101
|
Abstract
The X inactive-specific transcript (Xist) gene is the master regulator of X chromosome inactivation in mammals. Xist produces a long noncoding (lnc)RNA that accumulates over the entire length of the chromosome from which it is transcribed, recruiting factors to modify underlying chromatin and silence X-linked genes in cis Recent years have seen significant progress in identifying important functional elements in Xist RNA, their associated RNA-binding proteins (RBPs), and the downstream pathways for chromatin modification and gene silencing. In this review, we summarize progress in understanding both how these pathways function in Xist-mediated silencing and the complex interplay between them.
Collapse
Affiliation(s)
- Neil Brockdorff
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| | - Joseph S Bowness
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| | - Guifeng Wei
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| |
Collapse
|
102
|
Chen Y, Lin Y, Shu Y, He J, Gao W. Interaction between N 6-methyladenosine (m 6A) modification and noncoding RNAs in cancer. Mol Cancer 2020; 19:94. [PMID: 32443966 PMCID: PMC7243333 DOI: 10.1186/s12943-020-01207-4] [Citation(s) in RCA: 194] [Impact Index Per Article: 38.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 04/23/2020] [Indexed: 02/06/2023] Open
Abstract
As a critical internal RNA modification in higher eukaryotes, N6-methyladenosine (m6A) has become the hotspot of epigenetics research in recent years. Extensive studies on messenger RNAs have revealed that m6A affects RNA fate and cell functions in various bioprocesses, such as RNA splicing, export, translation, and stability, some of which seem to be directly or indirectly regulated by noncoding RNAs. Intriguingly, abundant noncoding RNAs such as microRNAs, long noncoding RNAs, circular RNAs, small nuclear RNAs, and ribosomal RNAs are also highly modified with m6A and require m6A modification for their biogenesis and functions. Here, we discuss the interaction between m6A modification and noncoding RNAs by focusing on the functional relevance of m6A in cancer progression, metastasis, drug resistance, and immune response. Furthermore, the investigation of m6A regulatory proteins and its inhibitors provides new opportunities for early diagnosis and effective treatment of cancer, especially in combination with immunotherapy.
Collapse
Affiliation(s)
- Yi Chen
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, China
| | - Yu Lin
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, China
| | - Yongqian Shu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, China.
| | - Jing He
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, China.
| | - Wen Gao
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, China.
| |
Collapse
|
103
|
Abstract
Current methods for chromosome painting via fluorescence in situ hybridization (FISH) are costly, time-consuming, and limited in complexity. In contrast to conventional sources of probe, Oligopaints are computationally designed, synthesized on microarrays, and amplified by PCR. This approach allows for precise control over the sequences they target, which can range from a few kilobases to entire chromosomes with the same basic protocol. We have utilized the flexibility and scalability of Oligopaints to generate low-cost and renewable chromosome paints for Drosophila, mouse, and human chromosomes. These Oligopaint libraries can be customized to label any genomic feature(s) in a chromosome-wide manner. Additionally, this method is compatible with sequential FISH to label entire genomes with a single denaturation step. Here, we outline a protocol and considerations to scale the Oligopaint technology for fluorescent labeling of whole chromosomes.
Collapse
|
104
|
Halmai JANM, Deng P, Gonzalez CE, Coggins NB, Cameron D, Carter JL, Buchanan FKB, Waldo JJ, Lock SR, Anderson JD, O’Geen H, Segal DJ, Nolta J, Fink KD. Artificial escape from XCI by DNA methylation editing of the CDKL5 gene. Nucleic Acids Res 2020; 48:2372-2387. [PMID: 31925439 PMCID: PMC7049732 DOI: 10.1093/nar/gkz1214] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 12/13/2019] [Accepted: 12/18/2019] [Indexed: 12/29/2022] Open
Abstract
A significant number of X-linked genes escape from X chromosome inactivation and are associated with a distinct epigenetic signature. One epigenetic modification that strongly correlates with X-escape is reduced DNA methylation in promoter regions. Here, we created an artificial escape by editing DNA methylation on the promoter of CDKL5, a gene causative for an infantile epilepsy, from the silenced X-chromosomal allele in human neuronal-like cells. We identify that a fusion of the catalytic domain of TET1 to dCas9 targeted to the CDKL5 promoter using three guide RNAs causes significant reactivation of the inactive allele in combination with removal of methyl groups from CpG dinucleotides. Strikingly, we demonstrate that co-expression of TET1 and a VP64 transactivator have a synergistic effect on the reactivation of the inactive allele to levels >60% of the active allele. We further used a multi-omics assessment to determine potential off-targets on the transcriptome and methylome. We find that synergistic delivery of dCas9 effectors is highly selective for the target site. Our findings further elucidate a causal role for reduced DNA methylation associated with escape from X chromosome inactivation. Understanding the epigenetics associated with escape from X chromosome inactivation has potential for those suffering from X-linked disorders.
Collapse
MESH Headings
- Alleles
- CRISPR-Associated Protein 9/genetics
- CRISPR-Associated Protein 9/metabolism
- Catalytic Domain
- Cell Line, Tumor
- Chromosomes, Human, X/chemistry
- Chromosomes, Human, X/metabolism
- CpG Islands
- Epigenesis, Genetic
- Gene Editing
- Gene Silencing
- Humans
- Mixed Function Oxygenases/genetics
- Mixed Function Oxygenases/metabolism
- Neurons/cytology
- Neurons/metabolism
- Promoter Regions, Genetic
- Protein Serine-Threonine Kinases/genetics
- Protein Serine-Threonine Kinases/metabolism
- Proto-Oncogene Proteins/genetics
- Proto-Oncogene Proteins/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/metabolism
- Trans-Activators/genetics
- Trans-Activators/metabolism
- X Chromosome Inactivation
- RNA, Guide, CRISPR-Cas Systems
Collapse
Affiliation(s)
- Julian A N M Halmai
- Department of Neurology, University of California Davis School of Medicine, Sacramento, CA 95817, USA
- Stem Cell Program and Gene Therapy Center, University of California, Davis, Sacramento, CA, USA
| | - Peter Deng
- Department of Neurology, University of California Davis School of Medicine, Sacramento, CA 95817, USA
- Stem Cell Program and Gene Therapy Center, University of California, Davis, Sacramento, CA, USA
- Genome Center and Department of Biochemistry and Molecular Medicine, University of California, Davis, CA 95616, USA
| | - Casiana E Gonzalez
- Department of Neurology, University of California Davis School of Medicine, Sacramento, CA 95817, USA
- Stem Cell Program and Gene Therapy Center, University of California, Davis, Sacramento, CA, USA
| | - Nicole B Coggins
- Genome Center and Department of Biochemistry and Molecular Medicine, University of California, Davis, CA 95616, USA
| | - David Cameron
- Department of Neurology, University of California Davis School of Medicine, Sacramento, CA 95817, USA
- Stem Cell Program and Gene Therapy Center, University of California, Davis, Sacramento, CA, USA
| | - Jasmine L Carter
- Department of Neurology, University of California Davis School of Medicine, Sacramento, CA 95817, USA
- Stem Cell Program and Gene Therapy Center, University of California, Davis, Sacramento, CA, USA
| | - Fiona K B Buchanan
- Department of Neurology, University of California Davis School of Medicine, Sacramento, CA 95817, USA
- Stem Cell Program and Gene Therapy Center, University of California, Davis, Sacramento, CA, USA
| | - Jennifer J Waldo
- Department of Neurology, University of California Davis School of Medicine, Sacramento, CA 95817, USA
- Stem Cell Program and Gene Therapy Center, University of California, Davis, Sacramento, CA, USA
| | - Samantha R Lock
- Stem Cell Program and Gene Therapy Center, University of California, Davis, Sacramento, CA, USA
| | | | - Henriette O’Geen
- Genome Center and Department of Biochemistry and Molecular Medicine, University of California, Davis, CA 95616, USA
| | - David J Segal
- Genome Center and Department of Biochemistry and Molecular Medicine, University of California, Davis, CA 95616, USA
| | - Jan Nolta
- Stem Cell Program and Gene Therapy Center, University of California, Davis, Sacramento, CA, USA
| | - Kyle D Fink
- Department of Neurology, University of California Davis School of Medicine, Sacramento, CA 95817, USA
- Stem Cell Program and Gene Therapy Center, University of California, Davis, Sacramento, CA, USA
| |
Collapse
|
105
|
Sato H, Das S, Singer RH, Vera M. Imaging of DNA and RNA in Living Eukaryotic Cells to Reveal Spatiotemporal Dynamics of Gene Expression. Annu Rev Biochem 2020; 89:159-187. [PMID: 32176523 DOI: 10.1146/annurev-biochem-011520-104955] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
This review focuses on imaging DNA and single RNA molecules in living cells to define eukaryotic functional organization and dynamic processes. The latest advances in technologies to visualize individual DNA loci and RNAs in real time are discussed. Single-molecule fluorescence microscopy provides the spatial and temporal resolution to reveal mechanisms regulating fundamental cell functions. Novel insights into the regulation of nuclear architecture, transcription, posttranscriptional RNA processing, and RNA localization provided by multicolor fluorescence microscopy are reviewed. A perspective on the future use of live imaging technologies and overcoming their current limitations is provided.
Collapse
Affiliation(s)
- Hanae Sato
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA; , ,
| | - Sulagna Das
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA; , ,
| | - Robert H Singer
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA; , , .,Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia 20147, USA
| | - Maria Vera
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA; , , .,Department of Biochemistry, McGill University, Montreal, Quebec H3G 1Y6, Canada;
| |
Collapse
|
106
|
Martone J, Mariani D, Desideri F, Ballarino M. Non-coding RNAs Shaping Muscle. Front Cell Dev Biol 2020; 7:394. [PMID: 32117954 PMCID: PMC7019099 DOI: 10.3389/fcell.2019.00394] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 12/26/2019] [Indexed: 12/19/2022] Open
Abstract
In 1957, Francis Crick speculated that RNA, beyond its protein-coding capacity, could have its own function. Decade after decade, this theory was dramatically boosted by the discovery of new classes of non-coding RNAs (ncRNAs), including long ncRNAs (lncRNAs) and circular RNAs (circRNAs), which play a fundamental role in the fine spatio-temporal control of multiple layers of gene expression. Recently, many of these molecules have been identified in a plethora of different tissues, and they have emerged to be more cell-type specific than protein-coding genes. These findings shed light on how ncRNAs are involved in the precise tuning of gene regulatory mechanisms governing tissues homeostasis. In this review, we discuss the recent findings on the mechanisms used by lncRNAs and circRNAs to sustain skeletal and cardiac muscle formation, paying particular attention to the technological developments that, over the last few years, have aided their genome-wide identification and study. Together with lncRNAs and circRNAs, the emerging contribution of Piwi-interacting RNAs and transfer RNA-derived fragments to myogenesis will be also discussed, with a glimpse on the impact of their dysregulation in muscle disorders, such as myopathies, muscle atrophy, and rhabdomyosarcoma degeneration.
