101
|
Tang W, Huang J, Pegoraro AF, Zhang JH, Tang Y, Bi D, Kotton DN, Guo M. Nuclear size-regulated emergence of topological packing order on growing human lung alveolospheres. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.17.589951. [PMID: 38659777 PMCID: PMC11042317 DOI: 10.1101/2024.04.17.589951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Within multicellular living systems, cells coordinate their positions with spatiotemporal accuracy to form various structures, setting the clock to control developmental processes and trigger maturation. These arrangements can be regulated by tissue topology, biochemical cues, as well as mechanical perturbations. However, the fundamental rules of how local cell packing order is regulated in forming three-dimensional (3D) multicellular architectures remain unclear. Furthermore, how cellular coordination evolves during developmental processes, and whether this cell patterning behavior is indicative of more complex biological functions, is largely unknown. Here, using human lung alveolospheres as a model system, by combining experiments and numerical simulations, we find that, surprisingly, cell packing behavior on alveolospheres resembles hard-disk packing but with increased randomness; the stiffer cell nuclei act as the hard disks surrounded by deformable cell bodies. Interestingly, we observe the emergence of topological packing order during alveolosphere growth, as a result of increasing nucleus-to-cell size ratio. Specifically, we find more hexagon-concentrated cellular packing with increasing bond orientational order, indicating a topological gas-to-liquid transition. Additionally, by osmotically changing the compactness of cells on alveolospheres, we observe that the variations in packing order align with the change of nucleus-to-cell size ratio. Together, our findings reveal the underlying rules of cell coordination and topological phases during human lung alveolosphere growth. These static packing characteristics are consistent with cell dynamics, together suggesting that better cellular packing stabilizes local cell neighborhoods and may regulate more complex biological functions such as organ development and cellular maturation.
Collapse
|
102
|
Conti S, Venturini V, Cañellas-Socias A, Cortina C, Abenza JF, Stephan-Otto Attolini C, Middendorp Guerra E, Xu CK, Li JH, Rossetti L, Stassi G, Roca-Cusachs P, Diz-Muñoz A, Ruprecht V, Guck J, Batlle E, Labernadie A, Trepat X. Membrane to cortex attachment determines different mechanical phenotypes in LGR5+ and LGR5- colorectal cancer cells. Nat Commun 2024; 15:3363. [PMID: 38637494 PMCID: PMC11026456 DOI: 10.1038/s41467-024-47227-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 03/26/2024] [Indexed: 04/20/2024] Open
Abstract
Colorectal cancer (CRC) tumors are composed of heterogeneous and plastic cell populations, including a pool of cancer stem cells that express LGR5. Whether these distinct cell populations display different mechanical properties, and how these properties might contribute to metastasis is poorly understood. Using CRC patient derived organoids (PDOs), we find that compared to LGR5- cells, LGR5+ cancer stem cells are stiffer, adhere better to the extracellular matrix (ECM), move slower both as single cells and clusters, display higher nuclear YAP, show a higher survival rate in response to mechanical confinement, and form larger transendothelial gaps. These differences are largely explained by the downregulation of the membrane to cortex attachment proteins Ezrin/Radixin/Moesin (ERMs) in the LGR5+ cells. By analyzing single cell RNA-sequencing (scRNA-seq) expression patterns from a patient cohort, we show that this downregulation is a robust signature of colorectal tumors. Our results show that LGR5- cells display a mechanically dynamic phenotype suitable for dissemination from the primary tumor whereas LGR5+ cells display a mechanically stable and resilient phenotype suitable for extravasation and metastatic growth.
Collapse
Affiliation(s)
- Sefora Conti
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute for Science and Technology (BIST), Barcelona, Spain
| | - Valeria Venturini
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology (BIST), Barcelona, Spain
| | - Adrià Cañellas-Socias
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Centro de Investigación Biomedica en Red de Cancer (CIBERONC), Barcelona, Spain
| | - Carme Cortina
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Centro de Investigación Biomedica en Red de Cancer (CIBERONC), Barcelona, Spain
| | - Juan F Abenza
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute for Science and Technology (BIST), Barcelona, Spain
| | - Camille Stephan-Otto Attolini
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Emily Middendorp Guerra
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Centro de Investigación Biomedica en Red de Cancer (CIBERONC), Barcelona, Spain
| | - Catherine K Xu
- Max Planck Institute for the Science of Light, Erlangen, Germany
| | - Jia Hui Li
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Leone Rossetti
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute for Science and Technology (BIST), Barcelona, Spain
| | - Giorgio Stassi
- Department of Surgical Oncological and Stomatological Sciences, University of Palermo, Palermo, Italy
| | - Pere Roca-Cusachs
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute for Science and Technology (BIST), Barcelona, Spain
- Facultat de Medicina, University of Barcelona (UB), Barcelona, Spain
| | - Alba Diz-Muñoz
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Verena Ruprecht
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology (BIST), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Jochen Guck
- Max Planck Institute for the Science of Light, Erlangen, Germany
- Department of Physics, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
- Max-Planck Zentrum für Physik und Medizin, Erlangen, Germany
| | - Eduard Batlle
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.
- Centro de Investigación Biomedica en Red de Cancer (CIBERONC), Barcelona, Spain.
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain.
| | - Anna Labernadie
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute for Science and Technology (BIST), Barcelona, Spain.
- Centro de Investigación Principe Felipe (CIPF), Valencia, Spain.
| | - Xavier Trepat
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute for Science and Technology (BIST), Barcelona, Spain.
- Facultat de Medicina, University of Barcelona (UB), Barcelona, Spain.
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain.
- Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Barcelona, Spain.
| |
Collapse
|
103
|
Li T, Liu J, Bin FC, Duan Q, Wu XY, Dong XZ, Zheng ML. Multipatterned Chondrocytes' Scaffolds by FL-MOPL with a BSA-GMA Hydrogel to Regulate Chondrocytes' Morphology. ACS APPLIED BIO MATERIALS 2024; 7:2594-2603. [PMID: 38523342 DOI: 10.1021/acsabm.4c00253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
Repairing articular cartilage damage is challenging due to its low regenerative capacity. In vitro, cartilage regeneration is a potential strategy for the functional reconstruction of cartilage defects. A hydrogel is an advanced material for mimicking the extracellular matrix (ECM) due to its hydrophilicity and biocompatibility, which is known as an ideal scaffold for cartilage regeneration. However, chondrocyte culture in vitro tends to dedifferentiate, leading to fibrosis and reduced mechanical properties of the newly formed cartilage tissue. Therefore, it is necessary to understand the mechanism of modulating the chondrocytes' morphology. In this study, we synthesize photo-cross-linkable bovine serum albumin-glycidyl methacrylate (BSA-GMA) with 65% methacrylation. The scaffolds are found to be suitable for chondrocyte growth, which are fabricated by homemade femtosecond laser maskless optical projection lithography (FL-MOPL). The large-area chondrocyte scaffolds have holes with interior angles of triangle (T), quadrilateral (Q), pentagon (P), hexagonal (H), and round (R). The FL-MOPL polymerization mechanism, swelling, degradation, and biocompatibility of the BSA-GMA hydrogel have been investigated. Furthermore, cytoskeleton and nucleus staining reveals that the R-scaffold with larger interior angle is more effective in maintaining chondrocyte morphology and preventing dedifferentiation. The scaffold's ability to maintain the chondrocytes' morphology improves as its shape matches that of the chondrocytes. These results suggest that the BSA-GMA scaffold is a suitable candidate for preventing chondrocyte differentiation and supporting cartilage tissue repair and regeneration. The proposed method for chondrocyte in vitro culture by developing biocompatible materials and flexible fabrication techniques would broaden the potential application of chondrocyte transplants as a viable treatment for cartilage-related diseases.
Collapse
Affiliation(s)
- Teng Li
- Laboratory of Organic NanoPhotonics and CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, No.29 Zhongguancun East Road, Beijing 100190, PR China
- School of Future Technologies University of Chinese Academy of Sciences, Yanqihu Campus, Beijing 101407, PR China
| | - Jie Liu
- Laboratory of Organic NanoPhotonics and CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, No.29 Zhongguancun East Road, Beijing 100190, PR China
| | - Fan-Chun Bin
- Laboratory of Organic NanoPhotonics and CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, No.29 Zhongguancun East Road, Beijing 100190, PR China
- School of Future Technologies University of Chinese Academy of Sciences, Yanqihu Campus, Beijing 101407, PR China
| | - Qi Duan
- Laboratory of Organic NanoPhotonics and CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, No.29 Zhongguancun East Road, Beijing 100190, PR China
- School of Future Technologies University of Chinese Academy of Sciences, Yanqihu Campus, Beijing 101407, PR China
| | - Xin-Yi Wu
- Laboratory of Organic NanoPhotonics and CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, No.29 Zhongguancun East Road, Beijing 100190, PR China
- School of Future Technologies University of Chinese Academy of Sciences, Yanqihu Campus, Beijing 101407, PR China
| | - Xian-Zi Dong
- Laboratory of Organic NanoPhotonics and CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, No.29 Zhongguancun East Road, Beijing 100190, PR China
| | - Mei-Ling Zheng
- Laboratory of Organic NanoPhotonics and CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, No.29 Zhongguancun East Road, Beijing 100190, PR China
| |
Collapse
|
104
|
Buisson J, Zhang X, Zambelli T, Lavalle P, Vautier D, Rabineau M. Reverse Mechanotransduction: Driving Chromatin Compaction to Decompaction Increases Cell Adhesion Strength and Contractility. NANO LETTERS 2024; 24:4279-4290. [PMID: 38546049 DOI: 10.1021/acs.nanolett.4c00732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Mechanical extracellular signals elicit chromatin remodeling via the mechanotransduction pathway, thus determining cellular function. However, the reverse pathway is an open question: does chromatin remodeling shape cells, regulating their adhesion strength? With fluidic force microscopy, we can directly measure the adhesion strength of epithelial cells by driving chromatin compaction to decompaction with chromatin remodelers. We observe that chromatin compaction, induced by performing histone acetyltransferase inhibition or ATP depletion, leads to a reduction in nuclear volume, disrupting actin cytoskeleton and focal adhesion assembly, and ultimately decreases in cell adhesion strength and traction force. Conversely, when chromatin decompaction is drived by removing the remodelers, cells recover their original shape, adhesion strength, and traction force. During chromatin decompaction, cells use depolymerized proteins to restore focal adhesion assemblies rather than neo-synthesized cytoskeletal proteins. We conclude that chromatin remodeling shapes cells, regulating adhesion strength through a reverse mechanotransduction pathway from the nucleus to the cell surface involving RhoA activation.
Collapse
Affiliation(s)
- Julie Buisson
- Inserm UMR_S 1121, CNRS EMR 7003, Université de Strasbourg, Biomaterials and Bioengineering, Centre de Recherche en Biomédecine de Strasbourg, Strasbourg F-67000, France
| | - Xinyu Zhang
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zurich, Zurich 8092, Switzerland
| | - Tomaso Zambelli
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zurich, Zurich 8092, Switzerland
| | - Philippe Lavalle
- Inserm UMR_S 1121, CNRS EMR 7003, Université de Strasbourg, Biomaterials and Bioengineering, Centre de Recherche en Biomédecine de Strasbourg, Strasbourg F-67000, France
- SPARTHA Medical SAS, Centre de Recherche en Biomédecine de Strasbourg, Strasbourg F-67000, France
| | - Dominique Vautier
- Inserm UMR_S 1121, CNRS EMR 7003, Université de Strasbourg, Biomaterials and Bioengineering, Centre de Recherche en Biomédecine de Strasbourg, Strasbourg F-67000, France
| | - Morgane Rabineau
- Inserm UMR_S 1121, CNRS EMR 7003, Université de Strasbourg, Biomaterials and Bioengineering, Centre de Recherche en Biomédecine de Strasbourg, Strasbourg F-67000, France
| |
Collapse
|
105
|
Dong Y, Johnson BA, Ruan L, Zeineldin M, Bi T, Liu AZ, Raychaudhuri S, Chiu I, Zhu J, Smith B, Zhao N, Searson P, Watanabe S, Donowitz M, Larman TC, Li R. Disruption of epithelium integrity by inflammation-associated fibroblasts through prostaglandin signaling. SCIENCE ADVANCES 2024; 10:eadj7666. [PMID: 38569041 PMCID: PMC10990275 DOI: 10.1126/sciadv.adj7666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 02/27/2024] [Indexed: 04/05/2024]
Abstract
Inflammation-associated fibroblasts (IAFs) are associated with progression and drug resistance of chronic inflammatory diseases such as inflammatory bowel disease (IBD), but their direct impact on epithelial cells is unknown. Here, we developed an in vitro model whereby human colon fibroblasts are induced by specific cytokines and recapitulate key features of IAFs in vivo. When cocultured with patient-derived colon organoids (colonoids), IAFs induced rapid colonoid expansion and barrier disruption due to swelling and rupture of individual epithelial cells. Colonoids cocultured with IAFs also show increased DNA damage, mitotic errors, and proliferation arrest. These IAF-induced epithelial defects are mediated by a paracrine pathway involving prostaglandin E2 and its receptor EP4, leading to protein kinase A -dependent activation of the cystic fibrosis transmembrane conductance regulator. EP4-specific chemical inhibitors effectively prevented IAF-induced colonoid swelling and restored normal proliferation and genome stability. These findings reveal a mechanism by which IAFs could promote and perpetuate IBD and suggest a therapeutic avenue to mitigate inflammation-associated epithelial injury.
Collapse
Affiliation(s)
- Yi Dong
- Department of Cell Biology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Blake A. Johnson
- Department of Cell Biology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Linhao Ruan
- Department of Cell Biology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Maged Zeineldin
- Department of Pathology, Division of GI/Liver Pathology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Tianhao Bi
- Department of Pathology, Division of GI/Liver Pathology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Albert Z. Liu
- Department of Cell Biology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Sumana Raychaudhuri
- Department of Cell Biology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Ian Chiu
- Department of Cell Biology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Jin Zhu
- Mechanobiology Institute and Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Barbara Smith
- Microscope Facility, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Nan Zhao
- Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Peter Searson
- Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Shigeki Watanabe
- Department of Cell Biology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Mark Donowitz
- Department of Medicine, Division of Gastroenterology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
- Department of Physiology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Tatianna C. Larman
- Department of Pathology, Division of GI/Liver Pathology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Rong Li
- Department of Cell Biology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
- Mechanobiology Institute and Department of Biological Sciences, National University of Singapore, Singapore, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| |
Collapse
|
106
|
Brückner DB, Broedersz CP. Learning dynamical models of single and collective cell migration: a review. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2024; 87:056601. [PMID: 38518358 DOI: 10.1088/1361-6633/ad36d2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 03/22/2024] [Indexed: 03/24/2024]
Abstract
Single and collective cell migration are fundamental processes critical for physiological phenomena ranging from embryonic development and immune response to wound healing and cancer metastasis. To understand cell migration from a physical perspective, a broad variety of models for the underlying physical mechanisms that govern cell motility have been developed. A key challenge in the development of such models is how to connect them to experimental observations, which often exhibit complex stochastic behaviours. In this review, we discuss recent advances in data-driven theoretical approaches that directly connect with experimental data to infer dynamical models of stochastic cell migration. Leveraging advances in nanofabrication, image analysis, and tracking technology, experimental studies now provide unprecedented large datasets on cellular dynamics. In parallel, theoretical efforts have been directed towards integrating such datasets into physical models from the single cell to the tissue scale with the aim of conceptualising the emergent behaviour of cells. We first review how this inference problem has been addressed in both freely migrating and confined cells. Next, we discuss why these dynamics typically take the form of underdamped stochastic equations of motion, and how such equations can be inferred from data. We then review applications of data-driven inference and machine learning approaches to heterogeneity in cell behaviour, subcellular degrees of freedom, and to the collective dynamics of multicellular systems. Across these applications, we emphasise how data-driven methods can be integrated with physical active matter models of migrating cells, and help reveal how underlying molecular mechanisms control cell behaviour. Together, these data-driven approaches are a promising avenue for building physical models of cell migration directly from experimental data, and for providing conceptual links between different length-scales of description.
Collapse
Affiliation(s)
- David B Brückner
- Institute of Science and Technology Austria, Am Campus 1, 3400 Klosterneuburg, Austria
| | - Chase P Broedersz
- Department of Physics and Astronomy, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
- Arnold Sommerfeld Center for Theoretical Physics and Center for NanoScience, Department of Physics, Ludwig-Maximilian-University Munich, Theresienstr. 37, D-80333 Munich, Germany
| |
Collapse
|
107
|
Liu Y, Wang YJ, Du Y, Liu W, Huang X, Fan Z, Lu J, Yi R, Xiang XW, Xia X, Gu H, Liu YJ, Liu B. DNA nanomachines reveal an adaptive energy mode in confinement-induced amoeboid migration powered by polarized mitochondrial distribution. Proc Natl Acad Sci U S A 2024; 121:e2317492121. [PMID: 38547056 PMCID: PMC10998588 DOI: 10.1073/pnas.2317492121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 02/19/2024] [Indexed: 04/02/2024] Open
Abstract
Energy metabolism is highly interdependent with adaptive cell migration in vivo. Mechanical confinement is a critical physical cue that induces switchable migration modes of the mesenchymal-to-amoeboid transition (MAT). However, the energy states in distinct migration modes, especially amoeboid-like stable bleb (A2) movement, remain unclear. In this report, we developed multivalent DNA framework-based nanomachines to explore strategical mitochondrial trafficking and differential ATP levels during cell migration in mechanically heterogeneous microenvironments. Through single-particle tracking and metabolomic analysis, we revealed that fast A2-moving cells driven by biomimetic confinement recruited back-end positioning of mitochondria for powering highly polarized cytoskeletal networks, preferentially adopting an energy-saving mode compared with a mesenchymal mode of cell migration. We present a versatile DNA nanotool for cellular energy exploration and highlight that adaptive energy strategies coordinately support switchable migration modes for facilitating efficient metastatic escape, offering a unique perspective for therapeutic interventions in cancer metastasis.
