101
|
Ros J, Baraibar I, Saoudi N, Rodriguez M, Salvà F, Tabernero J, Élez E. Immunotherapy for Colorectal Cancer with High Microsatellite Instability: The Ongoing Search for Biomarkers. Cancers (Basel) 2023; 15:4245. [PMID: 37686520 PMCID: PMC10486610 DOI: 10.3390/cancers15174245] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/22/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023] Open
Abstract
Microsatellite instability (MSI) is a biological condition associated with inflamed tumors, high tumor mutational burden (TMB), and responses to immune checkpoint inhibitors. In colorectal cancer (CRC), MSI tumors are found in 5% of patients in the metastatic setting and 15% in early-stage disease. Following the impressive clinical activity of immune checkpoint inhibitors in the metastatic setting, associated with deep and long-lasting responses, the development of immune checkpoint inhibitors has expanded to early-stage disease. Several phase II trials have demonstrated a high rate of pathological complete responses, with some patients even spared from surgery. However, in both settings, not all patients respond and some responses are short, emphasizing the importance of the ongoing search for accurate biomarkers. While various biomarkers of response have been evaluated in the context of MSI CRC, including B2M and JAK1/2 mutations, TMB, WNT pathway mutations, and Lynch syndrome, with mixed results, liver metastases have been associated with a lack of activity in such strategies. To improve patient selection and treatment outcomes, further research is required to identify additional biomarkers and refine existing ones. This will allow for the development of personalized treatment approaches and the integration of novel therapeutic strategies for MSI CRC patients with liver metastases.
Collapse
Affiliation(s)
- Javier Ros
- Medical Oncology Department, Vall d’Hebron University Hospital, 08035 Barcelona, Spain; (J.R.); (I.B.); (N.S.); (M.R.); (F.S.); (J.T.)
- Vall d’Hebron Institute of Oncology, 08035 Barcelona, Spain
| | - Iosune Baraibar
- Medical Oncology Department, Vall d’Hebron University Hospital, 08035 Barcelona, Spain; (J.R.); (I.B.); (N.S.); (M.R.); (F.S.); (J.T.)
- Vall d’Hebron Institute of Oncology, 08035 Barcelona, Spain
| | - Nadia Saoudi
- Medical Oncology Department, Vall d’Hebron University Hospital, 08035 Barcelona, Spain; (J.R.); (I.B.); (N.S.); (M.R.); (F.S.); (J.T.)
- Vall d’Hebron Institute of Oncology, 08035 Barcelona, Spain
| | - Marta Rodriguez
- Medical Oncology Department, Vall d’Hebron University Hospital, 08035 Barcelona, Spain; (J.R.); (I.B.); (N.S.); (M.R.); (F.S.); (J.T.)
- Vall d’Hebron Institute of Oncology, 08035 Barcelona, Spain
| | - Francesc Salvà
- Medical Oncology Department, Vall d’Hebron University Hospital, 08035 Barcelona, Spain; (J.R.); (I.B.); (N.S.); (M.R.); (F.S.); (J.T.)
- Vall d’Hebron Institute of Oncology, 08035 Barcelona, Spain
| | - Josep Tabernero
- Medical Oncology Department, Vall d’Hebron University Hospital, 08035 Barcelona, Spain; (J.R.); (I.B.); (N.S.); (M.R.); (F.S.); (J.T.)
- Vall d’Hebron Institute of Oncology, 08035 Barcelona, Spain
| | - Elena Élez
- Medical Oncology Department, Vall d’Hebron University Hospital, 08035 Barcelona, Spain; (J.R.); (I.B.); (N.S.); (M.R.); (F.S.); (J.T.)
- Vall d’Hebron Institute of Oncology, 08035 Barcelona, Spain
| |
Collapse
|
102
|
Yoshida H, Takigawa W, Kobayashi-Kato M, Nishikawa T, Shiraishi K, Ishikawa M. Mismatch Repair Protein Expression in Endometrial Cancer: Assessing Concordance and Unveiling Pitfalls in Two Different Immunohistochemistry Assays. J Pers Med 2023; 13:1260. [PMID: 37623510 PMCID: PMC10455692 DOI: 10.3390/jpm13081260] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 08/08/2023] [Accepted: 08/14/2023] [Indexed: 08/26/2023] Open
Abstract
This study aimed to compare the concordance and interchangeability of the Dako/Agilent and Ventana/Roche mismatch repair (MMR) immunohistochemistry (IHC) assays commonly used in pathology. It also aimed to provide diagnostic insights by examining the frequency and characteristics of the dot-like artifact observed in MLH1 M1 clone staining in endometrial cancer. Fifty endometrial cancer cases with MMR deficiency, excised between 2011 and 2018, were included in the study. IHC was performed using primary antibody clones from Ventana/Roche (MLH1, clone M1; MSH2, G219-1129; MSH6, SP93; PMS2, A16-4) and Dako/Agilent (MLH1, ES05; MSH2, FE11; MSH6, EP49; PMS2, EP51). Both assays were conducted using respective autostainers. The Dako/Agilent assay showed a loss of MLH1 in 26 cases, MSH2 in 12 cases, MSH6 in 23 cases, and PMS2 in 28 cases. The two assays had a complete agreement in MMR protein expression or loss. The dot-like artifact in MLH1 M1 clone staining was observed in 77% (20/26) of cases, predominantly in the surface area of the tumor, ranging from 5% to 40% (median: 10%). These findings highlight the high concordance between the MMR-IHC assays and emphasize the importance of considering the dot-like artifact in MLH1 M1 clone staining when diagnosing endometrial cancer with MMR deficiency.
Collapse
Affiliation(s)
- Hiroshi Yoshida
- Department of Diagnostic Pathology, National Cancer Center Hospital, 5-1-1, Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
| | - Waku Takigawa
- Department of Gynecology, National Cancer Center Hospital, 5-1-1, Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
| | - Mayumi Kobayashi-Kato
- Department of Gynecology, National Cancer Center Hospital, 5-1-1, Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
| | - Tadaaki Nishikawa
- Department of Medical Oncology, National Cancer Center Hospital, 5-1-1, Tsukiji, Chuo-ku, Tokyo 104-0045, Japan;
| | - Kouya Shiraishi
- Division of Genome Biology, National Cancer Center Research Institute, 5-1-1, Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
| | - Mitsuya Ishikawa
- Department of Gynecology, National Cancer Center Hospital, 5-1-1, Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
| |
Collapse
|
103
|
Romero JM, Titmuss E, Wang Y, Vafiadis J, Pacis A, Jang GH, Zhang A, Golesworthy B, Lenko T, Williamson LM, Grünwald B, O'Kane GM, Jones SJM, Marra MA, Wilson JM, Gallinger S, Laskin J, Zogopoulos G. Chemokine expression predicts T cell-inflammation and improved survival with checkpoint inhibition across solid cancers. NPJ Precis Oncol 2023; 7:73. [PMID: 37558751 PMCID: PMC10412582 DOI: 10.1038/s41698-023-00428-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 07/31/2023] [Indexed: 08/11/2023] Open
Abstract
Immune checkpoint inhibitors (ICI) are highly effective in specific cancers where canonical markers of antitumor immunity are used for patient selection. Improved predictors of T cell-inflammation are needed to identify ICI-responsive tumor subsets in additional cancer types. We investigated associations of a 4-chemokine expression signature (c-Score: CCL4, CCL5, CXCL9, CXCL10) with metrics of antitumor immunity across tumor types. Across cancer entities from The Cancer Genome Atlas, subgroups of tumors displayed high expression of the c-Score (c-Scorehi) with increased expression of immune checkpoint (IC) genes and transcriptional hallmarks of the cancer-immunity cycle. There was an incomplete association of the c-Score with high tumor mutation burden (TMB), with only 15% of c-Scorehi tumors displaying ≥10 mutations per megabase. In a heterogeneous pan-cancer cohort of 82 patients, with advanced and previously treated solid cancers, c-Scorehi tumors had a longer median time to progression (103 versus 72 days, P = 0.012) and overall survival (382 versus 196 days, P = 0.038) following ICI therapy initiation, compared to patients with low c-Score expression. We also found c-Score stratification to outperform TMB assignment for overall survival prediction (HR = 0.42 [0.22-0.79], P = 0.008 versus HR = 0.60 [0.29-1.27], P = 0.18, respectively). Assessment of the c-Score using the TIDE and PredictIO databases, which include ICI treatment outcomes from 10 tumor types, provided further support for the c-Score as a predictive ICI therapeutic biomarker. In summary, the c-Score identifies patients with hallmarks of T cell-inflammation and potential response to ICI treatment across cancer types, which is missed by TMB assignment.
Collapse
Affiliation(s)
- Joan Miguel Romero
- Research Institute of the McGill University Health Centre, Montréal, QC, Canada
- Rosalind and Morris Goodman Cancer Institute of McGill University, Montréal, QC, Canada
| | - Emma Titmuss
- Canada's Michael Smith Genome Sciences Centre at BC Cancer, Vancouver, BC, Canada
| | - Yifan Wang
- Research Institute of the McGill University Health Centre, Montréal, QC, Canada
- Rosalind and Morris Goodman Cancer Institute of McGill University, Montréal, QC, Canada
- Department of Surgery, McGill University, Montréal, QC, Canada
| | - James Vafiadis
- Research Institute of the McGill University Health Centre, Montréal, QC, Canada
- Rosalind and Morris Goodman Cancer Institute of McGill University, Montréal, QC, Canada
| | - Alain Pacis
- Rosalind and Morris Goodman Cancer Institute of McGill University, Montréal, QC, Canada
- Canadian Centre for Computational Genomics, McGill University and Genome Québec Innovation Centre, Montréal, QC, Canada
| | - Gun Ho Jang
- PanCuRx Translational Research Initiative, Ontario Institute for Cancer Research, Toronto, ON, Canada
| | - Amy Zhang
- PanCuRx Translational Research Initiative, Ontario Institute for Cancer Research, Toronto, ON, Canada
| | - Bryn Golesworthy
- Research Institute of the McGill University Health Centre, Montréal, QC, Canada
- Rosalind and Morris Goodman Cancer Institute of McGill University, Montréal, QC, Canada
| | - Tatiana Lenko
- Research Institute of the McGill University Health Centre, Montréal, QC, Canada
- Rosalind and Morris Goodman Cancer Institute of McGill University, Montréal, QC, Canada
| | - Laura M Williamson
- Canada's Michael Smith Genome Sciences Centre at BC Cancer, Vancouver, BC, Canada
| | - Barbara Grünwald
- Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Grainne M O'Kane
- PanCuRx Translational Research Initiative, Ontario Institute for Cancer Research, Toronto, ON, Canada
- Wallace McCain Centre for Pancreatic Cancer, Princess Margaret Cancer Centre, Toronto, ON, Canada
| | - Steven J M Jones
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Marco A Marra
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Julie M Wilson
- PanCuRx Translational Research Initiative, Ontario Institute for Cancer Research, Toronto, ON, Canada
| | - Steven Gallinger
- PanCuRx Translational Research Initiative, Ontario Institute for Cancer Research, Toronto, ON, Canada
- Wallace McCain Centre for Pancreatic Cancer, Princess Margaret Cancer Centre, Toronto, ON, Canada
| | - Janessa Laskin
- Department of Medical Oncology, BC Cancer, Vancouver, BC, Canada
| | - George Zogopoulos
- Research Institute of the McGill University Health Centre, Montréal, QC, Canada.
- Rosalind and Morris Goodman Cancer Institute of McGill University, Montréal, QC, Canada.
- Department of Surgery, McGill University, Montréal, QC, Canada.
- Department of Oncology, McGill University, Montréal, QC, Canada.
| |
Collapse
|
104
|
Jin F, Yang Z, Shao J, Tao J, Reißfelder C, Loges S, Zhu L, Schölch S. ARID1A mutations in lung cancer: biology, prognostic role, and therapeutic implications. Trends Mol Med 2023; 29:646-658. [PMID: 37179132 DOI: 10.1016/j.molmed.2023.04.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 04/20/2023] [Accepted: 04/21/2023] [Indexed: 05/15/2023]
Abstract
Mutations in the AT-interacting domain-rich protein 1A (ARID1A) gene, a critical component of the switch/sucrose nonfermentable (SWI/SNF) complex, are frequently found in most human cancers. Approximately 5-10% of lung cancers carry ARID1A mutations. ARID1A loss in lung cancer correlates with clinicopathological features and poor prognosis. Co-mutation of ARID1A and epidermal growth factor receptor (EGFR) results in the limited efficacy of EGFR tyrosine kinase inhibitors (EGFR-TKIs) but increases the clinical benefit of immune checkpoint inhibitors (ICIs). ARID1A gene mutation plays a role in cell cycle regulation, metabolic reprogramming, and epithelial-mesenchymal transition. We present the first comprehensive review of the relationship between ARID1A gene mutations and lung cancer and discuss the potential of ARID1A as a new molecular target.
Collapse
Affiliation(s)
- Fukang Jin
- JCCU Translational Surgical Oncology (A430), German Cancer Research Center (DKFZ), Heidelberg, Germany; DKFZ-Hector Cancer Institute, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany; Department of Surgery, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Zhiguang Yang
- Department of Thoracic Surgery, The First Hospital of Jilin University, Jilin, China
| | - Jingbo Shao
- Department of Surgery, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Jianxin Tao
- JCCU Translational Surgical Oncology (A430), German Cancer Research Center (DKFZ), Heidelberg, Germany; DKFZ-Hector Cancer Institute, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany; Department of Surgery, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Christoph Reißfelder
- DKFZ-Hector Cancer Institute, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany; Department of Surgery, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Sonja Loges
- DKFZ-Hector Cancer Institute, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany; Division of Personalized Medical Oncology (A420), German Cancer Research Center (DKFZ), Heidelberg, Germany; Department of Personalized Oncology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Lei Zhu
- JCCU Translational Surgical Oncology (A430), German Cancer Research Center (DKFZ), Heidelberg, Germany; DKFZ-Hector Cancer Institute, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany; Department of Surgery, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.
| | - Sebastian Schölch
- JCCU Translational Surgical Oncology (A430), German Cancer Research Center (DKFZ), Heidelberg, Germany; DKFZ-Hector Cancer Institute, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany; Department of Surgery, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.
| |
Collapse
|
105
|
Ratovomanana T, Nicolle R, Cohen R, Diehl A, Siret A, Letourneur Q, Buhard O, Perrier A, Guillerm E, Coulet F, Cervera P, Benusiglio P, Labrèche K, Colle R, Collura A, Despras E, Le Rouzic P, Renaud F, Cros J, Alentorn A, Touat M, Ayadi M, Bourgoin P, Prunier C, Tournigand C, Fouchardière CDL, Tougeron D, Jonchère V, Bennouna J, de Reynies A, Fléjou JF, Svrcek M, André T, Duval A. Prediction of response to immune checkpoint blockade in patients with metastatic colorectal cancer with microsatellite instability. Ann Oncol 2023; 34:703-713. [PMID: 37269904 DOI: 10.1016/j.annonc.2023.05.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 05/15/2023] [Accepted: 05/16/2023] [Indexed: 06/05/2023] Open
Abstract
BACKGROUND Mismatch repair-deficient (dMMR) tumors displaying microsatellite instability (MSI) represent a paradigm for the success of immune checkpoint inhibitor (ICI)-based immunotherapy, particularly in patients with metastatic colorectal cancer (mCRC). However, a proportion of patients with dMMR/MSI mCRC exhibit resistance to ICI. Identification of tools predicting MSI mCRC patient response to ICI is required for the design of future strategies further improving this therapy. PATIENTS AND METHODS We combined high-throughput DNA and RNA sequencing of tumors from 116 patients with MSI mCRC treated with anti-programmed cell death protein 1 ± anti-cytotoxic T-lymphocyte-associated protein 4 of the NIPICOL phase II trial (C1, NCT03350126, discovery set) and the ImmunoMSI prospective cohort (C2, validation set). The DNA/RNA predictors whose status was significantly associated with ICI status of response in C1 were subsequently validated in C2. Primary endpoint was progression-free survival by immune RECIST (iRECIST) (iPFS). RESULTS Analyses showed no impact of previously suggested DNA/RNA indicators of resistance to ICI, e.g. MSIsensor score, tumor mutational burden, or specific cellular and molecular tumoral contingents. By contrast, iPFS under ICI was shown in C1 and C2 to depend both on a multiplex MSI signature involving the mutations of 19 microsatellites hazard ratio cohort C2 (HRC2) = 3.63; 95% confidence interval (CI) 1.65-7.99; P = 1.4 × 10-3] and the expression of a set of 182 RNA markers with a non-epithelial transforming growth factor beta (TGFB)-related desmoplastic orientation (HRC2 = 1.75; 95% CI 1.03-2.98; P = 0.035). Both DNA and RNA signatures were independently predictive of iPFS. CONCLUSIONS iPFS in patients with MSI mCRC can be predicted by simply analyzing the mutational status of DNA microsatellite-containing genes in epithelial tumor cells together with non-epithelial TGFB-related desmoplastic RNA markers.