Collapse
Affiliation(s)
- Julie Martone
- Department of Biology and Biotechnology Charles Darwin, Sapienza University of Rome, Rome, Italy
| | - Davide Mariani
- Center for Human Technologies, Italian Institute of Technology, Genoa, Italy
| | - Fabio Desideri
- Department of Biology and Biotechnology Charles Darwin, Sapienza University of Rome, Rome, Italy
| | - Monica Ballarino
- Department of Biology and Biotechnology Charles Darwin, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
107
|
Yao RW, Liu CX, Chen LL. Linking RNA Processing and Function. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2020; 84:67-82. [PMID: 32019863 DOI: 10.1101/sqb.2019.84.039495] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
RNA processing is critical for eukaryotic mRNA maturation and function. It appears there is no exception for other types of RNAs. Long noncoding RNAs (lncRNAs) represent a subclass of noncoding RNAs, have sizes of >200 nucleotides (nt), and participate in various aspects of gene regulation. Although many lncRNAs are capped, polyadenylated, and spliced just like mRNAs, others are derived from primary transcripts of RNA polymerase II and stabilized by forming circular structures or by ending with small nucleolar RNA-protein complexes. Here we summarize the recent progress in linking the processing and function of these unconventionally processed lncRNAs; we also discuss how directional RNA movement is achieved using the radial flux movement of nascent precursor ribosomal RNA (pre-rRNA) in the human nucleolus as an example.
Collapse
Affiliation(s)
- Run-Wen Yao
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Chu-Xiao Liu
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Ling-Ling Chen
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China.,School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| |
Collapse
|
108
|
Abstract
Female mammals express the long noncoding X inactivation-specific transcript ( Xist) RNA to initiate X chromosome inactivation (XCI) that eventually results in the formation of the Barr body. Xist encompasses half a dozen repeated sequence stretches containing motifs for RNA-binding proteins that recruit effector complexes with functions for silencing genes and establishing a repressive chromatin configuration. Functional characterization of these effector proteins unveils the cooperation of a number of pathways to repress genes on the inactive X chromosome. Mechanistic insights can be extended to other noncoding RNAs with similar structure and open avenues for the design of new therapies to switch off gene expression. Here we review recent advances in the understanding of Xist and on this basis try to synthesize a model for the initiation of XCI.
Collapse
Affiliation(s)
- Asun Monfort
- Institute of Molecular Health Sciences, Swiss Federal Institute of Technology, Hönggerberg, HPL E12, Otto-Stern-Weg 7, Zurich, Switzerland
| | - Anton Wutz
- Institute of Molecular Health Sciences, Swiss Federal Institute of Technology, Hönggerberg, HPL E12, Otto-Stern-Weg 7, Zurich, Switzerland
| |
Collapse
|
109
|
Bansal P, Kondaveeti Y, Pinter SF. Forged by DXZ4, FIRRE, and ICCE: How Tandem Repeats Shape the Active and Inactive X Chromosome. Front Cell Dev Biol 2020; 7:328. [PMID: 32076600 PMCID: PMC6985041 DOI: 10.3389/fcell.2019.00328] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 11/26/2019] [Indexed: 12/11/2022] Open
Abstract
Recent efforts in mapping spatial genome organization have revealed three evocative and conserved structural features of the inactive X in female mammals. First, the chromosomal conformation of the inactive X reveals a loss of topologically associated domains (TADs) present on the active X. Second, the macrosatellite DXZ4 emerges as a singular boundary that suppresses physical interactions between two large TAD-depleted "megadomains." Third, DXZ4 reaches across several megabases to form "superloops" with two other X-linked tandem repeats, FIRRE and ICCE, which also loop to each other. Although all three structural features are conserved across rodents and primates, deletion of mouse and human orthologs of DXZ4 and FIRRE from the inactive X have revealed limited impact on X chromosome inactivation (XCI) and escape in vitro. In contrast, loss of Xist or SMCHD1 have been shown to impair TAD erasure and gene silencing on the inactive X. In this perspective, we summarize these results in the context of new research describing disruption of X-linked tandem repeats in vivo, and discuss their possible molecular roles through the lens of evolutionary conservation and clinical genetics. As a null hypothesis, we consider whether the conservation of some structural features on the inactive X may reflect selection for X-linked tandem repeats on account of necessary cis- and trans-regulatory roles they may play on the active X, rather than the inactive X. Additional hypotheses invoking a role for X-linked tandem repeats on X reactivation, for example in the germline or totipotency, remain to be assessed in multiple developmental models spanning mammalian evolution.
Collapse
Affiliation(s)
- Prakhar Bansal
- Department of Genetics and Genome Sciences, School of Medicine, UCONN Health, University of Connecticut, Farmington, CT, United States
- Institute for Systems Genomics, University of Connecticut, Farmington, CT, United States
| | - Yuvabharath Kondaveeti
- Department of Genetics and Genome Sciences, School of Medicine, UCONN Health, University of Connecticut, Farmington, CT, United States
- Institute for Systems Genomics, University of Connecticut, Farmington, CT, United States
| | - Stefan F. Pinter
- Department of Genetics and Genome Sciences, School of Medicine, UCONN Health, University of Connecticut, Farmington, CT, United States
- Institute for Systems Genomics, University of Connecticut, Farmington, CT, United States
| |
Collapse
|
110
|
Finn EH, Misteli T. Molecular basis and biological function of variability in spatial genome organization. Science 2019; 365:365/6457/eaaw9498. [PMID: 31488662 DOI: 10.1126/science.aaw9498] [Citation(s) in RCA: 142] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 07/22/2019] [Indexed: 12/14/2022]
Abstract
The complex three-dimensional organization of genomes in the cell nucleus arises from a wide range of architectural features including DNA loops, chromatin domains, and higher-order compartments. Although these features are universally present in most cell types and tissues, recent single-cell biochemistry and imaging approaches have demonstrated stochasticity in transcription and high variability of chromatin architecture in individual cells. We review the occurrence, mechanistic basis, and functional implications of stochasticity in genome organization. We summarize recent observations on cell- and allele-specific variability of genome architecture, discuss the nature of extrinsic and intrinsic sources of variability in genome organization, and highlight potential implications of structural heterogeneity for genome function.
Collapse
Affiliation(s)
| | - Tom Misteli
- National Cancer Institute, Bethesda, MD 20892, USA.
| |
Collapse
|
111
|
Holla S, Dhakshnamoorthy J, Folco HD, Balachandran V, Xiao H, Sun LL, Wheeler D, Zofall M, Grewal SIS. Positioning Heterochromatin at the Nuclear Periphery Suppresses Histone Turnover to Promote Epigenetic Inheritance. Cell 2019; 180:150-164.e15. [PMID: 31883795 DOI: 10.1016/j.cell.2019.12.004] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 09/29/2019] [Accepted: 12/04/2019] [Indexed: 01/09/2023]
Abstract
In eukaryotes, heterochromatin is generally located at the nuclear periphery. This study investigates the biological significance of perinuclear positioning for heterochromatin maintenance and gene silencing. We identify the nuclear rim protein Amo1NUPL2 as a factor required for the propagation of heterochromatin at endogenous and ectopic sites in the fission yeast genome. Amo1 associates with the Rix1PELP1-containing RNA processing complex RIXC and with the histone chaperone complex FACT. RIXC, which binds to heterochromatin protein Swi6HP1 across silenced chromosomal domains and to surrounding boundary elements, connects heterochromatin with Amo1 at the nuclear periphery. In turn, the Amo1-enriched subdomain is critical for Swi6 association with FACT that precludes histone turnover to promote gene silencing and preserve epigenetic stability of heterochromatin. In addition to uncovering conserved factors required for perinuclear positioning of heterochromatin, these analyses elucidate a mechanism by which a peripheral subdomain enforces stable gene repression and maintains heterochromatin in a heritable manner.
Collapse
Affiliation(s)
- Sahana Holla
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jothy Dhakshnamoorthy
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - H Diego Folco
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Vanivilasini Balachandran
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Hua Xiao
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ling-Ling Sun
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - David Wheeler
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Martin Zofall
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Shiv I S Grewal
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
112
|
Khosraviani N, Ostrowski LA, Mekhail K. Roles for Non-coding RNAs in Spatial Genome Organization. Front Cell Dev Biol 2019; 7:336. [PMID: 31921848 PMCID: PMC6930868 DOI: 10.3389/fcell.2019.00336] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 11/29/2019] [Indexed: 12/15/2022] Open
Abstract
Genetic loci are non-randomly arranged in the nucleus of the cell. This order, which is important to overall genome expression and stability, is maintained by a growing number of factors including the nuclear envelope, various genetic elements and dedicated protein complexes. Here, we review evidence supporting roles for non-coding RNAs (ncRNAs) in the regulation of spatial genome organization and its impact on gene expression and cell survival. Specifically, we discuss how ncRNAs from single-copy and repetitive DNA loci contribute to spatial genome organization by impacting perinuclear chromosome tethering, major nuclear compartments, chromatin looping, and various chromosomal structures. Overall, our analysis of the literature highlights central functions for ncRNAs and their transcription in the modulation of spatial genome organization with connections to human health and disease.