Collapse
Affiliation(s)
- Yixin Liu
- Department of Chemistry, Shanghai Stomatological Hospital, State Key Lab of Molecular Engineering of Polymers, Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai200438, China
| | - Ya-Jun Wang
- Department of Chemistry, Shanghai Stomatological Hospital, State Key Lab of Molecular Engineering of Polymers, Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai200438, China
| | - Yang Du
- Department of Chemistry, Shanghai Stomatological Hospital, State Key Lab of Molecular Engineering of Polymers, Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai200438, China
| | - Wei Liu
- Department of Chemistry, Shanghai Stomatological Hospital, State Key Lab of Molecular Engineering of Polymers, Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai200438, China
| | - Xuedong Huang
- Department of Chemistry, Shanghai Stomatological Hospital, State Key Lab of Molecular Engineering of Polymers, Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai200438, China
| | - Zihui Fan
- Department of Chemistry, Shanghai Stomatological Hospital, State Key Lab of Molecular Engineering of Polymers, Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai200438, China
| | - Jiayin Lu
- Department of Chemistry, Shanghai Stomatological Hospital, State Key Lab of Molecular Engineering of Polymers, Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai200438, China
| | - Runqiu Yi
- Department of Chemistry, Shanghai Stomatological Hospital, State Key Lab of Molecular Engineering of Polymers, Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai200438, China
| | - Xiao-Wei Xiang
- Department of Chemistry, Shanghai Stomatological Hospital, State Key Lab of Molecular Engineering of Polymers, Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai200438, China
| | - Xinwei Xia
- Department of Chemistry, Shanghai Stomatological Hospital, State Key Lab of Molecular Engineering of Polymers, Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai200438, China
| | - Hongzhou Gu
- Department of Chemistry, Shanghai Stomatological Hospital, State Key Lab of Molecular Engineering of Polymers, Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai200438, China
| | - Yan-Jun Liu
- Department of Chemistry, Shanghai Stomatological Hospital, State Key Lab of Molecular Engineering of Polymers, Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai200438, China
| | - Baohong Liu
- Department of Chemistry, Shanghai Stomatological Hospital, State Key Lab of Molecular Engineering of Polymers, Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai200438, China
| |
Collapse
|
108
|
Fu X, Taghizadeh A, Taghizadeh M, Li CJ, Lim NK, Lee J, Kim HS, Kim H. Targeting Nuclear Mechanics Mitigates the Fibroblast Invasiveness in Pathological Dermal Scars Induced by Matrix Stiffening. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308253. [PMID: 38353381 PMCID: PMC11022731 DOI: 10.1002/advs.202308253] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/04/2024] [Indexed: 04/18/2024]
Abstract
Pathological dermal scars such as keloids present significant clinical challenges lacking effective treatment options. Given the distinctive feature of highly stiffened scar tissues, deciphering how matrix mechanics regulate pathological progression can inform new therapeutic strategies. Here, it is shown that pathological dermal scar keloid fibroblasts display unique metamorphoses to stiffened matrix. Compared to normal fibroblasts, keloid fibroblasts show high sensitivity to stiffness rather than biochemical stimulation, activating cytoskeletal-to-nuclear mechanosensing molecules. Notably, keloid fibroblasts on stiff matrices exhibit nuclear softening, concomitant with reduced lamin A/C expression, and disrupted anchoring of lamina-associated chromatin. This nuclear softening, combined with weak adhesion and high contractility, facilitates the invasive migration of keloid fibroblasts through confining matrices. Inhibiting lamin A/C-driven nuclear softening, via lamin A/C overexpression or actin disruption, mitigates such invasiveness of keloid fibroblasts. These findings highlight the significance of the nuclear mechanics of keloid fibroblasts in scar pathogenesis and propose lamin A/C as a potential therapeutic target for managing pathological scars.
Collapse
Affiliation(s)
- Xiangting Fu
- Institute of Tissue Regeneration Engineering (ITREN)Dankook UniversityCheonan31116Republic of Korea
- Department of Nanobiomedical Science and BK21 Global Research Center for Regeneration MedicineDankook UniversityCheonan31116Republic of Korea
| | - Ali Taghizadeh
- Institute of Tissue Regeneration Engineering (ITREN)Dankook UniversityCheonan31116Republic of Korea
- Department of Nanobiomedical Science and BK21 Global Research Center for Regeneration MedicineDankook UniversityCheonan31116Republic of Korea
| | - Mohsen Taghizadeh
- Institute of Tissue Regeneration Engineering (ITREN)Dankook UniversityCheonan31116Republic of Korea
- Department of Nanobiomedical Science and BK21 Global Research Center for Regeneration MedicineDankook UniversityCheonan31116Republic of Korea
| | - Cheng Ji Li
- Institute of Tissue Regeneration Engineering (ITREN)Dankook UniversityCheonan31116Republic of Korea
- Department of Nanobiomedical Science and BK21 Global Research Center for Regeneration MedicineDankook UniversityCheonan31116Republic of Korea
| | - Nam Kyu Lim
- Department of Plastic and Reconstructive SurgeryDankook University Hospital (DKUH)Cheonan31116Republic of Korea
- Dankook Physician Scientist Research CenterDankook University Hospital (DKUH)Cheonan31116Republic of Korea
| | - Jung‐Hwan Lee
- Institute of Tissue Regeneration Engineering (ITREN)Dankook UniversityCheonan31116Republic of Korea
- Department of Nanobiomedical Science and BK21 Global Research Center for Regeneration MedicineDankook UniversityCheonan31116Republic of Korea
- Department of Biomaterials Science, College of DentistryDankook UniversityCheonan31116Republic of Korea
- Cell & Matter InstituteDankook UniversityCheonan31116Republic of Korea
- Mechanobiology Dental Medicine Research CenterDankook UniversityCheonan31116Republic of Korea
| | - Hye Sung Kim
- Institute of Tissue Regeneration Engineering (ITREN)Dankook UniversityCheonan31116Republic of Korea
- Department of Nanobiomedical Science and BK21 Global Research Center for Regeneration MedicineDankook UniversityCheonan31116Republic of Korea
- Mechanobiology Dental Medicine Research CenterDankook UniversityCheonan31116Republic of Korea
| | - Hae‐Won Kim
- Institute of Tissue Regeneration Engineering (ITREN)Dankook UniversityCheonan31116Republic of Korea
- Department of Nanobiomedical Science and BK21 Global Research Center for Regeneration MedicineDankook UniversityCheonan31116Republic of Korea
- Department of Biomaterials Science, College of DentistryDankook UniversityCheonan31116Republic of Korea
- Cell & Matter InstituteDankook UniversityCheonan31116Republic of Korea
- Mechanobiology Dental Medicine Research CenterDankook UniversityCheonan31116Republic of Korea
| |
Collapse
|
109
|
Kelley ME, Carlini L, Kornakov N, Aher A, Khodjakov A, Kapoor TM. Spastin regulates anaphase chromosome separation distance and microtubule-containing nuclear tunnels. Mol Biol Cell 2024; 35:ar48. [PMID: 38335450 PMCID: PMC11064660 DOI: 10.1091/mbc.e24-01-0031-t] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 02/01/2024] [Indexed: 02/12/2024] Open
Abstract
Nuclear envelope reassembly during the final stages of each mitosis depends on disassembling spindle microtubules without disrupting chromosome separation. This process involves the transient recruitment of the ESCRT-III complex and spastin, a microtubule-severing AAA (ATPases associated with diverse cellular activities) mechanoenzyme, to late-anaphase chromosomes. However, dissecting mechanisms underlying these rapid processes, which can be completed within minutes, has been difficult. Here, we combine fast-acting chemical inhibitors with live-cell imaging and find that spindle microtubules, along with spastin activity, regulate the number and lifetimes of spastin foci at anaphase chromosomes. Unexpectedly, spastin inhibition impedes chromosome separation, but does not alter the anaphase localization dynamics of CHMP4B, an ESCRT-III protein, or increase γ-H2AX foci, a DNA damage marker. We show spastin inhibition increases the frequency of lamin-lined nuclear microtunnels that can include microtubules penetrating the nucleus. Our findings suggest failure to sever spindle microtubules impedes chromosome separation, yet reforming nuclear envelopes can topologically accommodate persistent microtubules ensuring nuclear DNA is not damaged or exposed to cytoplasm.
Collapse
Affiliation(s)
- Megan E. Kelley
- Laboratory of Chemistry and Cell Biology, The Rockefeller University, New York, NY 10065
| | - Lina Carlini
- Laboratory of Chemistry and Cell Biology, The Rockefeller University, New York, NY 10065
| | - Nikolay Kornakov
- Laboratory of Chemistry and Cell Biology, The Rockefeller University, New York, NY 10065
| | - Amol Aher
- Laboratory of Chemistry and Cell Biology, The Rockefeller University, New York, NY 10065
| | - Alexey Khodjakov
- Wadsworth Center, New York State Department of Health, Albany, NY 12237
| | - Tarun M. Kapoor
- Laboratory of Chemistry and Cell Biology, The Rockefeller University, New York, NY 10065
| |
Collapse
|
110
|
Warner H, Franciosa G, van der Borg G, Coenen B, Faas F, Koenig C, de Boer R, Classens R, Maassen S, Baranov MV, Mahajan S, Dabral D, Bianchi F, van Hilten N, Risselada HJ, Roos WH, Olsen JV, Cano LQ, van den Bogaart G. Atypical cofilin signaling drives dendritic cell migration through the extracellular matrix via nuclear deformation. Cell Rep 2024; 43:113866. [PMID: 38416638 DOI: 10.1016/j.celrep.2024.113866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 10/13/2023] [Accepted: 02/08/2024] [Indexed: 03/01/2024] Open
Abstract
To mount an adaptive immune response, dendritic cells must migrate to lymph nodes to present antigens to T cells. Critical to 3D migration is the nucleus, which is the size-limiting barrier for migration through the extracellular matrix. Here, we show that inflammatory activation of dendritic cells leads to the nucleus becoming spherically deformed and enables dendritic cells to overcome the typical 2- to 3-μm diameter limit for 3D migration through gaps in the extracellular matrix. We show that the nuclear shape change is partially attained through reduced cell adhesion, whereas improved 3D migration is achieved through reprogramming of the actin cytoskeleton. Specifically, our data point to a model whereby the phosphorylation of cofilin-1 at serine 41 drives the assembly of a cofilin-actomyosin ring proximal to the nucleus and enhances migration through 3D collagen gels. In summary, these data describe signaling events through which dendritic cells deform their nucleus and enhance their migratory capacity.
Collapse
Affiliation(s)
- Harry Warner
- Department of Molecular Immunology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, the Netherlands
| | - Giulia Franciosa
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Guus van der Borg
- Molecular Biophysics, Zernike Institute for Advanced Materials, University of Groningen, Groningen, the Netherlands
| | - Britt Coenen
- Department of Molecular Immunology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, the Netherlands
| | - Felix Faas
- Department of Molecular Immunology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, the Netherlands
| | - Claire Koenig
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Rinse de Boer
- Department of Molecular Immunology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, the Netherlands
| | - René Classens
- Department of Medical BioSciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Sjors Maassen
- Department of Molecular Immunology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, the Netherlands
| | - Maksim V Baranov
- Department of Molecular Immunology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, the Netherlands
| | - Shweta Mahajan
- Department of Molecular Immunology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, the Netherlands
| | - Deepti Dabral
- Department of Molecular Immunology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, the Netherlands
| | - Frans Bianchi
- Department of Molecular Immunology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, the Netherlands
| | - Niek van Hilten
- Leiden Institute of Chemistry, Leiden University, Leiden, the Netherlands
| | - Herre Jelger Risselada
- Leiden Institute of Chemistry, Leiden University, Leiden, the Netherlands; Department of Physics, TU Dortmund, Dortmund, Germany
| | - Wouter H Roos
- Molecular Biophysics, Zernike Institute for Advanced Materials, University of Groningen, Groningen, the Netherlands
| | - Jesper Velgaard Olsen
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Laia Querol Cano
- Department of Medical BioSciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Geert van den Bogaart
- Department of Molecular Immunology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, the Netherlands; Department of Pathology and Medical Biology, University Medical Center Groningen, Groningen, the Netherlands.
| |
Collapse
|
111
|
Joshi IM, Mansouri M, Ahmed A, De Silva D, Simon RA, Esmaili P, Desa DE, Elias TM, Brown EB, Abhyankar VV. Microengineering 3D Collagen Matrices with Tumor-Mimetic Gradients in Fiber Alignment. ADVANCED FUNCTIONAL MATERIALS 2024; 34:2308071. [PMID: 38706986 PMCID: PMC11067715 DOI: 10.1002/adfm.202308071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Indexed: 05/07/2024]
Abstract
Collagen fibers in the 3D tumor microenvironment (TME) exhibit complex alignment landscapes that are critical in directing cell migration through a process called contact guidance. Previous in vitro work studying this phenomenon has focused on quantifying cell responses in uniformly aligned environments. However, the TME also features short-range gradients in fiber alignment that result from cell-induced traction forces. Although the influence of graded biophysical taxis cues is well established, cell responses to physiological alignment gradients remain largely unexplored. In this work, fiber alignment gradients in biopsy samples are characterized and recreated using a new microfluidic biofabrication technique to achieve tunable sub-millimeter to millimeter scale gradients. This study represents the first successful engineering of continuous alignment gradients in soft, natural biomaterials. Migration experiments on graded alignment show that HUVECs exhibit increased directionality, persistence, and speed compared to uniform and unaligned fiber architectures. Similarly, patterned MDA-MB-231 aggregates exhibit biased migration toward increasing fiber alignment, suggesting a role for alignment gradients as a taxis cue. This user-friendly approach, requiring no specialized equipment, is anticipated to offer new insights into the biophysical cues that cells interpret as they traverse the extracellular matrix, with broad applicability in healthy and diseased tissue environments.
Collapse
Affiliation(s)
- Indranil M. Joshi
- Department of Biomedical Engineering, Rochester Institute of Technology, Rochester, NY
| | - Mehran Mansouri
- Department of Biomedical Engineering, Rochester Institute of Technology, Rochester, NY
| | - Adeel Ahmed
- Department of Biomedical Engineering, Rochester Institute of Technology, Rochester, NY
| | - Dinindu De Silva
- Department of Biomedical Engineering, Rochester Institute of Technology, Rochester, NY
| | - Richard A. Simon
- Department of Biomedical Engineering, Rochester Institute of Technology, Rochester, NY
| | - Poorya Esmaili
- Department of Biomedical Engineering, Rochester Institute of Technology, Rochester, NY
| | - Danielle E. Desa
- Department of Biomedical Engineering, University of Rochester, Rochester, NY
| | - Tresa M. Elias
- Department of Biomedical Engineering, University of Rochester, Rochester, NY
| | - Edward B. Brown
- Department of Biomedical Engineering, University of Rochester, Rochester, NY
| | - Vinay V. Abhyankar
- Department of Biomedical Engineering, Rochester Institute of Technology, Rochester, NY
| |
Collapse
|
112
|
Qi Y, Cai G, Yang W. Protocol for in situ visualization of mitochondrial ROS and apoptosis in spatially confined cells and sample preparation for biochemical analysis. STAR Protoc 2024; 5:102802. [PMID: 38159272 PMCID: PMC10787287 DOI: 10.1016/j.xpro.2023.102802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/30/2023] [Accepted: 12/12/2023] [Indexed: 01/03/2024] Open
Abstract
Locomotion through spatially confining spaces is an important in vivo migration mode. Here, we present a protocol for in situ visualization of mitochondrial reactive oxygen species and apoptosis in cancer cells during confined migration. We then detail sample preparation of confined cells for transcriptome and immunoblotting analysis by using transwell chambers. This approach allows in situ evaluation of a variety of cellular functions during confined migration and preparation of the samples of confined cells for further biochemical analysis. For complete details on the use and execution of this protocol, please refer to Cai et al.1.
Collapse
Affiliation(s)
- Yijun Qi
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Guoqing Cai
- State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Weiwei Yang
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China; State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China.
| |
Collapse
|
113
|
Liu Y, Jiao Y, Fan Q, Li X, Liu Z, Qin D, Hu J, Liu L, Shuai J, Li Z. Morphological entropy encodes cellular migration strategies on multiple length scales. NPJ Syst Biol Appl 2024; 10:26. [PMID: 38453929 PMCID: PMC10920856 DOI: 10.1038/s41540-024-00353-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 02/26/2024] [Indexed: 03/09/2024] Open
Abstract
Cell migration is crucial for numerous physiological and pathological processes. A cell adapts its morphology, including the overall and nuclear morphology, in response to various cues in complex microenvironments, such as topotaxis and chemotaxis during migration. Thus, the dynamics of cellular morphology can encode migration strategies, from which diverse migration mechanisms can be inferred. However, deciphering the mechanisms behind cell migration encoded in morphology dynamics remains a challenging problem. Here, we present a powerful universal metric, the Cell Morphological Entropy (CME), developed by combining parametric morphological analysis with Shannon entropy. The utility of CME, which accurately quantifies the complex cellular morphology at multiple length scales through the deviation from a perfectly circular shape, is illustrated using a variety of normal and tumor cell lines in different in vitro microenvironments. Our results show how geometric constraints affect the MDA-MB-231 cell nucleus, the emerging interactions of MCF-10A cells migrating on collagen gel, and the critical transition from proliferation to invasion in tumor spheroids. The analysis demonstrates that the CME-based approach provides an effective and physically interpretable tool to measure morphology in real-time across multiple length scales. It provides deeper insight into cell migration and contributes to the understanding of different behavioral modes and collective cell motility in more complex microenvironments.
