
|
Yeakley JM, Tronchère H, Olesen J, Dyck JA, Wang HY, Fu XD. Phosphorylation regulates in vivo interaction and molecular targeting of serine/arginine-rich pre-mRNA splicing factors. J Cell Biol 1999; 145:447-55. [PMID: 10225947 PMCID: PMC2185075 DOI: 10.1083/jcb.145.3.447] [Citation(s) in RCA: 118] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/1998] [Revised: 03/17/1999] [Indexed: 12/03/2022] Open
Abstract
The SR superfamily of splicing factors and regulators is characterized by arginine/serine (RS)-rich domains, which are extensively modified by phosphorylation in cells. In vitro binding studies revealed that RS domain-mediated protein interactions can be differentially affected by phosphorylation. Taking advantage of the single nonessential SR protein-specific kinase Sky1p in Saccharomyces cerevisiae, we investigated RS domain interactions in vivo using the two-hybrid assay. Strikingly, all RS domain-mediated interactions were abolished by SKY1 deletion and were rescuable by yeast or mammalian SR protein-specific kinases, indicating that phosphorylation has a far greater impact on RS domain interactions in vivo than in vitro. To understand this dramatic effect, we examined the localization of SR proteins and found that SC35 was shifted to the cytoplasm in sky1Delta yeast, although this phenomenon was not obvious with ASF/SF2, indicating that nuclear import of SR proteins may be differentially regulated by phosphorylation. Using a transcriptional repression assay, we further showed that most LexA-SR fusion proteins depend on Sky1p to efficiently recognize the LexA binding site in a reporter, suggesting that molecular targeting of RS domain-containing proteins within the nucleus was also affected. Together, these results reveal multiple phosphorylation-dependent steps for SR proteins to interact with one another efficiently and specifically, which may ultimately determine the splicing activity and specificity of these factors in mammalian cells.
Collapse
Affiliation(s)
- J M Yeakley
- Division of Cellular and Molecular Medicine, Department and School of Medicine, University of California, San Diego, La Jolla, California 92093-0651, USA
| | | | | | | | | | | |
Collapse
|
113
|
Strambio-de-Castillia C, Blobel G, Rout MP. Proteins connecting the nuclear pore complex with the nuclear interior. J Cell Biol 1999; 144:839-55. [PMID: 10085285 PMCID: PMC2148185 DOI: 10.1083/jcb.144.5.839] [Citation(s) in RCA: 174] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
While much has been learned in recent years about the movement of soluble transport factors across the nuclear pore complex (NPC), comparatively little is known about intranuclear trafficking. We isolated the previously identified Saccharomyces protein Mlp1p (myosin-like protein) by an assay designed to find nuclear envelope (NE) associated proteins that are not nucleoporins. We localized both Mlp1p and a closely related protein that we termed Mlp2p to filamentous structures stretching from the nucleoplasmic face of the NE into the nucleoplasm, similar to the homologous vertebrate and Drosophila Tpr proteins. Mlp1p can be imported into the nucleus by virtue of a nuclear localization sequence (NLS) within its COOH-terminal domain. Overexpression experiments indicate that Mlp1p can form large structures within the nucleus which exclude chromatin but appear highly permeable to proteins. Remarkably, cells harboring a double deletion of MLP1 and MLP2 were viable, although they showed a slower net rate of active nuclear import and faster passive efflux of a reporter protein. Our data indicate that the Tpr homologues are not merely NPC-associated proteins but that they can be part of NPC-independent, peripheral intranuclear structures. In addition, we suggest that the Tpr filaments could provide chromatin-free conduits or tracks to guide the efficient translocation of macromolecules between the nucleoplasm and the NPC.
Collapse
Affiliation(s)
- C Strambio-de-Castillia
- Laboratory of Cellular and Structural Biology, The Rockefeller University, New York, New York 10021, USA
| | | | | |
Collapse
|
114
|
|
115
|
Smith KP, Moen PT, Wydner KL, Coleman JR, Lawrence JB. Processing of endogenous pre-mRNAs in association with SC-35 domains is gene specific. J Biophys Biochem Cytol 1999; 144:617-29. [PMID: 10037785 PMCID: PMC2132926 DOI: 10.1083/jcb.144.4.617] [Citation(s) in RCA: 155] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Analysis of six endogenous pre-mRNAs demonstrates that localization at the periphery or within splicing factor-rich (SC-35) domains is not restricted to a few unusually abundant pre-mRNAs, but is apparently a more common paradigm of many protein-coding genes. Different genes are preferentially transcribed and their RNAs processed in different compartments relative to SC-35 domains. These differences do not simply correlate with the complexity, nuclear abundance, or position within overall nuclear space. The distribution of spliceosome assembly factor SC-35 did not simply mirror the distribution of individual pre-mRNAs, but rather suggested that individual domains contain both specific pre-mRNA(s) as well as excess splicing factors. This is consistent with a multifunctional compartment, to which some gene loci and their RNAs have access and others do not. Despite similar molar abundance in muscle fiber nuclei, nascent transcript "trees" of highly complex dystrophin RNA are cotranscriptionally spliced outside of SC-35 domains, whereas posttranscriptional "tracks" of more mature myosin heavy chain transcripts overlap domains. Further analyses supported that endogenous pre-mRNAs exhibit distinct structural organization that may reflect not only the expression and complexity of the gene, but also constraints of its chromosomal context and kinetics of its RNA metabolism.
Collapse
Affiliation(s)
- K P Smith
- Department of Cell Biology, University of Massachusetts Medical School, Worcester, Massachusetts 01655, USA
| | | | | | | | | |
Collapse
|
116
|
Lian JB, Stein GS, Stein JL, van Wijnen AJ. Regulated expression of the bone-specific osteocalcin gene by vitamins and hormones. VITAMINS AND HORMONES 1999; 55:443-509. [PMID: 9949687 DOI: 10.1016/s0083-6729(08)60941-3] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- J B Lian
- Department of Cell Biology, University of Massachusetts Medical Center, Worcester 01655, USA
| | | | | | | |
Collapse
|
117
|
Snaar SP, Vincent M, Dirks RW. RNA polymerase II localizes at sites of human cytomegalovirus immediate-early RNA synthesis and processing. J Histochem Cytochem 1999; 47:245-54. [PMID: 9889260 DOI: 10.1177/002215549904700213] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Pre-mRNA synthesis in eukaryotic cells is preceded by the formation of a transcription initiation complex and binding of unphosphorylated RNA polymerase II (Pol II) at the promoter region of a gene. Transcription initiation and elongation are accompanied by the hyperphosphorylation of the carboxy-terminal domain (CTD) of Pol II large subunit. Recent biochemical studies provided evidence that RNA processing factors, including those required for splicing, associate with hyperphosphorylated CTDs forming "transcription factories." To directly visualize the existence of such factories, we simultaneously detected human cytomegalovirus immediate-early (IE) DNA and RNA with splicing factors and Pol II in rat 9G cells inducible for IE gene expression. Combined in situ hybridization and immunocytochemistry revealed that, after induction, both splicing factors and Pol II are present at the sites of IE mRNA synthesis and of IE mRNA processing that extend from the transcribing gene. Noninduced cells revealed no such associations. When IE mRNA-synthesizing cells were treated with a transcription inhibitor, these associations disappeared within 30 min. Our results show that the association of Pol II and splicing factors with IE DNA is dependent on its transcriptional activity and furthermore suggest that splicing factors are still associated with Pol II during active splicing.