Collapse
Affiliation(s)
- Negin Khosraviani
- Department of Laboratory Medicine and Pathobiology, MaRS Centre, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Lauren A. Ostrowski
- Department of Laboratory Medicine and Pathobiology, MaRS Centre, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Karim Mekhail
- Department of Laboratory Medicine and Pathobiology, MaRS Centre, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Canada Research Chairs Program, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
113
|
Wang S, Mao C, Liu S. Peptides encoded by noncoding genes: challenges and perspectives. Signal Transduct Target Ther 2019; 4:57. [PMID: 31871775 PMCID: PMC6908703 DOI: 10.1038/s41392-019-0092-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 10/17/2019] [Accepted: 10/27/2019] [Indexed: 01/01/2023] Open
Abstract
In recent years, noncoding gene (NCG) translation events have been frequently discovered. The resultant peptides, as novel findings in the life sciences, perform unexpected functions of increasingly recognized importance in many fundamental biological and pathological processes. The emergence of these novel peptides, in turn, has advanced the field of genomics while indispensably aiding living organisms. The peptides from NCGs serve as important links between extracellular stimuli and intracellular adjustment mechanisms. These peptides are also important entry points for further exploration of the mysteries of life that may trigger a new round of revolutionary biotechnological discoveries. Insights into NCG-derived peptides will assist in understanding the secrets of life and the causes of diseases, and will also open up new paths to the treatment of diseases such as cancer. Here, a critical review is presented on the action modes and biological functions of the peptides encoded by NCGs. The challenges and future trends in searching for and studying NCG peptides are also critically discussed.
Collapse
Affiliation(s)
- Shuo Wang
- Changhai Hospital, Shanghai, 200433 China
| | - Chuanbin Mao
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, Institute for Biomedical Engineering, Science and Technology, University of Oklahoma, 101 Stephenson Parkway, Norman, OK 73019-5300 USA
| | | |
Collapse
|
114
|
Cerase A, Armaos A, Neumayer C, Avner P, Guttman M, Tartaglia GG. Phase separation drives X-chromosome inactivation: a hypothesis. Nat Struct Mol Biol 2019; 26:331-334. [PMID: 31061525 DOI: 10.1038/s41594-019-0223-0] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Andrea Cerase
- EMBL-Rome, Monterotondo, Italy. .,Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK.
| | - Alexandros Armaos
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Christoph Neumayer
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | | | - Mitchell Guttman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA.
| | - Gian Gaetano Tartaglia
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain. .,ICREA and UPF, Barcelona, Spain. .,Department of Biology 'Charles Darwin', Sapienza University of Rome, Rome, Italy. .,Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, Genoa, Italy.
| |
Collapse
|
115
|
Abstract
The non-coding RNA Xist regulates the process of X chromosome inactivation, in which one of the two X chromosomes present in cells of early female mammalian embryos is selectively and coordinately shut down. Remarkably Xist RNA functions in cis, affecting only the chromosome from which it is transcribed. This feature is attributable to the unique propensity of Xist RNA to accumulate over the territory of the chromosome on which it is synthesized, contrasting with the majority of RNAs that are rapidly exported out of the cell nucleus. In this review I provide an overview of the progress that has been made towards understanding localized accumulation of Xist RNA, drawing attention to evidence that some other non-coding RNAs probably function in a highly analogous manner. I describe a simple model for localized accumulation of Xist RNA and discuss key unresolved questions that need to be addressed in future studies.
Collapse
Affiliation(s)
- Neil Brockdorff
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| |
Collapse
|
116
|
Nguyen TMT, Kim J, Doan TT, Lee MW, Lee M. APEX Proximity Labeling as a Versatile Tool for Biological Research. Biochemistry 2019; 59:260-269. [PMID: 31718172 DOI: 10.1021/acs.biochem.9b00791] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Most proteins are specifically localized in membrane-encapsulated organelles or non-membrane-bound compartments. The subcellular localization of proteins facilitates their functions and integration into functional networks; therefore, protein localization is tightly regulated in diverse biological contexts. However, protein localization has been mainly analyzed through immunohistochemistry or the fractionation of subcellular compartments, each of which has major drawbacks. Immunohistochemistry can examine only a handful of proteins at a time, and fractionation inevitably relies on the lysis of cells, which disrupts native cellular conditions. Recently, an engineered ascorbate peroxidase (APEX)-based proximity labeling technique combined with mass spectrometry was developed, which allows for temporally and spatially resolved proteomic mapping. In the presence of H2O2, engineered APEX oxidizes biotin-phenols into biotin-phenoxyl radicals, and these short-lived radicals biotinylate electron-rich amino acids within a radius of several nanometers. Biotinylated proteins are subsequently enriched by streptavidin and identified by mass spectrometry. This permits the sensitive and efficient labeling of proximal proteins around locally expressed APEX. Through the targeted expression of APEX in the subcellular region of interest, proteomic profiling of submitochondrial spaces, the outer mitochondrial membrane, the endoplasmic reticulum (ER)-mitochondrial contact, and the ER membrane has been performed. Furthermore, this method has been modified to define interaction networks in the vicinity of target proteins and has also been applied to analyze the spatial transcriptome. In this Perspective, we provide an outline of this newly developed technique and discuss its potential applications to address diverse biological questions.
Collapse
Affiliation(s)
- Thanh My Thi Nguyen
- Soonchunhyang Institute of Medi-bio Science , Soonchunhyang University , Cheonan-si , Chungcheongnam-do 31151 , Republic of Korea
| | - Junhyung Kim
- Soonchunhyang Institute of Medi-bio Science , Soonchunhyang University , Cheonan-si , Chungcheongnam-do 31151 , Republic of Korea
| | - Thi Tram Doan
- Soonchunhyang Institute of Medi-bio Science , Soonchunhyang University , Cheonan-si , Chungcheongnam-do 31151 , Republic of Korea
| | - Min-Woo Lee
- Soonchunhyang Institute of Medi-bio Science , Soonchunhyang University , Cheonan-si , Chungcheongnam-do 31151 , Republic of Korea
| | - Mihye Lee
- Soonchunhyang Institute of Medi-bio Science , Soonchunhyang University , Cheonan-si , Chungcheongnam-do 31151 , Republic of Korea
| |
Collapse
|
117
|
Mishra K, Kanduri C. Understanding Long Noncoding RNA and Chromatin Interactions: What We Know So Far. Noncoding RNA 2019; 5:ncrna5040054. [PMID: 31817041 PMCID: PMC6958424 DOI: 10.3390/ncrna5040054] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 11/25/2019] [Accepted: 11/29/2019] [Indexed: 12/12/2022] Open
Abstract
With the evolution of technologies that deal with global detection of RNAs to probing of lncRNA-chromatin interactions and lncRNA-chromatin structure regulation, we have been updated with a comprehensive repertoire of chromatin interacting lncRNAs, their genome-wide chromatin binding regions and mode of action. Evidence from these new technologies emphasize that chromatin targeting of lncRNAs is a prominent mechanism and that these chromatin targeted lncRNAs exert their functionality by fine tuning chromatin architecture resulting in an altered transcriptional readout. Currently, there are no unifying principles that define chromatin association of lncRNAs, however, evidence from a few chromatin-associated lncRNAs show presence of a short common sequence for chromatin targeting. In this article, we review how technological advancements contributed in characterizing chromatin associated lncRNAs, and discuss the potential mechanisms by which chromatin associated lncRNAs execute their functions.
Collapse
Affiliation(s)
- Kankadeb Mishra
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, 40530 Gothenburg, Sweden;
- Department of Cell Biology, Memorial Sloan Kettering Cancer Centre, Rockefeller Research Laboratory, 430 East 67th Street, RRL 445, New York, NY 10065, USA
| | - Chandrasekhar Kanduri
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, 40530 Gothenburg, Sweden;
- Correspondence:
| |
Collapse
|
118
|
McDonel P, Guttman M. Approaches for Understanding the Mechanisms of Long Noncoding RNA Regulation of Gene Expression. Cold Spring Harb Perspect Biol 2019; 11:11/12/a032151. [PMID: 31791999 DOI: 10.1101/cshperspect.a032151] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Mammalian genomes encode tens of thousands of long noncoding RNAs (lncRNAs) that have been implicated in a diverse array of biological processes and human diseases. In recent years, the development of new tools for studying lncRNAs has enabled important progress in defining the mechanisms by which Xist and other lncRNAs function. This collective work provides a framework for how to define the mechanisms by which lncRNAs act. This includes defining lncRNA function, identifying and characterizing lncRNA-protein interactions, and lncRNA localization in the cell. In this review, we discuss various experimental approaches for deciphering lncRNA mechanisms and discuss issues and limitations in interpreting these results. We explore what these data can reveal about lncRNA function and mechanism as well as emerging insights into lncRNA biology that have been derived from these studies.
Collapse
Affiliation(s)
- Patrick McDonel
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, Massachusetts 01655
| | - Mitchell Guttman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125
| |
Collapse
|
119
|
Dong C, Fischer LA, Theunissen TW. Recent insights into the naïve state of human pluripotency and its applications. Exp Cell Res 2019; 385:111645. [PMID: 31585117 DOI: 10.1016/j.yexcr.2019.111645] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 09/12/2019] [Accepted: 09/21/2019] [Indexed: 01/06/2023]
Abstract
The past decade has seen significant interest in the isolation of pluripotent stem cells corresponding to various stages of mammalian embryonic development. Two distinct and well-defined pluripotent states can be derived from mouse embryos: "naïve" pluripotent cells with properties of pre-implantation epiblast, and "primed" pluripotent cells, resembling post-implantation epiblast. Prompted by the successful interconversion between these two stem cell states in the mouse system, several groups have devised strategies for inducing a naïve state of pluripotency in human pluripotent stem cells. Here, we review recent insights into the naïve state of human pluripotency, focusing on two methods that confer defining transcriptomic and epigenomic signatures of the pre-implantation embryo. The isolation of naïve human pluripotent stem cells offers a window into early developmental mechanisms that cannot be adequately modeled in primed cells, such as X chromosome reactivation, metabolic reprogramming, and the regulation of hominid-specific transposable elements. We outline key unresolved questions regarding naïve human pluripotency, including its extrinsic and intrinsic control mechanisms, potential for embryonic and extraembryonic differentiation, and general utility as a model system for human development and disease.