Collapse
Affiliation(s)
- T Ratovomanana
- Sorbonne Université, INSERM, Unité Mixte de Recherche Scientifique 938 and SIRIC CURAMUS, Centre de Recherche Saint-Antoine, Equipe Instabilité des Microsatellites et Cancer, Equipe labellisée par la Ligue Nationale contre le Cancer, Paris
| | - R Nicolle
- Université Paris Cité, Centre de Recherche sur l'Inflammation (CRI), INSERM, U1149, CNRS, ERL 8252, Paris; GERCOR, Groupe Coopérateur Multidisciplinaire en Oncologie, Paris
| | - R Cohen
- Sorbonne Université, INSERM, Unité Mixte de Recherche Scientifique 938 and SIRIC CURAMUS, Centre de Recherche Saint-Antoine, Equipe Instabilité des Microsatellites et Cancer, Equipe labellisée par la Ligue Nationale contre le Cancer, Paris; GERCOR, Groupe Coopérateur Multidisciplinaire en Oncologie, Paris; Departments of Medical Oncology
| | - A Diehl
- Sorbonne Université, INSERM, Unité Mixte de Recherche Scientifique 938 and SIRIC CURAMUS, Centre de Recherche Saint-Antoine, Equipe Instabilité des Microsatellites et Cancer, Equipe labellisée par la Ligue Nationale contre le Cancer, Paris
| | - A Siret
- Sorbonne Université, INSERM, Unité Mixte de Recherche Scientifique 938 and SIRIC CURAMUS, Centre de Recherche Saint-Antoine, Equipe Instabilité des Microsatellites et Cancer, Equipe labellisée par la Ligue Nationale contre le Cancer, Paris
| | - Q Letourneur
- Sorbonne Université, INSERM, Unité Mixte de Recherche Scientifique 938 and SIRIC CURAMUS, Centre de Recherche Saint-Antoine, Equipe Instabilité des Microsatellites et Cancer, Equipe labellisée par la Ligue Nationale contre le Cancer, Paris
| | - O Buhard
- Sorbonne Université, INSERM, Unité Mixte de Recherche Scientifique 938 and SIRIC CURAMUS, Centre de Recherche Saint-Antoine, Equipe Instabilité des Microsatellites et Cancer, Equipe labellisée par la Ligue Nationale contre le Cancer, Paris
| | - A Perrier
- Sorbonne Université, INSERM, Unité Mixte de Recherche Scientifique 938 and SIRIC CURAMUS, Centre de Recherche Saint-Antoine, Equipe Instabilité des Microsatellites et Cancer, Equipe labellisée par la Ligue Nationale contre le Cancer, Paris; Molecular Biology and Medical Genetics, Sorbonne Université, AP-HP, Hospital Pitié-Salpêtrière, Paris
| | - E Guillerm
- Sorbonne Université, INSERM, Unité Mixte de Recherche Scientifique 938 and SIRIC CURAMUS, Centre de Recherche Saint-Antoine, Equipe Instabilité des Microsatellites et Cancer, Equipe labellisée par la Ligue Nationale contre le Cancer, Paris; Molecular Biology and Medical Genetics, Sorbonne Université, AP-HP, Hospital Pitié-Salpêtrière, Paris
| | - F Coulet
- Sorbonne Université, INSERM, Unité Mixte de Recherche Scientifique 938 and SIRIC CURAMUS, Centre de Recherche Saint-Antoine, Equipe Instabilité des Microsatellites et Cancer, Equipe labellisée par la Ligue Nationale contre le Cancer, Paris; Molecular Biology and Medical Genetics, Sorbonne Université, AP-HP, Hospital Pitié-Salpêtrière, Paris
| | - P Cervera
- Sorbonne Université, INSERM, Unité Mixte de Recherche Scientifique 938 and SIRIC CURAMUS, Centre de Recherche Saint-Antoine, Equipe Instabilité des Microsatellites et Cancer, Equipe labellisée par la Ligue Nationale contre le Cancer, Paris
| | - P Benusiglio
- Sorbonne Université, INSERM, Unité Mixte de Recherche Scientifique 938 and SIRIC CURAMUS, Centre de Recherche Saint-Antoine, Equipe Instabilité des Microsatellites et Cancer, Equipe labellisée par la Ligue Nationale contre le Cancer, Paris; Molecular Biology and Medical Genetics, Sorbonne Université, AP-HP, Hospital Pitié-Salpêtrière, Paris
| | - K Labrèche
- CinBioS, MS 37 PASS Production de données en Sciences de la vie et de la Santé, INSERM, Sorbonne Université et SIRIC CURAMUS, Paris
| | - R Colle
- Sorbonne Université, INSERM, Unité Mixte de Recherche Scientifique 938 and SIRIC CURAMUS, Centre de Recherche Saint-Antoine, Equipe Instabilité des Microsatellites et Cancer, Equipe labellisée par la Ligue Nationale contre le Cancer, Paris; GERCOR, Groupe Coopérateur Multidisciplinaire en Oncologie, Paris; Departments of Medical Oncology
| | - A Collura
- Sorbonne Université, INSERM, Unité Mixte de Recherche Scientifique 938 and SIRIC CURAMUS, Centre de Recherche Saint-Antoine, Equipe Instabilité des Microsatellites et Cancer, Equipe labellisée par la Ligue Nationale contre le Cancer, Paris
| | - E Despras
- Sorbonne Université, INSERM, Unité Mixte de Recherche Scientifique 938 and SIRIC CURAMUS, Centre de Recherche Saint-Antoine, Equipe Instabilité des Microsatellites et Cancer, Equipe labellisée par la Ligue Nationale contre le Cancer, Paris
| | - P Le Rouzic
- Sorbonne Université, INSERM, Unité Mixte de Recherche Scientifique 938 and SIRIC CURAMUS, Centre de Recherche Saint-Antoine, Equipe Instabilité des Microsatellites et Cancer, Equipe labellisée par la Ligue Nationale contre le Cancer, Paris
| | - F Renaud
- Sorbonne Université, INSERM, Unité Mixte de Recherche Scientifique 938 and SIRIC CURAMUS, Centre de Recherche Saint-Antoine, Equipe Instabilité des Microsatellites et Cancer, Equipe labellisée par la Ligue Nationale contre le Cancer, Paris
| | - J Cros
- Department of Pathology, Beaujon Hospital, AP-HP, Clichy
| | - A Alentorn
- Service de Neurologie 2-Mazarin, Sorbonne Université, Inserm, CNRS, UMR S 1127, Institut du Cerveau, ICM, AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière-Charles Foix, 47-83 boulevard de l'Hôpital, Paris
| | - M Touat
- Service de Neurologie 2-Mazarin, Sorbonne Université, Inserm, CNRS, UMR S 1127, Institut du Cerveau, ICM, AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière-Charles Foix, 47-83 boulevard de l'Hôpital, Paris
| | - M Ayadi
- Programme "Cartes d'Identité des Tumeurs", Ligue Nationale Contre le Cancer, Paris
| | - P Bourgoin
- Sorbonne Université, INSERM, Unité Mixte de Recherche Scientifique 938 and SIRIC CURAMUS, Centre de Recherche Saint-Antoine, Equipe Instabilité des Microsatellites et Cancer, Equipe labellisée par la Ligue Nationale contre le Cancer, Paris; Department of Pathology, Sorbonne Université, AP-HP, Hôpital Saint-Antoine, Paris
| | - C Prunier
- Sorbonne Université, INSERM, Unité Mixte de Recherche Scientifique 938 and SIRIC CURAMUS, Centre de Recherche Saint-Antoine, Equipe Signalisation TGFB, plasticité cellulaire et Cancer, Paris
| | - C Tournigand
- Department of Medical Oncology, Hôpital Henri-Mondor, APHP, Université Paris Est Creteil, INSERM U955, Créteil
| | | | - D Tougeron
- ProDicET, UR 24144, University of Poitiers and Hepato-Gastroenterology Department, Poitiers University Hospital, Poitiers
| | - V Jonchère
- Sorbonne Université, INSERM, Unité Mixte de Recherche Scientifique 938 and SIRIC CURAMUS, Centre de Recherche Saint-Antoine, Equipe Instabilité des Microsatellites et Cancer, Equipe labellisée par la Ligue Nationale contre le Cancer, Paris
| | - J Bennouna
- Centre De Recherche En Cancérologie Et Immunologie Nantes-Angers (CRCINA), INSERM, Université d'Angers, Université De Nantes, Nantes
| | - A de Reynies
- Cartes d'Identité des Tumeurs Program, Ligue Nationale Contre Cancer, Paris, France
| | - J-F Fléjou
- Sorbonne Université, INSERM, Unité Mixte de Recherche Scientifique 938 and SIRIC CURAMUS, Centre de Recherche Saint-Antoine, Equipe Instabilité des Microsatellites et Cancer, Equipe labellisée par la Ligue Nationale contre le Cancer, Paris; Department of Pathology, Sorbonne Université, AP-HP, Hôpital Saint-Antoine, Paris
| | - M Svrcek
- Sorbonne Université, INSERM, Unité Mixte de Recherche Scientifique 938 and SIRIC CURAMUS, Centre de Recherche Saint-Antoine, Equipe Instabilité des Microsatellites et Cancer, Equipe labellisée par la Ligue Nationale contre le Cancer, Paris; Department of Pathology, Sorbonne Université, AP-HP, Hôpital Saint-Antoine, Paris
| | - T André
- Sorbonne Université, INSERM, Unité Mixte de Recherche Scientifique 938 and SIRIC CURAMUS, Centre de Recherche Saint-Antoine, Equipe Instabilité des Microsatellites et Cancer, Equipe labellisée par la Ligue Nationale contre le Cancer, Paris; GERCOR, Groupe Coopérateur Multidisciplinaire en Oncologie, Paris; Departments of Medical Oncology
| | - A Duval
- Sorbonne Université, INSERM, Unité Mixte de Recherche Scientifique 938 and SIRIC CURAMUS, Centre de Recherche Saint-Antoine, Equipe Instabilité des Microsatellites et Cancer, Equipe labellisée par la Ligue Nationale contre le Cancer, Paris; Molecular Biology and Medical Genetics, Sorbonne Université, AP-HP, Hospital Pitié-Salpêtrière, Paris.
| |
Collapse
|
106
|
Ozer M, Vegivinti CTR, Syed M, Ferrell ME, Gonzalez Gomez C, Cheng S, Holder-Murray J, Bruno T, Saeed A, Sahin IH. Neoadjuvant Immunotherapy for Patients with dMMR/MSI-High Gastrointestinal Cancers: A Changing Paradigm. Cancers (Basel) 2023; 15:3833. [PMID: 37568648 PMCID: PMC10417711 DOI: 10.3390/cancers15153833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 07/19/2023] [Accepted: 07/25/2023] [Indexed: 08/13/2023] Open
Abstract
Immune checkpoint inhibitors have revolutionized the management of mismatch repair-deficient (MMR-D)/microsatellite instability-high (MSI-H) gastrointestinal cancers, particularly colorectal cancer. Cancers with the MMR-D/MSI-H genotype often carry a higher tumor mutation burden with frameshift alterations, leading to increased mutation-associated neoantigen (MANA) generation. The dramatic response seen with immune checkpoint inhibitors (ICIs), which are orchestrated by MANA-primed effector T cells, resulted in the rapid development of these novel therapeutics within the landscape of MSI-H gastrointestinal cancers. Recently, several clinical trials have utilized ICIs as potential neoadjuvant therapies for MSI-H gastrointestinal cancers and demonstrated deep clinical and pathological responses, creating opportunities for organ preservation. However, there are potential challenges to the neoadjuvant use of ICIs for certain disease types due to the clinical risk of overtreatment for a disease that can be cured through a surgery-only approach. In this review article, we discuss neoadjuvant management approaches with ICI therapy for patients with MSI-H gastrointestinal cancers, including those with oligometastatic disease. We also elaborate on potential challenges and opportunities for the neoadjuvant utilization of ICIs and provide further insight into the changing treatment paradigm of MMR-D/MSI-H gastrointestinal cancers.
Collapse
Affiliation(s)
- Muhammet Ozer
- Department of Gastrointestinal Oncology, Dana Farber Cancer Institute, Boston, MA 02215, USA
| | | | - Masood Syed
- Department of Medicine, University of Pittsburg School of Medicine, Pittsburgh, PA 15213, USA
| | - Morgan E. Ferrell
- Department of Medicine, University of Pittsburg School of Medicine, Pittsburgh, PA 15213, USA
| | - Cyndi Gonzalez Gomez
- Department of Medicine, University of Pittsburg School of Medicine, Pittsburgh, PA 15213, USA
| | - Svea Cheng
- Department of Medicine, University of Pittsburg School of Medicine, Pittsburgh, PA 15213, USA
| | - Jennifer Holder-Murray
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Tullia Bruno
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Anwaar Saeed
- Division of Hematology/Oncology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Ibrahim Halil Sahin
- Division of Hematology/Oncology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| |
Collapse
|
107
|
Zheng X, Lin J, Xiong J, Guan Y, Lan B, Li Y, Gao X, Fei Z, Chen L, Chen L, Chen L, Chen G, Guo Z, Yi X, Cao W, Ai X, Zhou C, Li X, Zhao J, Yan X, Yu Q, Si L, Chen Y, Chen C. SETD2 variation correlates with tumor mutational burden and MSI along with improved response to immunotherapy. BMC Cancer 2023; 23:686. [PMID: 37479966 PMCID: PMC10360270 DOI: 10.1186/s12885-023-10920-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 05/05/2023] [Indexed: 07/23/2023] Open
Abstract
BACKGROUND SETD2 protects against genomic instability via maintenance of homologous recombination repair (HRR) and mismatch repair (MMR) in neoplastic cells. However, it remains unclear whether SETD2 dysfunction is a complementary or independent factor to microsatellite instability-high (MSI-H) and tumor mutational burden-high (TMB-H) for immunocheckpoint inhibitor (ICI) treatment, and little is known regarding whether this type of dysfunction acts differently in various types of cancer. METHODS This cohort study used multidimensional genomic data of 6726 sequencing samples from our cooperative and non-public GenePlus institute from April 1 through April 10, 2020. MSIsensor score, HRD score, RNAseq, mutational data, and corresponding clinical data were obtained from the TCGA and MSKCC cohort for seven solid tumor types. RESULTS A total of 1021 genes underwent target panel sequencing reveal that SETD2 mutations were associated with a higher TMB. SETD2 deleterious mutation dysfunction affected ICI treatment prognosis independently of TMB-H (p < 0.01) and had a lower death hazard than TMB-H in pancancer patients (0.511 vs 0.757). Significantly higher MSI and lower homologous recombination deficiency were observed in the SETD2 deleterious mutation group. Improved survival rate was found in the MSKCC-IO cohort (P < 0.0001) and was further confirmed in our Chinese cohort. CONCLUSION We found that SETD2 dysfunction affects ICI treatment prognosis independently of TMB-H and has a lower death hazard than TMB-H in pancancer patients. Therefore, SETD2 has the potential to serve as a candidate biomarker for ICI treatment. Additionally, SETD2 should be considered when dMMR is detected by immunohistochemistry.
Collapse
Affiliation(s)
- Xiaobin Zheng
- Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, 350014, Fujian Province, China
| | - Jing Lin
- Department of Medical Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, 350014, Fujian Province, China
- Cancer Bio-Immunotherapy Center, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, 350014, Fujian Province, China
| | - Jiani Xiong
- Department of Medical Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, 350014, Fujian Province, China
- Cancer Bio-Immunotherapy Center, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, 350014, Fujian Province, China
| | | | - Bin Lan
- Department of Medical Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, 350014, Fujian Province, China
| | - Yi Li
- Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, 350014, Fujian Province, China
| | - Xuan Gao
- Geneplus-Beijing Institute, Beijing, China
| | - Zhaodong Fei
- Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, 350014, Fujian Province, China
- Cancer Bio-Immunotherapy Center, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, 350014, Fujian Province, China
| | - Lisha Chen
- Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, 350014, Fujian Province, China
- Cancer Bio-Immunotherapy Center, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, 350014, Fujian Province, China
| | - Lizhu Chen
- Department of Medical Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, 350014, Fujian Province, China
- Cancer Bio-Immunotherapy Center, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, 350014, Fujian Province, China
| | - Ling Chen
- Department of Medical Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, 350014, Fujian Province, China
- Cancer Bio-Immunotherapy Center, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, 350014, Fujian Province, China
| | - Gang Chen
- Cancer Bio-Immunotherapy Center, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, 350014, Fujian Province, China
- Department of Pathology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, 350014, Fujian Province, China
| | - Zengqing Guo
- Department of Medical Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, 350014, Fujian Province, China
- Cancer Bio-Immunotherapy Center, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, 350014, Fujian Province, China
| | - Xin Yi
- Geneplus-Beijing Institute, Beijing, China
| | - Weiguo Cao
- Department of Radiation Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xinghao Ai
- Department of Shanghai Lung Cancer Center, Shanghai Jiao Tong University Affiliated Chest Hospital, Shanghai, China
| | - Chengzhi Zhou
- First Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Xiaofeng Li
- Department of Oncology, Affiliated Quanzhou First Hospital of Fujian Medical University, Quanzhou, Fujian Province, China
| | - Jun Zhao
- Department of Thoracic Oncology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Xiangtao Yan
- Department of Internal Medicine, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Henan Province, Zhengzhou, China
| | - Qitao Yu
- Department of Oncology, The Cancer Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Lu Si
- Department of Renal Cancer and Melanoma, Peking University Cancer Hospital and Institute, Beijing, China
| | - Yu Chen
- Department of Medical Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, 350014, Fujian Province, China.
- Cancer Bio-Immunotherapy Center, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, 350014, Fujian Province, China.
| | - Chuanben Chen
- Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, 350014, Fujian Province, China.
- Cancer Bio-Immunotherapy Center, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, 350014, Fujian Province, China.
| |
Collapse
|
108
|
Vuković Đerfi K, Salar A, Cacev T, Kapitanović S. EMAST Type of Microsatellite Instability-A Distinct Entity or Blurred Overlap between Stable and MSI Tumors. Genes (Basel) 2023; 14:1474. [PMID: 37510378 PMCID: PMC10380056 DOI: 10.3390/genes14071474] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 07/15/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
Microsatellite instability (MSI) represents an accumulation of frameshifts in short tandem repeats, microsatellites, across the genome due to defective DNA mismatch repair (dMMR). MSI has been associated with distinct clinical, histological, and molecular features of tumors and has proven its prognostic and therapeutic value in different types of cancer. Recently, another type of microsatellite instability named elevated microsatellite alterations at selected tetranucleotide repeats (EMAST) has been reported across many different tumors. EMAST tumors have been associated with chronic inflammation, higher tumor stage, and poor prognosis. Nevertheless, the clinical significance of EMAST and its relation to MSI remains unclear. It has been proposed that EMAST arises as a result of isolated MSH3 dysfunction or as a secondary event in MSI tumors. Even though previous studies have associated EMAST with MSI-low phenotype in tumors, recent studies show a certain degree of overlap between EMAST and MSI-high tumors. However, even in stable tumors, (MSS) frameshifts in microsatellites can be detected as a purely stochastic event, raising the question of whether EMAST truly represents a distinct type of microsatellite instability. Moreover, a significant fraction of patients with MSI tumors do not respond to immunotherapy and it can be speculated that in these tumors, EMAST might act as a modifying factor.
Collapse
Affiliation(s)
- Kristina Vuković Đerfi
- Laboratory for Personalized Medicine, Division of Molecular Medicine, Rudjer Boskovic Institute, Bijenicka cesta 54, 10000 Zagreb, Croatia
| | - Anamarija Salar
- Laboratory for Personalized Medicine, Division of Molecular Medicine, Rudjer Boskovic Institute, Bijenicka cesta 54, 10000 Zagreb, Croatia
| | - Tamara Cacev
- Laboratory for Personalized Medicine, Division of Molecular Medicine, Rudjer Boskovic Institute, Bijenicka cesta 54, 10000 Zagreb, Croatia
| | - Sanja Kapitanović
- Laboratory for Personalized Medicine, Division of Molecular Medicine, Rudjer Boskovic Institute, Bijenicka cesta 54, 10000 Zagreb, Croatia
| |
Collapse
|
109
|
Huang Z, Yang H, Lao J, Deng W. Solute carrier family 35 member A2 (SLC35A2) is a prognostic biomarker and correlated with immune infiltration in stomach adenocarcinoma. PLoS One 2023; 18:e0287303. [PMID: 37467193 DOI: 10.1371/journal.pone.0287303] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 06/03/2023] [Indexed: 07/21/2023] Open
Abstract
BACKGROUND Solute carrier family 35 member A2 (SLC35A2) located on the X chromosome is considered involved in the UDP-galactose transport from cytosol to Golgi apparatus and endoplasmic reticulum. It has been reported that the SLC35A2 expression is associated with carcinogenesis in recent studies, however, its specific roles in cancer progression have not been exhaustively elucidated. Herein, a system analysis was conducted to evaluate the role of SLC35A2 in prognostic, and immunology in stomach adenocarcinoma (STAD). METHODS The TIMER, GEPIA, UALCAN, Kaplan-Meier Plotter were employed to explore the SLC35A2 expression pattern and prognostic value in STAD. Genomic alterations were searched through the MEXPRESS and cBioPortal platforms. The LinkedOmics, GEPIA and Metascape databases were employed to explore the biological processes. The TIMER and TISIDB websites were utilized to investigate the relationships between SLC35A2 expression and immune cell infiltration. The associations between SLC35A2 expression and tumor mutational burden (TMB), microsatellite instability (MSI) in pan-cancer were explored using the SangerBox database. RESULTS Compared to the normal gastric mucosa, SLC35A2 expression was significantly increased in STAD tissues, accompanied by the robust relationships with tumor grade, histological subtypes, TP53 mutation status, TMB and prognosis. SLC35A2 and its co-expression genes played the primarily roles in purine metabolism and purinosome, including the asparagine N-linked glycosylation, protein processing in endoplasmic reticulum, regulation of transcription involved in G1/S transition of mitotic cell cycle, with the potential to participate in the regulation of VEGFA-VEGFR2 signaling pathway. Concurrently, SLC35A2 expression was correlated with macrophages and CD4+T lymphocytes infiltration in STAD. CONCLUSIONS Our study has proposed that SLC35A2 correlated with immune cell infiltration could serve as a prognostic biomarker in STAD.
Collapse
Affiliation(s)
- Zigao Huang
- Department of Gastrointestinal Surgery, The First People's Hospital of Qinzhou, Qinzhou, Guangxi Zhuang Autonomous Region, China
| | - Hong Yang
- Department of Vascular Surgery, The First People's Hospital of Qinzhou, Qinzhou, Guangxi Zhuang Autonomous Region, China
| | - Jingmao Lao
- Department of Gastrointestinal Surgery, The First People's Hospital of Qinzhou, Qinzhou, Guangxi Zhuang Autonomous Region, China
| | - Wei Deng
- Department of Gastrointestinal Surgery, The First People's Hospital of Qinzhou, Qinzhou, Guangxi Zhuang Autonomous Region, China
| |
Collapse
|
110
|
Yang Y, Feng Y, Liu Q, Yin J, Cheng C, Fan C, Xuan C, Yang J. Building an Immune-Related Genes Model to Predict Treatment, Extracellular Matrix, and Prognosis of Head and Neck Squamous Cell Carcinoma. Mediators Inflamm 2023; 2023:6680731. [PMID: 37469759 PMCID: PMC10353907 DOI: 10.1155/2023/6680731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 06/02/2023] [Accepted: 06/20/2023] [Indexed: 07/21/2023] Open
Abstract
Due to the considerable heterogeneity of head and neck squamous cell carcinoma (HNSCC), individuals with comparable TNM stages who receive the same treatment strategy have varying prognostic outcomes. In HNSCC, immunotherapy is developing quickly and has shown effective. We want to develop an immune-related gene (IRG) prognostic model to forecast the prognosis and response to immunotherapy of patients. In order to analyze differential expression in normal and malignant tissues, we first identified IRGs that were differently expressed. Weighted gene coexpression network analysis (WGCNA) was used to identify modules that were highly related, and univariate and multivariate Cox regression analyses were also used to create a predictive model for IRGs that included nine IRGs. WGCNA identified the four most noteworthy related modules. Patients in the model's low-risk category had a better chance of survival. The IRGs prognostic model was also proved to be an independent prognostic predictor, and the model was also substantially linked with a number of clinical characteristics. The low-risk group was associated with immune-related pathways, a low incidence of gene mutation, a high level of M1 macrophage infiltration, regulatory T cells, CD8 T cells, and B cells, active immunity, and larger benefits from immune checkpoint inhibitors (ICIs) therapy. The high-risk group, on the other hand, had suppressive immunity, high levels of NK and CD4 T-cell infiltration, high gene mutation rates, and decreased benefits from ICI therapy. As a result of our research, a predictive model for IRGs that can reliably predict a patient's prognosis and their response to both conventional and immunotherapy has been created.