Collapse
Affiliation(s)
- S P Snaar
- Department of Molecular Cell Biology, Laboratory for Cytochemistry and Cytometry, Leiden University Medical Centre, Leiden, The Netherlands
| | | | | |
Collapse
|
118
|
Swindle CS, Zou N, Van Tine BA, Shaw GM, Engler JA, Chow LT. Human papillomavirus DNA replication compartments in a transient DNA replication system. J Virol 1999; 73:1001-9. [PMID: 9882301 PMCID: PMC103920 DOI: 10.1128/jvi.73.2.1001-1009.1999] [Citation(s) in RCA: 101] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/1998] [Accepted: 10/28/1998] [Indexed: 01/12/2023] Open
Abstract
Many DNA viruses replicate their genomes at nuclear foci in infected cells. Using indirect immunofluorescence in combination with fluorescence in situ hybridization, we colocalized the human papillomavirus (HPV) replicating proteins E1 and E2 and the replicating origin-containing plasmid to nuclear foci in transiently transfected cells. The host replication protein A (RP-A) was also colocalized to these foci. These nuclear structures were identified as active sites of viral DNA synthesis by bromodeoxyuridine (BrdU) pulse-labeling. Unexpectedly, the great majority of RP-A and BrdU incorporation was found in these HPV replication domains. Furthermore, E1, E2, and RP-A were also colocalized to nuclear foci in the absence of an origin-containing plasmid. These observations suggest a spatial reorganization of the host DNA replication machinery upon HPV DNA replication or E1 and E2 expression. Alternatively, viral DNA replication might be targeted to host nuclear domains that are active during the late S phase, when such domains are limited in number. In a fraction of cells expressing E1 and E2, the promyelocytic leukemia protein, a component of nuclear domain 10 (ND10), was either partially or completely colocalized with E1 and E2. Since ND10 structures were recently hypothesized to be sites of bovine papillomavirus virion assembly, our observation suggests that HPV DNA amplification might be partially coupled to virion assembly.
Collapse
Affiliation(s)
- C S Swindle
- Departments of Biochemistry and Molecular Genetics, Schools of Medicine and Dentistry, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | | | | | | | | | | |
Collapse
|
119
|
Ge H, Si Y, Wolffe AP. A novel transcriptional coactivator, p52, functionally interacts with the essential splicing factor ASF/SF2. Mol Cell 1999; 2:751-9. [PMID: 9885563 DOI: 10.1016/s1097-2765(00)80290-7] [Citation(s) in RCA: 112] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Increasing evidence suggests that pre-mRNA splicing can take place cotranscriptionally in vivo. However, insight into how these two processes are linked has been lacking. Here, we describe that a novel transcriptional coactivator, p52, interacts not only with transcriptional activators and general transcription factors to enhance activated transcription but also with the essential splicing factor ASF/SF2 both in vitro and in vivo to modulate ASF/SF2-mediated pre-mRNA splicing. Furthermore, immunofluorescence studies indicate that the majority of endogenous p52 is colocalized with ASF/SF2 in the nucleoplasm of HeLa cells. Together, these observations suggest that, in addition to functioning as a transcriptional coactivator, p52 may also act as an adaptor to coordinate pre-mRNA splicing and transcriptional activation of class II genes.
Collapse
Affiliation(s)
- H Ge
- Laboratory of Molecular Embryology, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA.
| | | | | |
Collapse
|
120
|
Abstract
In the cell nucleus first large pre-mRNAs are synthesized which contain protein coding as well as non-coding sequences. The latter are removed in a process called splicing which takes place in nuclear spliceosomes. These spliceosomes consist among others of protein factors, such as the splicing factor SC35 being abundant in speckled regions of the cell nucleus. This study aims at determining immunostaining patterns using anti-SC35 in sections of the human fetal prosencephalon and cultured human astrocytes. Within the allocortical entorhinal region of the fifth gestational month the number, size and distribution of SC35-positive speckles varies considerably among the laminae which can, thus, clearly be delineated. The immature isocortical plate, however, does not display a laminar arrangement at this developmental stage. Differential immunostaining patterns can be seen in subcortical areas. Cultured human astrocytes reveal numerous speckles occupying a large portion of the nucleoplasm. On account of the SC35-immunostaining patterns no distinction of subpopulations of astrocytes is possible. The results demonstrate that SC35-immunoreactive speckles show lamina and area-specific characteristics of human fetal brain sections. Conspicuous differences in number, size and distribution of speckles are visible in different cytoarchitectonic structures; thus, architectonic borders stand out clearly in SC35-immunopreparations. The occurrence of area-specific immunolabelling of nuclear speckle domains reflects neuronal differentiation at the pre-translational level. It may be assumed that a distinct set of proteins, generated by a definite nerve cell type, can be correlated with a distinct morphology of spliceosomes. The in vitro finding indicates that anti-SC35 may well be used as a tool to study possible alterations of the speckles after, for instance, application of growth factors.
Collapse
Affiliation(s)
- N Ulfig
- Department of Anatomy, University of Rostock, Germany.
| | | |
Collapse
|
121
|
Séguin B, Staffa A, Cochrane A. Control of human immunodeficiency virus type 1 RNA metabolism: role of splice sites and intron sequences in unspliced viral RNA subcellular distribution. J Virol 1998; 72:9503-13. [PMID: 9811683 PMCID: PMC110448 DOI: 10.1128/jvi.72.12.9503-9513.1998] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In the course of examining the various factors which affect the metabolism of human immunodeficiency virus type 1 (HIV-1) RNA, we examined the role of intron sequences and splice sites in determining the subcellular distribution of the RNA. Using in situ hybridization, we demonstrated that in the absence of Rev, unspliced RNA generated with an HIV-1 env expression construct displayed discrete localization in the nucleus, coincident with the location of the gene and not associated with SC35-containing nuclear speckles. Expression of Rev resulted in a disperse signal for the unspliced RNA throughout both the nucleus and the cytoplasm. Subsequent fractionation of the nucleus revealed that the majority of unspliced viral RNA within the nucleus is associated with the nuclear matrix and that upon expression of Rev, a small proportion of the unspliced RNA is found within the nucleoplasm. Mutations which altered splice site utilization did not alter the sequestration of unspliced RNA into discrete nuclear regions. In contrast, a 2.2-kb deletion of intron sequence resulted in a shift from discrete regions within the nucleus to a disperse signal throughout the cell, indicating that intron sequences, and not just splice sites, are required for the observed nuclear sequestration of unspliced viral RNA.
Collapse
Affiliation(s)
- B Séguin
- Department of Molecular and Medical Genetics, University of Toronto, Toronto, Ontario, M5S 1 A8, Canada
| | | | | |
Collapse
|
122
|
Abstract
Studies of the budding yeast Saccharomyces cerevisiae have greatly advanced our understanding of the posttranscriptional steps of eukaryotic gene expression. Given the wide range of experimental tools applicable to S. cerevisiae and the recent determination of its complete genomic sequence, many of the key challenges of the posttranscriptional control field can be tackled particularly effectively by using this organism. This article reviews the current knowledge of the cellular components and mechanisms related to translation and mRNA decay, with the emphasis on the molecular basis for rate control and gene regulation. Recent progress in characterizing translation factors and their protein-protein and RNA-protein interactions has been rapid. Against the background of a growing body of structural information, the review discusses the thermodynamic and kinetic principles that govern the translation process. As in prokaryotic systems, translational initiation is a key point of control. Modulation of the activities of translational initiation factors imposes global regulation in the cell, while structural features of particular 5' untranslated regions, such as upstream open reading frames and effector binding sites, allow for gene-specific regulation. Recent data have revealed many new details of the molecular mechanisms involved while providing insight into the functional overlaps and molecular networking that are apparently a key feature of evolving cellular systems. An overall picture of the mechanisms governing mRNA decay has only very recently begun to develop. The latest work has revealed new information about the mRNA decay pathways, the components of the mRNA degradation machinery, and the way in which these might relate to the translation apparatus. Overall, major challenges still to be addressed include the task of relating principles of posttranscriptional control to cellular compartmentalization and polysome structure and the role of molecular channelling in these highly complex expression systems.