Collapse
Affiliation(s)
- Chen Dong
- Department of Developmental Biology and Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Laura A Fischer
- Department of Developmental Biology and Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Thorold W Theunissen
- Department of Developmental Biology and Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA.
| |
Collapse
|
120
|
Ooi YS, Majzoub K, Flynn RA, Mata MA, Diep J, Li JK, van Buuren N, Rumachik N, Johnson AG, Puschnik AS, Marceau CD, Mlera L, Grabowski JM, Kirkegaard K, Bloom ME, Sarnow P, Bertozzi CR, Carette JE. An RNA-centric dissection of host complexes controlling flavivirus infection. Nat Microbiol 2019; 4:2369-2382. [PMID: 31384002 PMCID: PMC6879806 DOI: 10.1038/s41564-019-0518-2] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 04/23/2019] [Indexed: 12/26/2022]
Abstract
Flaviviruses, including dengue virus (DENV) and Zika virus (ZIKV), cause severe human disease. Co-opting cellular factors for viral translation and viral genome replication at the endoplasmic reticulum is a shared replication strategy, despite different clinical outcomes. Although the protein products of these viruses have been studied in depth, how the RNA genomes operate inside human cells is poorly understood. Using comprehensive identification of RNA-binding proteins by mass spectrometry (ChIRP-MS), we took an RNA-centric viewpoint of flaviviral infection and identified several hundred proteins associated with both DENV and ZIKV genomic RNA in human cells. Genome-scale knockout screens assigned putative functional relevance to the RNA-protein interactions observed by ChIRP-MS. The endoplasmic-reticulum-localized RNA-binding proteins vigilin and ribosome-binding protein 1 directly bound viral RNA and each acted at distinct stages in the life cycle of flaviviruses. Thus, this versatile strategy can elucidate features of human biology that control the pathogenesis of clinically relevant viruses.
Collapse
Affiliation(s)
- Yaw Shin Ooi
- Department of Microbiology and Immunology, Stanford University, Stanford, CA, USA
| | - Karim Majzoub
- Department of Microbiology and Immunology, Stanford University, Stanford, CA, USA
- INSERM U1110, Institute of Viral and Liver Diseases, University of Strasbourg, Strasbourg, France
| | - Ryan A Flynn
- Department of Chemistry, Stanford University, Stanford, CA, USA.
| | - Miguel A Mata
- Department of Microbiology and Immunology, Stanford University, Stanford, CA, USA
| | - Jonathan Diep
- Department of Microbiology and Immunology, Stanford University, Stanford, CA, USA
| | | | | | - Neil Rumachik
- Department of Chemistry, Stanford University, Stanford, CA, USA
| | - Alex G Johnson
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA, USA
| | - Andreas S Puschnik
- Department of Microbiology and Immunology, Stanford University, Stanford, CA, USA
| | - Caleb D Marceau
- Department of Microbiology and Immunology, Stanford University, Stanford, CA, USA
| | - Luwanika Mlera
- Biology of Vector-Borne Viruses Section, Rocky Mountain Laboratories, NIAID/NIH, Hamilton, MT, USA
| | - Jeffrey M Grabowski
- Biology of Vector-Borne Viruses Section, Rocky Mountain Laboratories, NIAID/NIH, Hamilton, MT, USA
| | | | - Marshall E Bloom
- Biology of Vector-Borne Viruses Section, Rocky Mountain Laboratories, NIAID/NIH, Hamilton, MT, USA
| | - Peter Sarnow
- Department of Microbiology and Immunology, Stanford University, Stanford, CA, USA
| | - Carolyn R Bertozzi
- Department of Chemistry, Stanford University, Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| | - Jan E Carette
- Department of Microbiology and Immunology, Stanford University, Stanford, CA, USA.
| |
Collapse
|
121
|
Liao X, Tang D, Yang H, Chen Y, Chen D, Jia L, Yang L, Chen X. Long Non-coding RNA XIST May Influence Cervical Ossification of the Posterior Longitudinal Ligament Through Regulation of miR-17-5P/AHNAK/BMP2 Signaling Pathway. Calcif Tissue Int 2019; 105:670-680. [PMID: 31511959 DOI: 10.1007/s00223-019-00608-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 08/23/2019] [Indexed: 12/25/2022]
Abstract
Long non-coding RNAs (lncRNAs) play an important role in the development of bone-related diseases. This study was conducted to investigate the role and mechanism of lncRNA X inactive specific transcript (XIST) in the occurrence of cervical ossification of the posterior longitudinal ligament (OPLL). Here, primary human ligament fibroblasts cells (LFCs) were isolated from 30 cases of OPLL and 30 normal cervical posterior longitudinal ligament (non-OPLL) tissues to perform the qPCR and Western blot assay. We found that the mRNA level of lncRNA XIST was significantly increased in OPLL LFCs compared to non-OPLL LFCs. By bioinformatics analysis, we found that lncRNA XIST has four binding sites for miR-17-5p and found that the mRNA level of miR-17-5p was also significantly decreased in OPLL LFCs compared to non-OPLL LFCs. Since AHNAK is the target gene of miR-17-5p, we further found that the expression of AHNAK was significantly reduced in non-OPLL LFCs after being transfected with miR-17-5p mimic. The qPCR results showed that the mRNA expressions of BMP2 and Runx2 were significantly decreased. After being transfected with lncRNA XIST siRNA in the non-OPLL LFCs, the mRNA levels of lncRNA XIST, AHNAK, BMP2, and Runx2 were significantly decreased and the phosphorylated protein of Smad1/5/8 was reduced. After being cultured by mechanical vibration, the mRNA levels of lncRNA XIST, AHNAK, BMP2, Runx2, COL1, OC, OPN, and Phospho1 were significantly increased, but the mRNA expression of miR-17-5p was significantly decreased. The expression of phosphorylated Smad1/5/8 protein was also significantly increased. Together, this study was the first to determine that XIST gene inhibition plays an important role in the occurrence of cervical OPLL, through the mechanism of regulation of miR-17-5P/AHNAK/BMP2 signaling pathway. Thus, XIST may be a potential target that could be modulated for the treatment of cervical OPLL.
Collapse
Affiliation(s)
- Xinyuan Liao
- Spine Center, Department of Orthopaedics, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, 200003, China
| | - Dezhi Tang
- Institute of Spine, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China.
| | - Haisong Yang
- Spine Center, Department of Orthopaedics, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, 200003, China
| | - Yu Chen
- Spine Center, Department of Orthopaedics, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, 200003, China
| | - Deyu Chen
- Spine Center, Department of Orthopaedics, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, 200003, China
| | - Lianshun Jia
- Spine Center, Department of Orthopaedics, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, 200003, China
| | - Lili Yang
- Spine Center, Department of Orthopaedics, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, 200003, China.
| | - Xiongsheng Chen
- Spine Center, Department of Orthopaedics, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, 200003, China.
| |
Collapse
|
122
|
Hanly D, Esteller M, Berdasco M. Altered Long Non-coding RNA Expression in Cancer: Potential Biomarkers and Therapeutic Targets? ACTA ACUST UNITED AC 2019. [DOI: 10.1007/7355_2019_83] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
123
|
Fang H, Disteche CM, Berletch JB. X Inactivation and Escape: Epigenetic and Structural Features. Front Cell Dev Biol 2019; 7:219. [PMID: 31632970 PMCID: PMC6779695 DOI: 10.3389/fcell.2019.00219] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 09/18/2019] [Indexed: 12/27/2022] Open
Abstract
X inactivation represents a complex multi-layer epigenetic mechanism that profoundly modifies chromatin composition and structure of one X chromosome in females. The heterochromatic inactive X chromosome adopts a unique 3D bipartite structure and a location close to the nuclear periphery or the nucleolus. X-linked lncRNA loci and their transcripts play important roles in the recruitment of proteins that catalyze chromatin and DNA modifications for silencing, as well as in the control of chromatin condensation and location of the inactive X chromosome. A subset of genes escapes X inactivation, raising questions about mechanisms that preserve their expression despite being embedded within heterochromatin. Escape gene expression differs between males and females, which can lead to physiological sex differences. We review recent studies that emphasize challenges in understanding the role of lncRNAs in the control of epigenetic modifications, structural features and nuclear positioning of the inactive X chromosome. Second, we highlight new findings about the distribution of genes that escape X inactivation based on single cell studies, and discuss the roles of escape genes in eliciting sex differences in health and disease.
Collapse
Affiliation(s)
- He Fang
- Department of Pathology, University of Washington, Seattle, WA, United States
| | - Christine M. Disteche
- Department of Pathology, University of Washington, Seattle, WA, United States
- Department of Medicine, University of Washington, Seattle, WA, United States
| | - Joel B. Berletch
- Department of Pathology, University of Washington, Seattle, WA, United States
| |
Collapse
|
124
|
Zhao K, Cheng S, Miao N, Xu P, Lu X, Zhang Y, Wang M, Ouyang X, Yuan X, Liu W, Lu X, Zhou P, Gu J, Zhang Y, Qiu D, Jin Z, Su C, Peng C, Wang JH, Dong MQ, Wan Y, Ma J, Cheng H, Huang Y, Yu Y. A Pandas complex adapted for piRNA-guided transcriptional silencing and heterochromatin formation. Nat Cell Biol 2019; 21:1261-1272. [PMID: 31570835 DOI: 10.1038/s41556-019-0396-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 08/22/2019] [Indexed: 11/09/2022]
Abstract
The repression of transposons by the Piwi-interacting RNA (piRNA) pathway is essential to protect animal germ cells. In Drosophila, Panoramix enforces transcriptional silencing by binding to the target-engaged Piwi-piRNA complex, although the precise mechanisms by which this occurs remain elusive. Here, we show that Panoramix functions together with a germline-specific paralogue of a nuclear export factor, dNxf2, and its cofactor dNxt1 (p15), to suppress transposon expression. The transposon RNA-binding protein dNxf2 is required for animal fertility and Panoramix-mediated silencing. Transient tethering of dNxf2 to nascent transcripts leads to their nuclear retention. The NTF2 domain of dNxf2 competes dNxf1 (TAP) off nucleoporins, a process required for proper RNA export. Thus, dNxf2 functions in a Panoramix-dNxf2-dependent TAP/p15 silencing (Pandas) complex that counteracts the canonical RNA exporting machinery and restricts transposons to the nuclear peripheries. Our findings may have broader implications for understanding how RNA metabolism modulates heterochromatin formation.