Collapse
Affiliation(s)
- Yanping Liu
- Department of Biomedical Engineering, Chongqing University of Posts and Telecommunications, Chongqing, China.
- Chongqing Key Laboratory of Big Data for Bio Intelligence, Chongqing University of Posts and Telecommunications, Chongqing, China.
| | - Yang Jiao
- Materials Science and Engineering, Arizona State University, Tempe, AZ, USA
- Department of Physics, Arizona State University, Tempe, AZ, USA
| | - Qihui Fan
- Beijing National Laboratory for Condensed Matter Physics and CAS Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China
| | - Xinwei Li
- Department of Biomedical Engineering, Chongqing University of Posts and Telecommunications, Chongqing, China
- Chongqing Key Laboratory of Big Data for Bio Intelligence, Chongqing University of Posts and Telecommunications, Chongqing, China
| | - Zhichao Liu
- Department of Biomedical Engineering, Chongqing University of Posts and Telecommunications, Chongqing, China
- Chongqing Key Laboratory of Big Data for Bio Intelligence, Chongqing University of Posts and Telecommunications, Chongqing, China
| | - Dui Qin
- Department of Biomedical Engineering, Chongqing University of Posts and Telecommunications, Chongqing, China
- Chongqing Key Laboratory of Big Data for Bio Intelligence, Chongqing University of Posts and Telecommunications, Chongqing, China
| | - Jun Hu
- Department of Neurology, Southwest Hospital, Army Medical University, Chongqing, China
| | - Liyu Liu
- Chongqing Key Laboratory of Soft Condensed Matter Physics and Smart Materials, College of Physics, Chongqing University, Chongqing, China
| | - Jianwei Shuai
- Department of Physics, Xiamen University, Xiamen, China.
- Fujian Provincial Key Laboratory for Soft Functional Materials Research, Xiamen University, Xiamen, China.
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, China.
| | - Zhangyong Li
- Department of Biomedical Engineering, Chongqing University of Posts and Telecommunications, Chongqing, China.
- Chongqing Key Laboratory of Big Data for Bio Intelligence, Chongqing University of Posts and Telecommunications, Chongqing, China.
| |
Collapse
|
114
|
Kar N, Caruso AP, Prokopiou N, Logue JS. The activation of INF2 by Piezo1/Ca 2+ is required for mesenchymal to amoeboid transition in confined environments. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.06.23.546346. [PMID: 37745412 PMCID: PMC10515767 DOI: 10.1101/2023.06.23.546346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
To invade heterogenous tissues, transformed cells may undergo a mesenchymal to amoeboid transition (MAT). However, the molecular mechanisms regulating this transition are poorly defined. In invasive melanoma cells, we demonstrate that intracellular [Ca2+] increases with the degree of confinement in a Piezo1 dependent fashion. Moreover, Piezo1/Ca2+ is found to drive amoeboid and not mesenchymal migration in confined environments. Consistent with a model in which Piezo1 senses tension at the plasma membrane, the percentage of cells using amoeboid migration is further increased in undulating microchannels. Surprisingly, amoeboid migration was not promoted by myosin light chain kinase (MLCK), which is sensitive to intracellular [Ca2+]. Instead, we report that Piezo1/Ca2+ activates inverted formin-2 (INF2) to induce widespread actin cytoskeletal remodeling. Strikingly, the activation of INF2 is found to promote de-adhesion, which in turn facilitates MAT. Using micropatterned surfaces, we demonstrate that cells require INF2 to effectively migrate in environments with challenging mechanochemical properties.
Collapse
Affiliation(s)
- Neelakshi Kar
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, 47 New Scotland Ave, Albany, NY 12208
| | - Alexa P. Caruso
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, 47 New Scotland Ave, Albany, NY 12208
| | - Nicos Prokopiou
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, 47 New Scotland Ave, Albany, NY 12208
| | - Jeremy S. Logue
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, 47 New Scotland Ave, Albany, NY 12208
| |
Collapse
|
115
|
Nguyen J, Gilbert PM. Decoding the forces that shape muscle stem cell function. Curr Top Dev Biol 2024; 158:279-306. [PMID: 38670710 DOI: 10.1016/bs.ctdb.2024.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2024]
Abstract
Skeletal muscle is a force-producing organ composed of muscle tissues, connective tissues, blood vessels, and nerves, all working in synergy to enable movement and provide support to the body. While robust biomechanical descriptions of skeletal muscle force production at the body or tissue level exist, little is known about force application on microstructures within the muscles, such as cells. Among various cell types, skeletal muscle stem cells reside in the muscle tissue environment and play a crucial role in driving the self-repair process when muscle damage occurs. Early evidence indicates that the fate and function of skeletal muscle stem cells are controlled by both biophysical and biochemical factors in their microenvironments, but much remains to accomplish in quantitatively describing the biophysical muscle stem cell microenvironment. This book chapter aims to review current knowledge on the influence of biophysical stresses and landscape properties on muscle stem cells in heath, aging, and diseases.
Collapse
Affiliation(s)
- Jo Nguyen
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada; Donnelly Centre, University of Toronto, Toronto, ON, Canada
| | - Penney M Gilbert
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada; Donnelly Centre, University of Toronto, Toronto, ON, Canada; Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
116
|
Liu Y, Zhao T, Xu Z, Dai N, Zhao Q, Liang Y, Geng S, Lei M, Xu F, Wang L, Cheng B. Influence of Curvature on Cell Motility and Morphology during Cancer Migration in Confined Microchannels. ACS APPLIED MATERIALS & INTERFACES 2024; 16:9956-9967. [PMID: 38349958 DOI: 10.1021/acsami.4c00196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/15/2024]
Abstract
Microchannels often serve as highways for cancer migration, and their topology largely determines the migration efficiency. Curvature, a topological parameter in biological systems, has recently been reported to be efficient in guiding cell polarization and migration. Curvature varies widely along curved microchannels, while its influence on cell migration remains elusive. Here, we recapitulated the curved microchannels, as observed in clinical tumor tissues with hydrogels, and studied how cancer cells respond to curvature. We found that cells bend more significantly in a larger curvature and exhibit less spreading as well as lower motility. The underlying mechanism is probably based on the hindrance of the movement of cytoskeletal molecules at the curved microchannel walls. Collectively, our results demonstrated that the accelerated actin retrograde flow rate under local curvature has an effective negative regulation on cell motility and morphology, leading to shortened and bent cell morphologies as well as hampered cell migration efficiency.
Collapse
Affiliation(s)
- Yan Liu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Shaanxi 710049, PR China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Shaanxi 710049, PR China
| | - Tianyu Zhao
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an 710049, China
| | - Zhao Xu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Shaanxi 710049, PR China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Shaanxi 710049, PR China
| | - Ningman Dai
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Shaanxi 710049, PR China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Shaanxi 710049, PR China
| | - Qiang Zhao
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Shaanxi 710049, PR China
- Department of Dermatology, The Second Affiliated Hospital, Xi'an Jiaotong University, Shaanxi 710049, PR China
| | - Yutong Liang
- College of Medicine, Xi'an International University, Xi'an, Shaanxi 710077, PR China
| | - Songmei Geng
- Department of Dermatology, The Second Affiliated Hospital, Xi'an Jiaotong University, Shaanxi 710049, PR China
| | - Ming Lei
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an 710049, China
| | - Feng Xu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Shaanxi 710049, PR China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Shaanxi 710049, PR China
| | - Lin Wang
- College of Medicine, Xi'an International University, Xi'an, Shaanxi 710077, PR China
- Engineering Research Center of Personalized Anti-aging Health Product Development and Transformation Universities of Shaanxi Province, Xi'an 710077, China
| | - Bo Cheng
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Shaanxi 710049, PR China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Shaanxi 710049, PR China
| |
Collapse
|
117
|
Azam I, Benson JD. Multiscale transport and 4D time-lapse imaging in precision-cut liver slices (PCLS). PeerJ 2024; 12:e16994. [PMID: 38426134 PMCID: PMC10903333 DOI: 10.7717/peerj.16994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 02/01/2024] [Indexed: 03/02/2024] Open
Abstract
Background Monitoring cellular processes across different levels of complexity, from the cellular to the tissue scale, is important for understanding tissue structure and function. However, it is challenging to monitor and estimate these structural and dynamic interactions within three-dimensional (3D) tissue models. Objective The aim of this study was to design a method for imaging, tracking, and quantifying 3D changes in cell morphology (shape and size) within liver tissue, specifically a precision-cut liver slice (PCLS). A PCLS is a 3D model of the liver that allows the study of the structure and function of liver cells in their native microenvironment. Methods Here, we present a method for imaging liver tissue during anisosmotic exposure in a multispectral four-dimensional manner. Three metrics of tissue morphology were measured to quantify the effects of osmotic stress on liver tissue. We estimated the changes in the volume of whole precision cut liver slices, quantified the changes in nuclei position, and calculated the changes in volumetric responses of tissue-embedded cells. Results During equilibration with cell-membrane-permeating and non-permeating solutes, the whole tissue experiences shrinkage and expansion. As nuclei showed a change in position and directional displacement under osmotic stress, we demonstrate that nuclei could be used as a probe to measure local osmotic and mechanical stress. Moreover, we demonstrate that cells change their volume within tissue slices as a result of osmotic perturbation and that this change in volume is dependent on the position of the cell within the tissue and the duration of the exposure. Conclusion The results of this study have implications for a better understanding of multiscale transport, mechanobiology, and triggered biological responses within complex biological structures.
Collapse
Affiliation(s)
- Iqra Azam
- Department of Biology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - James D. Benson
- Department of Biology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
118
|
Herzog S, Fläschner G, Incaviglia I, Arias JC, Ponti A, Strohmeyer N, Nava MM, Müller DJ. Monitoring the mass, eigenfrequency, and quality factor of mammalian cells. Nat Commun 2024; 15:1751. [PMID: 38409119 PMCID: PMC10897412 DOI: 10.1038/s41467-024-46056-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 02/06/2024] [Indexed: 02/28/2024] Open
Abstract
The regulation of mass is essential for the development and homeostasis of cells and multicellular organisms. However, cell mass is also tightly linked to cell mechanical properties, which depend on the time scales at which they are measured and change drastically at the cellular eigenfrequency. So far, it has not been possible to determine cell mass and eigenfrequency together. Here, we introduce microcantilevers oscillating in the Ångström range to monitor both fundamental physical properties of the cell. If the oscillation frequency is far below the cellular eigenfrequency, all cell compartments follow the cantilever motion, and the cell mass measurements are accurate. Yet, if the oscillating frequency approaches or lies above the cellular eigenfrequency, the mechanical response of the cell changes, and not all cellular components can follow the cantilever motions in phase. This energy loss caused by mechanical damping within the cell is described by the quality factor. We use these observations to examine living cells across externally applied mechanical frequency ranges and to measure their total mass, eigenfrequency, and quality factor. The three parameters open the door to better understand the mechanobiology of the cell and stimulate biotechnological and medical innovations.
Collapse
Affiliation(s)
- Sophie Herzog
- Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule (ETH) Zurich, Klingelbergstrasse 48, 4056, Basel, Switzerland
| | - Gotthold Fläschner
- Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule (ETH) Zurich, Klingelbergstrasse 48, 4056, Basel, Switzerland.
- Nanosurf AG, Gräubernstrasse 12, 4410, Liestal, Switzerland.
| | - Ilaria Incaviglia
- Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule (ETH) Zurich, Klingelbergstrasse 48, 4056, Basel, Switzerland
| | - Javier Casares Arias
- Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule (ETH) Zurich, Klingelbergstrasse 48, 4056, Basel, Switzerland
| | - Aaron Ponti
- Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule (ETH) Zurich, Klingelbergstrasse 48, 4056, Basel, Switzerland
| | - Nico Strohmeyer
- Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule (ETH) Zurich, Klingelbergstrasse 48, 4056, Basel, Switzerland
| | - Michele M Nava
- Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule (ETH) Zurich, Klingelbergstrasse 48, 4056, Basel, Switzerland
| | - Daniel J Müller
- Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule (ETH) Zurich, Klingelbergstrasse 48, 4056, Basel, Switzerland.
| |
Collapse
|
119
|
Wu J, Yun Z, Song W, Yu T, Xue W, Liu Q, Sun X. Highly oriented hydrogels for tissue regeneration: design strategies, cellular mechanisms, and biomedical applications. Theranostics 2024; 14:1982-2035. [PMID: 38505623 PMCID: PMC10945336 DOI: 10.7150/thno.89493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 01/19/2024] [Indexed: 03/21/2024] Open
Abstract
Many human tissues exhibit a highly oriented architecture that confers them with distinct mechanical properties, enabling adaptation to diverse and challenging environments. Hydrogels, with their water-rich "soft and wet" structure, have emerged as promising biomimetic materials in tissue engineering for repairing and replacing damaged tissues and organs. Highly oriented hydrogels can especially emulate the structural orientation found in human tissue, exhibiting unique physiological functions and properties absent in traditional homogeneous isotropic hydrogels. The design and preparation of highly oriented hydrogels involve strategies like including hydrogels with highly oriented nanofillers, polymer-chain networks, void channels, and microfabricated structures. Understanding the specific mechanism of action of how these highly oriented hydrogels affect cell behavior and their biological applications for repairing highly oriented tissues such as the cornea, skin, skeletal muscle, tendon, ligament, cartilage, bone, blood vessels, heart, etc., requires further exploration and generalization. Therefore, this review aims to fill that gap by focusing on the design strategy of highly oriented hydrogels and their application in the field of tissue engineering. Furthermore, we provide a detailed discussion on the application of highly oriented hydrogels in various tissues and organs and the mechanisms through which highly oriented structures influence cell behavior.
Collapse
Affiliation(s)
- Jiuping Wu
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
- Translational Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Zhihe Yun
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun 130041, China
| | - Wenlong Song
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130023, China
| | - Tao Yu
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun 130041, China
| | - Wu Xue
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun 130041, China
| | - Qinyi Liu
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun 130041, China
| | - Xinzhi Sun
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| |
Collapse
|
120
|
Śliwa A, Szczerba A, Pięta PP, Białas P, Lorek J, Nowak-Markwitz E, Jankowska A. A Recipe for Successful Metastasis: Transition and Migratory Modes of Ovarian Cancer Cells. Cancers (Basel) 2024; 16:783. [PMID: 38398174 PMCID: PMC10886816 DOI: 10.3390/cancers16040783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/02/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024] Open
Abstract
One of the characteristic features of ovarian cancer is its early dissemination. Metastasis and the invasiveness of ovarian cancer are strongly dependent on the phenotypical and molecular determinants of cancer cells. Invasive cancer cells, circulating tumor cells, and cancer stem cells, which are responsible for the metastatic process, may all undergo different modes of transition, giving rise to mesenchymal, amoeboid, and redifferentiated epithelial cells. Such variability is the result of the changing needs of cancer cells, which strive to survive and colonize new organs. This would not be possible if not for the variety of migration modes adopted by the transformed cells. The most common type of metastasis in ovarian cancer is dissemination through the transcoelomic route, but transitions in ovarian cancer cells contribute greatly to hematogenous and lymphatic dissemination. This review aims to outline the transition modes of ovarian cancer cells and discuss the migratory capabilities of those cells in light of the known ovarian cancer metastasis routes.
Collapse
Affiliation(s)
- Aleksandra Śliwa
- Chair and Department of Cell Biology, Poznan University of Medical Sciences, Rokietnicka 5D, 60-806 Poznan, Poland
| | - Anna Szczerba
- Chair and Department of Cell Biology, Poznan University of Medical Sciences, Rokietnicka 5D, 60-806 Poznan, Poland
| | - Paweł Piotr Pięta
- Chair and Department of Cell Biology, Poznan University of Medical Sciences, Rokietnicka 5D, 60-806 Poznan, Poland
| | - Piotr Białas
- Chair and Department of Cell Biology, Poznan University of Medical Sciences, Rokietnicka 5D, 60-806 Poznan, Poland
| | - Jakub Lorek
- Gynecologic Oncology Department, Poznan University of Medical Sciences, 33 Polna Street, 60-101 Poznan, Poland
| | - Ewa Nowak-Markwitz
- Gynecologic Oncology Department, Poznan University of Medical Sciences, 33 Polna Street, 60-101 Poznan, Poland
| | - Anna Jankowska
- Chair and Department of Cell Biology, Poznan University of Medical Sciences, Rokietnicka 5D, 60-806 Poznan, Poland
| |
Collapse
|
121
|
Sabri E, Brosseau C. Electromechanical interactions between cell membrane and nuclear envelope: Beyond the standard Schwan's model of biological cells. Bioelectrochemistry 2024; 155:108583. [PMID: 37883860 DOI: 10.1016/j.bioelechem.2023.108583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/02/2023] [Accepted: 10/02/2023] [Indexed: 10/28/2023]
Abstract
We investigate little-appreciated features of the hierarchical core-shell (CS) models of the electrical, mechanical, and electromechanical interactions between the cell membrane (CM) and nuclear envelope (NE). We first consider a simple model of an individual cell based on a coupled resistor-capacitor (Schwan model (SM)) network and show that the CM, when exposed to ac electric fields, acts as a low pass filter while the NE acts as a wide and asymmetric bandpass filter. We provide a simplified calculation for characteristic time associated with the capacitive charging of the NE and parameterize its range of behavior. We furthermore observe several new features dealing with mechanical analogs of the SM based on elementary spring-damper combinations. The chief merit of these models is that they can predict creep compliance responses of an individual cell under static stress and their effective retardation time constants. Next, we use an alternative and a more accurate CS physical model solved by finite element simulations for which geometrical cell reshaping under electromechanical stress (electrodeformation (ED)) is included in a continuum approach with spatial resolution. We show that under an electric field excitation, the elongated nucleus scales differently compared to the electrodeformed cell.
