101
|
Minot SS, Mayer-Blackwell K, Fiore-Gartland A, Johnson A, Self S, Bhatti P, Yao L, Liu L, Sun X, Jinfa Y, Kublin J. Species- and subspecies-level characterization of health-associated bacterial consortia that colonize the human gut during infancy. Gut Microbes 2024; 16:2414975. [PMID: 39428758 PMCID: PMC11497992 DOI: 10.1080/19490976.2024.2414975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 07/17/2024] [Accepted: 07/23/2024] [Indexed: 10/22/2024] Open
Abstract
BACKGROUND The human gut microbiome develops rapidly during infancy, a key window of development coinciding with the maturation of the adaptive immune system. However, little is known about the microbiome growth dynamics over the first few months of life and whether there are any generalizable patterns across human populations. We performed metagenomic sequencing on stool samples (n = 94) from a cohort of infants (n = 15) at monthly intervals in the first 6 months of life, augmenting our dataset with seven published studies for a total of 4,441 metagenomes from 1,162 infants. RESULTS Strain-level de novo analysis was used to identify 592 of the most abundant organisms in the infant gut microbiome. Previously unrecognized consortia were identified which exhibited highly correlated abundances across samples and were composed of diverse species spanning multiple genera. Analysis of a published cohort of infants with cystic fibrosis identified one such novel consortium of diverse Enterobacterales which was positively correlated with weight gain. While all studies showed an increased community stability during the first year of life, microbial dynamics varied widely in the first few months of life, both by study and by individual. CONCLUSION By augmenting published metagenomic datasets with data from a newly established cohort, we were able to identify novel groups of organisms that are correlated with measures of robust human development. We hypothesize that the presence of these groups may impact human health in aggregate in ways that individual species may not in isolation.
Collapse
Affiliation(s)
| | | | - Andrew Fiore-Gartland
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, USA
| | - Andrew Johnson
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, USA
| | - Steven Self
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, USA
| | - Parveen Bhatti
- Cancer Control Research, BC Cancer Research Institute, Vancouver, BC, Canada
- Epidemiology Program, Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, USA
- School of Population and Public Health, University of British Columbia, Vancouver, BC, Canada
| | - Lena Yao
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, USA
| | - Lili Liu
- Key Laboratory of Occupational Disease Prevention and Treatment, Guangdong Province Hospital for Occupational Disease Prevention and Treatment, Guangzhou, China
| | - Xin Sun
- National Institute of Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yi Jinfa
- Department of Pediatrics, Nanhai Maternity and Child Healthcare Hospital of Foshan, Foshan, China
| | - James Kublin
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, USA
- HIV Vaccine Trials Network, Fred Hutchinson Cancer Center, Seattle, USA
| |
Collapse
|
102
|
Oldereid TS, Jiang X, Øgaard J, Schrumpf E, Bjørnholt JV, Rasmussen H, Melum E. Microbial exposure during early life regulates development of bile duct inflammation. Scand J Gastroenterol 2024; 59:192-201. [PMID: 37997753 DOI: 10.1080/00365521.2023.2278423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/20/2023] [Accepted: 10/29/2023] [Indexed: 11/25/2023]
Abstract
OBJECTIVES The early life microbiome has been linked to inflammatory diseases in adulthood and a role for the microbiome in bile duct inflammation is supported by both human and murine studies. We utilized the NOD.c3c4 mouse model that develops a spontaneous immune-driven biliary disease with a known contribution of the microbiome to evaluate the temporal effects of the early life microbiome. MATERIALS AND METHODS Germ-free (GF) NOD.c3c4 mice were conventionalized into a specific pathogen free environment at birth (conventionally raised, CONV-R) or at weaning (germ-free raised, GF-R) and compared with age and gender-matched GF and conventional (CONV) NOD.c3c4 mice. At 9 weeks of age, liver pathology was assessed by conventional histology and flow cytometry immunophenotyping. RESULTS Neonatal exposure to microbes (CONV-R) increased biliary inflammation to similar levels as regular conventional NOD.c3c4 mice, while delayed exposure to microbes (GF-R) restrained the biliary inflammation. Neutrophil infiltration was increased in all conventionalized mice compared to GF. An immunophenotype in the liver similar to CONV was restored in both CONV-R and GF-R compared to GF mice displaying a proportional increase of B cells and reduction of T cells in the liver. CONCLUSIONS Microbial exposure during early life has a temporal impact on biliary tract inflammation in the NOD.c3c4 mouse model suggesting that age-sensitive interaction with commensal microbes have long-lasting effects on biliary immunity that can be of importance for human cholangiopathies.
Collapse
Affiliation(s)
- Tine S Oldereid
- Norwegian PSC Research Center, Department of Transplantation Medicine, Division of Surgery, Inflammatory Diseases and Transplantation, Oslo University Hospital, Rikshospitalet, Oslo, Norway
- Research Institute of Internal Medicine, Division of Surgery, Inflammatory Diseases and Transplantation, Oslo University Hospital, Rikshospitalet, Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Xiaojun Jiang
- Norwegian PSC Research Center, Department of Transplantation Medicine, Division of Surgery, Inflammatory Diseases and Transplantation, Oslo University Hospital, Rikshospitalet, Oslo, Norway
- Research Institute of Internal Medicine, Division of Surgery, Inflammatory Diseases and Transplantation, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Jonas Øgaard
- Norwegian PSC Research Center, Department of Transplantation Medicine, Division of Surgery, Inflammatory Diseases and Transplantation, Oslo University Hospital, Rikshospitalet, Oslo, Norway
- Research Institute of Internal Medicine, Division of Surgery, Inflammatory Diseases and Transplantation, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Elisabeth Schrumpf
- Norwegian PSC Research Center, Department of Transplantation Medicine, Division of Surgery, Inflammatory Diseases and Transplantation, Oslo University Hospital, Rikshospitalet, Oslo, Norway
- Research Institute of Internal Medicine, Division of Surgery, Inflammatory Diseases and Transplantation, Oslo University Hospital, Rikshospitalet, Oslo, Norway
- Department of Dermatology, Division of Surgery, Inflammatory Diseases and Transplantation, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Jørgen V Bjørnholt
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Microbiology, Division of Laboratory Medicine, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Henrik Rasmussen
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Comparative Medicine, Division of Oslo Hospital Services, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Espen Melum
- Norwegian PSC Research Center, Department of Transplantation Medicine, Division of Surgery, Inflammatory Diseases and Transplantation, Oslo University Hospital, Rikshospitalet, Oslo, Norway
- Research Institute of Internal Medicine, Division of Surgery, Inflammatory Diseases and Transplantation, Oslo University Hospital, Rikshospitalet, Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Section of Gastroenterology, Department of Transplantation Medicine, Division of Surgery, Inflammatory Diseases and Transplantation, Oslo University Hospital, Rikshospitalet, Oslo, Norway
- Hybrid Technology Hub - Centre of Excellence, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
103
|
Namasivayam S, Tilves C, Ding H, Wu S, Domingue JC, Ruiz-Bedoya C, Shah A, Bohrnsen E, Schwarz B, Bacorn M, Chen Q, Levy S, Dominguez Bello MG, Jain SK, Sears CL, Mueller NT, Hourigan SK. Fecal transplant from vaginally seeded infants decreases intraabdominal adiposity in mice. Gut Microbes 2024; 16:2353394. [PMID: 38743047 PMCID: PMC11095576 DOI: 10.1080/19490976.2024.2353394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 05/06/2024] [Indexed: 05/16/2024] Open
Abstract
Exposing C-section infants to the maternal vaginal microbiome, coined "vaginal seeding", partially restores microbial colonization. However, whether vaginal seeding decreases metabolic disease risk is unknown. Therefore, we assessed the effect of vaginal seeding of human infants on adiposity in a murine model. Germ-free mice were colonized with transitional stool from human infants who received vaginal seeding or control (placebo) seeding in a double-blind randomized trial. There was a reduction in intraabdominal adipose tissue (IAAT) volume in male mice that received stool from vaginally seeded infants compared to control infants. Higher levels of isoleucine and lower levels of nucleic acid metabolites were observed in controls and correlated with increased IAAT. This suggests that early changes in the gut microbiome and metabolome caused by vaginal seeding have a positive impact on metabolic health.
Collapse
Affiliation(s)
- Sivaranjani Namasivayam
- Clinical Microbiome Unit (CMU), Laboratory of Host Immunity and Microbiome, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Curtis Tilves
- Department of Epidemiology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
- Department of Epidemiology, Welch Center for Prevention, Epidemiology and Clinical Research, Baltimore, MD, USA
| | - Hua Ding
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Shaoguang Wu
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jada C Domingue
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Camilo Ruiz-Bedoya
- Center for Infection and Inflammation Imaging Research, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ankit Shah
- Inova Health System, Inova Women’s Hospital, Falls Church, VA, USA
| | - Eric Bohrnsen
- Research Technologies Branch, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases; National Institutes of Health, Hamilton, MT, USA
| | - Benjamin Schwarz
- Research Technologies Branch, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases; National Institutes of Health, Hamilton, MT, USA
| | - Mickayla Bacorn
- Clinical Microbiome Unit (CMU), Laboratory of Host Immunity and Microbiome, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Qing Chen
- Clinical Microbiome Unit (CMU), Laboratory of Host Immunity and Microbiome, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Shira Levy
- Clinical Microbiome Unit (CMU), Laboratory of Host Immunity and Microbiome, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Maria Gloria Dominguez Bello
- Departments of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ, USA
- Humans and the microbiome program, Canadian Institute for Advanced Research (CIFAR), Toronto, ON, Canada
| | - Sanjay K Jain
- Center for Infection and Inflammation Imaging Research, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Cynthia L Sears
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Noel T Mueller
- Department of Epidemiology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
- Department of Epidemiology, Welch Center for Prevention, Epidemiology and Clinical Research, Baltimore, MD, USA
| | - Suchitra K Hourigan
- Clinical Microbiome Unit (CMU), Laboratory of Host Immunity and Microbiome, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
- Division of Pediatric Gastroenterology, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
104
|
Warmbrunn MV, Attaye I, Aron-Wisnewsky J, Rampanelli E, van der Vossen EW, Hao Y, Koopen A, Bergh PO, Stols-Gonçalves D, Mohamed N, Kemper M, Verdoes X, Wortelboer K, Davids M, Belda E, André S, Hazen S, Clement K, Groen B, van Raalte DH, Herrema H, Backhed F, Nieuwdorp M. Oral histidine affects gut microbiota and MAIT cells improving glycemic control in type 2 diabetes patients. Gut Microbes 2024; 16:2370616. [PMID: 38961712 PMCID: PMC11225920 DOI: 10.1080/19490976.2024.2370616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 06/17/2024] [Indexed: 07/05/2024] Open
Abstract
Amino acids, metabolized by host cells as well as commensal gut bacteria, have signaling effects on host metabolism. Oral supplementation of the essential amino acid histidine has been shown to exert metabolic benefits. To investigate whether dietary histidine aids glycemic control, we performed a case-controlled parallel clinical intervention study in participants with type 2 diabetes (T2D) and healthy controls. Participants received oral histidine for seven weeks. After 2 weeks of histidine supplementation, the microbiome was depleted by antibiotics to determine the microbial contribution to histidine metabolism. We assessed glycemic control, immunophenotyping of peripheral blood mononucelar cells (PBMC), DNA methylation of PBMCs and fecal gut microbiota composition. Histidine improves several markers of glycemic control, including postprandial glucose levels with a concordant increase in the proportion of MAIT cells after two weeks of histidine supplementation. The increase in MAIT cells was associated with changes in gut microbial pathways such as riboflavin biosynthesis and epigenetic changes in the amino acid transporter SLC7A5. Associations between the microbiome and MAIT cells were replicated in the MetaCardis cohort. We propose a conceptual framework for how oral histidine may affect MAIT cells via altered gut microbiota composition and SLC7A5 expression in MAIT cells directly and thereby influencing glycemic control. Future studies should focus on the role of flavin biosynthesis intermediates and SLC7A5 modulation in MAIT cells to modulate glycemic control.
Collapse
Affiliation(s)
- Moritz V. Warmbrunn
- Department of Internal and Vascular Medicine, Amsterdam University Medical Centers, Amsterdam, The Netherlands
- Amsterdam Gastroenterology and Hepatology, Amsterdam Gastroenterology Endocrinology Metabolism (AGEM) Research Institute, Amsterdam, The Netherlands
- Amsterdam Cardiovascular Science research institute, Amsterdam, The Netherlands
| | - Ilias Attaye
- Department of Internal and Vascular Medicine, Amsterdam University Medical Centers, Amsterdam, The Netherlands
- Amsterdam Gastroenterology and Hepatology, Amsterdam Gastroenterology Endocrinology Metabolism (AGEM) Research Institute, Amsterdam, The Netherlands
- Amsterdam Cardiovascular Science research institute, Amsterdam, The Netherlands
| | - Judith Aron-Wisnewsky
- Assistante Publique Hôpitaux de Paris, Nutrition Department, Pitié-Salpêtrière Hospital, CRNH Ile de France, Paris, France
- INSERM, Nutrition and Obesities, Systemic Approaches (NutriOmics), Sorbonne Université, Paris, France
| | - Elena Rampanelli
- Department of Internal and Vascular Medicine, Amsterdam University Medical Centers, Amsterdam, The Netherlands
- Amsterdam Cardiovascular Science research institute, Amsterdam, The Netherlands
- Amsterdam Amsterdam institute for Infection and Immunity (AII), Amsterdam, The Netherlands
| | - Eduard W.J. van der Vossen
- Department of Internal and Vascular Medicine, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Youling Hao
- Department of Internal and Vascular Medicine, Amsterdam University Medical Centers, Amsterdam, The Netherlands
- Amsterdam Gastroenterology and Hepatology, Amsterdam Gastroenterology Endocrinology Metabolism (AGEM) Research Institute, Amsterdam, The Netherlands
- Amsterdam Amsterdam institute for Infection and Immunity (AII), Amsterdam, The Netherlands
| | - Annefleur Koopen
- Department of Internal and Vascular Medicine, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Per-Olof Bergh
- Department of Molecular and Clinical Medicine/Wallenberg Laboratory, Institute of Medicine, University of Gothenburg and Sahlgrenska, Gothenburg, Sweden
| | - Daniela Stols-Gonçalves
- Department of Internal and Vascular Medicine, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Nadia Mohamed
- Department of Internal and Vascular Medicine, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Marleen Kemper
- Department of Internal and Vascular Medicine, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Xanthe Verdoes
- Department of Internal and Vascular Medicine, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Koen Wortelboer
- Department of Internal and Vascular Medicine, Amsterdam University Medical Centers, Amsterdam, The Netherlands
- Amsterdam Cardiovascular Science research institute, Amsterdam, The Netherlands
- Amsterdam Amsterdam institute for Infection and Immunity (AII), Amsterdam, The Netherlands
| | - Mark Davids
- Department of Internal and Vascular Medicine, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Eugeni Belda
- Assistante Publique Hôpitaux de Paris, Nutrition Department, Pitié-Salpêtrière Hospital, CRNH Ile de France, Paris, France
- INSERM, Nutrition and Obesities, Systemic Approaches (NutriOmics), Sorbonne Université, Paris, France
| | - Sébastien André
- Assistante Publique Hôpitaux de Paris, Nutrition Department, Pitié-Salpêtrière Hospital, CRNH Ile de France, Paris, France
- INSERM, Nutrition and Obesities, Systemic Approaches (NutriOmics), Sorbonne Université, Paris, France
| | - Stanley Hazen
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Karine Clement
- Assistante Publique Hôpitaux de Paris, Nutrition Department, Pitié-Salpêtrière Hospital, CRNH Ile de France, Paris, France
- INSERM, Nutrition and Obesities, Systemic Approaches (NutriOmics), Sorbonne Université, Paris, France
| | - Bert Groen
- Department of Internal and Vascular Medicine, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Daniel H. van Raalte
- Department of Internal and Vascular Medicine, Amsterdam University Medical Centers, Amsterdam, The Netherlands
- Diabetes Center, Department of Internal Medicine, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Hilde Herrema
- Department of Internal and Vascular Medicine, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Fredrik Backhed
- Department of Internal and Vascular Medicine, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Max Nieuwdorp
- Department of Internal and Vascular Medicine, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| |
Collapse
|
105
|
Mezghiche I, Yahia-Cherbal H, Rogge L, Bianchi E. Interleukin 23 receptor: Expression and regulation in immune cells. Eur J Immunol 2024; 54:e2250348. [PMID: 37837262 DOI: 10.1002/eji.202250348] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 10/11/2023] [Accepted: 10/12/2023] [Indexed: 10/15/2023]
Abstract
The importance of IL-23 and its specific receptor, IL-23R, in the pathogenesis of several chronic inflammatory diseases has been established, but the underlying pathological mechanisms are not fully understood. This review focuses on IL-23R expression and regulation in immune cells.