Collapse
Affiliation(s)
- Yushi Yang
- Department of Otolaryngology and Ophthalmology, Anji County People' s Hospital, Zhejiang, China
| | - Yang Feng
- Department of Radiation Oncology, Shanghai Ninth People' s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Qin Liu
- Department of Neurosurgery, Anyue County People' s Hospital, Sichuan, China
| | - Ji Yin
- The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Sichuan, China
| | - Chenglong Cheng
- Department of Otolaryngology and Ophthalmology, Anji County People' s Hospital, Zhejiang, China
| | - Cheng Fan
- Department of Neurosurgery, Anyue County People' s Hospital, Sichuan, China
| | - Chenhui Xuan
- Department of Endocrinology, The Affiliated Third Hospital of Chengdu Traditional Chinese Medicine University, Sichuan, China
- Department of Endocrinology, Chengdu Pidu District Hospital of Traditional Chinese Medicine, Sichuan, China
| | - Jun Yang
- Department of Cardiology, Anyue County People's Hospital, Sichuan, China
| |
Collapse
|
111
|
Mestrallet G, Brown M, Bozkus CC, Bhardwaj N. Immune escape and resistance to immunotherapy in mismatch repair deficient tumors. Front Immunol 2023; 14:1210164. [PMID: 37492581 PMCID: PMC10363668 DOI: 10.3389/fimmu.2023.1210164] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 06/21/2023] [Indexed: 07/27/2023] Open
Abstract
Up to 30% of colorectal, endometrial and gastric cancers have a deficiency in mismatch repair (MMR) protein expression due to either germline or epigenetic inactivation. Patients with Lynch Syndrome who inherit an inactive MMR allele have an up to 80% risk for developing a mismatch repair deficient (MMRd) cancer. Due to an inability to repair DNA, MMRd tumors present with genomic instability in microsatellite regions (MS). Tumors with high MS instability (MSI-H) are characterized by an increased frequency of insertion/deletions (indels) that can encode novel neoantigens if they occur in coding regions. The high tumor antigen burden for MMRd cancers is accompanied by an inflamed tumor microenvironment (TME) that contributes to the clinical effectiveness of anti-PD-1 therapy in this patient population. However, between 40 and 70% of MMRd cancer patients do not respond to treatment with PD-1 blockade, suggesting that tumor-intrinsic and -extrinsic resistance mechanisms may affect the success of checkpoint blockade. Immune evasion mechanisms that occur during early tumorigenesis and persist through cancer development may provide a window into resistance pathways that limit the effectiveness of anti-PD-1 therapy. Here, we review the mechanisms of immune escape in MMRd tumors during development and checkpoint blockade treatment, including T cell dysregulation and myeloid cell-mediated immunosuppression in the TME. Finally, we discuss the development of new therapeutic approaches to tackle resistance in MMRd tumors, including cancer vaccines, therapies targeting immunosuppressive myeloid programs, and immune checkpoint combination strategies.
Collapse
Affiliation(s)
- Guillaume Mestrallet
- Division of Hematology and Oncology, Hess Center for Science & Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Matthew Brown
- Division of Hematology and Oncology, Hess Center for Science & Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Cansu Cimen Bozkus
- Division of Hematology and Oncology, Hess Center for Science & Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Nina Bhardwaj
- Division of Hematology and Oncology, Hess Center for Science & Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Extramural member, Parker Institute for Cancer Immunotherapy, San Francisco, CA, United States
| |
Collapse
|
112
|
Jin J, Li J, Peng C, Chen J, Xu G, Pan S. Case report: durable complete response to pembrolizumab plus lenvatinib in a metastatic upper tract urothelial carcinoma patient with high tumor mutational burden and an immune-active tumor microenvironment. Anticancer Drugs 2023; 34:797-802. [PMID: 36729952 DOI: 10.1097/cad.0000000000001464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Immune checkpoint inhibitors (ICIs) have been approved as an emerging first-line treatment option for advanced and metastatic urothelial carcinoma whose tumors express programmed death-ligand 1 (PD-L1). However, the efficacy of immunotherapy in PD-L1-negative urothelial carcinoma patients remains unclear, and biomarkers beyond PD-L1 expression to predict response to immunotherapy need investigation. Here, we report a metastatic renal pelvis urothelial carcinoma patient with PD-L1 negative expression that responded dramatically to first-line pembrolizumab plus lenvatinib. By the recent follow-up in March 2022, the patient had a complete radiological response for 3.4 years, with no recurrence even during the 23-month drug-withdrawal period. The results of the next-generation sequencing using the tumor sample revealed a high tumor mutational burden (TMB), which may be independently driven by the pathogenic mutation in TP53 , TERT , NCOR1 , and TSC2 genes. Besides, the tumor microenvironment exhibited an immune-active signature with relatively abundant CD8+ cells and M1 tumor-associated macrophages but scarce regulatory T cells may also explain the great benefit of the combination therapy. Our case provides a direction for identifying biomarkers beyond PD-L1 expression to screen urothelial carcinoma patients who benefit from ICI as well as ICI-based therapy.
Collapse
Affiliation(s)
- Jing Jin
- Department of Urology, Shaoxing People's Hospital, Zhejiang University School of Medicine, Zhejiang Province, China
| | | | | | | | | | | |
Collapse
|
113
|
He P, Ma Y, Wu Y, Zhou Q, Du H. Exploring PANoptosis in breast cancer based on scRNA-seq and bulk-seq. Front Endocrinol (Lausanne) 2023; 14:1164930. [PMID: 37455906 PMCID: PMC10338225 DOI: 10.3389/fendo.2023.1164930] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 06/05/2023] [Indexed: 07/18/2023] Open
Abstract
Background PANoptosis, a cell death pathway involving pyroptosis, apoptosis, and necroptosis, is pivotal in the development of malignancy. However, in the field of breast cancer, the interaction between PANoptosis and tumor cells has not been thoroughly explored. Methods We downloaded breast cancer data and GSE176078 single-cell sequencing dataset from Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA) databases to obtain PANoptosis-associated genes. To construct prognostic models, COX and LASSO regression was used to identify PANoptosis-associated genes with prognostic value. Finally, immune infiltration analysis and differential analysis of biological functions were performed. Results Risk grouping was performed according to the prognostic model constructed by COX regression and LASSO regression. The low-risk group showed a better prognosis (P < 0.05) and possessed higher levels of immune infiltration and expression of immune checkpoint-related genes. In addition, the lower the risk score, the higher the degree of microsatellite instability (MSI). Meanwhile, radixin (RDX), the gene with the highest hazard ratio (HR) value among PANoptosis prognosis-related genes, was explicitly expressed in artery Iendothelial cells (ECs) and was widely involved in signaling pathways such as immune response and cell proliferation, possessing rich biological functions. Conclusion We demonstrated the potential of PANoptosis-based molecular clustering and prognostic features in predicting the survival of breast cancer patients. Furthermore, this study has led to a deeper understanding of the role of PANoptosis in breast cancer and has the potential to provide new directions for immunotherapy of breast cancer.
Collapse
Affiliation(s)
- Puxing He
- Department of Thyroid and Breast Surgery, Affiliated Hospital of Yan ‘an University, Yan’an, Shaanxi, China
| | - Yixuan Ma
- School of Basic Medicine, Yan 'an University, Yan’an, Shaanxi, China
| | - Yaolu Wu
- Department of Thyroid and Breast Surgery, Affiliated Hospital of Yan ‘an University, Yan’an, Shaanxi, China
| | - Qing Zhou
- Department of Thyroid and Breast Surgery, Affiliated Hospital of Yan ‘an University, Yan’an, Shaanxi, China
| | - Huan Du
- Department of Thyroid and Breast Surgery, Affiliated Hospital of Yan ‘an University, Yan’an, Shaanxi, China
| |
Collapse
|
114
|
Acharya A, Bret H, Huang JW, Mütze M, Göse M, Kissling V, Seidel R, Ciccia A, Guérois R, Cejka P. Mechanism of DNA unwinding by hexameric MCM8-9 in complex with HROB. RESEARCH SQUARE 2023:rs.3.rs-3054483. [PMID: 37461676 PMCID: PMC10350107 DOI: 10.21203/rs.3.rs-3054483/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/24/2023]
Abstract
The human MCM8-9 helicase functions in concert with HROB in the context of homologous recombination, but its precise function is unknown. To gain insights into how HROB regulates MCM8-9, we first used molecular modeling and biochemistry to define their interaction interface. We show that HROB makes important contacts with both MCM8 and MCM9 subunits, which directly promotes its DNA-dependent ATPase and helicase activities. MCM8-9-HROB preferentially binds and unwinds branched DNA structures, and single-molecule experiments reveal a low DNA unwinding processivity. MCM8-9 unwinds DNA as a hexameric complex that assembles from dimers on DNA in the presence of ATP, which is prerequisite for its helicase function. The hexamer formation thus involves two repeating protein-protein interfaces forming between the alternating MCM8 and MCM9 subunits. One of these interfaces is rather stable and forms an obligate heterodimer, while the other interface is labile and mediates the assembly of the hexamer on DNA, independently of HROB. The ATPase site composed of the subunits forming the labile interface disproportionally contributes to DNA unwinding. HROB does not affect the MCM8-9 ring formation, but promotes DNA unwinding downstream by possibly coordinating ATP hydrolysis with structural transitions accompanying translocation of MCM8-9 on DNA.
Collapse
Affiliation(s)
- Ananya Acharya
- Institute for Research in Biomedicine, Università della Svizzera italiana (USI), Faculty of Biomedical Sciences, Bellinzona, 6500, Switzerland
- Department of Biology, Institute of Biochemistry, Eidgenössische Technische Hochschule (ETH), Zürich, 8093, Switzerland
| | - Hélène Bret
- Institute for Integrative Biology of the Cell (I2BC), Commissariat à l’Energie Atomique, Centre National de la Recherche Scientifique, Université Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, 91190, France
| | - Jen-Wei Huang
- Department of Genetics and Development, Institute for Cancer Genetics, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA
| | - Martin Mütze
- Peter Debye Institute for Soft Matter Physics, Universität Leipzig, Leipzig, 04103, Germany
| | - Martin Göse
- Peter Debye Institute for Soft Matter Physics, Universität Leipzig, Leipzig, 04103, Germany
| | - Vera Kissling
- Department of Biology, Institute of Biochemistry, Eidgenössische Technische Hochschule (ETH), Zürich, 8093, Switzerland
| | - Ralf Seidel
- Peter Debye Institute for Soft Matter Physics, Universität Leipzig, Leipzig, 04103, Germany
| | - Alberto Ciccia
- Department of Genetics and Development, Institute for Cancer Genetics, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA
| | - Raphaël Guérois
- Institute for Integrative Biology of the Cell (I2BC), Commissariat à l’Energie Atomique, Centre National de la Recherche Scientifique, Université Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, 91190, France
| | - Petr Cejka
- Institute for Research in Biomedicine, Università della Svizzera italiana (USI), Faculty of Biomedical Sciences, Bellinzona, 6500, Switzerland
- Department of Biology, Institute of Biochemistry, Eidgenössische Technische Hochschule (ETH), Zürich, 8093, Switzerland
| |
Collapse
|
115
|
Zhang G, Yin Z, Fang J, Wu A, Chen G, Cao K. Construction of the novel immune risk scoring system related to CD8 + T cells in uterine corpus endometrial carcinoma. Cancer Cell Int 2023; 23:124. [PMID: 37349706 DOI: 10.1186/s12935-023-02966-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 06/07/2023] [Indexed: 06/24/2023] Open
Abstract
BACKGROUND Uterine corpus endometrial carcinoma (UCEC) is a gynecological malignant tumor with high incidence and poor prognosis. Although immunotherapy has brought significant survival benefits to advanced UCEC patients, traditional evaluation indicators cannot accurately identify all potential beneficiaries of immunotherapy. Consequently, it is necessary to construct a new scoring system to predict patient prognosis and responsiveness of immunotherapy. METHODS CIBERSORT combined with weighted gene co-expression network analysis (WGCNA), non-negative matrix factorization (NMF), and random forest algorithms to screen the module associated with CD8+ T cells, and key genes related to prognosis were selected out by univariate, least absolute shrinkage and selection operator (LASSO) and multivariate Cox regression analyses to develop the novel immune risk score (NIRS). Kaplan-Meier (K-M) analysis was used to compare the difference of survival between high- and low- NIRS groups. We also explored the correlations between NIRS, immune infiltration and immunotherapy, and three external validation sets were used to verify the predictive performance of NIRS. Furthermore, clinical subgroup analysis, mutation analysis, differential expression of immune checkpoints, and drug sensitivity analysis were performed to generate individualized treatments for patients with different risk scores. Finally, gene set variation analysis (GSVA) was conducted to explore the biological functions of NIRS, and qRT-PCR was applied to verify the differential expressions of three trait genes at cellular and tissue levels. RESULTS Among the modules clustered by WGCNA, the magenta module was most positively associated with CD8+ T cells. Three genes (CTSW, CD3D and CD48) were selected to construct NIRS after multiple screening procedures. NIRS was confirmed as an independent prognostic factor of UCEC, and patients with high NIRS had significantly worse prognosis compared to those with low NIRS. The high NIRS group showed lower levels of infiltrated immune cells, gene mutations, and expression of multiple immune checkpoints, indicating reduced sensitivity to immunotherapy. Three module genes were identified as protective factors positively correlated with the level of CD8+ T cells. CONCLUSIONS In this study, we constructed NIRS as a novel predictive signature of UCEC. NIRS not only differentiates patients with distinct prognoses and immune responsiveness, but also guides their therapeutic regimens.
Collapse
Affiliation(s)
- Ganghua Zhang
- Department of Oncology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Zhijing Yin
- Department of Oncology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Jianing Fang
- Department of Oncology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Anshan Wu
- Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou, China
| | - Guanjun Chen
- Department of Oncology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Ke Cao
- Department of Oncology, Third Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
116
|
Hu X, Guo J, Shi J, Li D, Li X, Zhao W. A 20-gene mutation signature predicts the efficacy of immune checkpoint inhibitor therapy in advanced non-small cell lung cancer patients. BMC Pulm Med 2023; 23:223. [PMID: 37349743 DOI: 10.1186/s12890-023-02512-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 06/07/2023] [Indexed: 06/24/2023] Open
Abstract
BACKGROUND There is an unmet need to identify novel predictive biomarkers that enable more accurate identification of individuals who can benefit from immune checkpoint inhibitor (ICI) therapy. The US FDA recently approved tumor mutational burden (TMB) score of ≥ 10 mut/Mb as a threshold for pembrolizumab treatment of solid tumors. Our study aimed to test the hypothesis that specific gene mutation signature may predict the efficacy of ICI therapy more precisely than high TMB (≥ 10). METHODS We selected 20 candidate genes that may predict for the efficacy of ICI therapy by the analysis of data from a published cohort of 350 advanced non-small cell lung cancer (NSCLC) patients. Then, we compared the influences of various gene mutation signatures on the efficacy of ICI treatment. They were also compared with PD-L1 and TMB. The Kaplan-Meier method was utilized to evaluate the prognosis univariates, while selected univariates were adopted to develop a systematic nomogram. RESULTS A high mutation signature, where three or more of the 20 selected genes were mutated, was associated with the significant benefits of ICI therapy. Specifically, patients with high mutation signature were confirmed to have better prognosis for ICI treatment, compared with those with wild type (the median PFS: 7.17 vs. 2.90 months, p = 0.0004, HR = 0.47 (95% [CI]:0.32-0.68); the median OS: unreached vs. 9 months, p = 1.8E-8, HR = 0.17 (95% [CI]:0.11-0.25)). Moreover, those patients with the high mutation signature achieved significant ICI treatment benefits, while there was no difference of OS and PFS between patients without the signature but TMB-H (≥ 10) and those without the signature and low TMB(< 10). Finally, we constructed a novel nomogram to evaluate the efficacy of ICI therapy. CONCLUSION A high mutational signature with 3 or more of the 20-gene panel could provide more accurate predictions for the outcomes of ICI therapy than TMB ≥ 10 in NSCLC patients.
Collapse
Affiliation(s)
- Xilin Hu
- Department of Thoracic Surgery, The First Affiliated Hospital of Ningbo University, 315010, Ningbo, China
| | - Jing Guo
- Department of Thoracic Surgery, The First Affiliated Hospital of Ningbo University, 315010, Ningbo, China
| | - Jianguang Shi
- Department of Thoracic Surgery, The First Affiliated Hospital of Ningbo University, 315010, Ningbo, China
| | - Da Li
- Department of Thoracic Surgery, The First Affiliated Hospital of Ningbo University, 315010, Ningbo, China
| | - Xinjian Li
- Department of Thoracic Surgery, The First Affiliated Hospital of Ningbo University, 315010, Ningbo, China
| | - Weijun Zhao
- Department of Thoracic Surgery, The First Affiliated Hospital of Ningbo University, 315010, Ningbo, China.
| |
Collapse
|
117
|
Acharya A, Bret H, Huang JW, Mütze M, Göse M, Kissling V, Seidel R, Ciccia A, Guérois R, Cejka P. Mechanism of DNA unwinding by hexameric MCM8-9 in complex with HROB. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.12.544631. [PMID: 37398313 PMCID: PMC10312610 DOI: 10.1101/2023.06.12.544631] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
The human MCM8-9 helicase functions in concert with HROB in the context of homologous recombination, but its precise function is unknown. To gain insights into how HROB regulates MCM8-9, we first used molecular modeling and biochemistry to define their interaction interface. We show that HROB makes important contacts with both MCM8 and MCM9 subunits, which directly promotes its DNA-dependent ATPase and helicase activities. MCM8-9-HROB preferentially binds and unwinds branched DNA structures, and single-molecule experiments reveal a low DNA unwinding processivity. MCM8-9 unwinds DNA as a hexameric complex that assembles from dimers on DNA in the presence of ATP, which is prerequisite for its helicase function. The hexamer formation thus involves two repeating protein-protein interfaces forming between the alternating MCM8 and MCM9 subunits. One of these interfaces is rather stable and forms an obligate heterodimer, while the other interface is labile and mediates the assembly of the hexamer on DNA, independently of HROB. The ATPase site composed of the subunits forming the labile interface disproportionally contributes to DNA unwinding. HROB does not affect the MCM8-9 ring formation, but promotes DNA unwinding downstream by possibly coordinating ATP hydrolysis with structural transitions accompanying translocation of MCM8-9 on DNA.
Collapse
|
118
|
Greten TF, Schwabe R, Bardeesy N, Ma L, Goyal L, Kelley RK, Wang XW. Immunology and immunotherapy of cholangiocarcinoma. Nat Rev Gastroenterol Hepatol 2023; 20:349-365. [PMID: 36697706 DOI: 10.1038/s41575-022-00741-4] [Citation(s) in RCA: 86] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/23/2022] [Indexed: 01/27/2023]
Abstract
Cholangiocarcinoma is the second most common primary liver cancer. Its incidence is low in the Western world but is rising globally. Surgery, chemotherapy and radiation therapy have been the only treatment options for decades. Progress in our molecular understanding of the disease and the identification of druggable targets, such as IDH1 mutations and FGFR2 fusions, has provided new treatment options. Immunotherapy has emerged as a potent strategy for many different types of cancer and has shown efficacy in combination with chemotherapy for cholangiocarcinoma. In this Review, we discuss findings related to key immunological aspects of cholangiocarcinoma, including the heterogeneous landscape of immune cells within the tumour microenvironment, the immunomodulatory effect of the microbiota and IDH1 mutations, and the association of immune-related signatures and patient outcomes. We introduce findings from preclinical immunotherapy studies, discuss future immune-mediated treatment options, and provide a summary of results from clinical trials testing immune-based approaches in patients with cholangiocarcinoma. This Review provides a thorough survey of our knowledge on immune signatures and immunotherapy in cholangiocarcinoma.
Collapse
Affiliation(s)
- Tim F Greten
- Gastrointestinal Malignancies Section, Thoracic and Gastrointestinal Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA.