Collapse
Affiliation(s)
- Elias Sabri
- Univ Brest, CNRS, Lab-STICC, CS 93837, 6 avenue Le Gorgeu, 29238 Brest Cedex 3, France
| | - Christian Brosseau
- Univ Brest, CNRS, Lab-STICC, CS 93837, 6 avenue Le Gorgeu, 29238 Brest Cedex 3, France.
| |
Collapse
|
122
|
Chu Q, Han W, He Z, Hao L, Fu X. Suppression of LPS-activated inflammatory responses and chromosomal histone modifications in macrophages by micropattern-induced nuclear deformation. J Biomed Mater Res A 2024; 112:250-259. [PMID: 37740539 DOI: 10.1002/jbm.a.37617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 08/24/2023] [Accepted: 09/07/2023] [Indexed: 09/24/2023]
Abstract
Macrophages are important immune effector cells which participate various physiological and pathological conditions. Numerous studies have demonstrated the regulation of macrophage phenotype by micropatterns. It is well accepted that micropatterns affect cellular behaviors through changing cell shape and modulating the associated mechanical sensors on the plasma membrane and cytoskeleton. However, the role of nucleus, which serves as a critical physical sensing device, is often ignored. Herein, we found the nuclear deformation and the subsequently increased chromosomal histone methylation (H3K36me2) may contribute to the micropattern-induced suppression of macrophage inflammatory responses. Specifically, macrophages on micropatterned surfaces expressed lower levels of key inflammatory genes, compared with those on flat surfaces. Further investigation on macrophage nuclei showed that micropatterned surfaces cause shrinkage of nucleus volume and compaction of chromatin. Moreover, micropatterned surfaces elevated the methylation level of H3K36me2 in macrophages, while decreased the methylation level of H3K4me3. Our study provides new mechanistic insight into how micropatterns affect macrophage phenotype and highlights the importance of nuclear shape and chromatin histone modification in mediating micropattern-induced change in cell behaviors.
Collapse
Affiliation(s)
- Qi Chu
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, People's Republic of China
- National Engineering Research Center for Tissue Restoration and Reconstruction and Innovation Center for Tissue Restoration and Reconstruction, Guangzhou, People's Republic of China
- Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou, People's Republic of China
| | - Weiju Han
- National Engineering Research Center for Tissue Restoration and Reconstruction and Innovation Center for Tissue Restoration and Reconstruction, Guangzhou, People's Republic of China
- Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou, People's Republic of China
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, People's Republic of China
| | - Zhichun He
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, People's Republic of China
- National Engineering Research Center for Tissue Restoration and Reconstruction and Innovation Center for Tissue Restoration and Reconstruction, Guangzhou, People's Republic of China
- Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou, People's Republic of China
| | - Lijing Hao
- National Engineering Research Center for Tissue Restoration and Reconstruction and Innovation Center for Tissue Restoration and Reconstruction, Guangzhou, People's Republic of China
- Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou, People's Republic of China
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, People's Republic of China
| | - Xiaoling Fu
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, People's Republic of China
- National Engineering Research Center for Tissue Restoration and Reconstruction and Innovation Center for Tissue Restoration and Reconstruction, Guangzhou, People's Republic of China
- Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou, People's Republic of China
| |
Collapse
|
123
|
Xiong X, Huo Q, Li K, Cui C, Chang C, Park C, Ku B, Hong CS, Lim H, Pandya PH, Saadatzadeh MR, Bijangi-Vishehsaraei K, Lin CC, Kacena MA, Pollok KE, Chen A, Liu J, Thompson WR, Li XL, Li BY, Yokota H. Enhancing anti-tumor potential: low-intensity vibration suppresses osteosarcoma progression and augments MSCs' tumor-suppressive abilities. Theranostics 2024; 14:1430-1449. [PMID: 38389836 PMCID: PMC10879868 DOI: 10.7150/thno.90945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 01/24/2024] [Indexed: 02/24/2024] Open
Abstract
Rationale: Osteosarcoma (OS), a common malignant bone tumor, calls for the investigation of novel treatment strategies. Low-intensity vibration (LIV) presents itself as a promising option, given its potential to enhance bone health and decrease cancer susceptibility. This research delves into the effects of LIV on OS cells and mesenchymal stem cells (MSCs), with a primary focus on generating induced tumor-suppressing cells (iTSCs) and tumor-suppressive conditioned medium (CM). Methods: To ascertain the influence of vibration frequency, we employed numerical simulations and conducted experiments to determine the most effective LIV conditions. Subsequently, we generated iTSCs and CM through LIV exposure and assessed the impact of CM on OS cells. We also explored the underlying mechanisms of the tumor-suppressive effects of LIV-treated MSC CM, with a specific focus on vinculin (VCL). We employed cytokine array, RNA sequencing, and Western blot techniques to investigate alterations in cytokine profiles, transcriptomes, and tumor suppressor proteins. Results: Numerical simulations validated LIV frequencies within the 10-100 Hz range. LIV induced notable morphological changes in OS cells and MSCs, confirming its dual role in inhibiting OS cell progression and promoting MSC conversion into iTSCs. Upregulated VCL expression enhanced MSC responsiveness to LIV, significantly bolstering CM's efficacy. Notably, we identified tumor suppressor proteins in LIV-treated CM, including procollagen C endopeptidase enhancer (PCOLCE), histone H4 (H4), peptidylprolyl isomerase B (PPIB), and aldolase A (ALDOA). Consistently, cytokine levels decreased significantly in LIV-treated mouse femurs, and oncogenic transcript levels were downregulated in LIV-treated OS cells. Moreover, our study demonstrated that combining LIV-treated MSC CM with chemotherapy drugs yielded additive anti-tumor effects. Conclusions: LIV effectively impeded the progression of OS cells and facilitated the transformation of MSCs into iTSCs. Notably, iTSC-derived CM demonstrated robust anti-tumor properties and the augmentation of MSC responsiveness to LIV via VCL. Furthermore, the enrichment of tumor suppressor proteins within LIV-treated MSC CM and the reduction of cytokines within LIV-treated isolated bone underscore the pivotal tumor-suppressive role of LIV within the bone tumor microenvironment.
Collapse
Affiliation(s)
- Xue Xiong
- Department of Pharmacology, School of Pharmacy, Harbin Medical University, Harbin 150081, China
- Department of Biomedical Engineering, Indiana University Purdue University Indianapolis, Indianapolis, IN 46202, USA
| | - Qingji Huo
- Department of Pharmacology, School of Pharmacy, Harbin Medical University, Harbin 150081, China
- Department of Biomedical Engineering, Indiana University Purdue University Indianapolis, Indianapolis, IN 46202, USA
| | - Kexin Li
- Department of Pharmacology, School of Pharmacy, Harbin Medical University, Harbin 150081, China
- Department of Biomedical Engineering, Indiana University Purdue University Indianapolis, Indianapolis, IN 46202, USA
| | - Changpeng Cui
- Department of Pharmacology, School of Pharmacy, Harbin Medical University, Harbin 150081, China
- Department of Biomedical Engineering, Indiana University Purdue University Indianapolis, Indianapolis, IN 46202, USA
| | - Chunyi Chang
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Charles Park
- Department of Physics, Indiana University Purdue University Indianapolis, Indianapolis, IN 46202, USA
| | - BonHeon Ku
- Department of Mechanical Engineering, Pusan National University, Busan 46241, Korea
| | - Chin-Suk Hong
- Department of Mechanical Engineering, Ulsan College, Ulsan 44022, Korea
| | - HeeChang Lim
- Department of Mechanical Engineering, Pusan National University, Busan 46241, Korea
| | - Pankita H. Pandya
- Indiana University Simon Comprehensive Cancer Center, Indiana University School of Medicine; Indianapolis, IN 46202, USA
- Department of Pediatrics, Indiana University School of Medicine; Indianapolis, IN 46202, USA
| | - M. Reza Saadatzadeh
- Indiana University Simon Comprehensive Cancer Center, Indiana University School of Medicine; Indianapolis, IN 46202, USA
- Department of Pediatrics, Indiana University School of Medicine; Indianapolis, IN 46202, USA
| | | | - Chien-Chi Lin
- Department of Biomedical Engineering, Indiana University Purdue University Indianapolis, Indianapolis, IN 46202, USA
- Indiana University Simon Comprehensive Cancer Center, Indiana University School of Medicine; Indianapolis, IN 46202, USA
| | - Melissa A. Kacena
- Indiana University Simon Comprehensive Cancer Center, Indiana University School of Medicine; Indianapolis, IN 46202, USA
- Department of Orthopaedic Surgery, Indiana University School of Medicine; Indianapolis, IN 46202, USA
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine; Indianapolis, IN 46202, USA
| | - Karen E. Pollok
- Indiana University Simon Comprehensive Cancer Center, Indiana University School of Medicine; Indianapolis, IN 46202, USA
- Department of Pediatrics, Indiana University School of Medicine; Indianapolis, IN 46202, USA
| | - Andy Chen
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202 USA
| | - Jing Liu
- Department of Physics, Indiana University Purdue University Indianapolis, Indianapolis, IN 46202, USA
- Indiana University Simon Comprehensive Cancer Center, Indiana University School of Medicine; Indianapolis, IN 46202, USA
| | - William R. Thompson
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine; Indianapolis, IN 46202, USA
- Department of Physical Therapy, Indiana University, Indianapolis, IN 46202, USA
| | - Xue-Lian Li
- Department of Pharmacology, School of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Bai-Yan Li
- Department of Pharmacology, School of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Hiroki Yokota
- Department of Biomedical Engineering, Indiana University Purdue University Indianapolis, Indianapolis, IN 46202, USA
- Indiana University Simon Comprehensive Cancer Center, Indiana University School of Medicine; Indianapolis, IN 46202, USA
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine; Indianapolis, IN 46202, USA
| |
Collapse
|
124
|
Mellentine SQ, Brown HN, Ramsey AS, Li J, Tootle TL. Specific prostaglandins are produced in the migratory cells and the surrounding substrate to promote Drosophila border cell migration. Front Cell Dev Biol 2024; 11:1257751. [PMID: 38283991 PMCID: PMC10811798 DOI: 10.3389/fcell.2023.1257751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 12/27/2023] [Indexed: 01/30/2024] Open
Abstract
Introduction: A key regulator of collective cell migration is prostaglandin (PG) signaling. However, it remains largely unclear whether PGs act within the migratory cells or their microenvironment to promote migration. Here we use Drosophila border cell migration as a model to uncover the cell-specific roles of two PGs in collective migration. The border cells undergo a collective and invasive migration between the nurse cells; thus, the nurse cells are the substrate and microenvironment for the border cells. Prior work found PG signaling is required for on-time border cell migration and cluster cohesion. Methods: Confocal microscopy and quantitative image analyses of available mutant alleles and RNAi lines were used to define the roles of the PGE2 and PGF2α synthases in border cell migration. Results: We find that the PGE2 synthase cPGES is required in the substrate, while the PGF2α synthase Akr1B is required in the border cells for on-time migration. Akr1B acts in both the border cells and their substrate to regulate cluster cohesion. One means by which Akr1B may regulate border cell migration and/or cluster cohesion is by promoting integrin-based adhesions. Additionally, Akr1B limits myosin activity, and thereby cellular stiffness, in the border cells, whereas cPGES limits myosin activity in both the border cells and their substrate. Decreasing myosin activity overcomes the migration delays in both akr1B and cPGES mutants, indicating the changes in cellular stiffness contribute to the migration defects. Discussion: Together these data reveal that two PGs, PGE2 and PGF2α, produced in different locations, play key roles in promoting border cell migration. These PGs likely have similar migratory versus microenvironment roles in other collective cell migrations.
Collapse
Affiliation(s)
- Samuel Q. Mellentine
- Anatomy and Cell Biology, University of Iowa Carver College of Medicine, Iowa City, IA, United States
- Biology, University of Iowa, Iowa City, IA, United States
| | - Hunter N. Brown
- Anatomy and Cell Biology, University of Iowa Carver College of Medicine, Iowa City, IA, United States
- Biology, University of Iowa, Iowa City, IA, United States
| | - Anna S. Ramsey
- Anatomy and Cell Biology, University of Iowa Carver College of Medicine, Iowa City, IA, United States
- Biology, University of Iowa, Iowa City, IA, United States
| | - Jie Li
- Anatomy and Cell Biology, University of Iowa Carver College of Medicine, Iowa City, IA, United States
- Biology, University of Iowa, Iowa City, IA, United States
| | - Tina L. Tootle
- Anatomy and Cell Biology, University of Iowa Carver College of Medicine, Iowa City, IA, United States
- Biology, University of Iowa, Iowa City, IA, United States
| |
Collapse
|
125
|
Tran AT, Wisniewski EO, Mistriotis P, Stoletov K, Parlani M, Amitrano A, Ifemembi B, Lee SJ, Bera K, Zhang Y, Tuntithavornwat S, Afthinos A, Kiepas A, Jamieson JJ, Zuo Y, Habib D, Wu PH, Martin SS, Gerecht S, Gu L, Lewis JD, Kalab P, Friedl P, Konstantopoulos K. Cytoplasmic accumulation and plasma membrane association of anillin and Ect2 promote confined migration and invasion. RESEARCH SQUARE 2024:rs.3.rs-3640969. [PMID: 38260442 PMCID: PMC10802709 DOI: 10.21203/rs.3.rs-3640969/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Cells migrating in confinement experience mechanical challenges whose consequences on cell migration machinery remain only partially understood. Here, we demonstrate that a pool of the cytokinesis regulatory protein anillin is retained during interphase in the cytoplasm of different cell types. Confinement induces recruitment of cytoplasmic anillin to plasma membrane at the poles of migrating cells, which is further enhanced upon nuclear envelope (NE) rupture(s). Rupture events also enable the cytoplasmic egress of predominantly nuclear RhoGEF Ect2. Anillin and Ect2 redistributions scale with microenvironmental stiffness and confinement, and are observed in confined cells in vitro and in invading tumor cells in vivo. Anillin, which binds actomyosin at the cell poles, and Ect2, which activates RhoA, cooperate additively to promote myosin II contractility, and promote efficient invasion and extravasation. Overall, our work provides a mechanistic understanding of how cytokinesis regulators mediate RhoA/ROCK/myosin II-dependent mechanoadaptation during confined migration and invasive cancer progression.