Collapse
Affiliation(s)
- Kang Zhao
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Sha Cheng
- University of Chinese Academy of Sciences, Beijing, China.,State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
| | - Na Miao
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Ping Xu
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,National Engineering Laboratory of AIDS Vaccine, Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, China
| | - Xiaohua Lu
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yuhan Zhang
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China.,State Key Laboratory of Genetic Engineering, Department of Biochemistry, School of Life Sciences, Fudan University, Shanghai, China
| | - Ming Wang
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Xuan Ouyang
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Xun Yuan
- University of Chinese Academy of Sciences, Beijing, China.,State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
| | - Weiwei Liu
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Xin Lu
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Peng Zhou
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Jiaqi Gu
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,State Key Laboratory of Genetic Engineering, Department of Biochemistry, School of Life Sciences, Fudan University, Shanghai, China
| | - Yiqun Zhang
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Ding Qiu
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Zhaohui Jin
- University of Chinese Academy of Sciences, Beijing, China.,State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
| | - Chen Su
- National Facility for Protein Science in Shanghai, Zhangjiang Lab, Shanghai Science Research Center, Chinese Academy of Sciences, Shanghai, China
| | - Chao Peng
- National Facility for Protein Science in Shanghai, Zhangjiang Lab, Shanghai Science Research Center, Chinese Academy of Sciences, Shanghai, China
| | - Jian-Hua Wang
- Graduate School of Peking Union Medical College and Chinese Academy of Sciences of Medical Sciences, Beijing, China
| | - Meng-Qiu Dong
- National Institute of Biological Sciences, Beijing, China.,Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, China
| | - Youzhong Wan
- National Engineering Laboratory of AIDS Vaccine, Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, China
| | - Jinbiao Ma
- State Key Laboratory of Genetic Engineering, Department of Biochemistry, School of Life Sciences, Fudan University, Shanghai, China
| | - Hong Cheng
- University of Chinese Academy of Sciences, Beijing, China.,State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
| | - Ying Huang
- University of Chinese Academy of Sciences, Beijing, China. .,State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China. .,Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai Research Center of Biliary Tract Disease, Department of General Surgery, Xinhua Hospital, affiliated with Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Yang Yu
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China. .,University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
125
|
Abstract
In mammals, dosage compensation of sex chromosomal genes between females (XX) and males (XY) is achieved through X-chromosome inactivation (XCI). The X-linked X-inactive-specific transcript (Xist) long noncoding RNA is indispensable for XCI and initiates the process early during development by spreading in cis across the X chromosome from which it is transcribed. During XCI, Xist RNA triggers gene silencing, recruits a plethora of chromatin modifying factors, and drives a major structural reorganization of the X chromosome. Here, we review our knowledge of the multitude of epigenetic events orchestrated by Xist RNA to allow female mammals to survive through embryonic development by establishing and maintaining proper dosage compensation. In particular, we focus on recent studies characterizing the interaction partners of Xist RNA, and we discuss how they have affected the field by addressing long-standing controversies or by giving rise to new research perspectives that are currently being explored. This review is dedicated to the memory of Denise Barlow, pioneer of genomic imprinting and functional long noncoding RNAs (lncRNAs), whose work has revolutionized the epigenetics field and continues to inspire generations of scientists.
Collapse
|
126
|
Zuo K, Zhao Y, Zheng Y, Chen D, Liu X, Du S, Liu Q. Long non-coding RNA XIST promotes malignant behavior of epithelial ovarian cancer. Onco Targets Ther 2019; 12:7261-7267. [PMID: 31564909 PMCID: PMC6733346 DOI: 10.2147/ott.s204369] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 07/16/2019] [Indexed: 12/29/2022] Open
Abstract
Purpose This study aims to investigate the functional role of long non-coding RNA XIST in epithelial ovarian cancer (EOC). Methods Detection of XIST expression levels in EOC tissues and cell lines was done using qRT-PCR. The relationship between XIST expression and clinicopathological features of EOC patients was compared and analyzed. The cumulative survival rates were calculated using Kaplan-Meier. A Cox hazard model was used to identify risk factors for survival. Lastly, the effects of XIST on EOC cell were assessed in vitro. Results XIST was up-regulated in EOC tissues and cell lines. The expression of XIST was closely related to the tumor grade, distant metastasis, and FIGO stage in the EOC patients. The Cox regression analysis showed that high XIST expression was an independent predictor of prognosis in patients with EOC. In in vitro experiments, reducing XIST expression significantly suppressed cell proliferation, migration and invasion in EOC cells. Conclusion XIST highly expressed in the EOC and plays a role in tumor promotion, which may be a potential target for the treatment of EOC.
Collapse
Affiliation(s)
- Kun Zuo
- Gansu Provincial Maternity and Child-care Hospital, Lanzhou 730050, People's Republic of China
| | - Youhong Zhao
- Gansu Provincial Maternity and Child-care Hospital, Lanzhou 730050, People's Republic of China
| | - Yukun Zheng
- Department of Obstetrics and Gynecology, The First Hospital of Lanzhou University, Lanzhou 730000, People's Republic of China
| | - De Chen
- Gansu Provincial Maternity and Child-care Hospital, Lanzhou 730050, People's Republic of China
| | - Xiaoli Liu
- Gansu Provincial Maternity and Child-care Hospital, Lanzhou 730050, People's Republic of China
| | - Song Du
- Gansu Provincial Maternity and Child-care Hospital, Lanzhou 730050, People's Republic of China
| | - Qing Liu
- Gansu Provincial Maternity and Child-care Hospital, Lanzhou 730050, People's Republic of China
| |
Collapse
|
127
|
Migeon BR. The Non-random Location of Autosomal Genes That Participate in X Inactivation. Front Cell Dev Biol 2019; 7:144. [PMID: 31555643 PMCID: PMC6691350 DOI: 10.3389/fcell.2019.00144] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 07/11/2019] [Indexed: 12/15/2022] Open
Abstract
Mammals compensate for sex differences in the number of X chromosomes by inactivating all but one X chromosome. Although they differ in the details of X inactivation, all mammals use long non-coding RNAs in the silencing process. By transcribing XIST RNA, the human inactive X chromosome has a prime role in X-dosage compensation. Yet, the autosomes also play an important role in the process. Multiple genes on human chromosome 1 interact with XIST RNA to silence the future inactive Xs. Also, it is likely that multiple genes on human chromosome 19 prevent the silencing of the single active X - a highly dosage sensitive process. Previous studies of the organization of chromosomes in the nucleus and their genomic interactions indicate that most contacts are intra-chromosomal. Co-ordinate transcription and dosage regulation can be achieved by clustering of genes and mingling of interacting chromosomes in 3D space. Unlike the genes on chromosome 1, those within the critical eight MB region of chromosome 19, have remained together in all mammals assayed, except rodents, indicating that their proximity in non-rodent mammals is evolutionarily conserved. I propose that the autosomal genes that play key roles in the process of X inactivation are non-randomly distributed in the genome and that this arrangement facilitates their coordinate regulation.
Collapse
Affiliation(s)
- Barbara R. Migeon
- Departments of Genetic Medicine and Pediatrics, The Johns Hopkins University, Baltimore, MD, United States
| |
Collapse
|
128
|
Kim K, Eom J, Jung I. Characterization of Structural Variations in the Context of 3D Chromatin Structure. Mol Cells 2019; 42:512-522. [PMID: 31362468 PMCID: PMC6681866 DOI: 10.14348/molcells.2019.0137] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 07/19/2019] [Accepted: 07/20/2019] [Indexed: 01/17/2023] Open
Abstract
Chromosomes located in the nucleus form discrete units of genetic material composed of DNA and protein complexes. The genetic information is encoded in linear DNA sequences, but its interpretation requires an understanding of threedimensional (3D) structure of the chromosome, in which distant DNA sequences can be juxtaposed by highly condensed chromatin packing in the space of nucleus to precisely control gene expression. Recent technological innovations in exploring higher-order chromatin structure have uncovered organizational principles of the 3D genome and its various biological implications. Very recently, it has been reported that large-scale genomic variations may disrupt higher-order chromatin organization and as a consequence, greatly contribute to disease-specific gene regulation for a range of human diseases. Here, we review recent developments in studying the effect of structural variation in gene regulation, and the detection and the interpretation of structural variations in the context of 3D chromatin structure.
Collapse
Affiliation(s)
- Kyukwang Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141,
Korea
| | - Junghyun Eom
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141,
Korea
| | - Inkyung Jung
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141,
Korea
| |
Collapse
|
129
|
Lee DM, Trotman JB, Cherney RE, Inoue K, Schertzer MD, Bischoff SR, Cowley DO, Calabrese JM. RETRACTED: A 5' fragment of Xist can sequester RNA produced from adjacent genes on chromatin. Nucleic Acids Res 2019; 47:7049-7062. [PMID: 31114903 PMCID: PMC6648342 DOI: 10.1093/nar/gkz432] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Revised: 04/18/2019] [Accepted: 05/09/2019] [Indexed: 12/15/2022] Open
Abstract
Xist requires Repeat-A, a protein-binding module in its first two kilobases (2kb), to repress transcription. We report that when expressed as a standalone transcript in mouse embryonic stem cells (ESCs), the first 2kb of Xist (Xist-2kb) does not induce transcriptional silencing. Instead, Xist-2kb sequesters RNA produced from adjacent genes on chromatin. Sequestration does not spread beyond adjacent genes, requires the same sequence elements in Repeat-A that full-length Xist requires to repress transcription and can be induced by lncRNAs with similar sequence composition to Xist-2kb. We did not detect sequestration by full-length Xist, but we did detect it by mutant forms of Xist with attenuated transcriptional silencing capability. Xist-2kb associated with SPEN, a Repeat-A binding protein required for Xist-induced transcriptional silencing, but SPEN was not necessary for sequestration. Thus, when expressed in mouse ESCs, a 5' fragment of Xist that contains Repeat-A sequesters RNA from adjacent genes on chromatin and associates with the silencing factor SPEN, but it does not induce transcriptional silencing. Instead, Xist-induced transcriptional silencing requires synergy between Repeat-A and additional sequence elements in Xist. We propose that sequestration is mechanistically related to the Repeat-A dependent stabilization and tethering of Xist near actively transcribed regions of chromatin.