- Liver Cancer Program, Bethesda, MD, USA.
| | - Robert Schwabe
- Institute of Human Nutrition, Columbia University, New York, NY, USA
- Department of Medicine, Columbia University, New York, NY, USA
| | - Nabeel Bardeesy
- Department of Medicine, Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
- Cancer Program, Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Lichun Ma
- Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Lipika Goyal
- Division of Oncology, Stanford School of Medicine, Palo Alto, CA, USA
| | - Robin K Kelley
- Department of Medicine, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA
| | - Xin W Wang
- Liver Cancer Program, Bethesda, MD, USA
- Liver Carcinogenesis Section, Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| |
Collapse
|
119
|
Han SC, Wang GZ, Yang YN, Fang WF, Sun BB, Zhang JD, Zhou HQ, Zhang L, Wang Y, Zhou GB. Nuclear AhR and membranous PD-L1 in predicting response of non-small cell lung cancer to PD-1 blockade. Signal Transduct Target Ther 2023; 8:191. [PMID: 37246200 DOI: 10.1038/s41392-023-01416-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 03/04/2023] [Accepted: 03/13/2023] [Indexed: 05/30/2023] Open
Affiliation(s)
- Si-Chong Han
- State Key Laboratory of Molecular Oncology and Department of Internal Medicine, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Gui-Zhen Wang
- State Key Laboratory of Molecular Oncology and Department of Internal Medicine, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ya-Ning Yang
- State Key Laboratory of Molecular Oncology and Department of Internal Medicine, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wen-Feng Fang
- Lung Cancer Research Centre and State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Bei-Bei Sun
- State Key Laboratory of Molecular Oncology and Department of Internal Medicine, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jian-Dong Zhang
- Shanxi Bethune Hospital Affiliated with Shanxi Academy of Medical Sciences, Taiyuan, China
| | - Hua-Qiang Zhou
- Lung Cancer Research Centre and State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Li Zhang
- Lung Cancer Research Centre and State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, China.
| | - Yan Wang
- State Key Laboratory of Molecular Oncology and Department of Internal Medicine, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Guang-Biao Zhou
- State Key Laboratory of Molecular Oncology and Department of Internal Medicine, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
120
|
Sakurada-Aono M, Sakamoto T, Kobayashi M, Takiuchi Y, Iwai F, Tada K, Sasanuma H, Hirabayashi S, Murakawa Y, Shirakawa K, Sakamoto C, Shindo K, Yasunaga JI, Matsuoka M, Pommier Y, Takeda S, Takaori-Kondo A. HTLV-1 bZIP factor impairs DNA mismatch repair system. Biochem Biophys Res Commun 2023; 657:43-49. [PMID: 36972660 PMCID: PMC10115849 DOI: 10.1016/j.bbrc.2023.03.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 03/17/2023] [Indexed: 03/29/2023]
Abstract
Adult T-cell leukemia (ATL) is a peripheral T-cell malignancy caused by human T-cell leukemia virus type 1 (HTLV-1). Microsatellite instability (MSI) has been observed in ATL cells. Although MSI results from impaired mismatch repair (MMR) pathway, no null mutations in the genes encoding MMR factors are detectable in ATL cells. Thus, it is unclear whether or not impairment of MMR causes the MSI in ATL cells. HTLV-1 bZIP factor (HBZ) protein interacts with numerous host transcription factors and significantly contributes to disease pathogenesis and progression. Here we investigated the effect of HBZ on MMR in normal cells. The ectopic expression of HBZ in MMR-proficient cells induced MSI, and also suppressed the expression of several MMR factors. We then hypothesized that the HBZ compromises MMR by interfering with a transcription factor, nuclear respiratory factor 1 (NRF-1), and identified the consensus NRF-1 binding site at the promoter of the gene encoding MutS homologue 2 (MSH2), an essential MMR factor. The luciferase reporter assay revealed that NRF-1 overexpression enhanced MSH2 promoter activity, while co-expression of HBZ reversed this enhancement. These results supported the idea that HBZ suppresses the transcription of MSH2 by inhibiting NRF-1. Our data demonstrate that HBZ causes impaired MMR, and may imply a novel oncogenesis driven by HTLV-1.
Collapse
Affiliation(s)
- Maki Sakurada-Aono
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, 54 Shogoin-kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Takashi Sakamoto
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, 54 Shogoin-kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan.
| | - Masayuki Kobayashi
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, 54 Shogoin-kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Yoko Takiuchi
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, 54 Shogoin-kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Fumie Iwai
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, 54 Shogoin-kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Kohei Tada
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, 54 Shogoin-kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Hiroyuki Sasanuma
- Department of Radiation Genetics, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan; Department of Genome Medicine, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo, 156-8506, Japan
| | - Shigeki Hirabayashi
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, 54 Shogoin-kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan; RIKEN Center for Integrative Medical Sciences, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Yasuhiro Murakawa
- RIKEN Center for Integrative Medical Sciences, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan; Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan; IFOM ETS-the AIRC Institute of Molecular Oncology, 20139, Milan, MI, Italy
| | - Kotaro Shirakawa
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, 54 Shogoin-kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Chihiro Sakamoto
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, 54 Shogoin-kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Keisuke Shindo
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, 54 Shogoin-kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Jun-Ichirou Yasunaga
- Department of Hematology, Rheumatology and Infectious Diseases, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Masao Matsuoka
- Department of Hematology, Rheumatology and Infectious Diseases, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Yves Pommier
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Shunichi Takeda
- Department of Radiation Genetics, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan; Shenzhen University School of Medicine, 1066, Xueyuan BLV, Shenzhen, Guangdong, China
| | - Akifumi Takaori-Kondo
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, 54 Shogoin-kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
| |
Collapse
|
121
|
Barraud S, Tougeron D, Villeneuve L, Eveno C, Bayle A, Parc Y, Pocard M, André T, Cohen R. Immune checkpoint inhibitors for patients with isolated peritoneal carcinomatosis from dMMR/MSI-H colorectal cancer, a BIG-RENAPE collaboration. Dig Liver Dis 2023; 55:673-678. [PMID: 36266207 DOI: 10.1016/j.dld.2022.09.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/21/2022] [Accepted: 09/23/2022] [Indexed: 11/07/2022]
Abstract
BACKGROUND Immunotherapy with immune checkpoint inhibitors has significantly improved the survival of patients with MSI/dMMR mCRC. These tumors are associated with a specific metastatic spread, i.e. frequent peritoneal carcinomatosis (PC) that may be treated surgically when there is no other metastatic location. We aimed at evaluating the prognosis of patients treated with immune checkpoint inhibitors for MSI/dMMR mCRC with isolated PC. MATERIAL AND METHODS All consecutive patients with isolated PC from MSI/dMMR mCRC, initially considered as unresectable by multidisciplinary team meeting, treated with immune checkpoint inhibitors were included in this French multicenter cohort study. RESULTS Among 45 patients included, we observed 11 complete responses and 10 partial responses for an overall response rate iRECIST of 46%. After a median follow-up of 24.4 months, the median progression-free survival (PFS) and overall survival (OS) were not reached. Seven of the eight patients who underwent cytoreductive surgery after treatment with anti-PD1 ± anti-CTLA-4 were in complete pathologic response. CONCLUSION These results demonstrate long-term benefit of immune checkpoint inhibitors for patients with isolated PC from MSI/dMMR mCRC. Such treatment appears as the best therapeutic option for patients with isolated PC from MSI/dMMR mCRC. With a majority of pathological complete responses for patients who underwent surgery for residual lesions, the value of such therapeutic strategy remains unknown.
Collapse
Affiliation(s)
- Solenn Barraud
- Sorbonne Université, Department of Medical Oncology, Hôpital Saint-Antoine, AP-HP, and INSERM UMRS 938, Équipe Instabilité des Microsatellites et Cancer, Équipe Labellisée par la Ligue Nationale Contre le Cancer et SIRIC CURAMUS, Centre de recherche Saint Antoine, Paris, France
| | - David Tougeron
- Université de Poitiers, Faculté de Médecine et de Pharmacie and Department of Hepatology and Gastroenterology, Centre hospitalo-universitaire de Poitiers, Poitiers, France
| | - Laurent Villeneuve
- Clinical Research and Epidemiological Unit, Department of Public Health, Lyon University Hospital, EA 3738, University of Lyon, Lyon, France
| | - Clarisse Eveno
- Department of Digestive and Oncological Surgery, Claude Huriez University Hospital, and UMR- S1277- CANTHER Laboratory, "Cancer Heterogeneity, Plasticity and Resistance to Therapies", Lille, France
| | - Arnaud Bayle
- Drug Development Department (DITEP), Gustave Roussy, Villejuif, France; Oncostat U1018, Inserm, Université Paris-Saclay, Équipe Labellisée Ligue Contre le Cancer, Villejuif, France
| | - Yann Parc
- Sorbonne Université, Department of Digestive Surgery, Hôpital Saint-Antoine, AP-HP, and INSERM UMRS 938, Équipe Instabilité des Microsatellites et Cancer, Équipe Labellisée par la Ligue Nationale Contre le Cancer et SIRIC CURAMUS, Centre de recherche Saint Antoine, Paris, France
| | - Marc Pocard
- Hepato-Biliary-Pancreatic Gastrointestinal Surgery and Liver Transplantation, Pitié-Salpêtrière Hospital, Assistance Publique/Hôpitaux de Paris, and Université Paris Cité, UMR INSERM 1275 CAP Paris-Tech, Lariboisière Hospital, F-75010 Paris, France
| | - Thierry André
- Sorbonne Université, Department of Medical Oncology, Hôpital Saint-Antoine, AP-HP, and INSERM UMRS 938, Équipe Instabilité des Microsatellites et Cancer, Équipe Labellisée par la Ligue Nationale Contre le Cancer et SIRIC CURAMUS, Centre de recherche Saint Antoine, Paris, France
| | - Romain Cohen
- Sorbonne Université, Department of Medical Oncology, Hôpital Saint-Antoine, AP-HP, and INSERM UMRS 938, Équipe Instabilité des Microsatellites et Cancer, Équipe Labellisée par la Ligue Nationale Contre le Cancer et SIRIC CURAMUS, Centre de recherche Saint Antoine, Paris, France.
| |
Collapse
|
122
|
Kashima S, Braun DA. The Changing Landscape of Immunotherapy for Advanced Renal Cancer. Urol Clin North Am 2023; 50:335-349. [PMID: 36948676 DOI: 10.1016/j.ucl.2023.01.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
The management of advanced renal cell carcinoma has advanced tremendously over the past decade, but most patients still do not receive durable clinical benefit from current therapies. Renal cellcarcinoma is an immunogenic tumor, historically with conventional cytokine therapies, such as interleukin-2 and interferon-α, and contemporarily with the introduction of immune checkpoint inhibitors. Now the central therapeutic strategy in renal cell carcinoma is combination therapies including immunecheckpoint inhibitors. In this Review, we look back on the historical changes in systemic therapy for advanced renal cell carcinoma, and focus on the latest developments and prospects in this field.
Collapse
Affiliation(s)
- Soki Kashima
- Center of Molecular and Cellular Oncology, Yale Cancer Center, Yale School of Medicine, 300 George Street, Suite 6400, New Haven, CT, USA; Department of Urology, Akita University, Graduate School of Medicine, Akita, Japan
| | - David A Braun
- Center of Molecular and Cellular Oncology, Yale Cancer Center, Yale School of Medicine, 300 George Street, Suite 6400, New Haven, CT, USA.
| |
Collapse
|
123
|
Huang CH, Huang YC, Xu JK, Chen SY, Tseng LC, Huang JL, Lin CS. ATM Inhibition-Induced ISG15/IFI27/OASL Is Correlated with Immunotherapy Response and Inflamed Immunophenotype. Cells 2023; 12:cells12091288. [PMID: 37174688 PMCID: PMC10177353 DOI: 10.3390/cells12091288] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/19/2023] [Accepted: 04/28/2023] [Indexed: 05/15/2023] Open
Abstract
Immune checkpoint blockade (ICB) therapy can improve the survival of cancer patients with a high tumor mutation burden (TMB-H) or deficiency in DNA mismatch repair (dMMR) in their tumors. However, most cancer patients without TMB-H and dMMR do not benefit from ICB therapy. The inhibition of ATM can increase DNA damage and activate the interferon response, thus modulating the tumor immune microenvironment (TIME) and the efficacy of ICB therapy. In this study, we showed that ATM inhibition activated interferon signaling and induced interferon-stimulated genes (ISGs) in cisplatin-resistant and parent cancer cells. The ISGs induced by ATM inhibition were correlated with survival in cancer patients who received ICB therapy. In oral cancer, high expressions of ISG15, IFI27, and OASL were associated with low expressions of ATM, the activation of inflamed immune pathways, and increased tumor-infiltrating scores of CD8+ T, natural killer, and dendritic cells. The high expressions of ISG15, IFI27, and OASL were also correlated with complete remission in patients with cervical cancer treated with cisplatin. These results suggest that ATM inhibition can induce the interferon response and inflamed TIME, which may benefit ICB therapy.
Collapse
Affiliation(s)
- Chi-Han Huang
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Yun-Cian Huang
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Jun-Kai Xu
- Department of Bioscience Technology, College of Health Science, Chang Jung Christian University, Tainan 711, Taiwan
| | - Si-Yun Chen
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Lu-Chia Tseng
- Department of Bioscience Technology, College of Health Science, Chang Jung Christian University, Tainan 711, Taiwan
| | - Jau-Ling Huang
- Department of Bioscience Technology, College of Health Science, Chang Jung Christian University, Tainan 711, Taiwan
| | - Chang-Shen Lin
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Biological Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
| |
Collapse
|
124
|
Cabezas-Camarero S, García-Barberán V, Benítez-Fuentes JD, Sotelo MJ, Plaza JC, Encinas-Bascones A, De-la-Sen Ó, Falahat F, Gimeno-Hernández J, Gómez-Serrano M, Puebla-Díaz F, De-Pedro-Marina M, Iglesias-Moreno M, Pérez-Segura P. Clinical Behavior, Mutational Profile and T-Cell Repertoire of High-Grade Neuroendocrine Tumors of the Head and Neck. Cancers (Basel) 2023; 15:cancers15092431. [PMID: 37173898 PMCID: PMC10177201 DOI: 10.3390/cancers15092431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/15/2023] [Accepted: 04/21/2023] [Indexed: 05/15/2023] Open
Abstract
Neuroendocrine carcinomas (NECs) of the head and neck (HN) account for <1% of HN cancers (HNCs), with a 5-year overall survival (OS) <20%. This is a retrospective study of HN NECs diagnosed at our institution between 2005 and 2022. Immunohistochemistry and next-generation sequencing (NGS) were used to evaluate neuroendocrine markers, tumor mutational burden (TMB), mutational profiles and T-cell receptor repertoires. Eleven patients with high-grade HN NECs were identified (male:female ratio 6:5; median age 61 (Min-Max: 31-86)): nasoethmoidal (3), parotid gland (3), submaxillary gland (1), larynx (3) and base of tongue (1). Among n = 8 stage II/IVA/B, all received (chemo)radiotherapy with/without prior surgery or induction chemotherapy, with complete response in 7/8 (87.5%). Among n = 6 recurrent/metastatic patients, three received anti-PD1 (nivolumab (2), pembrolizumab (1)): two achieved partial responses lasting 24 and 10 months. After a median follow-up of 30 and 23.5 months since diagnosis and since recurrent/metastatic, median OS was not reached. Median TMB (n = 7) was 6.72 Mut/Mb. The most common pathogenic variants were TP53, HNF1A, SMARCB1, CDKN2A, PIK3CA, RB1 and MYC. There were 224 median TCR clones (n = 5 pts). In one patient, TCR clones increased from 59 to 1446 after nivolumab. HN NECs may achieve long-lasting survival with multimodality treatment. They harbor moderate-high TMBs and large TCR repertoires, which may explain responses to anti-PD1 agents in two patients and justify the study of immunotherapy in this disease.
Collapse
Affiliation(s)
- Santiago Cabezas-Camarero
- Medical Oncology Department, Hospital Clínico Universitario San Carlos, Instituto de Investigación Sanitaria San Carlos (IdISSC), 28040 Madrid, Spain
| | - Vanesa García-Barberán
- Molecular Oncology Laboratory, Hospital Clínico Universitario San Carlos, Instituto de Investigación Sanitaria San Carlos (IdISSC), 28040 Madrid, Spain
| | - Javier David Benítez-Fuentes
- Medical Oncology Department, Hospital Clínico Universitario San Carlos, Instituto de Investigación Sanitaria San Carlos (IdISSC), 28040 Madrid, Spain
| | - Miguel J Sotelo
- Medical Oncology Department, Aliada Cancer Center, Lima 15036, Peru
- Medical Oncology Department, Clínica San Felipe, Lima 15072, Peru
- Medical Oncology Department, Hospital María Auxiliadora, Lima 15801, Peru
| | - José Carlos Plaza
- Pathology Department, Hospital Clínico Universitario San Carlos, 28040 Madrid, Spain
| | | | - Óscar De-la-Sen
- Maxillofacial Surgery Department, Hospital Clínico Universitario San Carlos, 28040 Madrid, Spain
| | - Farzin Falahat
- Maxillofacial Surgery Department, Hospital Clínico Universitario San Carlos, 28040 Madrid, Spain
| | - Jesús Gimeno-Hernández
- Otolaryngology-Head and Neck Surgery Department, Hospital Clínico Universitario San Carlos, 28040 Madrid, Spain
| | - Manuel Gómez-Serrano
- Otolaryngology-Head and Neck Surgery Department, Hospital Clínico Universitario San Carlos, 28040 Madrid, Spain
| | - Fernando Puebla-Díaz
- Radiation Oncology Department, Hospital Clínico Universitario San Carlos, 28040 Madrid, Spain
| | - Manuel De-Pedro-Marina
- Maxillofacial Surgery Department, Hospital Clínico Universitario San Carlos, 28040 Madrid, Spain
| | - Maricruz Iglesias-Moreno
- Maxillofacial Surgery Department, Hospital Clínico Universitario San Carlos, 28040 Madrid, Spain
| | - Pedro Pérez-Segura
- Medical Oncology Department, Hospital Clínico Universitario San Carlos, Instituto de Investigación Sanitaria San Carlos (IdISSC), 28040 Madrid, Spain
| |
Collapse
|
125
|
Gates TJ, Wangmo D, Zhao X, Subramanian S. Allogeneic Tumor Cell-Derived Extracellular Vesicles Stimulate CD8 T Cell Response in Colorectal Cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.17.537250. [PMID: 37131597 PMCID: PMC10153182 DOI: 10.1101/2023.04.17.537250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Colorectal Cancer (CRC) is the second leading cause of cancer-related death in the United States. Most CRC patients present with a microsatellite stable (MSS) phenotype and are highly resistant to immunotherapies. Tumor extracellular vesicles (TEVs), secreted by tumor cells, can contribute to intrinsic resistance to immunotherapy in CRC. We previously showed that autologous TEVs without functional miR-424 induce anti-tumor immune responses. We hypothesized that allogeneic modified CRC-TEVs without miR-424 (mouse homolog miR-322) derived from an MC38 background would effectively stimulate CD8+ T cell response and limit CT26 tumor growth. Here we show that prophylactic administration of MC38 TEVs without functional miR-424 significantly increased CD8+ T cells in CT26 CRC tumors and limited tumor growth, not B16-F10 melanoma tumors. We further show that the depletion of CD4+ and CD8+ T cells abolished the protective effects of MC38 TEVs without functional miR-424. We further show that TEVs can be taken up by DCs in vitro, and subsequent prophylactic administration of autologous DCs exposed to MC38 TEVs without functional miR-424 suppressed tumor growth and increased CD8+ T cells compared to MC38 wild-type TEVs exposed to DCs, in Balb/c mice bearing CT26 tumors. Notably, the modified EVs were well tolerated and did not increase cytokine expression in peripheral blood. These findings suggest that allogeneic-modified CRC-EVs without immune suppressive miR-424 can induce antitumor CD8+ T cell responses and limit tumor growth in vivo.