Collapse
Affiliation(s)
| | | | - Lars Rogge
- Institut Pasteur, Université Paris Cité, Paris, France
| | | |
Collapse
|
106
|
Kulalert W, Wells AC, Link VM, Lim AI, Bouladoux N, Nagai M, Harrison OJ, Kamenyeva O, Kabat J, Enamorado M, Chiu IM, Belkaid Y. The neuroimmune CGRP-RAMP1 axis tunes cutaneous adaptive immunity to the microbiota. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.26.573358. [PMID: 38234748 PMCID: PMC10793430 DOI: 10.1101/2023.12.26.573358] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
The somatosensory nervous system surveils external stimuli at barrier tissues, regulating innate immune cells under infection and inflammation. The roles of sensory neurons in controlling the adaptive immune system, and more specifically immunity to the microbiota, however, remain elusive. Here, we identified a novel mechanism for direct neuroimmune communication between commensal-specific T lymphocytes and somatosensory neurons mediated by the neuropeptide Calcitonin Gene-Related Peptide (CGRP) in the skin. Intravital imaging revealed that commensal-specific T cells are in close proximity to cutaneous nerve fibers in vivo . Correspondingly, we observed upregulation of the receptor for the neuropeptide CGRP, RAMP1, in CD8 + T lymphocytes induced by skin commensal colonization. Neuroimmune CGRP-RAMP1 signaling axis functions in commensal-specific T cells to constrain Type 17 responses and moderate the activation status of microbiota-reactive lymphocytes at homeostasis. As such, modulation of neuroimmune CGRP-RAMP1 signaling in commensal-specific T cells shapes the overall activation status of the skin epithelium, thereby impacting the outcome of responses to insults such as wounding. The ability of somatosensory neurons to control adaptive immunity to the microbiota via the CGRP-RAMP1 axis underscores the various layers of regulation and multisystem coordination required for optimal microbiota-reactive T cell functions under steady state and pathology. Significance statement Multisystem coordination at barrier surfaces is critical for optimal tissue functions and integrity, in response to microbial and environmental cues. In this study, we identified a novel neuroimmune crosstalk mechanism between the sensory nervous system and the adaptive immune response to the microbiota, mediated by the neuropeptide CGRP and its receptor RAMP1 on skin microbiota-induced T lymphocytes. The neuroimmune CGPR-RAMP1 axis constrains adaptive immunity to the microbiota and overall limits the activation status of the skin epithelium, impacting tissue responses to wounding. Our study opens the door to a new avenue to modulate adaptive immunity to the microbiota utilizing neuromodulators, allowing for a more integrative and tailored approach to harnessing microbiota-induced T cells to promote barrier tissue protection and repair.
Collapse
|
107
|
Minot SS, Mayer-Blackwell K, Fiore-Gartland A, Johnson A, Self S, Bhatti P, Yao L, Liu L, Sun X, Jinfa Y, Kublin J. Strain-level characterization of health-associated bacterial consortia that colonize the human gut during infancy. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.12.16.23300077. [PMID: 38168439 PMCID: PMC10760300 DOI: 10.1101/2023.12.16.23300077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Background The human gut microbiome develops rapidly during infancy, a key window of development coinciding with maturation of the adaptive immune system. However, little is known of the microbiome growth dynamics over the first few months of life and whether there are any generalizable patterns across human populations. We performed metagenomic sequencing on stool samples (n=94) from a cohort of infants (n=15) at monthly intervals in the first six months of life, augmenting our dataset with seven published studies for a total of 4,441 metagenomes from 1,162 infants. Results Strain-level de novo analysis was used to identify 592 of the most abundant organisms in the infant gut microbiome. Previously unrecognized consortia were identified which exhibited highly correlated abundances across samples and were composed of diverse species spanning multiple genera. Analysis of a cohort of infants with cystic fibrosis identified one such novel consortium of diverse Enterobacterales which was positively correlated with weight gain. While all studies showed an increased community stability during the first year of life, microbial dynamics varied widely in the first few months of life, both by study and by individual. Conclusion By augmenting published metagenomic datasets with data from a newly established cohort we were able to identify novel groups of organisms that are correlated with measures of robust human development. We hypothesize that the presence of these groups may impact human health in aggregate in ways that individual species may not in isolation.
Collapse
Affiliation(s)
| | | | - Andrew Fiore-Gartland
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, USA
| | - Andrew Johnson
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, USA
| | - Steven Self
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, USA
| | - Parveen Bhatti
- Cancer Control Research, BC Cancer Research Institute, Vancouver, BC, Canada
- Epidemiology Program, Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, USA
- School of Population and Public Health, University of British Columbia, Vancouver, BC, Canada
| | - Lena Yao
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, USA
| | - Lili Liu
- Key Laboratory of Occupational Disease Prevention and Treatment, Guangdong Province Hospital for Occupational Disease Prevention and Treatment, Guangzhou, China
| | - Xin Sun
- National Institute of Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yi Jinfa
- Nanhai Maternity and Child Healthcare Hospital of Foshan, Foshan, China
| | - James Kublin
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, USA
- HIV Vaccine Trials Network, Fred Hutchinson Cancer Center, Seattle, USA
| |
Collapse
|
108
|
Wu S, Yang X, Lou Y, Xiao X. MAIT cells in bacterial infectious diseases: heroes, villains, or both? Clin Exp Immunol 2023; 214:144-153. [PMID: 37624404 PMCID: PMC10714195 DOI: 10.1093/cei/uxad102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 08/20/2023] [Accepted: 08/21/2023] [Indexed: 08/26/2023] Open
Abstract
Due to the aggravation of bacterial drug resistance and the lag in the development of new antibiotics, it is crucial to develop novel therapeutic regimens for bacterial infectious diseases. Currently, immunotherapy is a promising regimen for the treatment of infectious diseases. Mucosal-associated invariant T (MAIT) cells, a subpopulation of innate-like T cells, are abundant in humans and can mount a rapid immune response to pathogens, thus becoming a potential target of immunotherapy for infectious diseases. At the site of infection, activated MAIT cells perform complex biological functions by secreting a variety of cytokines and cytotoxic substances. Many studies have shown that MAIT cells have immunoprotective effects because they can bridge innate and adaptive immune responses, leading to bacterial clearance, tissue repair, and homeostasis maintenance. MAIT cells also participate in cytokine storm generation, tissue fibrosis, and cancer progression, indicating that they play a role in immunopathology. In this article, we review recent studies of MAIT cells, discuss their dual roles in bacterial infectious diseases and provide some promising MAIT cell-targeting strategies for the treatment of bacterial infectious diseases.
Collapse
Affiliation(s)
- Sihong Wu
- Wenzhou Key Laboratory of Sanitary Microbiology, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Xi Yang
- Wenzhou Key Laboratory of Sanitary Microbiology, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Yongliang Lou
- Wenzhou Key Laboratory of Sanitary Microbiology, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Xingxing Xiao
- Wenzhou Key Laboratory of Sanitary Microbiology, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
109
|
Tognarelli EI, Gutiérrez-Vera C, Palacios PA, Pasten-Ferrada IA, Aguirre-Muñoz F, Cornejo DA, González PA, Carreño LJ. Natural Killer T Cell Diversity and Immunotherapy. Cancers (Basel) 2023; 15:5737. [PMID: 38136283 PMCID: PMC10742272 DOI: 10.3390/cancers15245737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 11/28/2023] [Accepted: 12/02/2023] [Indexed: 12/24/2023] Open
Abstract
Invariant natural killer T cells (iNKTs), a type of unconventional T cells, share features with NK cells and have an invariant T cell receptor (TCR), which recognizes lipid antigens loaded on CD1d molecules, a major histocompatibility complex class I (MHC-I)-like protein. This interaction produces the secretion of a wide array of cytokines by these cells, including interferon gamma (IFN-γ) and interleukin 4 (IL-4), allowing iNKTs to link innate with adaptive responses. Interestingly, molecules that bind CD1d have been identified that enable the modulation of these cells, highlighting their potential pro-inflammatory and immunosuppressive capacities, as required in different clinical settings. In this review, we summarize key features of iNKTs and current understandings of modulatory α-galactosylceramide (α-GalCer) variants, a model iNKT cell activator that can shift the outcome of adaptive immune responses. Furthermore, we discuss advances in the development of strategies that modulate these cells to target pathologies that are considerable healthcare burdens. Finally, we recapitulate findings supporting a role for iNKTs in infectious diseases and tumor immunotherapy.
Collapse
Affiliation(s)
- Eduardo I. Tognarelli
- Millennium Institute on Immunology and Immunotherapy, Santiago 8330025, Chile; (E.I.T.); (C.G.-V.); (P.A.P.); (I.A.P.-F.); (F.A.-M.); (D.A.C.)
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | - Cristián Gutiérrez-Vera
- Millennium Institute on Immunology and Immunotherapy, Santiago 8330025, Chile; (E.I.T.); (C.G.-V.); (P.A.P.); (I.A.P.-F.); (F.A.-M.); (D.A.C.)
- Programa de Inmunología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile
| | - Pablo A. Palacios
- Millennium Institute on Immunology and Immunotherapy, Santiago 8330025, Chile; (E.I.T.); (C.G.-V.); (P.A.P.); (I.A.P.-F.); (F.A.-M.); (D.A.C.)
- Programa de Inmunología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile
| | - Ignacio A. Pasten-Ferrada
- Millennium Institute on Immunology and Immunotherapy, Santiago 8330025, Chile; (E.I.T.); (C.G.-V.); (P.A.P.); (I.A.P.-F.); (F.A.-M.); (D.A.C.)
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | - Fernanda Aguirre-Muñoz
- Millennium Institute on Immunology and Immunotherapy, Santiago 8330025, Chile; (E.I.T.); (C.G.-V.); (P.A.P.); (I.A.P.-F.); (F.A.-M.); (D.A.C.)
- Programa de Inmunología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile
| | - Daniel A. Cornejo
- Millennium Institute on Immunology and Immunotherapy, Santiago 8330025, Chile; (E.I.T.); (C.G.-V.); (P.A.P.); (I.A.P.-F.); (F.A.-M.); (D.A.C.)
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | - Pablo A. González
- Millennium Institute on Immunology and Immunotherapy, Santiago 8330025, Chile; (E.I.T.); (C.G.-V.); (P.A.P.); (I.A.P.-F.); (F.A.-M.); (D.A.C.)
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | - Leandro J. Carreño
- Millennium Institute on Immunology and Immunotherapy, Santiago 8330025, Chile; (E.I.T.); (C.G.-V.); (P.A.P.); (I.A.P.-F.); (F.A.-M.); (D.A.C.)
- Programa de Inmunología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile
| |
Collapse
|
110
|
Loh L, Orlicky D, Spengler A, Levens C, Celli S, Domenico J, Klarquist J, Onyiah J, Matsuda J, Kuhn K, Gapin L. MAIT cells drive chronic inflammation in a genetically diverse murine model of spontaneous colitis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.29.569225. [PMID: 38076996 PMCID: PMC10705467 DOI: 10.1101/2023.11.29.569225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2024]
Abstract
Background & aims Lymphocytes that produce IL-17 can confer protective immunity during infections by pathogens, yet their involvement in inflammatory diseases is a subject of debate. Although these cells may perpetuate inflammation, resulting in tissue damage, they are also capable of contributing directly or indirectly to tissue repair, thus necessitating more detailed investigation. Mucosal-Associated-Invariant-T (MAIT) cells are innate-like T cells, acquiring a type III phenotype in the thymus. Here, we dissected the role of MAIT cells in vivo using a spontaneous colitis model in a genetically diverse mouse strain. Methods Multiparameter spectral flow cytometry and scRNAseq were used to characterize MAIT and immune cell dynamics and transcriptomic signatures respectively, in the collaborative-cross strain, CC011/Unc and CC011/Unc- Traj33 -/- . Results In contrast to many conventional mouse laboratory strains, the CC011 strain harbors a high baseline population of MAIT cells. We observed an age-related increase in colonic MAIT cells, Th17 cells, regulatory T cells, and neutrophils, which paralleled the development of spontaneous colitis. This progression manifested histological traits reminiscent of human IBD. The transcriptomic analysis of colonic MAIT cells from CC011 revealed an activation profile consistent with an inflammatory milieu, marked by an enhanced type-III response. Notably, IL-17A was abundantly secreted by MAIT cells in the colons of afflicted mice. Conversely, in the MAIT cell-deficient CC011-Traj33-/- mice, there was a notable absence of significant colonic histopathology. Furthermore, myeloperoxidase staining indicated a substantial decrease in colonic neutrophils. Conclusions Our findings suggest that MAIT cells play a pivotal role in modulating the severity of intestinal pathology, potentially orchestrating the inflammatory process by driving the accumulation of neutrophils within the colonic environment.
Collapse
|
111
|
Kim K, Jang H, Kim E, Kim H, Sung GY. Recent advances in understanding the role of the skin microbiome in the treatment of atopic dermatitis. Exp Dermatol 2023; 32:2048-2061. [PMID: 37767872 DOI: 10.1111/exd.14940] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/31/2023] [Accepted: 09/16/2023] [Indexed: 09/29/2023]
Abstract
The skin is the largest organ in the human body, and histologically consists of the epidermis, dermis and subcutaneous tissue. Humans maintain a cooperative symbiotic relationship with their skin microbiota, a complex community of bacteria, fungi and viruses that live on the surface of the skin, and which act as a barrier to protect the body from the inside and outside. The skin is a 'habitat' and vast 'ecosystem' inhabited by countless microbes; as such, relationships have been forged through millions of years of coevolution. It is not surprising then that microbes are key participants in shaping and maintaining essential physiological processes. In addition to maintaining barrier function, the unique symbiotic microbiota that colonizes the skin increases the immune response and provides protection against pathogenic microbes. This review examines our current understanding of skin microbes in shaping and enhancing the skin barrier, as well as skin microbiome-host interactions and their roles in skin diseases, such as atopic dermatitis (AD). We also report on the current status of AD therapeutic drugs that target the skin microbiome, related research on current therapeutic strategies, and the limitations and future considerations of skin microbiome research. In particular, as a future strategy, we discuss the need for a skin-on-a-chip-based microphysiological system research model amenable to biomimetic in vitro studies and human skin equivalent models, including skin appendages.
Collapse
Affiliation(s)
- Kyunghee Kim
- Interdisciplinary Program of Nano-Medical Device Engineering, Hallym University, Chuncheon, Korea
- Integrative Materials Research Institute, Hallym University, Chuncheon, Korea
| | - Hyeji Jang
- Interdisciplinary Program of Nano-Medical Device Engineering, Hallym University, Chuncheon, Korea
- Integrative Materials Research Institute, Hallym University, Chuncheon, Korea
| | - Eunyul Kim
- Interdisciplinary Program of Nano-Medical Device Engineering, Hallym University, Chuncheon, Korea
- Integrative Materials Research Institute, Hallym University, Chuncheon, Korea
| | - Hyeju Kim
- Interdisciplinary Program of Nano-Medical Device Engineering, Hallym University, Chuncheon, Korea
- Integrative Materials Research Institute, Hallym University, Chuncheon, Korea
| | - Gun Yong Sung
- Interdisciplinary Program of Nano-Medical Device Engineering, Hallym University, Chuncheon, Korea
- Integrative Materials Research Institute, Hallym University, Chuncheon, Korea
- Major in Materials Science and Engineering, Hallym University, Chuncheon, Korea
| |
Collapse
|
112
|
Tuor M, LeibundGut-Landmann S. The skin mycobiome and intermicrobial interactions in the cutaneous niche. Curr Opin Microbiol 2023; 76:102381. [PMID: 37703811 DOI: 10.1016/j.mib.2023.102381] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/18/2023] [Accepted: 08/18/2023] [Indexed: 09/15/2023]
Abstract
Mammalian microbiomes have coevolved with their host to establish a stable homeostatic relationship. Multifaceted commensal-host and commensal-commensal interactions contribute to the maintenance of the equilibrium with an impact on diverse host physiological processes. Despite constant exposure to physical and chemical insults from the environment, the skin harbors a surprisingly stable microbiome. The fungal compartment of the skin microbiome, the skin mycobiome, is unique in that it is dominated by a single fungus, Malassezia. The lack in diversity suggests that the skin may provide a unique niche for this fungal genus and that Malassezia may efficiently outcompete other fungi from the skin. This opinion article examines aspects in support of this hypothesis, discusses how changes in niche conditions associate with skin mycobiome dysregulation, and highlights an emerging example of Malassezia being displaced from the skin by the emerging fungal pathogen C. auris, thereby generating a predisposing situation for fatal-invasive infection.