Collapse
Affiliation(s)
- Avery T. Tran
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore MD, 21218, USA
- Johns Hopkins Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore MD, 21218, USA
| | - Emily O. Wisniewski
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore MD, 21218, USA
- Johns Hopkins Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore MD, 21218, USA
| | - Panagiotis Mistriotis
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore MD, 21218, USA
- Johns Hopkins Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore MD, 21218, USA
- Department of Chemical Engineering, Auburn University, Auburn, AL, 36849, USA
| | | | - Maria Parlani
- Department of Medical Biosciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Alice Amitrano
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore MD, 21218, USA
- Johns Hopkins Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore MD, 21218, USA
| | - Brent Ifemembi
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore MD, 21218, USA
- Johns Hopkins Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore MD, 21218, USA
| | - Se Jong Lee
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore MD, 21218, USA
- Johns Hopkins Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore MD, 21218, USA
| | - Kaustav Bera
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore MD, 21218, USA
- Johns Hopkins Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore MD, 21218, USA
| | - Yuqi Zhang
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore MD, 21218, USA
- Johns Hopkins Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore MD, 21218, USA
| | - Soontorn Tuntithavornwat
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore MD, 21218, USA
- Johns Hopkins Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore MD, 21218, USA
| | - Alexandros Afthinos
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore MD, 21218, USA
- Johns Hopkins Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore MD, 21218, USA
| | - Alexander Kiepas
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore MD, 21218, USA
- Johns Hopkins Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore MD, 21218, USA
| | - John J. Jamieson
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore MD, 21218, USA
- Johns Hopkins Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore MD, 21218, USA
| | - Yi Zuo
- Johns Hopkins Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore MD, 21218, USA
- Department of Materials Science and Engineering, The Johns Hopkins University, Baltimore MD, 21218, USA
| | - Daniel Habib
- Johns Hopkins Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore MD, 21218, USA
| | - Pei-Hsun Wu
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore MD, 21218, USA
- Johns Hopkins Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore MD, 21218, USA
| | - Stuart S. Martin
- Marlene and Stewart Greenebaum National Cancer Institute Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Sharon Gerecht
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Luo Gu
- Johns Hopkins Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore MD, 21218, USA
- Department of Materials Science and Engineering, The Johns Hopkins University, Baltimore MD, 21218, USA
| | - John D. Lewis
- Department of Oncology, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Petr Kalab
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore MD, 21218, USA
| | - Peter Friedl
- Department of Medical Biosciences, Radboud University Medical Center, Nijmegen, Netherlands
- Department of Genitourinary Medicine, UT MD Anderson Cancer Center, Houston TX, 77030 USA
| | - Konstantinos Konstantopoulos
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore MD, 21218, USA
- Johns Hopkins Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore MD, 21218, USA
- Department of Biomedical Engineering, The Johns Hopkins University, Baltimore MD, 21218, USA
- Department of Oncology, The Johns Hopkins University, Baltimore MD, 21205, USA
| |
Collapse
|
126
|
Junqueira Alves C, Hannah T, Sadia S, Kolsteeg C, Dixon A, Wiener RJ, Nguyen H, Tipping MJ, Ladeira JS, Franklin PFDC, Dutra de Nigro NDP, Dias RA, Zabala Capriles PV, Rodrigues Furtado de Mendonça JP, Slesinger P, Costa K, Zou H, Friedel RH. Invasion of glioma cells through confined space requires membrane tension regulation and mechano-electrical coupling via Plexin-B2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.02.573660. [PMID: 38313256 PMCID: PMC10836082 DOI: 10.1101/2024.01.02.573660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2024]
Abstract
Glioblastoma (GBM) is a malignant brain tumor with uncontrolled invasive growth. Here, we demonstrate how GBM cells usurp guidance receptor Plexin-B2 to gain biomechanical plasticity for polarized migration through confined space. Using live-cell imaging to track GBM cells negotiating microchannels, we reveal active endocytosis at cell front and filamentous actin assembly at rear to propel GBM cells through constrictions. These two processes are interconnected and governed by Plexin-B2 that orchestrates cortical actin and membrane tension, shown by biomechanical assays. Molecular dynamics simulations predict that balanced membrane and actin tension are required for optimal migratory velocity and consistency. Furthermore, Plexin-B2 mechanosensitive function requires a bendable extracellular ring structure and affects membrane internalization, permeability, phospholipid composition, as well as inner membrane surface charge. Together, our studies unveil a key element of membrane tension and mechanoelectrical coupling via Plexin-B2 that enables GBM cells to adapt to physical constraints and achieve polarized confined migration.
Collapse
|
127
|
Newman D, Young LE, Waring T, Brown L, Wolanska KI, MacDonald E, Charles-Orszag A, Goult BT, Caswell PT, Sakuma T, Yamamoto T, Machesky LM, Morgan MR, Zech T. 3D matrix adhesion feedback controls nuclear force coupling to drive invasive cell migration. Cell Rep 2023; 42:113554. [PMID: 38100355 DOI: 10.1016/j.celrep.2023.113554] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 06/23/2023] [Accepted: 11/20/2023] [Indexed: 12/17/2023] Open
Abstract
Cell invasion is a multi-step process, initiated by the acquisition of a migratory phenotype and the ability to move through complex 3D extracellular environments. We determine the composition of cell-matrix adhesion complexes of invasive breast cancer cells in 3D matrices and identify an interaction complex required for invasive migration. βPix and myosin18A (Myo18A) drive polarized recruitment of non-muscle myosin 2A (NM2A) to adhesion complexes at the tips of protrusions. Actomyosin force engagement then displaces the Git1-βPix complex from paxillin, establishing a feedback loop for adhesion maturation. We observe active force transmission to the nucleus during invasive migration that is needed to pull the nucleus forward. The recruitment of NM2A to adhesions creates a non-muscle myosin isoform gradient, which extends from the protrusion to the nucleus. We postulate that this gradient facilitates coupling of cell-matrix interactions at the protrusive cell front with nuclear movement, enabling effective invasive migration and front-rear cell polarity.
Collapse
Affiliation(s)
- Daniel Newman
- Institute of Systems, Molecular, and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Lorna E Young
- Institute of Systems, Molecular, and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Thomas Waring
- Institute of Systems, Molecular, and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Louise Brown
- Institute of Systems, Molecular, and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Katarzyna I Wolanska
- Institute of Systems, Molecular, and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Ewan MacDonald
- Institute of Systems, Molecular, and Integrative Biology, University of Liverpool, Liverpool, UK
| | | | | | - Patrick T Caswell
- Wellcome Trust Centre for Cell-Matrix Research, School of Biological Sciences, Faculty of Biology, Medicine, and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - Tetsushi Sakuma
- Division of Integrated Sciences for Life, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima 739-8526, Japan
| | - Takashi Yamamoto
- Division of Integrated Sciences for Life, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima 739-8526, Japan
| | - Laura M Machesky
- CRUK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, UK; Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Glasgow, UK; Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge, UK
| | - Mark R Morgan
- Institute of Systems, Molecular, and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Tobias Zech
- Institute of Systems, Molecular, and Integrative Biology, University of Liverpool, Liverpool, UK.
| |
Collapse
|
128
|
Bastianello G, Porcella G, Beznoussenko GV, Kidiyoor G, Ascione F, Li Q, Cattaneo A, Matafora V, Disanza A, Quarto M, Mironov AA, Oldani A, Barozzi S, Bachi A, Costanzo V, Scita G, Foiani M. Cell stretching activates an ATM mechano-transduction pathway that remodels cytoskeleton and chromatin. Cell Rep 2023; 42:113555. [PMID: 38088930 DOI: 10.1016/j.celrep.2023.113555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 11/01/2023] [Accepted: 11/20/2023] [Indexed: 12/30/2023] Open
Abstract
Ataxia telangiectasia mutated (ATM) and ataxia telangiectasia and Rad3-related (ATR) DNA damage response (DDR) kinases contain elastic domains. ATM also responds to reactive oxygen species (ROS) and ATR to nuclear mechanical stress. Mre11 mediates ATM activation following DNA damage; ATM mutations cause ataxia telangiectasia (A-T). Here, using in vivo imaging, electron microscopy, proteomic, and mechano-biology approaches, we study how ATM responds to mechanical stress. We report that cytoskeleton and ROS, but not Mre11, mediate ATM activation following cell deformation. ATM deficiency causes hyper-stiffness, stress fiber accumulation, Yes-associated protein (YAP) nuclear enrichment, plasma and nuclear membrane alterations during interstitial migration, and H3 hyper-methylation. ATM locates to the actin cytoskeleton and, following cytoskeleton stress, promotes phosphorylation of key cytoskeleton and chromatin regulators. Our data contribute to explain some clinical features of patients with A-T and pinpoint the existence of an integrated mechano-response in which ATM and ATR have distinct roles unrelated to their canonical DDR functions.
Collapse
Affiliation(s)
- Giulia Bastianello
- IFOM, the FIRC Institute of Molecular Oncology, 20139 Milan, Italy; Oncology and Haemato-Oncology Department, University of Milan, 20122 Milan, Italy.
| | | | | | - Gururaj Kidiyoor
- IFOM, the FIRC Institute of Molecular Oncology, 20139 Milan, Italy
| | - Flora Ascione
- IFOM, the FIRC Institute of Molecular Oncology, 20139 Milan, Italy
| | - Qingsen Li
- IFOM, the FIRC Institute of Molecular Oncology, 20139 Milan, Italy
| | | | | | - Andrea Disanza
- IFOM, the FIRC Institute of Molecular Oncology, 20139 Milan, Italy
| | - Micaela Quarto
- IFOM, the FIRC Institute of Molecular Oncology, 20139 Milan, Italy
| | | | - Amanda Oldani
- IFOM, the FIRC Institute of Molecular Oncology, 20139 Milan, Italy
| | - Sara Barozzi
- IFOM, the FIRC Institute of Molecular Oncology, 20139 Milan, Italy
| | - Angela Bachi
- IFOM, the FIRC Institute of Molecular Oncology, 20139 Milan, Italy
| | - Vincenzo Costanzo
- IFOM, the FIRC Institute of Molecular Oncology, 20139 Milan, Italy; Oncology and Haemato-Oncology Department, University of Milan, 20122 Milan, Italy
| | - Giorgio Scita
- IFOM, the FIRC Institute of Molecular Oncology, 20139 Milan, Italy; Oncology and Haemato-Oncology Department, University of Milan, 20122 Milan, Italy
| | - Marco Foiani
- IFOM, the FIRC Institute of Molecular Oncology, 20139 Milan, Italy; Oncology and Haemato-Oncology Department, University of Milan, 20122 Milan, Italy.
| |
Collapse
|
129
|
Ruef N, Martínez Magdaleno J, Ficht X, Purvanov V, Palayret M, Wissmann S, Pfenninger P, Stolp B, Thelen F, Barreto de Albuquerque J, Germann P, Sharpe J, Abe J, Legler DF, Stein JV. Exocrine gland-resident memory CD8 + T cells use mechanosensing for tissue surveillance. Sci Immunol 2023; 8:eadd5724. [PMID: 38134242 DOI: 10.1126/sciimmunol.add5724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 11/09/2023] [Indexed: 12/24/2023]
Abstract
Tissue-resident CD8+ T cells (TRM) continuously scan peptide-MHC (pMHC) complexes in their organ of residence to intercept microbial invaders. Recent data showed that TRM lodged in exocrine glands scan tissue in the absence of any chemoattractant or adhesion receptor signaling, thus bypassing the requirement for canonical migration-promoting factors. The signals eliciting this noncanonical motility and its relevance for organ surveillance have remained unknown. Using mouse models of viral infections, we report that exocrine gland TRM autonomously generated front-to-back F-actin flow for locomotion, accompanied by high cortical actomyosin contractility, and leading-edge bleb formation. The distinctive mode of exocrine gland TRM locomotion was triggered by sensing physical confinement and was closely correlated with nuclear deformation, which acts as a mechanosensor via an arachidonic acid and Ca2+ signaling pathway. By contrast, naïve CD8+ T cells or TRM surveilling microbe-exposed epithelial barriers did not show mechanosensing capacity. Inhibition of nuclear mechanosensing disrupted exocrine gland TRM scanning and impaired their ability to intercept target cells. These findings indicate that confinement is sufficient to elicit autonomous T cell surveillance in glands with restricted chemokine expression and constitutes a scanning strategy that complements chemosensing-dependent migration.
Collapse
Affiliation(s)
- Nora Ruef
- Department of Oncology, Microbiology and Immunology, University of Fribourg, 1700 Fribourg, Switzerland
| | - Jose Martínez Magdaleno
- Department of Oncology, Microbiology and Immunology, University of Fribourg, 1700 Fribourg, Switzerland
| | - Xenia Ficht
- Department of Biosystems Science and Engineering, ETH Zürich, Mattenstrasse 22, 4058 Basel, Switzerland
| | - Vladimir Purvanov
- Biotechnology Institute Thurgau (BITg) at the University of Konstanz, 8280 Kreuzlingen, Switzerland
| | - Matthieu Palayret
- Department of Oncology, Microbiology and Immunology, University of Fribourg, 1700 Fribourg, Switzerland
| | - Stefanie Wissmann
- Department of Oncology, Microbiology and Immunology, University of Fribourg, 1700 Fribourg, Switzerland
| | - Petra Pfenninger
- Department of Oncology, Microbiology and Immunology, University of Fribourg, 1700 Fribourg, Switzerland
| | - Bettina Stolp
- Department for Infectious Diseases, Integrative Virology, Center for Integrative Infectious Disease Research, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Flavian Thelen
- Department of Medical Oncology and Hematology, University of Zürich and University Hospital Zürich, 8091 Zürich, Switzerland
| | | | - Philipp Germann
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), 08003 Barcelona, Spain
| | - James Sharpe
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), 08003 Barcelona, Spain
- European Molecular Biology Laboratory (EMBL) Barcelona, 08003 Barcelona, Spain
- Institucio' Catalana de Recerca i Estudis Avancats (ICREA), 08010 Barcelona, Spain
| | - Jun Abe
- Department of Oncology, Microbiology and Immunology, University of Fribourg, 1700 Fribourg, Switzerland
| | - Daniel F Legler
- Biotechnology Institute Thurgau (BITg) at the University of Konstanz, 8280 Kreuzlingen, Switzerland
- Faculty of Biology, University of Konstanz, 78464 Konstanz, Germany
- Theodor Kocher Institute, University of Bern, 3011 Bern, Switzerland
| | - Jens V Stein
- Department of Oncology, Microbiology and Immunology, University of Fribourg, 1700 Fribourg, Switzerland
| |
Collapse
|
130
|
Baum B, Spang A. On the origin of the nucleus: a hypothesis. Microbiol Mol Biol Rev 2023; 87:e0018621. [PMID: 38018971 PMCID: PMC10732040 DOI: 10.1128/mmbr.00186-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2023] Open
Abstract
SUMMARYIn this hypothesis article, we explore the origin of the eukaryotic nucleus. In doing so, we first look afresh at the nature of this defining feature of the eukaryotic cell and its core functions-emphasizing the utility of seeing the eukaryotic nucleoplasm and cytoplasm as distinct regions of a common compartment. We then discuss recent progress in understanding the evolution of the eukaryotic cell from archaeal and bacterial ancestors, focusing on phylogenetic and experimental data which have revealed that many eukaryotic machines with nuclear activities have archaeal counterparts. In addition, we review the literature describing the cell biology of representatives of the TACK and Asgardarchaeaota - the closest known living archaeal relatives of eukaryotes. Finally, bringing these strands together, we propose a model for the archaeal origin of the nucleus that explains much of the current data, including predictions that can be used to put the model to the test.
Collapse
Affiliation(s)
- Buzz Baum
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Anja Spang
- Department of Marine Microbiology and Biogeochemistry, NIOZ, Royal Netherlands Institute for Sea Research, Den Burg, the Netherlands
- Department of Evolutionary & Population Biology, Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, Amsterdam, the Netherlands
- Department of Marine Microbiology and Biogeochemistry, NIOZ, Royal Netherlands Institute for Sea Research, Den Burg, the Netherlands
| |
Collapse
|
131
|
Kroll J, Hauschild R, Kuznetcov A, Stefanowski K, Hermann MD, Merrin J, Shafeek L, Müller‐Taubenberger A, Renkawitz J. Adaptive pathfinding by nucleokinesis during amoeboid migration. EMBO J 2023; 42:e114557. [PMID: 37987147 PMCID: PMC10711653 DOI: 10.15252/embj.2023114557] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 10/31/2023] [Accepted: 11/03/2023] [Indexed: 11/22/2023] Open
Abstract
Motile cells encounter microenvironments with locally heterogeneous mechanochemical composition. Individual compositional parameters, such as chemokines and extracellular matrix pore sizes, are well known to provide guidance cues for pathfinding. However, motile cells face diverse cues at the same time, raising the question of how they respond to multiple and potentially competing signals on their paths. Here, we reveal that amoeboid cells require nuclear repositioning, termed nucleokinesis, for adaptive pathfinding in heterogeneous mechanochemical micro-environments. Using mammalian immune cells and the amoeba Dictyostelium discoideum, we discover that frequent, rapid and long-distance nucleokinesis is a basic component of amoeboid pathfinding, enabling cells to reorientate quickly between locally competing cues. Amoeboid nucleokinesis comprises a two-step polarity switch and is driven by myosin-II forces that readjust the nuclear to the cellular path. Impaired nucleokinesis distorts path adaptions and causes cellular arrest in the microenvironment. Our findings establish that nucleokinesis is required for amoeboid cell navigation. Given that many immune cells, amoebae, and some cancer cells utilize an amoeboid migration strategy, these results suggest that nucleokinesis underlies cellular navigation during unicellular biology, immunity, and disease.