Collapse
Affiliation(s)
- Travis J Gates
- Department of Molecular Pharmacology and Therapeutics, University of Minnesota Medical School, Minneapolis, Minnesota
| | - Dechen Wangmo
- Department of Molecular Pharmacology and Therapeutics, University of Minnesota Medical School, Minneapolis, Minnesota
| | - Xianda Zhao
- Department of Surgery, University of Minnesota Medical School, Minneapolis, Minnesota
| | - Subbaya Subramanian
- Department of Surgery, University of Minnesota Medical School, Minneapolis, Minnesota
- Masonic Cancer Center, University of Minnesota Medical School, Minneapolis, Minnesota
- Center for Immunology, University of Minnesota Medical School, Minneapolis, Minnesota
| |
Collapse
|
126
|
Chen J, Yan Q, Sun J, Wang Q, Tao Y, Xiao D, Xie B. Microsatellite Status Detection of Colorectal Cancer: Evaluation of Inconsistency between PCR and IHC. J Cancer 2023; 14:1132-1140. [PMID: 37215453 PMCID: PMC10197936 DOI: 10.7150/jca.81675] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 03/17/2023] [Indexed: 05/24/2023] Open
Abstract
Objective: An essential component of precision medical treatment for colorectal cancer (CRC) is the use of microsatellite state in combination with polymerase chain reaction (PCR) and immunohistochemistry (IHC) as the primary clinical detection methods. Microsatellite instability-high (MSI-H) or mismatch-repair deficiency (dMMR) accounts for about 15% of all CRC patients. Characterized by a high mutation burden, MSI-H is a predictive biomarker of immune checkpoint inhibitors (ICIs). Misdiagnosis of microsatellite status has been shown to be an important cause of resistance to immune checkpoint inhibitors. Therefore, a rapid and accurate assessment of microsatellite status can be beneficial for precision medicine in CRC. Methods: We evaluated the rate of discordance between PCR and IHC detection of microsatellite status from a cohort of patients that had 855 colorectal cancers. PCR-based microsatellite assay was performed using a set of five monomorphic mononucleotide makers (NR-24, BAT-25, CAT-25, BAT-26, MONO-27) and two polymorphic pentanucleotide (Penta D and Penta E). IHC was used to detect the absence of mismatch repair proteins (MLH1, MSH2, MSH6, and PMS2). The inconsistency rates of the two assays were evaluated. Results: Among 855 patients,15.6% (134 to 855) cases were identified as MSI-H by PCR, whereas 16.9% (145 to 855) cases were identified as dMMR by IHC. There were 45 patients with discordant results between IHC and PCR. Of these, 17 patients were classified as MSI-H/pMMR and 28 patients as MSS/dMMR. When the clinicopathological characteristics of these 45 patients were compared to those of the 855 patients, it was found that more patients were younger than 65 years old (80% to 63%), more were male (73% to 62%), more were located in the right colon (49% to 32%), and more were poorly differentiated (20% to 15%). Conclusion: Our study demonstrated a high concordance between the PCR and IHC results. In order to reduce the ineffective treatment of ICIs due to MSI misdiagnosis, the patient's age, gender, tumor location and degree of differentiation should be included in the clinician's selection of MSI testing in colorectal cancer.
Collapse
Affiliation(s)
- Jielin Chen
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan 410078, China
- Department of Pathology, School of Basic Medicine, Central South University, Changsha, Hunan 410078, China
| | - Qijia Yan
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan 410078, China
| | - Jingyue Sun
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan 410078, China
- Department of Pathology, School of Basic Medicine, Central South University, Changsha, Hunan 410078, China
| | - Qingyi Wang
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan 410078, China
- Department of Pathology, School of Basic Medicine, Central South University, Changsha, Hunan 410078, China
| | - Yongguang Tao
- Cancer Research Institute, School of Basic Medicine, Central South University, Changsha, Hunan, 410078, China
- Key Laboratory of Carcinogenesis and Cancer Invasion (Central South University), Ministry of Education, Hunan, 410078, China
- Key Laboratory of Carcinogenesis (Central South University), Ministry of Health, Hunan, 410078, China
| | - Desheng Xiao
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan 410078, China
- Department of Pathology, School of Basic Medicine, Central South University, Changsha, Hunan 410078, China
| | - Bin Xie
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan 410078, China
| |
Collapse
|
127
|
Kavun A, Veselovsky E, Lebedeva A, Belova E, Kuznetsova O, Yakushina V, Grigoreva T, Mileyko V, Fedyanin M, Ivanov M. Microsatellite Instability: A Review of Molecular Epidemiology and Implications for Immune Checkpoint Inhibitor Therapy. Cancers (Basel) 2023; 15:cancers15082288. [PMID: 37190216 DOI: 10.3390/cancers15082288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/10/2023] [Accepted: 04/11/2023] [Indexed: 05/17/2023] Open
Abstract
Microsatellite instability (MSI) is one of the most important molecular characteristics of a tumor, which occurs among various tumor types. In this review article, we examine the molecular characteristics of MSI tumors, both sporadic and Lynch-associated. We also overview the risks of developing hereditary forms of cancer and potential mechanisms of tumor development in patients with Lynch syndrome. Additionally, we summarize the results of major clinical studies on the efficacy of immune checkpoint inhibitors for MSI tumors and discuss the predictive role of MSI in the context of chemotherapy and checkpoint inhibitors. Finally, we briefly discuss some of the underlying mechanisms causing therapy resistance in patients treated with immune checkpoint inhibitors.
Collapse
Affiliation(s)
| | - Egor Veselovsky
- OncoAtlas LLC, 119049 Moscow, Russia
- Department of Evolutionary Genetics of Development, Koltzov Institute of Developmental Biology of the Russian Academy of Sciences, 119334 Moscow, Russia
| | | | - Ekaterina Belova
- OncoAtlas LLC, 119049 Moscow, Russia
- Faculty of Physics, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Olesya Kuznetsova
- OncoAtlas LLC, 119049 Moscow, Russia
- N.N. Blokhin Russian Cancer Research Center, 115478 Moscow, Russia
| | - Valentina Yakushina
- OncoAtlas LLC, 119049 Moscow, Russia
- Laboratory of Epigenetics, Research Centre for Medical Genetics, 115522 Moscow, Russia
| | - Tatiana Grigoreva
- OncoAtlas LLC, 119049 Moscow, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia
| | | | - Mikhail Fedyanin
- N.N. Blokhin Russian Cancer Research Center, 115478 Moscow, Russia
- State Budgetary Institution of Health Care of the City of Moscow "Moscow Multidisciplinary Clinical Center" "Kommunarka" of the Department of Health of the City of Moscow, 142770 Moscow, Russia
- Federal State Budgetary Institution "National Medical and Surgical Center named after N.I. Pirogov" of the Ministry of Health of the Russian Federation, 105203 Moscow, Russia
| | - Maxim Ivanov
- OncoAtlas LLC, 119049 Moscow, Russia
- Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia
| |
Collapse
|
128
|
Ishino T, Kawashima S, Tanji E, Ueno T, Ueda Y, Ogasawara S, Sato K, Mano H, Ishihara S, Kato N, Kawazu M, Togashi Y. Somatic mutations can induce a noninflamed tumour microenvironment via their original gene functions, despite deriving neoantigens. Br J Cancer 2023; 128:1166-1175. [PMID: 36732592 PMCID: PMC10006227 DOI: 10.1038/s41416-023-02165-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 01/11/2023] [Accepted: 01/13/2023] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Identifying biomarkers to predict immune checkpoint inhibitor (ICI) efficacy is warranted. Considering that somatic mutation-derived neoantigens induce strong immune responses, patients with a high tumour mutational burden reportedly tend to respond to ICIs. However, there are several conflicting data. Therefore, we focused on the original function of neoantigenic mutations and their impact on the tumour microenvironment (TME). METHODS We evaluated 88 high-frequency microsatellite instability (MSI-H) colorectal cancers and analysed the function of the identified neoantigenic mutations and their influence on programmed cell death 1 (PD-1) blockade efficacy. The results were validated using The Cancer Genome Atlas (TCGA) datasets. RESULTS We identified frameshift mutations in RNF43 as a common neoantigenic gene mutation in MSI-H tumours. However, loss-of-function RNF43 mutations induced noninflamed TME by activating the WNT/β-catenin signalling pathway. In addition, loss of RNF43 function induced resistance to PD-1 blockade even in neoantigen-rich tumours. TCGA dataset analyses demonstrated that passenger rather than driver gene mutations were related to the inflamed TME in diverse cancer types. CONCLUSIONS We propose a novel concept of "paradoxical neoantigenic mutations" that can induce noninflamed TME through their original gene functions, despite deriving neoantigens, suggesting the significance of qualities as well as quantities in neoantigenic mutations.
Collapse
Affiliation(s)
- Takamasa Ishino
- Department of Tumor Microenvironment, Okayama University, Graduate School of Medicine Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan.,Division of Cell Therapy, Chiba Cancer Center Research Institute, 666-2, Nitona-cho, Chuo-ku, Chiba, 260-8717, Japan.,Department of Gastroenterology, Graduate School of Medicine, Chiba University, 1‑8‑1 Inohana, Chuo‑ku, Chiba, 260‑8670, Japan
| | - Shusuke Kawashima
- Division of Cell Therapy, Chiba Cancer Center Research Institute, 666-2, Nitona-cho, Chuo-ku, Chiba, 260-8717, Japan.,Department of Dermatology, Graduate School of Medicine, Chiba University, 1‑8‑1 Inohana, Chuo‑ku, Chiba, 260‑8670, Japan
| | - Etsuko Tanji
- Division of Cell Therapy, Chiba Cancer Center Research Institute, 666-2, Nitona-cho, Chuo-ku, Chiba, 260-8717, Japan
| | - Toshihide Ueno
- Division of Cellular Signaling, National Cancer Center Research Institute; 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Youki Ueda
- Department of Tumor Microenvironment, Okayama University, Graduate School of Medicine Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Sadahisa Ogasawara
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, 1‑8‑1 Inohana, Chuo‑ku, Chiba, 260‑8670, Japan
| | - Kazuhito Sato
- Department of Surgical Oncology, Graduate School of Medicine, The University of Tokyo; 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Hiroyuki Mano
- Division of Cellular Signaling, National Cancer Center Research Institute; 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Soichiro Ishihara
- Department of Surgical Oncology, Graduate School of Medicine, The University of Tokyo; 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Naoya Kato
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, 1‑8‑1 Inohana, Chuo‑ku, Chiba, 260‑8670, Japan
| | - Masahito Kawazu
- Division of Cell Therapy, Chiba Cancer Center Research Institute, 666-2, Nitona-cho, Chuo-ku, Chiba, 260-8717, Japan. .,Division of Cellular Signaling, National Cancer Center Research Institute; 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan.
| | - Yosuke Togashi
- Department of Tumor Microenvironment, Okayama University, Graduate School of Medicine Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan. .,Division of Cell Therapy, Chiba Cancer Center Research Institute, 666-2, Nitona-cho, Chuo-ku, Chiba, 260-8717, Japan.
| |
Collapse
|
129
|
Lin Y, Zhang Y, Tuo Z, Gao L, Ding D, Bi L, Yu D, Lv Z, Wang J, Chen X. ORC6, a novel prognostic biomarker, correlates with T regulatory cell infiltration in prostate adenocarcinoma: a pan-cancer analysis. BMC Cancer 2023; 23:285. [PMID: 36978046 PMCID: PMC10053432 DOI: 10.1186/s12885-023-10763-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 03/21/2023] [Indexed: 03/30/2023] Open
Abstract
BACKGROUND The origin recognition complex (ORC), a six-subunit DNA-binding complex, participates in DNA replication in cancer cells. Specifically in prostate cancers, ORC participates the androgen receptor (AR) regulated genomic amplification and tumor proliferation throughout the entire cell cycle. Of note, ORC6, the smallest subunit of ORC, has been reported to be dysregulated in some types of cancers (including prostate cancer), however, its prognostic and immunological significances remain yet to be elucidated. METHODS In the current study, we comprehensively investigated the potential prognostic and immunological role of ORC6 in 33 human tumors using multiple databases, such as TCGA, Genotype-Tissue Expression, CCLE, UCSC Xena, cBioPortal, Human Protein Atlas, GeneCards, STRING, MSigDB, TISIDB, and TIMER2 databases. RESULTS ORC6 expression was significantly upregulated in 29 types of cancers compared to the corresponding normal adjacent tissues. ORC6 overexpression correlated with higher stage and worse prognostic outcomes in most cancer types analyzed. Additionally, ORC6 was involved in the cell cycle pathway, DNA replication, and mismatch repair pathways in most tumor types. A negative correlation was observed between the tumor endothelial cell infiltration and ORC6 expression in almost all tumors, whereas the immune infiltration of T regulatory cell was noted to be statistically positively correlated with the expression of ORC6 in prostate cancer tissues. Furthermore, in most tumor types, immunosuppression-related genes, especially TGFBR1 and PD-L1 (CD274), exhibited a specific correlation with the expression of ORC6. CONCLUSIONS This comprehensive pan-cancer analysis revealed that ORC6 expression serves as a prognostic biomarker and that ORC6 is involved in the regulation of various biological pathways, the tumor microenvironment, and the immunosuppression status in several human cancers, suggesting its potential diagnostic, prognostic, and therapeutic value in pan-cancer, especially in prostate adenocarcinoma.
Collapse
Affiliation(s)
- Yuan Lin
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Ying Zhang
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Zhouting Tuo
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Liang Gao
- Center for Clinical Medicine, Huatuo Institute of Medical Innovation (HTIMI), Berlin, Germany
| | - Demao Ding
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Liangkuan Bi
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Dexin Yu
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Zhengmei Lv
- Department of Histology and Embryology, School of Basic Medical Sciences, Anhui Medical University, Anhui, China
| | - Jiani Wang
- School of Health Administration, Anhui Medical University, Hefei, China
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, Berlin, Germany
- Berlin Institute of Health, Institute for Social Medicine, Epidemiology and Health Economics, Berlin, Germany
| | - Xin Chen
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China.
| |
Collapse
|
130
|
Zhu J, Kong W, Huang L, Bi S, Jiao X, Zhu S. Identification of immunotherapy and chemotherapy-related molecular subtypes in colon cancer by integrated multi-omics data analysis. Front Immunol 2023; 14:1142609. [PMID: 37020539 PMCID: PMC10067602 DOI: 10.3389/fimmu.2023.1142609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 02/27/2023] [Indexed: 03/22/2023] Open
Abstract
BackgroundColon cancer is a highly heterogeneous disease, and identifying molecular subtypes can provide insights into deregulated pathways within tumor subsets, which may lead to personalized treatment options. However, most prognostic models are based on single-pathway genes.MethodsIn this study, we aimed to identify three clinically relevant subtypes of colon cancer based on multiple signaling pathways-related genes. Integrative multi-omics analysis was used to explain the biological processes contributing to colon cancer aggressiveness, recurrence, and progression. Machine learning methods were employed to identify the subtypes and provide medication guidance for distinct subtypes using the L1000 platform. We developed a robust prognostic model (MKPC score) based on gene pairs and validated it in one internal test set and three external test sets. Risk-related genes were extracted and verified by qPCR.ResultsThree clinically relevant subtypes of colon cancer were identified based on multiple signaling pathways-related genes, which had significantly different survival state (Log-Rank test, p<0.05). Integrative multi-omics analysis revealed biological processes contributing to colon cancer aggressiveness, recurrence, and progression. The developed MKPC score, based on gene pairs, was robust in predicting prognosis state (Log-Rank test, p<0.05), and risk-related genes were successfully verified by qPCR (t test, p<0.05). An easy-to-use web tool was created for risk scoring and therapy stratification in colon cancer patients, and the practical nomogram can be extended to other cancer types.ConclusionIn conclusion, our study identified three clinically relevant subtypes of colon cancer and developed a robust prognostic model based on gene pairs. The developed web tool is a valuable resource for researchers and clinicians in risk scoring and therapy stratification in colon cancer patients, and the practical nomogram can be extended to other cancer types.
Collapse
Affiliation(s)
- Jie Zhu
- Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, Shandong, China
- Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
- Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing, China
| | - Weikaixin Kong
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
- Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing, China
- Gastrointestinal Surgery Department, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
- *Correspondence: Sujie Zhu, ; Weikaixin Kong, ; Xuelong Jiao,
| | - Liting Huang
- Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Suzhen Bi
- Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Xuelong Jiao
- Gastrointestinal Surgery Department, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
- *Correspondence: Sujie Zhu, ; Weikaixin Kong, ; Xuelong Jiao,
| | - Sujie Zhu
- Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, Shandong, China
- Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
- *Correspondence: Sujie Zhu, ; Weikaixin Kong, ; Xuelong Jiao,
| |
Collapse
|
131
|
Vornholz L, Isay SE, Kurgyis Z, Strobl DC, Loll P, Mosa MH, Luecken MD, Sterr M, Lickert H, Winter C, Greten FR, Farin HF, Theis FJ, Ruland J. Synthetic enforcement of STING signaling in cancer cells appropriates the immune microenvironment for checkpoint inhibitor therapy. SCIENCE ADVANCES 2023; 9:eadd8564. [PMID: 36921054 PMCID: PMC10017047 DOI: 10.1126/sciadv.add8564] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 01/26/2023] [Indexed: 06/18/2023]
Abstract
Immune checkpoint inhibitors (ICIs) enhance anticancer immunity by releasing repressive signals into tumor microenvironments (TMEs). To be effective, ICIs require preexisting immunologically "hot" niches for tumor antigen presentation and lymphocyte recruitment. How the mutational landscape of cancer cells shapes these immunological niches remains poorly defined. We found in human and murine colorectal cancer (CRC) models that the superior antitumor immune response of mismatch repair (MMR)-deficient CRC required tumor cell-intrinsic activation of cGAS-STING signaling triggered by genomic instability. Subsequently, we synthetically enforced STING signaling in CRC cells with intact MMR signaling using constitutively active STING variants. Even in MMR-proficient CRC, genetically encoded gain-of-function STING was sufficient to induce cancer cell-intrinsic interferon signaling, local activation of antigen-presenting cells, recruitment of effector lymphocytes, and sensitization of previously "cold" TMEs to ICI therapy in vivo. Thus, our results introduce a rational strategy for modulating cancer cell-intrinsic programs via engineered STING enforcement to sensitize resistant tumors to ICI responsiveness.