Collapse
Affiliation(s)
- J E McCarthy
- Posttranscriptional Control Group, Department of Biomolecular Sciences, University of Manchester Institute of Science and Technology (UMIST), Manchester M60 1QD, United Kingdom.
| |
Collapse
|
123
|
Aspegren A, Rabino C, Bridge E. Organization of splicing factors in adenovirus-infected cells reflects changes in gene expression during the early to late phase transition. Exp Cell Res 1998; 245:203-13. [PMID: 9828117 DOI: 10.1006/excr.1998.4264] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The spatial distribution of splicing factors is temporally regulated during adenovirus (ad) infection. Here we focus on two splicing factor distribution patterns characteristic of ad-infected cells. During the intermediate phase splicing factors surround sites of viral DNA accumulation in regions of high transcriptional activity. This distribution appears as a series of interconnected rings when viewed by microscopy. We refer to cells with this staining pattern as "ring cells." We have previously shown that at late times after infection, splicing factors are present in discrete structures identified as enlarged interchromatin granules (IGs) that also contain spliced viral RNA. We refer to cells with this pattern as "cluster cells." We determined which steps in viral gene expression occurred in ring and cluster cells. We found that transcription and some splicing of viral late genes had occurred in ring cells. Late RNA was present at transcription sites in ring cells. Cluster cells contained spliced viral late RNA in nuclear IGs and in the cytoplasm. The presence of cluster cells in the infected culture was well correlated with the export of viral RNA to the cytoplasm. Cluster cells had synthesized late proteins. Our data show that the dynamic localization of splicing factors reflects changes in gene expression activity of the infected cell as it switches over to late gene expression.
Collapse
Affiliation(s)
- A Aspegren
- Biomedical Center, Uppsala University, Uppsala, S-75123, Sweden
| | | | | |
Collapse
|
124
|
Keesee SK, Marchese J, Meneses A, Potz D, Garcia-Cuellar C, Szaro RP, Solorza G, Osornio-Vargas A, Mohar A, de la Garza JG, Wu YJ. Human cervical cancer-associated nuclear matrix proteins. Exp Cell Res 1998; 244:14-25. [PMID: 9770344 DOI: 10.1006/excr.1998.4202] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The nuclear matrix is the nonchromatin protein structural component of the nucleus that governs nuclear shape and also exerts regulatory control over higher order gene organization. Recent studies have documented the presence of tumor-associated nuclear matrix proteins in several human cancers. We used high-resolution two-dimensional gel electrophoresis to compare nuclear matrix protein patterns in cervical carcinomas with those from normal cervical tissue. Tumors obtained from 20 patients undergoing hysterectomy for clinically localized cervical cancer were compared with normal cervical tissue. We have identified five polypeptides (CvC-1: Mr = 69,408 Da, pI = 5. 78; CvC-2: Mr = 53,752 Da, pI = 5.54; CvC-3: Mr = 47,887 Da, pI = 5. 60; CvC-4: Mr = 46,006 Da, pI = 5.07; and CvC-5: Mr = 44,864 Da, pI = 6.61) in the nuclear matrix from cervical carcinomas that were present in 20 of 20 cervical tumors but 0 of 10 normal tissues. These data extend similar findings of cancer-associated nuclear matrix proteins in other human cancers and suggest that nuclear matrix proteins may represent a new class of cancer markers that could aid the diagnosis or management of some types of cancer.
Collapse
Affiliation(s)
- S K Keesee
- Matritech, Inc., 330 Nevada Street, Newton, Massachusetts, 02160, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
125
|
Wei X, Samarabandu J, Devdhar RS, Siegel AJ, Acharya R, Berezney R. Segregation of transcription and replication sites into higher order domains. Science 1998; 281:1502-6. [PMID: 9727975 DOI: 10.1126/science.281.5382.1502] [Citation(s) in RCA: 183] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Microscopy shows that individual sites of DNA replication and transcription of mammalian nuclei segregate into sets of roughly 22 and 16 higher order domains, respectively. Each domain set displayed a distinct network-like appearance, including regions of individual domains and interdigitation of domains between the two networks. These data support a dynamic mosaic model for the higher order arrangement of genomic function inside the cell nuclei.
Collapse
Affiliation(s)
- X Wei
- Department of Biological Sciences, State University of New York at Buffalo, Buffalo, NY 14260, USA
| | | | | | | | | | | |
Collapse
|
126
|
Hendzel MJ, Kruhlak MJ, Bazett-Jones DP. Organization of highly acetylated chromatin around sites of heterogeneous nuclear RNA accumulation. Mol Biol Cell 1998; 9:2491-507. [PMID: 9725908 PMCID: PMC25517 DOI: 10.1091/mbc.9.9.2491] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Histones found within transcriptionally competent and active regions of the genome are highly acetylated. Moreover, these highly acetylated histones have very short half-lives. Thus, both histone acetyltransferases and histone deacetylases must enrich within or near these euchromatic regions of the interphase chromatids. Using an antibody specific for highly acetylated histone H3, we have investigated the organization of transcriptionally active and competent chromatin as well as nuclear histone acetyltransferase and deacetylase activities. We observe an exclusion of highly acetylated chromatin around the periphery of the nucleus and an enrichment near interchromatin granule clusters (IGCs). The highly acetylated chromatin is found in foci that may reflect the organization of highly acetylated chromatin into "chromonema" fibers. Transmission electron microscopy of Indian muntjac fibroblast cell nuclei indicates that the chromatin associated with the periphery of IGCs remains relatively condensed, most commonly found in domains containing chromatin folded beyond 30 nm. Using electron spectroscopic imaging, we demonstrate that IGCs are clusters of ribonucleoprotein particles. The individual granules comprise RNA-rich fibrils or globular regions that fold into individual granules. Quantitative analysis of individual granules indicates that they contain variable amounts of RNA estimated between 1.5 and >10 kb. We propose that interchromatin granules are heterogeneous nuclear RNA-containing particles, some of which may be pre-mRNA generated by nearby transcribed chromatin. An intermediary zone between the IGC and surrounding chromatin is described that contains factors with the potential to provide specificity to the localization of sequences near IGCs.
Collapse
Affiliation(s)
- M J Hendzel
- Departments of Anatomy and Medical Biochemistry, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada T2N 4N1
| | | | | |
Collapse
|
127
|
Abstract
It is becoming clear that the cell nucleus is not only organized in domains but that these domains are also organized relative to each other and to the genome. Specific nuclear domains, enriched in different proteins and RNAs, are often found next to each other and next to specific gene loci. Several lines of investigation suggest that nuclear domains are involved in facilitating or regulating gene expression. The emerging view is that the spatial relationship between different domains and genes on different chromosomes, as found in the nucleolus, is a common organizational principle in the nucleus, to allow an efficient and controlled synthesis and processing of a range of gene transcripts.