Collapse
Affiliation(s)
- David M Lee
- Department of Pharmacology and Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Jackson B Trotman
- Department of Pharmacology and Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Rachel E Cherney
- Department of Pharmacology and Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Kaoru Inoue
- Department of Pharmacology and Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Megan D Schertzer
- Department of Pharmacology and Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Steven R Bischoff
- Animal Models Core, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Dale O Cowley
- Animal Models Core, University of North Carolina, Chapel Hill, NC 27599, USA
| | - J Mauro Calabrese
- Department of Pharmacology and Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA
| |
Collapse
|
130
|
Buchwalter A, Kaneshiro JM, Hetzer MW. Coaching from the sidelines: the nuclear periphery in genome regulation. Nat Rev Genet 2019; 20:39-50. [PMID: 30356165 DOI: 10.1038/s41576-018-0063-5] [Citation(s) in RCA: 136] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The genome is packaged and organized nonrandomly within the 3D space of the nucleus to promote efficient gene expression and to faithfully maintain silencing of heterochromatin. The genome is enclosed within the nucleus by the nuclear envelope membrane, which contains a set of proteins that actively participate in chromatin organization and gene regulation. Technological advances are providing views of genome organization at unprecedented resolution and are beginning to reveal the ways that cells co-opt the structures of the nuclear periphery for nuclear organization and gene regulation. These genome regulatory roles of proteins of the nuclear periphery have important influences on development, disease and ageing.
Collapse
Affiliation(s)
- Abigail Buchwalter
- Molecular and Cell Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA.,Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, USA.,Department of Physiology, University of California San Francisco, San Francisco, CA, USA
| | - Jeanae M Kaneshiro
- Molecular and Cell Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Martin W Hetzer
- Molecular and Cell Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA.
| |
Collapse
|
131
|
Nesterova TB, Wei G, Coker H, Pintacuda G, Bowness JS, Zhang T, Almeida M, Bloechl B, Moindrot B, Carter EJ, Alvarez Rodrigo I, Pan Q, Bi Y, Song CX, Brockdorff N. Systematic allelic analysis defines the interplay of key pathways in X chromosome inactivation. Nat Commun 2019; 10:3129. [PMID: 31311937 PMCID: PMC6635394 DOI: 10.1038/s41467-019-11171-3] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 06/19/2019] [Indexed: 01/05/2023] Open
Abstract
Xist RNA, the master regulator of X chromosome inactivation, acts in cis to induce chromosome-wide silencing. Whilst recent studies have defined candidate silencing factors, their relative contribution to repressing different genes, and their relationship with one another is poorly understood. Here we describe a systematic analysis of Xist-mediated allelic silencing in mouse embryonic stem cell-based models. Using a machine learning approach we identify distance to the Xist locus and prior gene expression levels as key determinants of silencing efficiency. We go on to show that Spen, recruited through the Xist A-repeat, plays a central role, being critical for silencing of all except a subset of weakly expressed genes. Polycomb, recruited through the Xist B/C-repeat, also plays a key role, favouring silencing of genes with pre-existing H3K27me3 chromatin. LBR and the Rbm15/m6A-methyltransferase complex make only minor contributions to gene silencing. Together our results provide a comprehensive model for Xist-mediated chromosome silencing.
Collapse
Affiliation(s)
- Tatyana B Nesterova
- Developmental Epigenetics, Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - Guifeng Wei
- Developmental Epigenetics, Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - Heather Coker
- Developmental Epigenetics, Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - Greta Pintacuda
- Developmental Epigenetics, Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
- Department of Stem Cell and Regenerative Biology, Harvard University, 7 Divinity Avenue, Cambridge, MA, 02138, USA
| | - Joseph S Bowness
- Developmental Epigenetics, Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - Tianyi Zhang
- Developmental Epigenetics, Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - Mafalda Almeida
- Developmental Epigenetics, Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - Bianca Bloechl
- Developmental Epigenetics, Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - Benoit Moindrot
- Developmental Epigenetics, Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
- I2BC Paris-Sud University, Gif-Sur-Yvette, France
| | - Emma J Carter
- Developmental Epigenetics, Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - Ines Alvarez Rodrigo
- Developmental Epigenetics, Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
- Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK
| | - Qi Pan
- Developmental Epigenetics, Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - Ying Bi
- Ludwig Institute for Cancer Research, Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7FZ, UK
| | - Chun-Xiao Song
- Ludwig Institute for Cancer Research, Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7FZ, UK
| | - Neil Brockdorff
- Developmental Epigenetics, Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK.
| |
Collapse
|
132
|
Fazal FM, Han S, Parker KR, Kaewsapsak P, Xu J, Boettiger AN, Chang HY, Ting AY. Atlas of Subcellular RNA Localization Revealed by APEX-Seq. Cell 2019; 178:473-490.e26. [PMID: 31230715 PMCID: PMC6786773 DOI: 10.1016/j.cell.2019.05.027] [Citation(s) in RCA: 399] [Impact Index Per Article: 66.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 12/31/2018] [Accepted: 05/14/2019] [Indexed: 01/25/2023]
Abstract
We introduce APEX-seq, a method for RNA sequencing based on direct proximity labeling of RNA using the peroxidase enzyme APEX2. APEX-seq in nine distinct subcellular locales produced a nanometer-resolution spatial map of the human transcriptome as a resource, revealing extensive patterns of localization for diverse RNA classes and transcript isoforms. We uncover a radial organization of the nuclear transcriptome, which is gated at the inner surface of the nuclear pore for cytoplasmic export of processed transcripts. We identify two distinct pathways of messenger RNA localization to mitochondria, each associated with specific sets of transcripts for building complementary macromolecular machines within the organelle. APEX-seq should be widely applicable to many systems, enabling comprehensive investigations of the spatial transcriptome.
Collapse
Affiliation(s)
- Furqan M Fazal
- Center for Personal Dynamics Regulomes, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Dermatology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Shuo Han
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Chemistry, Stanford University, Stanford, CA 94305, USA; Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Kevin R Parker
- Center for Personal Dynamics Regulomes, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Dermatology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Pornchai Kaewsapsak
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Chemistry, Stanford University, Stanford, CA 94305, USA; Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Jin Xu
- Center for Personal Dynamics Regulomes, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Dermatology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Alistair N Boettiger
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Howard Y Chang
- Center for Personal Dynamics Regulomes, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Dermatology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, USA.
| | - Alice Y Ting
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Chemistry, Stanford University, Stanford, CA 94305, USA; Department of Biology, Stanford University, Stanford, CA 94305, USA; Chan Zuckerberg Biohub, San Francisco, CA 94158, USA.
| |
Collapse
|
133
|
Zheng H, Xie W. The role of 3D genome organization in development and cell differentiation. Nat Rev Mol Cell Biol 2019; 20:535-550. [DOI: 10.1038/s41580-019-0132-4] [Citation(s) in RCA: 282] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
134
|
Krumm A, Duan Z. Understanding the 3D genome: Emerging impacts on human disease. Semin Cell Dev Biol 2019; 90:62-77. [PMID: 29990539 PMCID: PMC6329682 DOI: 10.1016/j.semcdb.2018.07.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 07/03/2018] [Indexed: 12/13/2022]
Abstract
Recent burst of new technologies that allow for quantitatively delineating chromatin structure has greatly expanded our understanding of how the genome is organized in the three-dimensional (3D) space of the nucleus. It is now clear that the hierarchical organization of the eukaryotic genome critically impacts nuclear activities such as transcription, replication, as well as cellular and developmental events such as cell cycle, cell fate decision and embryonic development. In this review, we discuss new insights into how the structural features of the 3D genome hierarchy are established and maintained, how this hierarchy undergoes dynamic rearrangement during normal development and how its perturbation will lead to human disease, highlighting the accumulating evidence that links the diverse 3D genome architecture components to a multitude of human diseases and the emerging mechanisms by which 3D genome derangement causes disease phenotypes.
Collapse
Affiliation(s)
- Anton Krumm
- Department of Microbiology, University of Washington, USA.
| | - Zhijun Duan
- Institute for Stem Cell and Regenerative Medicine, University of Washington, USA; Division of Hematology, Department of Medicine, University of Washington, USA.
| |
Collapse
|
135
|
The bipartite TAD organization of the X-inactivation center ensures opposing developmental regulation of Tsix and Xist. Nat Genet 2019; 51:1024-1034. [PMID: 31133748 PMCID: PMC6551226 DOI: 10.1038/s41588-019-0412-0] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Accepted: 04/04/2019] [Indexed: 01/08/2023]
Abstract
The mouse X-inactivation center (Xic) locus represents a powerful model for understanding the links between genome architecture and gene regulation, with the non-coding genes Xist and Tsix showing opposite developmental expression patterns while being organized as an overlapping sense/antisense unit. The Xic is organized into two topologically associating domains (TADs) but the role of this architecture in orchestrating cis-regulatory information remains elusive. To explore this, we generated genomic inversions that swap the Xist/Tsix transcriptional unit and place their promoters in each other’s TAD. We found that this led to a switch in their expression dynamics: Xist became precociously and ectopically up-regulated, both in male and female pluripotent cells, while Tsix expression aberrantly persisted during differentiation. The topological partitioning of the Xic is thus critical to ensure proper developmental timing of X inactivation. Our study illustrates how the genomic architecture of cis-regulatory landscapes can affect the regulation of mammalian developmental processes.
Collapse
|
136
|
Abstract
A diverse catalog of long noncoding RNAs (lncRNAs), which lack protein-coding potential, are transcribed from the mammalian genome. They are emerging as important regulators in gene expression networks by controlling nuclear architecture and transcription in the nucleus and by modulating mRNA stability, translation and post-translational modifications in the cytoplasm. In this Review, we highlight recent progress in cellular functions of lncRNAs at the molecular level in mammalian cells.
Collapse
|
137
|
Shields EJ, Petracovici AF, Bonasio R. lncRedibly versatile: biochemical and biological functions of long noncoding RNAs. Biochem J 2019; 476:1083-1104. [PMID: 30971458 PMCID: PMC6745715 DOI: 10.1042/bcj20180440] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 02/28/2019] [Accepted: 03/19/2019] [Indexed: 02/07/2023]
Abstract
Long noncoding RNAs (lncRNAs) are transcripts that do not code for proteins, but nevertheless exert regulatory effects on various biochemical pathways, in part via interactions with proteins, DNA, and other RNAs. LncRNAs are thought to regulate transcription and other biological processes by acting, for example, as guides that target proteins to chromatin, scaffolds that facilitate protein-protein interactions and complex formation, and orchestrators of phase-separated compartments. The study of lncRNAs has reached an exciting time, as recent advances in experimental and computational methods allow for genome-wide interrogation of biochemical and biological mechanisms of these enigmatic transcripts. A better appreciation for the biochemical versatility of lncRNAs has allowed us to begin closing gaps in our knowledge of how they act in diverse cellular and organismal contexts, including development and disease.
Collapse
Affiliation(s)
- Emily J Shields
- Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, U.S.A
- Graduate Group in Genomics and Computational Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, U.S.A
| | - Ana F Petracovici
- Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, U.S.A
- Graduate Group in Genetics and Epigenetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, U.S.A
| | - Roberto Bonasio
- Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, U.S.A.