Collapse
Affiliation(s)
- Janina Kroll
- Biomedical Center Munich (BMC), Walter Brendel Center of Experimental Medicine, Institute of Cardiovascular Physiology and Pathophysiology, University HospitalLudwig Maximilians University MunichMunichGermany
| | - Robert Hauschild
- Institute of Science and Technology AustriaKlosterneuburgAustria
| | - Artur Kuznetcov
- Biomedical Center Munich (BMC), Walter Brendel Center of Experimental Medicine, Institute of Cardiovascular Physiology and Pathophysiology, University HospitalLudwig Maximilians University MunichMunichGermany
| | - Kasia Stefanowski
- Biomedical Center Munich (BMC), Walter Brendel Center of Experimental Medicine, Institute of Cardiovascular Physiology and Pathophysiology, University HospitalLudwig Maximilians University MunichMunichGermany
| | - Monika D Hermann
- Biomedical Center Munich (BMC), Walter Brendel Center of Experimental Medicine, Institute of Cardiovascular Physiology and Pathophysiology, University HospitalLudwig Maximilians University MunichMunichGermany
| | - Jack Merrin
- Institute of Science and Technology AustriaKlosterneuburgAustria
| | - Lubuna Shafeek
- Institute of Science and Technology AustriaKlosterneuburgAustria
| | - Annette Müller‐Taubenberger
- Biomedical Center Munich (BMC), Department of Cell Biology (Anatomy III)Ludwig Maximilians University MunichMunichGermany
| | - Jörg Renkawitz
- Biomedical Center Munich (BMC), Walter Brendel Center of Experimental Medicine, Institute of Cardiovascular Physiology and Pathophysiology, University HospitalLudwig Maximilians University MunichMunichGermany
| |
Collapse
|
132
|
Kim D, Kim DH. Subcellular mechano-regulation of cell migration in confined extracellular microenvironment. BIOPHYSICS REVIEWS 2023; 4:041305. [PMID: 38505424 PMCID: PMC10903498 DOI: 10.1063/5.0185377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 12/01/2023] [Indexed: 03/21/2024]
Abstract
Cell migration is a highly coordinated cellular event that determines diverse physiological and pathological processes in which the continuous interaction of a migrating cell with neighboring cells or the extracellular matrix is regulated by the physical setting of the extracellular microenvironment. In confined spaces, cell migration occurs differently compared to unconfined open spaces owing to the additional forces that limit cell motility, which create a driving bias for cells to invade the confined space, resulting in a distinct cell motility process compared to what is expected in open spaces. Moreover, cells in confined environments can be subjected to elevated mechanical compression, which causes physical stimuli and activates the damage repair cycle in the cell, including the DNA in the nucleus. Although cells have a self-restoring system to repair damage from the cell membrane to the genetic components of the nucleus, this process may result in genetic and/or epigenetic alterations that can increase the risk of the progression of diverse diseases, such as cancer and immune disorders. Furthermore, there has been a shift in the paradigm of bioengineering from the development of new biomaterials to controlling biophysical cues and fine-tuning cell behaviors to cure damaged/diseased tissues. The external physical cues perceived by cells are transduced along the mechanosensitive machinery, which is further channeled into the nucleus through subcellular molecular linkages of the nucleoskeleton and cytoskeleton or the biochemical translocation of transcription factors. Thus, external cues can directly or indirectly regulate genetic transcriptional processes and nuclear mechanics, ultimately determining cell fate. In this review, we discuss the importance of the biophysical cues, response mechanisms, and mechanical models of cell migration in confined environments. We also discuss the effect of force-dependent deformation of subcellular components, specifically focusing on subnuclear organelles, such as nuclear membranes and chromosomal organization. This review will provide a biophysical perspective on cancer progression and metastasis as well as abnormal cellular proliferation.
Collapse
Affiliation(s)
- Daesan Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea
| | | |
Collapse
|
133
|
Jackson JA, Romeo N, Mietke A, Burns KJ, Totz JF, Martin AC, Dunkel J, Alsous JI. Scaling behaviour and control of nuclear wrinkling. NATURE PHYSICS 2023; 19:1927-1935. [PMID: 38831923 PMCID: PMC11146749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
The cell nucleus is enveloped by a complex membrane, whose wrinkling has been implicated in disease and cellular aging. The biophysical dynamics and spectral evolution of nuclear wrinkling during multicellular development remain poorly understood due to a lack of direct quantitative measurements. Here, we characterize the onset and dynamics of nuclear wrinkling during egg development in the fruit fly when nurse cell nuclei increase in size and display stereotypical wrinkling behavior. A spectral analysis of three-dimensional high-resolution live imaging data from several hundred nuclei reveals a robust asymptotic power-law scaling of angular fluctuations consistent with renormalization and scaling predictions from a nonlinear elastic shell model. We further demonstrate that nuclear wrinkling can be reversed through osmotic shock and suppressed by microtubule disruption, providing tuneable physical and biological control parameters for probing mechanical properties of the nuclear envelope. Our findings advance the biophysical understanding of nuclear membrane fluctuations during early multicellular development.
Collapse
Affiliation(s)
- Jonathan A. Jackson
- Department of Biology, Massachusetts Institute of Technology
- Graduate Program in Biophysics, Harvard University
| | - Nicolas Romeo
- Department of Mathematics, Massachusetts Institute of Technology
- Department of Physics, Massachusetts Institute of Technology
| | - Alexander Mietke
- Department of Mathematics, Massachusetts Institute of Technology
- School of Mathematics, University of Bristol
| | - Keaton J. Burns
- Department of Mathematics, Massachusetts Institute of Technology
| | - Jan F. Totz
- Department of Mathematics, Massachusetts Institute of Technology
| | - Adam C. Martin
- Department of Biology, Massachusetts Institute of Technology
| | - Jörn Dunkel
- Department of Mathematics, Massachusetts Institute of Technology
| | | |
Collapse
|
134
|
Chattaraj S, Torre M, Kalcher C, Stukowski A, Morganti S, Reali A, Pasqualini FS. SEM 2: Introducing mechanics in cell and tissue modeling using coarse-grained homogeneous particle dynamics. APL Bioeng 2023; 7:046118. [PMID: 38075209 PMCID: PMC10699888 DOI: 10.1063/5.0166829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 11/14/2023] [Indexed: 09/03/2024] Open
Abstract
Modeling multiscale mechanics in shape-shifting engineered tissues, such as organoids and organs-on-chip, is both important and challenging. In fact, it is difficult to model relevant tissue-level large non-linear deformations mediated by discrete cell-level behaviors, such as migration and proliferation. One approach to solve this problem is subcellular element modeling (SEM), where ensembles of coarse-grained particles interacting via empirically defined potentials are used to model individual cells while preserving cell rheology. However, an explicit treatment of multiscale mechanics in SEM was missing. Here, we incorporated analyses and visualizations of particle level stress and strain in the open-source software SEM++ to create a new framework that we call subcellular element modeling and mechanics or SEM2. To demonstrate SEM2, we provide a detailed mechanics treatment of classical SEM simulations including single-cell creep, migration, and proliferation. We also introduce an additional force to control nuclear positioning during migration and proliferation. Finally, we show how SEM2 can be used to model proliferation in engineered cell culture platforms such as organoids and organs-on-chip. For every scenario, we present the analysis of cell emergent behaviors as offered by SEM++ and examples of stress or strain distributions that are possible with SEM2. Throughout the study, we only used first-principles literature values or parametric studies, so we left to the Discussion a qualitative comparison of our insights with recently published results. The code for SEM2 is available on GitHub at https://github.com/Synthetic-Physiology-Lab/sem2.
Collapse
Affiliation(s)
- Sandipan Chattaraj
- Synthetic Physiology Lab, Department of Civil Engineering and Architecture, University of Pavia, Pavia, Italy
| | - Michele Torre
- Computational Mechanics and Advanced Materials Group, Department of Civil Engineering and Architecture, University of Pavia, Pavia, Italy
| | | | | | - Simone Morganti
- Computational Mechanics and Advanced Materials Group, Department of Civil Engineering and Architecture, University of Pavia, Pavia, Italy
| | - Alessandro Reali
- Computational Mechanics and Advanced Materials Group, Department of Civil Engineering and Architecture, University of Pavia, Pavia, Italy
| | - Francesco Silvio Pasqualini
- Synthetic Physiology Lab, Department of Civil Engineering and Architecture, University of Pavia, Pavia, Italy
| |
Collapse
|
135
|
Phuyal S, Romani P, Dupont S, Farhan H. Mechanobiology of organelles: illuminating their roles in mechanosensing and mechanotransduction. Trends Cell Biol 2023; 33:1049-1061. [PMID: 37236902 DOI: 10.1016/j.tcb.2023.05.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 05/02/2023] [Accepted: 05/02/2023] [Indexed: 05/28/2023]
Abstract
Mechanobiology studies the mechanisms by which cells sense and respond to physical forces, and the role of these forces in shaping cells and tissues themselves. Mechanosensing can occur at the plasma membrane, which is directly exposed to external forces, but also in the cell's interior, for example, through deformation of the nucleus. Less is known on how the function and morphology of organelles are influenced by alterations in their own mechanical properties, or by external forces. Here, we discuss recent advances on the mechanosensing and mechanotransduction of organelles, including the endoplasmic reticulum (ER), the Golgi apparatus, the endo-lysosmal system, and the mitochondria. We highlight open questions that need to be addressed to gain a broader understanding of the role of organelle mechanobiology.
Collapse
Affiliation(s)
- Santosh Phuyal
- Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Patrizia Romani
- Department of Molecular Medicine, University of Padua, Padua, Italy
| | - Sirio Dupont
- Department of Molecular Medicine, University of Padua, Padua, Italy.
| | - Hesso Farhan
- Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway; Institute of Pathophysiology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria.
| |
Collapse
|
136
|
Belhadj J, Surina S, Hengstschläger M, Lomakin AJ. Form follows function: Nuclear morphology as a quantifiable predictor of cellular senescence. Aging Cell 2023; 22:e14012. [PMID: 37845808 PMCID: PMC10726876 DOI: 10.1111/acel.14012] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/28/2023] [Accepted: 09/29/2023] [Indexed: 10/18/2023] Open
Abstract
Enlarged or irregularly shaped nuclei are frequently observed in tissue cells undergoing senescence. However, it remained unclear whether this peculiar morphology is a cause or a consequence of senescence and how informative it is in distinguishing between proliferative and senescent cells. Recent research reveals that nuclear morphology can act as a predictive biomarker of senescence, suggesting an active role for the nucleus in driving senescence phenotypes. By employing deep learning algorithms to analyze nuclear morphology, accurate classification of cells as proliferative or senescent is achievable across various cell types and species both in vitro and in vivo. This quantitative imaging-based approach can be employed to establish links between senescence burden and clinical data, aiding in the understanding of age-related diseases, as well as assisting in disease prognosis and treatment response.
Collapse
Affiliation(s)
- Jakub Belhadj
- Center for Pathobiochemistry & Genetics, Institute of Medical GeneticsMedical University of ViennaViennaAustria
- Center for Pathobiochemistry & Genetics, Institute of Medical Chemistry and PathobiochemistryMedical University of ViennaViennaAustria
| | - Surina Surina
- Center for Pathobiochemistry & Genetics, Institute of Medical GeneticsMedical University of ViennaViennaAustria
- Center for Pathobiochemistry & Genetics, Institute of Medical Chemistry and PathobiochemistryMedical University of ViennaViennaAustria
- School of Medical SciencesUniversity of Campania Luigi VanvitelliNapoliItaly
| | - Markus Hengstschläger
- Center for Pathobiochemistry & Genetics, Institute of Medical GeneticsMedical University of ViennaViennaAustria
| | - Alexis J. Lomakin
- Center for Pathobiochemistry & Genetics, Institute of Medical GeneticsMedical University of ViennaViennaAustria
- Center for Pathobiochemistry & Genetics, Institute of Medical Chemistry and PathobiochemistryMedical University of ViennaViennaAustria
| |
Collapse
|
137
|
Peippo M, Gardberg M, Kronqvist P, Carpén O, Heuser VD. Characterization of Expression and Function of the Formins FHOD1, INF2, and DAAM1 in HER2-Positive Breast Cancer. J Breast Cancer 2023; 26:525-543. [PMID: 37985384 PMCID: PMC10761758 DOI: 10.4048/jbc.2023.26.e47] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 08/31/2023] [Accepted: 10/16/2023] [Indexed: 11/22/2023] Open
Abstract
PURPOSE Human epidermal growth factor receptor 2 (HER2)-targeted therapies, such as trastuzumab, benefit patients with HER2-positive metastatic breast cancer; however, owing to traditional pathway activation or alternative signaling, resistance persists. Given the crucial role of the formin family in shaping the actin cytoskeleton during cancer progression, these proteins may function downstream of the HER2 signaling pathway. Our aim was to uncover the potential correlations between formins and HER2 expression using a combination of public databases, immunohistochemistry, and functional in vitro assays. METHODS Using online databases, we identified a negative prognostic correlation between specific formins mRNA expression in HER2-positive cancers. To validate these findings at the protein level, immunohistochemistry was performed on HER2 subtype breast cancer tumors to establish the links between staining patterns and clinical characteristics. We then knocked down individual or combined formins in MDA-MB-453 and SK-BR-3 cells and investigated their effects on wound healing, transwell migration, and proliferation. Furthermore, we investigated the effects of erb-b2 receptor tyrosine kinase 2 (ERBB2)/HER2 small interfering RNA (siRNA)-mediated knockdown on the PI3K/Akt and MEK/ERK1 pathways as well as on selected formins. RESULTS Our results revealed that correlations between INF2, FHOD1, and DAAM1 mRNA expression and ERBB2 in HER2-subtype breast cancer were associated with worse outcomes. Using immunohistochemistry, we found that high FHOD1 protein expression was linked to higher histological grades and was negatively correlated with estrogen and progesterone receptor positivity. Upon formins knockdown, we observed effects on wound healing and transwell migration, with a minimal impact on proliferation, which was evident through single and combined knockdowns in both cell lines. Notably, siRNA-mediated knockdown of HER2 affected FHOD1 and INF2 expression, along with the phosphorylated Akt/MAPK states. CONCLUSION Our study highlights the roles of FHOD1 and INF2 as downstream effectors of the HER2/Akt and HER2/MAPK pathways, suggesting that they are potential therapeutic targets in HER2-positive breast cancer.
Collapse
Affiliation(s)
- Minna Peippo
- Department of Pathology, Turku University Hospital, University of Turku, Turku, Finland
- Institute of Biomedicine and FICAN West Cancer Centre, University of Turku, Turku, Finland
| | - Maria Gardberg
- Department of Pathology, Turku University Hospital, University of Turku, Turku, Finland
| | - Pauliina Kronqvist
- Department of Pathology, Turku University Hospital, University of Turku, Turku, Finland
| | - Olli Carpén
- Department of Pathology, Turku University Hospital, University of Turku, Turku, Finland
- Institute of Biomedicine and FICAN West Cancer Centre, University of Turku, Turku, Finland
- Department of Pathology, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - Vanina D Heuser
- Institute of Biomedicine and FICAN West Cancer Centre, University of Turku, Turku, Finland.
| |
Collapse
|
138
|
Mei Y, Feng X, Jin Y, Kang R, Wang X, Zhao D, Ghosh S, Neu CP, Avril S. Cell nucleus elastography with the adjoint-based inverse solver. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2023; 242:107827. [PMID: 37801883 DOI: 10.1016/j.cmpb.2023.107827] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/09/2023] [Accepted: 09/22/2023] [Indexed: 10/08/2023]
Abstract
BACKGROUND AND OBJECTIVES The mechanics of the nucleus depends on cellular structures and architecture, and impact a number of diseases. Nuclear mechanics is yet rather complex due to heterogeneous distribution of dense heterochromatin and loose euchromatin domains, giving rise to spatially variable stiffness properties. METHODS In this study, we propose to use the adjoint-based inverse solver to identify for the first time the nonhomogeneous elastic property distribution of the nucleus. Inputs of the inverse solver are deformation fields measured with microscopic imaging in contracting cardiomyocytes. RESULTS The feasibility of the proposed method is first demonstrated using simulated data. Results indicate accurate identification of the assumed heterochromatin region, with a maximum relative error of less than 5%. We also investigate the influence of unknown Poisson's ratio on the reconstruction and find that variations of the Poisson's ratio in the range [0.3-0.5] result in uncertainties of less than 15% in the identified stiffness. Finally, we apply the inverse solver on actual deformation fields acquired within the nuclei of two cardiomyocytes. The obtained results are in good agreement with the density maps obtained from microscopy images. CONCLUSIONS Overall, the proposed approach shows great potential for nuclear elastography, with promising value for emerging fields of mechanobiology and mechanogenetics.
Collapse
Affiliation(s)
- Yue Mei
- State Key Laboratory of Structural Analysis, Optimization and CAE Software for Industrial Equipment, Department of Engineering Mechanics, Dalian University of Technology, Dalian 116023, China; International Research Center for Computational Mechanics, Dalian University of Technology, Dalian 116023, China; Ningbo Institute of Dalian University of Technology, No. 26 Yucai Road, Jiangbei District, Ningbo 315016, China
| | - Xuan Feng
- State Key Laboratory of Structural Analysis, Optimization and CAE Software for Industrial Equipment, Department of Engineering Mechanics, Dalian University of Technology, Dalian 116023, China; International Research Center for Computational Mechanics, Dalian University of Technology, Dalian 116023, China
| | - Yun Jin
- State Key Laboratory of Structural Analysis, Optimization and CAE Software for Industrial Equipment, Department of Engineering Mechanics, Dalian University of Technology, Dalian 116023, China; International Research Center for Computational Mechanics, Dalian University of Technology, Dalian 116023, China
| | - Rongyao Kang
- State Key Laboratory of Structural Analysis, Optimization and CAE Software for Industrial Equipment, Department of Engineering Mechanics, Dalian University of Technology, Dalian 116023, China; International Research Center for Computational Mechanics, Dalian University of Technology, Dalian 116023, China
| | - XinYu Wang
- State Key Laboratory of Structural Analysis, Optimization and CAE Software for Industrial Equipment, Department of Engineering Mechanics, Dalian University of Technology, Dalian 116023, China; International Research Center for Computational Mechanics, Dalian University of Technology, Dalian 116023, China
| | - Dongmei Zhao
- State Key Laboratory of Structural Analysis, Optimization and CAE Software for Industrial Equipment, Department of Engineering Mechanics, Dalian University of Technology, Dalian 116023, China; International Research Center for Computational Mechanics, Dalian University of Technology, Dalian 116023, China
| | - Soham Ghosh
- Department of Mechanical Engineering, Colorado State University, Fort Collins, CO, United States of America
| | - Corey P Neu
- Paul M. Rady Department of Mechanical Engineering, University of Colorado Boulder, Boulder, CO, United States of America; Biomedical Engineering Program, University of Colorado Boulder, Boulder, CO, United States of America; BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, United States of America
| | - Stephane Avril
- Mines Saint-Étienne, Univ Jean Monnet, INSERM, U 1059 Sainbiose, F - 42023, Saint-Étienne, France.
| |
Collapse
|
139
|
Beedle AE, Jaganathan A, Albajar-Sigalés A, Yavitt FM, Bera K, Andreu I, Granero-Moya I, Zalvidea D, Kechagia Z, Wiche G, Trepat X, Ivaska J, Anseth KS, Shenoy VB, Roca-Cusachs P. Fibrillar adhesion dynamics govern the timescales of nuclear mechano-response via the vimentin cytoskeleton. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.08.566191. [PMID: 37986921 PMCID: PMC10659263 DOI: 10.1101/2023.11.08.566191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
The cell nucleus is continuously exposed to external signals, of both chemical and mechanical nature. To ensure proper cellular response, cells need to regulate not only the transmission of these signals, but also their timing and duration. Such timescale regulation is well described for fluctuating chemical signals, but if and how it applies to mechanical signals reaching the nucleus is still unknown. Here we demonstrate that the formation of fibrillar adhesions locks the nucleus in a mechanically deformed conformation, setting the mechanical response timescale to that of fibrillar adhesion remodelling (~1 hour). This process encompasses both mechanical deformation and associated mechanotransduction (such as via YAP), in response to both increased and decreased mechanical stimulation. The underlying mechanism is the anchoring of the vimentin cytoskeleton to fibrillar adhesions and the extracellular matrix through plectin 1f, which maintains nuclear deformation. Our results reveal a mechanism to regulate the timescale of mechanical adaptation, effectively setting a low pass filter to mechanotransduction.