Collapse
Affiliation(s)
- W Schul
- E.C. Slater Instituut, University of Amsterdam, BioCentrum Amsterdam, The Netherlands
| | | | | |
Collapse
|
128
|
Stein GS, van Wijnen AJ, Stein JL, Lian JB, Pockwinse S, McNeil S. Interrelationships of nuclear structure and transcriptional control: Functional consequences of being in the right place at the right time. J Cell Biochem 1998. [DOI: 10.1002/(sici)1097-4644(19980801)70:2<200::aid-jcb6>3.0.co;2-s] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
129
|
Clemson CM, Chow JC, Brown CJ, Lawrence JB. Stabilization and localization of Xist RNA are controlled by separate mechanisms and are not sufficient for X inactivation. J Cell Biol 1998; 142:13-23. [PMID: 9660859 PMCID: PMC2133021 DOI: 10.1083/jcb.142.1.13] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/1997] [Revised: 05/04/1998] [Indexed: 02/08/2023] Open
Abstract
These studies address whether XIST RNA is properly localized to the X chromosome in somatic cells where human XIST expression is reactivated, but fails to result in X inactivation (Tinker, A.V., and C.J. Brown. 1998. Nucl. Acids Res. 26:2935-2940). Despite a nuclear RNA accumulation of normal abundance and stability, XIST RNA does not localize in reactivants or in naturally inactive human X chromosomes in mouse/ human hybrid cells. The XIST transcripts are fully stabilized despite their inability to localize, and hence XIST RNA localization can be uncoupled from stabilization, indicating that these are separate steps controlled by distinct mechanisms. Mouse Xist RNA tightly localized to an active X chromosome, demonstrating for the first time that the active X chromosome in somatic cells is competent to associate with Xist RNA. These results imply that species-specific factors, present even in mature, somatic cells that do not normally express Xist, are necessary for localization. When Xist RNA is properly localized to an active mouse X chromosome, X inactivation does not result. Therefore, there is not a strict correlation between Xist localization and chromatin inactivation. Moreover, expression, stabilization, and localization of Xist RNA are not sufficient for X inactivation. We hypothesize that chromosomal association of XIST RNA may initiate subsequent developmental events required to enact transcriptional silencing.
Collapse
Affiliation(s)
- C M Clemson
- Department of Cell Biology, University of Massachusetts Medical Center, Worcester, Massachusetts 01655, USA.
| | | | | | | |
Collapse
|
130
|
Loyer P, Trembley JH, Lahti JM, Kidd VJ. The RNP protein, RNPS1, associates with specific isoforms of the p34cdc2-related PITSLRE protein kinase in vivo. J Cell Sci 1998; 111 ( Pt 11):1495-506. [PMID: 9580558 DOI: 10.1242/jcs.111.11.1495] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The PITSLRE protein kinases are members of the p34cdc2 superfamily, with >20 different isoforms expressed from two linked genes in humans. PITSLRE homologues have been identified in mouse, chicken, Drosophila, Xenopus, and possibly Plasmodium falciparum, suggesting that their function may be well conserved. A possible role for a caspase processed PITSLRE isoform has been suggested by studies of Fas- and TNF-induced cell death. However, the function of these kinases in proliferating cells is still unknown. Here we demonstrate that the 110 kDa PITSLRE isoforms (p110) are localized to both the nucleoplasm and nuclear speckles, and that these isoforms specifically interact in vitro and in vivo with the RNA-binding protein RNPS1. RNPS1 is also localized to nuclear speckles, and its over expression disrupts normal nuclear speckle organization by causing the aggregation of many nuclear speckles into approximately 6 ‘mega’ speckles. This type of nuclear speckle aggregation closely resembles what occurs when cells are treated with several transcriptional inhibitors. These data indicate that the PITSLRE p110 isoforms interact with RNPS1 in vivo, and that these proteins may in turn influence some aspect of transcriptional and/or splicing regulation.
Collapse
Affiliation(s)
- P Loyer
- Department of Tumor Cell Biology, St Jude Children's Research Hospital, Memphis, TN 38105, USA
| | | | | | | |
Collapse
|
131
|
Krystosek A. Repositioning of human interphase chromosomes by nucleolar dynamics in the reverse transformation of HT1080 fibrosarcoma cells. Exp Cell Res 1998; 241:202-9. [PMID: 9633529 DOI: 10.1006/excr.1998.4046] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
An experimental system which should be valuable for studying the role of spatial positioning of the nuclear genome in human cell function has been developed. Reverse transformation of the malignant HT1080 fibrosarcoma cell line upon treatment with 8-chloro-cAMP results in growth inhibition, cytoskeletal reorganization, changes in nuclear shape and chromatin accessibility, and formation of prominent nucleoli. Fluorescent in situ hybridization was used to study DNA positioning during nuclear remodeling. Morphometric analysis of the hybridization sites for both repetitive sequences and "painting probes" for whole chromosomes indicated dispersal of acrocentric chromosomes in untreated cells and a highly organized central location of these ribosome gene-containing chromosomes in association with one or a few large nucleoli in nondividing treated cells. The results suggest that there was a directed movement of interphase chromosomes during a response which normalized a malignant cell line. These large-scale repositionings may serve two functions in restoring a normal transcriptional setup to the nucleus. First, ribosome genes are placed in the nucleolus, their transcriptional suborganelle. Second, nucleolar anchorings together with additional perinucleolar centromeric associations orient the domain shapes of entire chromosomes, installing gene-rich chromosomal regions into pockets of (accessible) DNAse I-sensitive chromatin populated by spliceosomes.
Collapse
Affiliation(s)
- A Krystosek
- Eleanor Roosevelt Institute, Denver, Colorado 80206, USA
| |
Collapse
|
132
|
Bøe SO, Bjørndal B, Røsok B, Szilvay AM, Kalland KH. Subcellular localization of human immunodeficiency virus type 1 RNAs, Rev, and the splicing factor SC-35. Virology 1998; 244:473-82. [PMID: 9601515 DOI: 10.1006/viro.1998.9110] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The HIV-1 protein Rev regulates the cytoplasmic levels of incompletely spliced HIV-1 mRNAs. The plasmid pSVc21, which contains a HIV-1 provirus, was introduced into COS cells by transient transfection. Simultaneous detection of HIV-1 RNAs and Rev proteins produced in transfected cells was then performed in order to determine the relative distribution of these two components. HIV-1 RNAs and the Rev protein localized to the same areas of the nucleoplasm, implying that these locations represent sites where Rev interacts with its target RNAs. Using a monoclonal antibody targeted to the splicing factor SC-35 it was demonstrated that the sites where HIV-1 mRNAs and Rev were detected often contained weak anti-SC-35 staining, whereas little RNA and Rev were found in strongly labeled SC-35-containing speckles. The same distribution of HIV-1 RNAs relative to SC-35 was also seen in transfected HeLa cells and in primary human lymphocytes infected with HIV-1 primary isolates. In addition, transiently expressed intron-containing beta-globin RNAs were shown to distribute to weak anti-SC-35 staining in a manner similar to that of HIV-1 RNAs. The findings suggest that Rev and HIV-1 RNAs interact at putative sites of mRNA transcription and splicing.