Collapse
Affiliation(s)
- Larsen Vornholz
- Institute of Clinical Chemistry and Pathobiochemistry, School of Medicine, Technical University of Munich, Munich, Germany
- TranslaTUM, Center for Translational Cancer Research, Technical University of Munich, Munich, Germany
| | - Sophie E. Isay
- Institute of Clinical Chemistry and Pathobiochemistry, School of Medicine, Technical University of Munich, Munich, Germany
- TranslaTUM, Center for Translational Cancer Research, Technical University of Munich, Munich, Germany
| | - Zsuzsanna Kurgyis
- Institute of Clinical Chemistry and Pathobiochemistry, School of Medicine, Technical University of Munich, Munich, Germany
- TranslaTUM, Center for Translational Cancer Research, Technical University of Munich, Munich, Germany
- Department of Dermatology and Allergology, Technical University of Munich, Munich, Germany
| | - Daniel C. Strobl
- Institute of Clinical Chemistry and Pathobiochemistry, School of Medicine, Technical University of Munich, Munich, Germany
- TranslaTUM, Center for Translational Cancer Research, Technical University of Munich, Munich, Germany
- Institute of Computational Biology, Department of Computational Health, Helmholtz Center Munich, Neuherberg, Germany
| | - Patricia Loll
- Institute of Clinical Chemistry and Pathobiochemistry, School of Medicine, Technical University of Munich, Munich, Germany
- TranslaTUM, Center for Translational Cancer Research, Technical University of Munich, Munich, Germany
| | - Mohammed H. Mosa
- Institute for Tumor Biology and Experimental Therapy, Georg-Speyer-Haus, Frankfurt/Main, Germany
- Frankfurt Cancer Institute, Goethe University Frankfurt, Frankfurt/Main, Germany
| | - Malte D. Luecken
- Institute of Computational Biology, Department of Computational Health, Helmholtz Center Munich, Neuherberg, Germany
- Institute of Lung Health and Immunity (LHI), Helmholtz Center Munich, Neuherberg, Germany
- Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Michael Sterr
- Institute of Diabetes and Regeneration Research, Helmholtz Center Munich, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Heiko Lickert
- Institute of Diabetes and Regeneration Research, Helmholtz Center Munich, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Institute of Stem Cell Research, Helmholtz Center Munich, Neuherberg, Germany
- School of Medicine, Technical University of Munich, Munich, Germany
| | - Christof Winter
- Institute of Clinical Chemistry and Pathobiochemistry, School of Medicine, Technical University of Munich, Munich, Germany
- TranslaTUM, Center for Translational Cancer Research, Technical University of Munich, Munich, Germany
- German Cancer Consortium (DKTK), Munich partner site, Germany
- German Cancer Consortium (DKTK), Frankfurt/Mainz partner site, Germany
| | - Florian R. Greten
- Institute for Tumor Biology and Experimental Therapy, Georg-Speyer-Haus, Frankfurt/Main, Germany
- Frankfurt Cancer Institute, Goethe University Frankfurt, Frankfurt/Main, Germany
- German Cancer Consortium (DKTK), Frankfurt/Mainz partner site, Germany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Henner F. Farin
- Institute for Tumor Biology and Experimental Therapy, Georg-Speyer-Haus, Frankfurt/Main, Germany
- Frankfurt Cancer Institute, Goethe University Frankfurt, Frankfurt/Main, Germany
- German Cancer Consortium (DKTK), Frankfurt/Mainz partner site, Germany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Fabian J. Theis
- Institute of Computational Biology, Department of Computational Health, Helmholtz Center Munich, Neuherberg, Germany
- Department of Mathematics, Technical University of Munich, Munich, Germany
- TUM School of Life Sciences Weihenstephan, Technical University of Munich, Munich, Germany
| | - Jürgen Ruland
- Institute of Clinical Chemistry and Pathobiochemistry, School of Medicine, Technical University of Munich, Munich, Germany
- TranslaTUM, Center for Translational Cancer Research, Technical University of Munich, Munich, Germany
- German Cancer Consortium (DKTK), Munich partner site, Germany
- German Cancer Consortium (DKTK), Frankfurt/Mainz partner site, Germany
- German Center for Infection Research (DZIF), Munich partner site, Germany
| |
Collapse
|
132
|
Geurts BS, Battaglia TW, van Berge Henegouwen JM, Zeverijn LJ, de Wit GF, Hoes LR, van der Wijngaart H, van der Noort V, Roepman P, de Leng WWJ, Jansen AML, Opdam FL, de Jonge MJA, Cirkel GA, Labots M, Hoeben A, Kerver ED, Bins AD, Erdkamp FGL, van Rooijen JM, Houtsma D, Hendriks MP, de Groot JWB, Verheul HMW, Gelderblom H, Voest EE. Efficacy, safety and biomarker analysis of durvalumab in patients with mismatch-repair deficient or microsatellite instability-high solid tumours. BMC Cancer 2023; 23:205. [PMID: 36870947 PMCID: PMC9985217 DOI: 10.1186/s12885-023-10663-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 02/20/2023] [Indexed: 03/06/2023] Open
Abstract
BACKGROUND In this study we aimed to evaluate the efficacy and safety of the PD-L1 inhibitor durvalumab across various mismatch repair deficient (dMMR) or microsatellite instability-high (MSI-H) tumours in the Drug Rediscovery Protocol (DRUP). This is a clinical study in which patients are treated with drugs outside their labeled indication, based on their tumour molecular profile. PATIENTS AND METHODS Patients with dMMR/MSI-H solid tumours who had exhausted all standard of care options were eligible. Patients were treated with durvalumab. The primary endpoints were clinical benefit ((CB): objective response (OR) or stable disease ≥16 weeks) and safety. Patients were enrolled using a Simon like 2-stage model, with 8 patients in stage 1, up to 24 patients in stage 2 if at least 1/8 patients had CB in stage 1. At baseline, fresh frozen biopsies were obtained for biomarker analyses. RESULTS Twenty-six patients with 10 different cancer types were included. Two patients (2/26, 8%) were considered as non-evaluable for the primary endpoint. CB was observed in 13 patients (13/26, 50%) with an OR in 7 patients (7/26, 27%). The remaining 11 patients (11/26, 42%) had progressive disease. Median progression-free survival and median overall survival were 5 months (95% CI, 2-not reached) and 14 months (95% CI, 5-not reached), respectively. No unexpected toxicity was observed. We found a significantly higher structural variant (SV) burden in patients without CB. Additionally, we observed a significant enrichment of JAK1 frameshift mutations and a significantly lower IFN-γ expression in patients without CB. CONCLUSION Durvalumab was generally well-tolerated and provided durable responses in pre-treated patients with dMMR/MSI-H solid tumours. High SV burden, JAK1 frameshift mutations and low IFN-γ expression were associated with a lack of CB; this provides a rationale for larger studies to validate these findings. TRIAL REGISTRATION Clinical trial registration: NCT02925234. First registration date: 05/10/2016.
Collapse
Affiliation(s)
- Birgit S Geurts
- Division of Molecular Oncology & Immunology, Netherlands Cancer Institute, Amsterdam, the Netherlands.,Oncode Institute, Utrecht, the Netherlands
| | - Thomas W Battaglia
- Division of Molecular Oncology & Immunology, Netherlands Cancer Institute, Amsterdam, the Netherlands.,Oncode Institute, Utrecht, the Netherlands
| | - J Maxime van Berge Henegouwen
- Oncode Institute, Utrecht, the Netherlands.,Department of Medical Oncology, Leiden University Medical Centre, Leiden, the Netherlands
| | - Laurien J Zeverijn
- Division of Molecular Oncology & Immunology, Netherlands Cancer Institute, Amsterdam, the Netherlands.,Oncode Institute, Utrecht, the Netherlands
| | - Gijs F de Wit
- Division of Molecular Oncology & Immunology, Netherlands Cancer Institute, Amsterdam, the Netherlands.,Oncode Institute, Utrecht, the Netherlands
| | - Louisa R Hoes
- Division of Molecular Oncology & Immunology, Netherlands Cancer Institute, Amsterdam, the Netherlands.,Oncode Institute, Utrecht, the Netherlands
| | - Hanneke van der Wijngaart
- Oncode Institute, Utrecht, the Netherlands.,Department of Medical Oncology, Amsterdam University Medical Centre, location VUMC, Amsterdam, the Netherlands
| | | | - Paul Roepman
- Hartwig Medical Foundation, Amsterdam, the Netherlands
| | - Wendy W J de Leng
- Department of Pathology, University Medical Cancer Centre Utrecht, Utrecht, the Netherlands
| | - Anne M L Jansen
- Department of Pathology, University Medical Cancer Centre Utrecht, Utrecht, the Netherlands
| | - Frans L Opdam
- Department of Clinical Pharmacology, the Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Maja J A de Jonge
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | - Geert A Cirkel
- Department of Medical Oncology, Meander, Amersfoort, the Netherlands
| | - Mariette Labots
- Department of Medical Oncology, Amsterdam University Medical Centre, location VUMC, Amsterdam, the Netherlands
| | - Ann Hoeben
- Department of Medical Oncology, Department of Internal Medicine, GROW-School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, the Netherlands
| | - Emile D Kerver
- Department of Medical Oncology, Onze Lieve Vrouwe Gasthuis, Amsterdam, the Netherlands
| | - Adriaan D Bins
- Department of Medical Oncology, Amsterdam University Medical Centre, location AUMC, Amsterdam, the Netherlands
| | - Frans G L Erdkamp
- Department of Medical Oncology, Zuyderland Hospital, Sittard-Geelen, the Netherlands
| | - Johan M van Rooijen
- Department of Medical Oncology, Martini Hospital, Groningen, the Netherlands
| | - Danny Houtsma
- Department of Medical Oncology, Haga Hospital, The Hague, the Netherlands
| | - Mathijs P Hendriks
- Department of Medical Oncology, Northwest Clinics, Alkmaar, the Netherlands
| | | | - Henk M W Verheul
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | - Hans Gelderblom
- Department of Medical Oncology, Leiden University Medical Centre, Leiden, the Netherlands
| | - Emile E Voest
- Division of Molecular Oncology & Immunology, Netherlands Cancer Institute, Amsterdam, the Netherlands. .,Oncode Institute, Utrecht, the Netherlands.
| |
Collapse
|
133
|
Krug J, Rodrian G, Petter K, Yang H, Khoziainova S, Guo W, Bénard A, Merkel S, Gellert S, Maschauer S, Spermann M, Waldner M, Bailey P, Pilarsky C, Liebl A, Tripal P, Christoph J, Naschberger E, Croner R, Schellerer VS, Becker C, Hartmann A, Tüting T, Prante O, Grützmann R, Grivennikov SI, Stürzl M, Britzen-Laurent N. N-glycosylation Regulates Intrinsic IFN-γ Resistance in Colorectal Cancer: Implications for Immunotherapy. Gastroenterology 2023; 164:392-406.e5. [PMID: 36402190 PMCID: PMC10009756 DOI: 10.1053/j.gastro.2022.11.018] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 11/07/2022] [Accepted: 11/08/2022] [Indexed: 11/18/2022]
Abstract
BACKGROUND & AIMS Advanced colorectal carcinoma (CRC) is characterized by a high frequency of primary immune evasion and refractoriness to immunotherapy. Given the importance of interferon (IFN)-γ in CRC immunosurveillance, we investigated whether and how acquired IFN-γ resistance in tumor cells would promote tumor growth, and whether IFN-γ sensitivity could be restored. METHODS Spontaneous and colitis-associated CRC development was induced in mice with a specific IFN-γ pathway inhibition in intestinal epithelial cells. The influence of IFN-γ pathway gene status and expression on survival was assessed in patients with CRC. The mechanisms underlying IFN-γ resistance were investigated in CRC cell lines. RESULTS The conditional knockout of the IFN-γ receptor in intestinal epithelial cells enhanced spontaneous and colitis-associated colon tumorigenesis in mice, and the loss of IFN-γ receptor α (IFNγRα) expression by tumor cells predicted poor prognosis in patients with CRC. IFNγRα expression was repressed in human CRC cells through changes in N-glycosylation, which decreased protein stability via proteasome-dependent degradation, inhibiting IFNγR-signaling. Downregulation of the bisecting N-acetylglucosaminyltransferase III (MGAT3) expression was associated with IFN-γ resistance in all IFN-γ-resistant cells, and highly correlated with low IFNγRα expression in CRC tissues. Both ectopic and pharmacological reconstitution of MGAT3 expression with all-trans retinoic acid increased bisecting N-glycosylation, as well as IFNγRα protein stability and signaling. CONCLUSIONS Together, our results demonstrated that tumor-associated changes in N-glycosylation destabilize IFNγRα, causing IFN-γ resistance in CRC. IFN-γ sensitivity could be reestablished through the increase in MGAT3 expression, notably via all-trans retinoic acid treatment, providing new prospects for the treatment of immune-resistant CRC.
Collapse
Affiliation(s)
- Julia Krug
- Division of Molecular and Experimental Surgery, Department of Surgery, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Gabriele Rodrian
- Division of Molecular and Experimental Surgery, Department of Surgery, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Katja Petter
- Division of Molecular and Experimental Surgery, Department of Surgery, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Hai Yang
- Division of Surgical Research, Department of Surgery, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Svetlana Khoziainova
- Cancer Prevention and Control Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania; Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California
| | - Wei Guo
- Cancer Prevention and Control Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Alan Bénard
- Department of Surgery, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Susanne Merkel
- Department of Surgery, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Susan Gellert
- Laboratory of Experimental Dermatology, Department of Dermatology, University Hospital and Health Campus Immunology Infectiology and Inflammation (GC-I3), Otto-von-Guericke-University, Magdeburg, Germany
| | - Simone Maschauer
- Department of Nuclear Medicine, Molecular Imaging and Radiochemistry, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Monika Spermann
- Division of Molecular and Experimental Surgery, Department of Surgery, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Maximilian Waldner
- Department of Medicine I, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Peter Bailey
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Christian Pilarsky
- Division of Surgical Research, Department of Surgery, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Andrea Liebl
- Division of Molecular and Experimental Surgery, Department of Surgery, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Philipp Tripal
- Division of Molecular and Experimental Surgery, Department of Surgery, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Jan Christoph
- Department of Medical Informatics, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Tennenlohe, Germany
| | - Elisabeth Naschberger
- Division of Molecular and Experimental Surgery, Department of Surgery, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Roland Croner
- Department of General, Visceral, Vascular and Transplant Surgery, University Hospital Magdeburg, Otto-von-Guericke-University, Magdeburg, Germany
| | - Vera S Schellerer
- Department of Surgery, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Christoph Becker
- Department of Medicine I, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Arndt Hartmann
- Department of Pathology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Thomas Tüting
- Laboratory of Experimental Dermatology, Department of Dermatology, University Hospital and Health Campus Immunology Infectiology and Inflammation (GC-I3), Otto-von-Guericke-University, Magdeburg, Germany
| | - Olaf Prante
- Department of Nuclear Medicine, Molecular Imaging and Radiochemistry, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Robert Grützmann
- Department of Surgery, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Sergei I Grivennikov
- Cancer Prevention and Control Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania; Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California
| | - Michael Stürzl
- Division of Molecular and Experimental Surgery, Department of Surgery, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany; Comprehensive Cancer Center Erlangen-EMN, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Nathalie Britzen-Laurent
- Division of Molecular and Experimental Surgery, Department of Surgery, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany; Division of Surgical Research, Department of Surgery, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany.
| |
Collapse
|
134
|
Gambichler T, Finis C, Abu Rached N, Scheel CH, Becker JC, Lang K, Käfferlein HU, Brüning T, Abolmaali N, Susok L. Expression of DNA mismatch repair proteins in melanoma patients treated with immune checkpoint inhibitors. J Cancer Res Clin Oncol 2023; 149:1241-1247. [PMID: 35419731 PMCID: PMC9984342 DOI: 10.1007/s00432-022-04002-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 03/29/2022] [Indexed: 10/18/2022]
Abstract
PURPOSE To investigate the protein expression of DNA mismatch repair (MMR) proteins in patients with cutaneous melanoma (CM) under immune checkpoint inhibitor (ICI) therapy. METHODS Immunohistochemistry was performed on tumor tissue for MMR proteins MLH1, MSH2, MSH6, and PMS2 in 50 metastatic CM patients treated with ICI (ipilimumab, nivolumab, pembrolizumab). RESULTS Best overall response (BOR) rate was 48% (24/50). Reduced MMR protein expression (nuclear expression in < 80% of tumor cells) was observed in 8 patients (16%). Compared to other clinical parameters, baseline neutrophil/lymphocyte ratio and reduced intratumoral MMR protein expression (P = 0.0033) were determined as the only parameters significantly associated with favorable BOR. However, in this small study population, reduced MMR protein expression did not reach statistical significance in multivariate analysis. CONCLUSION Reduced MMR protein expression is observed in CM and might predict favorable BOR in patients treated with ICI, as was observed for other entities. However, these findings need to be substantiated in larger patient cohorts.
Collapse
Affiliation(s)
- T Gambichler
- Skin Cancer Center, Department of Dermatology, Ruhr-University Bochum, Gudrunstraße, 5644791, Bochum, Germany.
| | - C Finis
- Skin Cancer Center, Department of Dermatology, Ruhr-University Bochum, Gudrunstraße, 5644791, Bochum, Germany
| | - N Abu Rached
- Skin Cancer Center, Department of Dermatology, Ruhr-University Bochum, Gudrunstraße, 5644791, Bochum, Germany
| | - C H Scheel
- Skin Cancer Center, Department of Dermatology, Ruhr-University Bochum, Gudrunstraße, 5644791, Bochum, Germany
| | - J C Becker
- Translational Skin Cancer Research, DKTK Partner Site Essen/Düsseldorf, West German Cancer Center, Dermatology, University Duisburg-Essen, Essen, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - K Lang
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurances, Ruhr-University Bochum (IPA), Bochum, Germany
| | - H U Käfferlein
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurances, Ruhr-University Bochum (IPA), Bochum, Germany
| | - T Brüning
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurances, Ruhr-University Bochum (IPA), Bochum, Germany
| | - N Abolmaali
- Institute for Diagnostic and Interventional Radiology and Nuclear Medicine, St. Josef Hospital Bochum, Ruhr University Bochum, Bochum, Germany
| | - L Susok
- Skin Cancer Center, Department of Dermatology, Ruhr-University Bochum, Gudrunstraße, 5644791, Bochum, Germany
| |
Collapse
|
135
|
Gkountakos A, Martelli FM, Silvestris N, Bevere M, De Bellis M, Alaimo L, Sapuppo E, Masetto F, Mombello A, Simbolo M, Bariani E, Milella M, Fassan M, Scarpa A, Luchini C. Extrahepatic Distal Cholangiocarcinoma vs. Pancreatic Ductal Adenocarcinoma: Histology and Molecular Profiling for Differential Diagnosis and Treatment. Cancers (Basel) 2023; 15:1454. [PMID: 36900245 PMCID: PMC10001378 DOI: 10.3390/cancers15051454] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 02/20/2023] [Accepted: 02/21/2023] [Indexed: 03/03/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) and distal cholangiocarcinoma (dCCA) are very aggressive tumors with a high mortality rate. Pancreas and distal bile ducts share a common embryonic development. Hence, PDAC and dCCA exhibit similar histological features that make a differential diagnosis during routine diagnostic practice challenging. However, there are also significant differences, with potential clinical implications. Even if PDAC and dCCA are generally associated with poor survival, patients with dCCA seem to present a better prognosis. Moreover, although precision oncology-based approaches are still limited in both entities, their most important targets are different and include alterations affecting BRCA1/2 and related genes in PDAC, as well as HER2 amplification in dCCA. Along this line, microsatellite instability represents a potential contact point in terms of tailored treatments, but its prevalence is very low in both tumor types. This review aims at defining the most important similarities and differences in terms of clinicopathological and molecular features between these two entities, also discussing the main theranostic implications derived from this challenging differential diagnosis.
Collapse
Affiliation(s)
- Anastasios Gkountakos
- ARC-NET Applied Research on Cancer Center, University of Verona, 37134 Verona, Italy
- Department of Diagnostics and Public Health, University of Verona, 37134 Verona, Italy
| | - Filippo M. Martelli
- Department of Diagnostics and Public Health, University of Verona, 37134 Verona, Italy
| | - Nicola Silvestris
- Medical Oncology Unit, Department of Human Pathology “G. Barresi”, University of Messina, 98125 Messina, Italy
| | - Michele Bevere
- ARC-NET Applied Research on Cancer Center, University of Verona, 37134 Verona, Italy
- Department of Diagnostics and Public Health, University of Verona, 37134 Verona, Italy
| | - Mario De Bellis
- Department of Surgery, Dentistry, Gynecology, and Pediatrics, Division of General and Hepatobiliary Surgery, University of Verona, 37134 Verona, Italy
| | - Laura Alaimo
- Department of Surgery, Dentistry, Gynecology, and Pediatrics, Division of General and Hepatobiliary Surgery, University of Verona, 37134 Verona, Italy
| | - Elena Sapuppo
- Medical Oncology Unit, Department of Human Pathology “G. Barresi”, University of Messina, 98125 Messina, Italy
| | - Francesca Masetto
- ARC-NET Applied Research on Cancer Center, University of Verona, 37134 Verona, Italy
| | - Aldo Mombello
- Department of Diagnostics and Public Health, University of Verona, 37134 Verona, Italy
| | - Michele Simbolo
- Department of Diagnostics and Public Health, University of Verona, 37134 Verona, Italy
| | - Elena Bariani
- Department of Diagnostics and Public Health, University of Verona, 37134 Verona, Italy
| | - Michele Milella
- Section of Medical Oncology, Department of Medicine, University of Verona, 37134 Verona, Italy
| | - Matteo Fassan
- Section of Pathology, Department of Medicine (DIMED), University of Padua, 35122 Padua, Italy
| | - Aldo Scarpa
- ARC-NET Applied Research on Cancer Center, University of Verona, 37134 Verona, Italy
- Department of Diagnostics and Public Health, University of Verona, 37134 Verona, Italy
| | - Claudio Luchini
- ARC-NET Applied Research on Cancer Center, University of Verona, 37134 Verona, Italy
- Department of Diagnostics and Public Health, University of Verona, 37134 Verona, Italy
| |
Collapse
|
136
|
Long LL, Ma SC, Guo ZQ, Zhang YP, Fan Z, Liu LJ, Liu L, Han DD, Leng MX, Wang J, Guo XJ, Tan JL, Cai XT, Lin Y, Pan X, Wu DH, Bai X, Dong ZY. PARP Inhibition Induces Synthetic Lethality and Adaptive Immunity in LKB1-Mutant Lung Cancer. Cancer Res 2023; 83:568-581. [PMID: 36512628 DOI: 10.1158/0008-5472.can-22-1740] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 11/02/2022] [Accepted: 12/06/2022] [Indexed: 12/15/2022]
Abstract
UNLABELLED Contradictory characteristics of elevated mutational burden and a "cold" tumor microenvironment (TME) coexist in liver kinase B1 (LKB1)-mutant non-small cell lung cancers (NSCLC). The molecular basis underlying this paradox and strategies tailored to these historically difficult to treat cancers are lacking. Here, by mapping the single-cell transcriptomic landscape of genetically engineered mouse models with Kras versus Kras/Lkb1-driven lung tumors, we detected impaired tumor-intrinsic IFNγ signaling in Kras/Lkb1-driven tumors that explains the inert immune context. Mechanistic analysis showed that mutant LKB1 led to deficiency in the DNA damage repair process and abnormally activated PARP1. Hyperactivated PARP1 attenuated the IFNγ pathway by physically interacting with and enhancing the poly(ADP-ribosyl)ation of STAT1, compromising its phosphorylation and activation. Abrogation of the PARP1-driven program triggered synthetic lethality in NSCLC on the basis of the LKB1 mutation-mediated DNA repair defect, while also restoring phosphorylated STAT1 to favor an immunologically "hot" TME. Accordingly, PARP1 inhibition restored the disrupted IFNγ signaling and thus mounted an adaptive immune response to synergize with PD-1 blockade in multiple LKB1-deficient murine tumor models. Overall, this study reveals an unexplored interplay between the DNA repair process and adaptive immune response, providing a molecular basis for dual PARP1 and PD-1 inhibition in treating LKB1-mutant NSCLC. SIGNIFICANCE Targeting PARP exerts dual effects to overcome LKB1 loss-driven immunotherapy resistance through triggering DNA damage and adaptive immunity, providing a rationale for dual PARP and PD-1 inhibition in treating LKB1-mutant lung cancers.