Collapse
Affiliation(s)
- Meret Tuor
- Section of Immunology, Vetsuisse Faculty and Institute of Experimental Immunology, University of Zurich, Switzerland
| | - Salomé LeibundGut-Landmann
- Section of Immunology, Vetsuisse Faculty and Institute of Experimental Immunology, University of Zurich, Switzerland.
| |
Collapse
|
113
|
Jirouš Drulak M, Grgić Z, Plužarić V, Šola M, Opačak-Bernardi T, Viljetić B, Glavaš K, Tolušić-Levak M, Periša V, Mihalj M, Štefanić M, Tokić S. Characterization of the TCRβ repertoire of peripheral MR1-restricted MAIT cells in psoriasis vulgaris patients. Sci Rep 2023; 13:20990. [PMID: 38017021 PMCID: PMC10684872 DOI: 10.1038/s41598-023-48321-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 11/24/2023] [Indexed: 11/30/2023] Open
Abstract
Psoriasis vulgaris (PV) is an inflammatory skin disease largely driven by aberrant αβT cells. Mucosal-associated invariant T (MAIT) cells, which constitute the largest circulating innate-like αβT cell community in human adults, are characterized by a semi-invariant TCRVα7.2 receptor and MR1-restricted affinity toward microbial metabolites. Limited MAIT TCRα diversity is complemented by a more variable TCRβ repertoire, but its footprint in the MAIT repertoire of PV patients has never been tested. Here, we used bulk TCRSeq, MiXCR, VDJTools, and Immunarch pipelines to decipher and compare TCRβ clonotypes from flow-sorted, peripheral TCRVα7.2+MR1-5-OP-RU-tet+MAIT cells from 10 PV patients and 10 healthy, matched controls. The resulting TCRβ collections were highly private and individually unique, with small public clonotype content and high CDR3β amino acid length variability in both groups. The age-related increase in the 'hyperexpanded' clonotype compartment was observed in PV, but not in healthy MAIT repertoires. The TCRβ repertoires of PV patients were also marked by skewed TRBV/TRBJ pairing, and the emergence of PV-specific, public CDR3β peptide sequences closely matching the published CDR3β record from psoriatic skin. Overall, our study provides preliminary insight into the peripheral MAIT TCRβ repertoire in psoriasis and warrants further evaluation of its diagnostic and clinical significance.
Collapse
Affiliation(s)
- Maja Jirouš Drulak
- Department of Medical Chemistry, Biochemistry and Clinical Chemistry, Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia.
| | - Zvonimir Grgić
- Department of Laboratory Medicine and Pharmacy, Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | - Vera Plužarić
- Department of Laboratory Medicine and Pharmacy, Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
- Department of Dermatology and Venerology, University Hospital Osijek, Osijek, Croatia
| | - Marija Šola
- Department of Dermatology and Venerology, University Hospital Osijek, Osijek, Croatia
| | - Teuta Opačak-Bernardi
- Department of Medical Chemistry, Biochemistry and Clinical Chemistry, Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | - Barbara Viljetić
- Department of Medical Chemistry, Biochemistry and Clinical Chemistry, Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | - Kristina Glavaš
- Department of Transfusion Medicine, University Hospital Osijek, Osijek, Croatia
| | - Maja Tolušić-Levak
- Department of Dermatology and Venerology, University Hospital Osijek, Osijek, Croatia
- Department of Histology and Embryology, Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | - Vlatka Periša
- Department of Internal Medicine and History of Medicine, Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
- Department of Hematology, Clinic of Internal Medicine, University Hospital Osijek, Osijek, Croatia
| | - Martina Mihalj
- Department of Dermatology and Venerology, University Hospital Osijek, Osijek, Croatia
- Department of Physiology and Immunology, Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | - Mario Štefanić
- Department of Nuclear Medicine and Oncology, Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia.
| | - Stana Tokić
- Department of Laboratory Medicine and Pharmacy, Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia.
| |
Collapse
|
114
|
Maseda D, Manfredo-Vieira S, Payne AS. T cell and bacterial microbiota interaction at intestinal and skin epithelial interfaces. DISCOVERY IMMUNOLOGY 2023; 2:kyad024. [PMID: 38567051 PMCID: PMC10917213 DOI: 10.1093/discim/kyad024] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 09/28/2023] [Accepted: 11/24/2023] [Indexed: 04/04/2024]
Abstract
Graphical Abstract.
Collapse
Affiliation(s)
- Damian Maseda
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Silvio Manfredo-Vieira
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Aimee S Payne
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
115
|
Gnirck AC, Philipp MS, Waterhölter A, Wunderlich M, Shaikh N, Adamiak V, Henneken L, Kautz T, Xiong T, Klaus D, Tomczyk P, Al-Bahra MM, Menche D, Walkenhorst M, Lantz O, Willing A, Friese MA, Huber TB, Krebs CF, Panzer U, Kurts C, Turner JE. Mucosal-associated invariant T cells contribute to suppression of inflammatory myeloid cells in immune-mediated kidney disease. Nat Commun 2023; 14:7372. [PMID: 37968302 PMCID: PMC10651937 DOI: 10.1038/s41467-023-43269-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 11/06/2023] [Indexed: 11/17/2023] Open
Abstract
Mucosal-associated invariant T (MAIT) cells have been implicated in various inflammatory diseases of barrier organs, but so far, their role in kidney disease is unclear. Here we report that MAIT cells that recognize their prototypical ligand, the vitamin B2 intermediate 5-OP-RU presented by MR1, reside in human and mouse kidneys. Single cell RNAseq analysis reveals several intrarenal MAIT subsets, and one, carrying the genetic fingerprint of tissue-resident MAIT17 cells, is activated and expanded in a murine model of crescentic glomerulonephritis (cGN). An equivalent subset is also present in kidney biopsies of patients with anti-neutrophil cytoplasmatic antibody (ANCA)-associated cGN. MAIT cell-deficient MR1 mice show aggravated disease, whereas B6-MAITCAST mice, harboring higher MAIT cell numbers, are protected from cGN. The expanded MAIT17 cells express anti-inflammatory mediators known to suppress cGN, such as CTLA-4, PD-1, and TGF-β. Interactome analysis predicts CXCR6 - CXCL16-mediated cross-talk with renal mononuclear phagocytes, known to drive cGN progression. In line, we find that cGN is aggravated upon CXCL16 blockade. Finally, we present an optimized 5-OP-RU synthesis method which we apply to attenuating cGN in mice. In summary, we propose that CXCR6+ MAIT cells might play a protective role in cGN, implicating them as a potential target for anti-inflammatory therapies.
Collapse
Affiliation(s)
- Ann-Christin Gnirck
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Translational Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Euroimmun, Lübeck, Germany
| | - Marie-Sophie Philipp
- Institute of Molecular Medicine and Experimental Immunology, University Hospital Bonn, Bonn, Germany
- Division of Immunology, Paul-Ehrlich-Institut Langen, Langen, Germany
| | - Alex Waterhölter
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Translational Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Malte Wunderlich
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Translational Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Nikhat Shaikh
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Translational Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Virginia Adamiak
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Translational Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Lena Henneken
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Translational Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tobias Kautz
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Translational Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Institut für Transfusionsmedizin, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tingting Xiong
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Translational Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Daniela Klaus
- Institute of Molecular Medicine and Experimental Immunology, University Hospital Bonn, Bonn, Germany
| | - Pascal Tomczyk
- Kekulé Institute of Organic Chemistry and Biochemistry, University of Bonn, Bonn, Germany
| | - Mohamad M Al-Bahra
- Kekulé Institute of Organic Chemistry and Biochemistry, University of Bonn, Bonn, Germany
| | - Dirk Menche
- Kekulé Institute of Organic Chemistry and Biochemistry, University of Bonn, Bonn, Germany
| | - Mark Walkenhorst
- Institute of Neuroimmunology and Multiple Sclerosis, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Olivier Lantz
- Inserm U932, Laboratoire d'immunologie Clinique and Centre d'investigation Clinique en Biothérapie Gustave-Roussy, Institut Curie, Paris, France
| | - Anne Willing
- Institute of Neuroimmunology and Multiple Sclerosis, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Manuel A Friese
- Institute of Neuroimmunology and Multiple Sclerosis, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tobias B Huber
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Translational Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christian F Krebs
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Translational Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ulf Panzer
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Translational Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christian Kurts
- Institute of Molecular Medicine and Experimental Immunology, University Hospital Bonn, Bonn, Germany.
- Department of Microbiology and Immunology, Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia.
| | - Jan-Eric Turner
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
- Hamburg Center for Translational Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
116
|
Chengalroyen MD. Current Perspectives and Challenges of MAIT Cell-Directed Therapy for Tuberculosis Infection. Pathogens 2023; 12:1343. [PMID: 38003807 PMCID: PMC10675005 DOI: 10.3390/pathogens12111343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 10/27/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
Mucosal-associated invariant T (MAIT) cells are a distinct population of non-conventional T cells that have been preserved through evolution and possess properties of both innate and adaptive immune cells. They are activated through the recognition of antigens presented by non-polymorphic MR1 proteins or, alternately, can be stimulated by specific cytokines. These cells are multifaceted and exert robust antimicrobial activity against bacterial and viral infections, direct the immune response through the modulation of other immune cells, and exhibit a specialized tissue homeostasis and repair function. These distinct characteristics have instigated interest in MAIT cell biology for immunotherapy and vaccine development. This review describes the current understanding of MAIT cell activation, their role in infections and diseases with an emphasis on tuberculosis (TB) infection, and perspectives on the future use of MAIT cells in immune-mediated therapy.
Collapse
Affiliation(s)
- Melissa D Chengalroyen
- Molecular Mycobacteriology Research Unit, Institute of Infectious Disease and Molecular Medicine, Department of Pathology, University of Cape Town, Cape Town 7700, South Africa
| |
Collapse
|
117
|
Chandra S, Ascui G, Riffelmacher T, Chawla A, Ramírez-Suástegui C, Castelan VC, Seumois G, Simon H, Murray MP, Seo GY, Premlal ALR, Schmiedel B, Verstichel G, Li Y, Lin CH, Greenbaum J, Lamberti J, Murthy R, Nigro J, Cheroutre H, Ottensmeier CH, Hedrick SM, Lu LF, Vijayanand P, Kronenberg M. Transcriptomes and metabolism define mouse and human MAIT cell populations. Sci Immunol 2023; 8:eabn8531. [PMID: 37948512 PMCID: PMC11160507 DOI: 10.1126/sciimmunol.abn8531] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 10/05/2023] [Indexed: 11/12/2023]
Abstract
Mucosal-associated invariant T (MAIT) cells are a subset of T lymphocytes that respond to microbial metabolites. We defined MAIT cell populations in different organs and characterized the developmental pathway of mouse and human MAIT cells in the thymus using single-cell RNA sequencing and phenotypic and metabolic analyses. We showed that the predominant mouse subset, which produced IL-17 (MAIT17), and the subset that produced IFN-γ (MAIT1) had not only greatly different transcriptomes but also different metabolic states. MAIT17 cells in different organs exhibited increased lipid uptake, lipid storage, and mitochondrial potential compared with MAIT1 cells. All these properties were similar in the thymus and likely acquired there. Human MAIT cells in lung and blood were more homogeneous but still differed between tissues. Human MAIT cells had increased fatty acid uptake and lipid storage in blood and lung, similar to human CD8 T resident memory cells, but unlike mouse MAIT17 cells, they lacked increased mitochondrial potential. Although mouse and human MAIT cell transcriptomes showed similarities for immature cells in the thymus, they diverged more strikingly in the periphery. Analysis of pet store mice demonstrated decreased lung MAIT17 cells in these so-called "dirty" mice, indicative of an environmental influence on MAIT cell subsets and function.
Collapse
Affiliation(s)
- Shilpi Chandra
- Center for Autoimmunity and Inflammation, La Jolla Institute for Immunology, La Jolla, CA 92037 USA
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA 92037 USA
| | - Gabriel Ascui
- Center for Autoimmunity and Inflammation, La Jolla Institute for Immunology, La Jolla, CA 92037 USA
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA 92037 USA
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093 USA
| | - Thomas Riffelmacher
- Center for Autoimmunity and Inflammation, La Jolla Institute for Immunology, La Jolla, CA 92037 USA
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA 92037 USA
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, OX3 7FY UK
| | - Ashu Chawla
- Bioinformatics Core Facility, La Jolla Institute for Immunology, La Jolla, CA 92037 USA
| | - Ciro Ramírez-Suástegui
- Center for Autoimmunity and Inflammation, La Jolla Institute for Immunology, La Jolla, CA 92037 USA
- Center for Cancer Immunotherapy, La Jolla Institute for Immunology, La Jolla, CA 92037 USA
| | - Viankail C. Castelan
- Center for Autoimmunity and Inflammation, La Jolla Institute for Immunology, La Jolla, CA 92037 USA
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA 92037 USA
| | - Gregory Seumois
- Center for Autoimmunity and Inflammation, La Jolla Institute for Immunology, La Jolla, CA 92037 USA
- Center for Cancer Immunotherapy, La Jolla Institute for Immunology, La Jolla, CA 92037 USA
| | - Hayley Simon
- Center for Autoimmunity and Inflammation, La Jolla Institute for Immunology, La Jolla, CA 92037 USA
- Center for Cancer Immunotherapy, La Jolla Institute for Immunology, La Jolla, CA 92037 USA
| | - Mallory P. Murray
- Center for Autoimmunity and Inflammation, La Jolla Institute for Immunology, La Jolla, CA 92037 USA
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA 92037 USA
| | - Goo-Young Seo
- Center for Autoimmunity and Inflammation, La Jolla Institute for Immunology, La Jolla, CA 92037 USA
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA 92037 USA
| | | | - Benjamin Schmiedel
- Center for Autoimmunity and Inflammation, La Jolla Institute for Immunology, La Jolla, CA 92037 USA
- Center for Cancer Immunotherapy, La Jolla Institute for Immunology, La Jolla, CA 92037 USA
| | - Greet Verstichel
- Center for Autoimmunity and Inflammation, La Jolla Institute for Immunology, La Jolla, CA 92037 USA
- Center for Cancer Immunotherapy, La Jolla Institute for Immunology, La Jolla, CA 92037 USA
| | - Yingcong Li
- Center for Autoimmunity and Inflammation, La Jolla Institute for Immunology, La Jolla, CA 92037 USA
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA 92037 USA
- Department of Molecular Biology, University of California, San Diego, La Jolla, CA 92037 USA
| | - Chia-Hao Lin
- Department of Molecular Biology, University of California, San Diego, La Jolla, CA 92037 USA
| | - Jason Greenbaum
- Bioinformatics Core Facility, La Jolla Institute for Immunology, La Jolla, CA 92037 USA
| | - John Lamberti
- Division of Cardiac Surgery, Rady Children’s Hospital, San Diego, CA 92123 USA
- Division of Pediatric Cardiac Surgery, Falk Cardiovascular Research Center, Stanford, CA 94305-5407 USA
| | - Raghav Murthy
- Division of Cardiac Surgery, Rady Children’s Hospital, San Diego, CA 92123 USA
- Division of Pediatric Cardiac Surgery, Children’s Heart Center Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA
| | - John Nigro
- Division of Cardiac Surgery, Rady Children’s Hospital, San Diego, CA 92123 USA
| | - Hilde Cheroutre
- Center for Autoimmunity and Inflammation, La Jolla Institute for Immunology, La Jolla, CA 92037 USA
- Center for Cancer Immunotherapy, La Jolla Institute for Immunology, La Jolla, CA 92037 USA
| | - Christian H. Ottensmeier
- Liverpool Head and Neck Center, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK, L69 7ZB
| | - Stephen M. Hedrick
- Department of Molecular Biology, University of California, San Diego, La Jolla, CA 92037 USA
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, 92093 USA
| | - Li-Fan Lu
- Department of Molecular Biology, University of California, San Diego, La Jolla, CA 92037 USA
- Center for Microbiome Innovation, University of California, San Diego, La Jolla, CA, 92093 USA
- Moores Cancer Center, University of California, San Diego, La Jolla, CA, 92093 USA
| | - Pandurangan Vijayanand
- Center for Autoimmunity and Inflammation, La Jolla Institute for Immunology, La Jolla, CA 92037 USA
- Center for Cancer Immunotherapy, La Jolla Institute for Immunology, La Jolla, CA 92037 USA
| | - Mitchell Kronenberg
- Center for Autoimmunity and Inflammation, La Jolla Institute for Immunology, La Jolla, CA 92037 USA
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA 92037 USA
- Department of Molecular Biology, University of California, San Diego, La Jolla, CA 92037 USA
| |
Collapse
|
118
|
Rhoiney ML, Alvizo CR, Jameson JM. Skin Homeostasis and Repair: A T Lymphocyte Perspective. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 211:1266-1275. [PMID: 37844280 DOI: 10.4049/jimmunol.2300153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 06/22/2023] [Indexed: 10/18/2023]
Abstract
Chronic, nonhealing wounds remain a clinical challenge and a significant burden for the healthcare system. Skin-resident and infiltrating T cells that recognize pathogens, microbiota, or self-antigens participate in wound healing. A precise balance between proinflammatory T cells and regulatory T cells is required for the stages of wound repair to proceed efficiently. When diseases such as diabetes disrupt the skin microenvironment, T cell activation and function are altered, and wound repair is hindered. Recent studies have used cutting-edge technology to further define the cellular makeup of the skin prior to and during tissue repair. In this review, we discuss key advances that highlight mechanisms used by T cell subsets to populate the epidermis and dermis, maintain skin homeostasis, and regulate wound repair. Advances in our understanding of how skin cells communicate in the skin pave the way for therapeutics that modulate regulatory versus effector functions to improve nonhealing wound treatment.