Collapse
Affiliation(s)
- S O Bøe
- Department of Microbiology and Immunology, Gade Institute, Bergen High Technology Center, University of Bergen, Norway.
| | | | | | | | | |
Collapse
|
133
|
Kim TA, Lim J, Ota S, Raja S, Rogers R, Rivnay B, Avraham H, Avraham S. NRP/B, a novel nuclear matrix protein, associates with p110(RB) and is involved in neuronal differentiation. J Cell Biol 1998; 141:553-66. [PMID: 9566959 PMCID: PMC2132755 DOI: 10.1083/jcb.141.3.553] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The nuclear matrix is defined as the insoluble framework of the nucleus and has been implicated in the regulation of gene expression, the cell cycle, and nuclear structural integrity via linkage to intermediate filaments of the cytoskeleton. We have discovered a novel nuclear matrix protein, NRP/B (nuclear restricted protein/brain), which contains two major structural elements: a BTB domain-like structure in the predicted NH2 terminus, and a "kelch motif" in the predicted COOH-terminal domain. NRP/B mRNA (5.5 kb) is predominantly expressed in human fetal and adult brain with minor expression in kidney and pancreas. During mouse embryogenesis, NRP/B mRNA expression is upregulated in the nervous system. The NRP/B protein is expressed in rat primary hippocampal neurons, but not in primary astrocytes. NRP/B expression was upregulated during the differentiation of murine Neuro 2A and human SH-SY5Y neuroblastoma cells. Overexpression of NRP/B in these cells augmented neuronal process formation. Treatment with antisense NRP/B oligodeoxynucleotides inhibited the neurite development of rat primary hippocampal neurons as well as the neuronal process formation during neuronal differentiation of PC-12 cells. Since the hypophosphorylated form of retinoblastoma protein (p110(RB)) is found to be associated with the nuclear matrix and overexpression of p110(RB) induces neuronal differentiation, we investigated whether NRP/B is associated with p110(RB). Both in vivo and in vitro experiments demonstrate that NRP/B can be phosphorylated and can bind to the functionally active hypophosphorylated form of the p110(RB) during neuronal differentiation of SH-SY5Y neuroblastoma cells induced by retinoic acid. Our studies indicate that NRP/B is a novel nuclear matrix protein, specifically expressed in primary neurons, that interacts with p110(RB) and participates in the regulation of neuronal process formation.
Collapse
Affiliation(s)
- T A Kim
- Divisions of Experimental Medicine and Hematology/Oncology, Beth Israel Deaconess Medical Center, Harvard Institutes of Medicine, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | |
Collapse
|
134
|
Lee TX, Johnson LF. Pre-mRNA processing enhancer (PPE) element increases the expression of an intronless thymidylate synthase gene but does not affect intron-dependent S phase regulation. J Cell Biochem 1998. [DOI: 10.1002/(sici)1097-4644(19980501)69:2<104::aid-jcb2>3.0.co;2-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
135
|
Allal C, Sixou S, Kravtzoff R, Soulet N, Soula G, Favre G. SupraMolecular BioVectors (SMBV) improve antisense inhibition of erbB-2 expression. Br J Cancer 1998; 77:1448-53. [PMID: 9652760 PMCID: PMC2150199 DOI: 10.1038/bjc.1998.238] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
New therapeutic strategies are now being developed against adenocarcinoma associated with erbB-2 amplification, particularly by inhibiting p185erbB-2 expression. Antisense oligodeoxynucleotides seem promising for this purpose as long as they are efficiently protected against degradation and targeted into the cells. We present antisense oligonucleotide carriers, the supramolecular biovectors (SMBVs), for which we have already demonstrated the ability to improve both cellular uptake and protection of oligodeoxynucleotide. The present work demonstrates that SMBVs elicit a specific and non-toxic action of antisense compounds in a cell model, irrespective of their sensitivity to nucleases. This is a major point, considering the specificity problems associated with the use of nuclease-resistant phosphorothioate oligodeoxynucleotide. SMBVs improve antisense efficiency of oligodeoxynucleotide designed against p185erbB-2, with a complete growth arrest of SK-Br-3, human adenocarcinoma mammary cells that overexpress p185erbB-2 and no effect on MCF-7 cells that normally express p185erbB-2. The comparison of SMBVs with DOTAP reveals the statistically higher efficiency of SMBVs, which allows the antisense inhibition of p185erbB-2 expression in 65-75% of SK-Br-3 cells (P < 0.05). The efficiency and controlled synthesis of SMBVs underline their potentialities as oligodeoxynucleotide carriers for in vivo experiments.
Collapse
Affiliation(s)
- C Allal
- Laboratoire d'Oncologie Cellulaire et Moléculaire, EA 2048 MRES, Faculté des Sciences Pharmaceutiques and Centre de Lutte Contre le Cancer Claudius Regaud, Toulouse, France
| | | | | | | | | | | |
Collapse
|
136
|
Bridger JM, Herrmann H, Münkel C, Lichter P. Identification of an interchromosomal compartment by polymerization of nuclear-targeted vimentin. J Cell Sci 1998; 111 ( Pt 9):1241-53. [PMID: 9547300 DOI: 10.1242/jcs.111.9.1241] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A number of structural and functional subnuclear compartments have been described, including regions exclusive of chromosomes previously hypothesized to form a reactive nuclear space. We have now explored this accessible nuclear space and interchromosomal nucleoplasmic domains experimentally using Xenopus vimentin engineered to contain a nuclear localization signal (NLS-vimentin). In stably transfected human cells incubated at 37 degrees C, the NLS-vimentin formed a restricted number of intranuclear speckles. At 28 degrees C, the optimal temperature for assembly of the amphibian protein, NLS-vimentin progressively extended with time out from the speckles into strictly orientated intranuclear filamentous arrays. This enabled us to observe the development of a system of interconnecting channel-like areas. Quantitative analysis based on 3-D imaging microscopy revealed that these arrays were localized almost exclusively outside of chromosome territories. During mitosis the filaments disassembled and dispersed throughout the cytoplasm, while in anaphase-telophase the vimentin was recruited back into the nucleus and reassembled into filaments at the chromosome surfaces, in distributions virtually identical to those observed in the previous interphase. The filaments also colocalized with specific nuclear RNAs, coiled bodies and PML bodies, all situated outside of chromosome territories, thereby interlinking these structures. This strongly implies that these nuclear entities coexist in the same interconnected nuclear compartment. The assembling NLS-vimentin is restricted to and can be used to delineate, at least in part, the formerly proposed reticular interchromosomal domain compartment (ICD). The properties of NLS-vimentin make it an excellent tool for performing structural and functional studies on this compartment.