Collapse
Affiliation(s)
- Li-Li Long
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Si-Cong Ma
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Information Management and Big Data Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ze-Qin Guo
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yan-Pei Zhang
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Information Management and Big Data Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zhenzhen Fan
- Institute of Life and Health Engineering, Jinan University, Guangzhou, China
| | - Li-Juan Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, and Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Guangzhou, China
| | - Li Liu
- Information Management and Big Data Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Medical Quality Management, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Duan-Duan Han
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Meng-Xin Leng
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jian Wang
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xue-Jun Guo
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jia-Le Tan
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiao-Ting Cai
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yan Lin
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xinghua Pan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, and Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Guangzhou, China
| | - De-Hua Wu
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xue Bai
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zhong-Yi Dong
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
137
|
Martinez-Ordoñez A, Duran A, Ruiz-Martinez M, Cid-Diaz T, Zhang X, Han Q, Kinoshita H, Muta Y, Linares JF, Kasashima H, Nakanishi Y, Omar M, Nishimura S, Avila L, Yashiro M, Maeda K, Pannellini T, Pigazzi A, Inghirami G, Marchionni L, Sigal D, Diaz-Meco MT, Moscat J. Hyaluronan driven by epithelial aPKC deficiency remodels the microenvironment and creates a vulnerability in mesenchymal colorectal cancer. Cancer Cell 2023; 41:252-271.e9. [PMID: 36525970 PMCID: PMC9931663 DOI: 10.1016/j.ccell.2022.11.016] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 10/17/2022] [Accepted: 11/22/2022] [Indexed: 12/23/2022]
Abstract
Mesenchymal colorectal cancer (mCRC) is microsatellite stable (MSS), highly desmoplastic, with CD8+ T cells excluded to the stromal periphery, resistant to immunotherapy, and driven by low levels of the atypical protein kinase Cs (aPKCs) in the intestinal epithelium. We show here that a salient feature of these tumors is the accumulation of hyaluronan (HA) which, along with reduced aPKC levels, predicts poor survival. HA promotes epithelial heterogeneity and the emergence of a tumor fetal metaplastic cell (TFMC) population endowed with invasive cancer features through a network of interactions with activated fibroblasts. TFMCs are sensitive to HA deposition, and their metaplastic markers have prognostic value. We demonstrate that in vivo HA degradation with a clinical dose of hyaluronidase impairs mCRC tumorigenesis and liver metastasis and enables immune checkpoint blockade therapy by promoting the recruitment of B and CD8+ T cells, including a proportion with resident memory features, and by blocking immunosuppression.
Collapse
Affiliation(s)
- Anxo Martinez-Ordoñez
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA
| | - Angeles Duran
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA
| | - Marc Ruiz-Martinez
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA
| | - Tania Cid-Diaz
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA
| | - Xiao Zhang
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA
| | - Qixiu Han
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA
| | - Hiroto Kinoshita
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA
| | - Yu Muta
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA
| | - Juan F Linares
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA
| | - Hiroaki Kasashima
- Department of Gastroenterological Surgery, Osaka Metropolitan University Graduate School of Medicine, 1-4-3 Asahimachi, Abeno-ku, Osaka City 545-8585, Japan
| | - Yuki Nakanishi
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Mohamed Omar
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA
| | - Sadaaki Nishimura
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA
| | - Leandro Avila
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA
| | - Masakazu Yashiro
- Department of Gastroenterological Surgery, Osaka Metropolitan University Graduate School of Medicine, 1-4-3 Asahimachi, Abeno-ku, Osaka City 545-8585, Japan
| | - Kiyoshi Maeda
- Department of Gastroenterological Surgery, Osaka Metropolitan University Graduate School of Medicine, 1-4-3 Asahimachi, Abeno-ku, Osaka City 545-8585, Japan
| | - Tania Pannellini
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA
| | - Alessio Pigazzi
- Department of Surgery, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA
| | - Giorgio Inghirami
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA
| | - Luigi Marchionni
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA
| | - Darren Sigal
- Division of Hematology-Oncology, Scripps Clinic, La Jolla, CA 92037, USA
| | - Maria T Diaz-Meco
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA.
| | - Jorge Moscat
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA.
| |
Collapse
|
138
|
Chow RD, Michaels T, Bellone S, Hartwich TM, Bonazzoli E, Iwasaki A, Song E, Santin AD. Distinct Mechanisms of Mismatch-Repair Deficiency Delineate Two Modes of Response to Anti-PD-1 Immunotherapy in Endometrial Carcinoma. Cancer Discov 2023; 13:312-331. [PMID: 36301137 PMCID: PMC9905265 DOI: 10.1158/2159-8290.cd-22-0686] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 08/29/2022] [Accepted: 10/19/2022] [Indexed: 02/07/2023]
Abstract
Mismatch repair-deficient (MMRd) cancers have varied responses to immune-checkpoint blockade (ICB). We conducted a phase II clinical trial of the PD-1 inhibitor pembrolizumab in 24 patients with MMRd endometrial cancer (NCT02899793). Patients with mutational MMRd tumors (6 patients) had higher response rates and longer survival than those with epigenetic MMRd tumors (18 patients). Mutation burden was higher in tumors with mutational MMRd compared with epigenetic MMRd; however, within each category of MMRd, mutation burden was not correlated with ICB response. Pretreatment JAK1 mutations were not associated with primary resistance to pembrolizumab. Longitudinal single-cell RNA-seq of circulating immune cells revealed contrasting modes of antitumor immunity for mutational versus epigenetic MMRd cancers. Whereas effector CD8+ T cells correlated with regression of mutational MMRd tumors, activated CD16+ NK cells were associated with ICB-responsive epigenetic MMRd tumors. These data highlight the interplay between tumor-intrinsic and tumor-extrinsic factors that influence ICB response. SIGNIFICANCE The molecular mechanism of MMRd is associated with response to anti-PD-1 immunotherapy in endometrial carcinoma. Tumors with epigenetic MMRd or mutational MMRd are correlated with NK cell or CD8+ T cell-driven immunity, respectively. Classifying tumors by the mechanism of MMRd may inform clinical decision-making regarding cancer immunotherapy. This article is highlighted in the In This Issue feature, p. 247.
Collapse
Affiliation(s)
- Ryan D. Chow
- Department of Genetics, Yale University, New Haven, Connecticut, USA
- System Biology Institute, Yale University, West Haven, Connecticut, USA
- Corresponding authors: Correspondence to: Ryan D. Chow, Address: 850 West Campus Drive, ISTC 314, West Haven CT 06516, , Phone: 203-737-3825, Eric Song, Address: 300 Cedar Street, Suite S630, New Haven, CT 06519, , Phone: 203-785-2919, Alessandro D. Santin, Address: 333 Cedar Street, PO Box 208063, New Haven, CT 06511, , Phone: 203-737-2280
| | - Tai Michaels
- Department of Immunobiology, Yale University, New Haven, Connecticut, USA
| | - Stefania Bellone
- Smilow Comprehensive Cancer Center, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Tobias M.P. Hartwich
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Elena Bonazzoli
- Smilow Comprehensive Cancer Center, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Akiko Iwasaki
- Department of Immunobiology, Yale University, New Haven, Connecticut, USA
- Howard Hughes Medical Institute, Yale University, New Haven, Connecticut, USA
| | - Eric Song
- Department of Immunobiology, Yale University, New Haven, Connecticut, USA
- Corresponding authors: Correspondence to: Ryan D. Chow, Address: 850 West Campus Drive, ISTC 314, West Haven CT 06516, , Phone: 203-737-3825, Eric Song, Address: 300 Cedar Street, Suite S630, New Haven, CT 06519, , Phone: 203-785-2919, Alessandro D. Santin, Address: 333 Cedar Street, PO Box 208063, New Haven, CT 06511, , Phone: 203-737-2280
| | - Alessandro D. Santin
- Smilow Comprehensive Cancer Center, Yale University School of Medicine, New Haven, Connecticut, USA
- Corresponding authors: Correspondence to: Ryan D. Chow, Address: 850 West Campus Drive, ISTC 314, West Haven CT 06516, , Phone: 203-737-3825, Eric Song, Address: 300 Cedar Street, Suite S630, New Haven, CT 06519, , Phone: 203-785-2919, Alessandro D. Santin, Address: 333 Cedar Street, PO Box 208063, New Haven, CT 06511, , Phone: 203-737-2280
| |
Collapse
|
139
|
Ni JJ, Zhang ZZ, Ge MJ, Chen JY, Zhuo W. Immune-based combination therapy to convert immunologically cold tumors into hot tumors: an update and new insights. Acta Pharmacol Sin 2023; 44:288-307. [PMID: 35927312 PMCID: PMC9889774 DOI: 10.1038/s41401-022-00953-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 07/03/2022] [Indexed: 02/04/2023]
Abstract
As a breakthrough strategy for cancer treatment, immunotherapy mainly consists of immune checkpoint inhibitors (ICIs) and other immunomodulatory drugs that provide a durable protective antitumor response by stimulating the immune system to fight cancer. However, due to the low response rate and unique toxicity profiles of immunotherapy, the strategies of combining immunotherapy with other therapies have attracted enormous attention. These combinations are designed to exert potent antitumor effects by regulating different processes in the cancer-immunity cycle. To date, immune-based combination therapy has achieved encouraging results in numerous clinical trials and has received Food and Drug Administration (FDA) approval for certain cancers with more studies underway. This review summarizes the emerging strategies of immune-based combination therapy, including combinations with another immunotherapeutic strategy, radiotherapy, chemotherapy, anti-angiogenic therapy, targeted therapy, bacterial therapy, and stroma-targeted therapy. Here, we highlight the rationale of immune-based combination therapy, the biomarkers and the clinical progress for these immune-based combination therapies.
Collapse
Affiliation(s)
- Jiao-Jiao Ni
- Department of Cell Biology and Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
- Department of Gastroenterology, the Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China
- Institution of Gastroenterology, Zhejiang University, Hangzhou, 310016, China
- Cancer Center, Zhejiang University, Hangzhou, 310058, China
| | - Zi-Zhen Zhang
- Department of Gastroenterology, the Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China
- Institution of Gastroenterology, Zhejiang University, Hangzhou, 310016, China
- Cancer Center, Zhejiang University, Hangzhou, 310058, China
| | - Ming-Jie Ge
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Hangzhou, 310006, China
| | - Jing-Yu Chen
- Department of Gastroenterology, the Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China
- Institution of Gastroenterology, Zhejiang University, Hangzhou, 310016, China
- Cancer Center, Zhejiang University, Hangzhou, 310058, China
| | - Wei Zhuo
- Department of Cell Biology and Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China.
- Institution of Gastroenterology, Zhejiang University, Hangzhou, 310016, China.
- Cancer Center, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
140
|
El-Hajjar M, Gerhardt L, Hong MMY, Krishnamoorthy M, Figueredo R, Zheng X, Koropatnick J, Maleki Vareki S. Inducing mismatch repair deficiency sensitizes immune-cold neuroblastoma to anti-CTLA4 and generates broad anti-tumor immune memory. Mol Ther 2023; 31:535-551. [PMID: 36068918 PMCID: PMC9931548 DOI: 10.1016/j.ymthe.2022.08.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 08/16/2022] [Accepted: 08/30/2022] [Indexed: 02/07/2023] Open
Abstract
Immune checkpoint blockade can induce potent and durable responses in patients with highly immunogenic mismatch repair-deficient tumors; however, these drugs are ineffective against immune-cold neuroblastoma tumors. To establish a role for a T cell-based therapy against neuroblastoma, we show that T cell and memory T cell-dependent gene expression are associated with improved survival in high-risk neuroblastoma patients. To stimulate anti-tumor immunity and reproduce this immune phenotype in neuroblastoma tumors, we used CRISPR-Cas9 to knockout MLH1-a crucial molecule in the DNA mismatch repair pathway-to induce mismatch repair deficiency in a poorly immunogenic murine neuroblastoma model. Induced mismatch repair deficiency increased the expression of proinflammatory genes and stimulated T cell infiltration into neuroblastoma tumors. In contrast to adult cancers with induced mismatch repair deficiency, neuroblastoma tumors remained unresponsive to anti-PD1 treatment. However, anti-CTLA4 therapy was highly effective against these tumors. Anti-CTLA4 therapy promoted immune memory and T cell epitope spreading in cured animals. Mechanistically, the effect of anti-CTLA4 therapy against neuroblastoma tumors with induced mismatch repair deficiency is CD4+ T cell dependent, as depletion of these cells abolished the effect. Therefore, a therapeutic strategy involving mismatch repair deficiency-based T cell infiltration of neuroblastoma tumors combined with anti-CTLA4 can serve as a novel T cell-based treatment strategy for neuroblastoma.
Collapse
Affiliation(s)
- Mikal El-Hajjar
- Department of Microbiology and Immunology, Western University, London, ON, Canada; London Regional Cancer Program, Lawson Health Research Institute, London, ON, Canada
| | - Lara Gerhardt
- Department of Pathology and Laboratory Medicine, Western University, London, ON, Canada
| | - Megan M Y Hong
- Department of Pathology and Laboratory Medicine, Western University, London, ON, Canada
| | | | - Rene Figueredo
- Department of Oncology, Western University, London, ON, Canada
| | - Xiufen Zheng
- Department of Microbiology and Immunology, Western University, London, ON, Canada; Department of Pathology and Laboratory Medicine, Western University, London, ON, Canada; Department of Oncology, Western University, London, ON, Canada; Department of Surgery, Western University, London, ON, Canada
| | - James Koropatnick
- Department of Microbiology and Immunology, Western University, London, ON, Canada; Department of Oncology, Western University, London, ON, Canada; London Regional Cancer Program, Lawson Health Research Institute, London, ON, Canada
| | - Saman Maleki Vareki
- Department of Pathology and Laboratory Medicine, Western University, London, ON, Canada; Department of Oncology, Western University, London, ON, Canada; London Regional Cancer Program, Lawson Health Research Institute, London, ON, Canada.
| |
Collapse
|
141
|
Li N, Wan Z, Lu D, Chen R, Ye X. Long-term benefit of immunotherapy in a patient with squamous lung cancer exhibiting mismatch repair deficient/high microsatellite instability/high tumor mutational burden: A case report and literature review. Front Immunol 2023; 13:1088683. [PMID: 36703977 PMCID: PMC9871463 DOI: 10.3389/fimmu.2022.1088683] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 12/20/2022] [Indexed: 01/12/2023] Open
Abstract
Genetic mutations that render mismatch repair defective may result in microsatellite instability, which is common in colorectal carcinomas and gastric cancers as well as Lynch syndrome. Mismatch repair deficiency/high microsatellite instability (dMMR/MSI-H) predicts the tumor response to immune checkpoint inhibitors. However, few studies have evaluated the efficacy of immune checkpoint inhibitors in non-small cell lung cancer (NSCLC) patients with dMMR/MSI-H. In this work, we present a patient with advanced squamous lung cancer with dMMR/MSI-H and a high tumor mutational burden (TMB-H) who obtained a long-term benefit from immunotherapy. NSCLC patients with dMMR/MSI-H/TMB-H may thus benefit from immune checkpoint inhibitors.
Collapse
Affiliation(s)
- Na Li
- First Clinical Medical College, Guangzhou University of Traditional Chinese, Guangzhou, China
| | - Zixuan Wan
- First Clinical Medical College, Guangzhou University of Traditional Chinese, Guangzhou, China
| | - Dongyan Lu
- Department of Oncology, The First Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou, China
| | - Ruilian Chen
- Department of Oncology, The First Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou, China,*Correspondence: Ruilian Chen, ; Xiaowei Ye,
| | - Xiaowei Ye
- Department of Oncology, The First Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou, China,*Correspondence: Ruilian Chen, ; Xiaowei Ye,
| |
Collapse
|
142
|
Jiang G, Wu Q, Li B. Evaluation of immunotherapy efficacy in gynecologic cancer. Front Immunol 2023; 14:1061761. [PMID: 36793735 PMCID: PMC9922993 DOI: 10.3389/fimmu.2023.1061761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 01/16/2023] [Indexed: 01/31/2023] Open
Abstract
Various immunotherapies have demonstrated remarkable success over the past few decades, and have been approved for the treatment of different cancer types. However, patient responses to immunotherapy are variable, and approximately 50% of cases are refractory to these agents. Tumor biomarker-based stratification of cases may therefore help identify subpopulations that are sensitive/resistant to immunotherapy; it may also improve prediction of response in various cancers including gynecologic cancer. These biomarkers include the tumor mutational burden, microsatellite instability, mismatch repair deficiency, T cell-inflamed gene expression profile, programmed cell death protein 1 ligand 1, tumor-infiltrating lymphocytes, and numerous other genomic alterations. Future directions in the treatment of gynecologic cancer include the utilization of these biomarkers to select ideal candidates. This review focused on recent advances in the predictive ability of molecular biomarkers in patients with gynecologic cancer who undergo immunotherapy. The most recent developments in combined immunotherapy and targeted therapy strategies and novel immune interventions against gynecologic cancers have also been discussed.
Collapse
Affiliation(s)
- Genyi Jiang
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Qianhua Wu
- School of Medicine, Tongji University, Shanghai, China
| | - Bilan Li
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
143
|
Prakash A, Gates T, Zhao X, Wangmo D, Subramanian S. Tumor-derived extracellular vesicles in the colorectal cancer immune environment and immunotherapy. Pharmacol Ther 2023; 241:108332. [PMID: 36526013 DOI: 10.1016/j.pharmthera.2022.108332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 12/06/2022] [Accepted: 12/12/2022] [Indexed: 12/15/2022]
Abstract
Despite significant advances in the screening, diagnosis, and treatment of colorectal cancer (CRC) immune checkpoint inhibitors (ICIs) continue to have limited utility outside of microsatellite-high disease. Given the durable response to immunotherapy seen across malignancies, increasing CRC response rates to ICI therapy is an active area of clinical research. An increasing body of work has demonstrated that tumor-derived extracellular vesicles (TEVs) are key modulators in tumor signaling and the determinants of the tumor microenvironment. Pre-clinical models have shown that TEVs are directly involved in antigen presentation and are involved in radiation-induced DNA damage signaling. Both direct and indirect modifications of these TEVs can alter CRC immunogenicity and ICI treatment response, making them attractive targets for potential therapeutic development. In addition, modified TEVs can be developed using several different mechanisms, with varied cargo including micro-RNAs and small peptide molecules. Recent work has shown strong pre-clinical evidence of injected modified TEV-induced ICI activity, with knockdown of the micro-RNA miR-424 in TEVs improving CRC immunogenicity and increasing anti-PD-1 activity in mouse models. Clinical trials are ongoing in the evaluation of modified TEVs in cancer therapy, but they appear to be a promising therapeutic target in CRC.
Collapse
Affiliation(s)
- Ajay Prakash
- Masonic Cancer Center, University of Minnesota Medical School, Minneapolis, MN, United States of America.
| | - Travis Gates
- Department of Surgery, University of Minnesota Medical School, Minneapolis, MN, United States of America
| | - Xianda Zhao
- Department of Surgery, University of Minnesota Medical School, Minneapolis, MN, United States of America
| | - Dechen Wangmo
- Department of Surgery, University of Minnesota Medical School, Minneapolis, MN, United States of America
| | - Subbaya Subramanian
- Masonic Cancer Center, University of Minnesota Medical School, Minneapolis, MN, United States of America; Department of Surgery, University of Minnesota Medical School, Minneapolis, MN, United States of America; Center for Immunology, University of Minnesota Medical School, Minneapolis, MN, United States of America
| |
Collapse
|
144
|
Wang Q, Xu J, Wang A, Chen Y, Wang T, Chen D, Zhang J, Brismar TB. Systematic review of machine learning-based radiomics approach for predicting microsatellite instability status in colorectal cancer. LA RADIOLOGIA MEDICA 2023; 128:136-148. [PMID: 36648615 PMCID: PMC9938810 DOI: 10.1007/s11547-023-01593-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 01/04/2023] [Indexed: 01/18/2023]
Abstract
This study aimed to systematically summarize the performance of the machine learning-based radiomics models in the prediction of microsatellite instability (MSI) in patients with colorectal cancer (CRC). It was conducted according to the preferred reporting items for a systematic review and meta-analysis of diagnostic test accuracy studies (PRISMA-DTA) guideline and was registered at the PROSPERO website with an identifier CRD42022295787. Systematic literature searching was conducted in databases of PubMed, Embase, Web of Science, and Cochrane Library up to November 10, 2022. Research which applied radiomics analysis on preoperative CT/MRI/PET-CT images for predicting the MSI status in CRC patients with no history of anti-tumor therapies was eligible. The radiomics quality score (RQS) and Quality Assessment of Diagnostic Accuracy Studies 2 (QUADAS-2) were applied to evaluate the research quality (full score 100%). Twelve studies with 4,320 patients were included. All studies were retrospective, and only four had an external validation cohort. The median incidence of MSI was 19% (range 8-34%). The area under the receiver operator curve of the models ranged from 0.78 to 0.96 (median 0.83) in the external validation cohort. The median sensitivity was 0.76 (range 0.32-1.00), and the median specificity was 0.87 (range 0.69-1.00). The median RQS score was 38% (range 14-50%), and half of the studies showed high risk in patient selection as evaluated by QUADAS-2. In conclusion, while radiomics based on pretreatment imaging modalities had a high performance in the prediction of MSI status in CRC, so far it does not appear to be ready for clinical use due to insufficient methodological quality.