Collapse
Affiliation(s)
- Amy E.M. Beedle
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain
- Department of Physics, King’s College London, London WC2R 2LS, UK
| | - Anuja Jaganathan
- Center for Engineering Mechanobiology and Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA 19104
| | - Aina Albajar-Sigalés
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain
| | - F. Max Yavitt
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, CO 80309, USA
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, 80303 USA
| | - Kaustav Bera
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, CO 80309, USA
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, 80303 USA
| | - Ion Andreu
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain
- Instituto Biofisika (UPV/EHU, CSIC), University of the Basque Country, E-48940, Leioa, Spain
- Ikerbasque, Basque Foundation for Science, 48013, Bilbao, Spain
| | - Ignasi Granero-Moya
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain
| | - Dobryna Zalvidea
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain
| | - Zanetta Kechagia
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain
- Department of Biochemistry, University of Zurich, Zurich, Switzerland
| | - Gerhard Wiche
- Max Perutz Laboratories, Department of Biochemistry and Cell Biology, University of Vienna, 1030 Vienna, Austria
| | - Xavier Trepat
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain
- University of Barcelona, 08028 Barcelona, Spain
| | - Johanna Ivaska
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
- Department of Life Technologies, University of Turku, FI-20520 Turku, Finland
- InFLAMES Research Flagship Center, University of Turku, Turku, Finland
- Foundation for the Finnish Cancer Institute, Tukholmankatu 8, FI-00014 Helsinki, Finland
| | - Kristi S. Anseth
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, CO 80309, USA
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, 80303 USA
| | - Vivek B. Shenoy
- Center for Engineering Mechanobiology and Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA 19104
| | - Pere Roca-Cusachs
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain
- University of Barcelona, 08028 Barcelona, Spain
| |
Collapse
|
140
|
Penfield L, Montell DJ. Nuclear lamin facilitates collective border cell invasion into confined spaces in vivo. J Cell Biol 2023; 222:e202212101. [PMID: 37695420 PMCID: PMC10494525 DOI: 10.1083/jcb.202212101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 06/05/2023] [Accepted: 08/11/2023] [Indexed: 09/12/2023] Open
Abstract
Cells migrate collectively through confined environments during development and cancer metastasis. The nucleus, a stiff organelle, impedes single cells from squeezing into narrow channels within artificial environments. However, how nuclei affect collective migration into compact tissues is unknown. Here, we use border cells in the fly ovary to study nuclear dynamics in collective, confined in vivo migration. Border cells delaminate from the follicular epithelium and squeeze into tiny spaces between cells called nurse cells. The lead cell nucleus transiently deforms within the lead cell protrusion, which then widens. The nuclei of follower cells deform less. Depletion of the Drosophila B-type lamin, Lam, compromises nuclear integrity, hinders expansion of leading protrusions, and impedes border cell movement. In wildtype, cortical myosin II accumulates behind the nucleus and pushes it into the protrusion, whereas in Lam-depleted cells, myosin accumulates but does not move the nucleus. These data suggest that the nucleus stabilizes lead cell protrusions, helping to wedge open spaces between nurse cells.
Collapse
Affiliation(s)
- Lauren Penfield
- Department of Molecular, Cellular, and Developmental Biology, University of California Santa Barbara, Santa Barbara, CA, USA
| | - Denise J. Montell
- Department of Molecular, Cellular, and Developmental Biology, University of California Santa Barbara, Santa Barbara, CA, USA
| |
Collapse
|
141
|
Xin Y, Li K, Huang M, Liang C, Siemann D, Wu L, Tan Y, Tang X. Biophysics in tumor growth and progression: from single mechano-sensitive molecules to mechanomedicine. Oncogene 2023; 42:3457-3490. [PMID: 37864030 PMCID: PMC10656290 DOI: 10.1038/s41388-023-02844-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 09/08/2023] [Accepted: 09/15/2023] [Indexed: 10/22/2023]
Abstract
Evidence from physical sciences in oncology increasingly suggests that the interplay between the biophysical tumor microenvironment and genetic regulation has significant impact on tumor progression. Especially, tumor cells and the associated stromal cells not only alter their own cytoskeleton and physical properties but also remodel the microenvironment with anomalous physical properties. Together, these altered mechano-omics of tumor tissues and their constituents fundamentally shift the mechanotransduction paradigms in tumorous and stromal cells and activate oncogenic signaling within the neoplastic niche to facilitate tumor progression. However, current findings on tumor biophysics are limited, scattered, and often contradictory in multiple contexts. Systematic understanding of how biophysical cues influence tumor pathophysiology is still lacking. This review discusses recent different schools of findings in tumor biophysics that have arisen from multi-scale mechanobiology and the cutting-edge technologies. These findings range from the molecular and cellular to the whole tissue level and feature functional crosstalk between mechanotransduction and oncogenic signaling. We highlight the potential of these anomalous physical alterations as new therapeutic targets for cancer mechanomedicine. This framework reconciles opposing opinions in the field, proposes new directions for future cancer research, and conceptualizes novel mechanomedicine landscape to overcome the inherent shortcomings of conventional cancer diagnosis and therapies.
Collapse
Grants
- R35 GM150812 NIGMS NIH HHS
- This work was financially supported by National Natural Science Foundation of China (Project no. 11972316, Y.T.), Shenzhen Science and Technology Innovation Commission (Project no. JCYJ20200109142001798, SGDX2020110309520303, and JCYJ20220531091002006, Y.T.), General Research Fund of Hong Kong Research Grant Council (PolyU 15214320, Y. T.), Health and Medical Research Fund (HMRF18191421, Y.T.), Hong Kong Polytechnic University (1-CD75, 1-ZE2M, and 1-ZVY1, Y.T.), the Cancer Pilot Research Award from UF Health Cancer Center (X. T.), the National Institute of General Medical Sciences of the National Institutes of Health under award number R35GM150812 (X. T.), the National Science Foundation under grant number 2308574 (X. T.), the Air Force Office of Scientific Research under award number FA9550-23-1-0393 (X. T.), the University Scholar Program (X. T.), UF Research Opportunity Seed Fund (X. T.), the Gatorade Award (X. T.), and the National Science Foundation REU Site at UF: Engineering for Healthcare (Douglas Spearot and Malisa Sarntinoranont). We are deeply grateful for the insightful discussions with and generous support from all members of Tang (UF)’s and Tan (PolyU)’s laboratories and all staff members of the MAE/BME/ECE/Health Cancer Center at UF and BME at PolyU.
- National Natural Science Foundation of China (National Science Foundation of China)
- Shenzhen Science and Technology Innovation Commission
Collapse
Affiliation(s)
- Ying Xin
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, China
| | - Keming Li
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, China
| | - Miao Huang
- Department of Mechanical and Aerospace Engineering, Herbert Wertheim College of Engineering, University of Florida, Gainesville, FL, USA
| | - Chenyu Liang
- Department of Mechanical and Aerospace Engineering, Herbert Wertheim College of Engineering, University of Florida, Gainesville, FL, USA
| | - Dietmar Siemann
- UF Health Cancer Center, University of Florida, Gainesville, FL, USA
| | - Lizi Wu
- UF Health Cancer Center, University of Florida, Gainesville, FL, USA
| | - Youhua Tan
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, China.
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong, China.
- Research Institute of Smart Ageing, The Hong Kong Polytechnic University, Hong Kong, China.
| | - Xin Tang
- Department of Mechanical and Aerospace Engineering, Herbert Wertheim College of Engineering, University of Florida, Gainesville, FL, USA.
- UF Health Cancer Center, University of Florida, Gainesville, FL, USA.
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA.
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
142
|
Liu M, Fu J, Yang S. Synthesis of Microparticles with Diverse Thermally Responsive Shapes Originated from the Same Janus Liquid Crystalline Microdroplets. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2303106. [PMID: 37495936 DOI: 10.1002/smll.202303106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 07/14/2023] [Indexed: 07/28/2023]
Abstract
Liquid crystalline elastomer (LCE)-based microparticles that can change shapes in response to external stimuli are of great interest for potential applications such as artificial cells, micro-actuators, micro-valves, and smart drug carriers. Here, the synthesis of LCE microparticles with diverse temperature-dependent anisotropic shapes originated from the same Janus microdroplets is reported. The Janus microdroplets, suspended in an aqueous solution of surfactants, are transformed from microdroplets consisting of a mixture of liquid crystal (LC) monomers, oligomers, silicone oil, and an organic solvent, after the removal of the organic solvent. The molecular alignment of the LC part at the interface, whether planar, homeotropic, or hybrid, is dependent on the choice of the surfactants but not affected by the silicone oil. After polymerization and solvent extraction of the unreacted components, LCE microparticles of various shapes are obtained depending on the concentration and composition of the surfactants, the weight ratio of the LC part to the silicone oil part, and the choice of the extraction solvent. The microparticles that undergo different synthetic pathways show distinct thermally responsive shapes, much like how stem cells differentiate in different environmental conditions.
Collapse
Affiliation(s)
- Mingzhu Liu
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania, 19104, USA
- School of Chemistry, Beihang University, Beijing, 100191, P. R. China
| | - Jiemin Fu
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania, 19104, USA
| | - Shu Yang
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania, 19104, USA
| |
Collapse
|
143
|
Buxboim A, Kronenberg-Tenga R, Salajkova S, Avidan N, Shahak H, Thurston A, Medalia O. Scaffold, mechanics and functions of nuclear lamins. FEBS Lett 2023; 597:2791-2805. [PMID: 37813648 DOI: 10.1002/1873-3468.14750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 09/05/2023] [Accepted: 09/26/2023] [Indexed: 10/11/2023]
Abstract
Nuclear lamins are type-V intermediate filaments that are involved in many nuclear processes. In mammals, A- and B-type lamins assemble into separate physical meshwork underneath the inner nuclear membrane, the nuclear lamina, with some residual fraction localized within the nucleoplasm. Lamins are the major part of the nucleoskeleton, providing mechanical strength and flexibility to protect the genome and allow nuclear deformability, while also contributing to gene regulation via interactions with chromatin. While lamins are the evolutionary ancestors of all intermediate filament family proteins, their ultimate filamentous assembly is markedly different from their cytoplasmic counterparts. Interestingly, hundreds of genetic mutations in the lamina proteins have been causally linked with a broad range of human pathologies, termed laminopathies. These include muscular, neurological and metabolic disorders, as well as premature aging diseases. Recent technological advances have contributed to resolving the filamentous structure of lamins and the corresponding lamina organization. In this review, we revisit the multiscale lamin organization and discuss its implications on nuclear mechanics and chromatin organization within lamina-associated domains.
Collapse
Affiliation(s)
- Amnon Buxboim
- The Rachel and Selim Benin School of Computer Science and Engineering and The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Israel
| | | | - Sarka Salajkova
- Department of Biochemistry, University of Zurich, Switzerland
| | - Nili Avidan
- The Rachel and Selim Benin School of Computer Science and Engineering and The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Israel
| | - Hen Shahak
- The Rachel and Selim Benin School of Computer Science and Engineering and The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Israel
| | - Alice Thurston
- Department of Biochemistry, University of Zurich, Switzerland
| | - Ohad Medalia
- Department of Biochemistry, University of Zurich, Switzerland
| |
Collapse
|
144
|
Lee SH, Yousafzai MS, Mohler K, Yadav V, Amiri S, Szuszkiewicz J, Levchenko A, Rinehart J, Murrell M. SPAK-dependent cotransporter activity mediates capillary adhesion and pressure during glioblastoma migration in confined spaces. Mol Biol Cell 2023; 34:ar122. [PMID: 37672340 PMCID: PMC10846615 DOI: 10.1091/mbc.e23-03-0103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 08/16/2023] [Accepted: 08/30/2023] [Indexed: 09/08/2023] Open
Abstract
The invasive potential of glioblastoma cells is attributed to large changes in pressure and volume, driven by diverse elements, including the cytoskeleton and ion cotransporters. However, how the cell actuates changes in pressure and volume in confinement, and how these changes contribute to invasive motion is unclear. Here, we inhibited SPAK activity, with known impacts on the cytoskeleton and cotransporter activity and explored its role on the migration of glioblastoma cells in confining microchannels to model invasive spread through brain tissue. First, we found that confinement altered cell shape, inducing a transition in morphology that resembled droplet interactions with a capillary vessel, from "wetting" (more adherent) at low confinement, to "nonwetting" (less adherent) at high confinement. This transition was marked by a change from negative to positive pressure by the cells to the confining walls, and an increase in migration speed. Second, we found that the SPAK pathway impacted the migration speed in different ways dependent upon the extent of wetting. For nonwetting cells, SPAK inhibition increased cell-surface tension and cotransporter activity. By contrast, for wetting cells, it also reduced myosin II and YAP phosphorylation. In both cases, membrane-to-cortex attachment is dramatically reduced. Thus, our results suggest that SPAK inhibition differentially coordinates cotransporter and cytoskeleton-induced forces, to impact glioblastoma migration depending on the extent of confinement.
Collapse
Affiliation(s)
- Sung Hoon Lee
- Department of Biomedical Engineering, Yale University, New Haven, CT 06511
- Systems Biology Institute, Yale University, West Haven, CT 06516
| | - Muhammad Sulaiman Yousafzai
- Department of Biomedical Engineering, Yale University, New Haven, CT 06511
- Systems Biology Institute, Yale University, West Haven, CT 06516
| | - Kyle Mohler
- Systems Biology Institute, Yale University, West Haven, CT 06516
- Department of Cellular and Molecular Physiology, Yale University, New Haven, CT 06510
| | - Vikrant Yadav
- Department of Biomedical Engineering, Yale University, New Haven, CT 06511
- Systems Biology Institute, Yale University, West Haven, CT 06516
| | - Sorosh Amiri
- Systems Biology Institute, Yale University, West Haven, CT 06516
- Department of Mechanical Engineering, Yale University, New Haven, CT 06520
| | - Joanna Szuszkiewicz
- Department of Biomedical Engineering, Yale University, New Haven, CT 06511
- Systems Biology Institute, Yale University, West Haven, CT 06516
| | - Andre Levchenko
- Department of Biomedical Engineering, Yale University, New Haven, CT 06511
- Systems Biology Institute, Yale University, West Haven, CT 06516
| | - Jesse Rinehart
- Systems Biology Institute, Yale University, West Haven, CT 06516
- Department of Cellular and Molecular Physiology, Yale University, New Haven, CT 06510
| | - Michael Murrell
- Department of Biomedical Engineering, Yale University, New Haven, CT 06511
- Department of Physics, Yale University, New Haven, CT 06511
- Systems Biology Institute, Yale University, West Haven, CT 06516
| |
Collapse
|
145
|
Liu Y, Yao X, Zhao Y, Fang D, Shi L, Yang L, Song G, Cai K, Li L, Deng Q, Li M, Luo Z. Mechanotransduction in response to ECM stiffening impairs cGAS immune signaling in tumor cells. Cell Rep 2023; 42:113213. [PMID: 37804510 DOI: 10.1016/j.celrep.2023.113213] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 08/07/2023] [Accepted: 09/19/2023] [Indexed: 10/09/2023] Open
Abstract
The tumor microenvironment (TME) plays decisive roles in disabling T cell-mediated antitumor immunity, but the immunoregulatory functions of its biophysical properties remain elusive. Extracellular matrix (ECM) stiffening is a hallmark of solid tumors. Here, we report that the stiffened ECM contributes to the immunosuppression in TME via activating the Rho-associated coiled-coil-containing protein kinase (ROCK)-myosin IIA-filamentous actin (F-actin) mechanosignaling pathway in tumor cells to promote the generation of TRIM14-scavenging nonmuscle myosin heavy chain IIA (NMHC-IIA)-F-actin stress fibers, thus accelerating the autophagic degradation of cyclic guanosine monophosphate (GMP)-AMP synthase (cGAS) to deprive tumor cyclic GMP-AMP (cGAMP) and further attenuating tumor immunogenicity. Pharmacological inhibition of myosin IIA effector molecules with blebbistatin (BLEB) or the RhoA upstream regulator of this pathway with simvastatin (SIM) restored tumor-intrinsic cGAS-mediated cGAMP production and enhanced antitumor immunity. Our work identifies that ECM stiffness is an important biophysical cue to regulate tumor immunogenicity via the ROCK-myosin IIA-F-actin axis and that inhibiting this mechanosignaling pathway could boost immunotherapeutic efficacy for effective solid tumor treatment.