Collapse
Affiliation(s)
- J M Bridger
- Organization of Complex Genomes, German Cancer Research Center, Heidelberg, Germany
| | | | | | | |
Collapse
|
137
|
Angeletti PC, Engler JA. Adenovirus preterminal protein binds to the CAD enzyme at active sites of viral DNA replication on the nuclear matrix. J Virol 1998; 72:2896-904. [PMID: 9525610 PMCID: PMC109735 DOI: 10.1128/jvi.72.4.2896-2904.1998] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/1997] [Accepted: 12/18/1997] [Indexed: 02/06/2023] Open
Abstract
Adenovirus (Ad) replicative complexes form at discrete sites on the nuclear matrix (NM) via an interaction mediated by the precursor of the terminal protein (pTP). The identities of cellular proteins involved in these complexes have remained obscure. We present evidence that pTP binds to a multifunctional pyrimidine biosynthesis enzyme found at replication domains on the NM. Far-Western blotting identified proteins of 150 and 240 kDa that had pTP binding activity. Amino acid sequencing of the 150-kDa band revealed sequence identity to carbamyl phosphate synthetase I (CPS I) and a high degree of homology to the related trifunctional enzyme known as CAD (for carbamyl phosphate synthetase, aspartate transcarbamylase, and dihydroorotase). Western blotting with an antibody directed against CAD detected a 240-kDa band that comigrated with that detected by pTP far-Western blotting. Binding experiments showed that a pTP-CAD complex was immunoprecipitable from cell extracts in which pTP was expressed by a vaccinia virus recombinant. Additionally, in vitro-translated epitope-tagged pTP and CAD were immunoprecipitable as a complex, indicating the occurrence of a protein-protein interaction. Confocal fluorescence microscopy of Ad-infected NM showed that pTP and CAD colocalized in nuclear foci. Both pTP and CAD were confirmed to colocalize with active sites of replication detected by bromodeoxyuridine incorporation. These data support the concept that the pTP-CAD interaction may allow anchorage of Ad replication complexes in the proximity of required cellular factors and may help to segregate replicated and unreplicated viral DNA.
Collapse
Affiliation(s)
- P C Angeletti
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Alabama at Birmingham, 35294-0005, USA
| | | |
Collapse
|
138
|
Blencowe BJ, Issner R, Nickerson JA, Sharp PA. A coactivator of pre-mRNA splicing. Genes Dev 1998; 12:996-1009. [PMID: 9531537 PMCID: PMC316672 DOI: 10.1101/gad.12.7.996] [Citation(s) in RCA: 174] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/1997] [Accepted: 01/29/1998] [Indexed: 02/07/2023]
Abstract
The nuclear matrix antigen recognized by the monoclonal antibody (mAb) B1C8 is a novel serine (S) and arginine (R)-rich protein associated with splicing complexes and is named here SRm160 (SR-related matrix protein of 160 kD). SRm160 contains multiple SR repeats, but unlike proteins of the SR family of splicing factors, lacks an RNA recognition motif. SRm160 and a related protein SRm300 (the 300-kD nuclear matrix antigen recognized by mAb B4A11) form a complex that is required for the splicing of specific pre-mRNAs. The SRm160/300 complex associates with splicing complexes and promotes splicing through interactions with SR family proteins. Binding of SRm160/300 to pre-mRNA is normally also dependent on U1 snRNP and is stabilized by U2 snRNP. Thus, SRm160/300 forms multiple interactions with components bound directly to important sites within pre-mRNA. The results suggest that a complex of the nuclear matrix proteins SRm160 and SRm300 functions as a coactivator of pre-mRNA splicing.
Collapse
Affiliation(s)
- B J Blencowe
- Center for Cancer Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 USA
| | | | | | | |
Collapse
|
139
|
Torrungruang K, Feister H, Swartz D, Hancock EB, Hock J, Bidwell JP. Parathyroid hormone regulates the expression of the nuclear mitotic apparatus protein in the osteoblast-like cells, ROS 17/2.8. Bone 1998; 22:317-24. [PMID: 9556130 DOI: 10.1016/s8756-3282(97)00300-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The parathyroid hormone (PTH) signaling pathways that effect changes in osteoblast gene expression also alter the organization of the cytoskeletal proteins. PTH regulates the expression of nucleoskeletal proteins, such as nuclear mitotic apparatus protein (NuMA) and topoisomerase II-alpha. NuMA is a structural component of the interphase nucleus and organizes the microtubules of the mitotic spindle during mitogenesis. We propose that PTH-induced alterations in osteoblast cytoarchitecture are accompanied by changes in osteoblast nuclear structure that contribute to changes in gene expression. We used immunofluorescence and confocal microscopy to determine the effect of PTH on the expression and nuclear distribution of NuMA in the rat osteosarcoma cell line, ROS 17/2.8. Cells were treated with PTH or vehicle, then fixed and stained with NuMA antibody. Optical sections of interphase naive cells revealed a diffuse distribution of NuMA, interspersed with speckles, in the central nuclear planes but not in nucleoli. During the metaphase and anaphase, NuMA localized at the mitotic spindle apparatus. The percentage of NuMA-immunopositive ROS 17/2.8 cells decreased with increasing confluence, but serum starvation did not attenuate NuMA expression. Cell density-dependent changes in cytoskeletal organization were observed in these cells. PTH treatment induced changes in cytoskeletal organization and increased the percentage of NuMA-immunopositive ROS 17/2.8 cells. These data suggest that PTH effects changes in osteoblast nuclear architecture by regulating NuMA, and that these alterations may be coupled to cytoskeletal organization.
Collapse
Affiliation(s)
- K Torrungruang
- Department of Periodontics, Indiana University School of Dentistry, Indianapolis 46202, USA
| | | | | | | | | | | |
Collapse
|
140
|
Ali RB, Teo AK, Oh HK, Chuang LS, Ayi TC, Li BF. Implication of localization of human DNA repair enzyme O6-methylguanine-DNA methyltransferase at active transcription sites in transcription-repair coupling of the mutagenic O6-methylguanine lesion. Mol Cell Biol 1998; 18:1660-9. [PMID: 9488483 PMCID: PMC108881 DOI: 10.1128/mcb.18.3.1660] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
DNA lesions that halt RNA polymerase during transcription are preferentially repaired by the nucleotide excision repair pathway. This transcription-coupled repair is initiated by the arrested RNA polymerase at the DNA lesion. However, the mutagenic O6-methylguanine (6MG) lesion which is bypassed by RNA polymerase is also preferentially repaired at the transcriptionally active DNA. We report here a plausible explanation for this observation: the human 6MG repair enzyme O6-methylguanine-DNA methyltransferase (MGMT) is present as speckles concentrated at active transcription sites (as revealed by polyclonal antibodies specific for its N and C termini). Upon treatment of cells with low dosages of N-methylnitrosourea, which produces 6MG lesions in the DNA, these speckles rapidly disappear, accompanied by the formation of active-site methylated MGMT (the repair product of 6MG by MGMT). The ability of MGMT to target itself to active transcription sites, thus providing an effective means of repairing 6MG lesions, possibly at transcriptionally active DNA, indicates its crucial role in human cancer and chemotherapy by alkylating agents.
Collapse
Affiliation(s)
- R B Ali
- Chemical Carcinogenesis Laboratory, Institute of Molecular and Cell Biology, National University of Singapore, Republic of Singapore
| | | | | | | | | | | |
Collapse
|
141
|
Nakagawa A, Kobayashi N, Muramatsu T, Yamashina Y, Shirai T, Hashimoto MW, Ikenaga M, Mori T. Three-dimensional visualization of ultraviolet-induced DNA damage and its repair in human cell nuclei. J Invest Dermatol 1998; 110:143-8. [PMID: 9457909 DOI: 10.1046/j.1523-1747.1998.00100.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The two major forms of DNA damage produced by 254 nm UV light are cyclobutane pyrimidine dimer (CPD) and (6-4) photoproduct (6-4PP). Both photolesions are repaired in normal human cells by nucleotide excision repair; however, little is known about where CPD or 6-4PP are repaired in relation to the various subnuclear structures. This study aimed to produce a three-dimensional demonstration of UV-induced DNA damage and its repair in human cell nuclei. We first investigated the repair kinetics of CPD and 6-4PP using an enzyme-linked immunosorbent assay with damage-specific monoclonal antibodies in normal human and xeroderma pigmentosum complementation group C cells. We also examined the kinetics of repair DNA synthesis (unscheduled DNA synthesis) using a quantitative immunofluorescence method with anti-5-bromo-2'-deoxyuridine antibodies. We confirmed the normal repair in normal human cells and the impaired repair in xeroderma pigmentosum complementation group C cells. Then, using laser scanning confocal microscopy, we succeeded in forming a three-dimensional visualization of the nuclear localization of CPD, 6-4PP, and unscheduled DNA synthesis in individual human cells. The typical three-dimensional images of photolesions or unscheduled DNA synthesis at various repair times reflected the repair kinetics obtained by enzyme-linked immunosorbent assay or immunofluorescence very well. The important finding is that the punctate, not diffusely spread, nuclear localization of unrepaired 6-4PP was found 2 h after irradiation. Similarly, the focal nuclear localization of unscheduled DNA synthesis was observed during both the first and the second 3 h repair periods. The present results suggest that both 6-4PP and CPD are nonrandomly repaired from nuclei in normal human cells.