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, U.S.A
| |
Collapse
|
138
|
Flasch DA, Macia Á, Sánchez L, Ljungman M, Heras SR, García-Pérez JL, Wilson TE, Moran JV. Genome-wide de novo L1 Retrotransposition Connects Endonuclease Activity with Replication. Cell 2019; 177:837-851.e28. [PMID: 30955886 DOI: 10.1016/j.cell.2019.02.050] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 01/10/2019] [Accepted: 02/25/2019] [Indexed: 12/18/2022]
Abstract
L1 retrotransposon-derived sequences comprise approximately 17% of the human genome. Darwinian selective pressures alter L1 genomic distributions during evolution, confounding the ability to determine initial L1 integration preferences. Here, we generated high-confidence datasets of greater than 88,000 engineered L1 insertions in human cell lines that act as proxies for cells that accommodate retrotransposition in vivo. Comparing these insertions to a null model, in which L1 endonuclease activity is the sole determinant dictating L1 integration preferences, demonstrated that L1 insertions are not significantly enriched in genes, transcribed regions, or open chromatin. By comparison, we provide compelling evidence that the L1 endonuclease disproportionately cleaves predominant lagging strand DNA replication templates, while lagging strand 3'-hydroxyl groups may prime endonuclease-independent L1 retrotransposition in a Fanconi anemia cell line. Thus, acquisition of an endonuclease domain, in conjunction with the ability to integrate into replicating DNA, allowed L1 to become an autonomous, interspersed retrotransposon.
Collapse
Affiliation(s)
- Diane A Flasch
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, Michigan, 48109, USA.
| | - Ángela Macia
- Department of Genomic Medicine, GENYO: Centre for Genomics and Oncology (Pfizer-University of Granada and Andalusian Regional Government), PTS Granada, 18016, Spain
| | - Laura Sánchez
- Department of Genomic Medicine, GENYO: Centre for Genomics and Oncology (Pfizer-University of Granada and Andalusian Regional Government), PTS Granada, 18016, Spain
| | - Mats Ljungman
- Department of Radiation Oncology, University of Michigan Comprehensive Cancer Center, Translational Oncology Program and Center for RNA Biomedicine, University of Michigan, Ann Arbor, Michigan, 48109, USA; Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, Michigan, 48109, USA
| | - Sara R Heras
- Department of Genomic Medicine, GENYO: Centre for Genomics and Oncology (Pfizer-University of Granada and Andalusian Regional Government), PTS Granada, 18016, Spain
| | - José L García-Pérez
- Department of Genomic Medicine, GENYO: Centre for Genomics and Oncology (Pfizer-University of Granada and Andalusian Regional Government), PTS Granada, 18016, Spain; Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine (IGMM), University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU, UK
| | - Thomas E Wilson
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, Michigan, 48109, USA; Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan, 48109, USA.
| | - John V Moran
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, Michigan, 48109, USA; Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, 48109, USA.
| |
Collapse
|
139
|
Syrett CM, Paneru B, Sandoval-Heglund D, Wang J, Banerjee S, Sindhava V, Behrens EM, Atchison M, Anguera MC. Altered X-chromosome inactivation in T cells may promote sex-biased autoimmune diseases. JCI Insight 2019; 4:126751. [PMID: 30944248 DOI: 10.1172/jci.insight.126751] [Citation(s) in RCA: 120] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 02/14/2019] [Indexed: 12/29/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disorder that predominantly affects women and is driven by autoreactive T cell-mediated inflammation. It is known that individuals with multiple X-chromosomes are at increased risk for developing SLE; however, the mechanisms underlying this genetic basis are unclear. Here, we use single cell imaging to determine the epigenetic features of the inactive X (Xi) in developing thymocytes, mature T cell subsets, and T cells from SLE patients and mice. We show that Xist RNA and heterochromatin modifications transiently reappear at the Xi and are missing in mature single positive T cells. Activation of mature T cells restores Xist RNA and heterochromatin marks simultaneously back to the Xi. Notably, X-chromosome inactivation (XCI) maintenance is altered in T cells of SLE patients and late-stage-disease NZB/W F1 female mice, and we show that X-linked genes are abnormally upregulated in SLE patient T cells. SLE T cells also have altered expression of XIST RNA interactome genes, accounting for perturbations of Xi epigenetic features. Thus, abnormal XCI maintenance is a feature of SLE disease, and we propose that Xist RNA localization at the Xi could be an important factor for maintaining dosage compensation of X-linked genes in T cells.
Collapse
Affiliation(s)
- Camille M Syrett
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Bam Paneru
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Donavon Sandoval-Heglund
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jianle Wang
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Sarmistha Banerjee
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Vishal Sindhava
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Edward M Behrens
- Division of Rheumatology, Children's Hospital of Philadelphia (CHOP), Philadelphia Pennsylvania, USA
| | - Michael Atchison
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Montserrat C Anguera
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
140
|
Lamina Associated Domains and Gene Regulation in Development and Cancer. Cells 2019; 8:cells8030271. [PMID: 30901978 PMCID: PMC6468596 DOI: 10.3390/cells8030271] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 03/18/2019] [Accepted: 03/19/2019] [Indexed: 12/02/2022] Open
Abstract
The nuclear lamina (NL) is a thin meshwork of filaments that lines the inner nuclear membrane, thereby providing a platform for chromatin binding and supporting genome organization. Genomic regions contacting the NL are lamina associated domains (LADs), which contain thousands of genes that are lowly transcribed, and enriched for repressive histone modifications. LADs are dynamic structures that shift spatial positioning in accordance with cell-type specific gene expression changes during differentiation and development. Furthermore, recent studies have linked the disruption of LADs and alterations in the epigenome with the onset of diseases such as cancer. Here we focus on the role of LADs and the NL in gene regulation during development and cancer.
Collapse
|
141
|
Machyna M, Simon MD. Catching RNAs on chromatin using hybridization capture methods. Brief Funct Genomics 2019; 17:96-103. [PMID: 29126220 DOI: 10.1093/bfgp/elx038] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The growing appreciation of the importance of long noncoding RNAs (lncRNAs), together with the awareness that some of these RNAs are associated with chromatin, has inspired the development of methods to detect their sites of interaction on a genome-wide scale at high resolution. Hybridization capture methods combine antisense oligonucleotide hybridization with enrichment of RNA from cross-linked chromatin extracts. These techniques have provided insight into lncRNA localization and the interactions of lncRNAs with protein to better understand biological roles of lncRNAs. Here, we review the core principles of hybridization capture methods, focusing on the three most commonly used protocols: capture hybridization analysis of RNA targets (CHART), chromatin isolation by RNA purification (ChIRP) and RNA affinity purification (RAP). We highlight the general principles of these techniques and discuss how differences in experimental procedures present distinct challenges to help researchers using these protocols or, more generally, interpreting the results of hybridization capture experiments.
Collapse
|
142
|
Sun Y, Ma L. New Insights into Long Non-Coding RNA MALAT1 in Cancer and Metastasis. Cancers (Basel) 2019; 11:cancers11020216. [PMID: 30781877 PMCID: PMC6406606 DOI: 10.3390/cancers11020216] [Citation(s) in RCA: 210] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 02/07/2019] [Accepted: 02/11/2019] [Indexed: 12/12/2022] Open
Abstract
Metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) is one of the most abundant, long non-coding RNAs (lncRNAs) in normal tissues. This lncRNA is highly conserved among mammalian species, and based on in vitro results, has been reported to regulate alternative pre-mRNA splicing and gene expression. However, Malat1 knockout mice develop and grow normally, and do not show alterations in alternative splicing. While MALAT1 was originally described as a prognostic marker of lung cancer metastasis, emerging evidence has linked this lncRNA to other cancers, such as breast cancer, prostate cancer, pancreatic cancer, glioma, and leukemia. The role described for MALAT1 is dependent on the cancer types and the experimental model systems. Notably, different or opposite phenotypes resulting from different strategies for inactivating MALAT1 have been observed, which led to distinct models for MALAT1's functions and mechanisms of action in cancer and metastasis. In this review, we reflect on different experimental strategies used to study MALAT1's functions, and discuss the current mechanistic models of this highly abundant and conserved lncRNA.
Collapse
Affiliation(s)
- Yutong Sun
- Department of Molecular and Cellular Oncology, the University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| | - Li Ma
- Department of Experimental Radiation Oncology, the University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
143
|
Pollex T, Heard E. Nuclear positioning and pairing of X-chromosome inactivation centers are not primary determinants during initiation of random X-inactivation. Nat Genet 2019; 51:285-295. [PMID: 30643252 PMCID: PMC7617203 DOI: 10.1038/s41588-018-0305-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 11/02/2018] [Indexed: 01/29/2023]
Abstract
During X-chromosome inactivation (XCI), one of the two X-inactivation centers (Xics) upregulates the noncoding RNA Xist to initiate chromosomal silencing in cis. How one Xic is chosen to upregulate Xist remains unclear. Models proposed include localization of one Xic at the nuclear envelope or transient homologous Xic pairing followed by asymmetric transcription factor distribution at Xist's antisense Xite/Tsix locus. Here, we use a TetO/TetR system that can inducibly relocate one or both Xics to the nuclear lamina in differentiating mouse embryonic stem cells. We find that neither nuclear lamina localization nor reduction of Xic homologous pairing influences monoallelic Xist upregulation or choice-making. We also show that transient pairing is associated with biallelic expression, not only at Xist/Tsix but also at other X-linked loci that can escape XCI. Finally, we show that Xic pairing occurs in wavelike patterns, coinciding with genome dynamics and the onset of global regulatory programs during early differentiation.