Collapse
Affiliation(s)
- Mikaela L Rhoiney
- Department of Biological Sciences, California State University San Marcos, San Marcos, CA
| | - Cristian R Alvizo
- Department of Biological Sciences, California State University San Marcos, San Marcos, CA
| | - Julie M Jameson
- Department of Biological Sciences, California State University San Marcos, San Marcos, CA
| |
Collapse
|
119
|
Wang Q, Lu Q, Jia S, Zhao M. Gut immune microenvironment and autoimmunity. Int Immunopharmacol 2023; 124:110842. [PMID: 37643491 DOI: 10.1016/j.intimp.2023.110842] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 08/14/2023] [Accepted: 08/19/2023] [Indexed: 08/31/2023]
Abstract
A variety of immune cells or tissues are present in the gut to form the gut immune microenvironment by interacting with gut microbiota, and to maintain the gut immune homeostasis. Accumulating evidence indicated that gut microbiota dysbiosis might break the homeostasis of the gut immune microenvironment, which was associated with many health problems including autoimmune diseases. Moreover, disturbance of the gut immune microenvironment can also induce extra-intestinal autoimmune disorders through the migration of intestinal pro-inflammatory effector cells from the intestine to peripheral inflamed sites. This review discussed the composition of the gut immune microenvironment and its association with autoimmunity. These findings are expected to provide new insights into the pathogenesis of various autoimmune disorders, as well as novel strategies for the prevention and treatment against related diseases.
Collapse
Affiliation(s)
- Qiaolin Wang
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing 210042, China; Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing 210042, China
| | - Qianjin Lu
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing 210042, China; Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing 210042, China
| | - Sujie Jia
- Department of Pharmacy, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing 210042, China.
| | - Ming Zhao
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing 210042, China; Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing 210042, China.
| |
Collapse
|
120
|
Hong JY, Medzhitov R. On developmental programming of the immune system. Trends Immunol 2023; 44:877-889. [PMID: 37852863 DOI: 10.1016/j.it.2023.09.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 09/12/2023] [Accepted: 09/12/2023] [Indexed: 10/20/2023]
Abstract
Early-life environmental exposures play a significant role in shaping long-lasting immune phenotypes and disease susceptibility. Nevertheless, comprehensive understanding of the developmental programming of immunity is limited. We propose that the vertebrate immune system contains durable programmable components established through early environmental interactions and maintained in a stable and homeostatic manner. Some immune components, such as immunological memory, are intrinsically programmable. Others are influenced by conditions during critical developmental windows in early life, including microbiota, hormones, metabolites, and environmental stress, which impact programming. Developmental immune programming can promote adaptation to an anticipated future environment. However, mismatches between predicted and actual environments can result in disease. This is relevant because understanding programming mechanisms can offer insights into the origin of inflammatory diseases, ideally enabling effective prevention and treatment strategies.
Collapse
Affiliation(s)
- Jun Young Hong
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06510, USA; Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea.
| | - Ruslan Medzhitov
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06510, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA.
| |
Collapse
|
121
|
Donald K, Finlay BB. Early-life interactions between the microbiota and immune system: impact on immune system development and atopic disease. Nat Rev Immunol 2023; 23:735-748. [PMID: 37138015 DOI: 10.1038/s41577-023-00874-w] [Citation(s) in RCA: 106] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/28/2023] [Indexed: 05/05/2023]
Abstract
Prenatal and early postnatal life represent key periods of immune system development. In addition to genetics and host biology, environment has a large and irreversible role in the immune maturation and health of an infant. One key player in this process is the gut microbiota, a diverse community of microorganisms that colonizes the human intestine. The diet, environment and medical interventions experienced by an infant determine the establishment and progression of the intestinal microbiota, which interacts with and trains the developing immune system. Several chronic immune-mediated diseases have been linked to an altered gut microbiota during early infancy. The recent rise in allergic disease incidence has been explained by the 'hygiene hypothesis', which states that societal changes in developed countries have led to reduced early-life microbial exposures, negatively impacting immunity. Although human cohort studies across the globe have established a correlation between early-life microbiota composition and atopy, mechanistic links and specific host-microorganism interactions are still being uncovered. Here, we detail the progression of immune system and microbiota maturation in early life, highlight the mechanistic links between microbes and the immune system, and summarize the role of early-life host-microorganism interactions in allergic disease development.
Collapse
Affiliation(s)
- Katherine Donald
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
| | - B Brett Finlay
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada.
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada.
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
122
|
Ye X, Li Y, Fang B, Yuan Y, Feng D, Chen H, Li J, Meng Q, Xiong S, Ye D, Jiao L, Chen D, Chen R, Lei W, Gao Y, Li C. Type 17 mucosal-associated invariant T cells contribute to neutrophilic inflammation in patients with nasal polyps. J Allergy Clin Immunol 2023; 152:1153-1166.e12. [PMID: 37437744 DOI: 10.1016/j.jaci.2023.06.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 05/21/2023] [Accepted: 06/01/2023] [Indexed: 07/14/2023]
Abstract
BACKGROUND Immune regulation in chronic rhinosinusitis with nasal polyps (CRSwNP) with a neutrophilic endotype remains unclear. Mucosal-associated invariant T (MAIT) cells are tissue-resident innate T lymphocytes that respond quickly to pathogens and promote chronic mucosal inflammation. OBJECTIVE We aimed to investigate the roles of MAIT cells in neutrophilic CRSwNP. METHODS Nasal tissues were obtained from 113 patients with CRSwNP and 29 control subjects. Peripheral and tissue MAIT cells and their subsets were analyzed by flow cytometry. Polyp-derived MAIT cells were analyzed by RNA sequencing to study their effects on neutrophils. RESULTS Endotypes of CRSwNP were classified as paucigranulocytic (n = 21), eosinophilic (n = 29), neutrophilic (n = 39), and mixed granulocytic (n = 24). Frequencies of MAIT cells were significantly higher in neutrophilic (3.62%) and mixed granulocytic (3.60%) polyps than in control mucosa (1.78%). MAIT cell percentages positively correlated with local neutrophil counts. MAIT cells were more enriched in tissues than in matched PBMCs. The frequencies of MAIT1 subset or IFN-γ+ MAIT cells were comparable among control tissues and CRSwNP subtypes. The proportions of MAIT17 subset or IL-17A+ MAIT cells were significantly increased in neutrophilic or mixed granulocytic polyps compared with controls. RNA sequencing revealed type 17 and pro-neutrophil profiles in neutrophilic polyp-derived MAIT cells. In patients with neutrophilic CRSwNP, the proportions of MAIT and MAIT17 cells were positively correlated with local proinflammatory cytokines and symptom severity. In vitro experiments demonstrated that neutrophilic polyp-derived MAIT cells promoted neutrophil migration, survival, and activation. CONCLUSIONS MAIT cells from neutrophilic CRSwNP demonstrate type 17 functional properties and promote neutrophil infiltration in nasal mucosa.
Collapse
Affiliation(s)
- Xiaoyan Ye
- Department of Otolaryngology, Department of Allergy, Guangzhou Key Laboratory of Otorhinolaryngology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Guangxi Hospital Division of The First Affiliated Hospital, Sun Yat-sen University, Nanning, China
| | - Yachun Li
- Department of Otolaryngology, Department of Allergy, Guangzhou Key Laboratory of Otorhinolaryngology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Bixing Fang
- Department of Otolaryngology, Department of Allergy, Guangzhou Key Laboratory of Otorhinolaryngology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yizhang Yuan
- Department of Otolaryngology, Department of Allergy, Guangzhou Key Laboratory of Otorhinolaryngology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Danni Feng
- Department of Otolaryngology, Department of Allergy, Guangzhou Key Laboratory of Otorhinolaryngology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Hexin Chen
- Department of Otolaryngology, Department of Allergy, Guangzhou Key Laboratory of Otorhinolaryngology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jian Li
- Department of Otolaryngology, Department of Allergy, Guangzhou Key Laboratory of Otorhinolaryngology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Guangxi Hospital Division of The First Affiliated Hospital, Sun Yat-sen University, Nanning, China
| | - Qingxiang Meng
- Department of Otorhinolaryngology Head and Neck Surgery, Guangzhou First People's Hospital, Guangzhou, China
| | - Shaobing Xiong
- Department of Otolaryngology, Department of Allergy, Guangzhou Key Laboratory of Otorhinolaryngology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Dongmei Ye
- Organ Transplantation Centre, Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Linyi Jiao
- Department of Otolaryngology, Department of Allergy, Guangzhou Key Laboratory of Otorhinolaryngology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Dehua Chen
- Department of Otolaryngology, Department of Allergy, Guangzhou Key Laboratory of Otorhinolaryngology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ruchong Chen
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, Department of Allergy and Clinical Immunology, Guangzhou Medical University, Guangzhou, China
| | - Wenbin Lei
- Department of Otolaryngology, Department of Allergy, Guangzhou Key Laboratory of Otorhinolaryngology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yifang Gao
- Organ Transplantation Centre, Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
| | - Chunwei Li
- Department of Otolaryngology, Department of Allergy, Guangzhou Key Laboratory of Otorhinolaryngology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
123
|
Reynolds HM, Bettini ML. Early-life microbiota-immune homeostasis. Front Immunol 2023; 14:1266876. [PMID: 37936686 PMCID: PMC10627000 DOI: 10.3389/fimmu.2023.1266876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 10/11/2023] [Indexed: 11/09/2023] Open
Abstract
As the prevalence of allergy and autoimmune disease in industrialized societies continues to rise, improving our understanding of the mechanistic roles behind microbiota-immune homeostasis has become critical for informing therapeutic interventions in cases of dysbiosis. Of particular importance, are alterations to intestinal microbiota occurring within the critical neonatal window, during which the immune system is highly vulnerable to environmental exposures. This review will highlight recent literature concerning mechanisms of early-life microbiota-immune homeostasis as well as discuss the potential for therapeutics in restoring dysbiosis in early life.
Collapse
Affiliation(s)
| | - Matthew L. Bettini
- Department of Microbiology and Immunology, University of Utah, Salt Lake, UT, United States
| |
Collapse
|
124
|
Read JF, Serralha M, Armitage JD, Iqbal MM, Cruickshank MN, Saxena A, Strickland DH, Waithman J, Holt PG, Bosco A. Single cell transcriptomics reveals cell type specific features of developmentally regulated responses to lipopolysaccharide between birth and 5 years. Front Immunol 2023; 14:1275937. [PMID: 37920467 PMCID: PMC10619903 DOI: 10.3389/fimmu.2023.1275937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 10/04/2023] [Indexed: 11/04/2023] Open
Abstract
Background Human perinatal life is characterized by a period of extraordinary change during which newborns encounter abundant environmental stimuli and exposure to potential pathogens. To meet such challenges, the neonatal immune system is equipped with unique functional characteristics that adapt to changing conditions as development progresses across the early years of life, but the molecular characteristics of such adaptations remain poorly understood. The application of single cell genomics to birth cohorts provides an opportunity to investigate changes in gene expression programs elicited downstream of innate immune activation across early life at unprecedented resolution. Methods In this study, we performed single cell RNA-sequencing of mononuclear cells collected from matched birth cord blood and 5-year peripheral blood samples following stimulation (18hrs) with two well-characterized innate stimuli; lipopolysaccharide (LPS) and Polyinosinic:polycytidylic acid (Poly(I:C)). Results We found that the transcriptional response to LPS was constrained at birth and predominantly partitioned into classical proinflammatory gene upregulation primarily by monocytes and Interferon (IFN)-signaling gene upregulation by lymphocytes. Moreover, these responses featured substantial cell-to-cell communication which appeared markedly strengthened between birth and 5 years. In contrast, stimulation with Poly(I:C) induced a robust IFN-signalling response across all cell types identified at birth and 5 years. Analysis of gene regulatory networks revealed IRF1 and STAT1 were key drivers of the LPS-induced IFN-signaling response in lymphocytes with a potential developmental role for IRF7 regulation. Conclusion Additionally, we observed distinct activation trajectory endpoints for monocytes derived from LPS-treated cord and 5-year blood, which was not apparent among Poly(I:C)-induced monocytes. Taken together, our findings provide new insight into the gene regulatory landscape of immune cell function between birth and 5 years and point to regulatory mechanisms relevant to future investigation of infection susceptibility in early life.
Collapse
Affiliation(s)
- James F. Read
- Asthma and Airway Disease Research Center, University of Arizona, Tucson, AZ, United States
- Telethon Kids Institute, The University of Western Australia, Perth, WA, Australia
| | - Michael Serralha
- Telethon Kids Institute, The University of Western Australia, Perth, WA, Australia
| | - Jesse D. Armitage
- Telethon Kids Institute, The University of Western Australia, Perth, WA, Australia
- School of Biomedical Sciences, The University of Western Australia, Nedlands, Western Australia, Australia
| | - Muhammad Munir Iqbal
- Genomics WA, Joint Initiative of Telethon Kids Institute, Harry Perkins Institute of Medical Research and The University of Western Australia, Nedlands, WA, Australia
| | - Mark N. Cruickshank
- School of Biomedical Sciences, The University of Western Australia, Nedlands, Western Australia, Australia
| | - Alka Saxena
- Genomics WA, Joint Initiative of Telethon Kids Institute, Harry Perkins Institute of Medical Research and The University of Western Australia, Nedlands, WA, Australia
| | - Deborah H. Strickland
- Telethon Kids Institute, The University of Western Australia, Perth, WA, Australia
- UWA Centre for Child Health Research, The University of Western Australia, Nedlands, WA, Australia
| | - Jason Waithman
- School of Biomedical Sciences, The University of Western Australia, Nedlands, Western Australia, Australia
| | - Patrick G. Holt
- Telethon Kids Institute, The University of Western Australia, Perth, WA, Australia
- UWA Centre for Child Health Research, The University of Western Australia, Nedlands, WA, Australia
| | - Anthony Bosco
- Asthma and Airway Disease Research Center, University of Arizona, Tucson, AZ, United States
- Department of Immunobiology, The University of Arizona College of Medicine, Tucson, AZ, United States
| |
Collapse
|
125
|
Dhariwala MO, DeRogatis AM, Okoro JN, Weckel A, Tran VM, Habrylo I, Ojewumi OT, Tammen AE, Leech JM, Merana GR, Carale RO, Barrere-Cain R, Hiam-Galvez KJ, Spitzer MH, Scharschmidt TC. Commensal myeloid crosstalk in neonatal skin regulates long-term cutaneous type 17 inflammation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.29.560039. [PMID: 37873143 PMCID: PMC10592812 DOI: 10.1101/2023.09.29.560039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Early life microbe-immune interactions at barrier surfaces have lasting impacts on the trajectory towards health versus disease. Monocytes, macrophages and dendritic cells are primary sentinels in barrier tissues, yet the salient contributions of commensal-myeloid crosstalk during tissue development remain poorly understood. Here, we identify that commensal microbes facilitate accumulation of a population of monocytes in neonatal skin. Transient postnatal depletion of these monocytes resulted in heightened IL-17A production by skin T cells, which was particularly sustained among CD4+ T cells into adulthood and sufficient to exacerbate inflammatory skin pathologies. Neonatal skin monocytes were enriched in expression of negative regulators of the IL-1 pathway. Functional in vivo experiments confirmed a key role for excessive IL-1R1 signaling in T cells as contributing to the dysregulated type 17 response in neonatal monocyte-depleted mice. Thus, a commensal-driven wave of monocytes into neonatal skin critically facilitates long-term immune homeostasis in this prominent barrier tissue.