Collapse
Affiliation(s)
- A Nakagawa
- Department of Dermatology, Nara Medical University, Kashihara, Japan
| | | | | | | | | | | | | | | |
Collapse
|
142
|
Abstract
The molecular mechanisms that couple osteoblast structure and gene expression are emerging from recent studies on the bone extracellular matrix, integrins, the cytoskeleton, and the nucleoskeleton (nuclear matrix). These proteins form a dynamic structural network, the tissue matrix, that physically links the genes with the substructure of the cell and its substrate. The molecular analog of cell structure is the geometry of the promoter. The degree of supercoiling and bending of promoter DNA can regulate transcriptional activity. Nuclear matrix proteins may render a change in cytoskeletal organization into a bend or twist in the promoter of target genes. We review the role of nuclear matrix proteins in the regulation of gene expression with special emphasis on osseous tissue. Nuclear matrix proteins bind to the osteocalcin and type I collagen promoters in osteoblasts. One such protein is Cbfa1, a recently described transcriptional activator of osteoblast differentiation. Although their mechanisms of action are unknown, some nuclear matrix proteins may act as "architectural" transcription factors, regulating gene expression by bending the promoter and altering the interactions between other trans-acting proteins. The osteoblast nuclear matrix is comprised of cell- and phenotype-specific proteins including proteins common to all cells. Nuclear matrix proteins specific to the osteoblast developmental stage and proteins that distinguish osteosarcoma from the osteoblast have been identified. Recent studies indicating that nuclear matrix proteins mediate bone cell response to parathyroid hormone and vitamin D are discussed.
Collapse
Affiliation(s)
- J P Bidwell
- Department of Periodontics, Indiana University School of Dentistry, Indianapolis 46202, USA
| | | | | | | | | |
Collapse
|
143
|
Fabre E, Hurt E. Yeast genetics to dissect the nuclear pore complex and nucleocytoplasmic trafficking. Annu Rev Genet 1998; 31:277-313. [PMID: 9442897 DOI: 10.1146/annurev.genet.31.1.277] [Citation(s) in RCA: 117] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Eukaryotic cells evolved when their genetic information was packed into the cell nucleus. DNA replication and RNA biogenesis occur inside the nucleus while protein synthesis takes place in the cytoplasm. Bi-directional trafficking between these two compartments is mediated by a single supramolecular assembly, the nuclear pore complex. Nucleocytoplasmic transport is signal mediated, energy dependent, and requires, besides nuclear pore proteins (nucleoporins), a number of soluble transport factors. We review here our current knowledge on the role of nucleoporins, and on the mechanism of nucleocytoplasmic transport, with emphasis on the yeast Saccharomyces cerevisiae.
Collapse
Affiliation(s)
- E Fabre
- Institut Pasteur, Département des Biotechnologies, Paris, France.
| | | |
Collapse
|
144
|
Douglas AJ, Meeren HK, Johnstone LE, Pfaff DW, Russell JA, Brooks PJ. Stimulation of expression of the oxytocin gene in rat supraoptic neurons at parturition. Brain Res 1998; 782:167-74. [PMID: 9519260 DOI: 10.1016/s0006-8993(97)01275-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
We measured expression of the oxytocin gene in the supraoptic nucleus (SON) during pregnancy, parturition and lactation to examine its relationship to states of accumulation or depletion of oxytocin stores and to conditions of strong excitation of oxytocin neurons. The primary transcript (heterogeneous nuclear RNA, hnRNA) of the oxytocin gene was measured using a 3H-cDNA probe against intron 1 for in situ hybridisation. Autoradiographs of the SON showed the hnRNA as discrete clumps of silver grains within the nucleus of each neuron. The number of cells expressing oxytocin hnRNA did not change during pregnancy but increased during parturition; 10-day lactating animals showed similar increases. Oxytocin mRNA was also measured by in situ hybridisation using a 3H- or 35S-labelled oligonucleotide probe against exon C: hybridisation was seen over the cytoplasm of supraoptic neurons, but no differences were measured between virgin, mid-pregnant, preparturient, parturient or 2-day lactating rats. The data suggest that enhanced oxytocin gene transcription is not necessary to increase oxytocin stores in pregnancy. However, acute stimulation of magnocellular oxytocin neurons at parturition, which strongly increases neuron activity and secretion, results in a rapid increase in the number of cells expressing oxytocin hnRNA, and increased expression is sustained in lactation.
Collapse
Affiliation(s)
- A J Douglas
- Department of Physiology, University Medical School, Edinburgh, Scotland, UK.
| | | | | | | | | | | |
Collapse
|
145
|
Schul W, van Driel R, de Jong L. A subset of poly(A) polymerase is concentrated at sites of RNA synthesis and is associated with domains enriched in splicing factors and poly(A) RNA. Exp Cell Res 1998; 238:1-12. [PMID: 9457051 DOI: 10.1006/excr.1997.3808] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
We have performed a detailed study of the spatial distribution of a set of mRNA 3' processing factors in human T24 cells. A key enzyme in RNA 3' processing, poly(A) polymerase (PAP), was found in the cytoplasm and throughout the nucleus in a punctated pattern. A subset of the various isoforms of PAP was specifically concentrated at sites of RNA synthesis in the nucleoplasm. Additionally, the other factors necessary for RNA 3' processing, such as CstF, CPSF, and PABII, were also found at these transcription sites. Our data show that the set of 3' processing factors that are presumed to be necessary for most RNA 3' cleavage and polyadenylation is indeed found at sites of RNA synthesis in the nucleoplasm. Furthermore, sites of RNA synthesis that are particularly enriched in both PAP and PABII are found at the periphery of irregularly shaped domains, called speckles, which are known to contain high concentrations of splicing factors and poly(A) RNA. Disruption of RNA 3' processing by the drug 9-beta-D-arabinofuranosyladenine caused the speckles to break up into smaller structures. These findings indicate that there is a spatial and structural relationship between 3' processing and the nuclear speckles. Our studies reveal a complex and distinct organization of the RNA 3' processing machinery in the mammalian cell nucleus.