Collapse
Affiliation(s)
- Tim Pollex
- Mammalian Developmental Epigenetics Group, Genetics and Developmental Biology Unit, Institut Curie, PSL Research University, CNRS UMR3215, INSERM U934, Paris, France
- European Molecular Biology Laboratory, Heidelberg, Germany
| | - Edith Heard
- Mammalian Developmental Epigenetics Group, Genetics and Developmental Biology Unit, Institut Curie, PSL Research University, CNRS UMR3215, INSERM U934, Paris, France.
| |
Collapse
|
144
|
Maintenance of epigenetic landscape requires CIZ1 and is corrupted in differentiated fibroblasts in long-term culture. Nat Commun 2019; 10:460. [PMID: 30692537 PMCID: PMC6484225 DOI: 10.1038/s41467-018-08072-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 12/04/2018] [Indexed: 01/09/2023] Open
Abstract
The inactive X chromosome (Xi) serves as a model for establishment and maintenance of repressed chromatin and the function of polycomb repressive complexes (PRC1/2). Here we show that Xi transiently relocates from the nuclear periphery towards the interior during its replication, in a process dependent on CIZ1. Compromised relocation of Xi in CIZ1-null primary mouse embryonic fibroblasts is accompanied by loss of PRC-mediated H2AK119Ub1 and H3K27me3, increased solubility of PRC2 catalytic subunit EZH2, and genome-wide deregulation of polycomb-regulated genes. Xi position in S phase is also corrupted in cells adapted to long-term culture (WT or CIZ1-null), and also accompanied by specific changes in EZH2 and its targets. The data are consistent with the idea that chromatin relocation during S phase contributes to maintenance of epigenetic landscape in primary cells, and that elevated soluble EZH2 is part of an error-prone mechanism by which modifying enzyme meets template when chromatin relocation is compromised. The inactive X chromosome (Xi) is a model for establishment and maintenance of repressed chromatin and the function of polycomb repressive complexes. Here the authors show that Xi transiently relocates from the nuclear periphery during replication in a CIZ1-dependent manner, which plays a role in maintaining PRC-mediated repressed chromatin.
Collapse
|
145
|
Kopp F, Mendell JT. Functional Classification and Experimental Dissection of Long Noncoding RNAs. Cell 2019; 172:393-407. [PMID: 29373828 DOI: 10.1016/j.cell.2018.01.011] [Citation(s) in RCA: 2590] [Impact Index Per Article: 431.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 12/22/2017] [Accepted: 01/04/2018] [Indexed: 12/11/2022]
Abstract
Over the last decade, it has been increasingly demonstrated that the genomes of many species are pervasively transcribed, resulting in the production of numerous long noncoding RNAs (lncRNAs). At the same time, it is now appreciated that many types of DNA regulatory elements, such as enhancers and promoters, regularly initiate bi-directional transcription. Thus, discerning functional noncoding transcripts from a vast transcriptome is a paramount priority, and challenge, for the lncRNA field. In this review, we aim to provide a conceptual and experimental framework for classifying and elucidating lncRNA function. We categorize lncRNA loci into those that regulate gene expression in cis versus those that perform functions in trans and propose an experimental approach to dissect lncRNA activity based on these classifications. These strategies to further understand lncRNAs promise to reveal new and unanticipated biology with great potential to advance our understanding of normal physiology and disease.
Collapse
Affiliation(s)
- Florian Kopp
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Joshua T Mendell
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
146
|
The non-canonical SMC protein SmcHD1 antagonises TAD formation and compartmentalisation on the inactive X chromosome. Nat Commun 2019; 10:30. [PMID: 30604745 PMCID: PMC6318279 DOI: 10.1038/s41467-018-07907-2] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 11/14/2018] [Indexed: 12/16/2022] Open
Abstract
The inactive X chromosome (Xi) in female mammals adopts an atypical higher-order chromatin structure, manifested as a global loss of local topologically associated domains (TADs), A/B compartments and formation of two mega-domains. Here we demonstrate that the non-canonical SMC family protein, SmcHD1, which is important for gene silencing on Xi, contributes to this unique chromosome architecture. Specifically, allelic mapping of the transcriptome and epigenome in SmcHD1 mutant cells reveals the appearance of sub-megabase domains defined by gene activation, CpG hypermethylation and depletion of Polycomb-mediated H3K27me3. These domains, which correlate with sites of SmcHD1 enrichment on Xi in wild-type cells, additionally adopt features of active X chromosome higher-order chromosome architecture, including A/B compartments and partial restoration of TAD boundaries. Xi chromosome architecture changes also occurred following SmcHD1 knockout in a somatic cell model, but in this case, independent of Xi gene derepression. We conclude that SmcHD1 is a key factor in defining the unique chromosome architecture of Xi. The inactive X chromosome (Xi) has an atypical structure, with global loss of TADs, A/B compartments and formation of mega-domains. Here the authors show that the non-canonical SMC family protein, SmcHD1, important for developmental gene silencing on Xi, antagonises TAD formation and compartmentalization on the Xi in a transcription independent way.
Collapse
|
147
|
Sauvageau M. Diverging RNPs: Toward Understanding lncRNA-Protein Interactions and Functions. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1203:285-312. [PMID: 31811638 DOI: 10.1007/978-3-030-31434-7_10] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
RNA-protein interactions are essential to a variety of biological processes. The realization that mammalian genomes are pervasively transcribed brought a tidal wave of tens of thousands of newly identified long noncoding RNAs (lncRNAs) and raised questions about their purpose in cells. The vast majority of lncRNAs have yet to be studied, and it remains to be determined to how many of these transcripts a function can be ascribed. However, results gleaned from studying a handful of these macromolecules have started to reveal common themes of biological function and mechanism of action involving intricate RNA-protein interactions. Some lncRNAs were shown to regulate the chromatin and transcription of distant and neighboring genes in the nucleus, while others regulate the translation or localization of proteins in the cytoplasm. Some lncRNAs were found to be crucial during development, while mutations and aberrant expression of others have been associated with several types of cancer and a plethora of diseases. Over the last few years, the establishment of new technologies has been key in providing the tools to decode the rules governing lncRNA-protein interactions and functions. This chapter will highlight the general characteristics of lncRNAs, their function, and their mode of action, with a special focus on protein interactions. It will also describe the methods at the disposition of scientists to help them cross this next frontier in our understanding of lncRNA biology.
Collapse
Affiliation(s)
- Martin Sauvageau
- Montreal Clinical Research Institute (IRCM), Montréal, QC, Canada. .,Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, QC, Canada.
| |
Collapse
|
148
|
Lin D, Bonora G, Yardımcı GG, Noble WS. Computational methods for analyzing and modeling genome structure and organization. WILEY INTERDISCIPLINARY REVIEWS. SYSTEMS BIOLOGY AND MEDICINE 2019; 11:e1435. [PMID: 30022617 PMCID: PMC6294685 DOI: 10.1002/wsbm.1435] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 06/07/2018] [Accepted: 06/16/2018] [Indexed: 12/31/2022]
Abstract
Recent advances in chromosome conformation capture technologies have led to the discovery of previously unappreciated structural features of chromatin. Computational analysis has been critical in detecting these features and thereby helping to uncover the building blocks of genome architecture. Algorithms are being developed to integrate these architectural features to construct better three-dimensional (3D) models of the genome. These computational methods have revealed the importance of 3D genome organization to essential biological processes. In this article, we review the state of the art in analytic and modeling techniques with a focus on their application to answering various biological questions related to chromatin structure. We summarize the limitations of these computational techniques and suggest future directions, including the importance of incorporating multiple sources of experimental data in building a more comprehensive model of the genome. This article is categorized under: Analytical and Computational Methods > Computational Methods Laboratory Methods and Technologies > Genetic/Genomic Methods Models of Systems Properties and Processes > Mechanistic Models.
Collapse
Affiliation(s)
- Dejun Lin
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Giancarlo Bonora
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | | | - William S. Noble
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Department of Computer Science and Engineering, University of Washington, Seattle, WA, USA
| |
Collapse
|
149
|
Coker H, Wei G, Brockdorff N. m6A modification of non-coding RNA and the control of mammalian gene expression. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2018; 1862:310-318. [PMID: 30550772 DOI: 10.1016/j.bbagrm.2018.12.002] [Citation(s) in RCA: 122] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 11/27/2018] [Accepted: 12/07/2018] [Indexed: 12/27/2022]
Abstract
The biology of non-coding RNA (ncRNA) and the regulation of mammalian gene expression is a rapidly expanding field. In this review, we consider how recent advances in technology, enabling the precise mapping of modifications to RNA transcripts, has provided new opportunities to dissect post-transcriptional gene regulation. With this has come the realisation that in the absence of translation, the modification of ncRNAs may play a fundamental role in their regulation, protein interactome and subsequent downstream effector functions. We focus upon modification of RNA by N6-methyladenosine (m6A); its readers, writers and erasers, before considering the differing role of m6A modified lncRNAs MALAT1 and Xist. This article is part of a Special Issue entitled: mRNA modifications in gene expression control edited by Dr. Soller Matthias and Dr. Fray Rupert.
Collapse
Affiliation(s)
- Heather Coker
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK.
| | - Guifeng Wei
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Neil Brockdorff
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| |
Collapse
|
150
|
Li W, Ren Y, Si Y, Wang F, Yu J. Long non-coding RNAs in hematopoietic regulation. CELL REGENERATION 2018; 7:27-32. [PMID: 30671227 PMCID: PMC6326246 DOI: 10.1016/j.cr.2018.08.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Revised: 08/11/2018] [Accepted: 08/21/2018] [Indexed: 02/09/2023]
Abstract
Long non-coding RNAs (lncRNAs) have crucial roles via tethering with DNA, RNA or protein in diverse biological processes. These lncRNA-mediated interactions enhance gene regulatory networks and modulate a wide range of downstream genes. It has been demonstrated that several lncRNAs act as key regulators in hematopoiesis. This review highlights the roles of lncRNAs in normal hematopoietic development and discusses how lncRNA dysregulation correlates with disease prognoses and phenotypes.
Collapse
Affiliation(s)
- Weiqian Li
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry & Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS), Peking Union Medical College (PUMC), Beijing, 100005, China.,Key Laboratory of RNA and Hematopoietic Regulation, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Yue Ren
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry & Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS), Peking Union Medical College (PUMC), Beijing, 100005, China.,Key Laboratory of RNA and Hematopoietic Regulation, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Yanmin Si
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry & Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS), Peking Union Medical College (PUMC), Beijing, 100005, China.,Key Laboratory of RNA and Hematopoietic Regulation, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Fang Wang
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry & Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS), Peking Union Medical College (PUMC), Beijing, 100005, China.,Key Laboratory of RNA and Hematopoietic Regulation, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Jia Yu
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry & Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS), Peking Union Medical College (PUMC), Beijing, 100005, China.,Key Laboratory of RNA and Hematopoietic Regulation, Chinese Academy of Medical Sciences, Beijing, 100730, China
| |
Collapse
|