Collapse
Affiliation(s)
- Miqdad O. Dhariwala
- Department of Dermatology, University of California San Francisco; San Francisco, CA USA
| | - Andrea M. DeRogatis
- Department of Dermatology, University of California San Francisco; San Francisco, CA USA
| | - Joy N. Okoro
- Department of Dermatology, University of California San Francisco; San Francisco, CA USA
- Biomedical Sciences Program, University of California San Francisco; San Francisco, CA USA
| | - Antonin Weckel
- Department of Dermatology, University of California San Francisco; San Francisco, CA USA
| | - Victoria M. Tran
- Department of Dermatology, University of California San Francisco; San Francisco, CA USA
- Biomedical Sciences Program, University of California San Francisco; San Francisco, CA USA
| | - Irek Habrylo
- Department of Dermatology, University of California San Francisco; San Francisco, CA USA
- Biomedical Sciences Program, University of California San Francisco; San Francisco, CA USA
| | | | - Allison E. Tammen
- Department of Dermatology, University of California San Francisco; San Francisco, CA USA
| | - John M. Leech
- Department of Dermatology, University of California San Francisco; San Francisco, CA USA
| | - Geil R. Merana
- Department of Dermatology, University of California San Francisco; San Francisco, CA USA
- Biomedical Sciences Program, University of California San Francisco; San Francisco, CA USA
| | - Ricardo O. Carale
- Department of Dermatology, University of California San Francisco; San Francisco, CA USA
| | - Rio Barrere-Cain
- Department of Dermatology, University of California San Francisco; San Francisco, CA USA
| | - Kamir J. Hiam-Galvez
- Biomedical Sciences Program, University of California San Francisco; San Francisco, CA USA
- Department of Otolaryngology-Head and Neck Surgery, Department of Microbiology and Immunology, Parker Institute for Cancer Immunotherapy, University of California San Francisco; San Francisco, CA USA
| | - Matthew H. Spitzer
- Department of Otolaryngology-Head and Neck Surgery, Department of Microbiology and Immunology, Parker Institute for Cancer Immunotherapy, University of California San Francisco; San Francisco, CA USA
| | | |
Collapse
|
126
|
Zheng Y, Han F, Ho A, Xue Y, Wu Z, Chen X, Sandberg JK, Ma S, Leeansyah E. Role of MAIT cells in gastrointestinal tract bacterial infections in humans: More than a gut feeling. Mucosal Immunol 2023; 16:740-752. [PMID: 37353006 DOI: 10.1016/j.mucimm.2023.06.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 06/12/2023] [Accepted: 06/15/2023] [Indexed: 06/25/2023]
Abstract
Mucosa-associated invariant T (MAIT) cells are the largest population of unconventional T cells in humans. These antimicrobial T cells are poised with rapid effector responses following recognition of the cognate riboflavin (vitamin B2)-like metabolite antigens derived from microbial riboflavin biosynthetic pathway. Presentation of this unique class of small molecule metabolite antigens is mediated by the highly evolutionarily conserved major histocompatibility complex class I-related protein. In humans, MAIT cells are widely found along the upper and lower gastrointestinal tracts owing to their high expression of chemokine receptors and homing molecules directing them to these tissue sites. In this review, we discuss recent findings regarding the roles MAIT cells play in various gastrointestinal bacterial infections, and how their roles appear to differ depending on the etiological agents and the anatomical location. We further discuss the potential mechanisms by which MAIT cells contribute to pathogen control, orchestrate adaptive immunity, as well as their potential contribution to inflammation and tissue damage during gastrointestinal bacterial infections, and the ensuing tissue repair following resolution. Finally, we propose and discuss the use of the emerging three-dimensional organoid technology to test different hypotheses regarding the role of MAIT cells in gastrointestinal bacterial infections, inflammation, and immunity.
Collapse
Affiliation(s)
- Yichao Zheng
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China; Precision Medicine and Healthcare Research Centre, Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen, China
| | - Fei Han
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
| | - Amanda Ho
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China; Precision Medicine and Healthcare Research Centre, Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen, China
| | - Yiting Xue
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China; Precision Medicine and Healthcare Research Centre, Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen, China
| | - Zhengyu Wu
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
| | - Xingchi Chen
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
| | - Johan K Sandberg
- Center for Infectious Medicine, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Shaohua Ma
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China; Precision Medicine and Healthcare Research Centre, Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen, China
| | - Edwin Leeansyah
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China.
| |
Collapse
|
127
|
Ibidapo-Obe O, Bruns T. Tissue-resident and innate-like T cells in patients with advanced chronic liver disease. JHEP Rep 2023; 5:100812. [PMID: 37691689 PMCID: PMC10485156 DOI: 10.1016/j.jhepr.2023.100812] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 05/07/2023] [Accepted: 05/09/2023] [Indexed: 09/12/2023] Open
Abstract
Chronic liver disease results from the orchestrated interplay of components of innate and adaptive immunity in response to liver tissue damage. Recruitment, positioning, and activation of immune cells can contribute to hepatic cell death, inflammation, and fibrogenesis. With disease progression and increasing portal pressure, repeated translocation of bacterial components from the intestinal lumen through the epithelial and vascular barriers leads to persistent mucosal, hepatic, and systemic inflammation which contributes to tissue damage, immune dysfunction, and microbial infection. It is increasingly recognised that innate-like and adaptive T-cell subsets located in the liver, mucosal surfaces, and body cavities play a critical role in the progression of advanced liver disease and inflammatory complications of cirrhosis. Mucosal-associated invariant T cells, natural killer T cells, γδ T cells, and tissue-resident memory T cells in the gut, liver, and ascitic fluid share certain characteristic features, which include that they recognise microbial products, tissue alarmins, cytokines, and stress ligands in tissues, and perform effector functions in chronic liver disease. This review highlights recent advances in the comprehension of human tissue-resident and unconventional T-cell populations and discusses the mechanisms by which they contribute to inflammation, fibrosis, immunosuppression, and antimicrobial surveillance in patients with cirrhosis. Understanding the complex interactions of immune cells in different compartments and their contribution to disease progression will provide further insights for effective diagnostic interventions and novel immunomodulatory strategies in patients with advanced chronic liver disease.
Collapse
Affiliation(s)
- Oluwatomi Ibidapo-Obe
- Department of Internal Medicine III, University Hospital RWTH Aachen, Aachen, Germany
| | - Tony Bruns
- Department of Internal Medicine III, University Hospital RWTH Aachen, Aachen, Germany
| |
Collapse
|
128
|
Young GR, Nelson A, Stewart CJ, Smith DL. Bacteriophage communities are a reservoir of unexplored microbial diversity in neonatal health and disease. Curr Opin Microbiol 2023; 75:102379. [PMID: 37647765 DOI: 10.1016/j.mib.2023.102379] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 07/30/2023] [Accepted: 08/02/2023] [Indexed: 09/01/2023]
Abstract
Acquisition and development of the gut microbiome are vital for immune education in neonates, especially those born preterm. As such, microbial communities have been extensively studied in the context of postnatal health and disease. Bacterial communities have been the focus of research in this area due to the relative ease of targeted bacterial sequencing and the availability of databases to align and validate sequencing data. Recent increases in high-throughput metagenomic sequencing accessibility have facilitated research to investigate bacteriophages within the context of neonatal gut microbial communities. Focusing on unexplored viral diversity, has identified novel bacteriophage species and previously uncharacterised viral diversity. In doing so, studies have highlighted links between bacteriophages and bacterial community structure in the context of health and disease. However, much remains unknown about the complex relationships between bacteriophages, the bacteria they infect and their human host. With a particular focus on preterm infants, this review highlights opportunities to explore the influence of bacteriophages on developing microbial communities and the tripartite relationships between bacteriophages, bacteria and the neonatal human host. We suggest a focus on expanding collections of isolated bacteriophages that will further our understanding of the growing numbers of bacteriophages identified in metagenomes.
Collapse
Affiliation(s)
- Gregory R Young
- Applied Sciences, Health and Life Sciences, Northumbria University, Newcastle, UK
| | - Andrew Nelson
- Applied Sciences, Health and Life Sciences, Northumbria University, Newcastle, UK
| | | | - Darren L Smith
- Applied Sciences, Health and Life Sciences, Northumbria University, Newcastle, UK.
| |
Collapse
|
129
|
Wang X, Liang M, Song P, Guan W, Shen X. Mucosal-associated invariant T cells in digestive tract: Local guardians or destroyers? Immunology 2023; 170:167-179. [PMID: 37132045 DOI: 10.1111/imm.13653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 04/17/2023] [Indexed: 05/04/2023] Open
Abstract
Mucosa-associated invariant T cells (MAIT) are a class of innate-like T lymphocytes mainly presenting CD8+ phenotype with a semi-invariant αβ T-cell receptor, which specifically recognises MR1-presented biosynthetic derivatives of riboflavin synthesis produced by various types of microbiomes. As innate-like T lymphocytes, MAIT can be activated by a variety of cytokines, leading to immediate immune responses to infection and tumour cues. As an organ that communicates with the external environment, the digestive tract, especially the gastrointestinal tract, contains abundant microbial populations. Communication between MAIT and local microbiomes is important for the homeostasis of mucosal immunity. In addition, accumulating evidence suggests changes in the abundance and structure of the microbial community during inflammation and tumorigenesis plays a critical role in disease progress partly through their impact on MAIT development and function. Therefore, it is essential for the understanding of MAIT response and their interaction with microbiomes in the digestive tract. Here, we summarised MAIT characteristics in the digestive tract and its alteration facing inflammation and tumour, raising that targeting MAIT can be a candidate for treatment of gastrointestinal diseases.
Collapse
Affiliation(s)
- Xingzhou Wang
- Department of General Surgery, Affiliated Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
| | - Mengjie Liang
- Department of General Surgery, Affiliated Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
| | - Peng Song
- Department of General Surgery, Affiliated Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
| | - Wenxian Guan
- Department of General Surgery, Affiliated Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
| | - Xiaofei Shen
- Department of General Surgery, Affiliated Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
| |
Collapse
|
130
|
du Halgouet A, Darbois A, Alphonse A, Yvorra T, Colombeau L, Rodriguez R, Lantz O, Salou M. Protocol to expand and CRISPR-Cas9 genomic edit murine MAIT cells for subsequent in vivo studies. STAR Protoc 2023; 4:102419. [PMID: 37432855 PMCID: PMC10362169 DOI: 10.1016/j.xpro.2023.102419] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 05/17/2023] [Accepted: 06/08/2023] [Indexed: 07/13/2023] Open
Abstract
Generating knockout mice for target molecules in specific T cell populations, without subset-specific promoters, is time-consuming and costly. Here, we describe steps for enriching mucosal-associated invariant T cells from the thymus, expanding them in vitro and performing a CRISPR-Cas9 knockout. We then detail procedure for injecting the knockout cells into wounded Cd3ε-/- mice and characterizing them in the skin. For complete details on the use and execution of this protocol, please refer to du Halgouet et al. (2023).1.
Collapse
Affiliation(s)
- Anastasia du Halgouet
- INSERM U932, PSL University, Institut Curie, 75005 Paris, France; National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Aurélie Darbois
- INSERM U932, PSL University, Institut Curie, 75005 Paris, France
| | - Aurélia Alphonse
- INSERM U932, PSL University, Institut Curie, 75005 Paris, France
| | - Thomas Yvorra
- Institut Curie, CNRS, INSERM, PSL Research University, Equipe Labellisée Ligue Contre le Cancer, Paris, France
| | - Ludovic Colombeau
- Institut Curie, CNRS, INSERM, PSL Research University, Equipe Labellisée Ligue Contre le Cancer, Paris, France
| | - Raphaël Rodriguez
- Institut Curie, CNRS, INSERM, PSL Research University, Equipe Labellisée Ligue Contre le Cancer, Paris, France
| | - Olivier Lantz
- INSERM U932, PSL University, Institut Curie, 75005 Paris, France; Laboratoire d'Immunologie Clinique, Institut Curie, Paris 75005, France; Centre d'Investigation Clinique en Biothérapie Gustave-Roussy Institut Curie (CIC-BT1428) Institut Curie, Paris 75005, France.
| | - Marion Salou
- INSERM U932, PSL University, Institut Curie, 75005 Paris, France.
| |
Collapse
|
131
|
Kurioka A, Klenerman P. Aging unconventionally: γδ T cells, iNKT cells, and MAIT cells in aging. Semin Immunol 2023; 69:101816. [PMID: 37536148 PMCID: PMC10804939 DOI: 10.1016/j.smim.2023.101816] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 07/19/2023] [Accepted: 07/20/2023] [Indexed: 08/05/2023]
Abstract
Unconventional T cells include γδ T cells, invariant Natural Killer T cells (iNKT) cells and Mucosal Associated Invariant T (MAIT) cells, which are distinguished from conventional T cells by their recognition of non-peptide ligands presented by non-polymorphic antigen presenting molecules and rapid effector functions that are pre-programmed during their development. Here we review current knowledge of the effect of age on unconventional T cells, from early life to old age, in both mice and humans. We then discuss the role of unconventional T cells in age-associated diseases and infections, highlighting the similarities between members of the unconventional T cell family in the context of aging.
Collapse
Affiliation(s)
- Ayako Kurioka
- Nuffield Department of Medicine, University of Oxford, Oxford, UK.
| | - Paul Klenerman
- Nuffield Department of Medicine, University of Oxford, Oxford, UK; Translational Gastroenterology Unit, University of Oxford, Oxford, UK
| |
Collapse
|
132
|
Yoo JS, Oh SF. Unconventional immune cells in the gut mucosal barrier: regulation by symbiotic microbiota. Exp Mol Med 2023; 55:1905-1912. [PMID: 37696893 PMCID: PMC10545787 DOI: 10.1038/s12276-023-01088-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 07/19/2023] [Accepted: 08/08/2023] [Indexed: 09/13/2023] Open
Abstract
The mammalian gut is the most densely colonized organ by microbial species, which are in constant contact with the host throughout life. Hosts have developed multifaceted cellular and molecular mechanisms to distinguish and respond to benign and pathogenic bacteria. In addition to relatively well-characterized innate and adaptive immune cells, a growing body of evidence shows additional important players in gut mucosal immunity. Among them, unconventional immune cells, including innate lymphoid cells (ILCs) and unconventional T cells, are essential for maintaining homeostasis. These cells rapidly respond to bacterial signals and bridge the innate immunity and adaptive immunity in the mucosal barrier. Here, we focus on the types and roles of these immune cells in physiological and pathological conditions as prominent mechanisms by which the host immune system communicates with the gut microbiota in health and diseases.
Collapse
Affiliation(s)
- Ji-Sun Yoo
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Sungwhan F Oh
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, MA, USA.
- Graduate Program in Immunology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
133
|
Sandberg JK, Leeansyah E, Eller MA, Shacklett BL, Paquin-Proulx D. The Emerging Role of MAIT Cell Responses in Viral Infections. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 211:511-517. [PMID: 37549397 PMCID: PMC10421619 DOI: 10.4049/jimmunol.2300147] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 05/08/2023] [Indexed: 08/09/2023]
Abstract
Mucosal-associated invariant T (MAIT) cells are unconventional T cells with innate-like antimicrobial responsiveness. MAIT cells are known for MR1 (MHC class I-related protein 1)-restricted recognition of microbial riboflavin metabolites giving them the capacity to respond to a broad range of microbes. However, recent progress has shown that MAIT cells can also respond to several viral infections in humans and in mouse models, ranging from HIV-1 and hepatitis viruses to influenza virus and SARS-CoV-2, in a primarily cognate Ag-independent manner. Depending on the disease context MAIT cells can provide direct or indirect antiviral protection for the host and may help recruit other immune cells, but they may also in some circumstances amplify inflammation and aggravate immunopathology. Furthermore, chronic viral infections are associated with varying degrees of functional and numerical MAIT cell impairment, suggesting secondary consequences for host defense. In this review, we summarize recent progress and highlight outstanding questions regarding the emerging role of MAIT cells in antiviral immunity.
Collapse
Affiliation(s)
- Johan K. Sandberg
- Center for Infectious Medicine, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Edwin Leeansyah
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
- Precision Medicine and Healthcare Research Centre, Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen, China
| | - Michael A. Eller
- Division of AIDS, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Barbara L. Shacklett
- Department of Medical Microbiology and Immunology, School of Medicine, University of California Davis, Davis, CA
| | - Dominic Paquin-Proulx
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD
| |
Collapse
|
134
|
Awad W, Ciacchi L, McCluskey J, Fairlie DP, Rossjohn J. Molecular insights into metabolite antigen recognition by mucosal-associated invariant T cells. Curr Opin Immunol 2023; 83:102351. [PMID: 37276819 PMCID: PMC11056607 DOI: 10.1016/j.coi.2023.102351] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 05/04/2023] [Accepted: 05/09/2023] [Indexed: 06/07/2023]
Abstract
Metabolite-based T-cell immunity is emerging as a major player in antimicrobial immunity, autoimmunity, and cancer. Here, small-molecule metabolites were identified to be captured and presented by the major histocompatibility complex class-I-related molecule (MR1) to T cells, namely mucosal-associated invariant T cells (MAIT) and diverse MR1-restricted T cells. Both MR1 and MAIT are evolutionarily conserved in many mammals, suggesting important roles in host immunity. Rational chemical modifications of these naturally occurring metabolites, termed altered metabolite ligands (AMLs), have advanced our understanding of the molecular correlates of MAIT T cell receptor (TCR)-MR1 recognition. This review provides a generalized framework for metabolite recognition and modulation of MAIT cells.