Collapse
Affiliation(s)
- W Schul
- E. C. Slater Instituut, University of Amsterdam, BioCentrum Amsterdam, The Netherlands
| | | | | |
Collapse
|
146
|
Caplan A, Berger PH, Naderi M. Phenotypic Variation Between Transgenic Plants: What is Making Gene Expression Unpredictable? ACTA ACUST UNITED AC 1998. [DOI: 10.1007/978-94-015-9125-6_27] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
|
147
|
Göhring F, Schwab BL, Nicotera P, Leist M, Fackelmayer FO. The novel SAR-binding domain of scaffold attachment factor A (SAF-A) is a target in apoptotic nuclear breakdown. EMBO J 1997; 16:7361-71. [PMID: 9405365 PMCID: PMC1170336 DOI: 10.1093/emboj/16.24.7361] [Citation(s) in RCA: 116] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The scaffold attachment factor A (SAF-A) is an abundant component of the nuclear scaffold and of chromatin, and also occurs in heterogeneous nuclear ribonucleoprotein (hnRNP) complexes. Evidence from previous experiments had suggested that SAF-A most likely has at least two different functions, being involved both in nuclear architecture and RNA metabolism. We now show that the protein has a novel scaffold-associated region (SAR)-specific bipartite DNA-binding domain which is independent from the previously identified RNA-binding domain, the RGG box. During apoptosis, but not during necrosis, SAF-A is cleaved in a caspase-dependent way. Cleavage occurs within the bipartite DNA-binding domain, resulting in a loss of DNA-binding activity and a concomitant detachment of SAF-A from nuclear structural sites. On the other hand, cleavage does not compromise the association of SAF-A with hnRNP complexes, indicating that the function of SAF-A in RNA metabolism is not affected in apoptosis. Our results suggest that detachment of SAF-A from SARs, caused by apoptotic proteolysis of its DNA-binding domain, is linked to the formation of oligonucleosomal-sized DNA fragments and could therefore contribute to nuclear breakdown in apoptotic cells.
Collapse
Affiliation(s)
- F Göhring
- Laboratory of Molecular Genetics, Department of Biology, University of Konstanz, 78434 Konstanz, Germany
| | | | | | | | | |
Collapse
|
148
|
Brown KE, Guest SS, Smale ST, Hahm K, Merkenschlager M, Fisher AG. Association of transcriptionally silent genes with Ikaros complexes at centromeric heterochromatin. Cell 1997; 91:845-54. [PMID: 9413993 DOI: 10.1016/s0092-8674(00)80472-9] [Citation(s) in RCA: 606] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Ikaros proteins are required for normal T, B, and NK cell development and are postulated to activate lymphocyte-specific gene expression. Here we examined Ikaros distribution in the nucleus of B lymphocytes using confocal microscopy and a novel immunofluorescence in situ hybridization (immuno-FISH) approach. Unexpectedly, Ikaros localized to discrete heterochromatin-containing foci in interphase nuclei, which comprise clusters of centromeric DNA as defined by gamma-satellite sequences and the abundance of heterochromatin protein-1 (HP-1). Using locus-specific probes for CD2, CD4, CD8alpha, CD19, CD45, and lambda5 genes, we show that transcriptionally inactive but not transcriptionally active genes associate with Ikaros-heterochromatin foci. These findings support a model of organization of the nucleus in which repressed genes are selectively recruited into centromeric domains.
Collapse
MESH Headings
- Animals
- Antigens, CD/biosynthesis
- Antigens, Differentiation, B-Lymphocyte/biosynthesis
- Antigens, Differentiation, B-Lymphocyte/genetics
- B-Lymphocytes/physiology
- Cell Line
- Cell Nucleus/physiology
- Cell Nucleus/ultrastructure
- Centromere/physiology
- Centromere/ultrastructure
- DNA-Binding Proteins
- Gene Expression Regulation
- Heterochromatin/physiology
- Heterochromatin/ultrastructure
- Ikaros Transcription Factor
- Lymphoma
- Mice
- Mice, Transgenic
- Models, Genetic
- Polymerase Chain Reaction
- Receptors, Interleukin/biosynthesis
- Receptors, Interleukin-7
- Transcription Factors/analysis
- Transcription Factors/metabolism
- Transcription, Genetic
- Zinc Fingers
Collapse
Affiliation(s)
- K E Brown
- Lymphocyte Development Group, MRC Clinical Sciences Centre, Imperial College School of Medicine, Hammersmith Hospital, London, United Kingdom
| | | | | | | | | | | |
Collapse
|
149
|
Abstract
Nuclear dots (NDs), alternatively designated nuclear bodies (NBs), PML oncogenic domains (PODs), nuclear domain 10 (ND10) or Kr-bodies, became a major topic for researchers in many fields only recently. Originally described as an autoantigenic target in patients with primary biliary cirrhosis, they are now also known to play a role in development of acute promyelocytic leukemia (APL) and possibly other forms of neoplasia. Size, number and composition of NDs are regulated throughout the cell cycle. Infection with herpes simplex virus, adenovirus, cytomegalovirus, Epstein-Barr-virus, influenza virus and human T cell lymphotropic virus type I (HTLV I) strongly modifies ND structure through viral regulatory proteins. Due to this finding and because at least three of the cellular ND proteins are highly interferon-inducible, a function of NDs in early viral infection or in antiviral response has been postulated. Functional data are currently available only for two of the ND-associated proteins. The Sp100 protein seems to have transcriptional transactivating property, whereas the promyelocytic leukemia protein (PML) was reported to suppress growth and transformation. Here, we give a brief overview of the data currently available on NDs. Thus, we hope to link seemingly unrelated findings in the literature on oncology, virology, cell biology and immunology.
Collapse
Affiliation(s)
- T Sternsdorf
- Heinrich-Pette-Institut für experimentelle Virologie und Immunologie, Universität Hamburg, Germany
| | | | | | | |
Collapse
|
150
|
Bidwell J, McCabe R, Rougraff B, Feister H, Fey E, Onyia J, Holden J, Hock J. Tissue matrix protein expression in human osteoblasts, osteosarcoma tumors, and osteosarcoma cell lines. Mol Biol Rep 1997; 24:271-82. [PMID: 9403869 DOI: 10.1023/a:1006883528518] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Treatment for osteosarcoma is problematic because there are no prognostic markers. Diagnosis is primarily limited to cytologic grading. Oncogenesis alters cell structure therefore osteoblast tissue matrix proteins (extracellular matrix, cytoskeletal, intermediate filament, and nuclear matrix proteins), components of the cell substructure, are candidates for osteosarcoma markers. Structural proteins of the extracellular matrix, e.g. the collagens, are useful for diagnosis but not for tumors that produce little osteoid. To identify principal cellular tissue matrix proteins that distinguish normal from transformed human osteoblasts, their expression in normal osteoblasts, two osteosarcoma cell lines, and three primary osteosarcoma tumors were compared. The tumors were graded as (i) intermediate, (ii) high, and (iii) high grade recurrent. The 1-D SDS/PAGE profiles of the major components of the nuclear matrix and intermediate filament fractions from normal osteoblasts did not vary with biopsy site, age, or sex of patients. These profiles included known cytoskeletal proteins and OB250, a approximately 250 kD protein(s) observed in the intermediate filament fraction. A loss of protein bands, including OB250, was observed in the osteosarcoma cell lines and tumors. The intermediate and high grade tumors exhibited nearly identical protein profiles including potential tumor-specific proteins and collagen, consistent with the presence of intracellular collagen fibers in osteosarcoma. A microsequence was obtained for OT25, a novel low molecular weight protein observed in osteosarcoma cell lines. Fibrinogen gamma-chain, a protein that mediates cell adhesion was recovered from the high grade recurrent tumor.
Collapse
Affiliation(s)
- J Bidwell
- Dept. of Periodontics, Indiana University School of Dentistry, Indianapolis 46202, USA
| | | | | | | | | | | | | | | |
Collapse
|