Collapse
Affiliation(s)
- Qiang Wang
- Division of Medical Imaging and Technology, Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, Stockholm, Sweden. .,Department of Radiology, Karolinska University Hospital Huddinge, Room 601, Novum PI 6, Hiss F, Hälsovägen 7, 141 86, Huddinge, Stockholm, Sweden.
| | - Jianhua Xu
- Department of General Surgery, Songshan Hospital, Chongqing, China
| | - Anrong Wang
- grid.452206.70000 0004 1758 417XDepartment of Vascular Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China ,Department of Interventional Therapy, People’s Hospital of Dianjiang County, Chongqing, China
| | - Yi Chen
- grid.4714.60000 0004 1937 0626Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Tian Wang
- grid.517910.bDepartment of Gastroenterology, Chongqing General Hospital, Chongqing, China
| | - Danyu Chen
- grid.412536.70000 0004 1791 7851Department of Gastroenterology and Hepatology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Jiaxing Zhang
- grid.459540.90000 0004 1791 4503Department of Pharmacy, Guizhou Provincial People’s Hospital, Guiyang, China
| | - Torkel B. Brismar
- grid.4714.60000 0004 1937 0626Division of Medical Imaging and Technology, Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, Stockholm, Sweden ,grid.24381.3c0000 0000 9241 5705Department of Radiology, Karolinska University Hospital Huddinge, Room 601, Novum PI 6, Hiss F, Hälsovägen 7, 141 86 Huddinge, Stockholm, Sweden
| |
Collapse
|
145
|
Hu Z, Liu Z, Zheng J, Peng Y, Lu X, Li J, Tan K, Cui H. Microsatellite instability-related prognostic risk score (MSI-pRS) defines a subset of lung squamous cell carcinoma (LUSC) patients with genomic instability and poor clinical outcome. Front Genet 2023; 14:1061002. [PMID: 36873930 PMCID: PMC9981642 DOI: 10.3389/fgene.2023.1061002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 01/30/2023] [Indexed: 02/19/2023] Open
Abstract
Background: Lung squamous cell carcinoma (LUSC) shares less typical onco-drivers and target resistance, but a high overall mutation rate and marked genomic complexity. Mismatch repair (MMR) deficiency leads to microsatellite instability (MSI) and genomic instability. MSI is not an ideal option for prognosis of LUSC, whereas its function deserves exploration. Method: MSI status was classified by MMR proteins using unsupervised clustering in the TCGA-LUSC dataset. The MSI score of each sample was determined by gene set variation analysis. Intersections of the differential expression genes and differential methylation probes were classified into functional modules by weighted gene co-expression network analysis. Least absolute shrinkage and selection operator regression and stepwise gene selection were performed for model downscaling. Results: Compared with the MSI-low (MSI-L) phenotype, MSI-high (MSI-H) displayed higher genomic instability. The MSI score was decreased from MSI-H to normal samples (MSI-H > MSI-L > normal). A total of 843 genes activated by hypomethylation and 430 genes silenced by hypermethylation in MSI-H tumors were classified into six functional modules. CCDC68, LYSMD1, RPS7, and CDK20 were used to construct MSI-related prognostic risk score (MSI-pRS). Low MSI-pRS was a protective prognostic factor in all cohorts (HR = 0.46, 0.47, 0.37; p-value = 7.57e-06, 0.009, 0.021). The model contains tumor stage, age, and MSI-pRS that showed good discrimination and calibration. Decision curve analyses indicated that microsatellite instability-related prognostic risk score added extra value to the prognosis. A low MSI-pRS was negatively correlated with genomic instability. LUSC with low MSI-pRS was associated with increased genomic instability and cold immunophenotype. Conclusion: MSI-pRS is a promising prognostic biomarker in LUSC as the substitute of MSI. Moreover, we first declared that LYSMD1 contributed to genomic instability of LUSC. Our findings provided new insights in the biomarker finder of LUSC.
Collapse
Affiliation(s)
- Zixin Hu
- Beijing University of Chinese Medicine, Beijing, China.,Department of Oncology, China-Japan Friendship Hospital, Beijing, China
| | - Zhening Liu
- Beijing University of Chinese Medicine, Beijing, China.,Department of Oncology, China-Japan Friendship Hospital, Beijing, China
| | - Jiabin Zheng
- Department of Oncology, China-Japan Friendship Hospital, Beijing, China
| | - Yanmei Peng
- Department of Oncology, Fangshan Hospital, Beijing, China
| | - Xingyu Lu
- Beijing University of Chinese Medicine, Beijing, China.,Department of Oncology, China-Japan Friendship Hospital, Beijing, China
| | - Jia Li
- Beijing University of Chinese Medicine, Beijing, China.,Department of Oncology, China-Japan Friendship Hospital, Beijing, China
| | - Kexin Tan
- Beijing University of Chinese Medicine, Beijing, China.,Department of Oncology, China-Japan Friendship Hospital, Beijing, China
| | - Huijuan Cui
- Department of Oncology, China-Japan Friendship Hospital, Beijing, China
| |
Collapse
|
146
|
Witte HM, Fähnrich A, Künstner A, Riedl J, Fliedner SMJ, Reimer N, Hertel N, von Bubnoff N, Bernard V, Merz H, Busch H, Feller A, Gebauer N. Primary refractory plasmablastic lymphoma: A precision oncology approach. Front Oncol 2023; 13:1129405. [PMID: 36923431 PMCID: PMC10008852 DOI: 10.3389/fonc.2023.1129405] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 02/13/2023] [Indexed: 03/01/2023] Open
Abstract
Introduction Hematologic malignancies are currently underrepresented in multidisciplinary molecular-tumor-boards (MTB). This study assesses the potential of precision-oncology in primary-refractory plasmablastic-lymphoma (prPBL), a highly lethal blood cancer. Methods We evaluated clinicopathological and molecular-genetic data of 14 clinically annotated prPBL-patients from initial diagnosis. For this proof-of-concept study, we employed our certified institutional MTB-pipeline (University-Cancer-Center-Schleswig-Holstein, UCCSH) to annotate a comprehensive dataset within the scope of a virtual MTB-setting, ultimately recommending molecularly stratified therapies. Evidence-levels for MTB-recommendations were defined in accordance with the NCT/DKTK and ESCAT criteria. Results Median age in the cohort was 76.5 years (range 56-91), 78.6% of patients were male, 50% were HIV-positive and clinical outcome was dismal. Comprehensive genomic/transcriptomic analysis revealed potential recommendations of a molecularly stratified treatment option with evidence-levels according to NCT/DKTK of at least m2B/ESCAT of at least IIIA were detected for all 14 prPBL-cases. In addition, immunohistochemical-assessment (CD19/CD30/CD38/CD79B) revealed targeted treatment-recommendations in all 14 cases. Genetic alterations were classified by treatment-baskets proposed by Horak et al. Hereby, we identified tyrosine-kinases (TK; n=4), PI3K-MTOR-AKT-pathway (PAM; n=3), cell-cycle-alterations (CC; n=2), RAF-MEK-ERK-cascade (RME; n=2), immune-evasion (IE; n=2), B-cell-targets (BCT; n=25) and others (OTH; n=4) for targeted treatment-recommendations. The minimum requirement for consideration of a drug within the scope of the study was FDA-fast-track development. Discussion The presented proof-of-concept study demonstrates the clinical potential of precision-oncology, even in prPBL-patients. Due to the aggressive course of the disease, there is an urgent medical-need for personalized treatment approaches, and this population should be considered for MTB inclusion at the earliest time.
Collapse
Affiliation(s)
- Hanno M Witte
- Department of Hematology and Oncology, University Hospital of Schleswig-Holstein, Lübeck, Germany.,Department of Hematology and Oncology, Federal Armed Forces Hospital, Ulm, Germany
| | - Anke Fähnrich
- Medical Systems Biology Group, Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany.,Institute for Cardiogenetics, University of Lübeck, Lübeck, Germany.,University Cancer Center Schleswig-Holstein, University Hospital of Schleswig- Holstein, Lübeck, Germany
| | - Axel Künstner
- Medical Systems Biology Group, Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany.,Institute for Cardiogenetics, University of Lübeck, Lübeck, Germany.,University Cancer Center Schleswig-Holstein, University Hospital of Schleswig- Holstein, Lübeck, Germany
| | - Jörg Riedl
- Department of Hematology and Oncology, University Hospital of Schleswig-Holstein, Lübeck, Germany.,Hämatopathologie Lübeck, Reference Centre for Lymph Node Pathology and Hematopathology, Lübeck, Germany
| | - Stephanie M J Fliedner
- Department of Hematology and Oncology, University Hospital of Schleswig-Holstein, Lübeck, Germany.,University Cancer Center Schleswig-Holstein, University Hospital of Schleswig- Holstein, Lübeck, Germany
| | - Niklas Reimer
- Medical Systems Biology Group, Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany.,Institute for Cardiogenetics, University of Lübeck, Lübeck, Germany.,University Cancer Center Schleswig-Holstein, University Hospital of Schleswig- Holstein, Lübeck, Germany
| | - Nadine Hertel
- Department of Hematology and Oncology, University Hospital of Schleswig-Holstein, Lübeck, Germany
| | - Nikolas von Bubnoff
- Department of Hematology and Oncology, University Hospital of Schleswig-Holstein, Lübeck, Germany.,University Cancer Center Schleswig-Holstein, University Hospital of Schleswig- Holstein, Lübeck, Germany
| | - Veronica Bernard
- Hämatopathologie Lübeck, Reference Centre for Lymph Node Pathology and Hematopathology, Lübeck, Germany
| | - Hartmut Merz
- University Cancer Center Schleswig-Holstein, University Hospital of Schleswig- Holstein, Lübeck, Germany
| | - Hauke Busch
- Medical Systems Biology Group, Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany.,Institute for Cardiogenetics, University of Lübeck, Lübeck, Germany.,University Cancer Center Schleswig-Holstein, University Hospital of Schleswig- Holstein, Lübeck, Germany
| | - Alfred Feller
- Hämatopathologie Lübeck, Reference Centre for Lymph Node Pathology and Hematopathology, Lübeck, Germany
| | - Niklas Gebauer
- Department of Hematology and Oncology, University Hospital of Schleswig-Holstein, Lübeck, Germany.,University Cancer Center Schleswig-Holstein, University Hospital of Schleswig- Holstein, Lübeck, Germany
| |
Collapse
|
147
|
Zhu Y, Yan C, Wang X, Xu Z, Lv J, Xu X, Yu W, Zhou M, Yue L. Pan-cancer analysis of ARID family members as novel biomarkers for immune checkpoint inhibitor therapy. Cancer Biol Ther 2022; 23:104-111. [PMID: 35239432 PMCID: PMC8896200 DOI: 10.1080/15384047.2021.2011643] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Although immune checkpoint inhibitors (ICIs) have greatly improved cancer treatment, the accuracy of predictive biomarkers for ICI outcomes, such as PD-L1, TMB (tumor mutation burden) or MMR (mismatch repair) deficiency, have not been satisfactory. ARID family members are essential for maintaining the basic process of genomic stability and may serve as novel biomarkers for ICI therapy. A total of 1660 cancer patients who received ICI therapy were included in this pan-cancer analysis. The basic information and TMB values of each patient were collected. Survival analysis based on the Kaplan-Meier (KM) method was performed to explore the relationships between mutations in ARID family members and prognosis in pan-cancer as well as cancer subtypes. Genetic alterations in ARID1A (12%), ARID1B (5%), ARID2 (6%) and ARID5B (2.6%) were identified in multiple cancer types. Patients harboring mutated ARID family members benefited more from ICI therapy (P = .0003). Mutated ARID1A (P = .01), ARID1B (P = .0097) and ARID2 (P = .0054) all serve as compelling biomarkers in predicting the prognosis of ICI treatment. In addition, members of the ARID family were found to be strongly related to the abundance of CD4 + T cells and CD8 + T cells, the expression of PD-L1 and the TMB value in various cancers. Specifically, members of the ARID family could serve as novel biomarkers in multiple malignancies, especially gastrointestinal cancers. ARID family members serve as novel biomarkers for ICI therapy in malignancies. Testing the genomic status of ARID family members could help identify the definite subpopulation that benefits most from ICI treatment.Abbreviations: AT-rich interactive domain (ARID)Switch/sucrose nonfermenting (SWI/SNF)Non-small cell lung cancer (NSCLC)Immune checkpoint inhibitors (ICIs)Tumor microenvironment (TME)Programmed death-ligand 1 (PD-L1)Tumor mutational burden (TMB).
Collapse
Affiliation(s)
- Yan Zhu
- Department of Oncology, Qingdao Municipal Hospital, Qingdao, China
| | - Chun Yan
- Department of Oncology, Qingdao Municipal Hospital, Qingdao, China
| | - Xiaofei Wang
- Department of Oncology, Qingdao Municipal Hospital, Qingdao, China
| | - Zhijian Xu
- Department of Oncology, Qingdao Municipal Hospital, Qingdao, China
| | - Jianjian Lv
- Department of Oncology, Qingdao Municipal Hospital, Qingdao, China
| | - Xiaomei Xu
- Department of Oncology, Qingdao Municipal Hospital, Qingdao, China
| | - Wenjun Yu
- Department of Oncology, Qingdao Municipal Hospital, Qingdao, China
| | - Mi Zhou
- Department of Oncology, Qingdao Municipal Hospital, Qingdao, China
| | - Lu Yue
- Department of Oncology, Qingdao Municipal Hospital, Qingdao, China
| |
Collapse
|
148
|
Post-irradiation intratumoral heterogeneity modulates response to immune checkpoint inhibition therapy in a murine melanoma model. Neoplasia 2022; 36:100864. [PMID: 36571944 PMCID: PMC9800194 DOI: 10.1016/j.neo.2022.100864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 12/06/2022] [Accepted: 12/12/2022] [Indexed: 12/26/2022] Open
Abstract
PURPOSE The underlying mechanism for radiation as a potentiator of immune checkpoint inhibition (ICI) is unclear. We developed a novel murine model to investigate the effects of post-irradiation intratumoral heterogeneity (ITH) on response to ICI. EXPERIMENTAL DESIGN Parental mouse melanoma B16F10 cells were irradiated in vitro (5Gy x 3 fractions), then an a priori determined number of resulting colonies were implanted in C57BL/6J immunocompetent mice creating syngeneic models of unirradiated (parental) and irradiated tumors with low (irradiated-L) and high (irradiated-H) ITH. Mice were treated with placebo, α-PD-L1, α-CTLA-4 or dual ICI. Murine tumors underwent whole exome sequencing (WES). Clinically correlated paired pre- and post-irradiation patient rectal adenocarcinoma samples underwent WES. RESULTS Irradiated-L tumors showed increased tumor mutational burden (TMB) and a sustained decrease in ITH. Irradiated-L tumors were predicted to express five neoantigens with high variant allele frequency/clonal distribution. Mice with irradiated-L and irradiated-H versus parental B16F10 tumors demonstrated longer overall survival with dual ICI. Only mice with irradiated-L tumors experienced an overall survival benefit with single agent ICI. Clinically correlated rectal adenocarcinoma samples showed similarly increased TMB and decreased ITH following irradiation. CONCLUSIONS Post-irradiation ITH modulates ICI response in a murine melanoma model. Irradiation may offer a mechanism to widen the therapeutic window of ICI.
Collapse
|
149
|
A Novel Immune Gene-Related Prognostic Score Predicts Survival and Immunotherapy Response in Glioma. Medicina (B Aires) 2022; 59:medicina59010023. [PMID: 36676646 PMCID: PMC9866308 DOI: 10.3390/medicina59010023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/06/2022] [Accepted: 12/17/2022] [Indexed: 12/24/2022] Open
Abstract
Background and Objectives: The clinical prognosis and survival prediction of glioma based on gene signatures derived from heterogeneous tumor cells are unsatisfactory. This study aimed to construct an immune gene-related prognostic score model to predict the prognosis of glioma and identify patients who may benefit from immunotherapy. Methods: 23 immune-related genes (IRGs) associated with glioma prognosis were identified through weighted gene co-expression network analysis (WGCNA) and Univariate Cox regression analysis based on large-scale RNA-seq data. Eight IRGs were retained as candidate predictors and formed an immune gene-related prognostic score (IGRPS) by multifactorial Cox regression analysis. The potential efficacy of immune checkpoint blockade (ICB) therapy of different subgroups was compared by The Tumor Immune Dysfunction and Exclusion (TIDE) algorithm. We further adopted a series of bioinformatic methods to characterize the differences in clinicopathological features and the immune microenvironment between the different risk groups. Finally, a nomogram integrating IGRPS and clinicopathological characteristics was built to accurately predict the prognosis of glioma. Results: Patients in the low-risk group had a better prognosis than those in the high-risk group. Patients in the high-risk group showed higher TIDE scores and poorer responses to ICB therapy, while patients in the low-risk group may benefit more from ICB therapy. The distribution of age and tumor grade between the two subgroups was significantly different. Patients with low IGRPS harbor a high proportion of natural killer cells and are sensitive to ICB treatment. While patients with high IGRPS display relatively poor prognosis, a higher expression level of DNA mismatch repair genes, high infiltrating of immunosuppressive cells, and poor ICB therapeutic outcomes. Conclusions: We demonstrated that the IGRPS model can independently predict the clinical prognosis as well as the ICB therapy responses of glioma patients, thus having important implications on the design of immune-based therapeutic strategies.
Collapse
|
150
|
Al-Saafeen BH, Al-Sbiei A, Bashir G, Mohamed YA, Masad RJ, Fernandez-Cabezudo MJ, al-Ramadi BK. Attenuated Salmonella potentiate PD-L1 blockade immunotherapy in a preclinical model of colorectal cancer. Front Immunol 2022; 13:1017780. [PMID: 36605208 PMCID: PMC9807881 DOI: 10.3389/fimmu.2022.1017780] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 11/24/2022] [Indexed: 12/24/2022] Open
Abstract
The use of immune checkpoint inhibitors to treat cancer resulted in unprecedented and durable clinical benefits. However, the response rate among patients remains rather modest. Previous work from our laboratory demonstrated the efficacy of using attenuated bacteria as immunomodulatory anti-cancer agents. The current study investigated the potential of utilizing a low dose of attenuated Salmonella typhimurium to enhance the efficacy of PD-L1 blockade in a relatively immunogenic model of colon cancer. The response of MC38 tumors to treatment with αPD-L1 monoclonal antibody (mAb) was variable, with only 30% of the mice being responsive. Combined treatment with αPD-L1 mAb and Salmonella resulted in 75% inhibition of tumor growth in 100% of animals. Mechanistically, the enhanced response correlated with a decrease in the percentage of tumor-associated granulocytic cells, upregulation in MHC class II expression by intratumoral monocytes and an increase in tumor infiltration by effector T cells. Collectively, these alterations resulted in improved anti-tumor effector responses and increased apoptosis within the tumor. Thus, our study demonstrates that a novel combination treatment utilizing attenuated Salmonella and αPD-L1 mAb could improve the outcome of immunotherapy in colorectal cancer.
Collapse
Affiliation(s)
- Besan H. Al-Saafeen
- Department of Medical Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Ashraf Al-Sbiei
- Department of Biochemistry and Molecular Biology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Ghada Bashir
- Department of Medical Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Yassir A. Mohamed
- Department of Medical Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Razan J. Masad
- Department of Medical Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Maria J. Fernandez-Cabezudo
- Department of Biochemistry and Molecular Biology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates,Zayed Center for Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Basel K. al-Ramadi
- Department of Medical Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates,Zayed Center for Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates,*Correspondence: Basel K. al-Ramadi,
| |
Collapse
|