Collapse
Affiliation(s)
- Wael Awad
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia.
| | - Lisa Ciacchi
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - James McCluskey
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria 3000, Australia
| | - David P Fairlie
- ARC Centre of Excellence for Innovations in Peptide and Protein Science, Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Jamie Rossjohn
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia; Institute of Infection and Immunity, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, UK.
| |
Collapse
|
135
|
Xu C, Li S, Fulford TS, Christo SN, Mackay LK, Gray DH, Uldrich AP, Pellicci DG, I Godfrey D, Koay HF. Expansion of MAIT cells in the combined absence of NKT and γδ-T cells. Mucosal Immunol 2023; 16:446-461. [PMID: 37182737 DOI: 10.1016/j.mucimm.2023.05.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/11/2023] [Accepted: 05/03/2023] [Indexed: 05/16/2023]
Abstract
Mucosal-associated invariant T (MAIT) cells, natural killer T (NKT) cells, and γδT cells are collectively referred to as 'unconventional T cells' due to their recognition of non-peptide antigens and restriction to MHC-I-like molecules. However, the factors controlling their widely variable frequencies between individuals and organs are poorly understood. We demonstrated that MAIT cells are increased in NKT or γδT cell-deficient mice and highly expand in mice lacking both cell types. TCRα repertoire analysis of γδT cell-deficient thymocytes revealed altered Trav segment usage relative to wild-type thymocytes, highlighting retention of the Tcra-Tcrd locus from the 129 mouse strain used to generate Tcrd-/- mice. This resulted in a moderate increase in distal Trav segment usage, including Trav1, potentially contributing to increased generation of Trav1-Traj33+ MAIT cells in the Tcrd-/- thymus. Importantly, adoptively transferred MAIT cells underwent increased homeostatic proliferation within NKT/gdT cell-deficient tissues, with MAIT cell subsets exhibiting tissue-specific homing patterns. Our data reveal a shared niche for unconventional T cells, where competition for common factors may be exploited to collectively modulate these cells in the immune response. Lastly, our findings emphasise careful assessment of studies using NKT or γδT cell-deficient mice when investigating the role of unconventional T cells in disease.
Collapse
Affiliation(s)
- Calvin Xu
- Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, Australia
| | - Shihan Li
- Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, Australia
| | - Thomas S Fulford
- Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, Australia
| | - Susan N Christo
- Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, Australia
| | - Laura K Mackay
- Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, Australia
| | - Daniel Hd Gray
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia; Department of Medical Biology, University of Melbourne, Parkville, Australia
| | - Adam P Uldrich
- Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, Australia
| | - Daniel G Pellicci
- Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, Australia; Murdoch Children's Research Institute, Melbourne, Australia; Department of Paediatrics, University of Melbourne, Parkville, Australia.
| | - Dale I Godfrey
- Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, Australia.
| | - Hui-Fern Koay
- Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, Australia.
| |
Collapse
|
136
|
Panzer AR, Sitarik AR, Fadrosh D, Havstad SL, Jones K, Davidson B, Finazzo S, Wegienka GR, Woodcroft K, Lukacs NW, Levin AM, Ownby DR, Johnson CC, Lynch SV, Zoratti EM. The impact of prenatal dog keeping on infant gut microbiota development. Clin Exp Allergy 2023; 53:833-845. [PMID: 36916778 PMCID: PMC11163251 DOI: 10.1111/cea.14303] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 02/18/2023] [Accepted: 02/21/2023] [Indexed: 03/15/2023]
Abstract
INTRODUCTION Prenatal and early-life dog exposure has been linked to reduced childhood allergy and asthma. A potential mechanism includes altered early immune development in response to changes in the gut microbiome among dog-exposed infants. We thus sought to determine whether infants born into homes with indoor dog(s) exhibit altered gut microbiome development. METHODS Pregnant women living in homes with dogs or in pet-free homes were recruited in southeast Michigan. Infant stool samples were collected at intervals between 1 week and 18 months after birth and microbiome was assessed using 16S ribosomal sequencing. Perinatal maternal vaginal/rectal swabs and stool samples were sequenced from a limited number of mothers. Mixed effect adjusted models were used to assess stool microbial community trajectories comparing infants from dog-keeping versus pet-free homes with adjustment for relevant covariates. RESULTS Infant gut microbial composition among vaginally born babies became less similar to the maternal vaginal/rectal microbiota and more similar to the maternal gut microbiota with age-related accumulation of bacterial species with advancing age. Stool samples from dog-exposed infants were microbially more diverse (p = .041) through age 18 months with enhanced diversity most apparent between 3 and 6 months of age. Statistically significant effects of dog exposure on β-diversity metrics were restricted to formula-fed children. Across the sample collection period, dog exposure was associated with Fusobacterium genera enrichment, as well as enrichment of Collinsella, Ruminococcus, Clostridaceae and Lachnospiraceae OTUs. CONCLUSION Prenatal/early-life dog exposure is associated with an altered gut microbiome during infancy and supports a potential mechanism explaining lessened atopy and asthma risk. Further research directly linking specific dog-attributable changes in the infant gut microbiome to the risk of allergic disorders is needed.
Collapse
Affiliation(s)
- Ariane R Panzer
- Department of Medicine, University of California, San Francisco, California, USA
| | - Alexandra R Sitarik
- Department of Public Health Sciences, Henry Ford Health System, Detroit, Michigan, USA
| | - Doug Fadrosh
- Department of Medicine, University of California, San Francisco, California, USA
| | - Suzanne L Havstad
- Department of Public Health Sciences, Henry Ford Health System, Detroit, Michigan, USA
| | - Kyra Jones
- Department of Public Health Sciences, Henry Ford Health System, Detroit, Michigan, USA
| | - Brent Davidson
- Department of Women's Health, Henry Ford Health System, Detroit, Michigan, USA
| | - Salvatore Finazzo
- Department of Obstetrics and Gynecology, Henry Ford Wyandotte Hospital, Wyandotte, Michigan, USA
| | - Ganesa R Wegienka
- Department of Public Health Sciences, Henry Ford Health System, Detroit, Michigan, USA
| | - Kimberley Woodcroft
- Department of Public Health Sciences, Henry Ford Health System, Detroit, Michigan, USA
| | - Nicholas W Lukacs
- Department of Pathology, University of Michigan, Ann Arbor, Michigan, USA
| | - Albert M Levin
- Department of Public Health Sciences, Henry Ford Health System, Detroit, Michigan, USA
- Center for Bioinformatics, Henry Ford Health System, Detroit, Michigan, USA
| | - Dennis R Ownby
- Department of Public Health Sciences, Henry Ford Health System, Detroit, Michigan, USA
- Department of Pediatrics, Augusta University, Augusta, Georgia, USA
| | - Christine C Johnson
- Department of Public Health Sciences, Henry Ford Health System, Detroit, Michigan, USA
| | - Susan V Lynch
- Department of Medicine, University of California, San Francisco, California, USA
| | - Edward M Zoratti
- Department of Internal Medicine, Henry Ford Health System, Detroit, Michigan, USA
| |
Collapse
|
137
|
Perriman L, Tavakolinia N, Jalali S, Li S, Hickey PF, Amann-Zalcenstein D, Ho WWH, Baldwin TM, Piers AT, Konstantinov IE, Anderson J, Stanley EG, Licciardi PV, Kannourakis G, Naik SH, Koay HF, Mackay LK, Berzins SP, Pellicci DG. A three-stage developmental pathway for human Vγ9Vδ2 T cells within the postnatal thymus. Sci Immunol 2023; 8:eabo4365. [PMID: 37450574 DOI: 10.1126/sciimmunol.abo4365] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 06/14/2023] [Indexed: 07/18/2023]
Abstract
Vγ9Vδ2 T cells are the largest population of γδ T cells in adults and can play important roles in providing effective immunity against cancer and infection. Many studies have suggested that peripheral Vγ9Vδ2 T cells are derived from the fetal liver and thymus and that the postnatal thymus plays little role in the development of these cells. More recent evidence suggested that these cells may also develop postnatally in the thymus. Here, we used high-dimensional flow cytometry, transcriptomic analysis, functional assays, and precursor-product experiments to define the development pathway of Vγ9Vδ2 T cells in the postnatal thymus. We identify three distinct stages of development for Vγ9Vδ2 T cells in the postnatal thymus that are defined by the progressive acquisition of functional potential and major changes in the expression of transcription factors, chemokines, and other surface markers. Furthermore, our analysis of donor-matched thymus and blood revealed that the molecular requirements for the development of functional Vγ9Vδ2 T cells are delivered predominantly by the postnatal thymus and not in the periphery. Tbet and Eomes, which are required for IFN-γ and TNFα expression, are up-regulated as Vγ9Vδ2 T cells mature in the thymus, and mature thymic Vγ9Vδ2 T cells rapidly express high levels of these cytokines after stimulation. Similarly, the postnatal thymus programs Vγ9Vδ2 T cells to express the cytolytic molecules, perforin, granzyme A, and granzyme K. This study provides a greater understanding of how Vγ9Vδ2 T cells develop in humans and may lead to opportunities to manipulate these cells to treat human diseases.
Collapse
Affiliation(s)
- Louis Perriman
- Murdoch Children's Research Institute, Melbourne, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, Australia
- Fiona Elsey Cancer Research Institute, Ballarat, Australia
- Federation University Australia, Ballarat, Australia
| | - Naeimeh Tavakolinia
- Murdoch Children's Research Institute, Melbourne, Australia
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Australia
| | - Sedigheh Jalali
- Murdoch Children's Research Institute, Melbourne, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, Australia
| | - Shuo Li
- Murdoch Children's Research Institute, Melbourne, Australia
| | - Peter F Hickey
- Advanced Genomics Facility and Single Cell Open Research Endeavour (SCORE), Advanced Technology and Biology Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Daniela Amann-Zalcenstein
- Advanced Genomics Facility and Single Cell Open Research Endeavour (SCORE), Advanced Technology and Biology Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - William Wing Ho Ho
- Advanced Genomics Facility and Single Cell Open Research Endeavour (SCORE), Advanced Technology and Biology Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | - Tracey M Baldwin
- Advanced Genomics Facility and Single Cell Open Research Endeavour (SCORE), Advanced Technology and Biology Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | - Adam T Piers
- Murdoch Children's Research Institute, Melbourne, Australia
- Melbourne Centre for Cardiovascular Genomics and Regenerative Medicine, Melbourne, Australia
| | - Igor E Konstantinov
- Murdoch Children's Research Institute, Melbourne, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, Australia
- Melbourne Centre for Cardiovascular Genomics and Regenerative Medicine, Melbourne, Australia
- Cardiothoracic Surgery, Royal Children's Hospital, Melbourne, Australia
| | - Jeremy Anderson
- Murdoch Children's Research Institute, Melbourne, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, Australia
| | - Edouard G Stanley
- Murdoch Children's Research Institute, Melbourne, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, Australia
| | - Paul V Licciardi
- Murdoch Children's Research Institute, Melbourne, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, Australia
| | - George Kannourakis
- Fiona Elsey Cancer Research Institute, Ballarat, Australia
- Federation University Australia, Ballarat, Australia
| | - Shalin H Naik
- Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
- Immunology Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | - Hui-Fern Koay
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Australia
| | - Laura K Mackay
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Australia
| | - Stuart P Berzins
- Fiona Elsey Cancer Research Institute, Ballarat, Australia
- Federation University Australia, Ballarat, Australia
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Australia
| | - Daniel G Pellicci
- Murdoch Children's Research Institute, Melbourne, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, Australia
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Australia
- Melbourne Centre for Cardiovascular Genomics and Regenerative Medicine, Melbourne, Australia
| |
Collapse
|
138
|
Wang NI, Ninkov M, Haeryfar SMM. Classic costimulatory interactions in MAIT cell responses: from gene expression to immune regulation. Clin Exp Immunol 2023; 213:50-66. [PMID: 37279566 PMCID: PMC10324557 DOI: 10.1093/cei/uxad061] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/17/2023] [Accepted: 06/01/2023] [Indexed: 06/08/2023] Open
Abstract
Mucosa-associated invariant T (MAIT) cells are evolutionarily conserved, innate-like T lymphocytes with enormous immunomodulatory potentials. Due to their strategic localization, their invariant T cell receptor (iTCR) specificity for major histocompatibility complex-related protein 1 (MR1) ligands of commensal and pathogenic bacterial origin, and their sensitivity to infection-elicited cytokines, MAIT cells are best known for their antimicrobial characteristics. However, they are thought to also play important parts in the contexts of cancer, autoimmunity, vaccine-induced immunity, and tissue repair. While cognate MR1 ligands and cytokine cues govern MAIT cell maturation, polarization, and peripheral activation, other signal transduction pathways, including those mediated by costimulatory interactions, regulate MAIT cell responses. Activated MAIT cells exhibit cytolytic activities and secrete potent inflammatory cytokines of their own, thus transregulating the biological behaviors of several other cell types, including dendritic cells, macrophages, natural killer cells, conventional T cells, and B cells, with significant implications in health and disease. Therefore, an in-depth understanding of how costimulatory pathways control MAIT cell responses may introduce new targets for optimized MR1/MAIT cell-based interventions. Herein, we compare and contrast MAIT cells and mainstream T cells for their expression of classic costimulatory molecules belonging to the immunoglobulin superfamily and the tumor necrosis factor (TNF)/TNF receptor superfamily, based not only on the available literature but also on our transcriptomic analyses. We discuss how these molecules participate in MAIT cells' development and activities. Finally, we introduce several pressing questions vis-à-vis MAIT cell costimulation and offer new directions for future research in this area.
Collapse
Affiliation(s)
- Nicole I Wang
- Department of Microbiology and Immunology, Western University, London, Ontario, Canada
| | - Marina Ninkov
- Department of Microbiology and Immunology, Western University, London, Ontario, Canada
| | - S M Mansour Haeryfar
- Department of Microbiology and Immunology, Western University, London, Ontario, Canada
- Division of Clinical Immunology and Allergy, Department of Medicine, Western University, London, Ontario, Canada
- Division of General Surgery, Department of Surgery, Western University, London, Ontario, Canada
- Lawson Health Research Institute, London, Ontario, Canada
| |
Collapse
|
139
|
Hackstein CP, Klenerman P. MAITs and their mates: "Innate-like" behaviors in conventional and unconventional T cells. Clin Exp Immunol 2023; 213:1-9. [PMID: 37256718 PMCID: PMC10324555 DOI: 10.1093/cei/uxad058] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 05/01/2023] [Accepted: 05/30/2023] [Indexed: 06/02/2023] Open
Abstract
Most CD4 and CD8 T cells are restricted by conventional major histocompatibility complex (MHC) molecules and mount TCR-dependent adaptive immune responses. In contrast, MAIT, iNKT, and certain γδ TCR bearing cells are characterized by their abilities to recognize antigens presented by unconventional antigen-presenting molecules and to mount cytokine-mediated TCR-independent responses in an "innate-like" manner. In addition, several more diverse T-cell subsets have been described that in a similar manner are restricted by unconventional antigen-presenting molecules but mainly depend on their TCRs for activation. Vice versa, innate-like behaviour was reported in defined subpopulations of conventional T cells, particularly in barrier sites, showing that these two features are not necessarily linked. The abilities to recognize antigens presented by unconventional antigen-presenting molecules or to mount TCR-independent responses creates unique niches for these T cells and is linked to wide range of functional capabilities. This is especially exemplified by unconventional and innate-like T cells present at barrier sites where they are involved in pathogen defense, tissue homeostasis as well as in pathologic processes.
Collapse
Affiliation(s)
- Carl-Philipp Hackstein
- Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, UK
- Translational Gastroenterology Unit, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Paul Klenerman
- Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, UK
- Translational Gastroenterology Unit, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
140
|
White EK, Uberoi A, Pan JTC, Ort JT, Campbell AE, Murga-Garrido SM, Harris JC, Bhanap P, Wei M, Robles NY, Gardner SE, Grice EA. Wound microbiota-mediated correction of matrix metalloproteinase expression promotes re-epithelialization of diabetic wounds. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.30.547263. [PMID: 37425836 PMCID: PMC10327199 DOI: 10.1101/2023.06.30.547263] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Chronic wounds are a common and costly complication of diabetes, where multifactorial defects contribute to dysregulated skin repair, inflammation, tissue damage, and infection. We previously showed that aspects of the diabetic foot ulcer microbiota were correlated with poor healing outcomes, but many microbial species recovered remain uninvestigated with respect to wound healing. Here we focused on Alcaligenes faecalis , a Gram-negative bacterium that is frequently recovered from chronic wounds but rarely causes infection. Treatment of diabetic wounds with A. faecalis accelerated healing during early stages. We investigated the underlying mechanisms and found that A. faecalis treatment promotes re-epithelialization of diabetic keratinocytes, a process which is necessary for healing but deficient in chronic wounds. Overexpression of matrix metalloproteinases in diabetes contributes to failed epithelialization, and we found that A. faecalis treatment balances this overexpression to allow proper healing. This work uncovers a mechanism of bacterial-driven wound repair and provides a foundation for the development of microbiota-based wound interventions.