Collapse
Affiliation(s)
- Yingqi Liu
- School of Life Science, Chongqing University, Chongqing 400044, P.R. China
| | - Xuemei Yao
- School of Life Science, Chongqing University, Chongqing 400044, P.R. China
| | - Youbo Zhao
- School of Life Science, Chongqing University, Chongqing 400044, P.R. China
| | - De Fang
- School of Life Science, Chongqing University, Chongqing 400044, P.R. China
| | - Lei Shi
- School of Life Science, Chongqing University, Chongqing 400044, P.R. China
| | - Li Yang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Chongqing University, Chongqing 400044, P.R. China
| | - Guanbin Song
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Chongqing University, Chongqing 400044, P.R. China
| | - Kaiyong Cai
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Chongqing University, Chongqing 400044, P.R. China
| | - Liqi Li
- Department of General Surgery, Xinqiao Hospital, Army Medical University, Chongqing 400037, P.R. China
| | - Qin Deng
- Analytical and Testing Center, Chongqing University, Chongqing 400044, P.R. China
| | - Menghuan Li
- School of Life Science, Chongqing University, Chongqing 400044, P.R. China.
| | - Zhong Luo
- School of Life Science, Chongqing University, Chongqing 400044, P.R. China; 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing 400044, P.R. China.
| |
Collapse
|
146
|
Wang C, Ding J, Wei Q, Du S, Gong X, Chew TG. Mechanosensitive accumulation of non-muscle myosin IIB during mitosis requires its translocation activity. iScience 2023; 26:107773. [PMID: 37720093 PMCID: PMC10504539 DOI: 10.1016/j.isci.2023.107773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 07/02/2023] [Accepted: 08/26/2023] [Indexed: 09/19/2023] Open
Abstract
Non-muscle myosin II (NMII) is a force-generating mechanosensitive enzyme that responds to mechanical forces. NMIIs mechanoaccumulate at the cell cortex in response to mechanical forces. It is essential for cells to mechanically adapt to the physical environment, failure of which results in mitotic defects when dividing in confined environment. Much less is known about how NMII mechanoaccumulation is regulated during mitosis. We show that mitotic cells respond to compressive stress by promoting accumulation of active RhoA at the cell cortex as in interphase cells. RhoA mechanoresponse during mitosis activates and stabilizes NMIIB via ROCK signaling, leading to NMIIB mechanoaccumulation at the cell cortex. Using disease-related myosin II mutations, we found that NMIIB mechanoaccumulation requires its motor activity that translocates actin filaments, but not just its actin-binding function. Thus, the motor activity coordinates structural movement and nucleotide state changes to fine-tune actin-binding affinity optimal for NMIIs to generate and respond to forces.
Collapse
Affiliation(s)
- Chao Wang
- Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
- The Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Haining 314400, China
| | - Jingjing Ding
- Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
- The Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Haining 314400, China
| | - Qiaodong Wei
- Department of Engineering Mechanics, School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Shoukang Du
- Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
- The Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Haining 314400, China
| | - Xiaobo Gong
- Department of Engineering Mechanics, School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ting Gang Chew
- Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
- The Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Haining 314400, China
| |
Collapse
|
147
|
Jebane C, Varlet AA, Karnat M, Hernandez- Cedillo LM, Lecchi A, Bedu F, Desgrouas C, Vigouroux C, Vantyghem MC, Viallat A, Rupprecht JF, Helfer E, Badens C. Enhanced cell viscosity: A new phenotype associated with lamin A/C alterations. iScience 2023; 26:107714. [PMID: 37701573 PMCID: PMC10494210 DOI: 10.1016/j.isci.2023.107714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 07/13/2023] [Accepted: 08/22/2023] [Indexed: 09/14/2023] Open
Abstract
Lamin A/C is a well-established key contributor to nuclear stiffness and its role in nucleus mechanical properties has been extensively studied. However, its impact on whole-cell mechanics has been poorly addressed, particularly concerning measurable physical parameters. In this study, we combined microfluidic experiments with theoretical analyses to quantitatively estimate the whole-cell mechanical properties. This allowed us to characterize the mechanical changes induced in cells by lamin A/C alterations and prelamin A accumulation resulting from atazanavir treatment or lipodystrophy-associated LMNA R482W pathogenic variant. Our results reveal a distinctive increase in long-time viscosity as a signature of cells affected by lamin A/C alterations. Furthermore, they show that the whole-cell response to mechanical stress is driven not only by the nucleus but also by the nucleo-cytoskeleton links and the microtubule network. The enhanced cell viscosity assessed with our microfluidic assay could serve as a valuable diagnosis marker for lamin-related diseases.
Collapse
Affiliation(s)
- Cécile Jebane
- Aix Marseille Univ, CNRS, CINAM, Turing Centre for Living Systems, Marseille, France
| | | | - Marc Karnat
- Aix Marseille Univ, Université de Toulon, CNRS, CPT, Turing Centre for Living Systems, Marseille, France
| | | | | | | | | | - Corinne Vigouroux
- Assistance Publique–Hôpitaux de Paris (AP-HP), Saint-Antoine Hospital, National Reference Centre for Rares diseases of Insulin-Secretion and Insulin-Sensitivity (PRISIS), Department of Endocrinology, Paris, France
- Sorbonne University, Saint-Antoine Research Centre, Inserm UMR_S938, Institute of Cardiometabolism and Nutrition, Paris, France
| | - Marie-Christine Vantyghem
- Endocrinology, Diabetology and Metabolism Department, Inserm U1190, EGID, Lille University Hospital, Lille, France
| | - Annie Viallat
- Aix Marseille Univ, CNRS, CINAM, Turing Centre for Living Systems, Marseille, France
| | - Jean-François Rupprecht
- Aix Marseille Univ, Université de Toulon, CNRS, CPT, Turing Centre for Living Systems, Marseille, France
| | - Emmanuèle Helfer
- Aix Marseille Univ, CNRS, CINAM, Turing Centre for Living Systems, Marseille, France
| | - Catherine Badens
- Aix Marseille Univ, INSERM, MMG, Marseille, France
- AP-HM, Laboratoire de Biochimie, Marseille, France
| |
Collapse
|
148
|
Samain R, Maiques O, Monger J, Lam H, Candido J, George S, Ferrari N, KohIhammer L, Lunetto S, Varela A, Orgaz JL, Vilardell F, Olsina JJ, Matias-Guiu X, Sarker D, Biddle A, Balkwill FR, Eyles J, Wilkinson RW, Kocher HM, Calvo F, Wells CM, Sanz-Moreno V. CD73 controls Myosin II-driven invasion, metastasis, and immunosuppression in amoeboid pancreatic cancer cells. SCIENCE ADVANCES 2023; 9:eadi0244. [PMID: 37851808 PMCID: PMC10584351 DOI: 10.1126/sciadv.adi0244] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 09/06/2023] [Indexed: 10/20/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) has a very poor prognosis because of its high propensity to metastasize and its immunosuppressive microenvironment. Using a panel of pancreatic cancer cell lines, three-dimensional (3D) invasion systems, microarray gene signatures, microfluidic devices, mouse models, and intravital imaging, we demonstrate that ROCK-Myosin II activity in PDAC cells supports a transcriptional program conferring amoeboid invasive and immunosuppressive traits and in vivo metastatic abilities. Moreover, we find that immune checkpoint CD73 is highly expressed in amoeboid PDAC cells and drives their invasive, metastatic, and immunomodulatory traits. Mechanistically, CD73 activates RhoA-ROCK-Myosin II downstream of PI3K. Tissue microarrays of human PDAC biopsies combined with bioinformatic analysis reveal that rounded-amoeboid invasive cells with high CD73-ROCK-Myosin II activity and their immunosuppressive microenvironment confer poor prognosis to patients. We propose targeting amoeboid PDAC cells as a therapeutic strategy.
Collapse
Affiliation(s)
- Remi Samain
- Centre for Tumour Microenvironment, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Oscar Maiques
- Centre for Tumour Microenvironment, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Joanne Monger
- Centre for Tumour Microenvironment, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Hoyin Lam
- School of Cancer and Pharmaceutical Sciences, Kings College London, London SE1 1UL, UK
- GSK, R&D Portfolio, Strategy and Business Insights, GSK House, 980 Great West Road, Brentford, TW8 9GS, UK
| | - Juliana Candido
- Centre for Tumour Microenvironment, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
- Oncology R&D, AstraZeneca, Cambridge CB21 6GH, UK
| | - Samantha George
- Centre for Tumour Microenvironment, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Nicola Ferrari
- Tumour Microenvironment Team, The Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK
- Translational Science and Experimental Medicine, Early Respiratory and Immunology, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Leonie KohIhammer
- Centre for Tumour Microenvironment, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Sophia Lunetto
- Centre for Cell Biology and Cutaneous Research, Blizard Institute, Queen Mary University of London, London E1 2AT, UK
| | - Adrian Varela
- Centre for Tumour Microenvironment, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Jose L. Orgaz
- Centre for Tumour Microenvironment, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
- Instituto de Investigaciones Biomédicas Sols-Morreale CSIC-UAM, 28029 Madrid, Spain
| | - Felip Vilardell
- Department of Pathology, University Hospital Arnau de Vilanova, University of Lleida, Lleida, Spain
| | - Jorge Juan Olsina
- Department of Surgery, University Hospital Arnau de Vilanova, University of Lleida, Lleida, Spain
| | - Xavier Matias-Guiu
- Department of Pathology, University Hospital Arnau de Vilanova, University of Lleida, Lleida, Spain
- IRBLLEIDA, IDIBELL, University Hospita of Bellvitge, CIBERONC, Lleida, Spain
| | - Debashis Sarker
- School of Cancer and Pharmaceutical Sciences, Kings College London, London SE1 1UL, UK
| | - Adrian Biddle
- Centre for Cell Biology and Cutaneous Research, Blizard Institute, Queen Mary University of London, London E1 2AT, UK
| | - Frances R. Balkwill
- Centre for Tumour Microenvironment, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Jim Eyles
- Oncology R&D, AstraZeneca, Cambridge CB21 6GH, UK
| | | | - Hemant M. Kocher
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
- Barts and the London HPB Centre, The Royal London Hospital, Barts Health NHS Trust, London, UK
| | - Fernando Calvo
- Tumour Microenvironment Team, The Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK
- Instituto de Biomedicina y Biotecnologia de Cantabria, c/ Albert Einstein 22, E39011 Santander, Spain
| | - Claire M. Wells
- School of Cancer and Pharmaceutical Sciences, Kings College London, London SE1 1UL, UK
| | - Victoria Sanz-Moreno
- Centre for Tumour Microenvironment, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| |
Collapse
|
149
|
Gong X, Ogino N, Leite MF, Chen Z, Nguyen R, Liu R, Kruglov E, Flores K, Cabral A, Mendes GMM, Ehrlich BE, Mak M. Adaptation to volumetric compression drives hepatoblastoma cells to an apoptosis-resistant and invasive phenotype. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.08.561453. [PMID: 37873476 PMCID: PMC10592664 DOI: 10.1101/2023.10.08.561453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Liver cancer involves tumor cells rapidly growing within a packed tissue environment. Patient tumor tissues reveal densely packed and deformed cells, especially at tumor boundaries, indicative of physical crowding and compression. It is not well understood how these physical signals modulate tumor evolution and therapeutic susceptibility. Here we investigate the impact of volumetric compression on liver cancer (HepG2) behavior. We find that conditioning cells under a highly compressed state leads to major transcriptional reprogramming, notably the loss of hepatic markers, the epithelial-to-mesenchymal transition (EMT)-like changes, and altered calcium signaling-related gene expression, over the course of several days. Biophysically, compressed cells exhibit increased Rac1-mediated cell spreading and cell-extracellular matrix interactions, cytoskeletal reorganization, increased YAP and β-catenin nuclear translocation, and dysfunction in cytoplasmic and mitochondrial calcium signaling. Furthermore, compressed cells are resistant to chemotherapeutics and desensitized to apoptosis signaling. Apoptosis sensitivity can be rescued by stimulated calcium signaling. Our study demonstrates that volumetric compression is a key microenvironmental factor that drives tumor evolution in multiple pathological directions and highlights potential countermeasures to re-sensitize therapy-resistant cells. Significance statement Compression can arise as cancer cells grow and navigate within the dense solid tumor microenvironment. It is unclear how compression mediates critical programs that drive tumor progression and therapeutic complications. Here, we take an integrative approach in investigating the impact of compression on liver cancer. We identify and characterize compressed subdomains within patient tumor tissues. Furthermore, using in vitro systems, we induce volumetric compression (primarily via osmotic pressure but also via mechanical force) on liver cancer cells and demonstrate significant molecular and biophysical changes in cell states, including in function, cytoskeletal signaling, proliferation, invasion, and chemoresistance. Importantly, our results show that compressed cells have impaired calcium signaling and acquire resistance to apoptosis, which can be countered via calcium mobilization.
Collapse
|
150
|
Dong Y, Johnson BA, Ruan L, Zeineldin M, Liu AZ, Raychaudhuri S, Chiu I, Zhu J, Smith B, Zhao N, Searson P, Watanabe S, Donowitz M, Larman TC, Li R. Disruption of Epithelium Integrity by Inflammation-Associated Fibroblasts through Prostaglandin Signaling: IAFs disrupt colon epithelium via PGE2-EP4. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.28.560060. [PMID: 37808771 PMCID: PMC10557697 DOI: 10.1101/2023.09.28.560060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Inflammation-associated fibroblasts (IAFs) are associated with the progression and drug resistance of chronic inflammatory diseases such as inflammatory bowel disease (IBD), but their direct impact on epithelial function and architecture is unknown. In this study, we developed an in vitro model whereby human colon fibroblasts are induced to become IAFs by specific cytokines and recapitulate key features of IAFs in vivo. When co-cultured with patient-derived colon organoids (colonoids), IAFs induced rapid colonoid swelling and barrier disruption due to swelling and rupture of individual epithelial cells. Epithelial cells co-cultured with IAFs also exhibit increased DNA damage, mitotic errors, and proliferation arrest. These IAF-induced epithelial defects are mediated through a paracrine pathway involving prostaglandin E2 (PGE2) and the PGE2 receptor EP4, leading to PKA-dependent activation of the CFTR chloride channel. Importantly, EP4-specific chemical inhibitors effectively prevented colonoid swelling and restored normal proliferation and genome stability of IAF-exposed epithelial cells. These findings reveal a mechanism by which IAFs could promote and perpetuate IBD and suggest a potential treatment to mitigate inflammation-associated epithelial injury.
Collapse
Affiliation(s)
- Yi Dong
- Department of Cell Biology, Johns Hopkins School of Medicine; Baltimore, MD, 21205, U.S.A
| | - Blake A. Johnson
- Department of Cell Biology, Johns Hopkins School of Medicine; Baltimore, MD, 21205, U.S.A
| | - Linhao Ruan
- Department of Cell Biology, Johns Hopkins School of Medicine; Baltimore, MD, 21205, U.S.A
| | - Maged Zeineldin
- Department of Pathology, Division of GI/Liver Pathology, Johns Hopkins School of Medicine; Baltimore, MD, 21205, U.S.A
| | - Albert Z. Liu
- Department of Cell Biology, Johns Hopkins School of Medicine; Baltimore, MD, 21205, U.S.A
| | - Sumana Raychaudhuri
- Department of Cell Biology, Johns Hopkins School of Medicine; Baltimore, MD, 21205, U.S.A
| | - Ian Chiu
- Department of Cell Biology, Johns Hopkins School of Medicine; Baltimore, MD, 21205, U.S.A
| | - Jin Zhu
- Mechanobiology Institute and Department of Biological Sciences, National University of Singapore; Singapore
| | - Barbara Smith
- Microscope Facility, Johns Hopkins School of Medicine; Baltimore, MD, 21205, U.S.A
| | - Nan Zhao
- Institute for Nanobiotechnology, Johns Hopkins University; Baltimore, Maryland, 21218, U.S.A
| | - Peter Searson
- Institute for Nanobiotechnology, Johns Hopkins University; Baltimore, Maryland, 21218, U.S.A
- Department of Materials Science and Engineering, Johns Hopkins University; Baltimore, MD, 21218, U.S.A
| | - Shigeki Watanabe
- Department of Cell Biology, Johns Hopkins School of Medicine; Baltimore, MD, 21205, U.S.A
| | - Mark Donowitz
- Department of Medicine, Division of Gastroenterology, Johns Hopkins School of Medicine; Baltimore, MD, 21205, U.S.A
- Department of Physiology, Johns Hopkins School of Medicine; Baltimore, MD, 21205, U.S.A
| | - Tatianna C. Larman
- Department of Pathology, Division of GI/Liver Pathology, Johns Hopkins School of Medicine; Baltimore, MD, 21205, U.S.A
| | - Rong Li
- Department of Cell Biology, Johns Hopkins School of Medicine; Baltimore, MD, 21205, U.S.A
- Mechanobiology Institute and Department of Biological Sciences, National University of Singapore; Singapore
- Department of Biological Sciences, National University of Singapore; Singapore
| |
Collapse
|