Collapse
|
141
|
Rashu R, Ninkov M, Wardell CM, Benoit JM, Wang NI, Meilleur CE, D'Agostino MR, Zhang A, Feng E, Saeedian N, Bell GI, Vahedi F, Hess DA, Barr SD, Troyer RM, Kang CY, Ashkar AA, Miller MS, Haeryfar SMM. Targeting the MR1-MAIT cell axis improves vaccine efficacy and affords protection against viral pathogens. PLoS Pathog 2023; 19:e1011485. [PMID: 37384813 DOI: 10.1371/journal.ppat.1011485] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 06/14/2023] [Indexed: 07/01/2023] Open
Abstract
Mucosa-associated invariant T (MAIT) cells are MR1-restricted, innate-like T lymphocytes with tremendous antibacterial and immunomodulatory functions. Additionally, MAIT cells sense and respond to viral infections in an MR1-independent fashion. However, whether they can be directly targeted in immunization strategies against viral pathogens is unclear. We addressed this question in multiple wild-type and genetically altered but clinically relevant mouse strains using several vaccine platforms against influenza viruses, poxviruses and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). We demonstrate that 5-(2-oxopropylideneamino)-6-D-ribitylaminouracil (5-OP-RU), a riboflavin-based MR1 ligand of bacterial origin, can synergize with viral vaccines to expand MAIT cells in multiple tissues, reprogram them towards a pro-inflammatory MAIT1 phenotype, license them to bolster virus-specific CD8+ T cell responses, and potentiate heterosubtypic anti-influenza protection. Repeated 5-OP-RU administration did not render MAIT cells anergic, thus allowing for its inclusion in prime-boost immunization protocols. Mechanistically, tissue MAIT cell accumulation was due to their robust proliferation, as opposed to altered migratory behavior, and required viral vaccine replication competency and Toll-like receptor 3 and type I interferon receptor signaling. The observed phenomenon was reproducible in female and male mice, and in both young and old animals. It could also be recapitulated in a human cell culture system in which peripheral blood mononuclear cells were exposed to replicating virions and 5-OP-RU. In conclusion, although viruses and virus-based vaccines are devoid of the riboflavin biosynthesis machinery that supplies MR1 ligands, targeting MR1 enhances the efficacy of vaccine-elicited antiviral immunity. We propose 5-OP-RU as a non-classic but potent and versatile vaccine adjuvant against respiratory viruses.
Collapse
Affiliation(s)
- Rasheduzzaman Rashu
- Department of Microbiology and Immunology, Western University, London, Ontario, Canada
| | - Marina Ninkov
- Department of Microbiology and Immunology, Western University, London, Ontario, Canada
| | - Christine M Wardell
- Department of Microbiology and Immunology, Western University, London, Ontario, Canada
| | - Jenna M Benoit
- Department of Microbiology and Immunology, Western University, London, Ontario, Canada
| | - Nicole I Wang
- Department of Microbiology and Immunology, Western University, London, Ontario, Canada
| | - Courtney E Meilleur
- Department of Microbiology and Immunology, Western University, London, Ontario, Canada
| | - Michael R D'Agostino
- McMaster Immunology Research Centre, McMaster University, Hamilton, Ontario, Canada
| | - Ali Zhang
- McMaster Immunology Research Centre, McMaster University, Hamilton, Ontario, Canada
| | - Emily Feng
- McMaster Immunology Research Centre, McMaster University, Hamilton, Ontario, Canada
| | - Nasrin Saeedian
- Department of Microbiology and Immunology, Western University, London, Ontario, Canada
| | - Gillian I Bell
- Krembil Centre for Stem Cell Biology, Molecular Medicine Research Laboratories, Robarts Research Institute, London, Ontario, Canada
| | - Fatemeh Vahedi
- McMaster Immunology Research Centre, McMaster University, Hamilton, Ontario, Canada
| | - David A Hess
- Krembil Centre for Stem Cell Biology, Molecular Medicine Research Laboratories, Robarts Research Institute, London, Ontario, Canada
- Department of Physiology and Pharmacology, Western University, London, Ontario, Canada
| | - Stephen D Barr
- Department of Microbiology and Immunology, Western University, London, Ontario, Canada
| | - Ryan M Troyer
- Department of Microbiology and Immunology, Western University, London, Ontario, Canada
| | - Chil-Yong Kang
- Department of Microbiology and Immunology, Western University, London, Ontario, Canada
| | - Ali A Ashkar
- McMaster Immunology Research Centre, McMaster University, Hamilton, Ontario, Canada
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Matthew S Miller
- McMaster Immunology Research Centre, McMaster University, Hamilton, Ontario, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| | - S M Mansour Haeryfar
- Department of Microbiology and Immunology, Western University, London, Ontario, Canada
- Division of Clinical Immunology and Allergy, Department of Medicine, Western University, London, Ontario, Canada
- Division of General Surgery, Department of Surgery, Western University, London, Ontario, Canada
- Lawson Health Research Institute, London, Ontario, Canada
| |
Collapse
|
142
|
Imahashi N, Satoh M, Clemente E, Yoshino K, Di Gioacchino M, Iwabuchi K. MR1 deficiency enhances IL-17-mediated allergic contact dermatitis. Front Immunol 2023; 14:1215478. [PMID: 37409131 PMCID: PMC10319069 DOI: 10.3389/fimmu.2023.1215478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 06/05/2023] [Indexed: 07/07/2023] Open
Abstract
Major histocompatibility complex (MHC) class Ib molecules present antigens to subsets of T cells primarily involved in host defense against pathogenic microbes and influence the development of immune-mediated diseases. The MHC class Ib molecule MHC-related protein 1 (MR1) functions as a platform to select MR1-restricted T cells, including mucosal-associated invariant T (MAIT) cells in the thymus, and presents ligands to them in the periphery. MAIT cells constitute an innate-like T-cell subset that recognizes microbial vitamin B2 metabolites and plays a defensive role against microbes. In this study, we investigated the function of MR1 in allergic contact dermatitis (ACD) by examining wild-type (WT) and MR1-deficient (MR1-/-) mice in which ACD was induced with 2,4-dinitrofluorobenzene (DNFB). MR1-/- mice exhibited exaggerated ACD lesions compared with WT mice. More neutrophils were recruited in the lesions in MR1-/- mice than in WT mice. WT mice contained fewer MAIT cells in their skin lesions following elicitation with DNFB, and MR1-/- mice lacking MAIT cells exhibited a significant increase in IL-17-producing αβ and γδ T cells in the skin. Collectively, MR1-/- mice displayed exacerbated ACD from an early phase with an enhanced type 3 immune response, although the precise mechanism of this enhancement remains elusive.
Collapse
Affiliation(s)
- Naoya Imahashi
- Program in Cellular Immunology, Graduate School of Medical Sciences, Kitasato University, Sagamihara, Japan
- Department of Immunology, School of Medicine, Kitasato University, Sagamihara, Japan
| | - Masashi Satoh
- Program in Cellular Immunology, Graduate School of Medical Sciences, Kitasato University, Sagamihara, Japan
- Department of Immunology, School of Medicine, Kitasato University, Sagamihara, Japan
| | - Emanuela Clemente
- Program in Cellular Immunology, Graduate School of Medical Sciences, Kitasato University, Sagamihara, Japan
- Center for Advanced Studies and Technology (CAST), G. d’Annunzio University of Chieti-Pescara, Chiete, Italy
| | - Kazuhisa Yoshino
- Department of Anesthesiology, School of Medicine, Kitasato University, Sagamihara, Japan
| | - Mario Di Gioacchino
- Center for Advanced Studies and Technology (CAST), G. d’Annunzio University of Chieti-Pescara, Chiete, Italy
- Institute of Clinical Immunotherapy and Advanced Biological Treatments, Pescara, Italy
| | - Kazuya Iwabuchi
- Program in Cellular Immunology, Graduate School of Medical Sciences, Kitasato University, Sagamihara, Japan
- Department of Immunology, School of Medicine, Kitasato University, Sagamihara, Japan
| |
Collapse
|
143
|
Torow N, Li R, Hitch TCA, Mingels C, Al Bounny S, van Best N, Stange EL, Simons B, Maié T, Rüttger L, Gubbi NMKP, Abbott DA, Benabid A, Gadermayr M, Runge S, Treichel N, Merhof D, Rosshart SP, Jehmlich N, Hand TW, von Bergen M, Heymann F, Pabst O, Clavel T, Tacke F, Lelouard H, Costa IG, Hornef MW. M cell maturation and cDC activation determine the onset of adaptive immune priming in the neonatal Peyer's patch. Immunity 2023; 56:1220-1238.e7. [PMID: 37130522 PMCID: PMC10262694 DOI: 10.1016/j.immuni.2023.04.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 03/03/2023] [Accepted: 04/06/2023] [Indexed: 05/04/2023]
Abstract
Early-life immune development is critical to long-term host health. However, the mechanisms that determine the pace of postnatal immune maturation are not fully resolved. Here, we analyzed mononuclear phagocytes (MNPs) in small intestinal Peyer's patches (PPs), the primary inductive site of intestinal immunity. Conventional type 1 and 2 dendritic cells (cDC1 and cDC2) and RORgt+ antigen-presenting cells (RORgt+ APC) exhibited significant age-dependent changes in subset composition, tissue distribution, and reduced cell maturation, subsequently resulting in a lack in CD4+ T cell priming during the postnatal period. Microbial cues contributed but could not fully explain the discrepancies in MNP maturation. Type I interferon (IFN) accelerated MNP maturation but IFN signaling did not represent the physiological stimulus. Instead, follicle-associated epithelium (FAE) M cell differentiation was required and sufficient to drive postweaning PP MNP maturation. Together, our results highlight the role of FAE M cell differentiation and MNP maturation in postnatal immune development.
Collapse
Affiliation(s)
- Natalia Torow
- Institute of Medical Microbiology, RWTH Aachen University Hospital, Aachen 52074, Germany.
| | - Ronghui Li
- Institute for Computational Genomics, RWTH Aachen University Hospital, Aachen 52074, Germany
| | - Thomas Charles Adrian Hitch
- Functional Microbiome Research Group, Institute of Medical Microbiology, RWTH Aachen University Hospital, Aachen 52074, Germany
| | - Clemens Mingels
- Institute of Medical Microbiology, RWTH Aachen University Hospital, Aachen 52074, Germany
| | - Shahed Al Bounny
- Institute of Medical Microbiology, RWTH Aachen University Hospital, Aachen 52074, Germany
| | - Niels van Best
- Institute of Medical Microbiology, RWTH Aachen University Hospital, Aachen 52074, Germany; Department of Medical Microbiology, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Maastricht 6200, the Netherlands
| | - Eva-Lena Stange
- Institute of Medical Microbiology, RWTH Aachen University Hospital, Aachen 52074, Germany
| | - Britta Simons
- Institute of Molecular Medicine, RWTH Aachen University Hospital, Aachen 52074, Germany
| | - Tiago Maié
- Institute for Computational Genomics, RWTH Aachen University Hospital, Aachen 52074, Germany
| | - Lennart Rüttger
- Institute of Medical Microbiology, RWTH Aachen University Hospital, Aachen 52074, Germany
| | | | - Darryl Adelaide Abbott
- Pediatrics Department, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, USA
| | - Adam Benabid
- Institute for Cell and Tumor Biology, RWTH Aachen University Hospital, Aachen 52074, Germany
| | - Michael Gadermayr
- Institute of Imaging & Computer Vision, RWTH Aachen University, Aachen 52056, Germany
| | - Solveig Runge
- Department of Microbiome Research, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen 91054, Germany; Faculty of Biology, University of Freiburg, Freiburg im Breisgau, Germany
| | - Nicole Treichel
- Institute of Medical Microbiology, RWTH Aachen University Hospital, Aachen 52074, Germany
| | - Dorit Merhof
- Institute of Imaging & Computer Vision, RWTH Aachen University, Aachen 52056, Germany
| | - Stephan Patrick Rosshart
- Department of Microbiome Research, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen 91054, Germany; Department of Medicine II, University of Freiburg, Freiburg im Breisgau, Germany
| | - Nico Jehmlich
- Helmholtz-Centre for Environmental Research GmbH - UFZ, Department of Molecular Systems Biology, Leipzig 04318, Germany
| | - Timothy Wesley Hand
- Pediatrics Department, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, USA
| | - Martin von Bergen
- Helmholtz-Centre for Environmental Research GmbH - UFZ, Department of Molecular Systems Biology, Leipzig 04318, Germany; German Centre for Integrative Biodiversity Research (iDiv), Leipzig 04103, Germany; University of Leipzig, Faculty of Life Sciences, Institute of Biochemistry, Leipzig 04103, Germany
| | - Felix Heymann
- Department of Hepatology & Gastroenterology, Charité University Hospital, Berlin 13353, Germany
| | - Oliver Pabst
- Institute of Molecular Medicine, RWTH Aachen University Hospital, Aachen 52074, Germany
| | - Thomas Clavel
- Functional Microbiome Research Group, Institute of Medical Microbiology, RWTH Aachen University Hospital, Aachen 52074, Germany
| | - Frank Tacke
- Department of Hepatology & Gastroenterology, Charité University Hospital, Berlin 13353, Germany
| | - Hugues Lelouard
- Aix Marseille University, CNRS, INSERM, CIML, Marseille 13288, France
| | - Ivan Gesteira Costa
- Institute for Computational Genomics, RWTH Aachen University Hospital, Aachen 52074, Germany
| | - Mathias Walter Hornef
- Institute of Medical Microbiology, RWTH Aachen University Hospital, Aachen 52074, Germany.
| |
Collapse
|
144
|
Tsugawa H, Ohki T, Tsubaki S, Tanaka R, Matsuzaki J, Suzuki H, Hozumi K. Gas6 ameliorates intestinal mucosal immunosenescence to prevent the translocation of a gut pathobiont, Klebsiella pneumoniae, to the liver. PLoS Pathog 2023; 19:e1011139. [PMID: 37289655 DOI: 10.1371/journal.ppat.1011139] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 04/29/2023] [Indexed: 06/10/2023] Open
Abstract
Immunosenescence refers to the development of weakened and/or dysfunctional immune responses associated with aging. Several commensal bacteria can be pathogenic in immunosuppressed individuals. Although Klebsiella pneumoniae is a commensal bacterium that colonizes human mucosal surfaces, the gastrointestinal tract, and the oropharynx, it can cause serious infectious diseases, such as pneumonia, urinary tract infections, and liver abscesses, primarily in elderly patients. However, the reason why K. pneumoniae is a more prevalent cause of infection in the elderly population remains unclear. This study aimed to determine how the host's intestinal immune response to K. pneumoniae varies with age. To this end, the study analyzed an in vivo K. pneumoniae infection model using aged mice, as well as an in vitro K. pneumoniae infection model using a Transwell insert co-culture system comprising epithelial cells and macrophages. In this study, we demonstrate that growth arrest-specific 6 (Gas6), released by intestinal macrophages that recognize K. pneumoniae, inhibits bacterial translocation from the gastrointestinal tract by enhancing tight-junction barriers in the intestinal epithelium. However, in aging mice, Gas6 was hardly secreted under K. pneumoniae infection due to decreasing intestinal mucosal macrophages; therefore, K. pneumoniae can easily invade the intestinal epithelium and subsequently translocate to the liver. Moreover, the administration of Gas6 recombinant protein to elderly mice prevented the translocation of K. pneumoniae from the gastrointestinal tract and significantly prolonged their survival. From these findings, we conclude that the age-related decrease in Gas6 secretion in the intestinal mucosa is the reason why K. pneumoniae can be pathogenic in the elderly, thereby indicating that Gas6 could be effective in protecting the elderly against infectious diseases caused by gut pathogens.
Collapse
Affiliation(s)
- Hitoshi Tsugawa
- Transkingdom Signaling Research Unit, Division of Host Defense Mechanism, Tokai University School of Medicine, Isehara, Japan
| | - Takuto Ohki
- Department of Hand Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Shogo Tsubaki
- Transkingdom Signaling Research Unit, Division of Host Defense Mechanism, Tokai University School of Medicine, Isehara, Japan
| | - Rika Tanaka
- Department of Immunology, Division of Host Defense Mechanism, Tokai University School of Medicine, Isehara, Japan
| | - Juntaro Matsuzaki
- Division of Pharmacotherapeutics, Keio University Faculty of Pharmacy, Tokyo, Japan
| | - Hidekazu Suzuki
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Tokai University School of Medicine, Isehara, Japan
| | - Katsuto Hozumi
- Department of Immunology, Division of Host Defense Mechanism, Tokai University School of Medicine, Isehara, Japan
| |
Collapse
|
145
|
Xia Y, Wang Y, Hao Y, Shan M, Liu H, Liang Z, Kuang X. Deciphering the single-cell transcriptome network in keloids with intra-lesional injection of triamcinolone acetonide combined with 5-fluorouracil. Front Immunol 2023; 14:1106289. [PMID: 37275903 PMCID: PMC10235510 DOI: 10.3389/fimmu.2023.1106289] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 05/08/2023] [Indexed: 06/07/2023] Open
Abstract
Objectives Keloid is a highly aggressive fibrotic disease resulting from excessive extracellular matrix deposition after dermal injury. Intra-lesional injection of triamcinolone acetonide (TAC) in combination with 5-fluorouracil (5-FU) is a commonly used pharmacological regimen and long-term repeated injections can achieve sustained inhibition of keloid proliferation. However, the molecular mechanisms underlying the inhibitory effect on keloids remain insufficiently investigated. Methods and materials This study performed single-cell RNA sequencing analysis of keloids treated with TAC+5-FU injections, keloids, and skins to explore patterns of gene expression regulation and cellular reprogramming. Results The results revealed that TAC+5-FU interrupted the differentiation trajectory of fibroblasts toward pro-fibrotic subtypes and induced keloid atrophy possibly by inhibiting the FGF signaling pathway in intercellular communication. It also stimulated partial fibroblasts to develop the potential for self-replication and multidirectional differentiation, which may be a possible cellular source of keloid recurrence. T cell dynamics demonstrated elevated expression of secretory globulin family members, which may be possible immunotherapeutic targets. Schwann cell populations achieved functional changes by increasing the proportion of apoptotic or senescence-associated cell populations and reducing cell clusters that promote epidermal development and fibroblast proliferation. Conclusions Our findings elucidated the molecular and cellular reprogramming of keloids by intra-lesional injection of TAC+5-FU, which will provide new insights to understand the mechanism of action and therapeutic targets.
Collapse
Affiliation(s)
- Yijun Xia
- Department of Plastic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Youbin Wang
- Department of Plastic Surgery, Peking Union Medical College Hospital, Beijing, China
| | - Yan Hao
- Department of Plastic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Mengjie Shan
- Department of Plastic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Hao Liu
- Department of Plastic Surgery, Peking Union Medical College Hospital, Beijing, China
| | - Zhengyun Liang
- Department of Plastic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Xinwen Kuang
- Department of Plastic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| |
Collapse
|
146
|
Nakandalage R, Guan LL, Malmuthuge N. Microbial Interventions to Improve Neonatal Gut Health. Microorganisms 2023; 11:1328. [PMID: 37317302 DOI: 10.3390/microorganisms11051328] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/04/2023] [Accepted: 05/16/2023] [Indexed: 06/16/2023] Open
Abstract
The diverse pioneer microbial community colonizing the mammalian gastrointestinal tract is critical for the developing immune system. Gut microbial communities of neonates can be affected by various internal and external factors, resulting in microbial dysbiosis. Microbial dysbiosis during early life affects gut homeostasis by changing metabolic, physiological, and immunological status, which increases susceptibility to neonatal infections and long-term pathologies. Early life is crucial for the establishment of microbiota and the development of the host immune system. Therefore, it provides a window of opportunity to reverse microbial dysbiosis with a positive impact on host health. Recent attempts to use microbial interventions during early life have successfully reversed dysbiotic gut microbial communities in neonates. However, interventions with persistent effects on microbiota and host health are still limited. This review will critically discuss microbial interventions, modulatory mechanisms, their limitations, and gaps in knowledge to understand their roles in improving neonatal gut health.
Collapse
Affiliation(s)
- Ranga Nakandalage
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada
- Lethbridge Research and Development Center, Agriculture Agri-Food Canada, Lethbridge, AB T1J 4B1, Canada
| | - Le Luo Guan
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada
| | - Nilusha Malmuthuge
- Lethbridge Research and Development Center, Agriculture Agri-Food Canada, Lethbridge, AB T1J 4B1, Canada
| |
Collapse
|
147
|
Cable J, Rathmell JC, Pearce EL, Ho PC, Haigis MC, Mamedov MR, Wu MJ, Kaech SM, Lynch L, Febbraio MA, Bapat SP, Hong HS, Zou W, Belkaid Y, Sullivan ZA, Keller A, Wculek SK, Green DR, Postic C, Amit I, Benitah SA, Jones RG, Reina-Campos M, Torres SV, Beyaz S, Brennan D, O'Neill LAJ, Perry RJ, Brenner D. Immunometabolism at the crossroads of obesity and cancer-a Keystone Symposia report. Ann N Y Acad Sci 2023; 1523:38-50. [PMID: 36960914 PMCID: PMC10367315 DOI: 10.1111/nyas.14976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2023]
Abstract
Immunometabolism considers the relationship between metabolism and immunity. Typically, researchers focus on either the metabolic pathways within immune cells that affect their function or the impact of immune cells on systemic metabolism. A more holistic approach that considers both these viewpoints is needed. On September 5-8, 2022, experts in the field of immunometabolism met for the Keystone symposium "Immunometabolism at the Crossroads of Obesity and Cancer" to present recent research across the field of immunometabolism, with the setting of obesity and cancer as an ideal example of the complex interplay between metabolism, immunity, and cancer. Speakers highlighted new insights on the metabolic links between tumor cells and immune cells, with a focus on leveraging unique metabolic vulnerabilities of different cell types in the tumor microenvironment as therapeutic targets and demonstrated the effects of diet, the microbiome, and obesity on immune system function and cancer pathogenesis and therapy. Finally, speakers presented new technologies to interrogate the immune system and uncover novel metabolic pathways important for immunity.
Collapse
Affiliation(s)
| | - Jeffrey C Rathmell
- Vanderbilt-Ingram Cancer Center; Vanderbilt Center for Immunobiology; Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Erika L Pearce
- Bloomberg-Kimmel Institute for Cancer Immunotherapy at Johns Hopkins, Baltimore, Maryland, USA
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Ping-Chih Ho
- Department of Fundamental Oncology and Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland
| | - Marcia C Haigis
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Murad R Mamedov
- Gladstone-UCSF Institute of Genomic Immunology and Department of Medicine, University of California San Francisco, San Francisco, California, USA
| | - Meng-Ju Wu
- Cancer Center, Massachusetts General Hospital; Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Susan M Kaech
- NOMIS Center for Immunobiology and Microbial Pathogenesis, Salk Institute for Biological Studies, La Jolla, California, USA
| | - Lydia Lynch
- Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Mark A Febbraio
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Sagar P Bapat
- Diabetes Center and Department of Laboratory Medicine, University of California San Francisco, San Francisco, California, USA
| | - Hanna S Hong
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Weiping Zou
- Department of Surgery; Center of Excellence for Cancer Immunology and Immunotherapy, University of Michigan Rogel Cancer Center; Department of Pathology; Graduate Program in Immunology; Graduate Program in Cancer Biology, University of Michigan School of Medicine, Ann Arbor, Michigan, USA
| | - Yasmine Belkaid
- Metaorganism Immunity Section, Laboratory of Immune System Biology, and NIAID Microbiome Program National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Zuri A Sullivan
- Department of Immunobiology, Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts, USA
| | - Andrea Keller
- Department of Biological Chemistry and Pharmacology, College of Medicine; and Comprehensive Cancer Center, Wexner Medical Center, Arthur G. James Cancer Hospital, The Ohio State University, Columbus, Ohio, USA
| | - Stefanie K Wculek
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Douglas R Green
- St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Catherine Postic
- Université Paris Cité, CNRS, INSERM, Institut Cochin, Paris, France
| | - Ido Amit
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Salvador Aznar Benitah
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST) and Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
| | - Russell G Jones
- Department of Metabolism and Nutritional Programming, Van Andel Research Institute, Grand Rapids, Michigan, USA
| | | | - Santiago Valle Torres
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | - Semir Beyaz
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, USA
| | - Donal Brennan
- UCD Gynecological Oncology Group, UCD School of Medicine, Catherine McAuley Research Centre, Mater Misericordiae University Hospital, Belfield, Ireland
| | - Luke A J O'Neill
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College, Dublin, Ireland
| | - Rachel J Perry
- Department of Cellular and Molecular Physiology and Department of Internal Medicine (Endocrinology), Yale University School of Medicine, New Haven, Connecticut, USA
| | - Dirk Brenner
- Experimental and Molecular Immunology, Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
- Immunology and Genetics, Luxembourg Centre for System Biomedicine (LCSB), University of Luxembourg, Belval, Luxembourg
- Odense Research Center for Anaphylaxis, Department of Dermatology and Allergy Center, Odense University Hospital, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
148
|
Pankhurst TE, Buick KH, Lange JL, Marshall AJ, Button KR, Palmer OR, Farrand KJ, Montgomerie I, Bird TW, Mason NC, Kuang J, Compton BJ, Comoletti D, Salio M, Cerundolo V, Quiñones-Mateu ME, Painter GF, Hermans IF, Connor LM. MAIT cells activate dendritic cells to promote T FH cell differentiation and induce humoral immunity. Cell Rep 2023; 42:112310. [PMID: 36989114 PMCID: PMC10045373 DOI: 10.1016/j.celrep.2023.112310] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 02/02/2023] [Accepted: 03/13/2023] [Indexed: 03/29/2023] Open
Abstract
Protective immune responses against respiratory pathogens, such as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and influenza virus, are initiated by the mucosal immune system. However, most licensed vaccines are administered parenterally and are largely ineffective at inducing mucosal immunity. The development of safe and effective mucosal vaccines has been hampered by the lack of a suitable mucosal adjuvant. In this study we explore a class of adjuvant that harnesses mucosal-associated invariant T (MAIT) cells. We show evidence that intranasal immunization of MAIT cell agonists co-administered with protein, including the spike receptor binding domain from SARS-CoV-2 virus and hemagglutinin from influenza virus, induce protective humoral immunity and immunoglobulin A production. MAIT cell adjuvant activity is mediated by CD40L-dependent activation of dendritic cells and subsequent priming of T follicular helper cells. In summary, we show that MAIT cells are promising vaccine targets that can be utilized as cellular adjuvants in mucosal vaccines.
Collapse
Affiliation(s)
- Theresa E Pankhurst
- School of Biological Sciences, Victoria University of Wellington, Wellington 6012, New Zealand; Malaghan Institute of Medical Research, Wellington 6242, New Zealand
| | - Kaitlin H Buick
- School of Biological Sciences, Victoria University of Wellington, Wellington 6012, New Zealand; Malaghan Institute of Medical Research, Wellington 6242, New Zealand
| | - Joshua L Lange
- Malaghan Institute of Medical Research, Wellington 6242, New Zealand
| | - Andrew J Marshall
- Ferrier Research Institute, Victoria University of Wellington, Wellington 6012, New Zealand
| | - Kaileen R Button
- School of Biological Sciences, Victoria University of Wellington, Wellington 6012, New Zealand
| | - Olga R Palmer
- Malaghan Institute of Medical Research, Wellington 6242, New Zealand
| | - Kathryn J Farrand
- Malaghan Institute of Medical Research, Wellington 6242, New Zealand
| | - Isabelle Montgomerie
- School of Biological Sciences, Victoria University of Wellington, Wellington 6012, New Zealand
| | - Thomas W Bird
- School of Biological Sciences, Victoria University of Wellington, Wellington 6012, New Zealand
| | - Ngarangi C Mason
- Malaghan Institute of Medical Research, Wellington 6242, New Zealand
| | - Joanna Kuang
- Department of Microbiology and Immunology, University of Otago, Dunedin 9016, New Zealand
| | - Benjamin J Compton
- Ferrier Research Institute, Victoria University of Wellington, Wellington 6012, New Zealand
| | - Davide Comoletti
- School of Biological Sciences, Victoria University of Wellington, Wellington 6012, New Zealand
| | - Mariolina Salio
- Medical Research Council Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Vincenzo Cerundolo
- Medical Research Council Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK
| | | | - Gavin F Painter
- Ferrier Research Institute, Victoria University of Wellington, Wellington 6012, New Zealand
| | - Ian F Hermans
- Malaghan Institute of Medical Research, Wellington 6242, New Zealand
| | - Lisa M Connor
- School of Biological Sciences, Victoria University of Wellington, Wellington 6012, New Zealand; Malaghan Institute of Medical Research, Wellington 6242, New Zealand.
| |
Collapse
|
149
|
Joyce S, Okoye GD, Driver JP. Die Kämpfe únd schláchten-the struggles and battles of innate-like effector T lymphocytes with microbes. Front Immunol 2023; 14:1117825. [PMID: 37168859 PMCID: PMC10165076 DOI: 10.3389/fimmu.2023.1117825] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 03/22/2023] [Indexed: 05/13/2023] Open
Abstract
The large majority of lymphocytes belong to the adaptive immune system, which are made up of B2 B cells and the αβ T cells; these are the effectors in an adaptive immune response. A multitudinous group of lymphoid lineage cells does not fit the conventional lymphocyte paradigm; it is the unconventional lymphocytes. Unconventional lymphocytes-here called innate/innate-like lymphocytes, include those that express rearranged antigen receptor genes and those that do not. Even though the innate/innate-like lymphocytes express rearranged, adaptive antigen-specific receptors, they behave like innate immune cells, which allows them to integrate sensory signals from the innate immune system and relay that umwelt to downstream innate and adaptive effector responses. Here, we review natural killer T cells and mucosal-associated invariant T cells-two prototypic innate-like T lymphocytes, which sense their local environment and relay that umwelt to downstream innate and adaptive effector cells to actuate an appropriate host response that confers immunity to infectious agents.
Collapse
Affiliation(s)
- Sebastian Joyce
- Department of Veterans Affairs, Tennessee Valley Healthcare Service, Nashville, TN, United States
- Department of Pathology, Microbiology and Immunology, The Vanderbilt Institute for Infection, Immunology and Inflammation and Vanderbilt Center for Immunology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Gosife Donald Okoye
- Department of Pathology, Microbiology and Immunology, The Vanderbilt Institute for Infection, Immunology and Inflammation and Vanderbilt Center for Immunology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - John P. Driver
- Division of Animal Sciences, University of Missouri, Columbia, MO, United States
| |
Collapse
|
150
|
Ruf B, Greten TF, Korangy F. Innate lymphoid cells and innate-like T cells in cancer - at the crossroads of innate and adaptive immunity. Nat Rev Cancer 2023; 23:351-371. [PMID: 37081117 DOI: 10.1038/s41568-023-00562-w] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/13/2023] [Indexed: 04/22/2023]
Abstract
Immunotherapies targeting conventional T cells have revolutionized systemic treatment for many cancers, yet only a subset of patients benefit from these approaches. A better understanding of the complex immune microenvironment of tumours is needed to design the next generation of immunotherapeutics. Innate lymphoid cells (ILCs) and innate-like T cells (ILTCs) are abundant, tissue-resident lymphocytes that have recently been shown to have critical roles in many types of cancers. ILCs and ILTCs rapidly respond to changes in their surrounding environment and act as the first responders to bridge innate and adaptive immunity. This places ILCs and ILTCs as pivotal orchestrators of the final antitumour immune response. In this Review, we outline hallmarks of ILCs and ILTCs and discuss their emerging role in antitumour immunity, as well as the pathophysiological adaptations leading to their pro-tumorigenic function. We explore the pleiotropic, in parts redundant and sometimes opposing, mechanisms that underlie the delicate interplay between the different subsets of ILCs and ILTCs. Finally, we highlight their role in amplifying and complementing conventional T cell functions and summarize immunotherapeutic strategies for targeting ILCs and ILTCs in cancer.
Collapse
Affiliation(s)
- Benjamin Ruf
- Gastrointestinal Malignancy Section, Thoracic and Gastrointestinal Malignancies Branch, Centre for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Tim F Greten
- Gastrointestinal Malignancy Section, Thoracic and Gastrointestinal Malignancies Branch, Centre for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
- NCI CCR Liver Cancer Program, National Institutes of Health, Bethesda, MD, USA
| | - Firouzeh Korangy
- Gastrointestinal Malignancy Section, Thoracic and Gastrointestinal Malignancies Branch, Centre for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|