101
|
Purohit P, Panda M, Muya JT, Bandyopadhyay P, Meher BR. Theoretical insights into the binding interaction of Nirmatrelvir with SARS-CoV-2 Mpro mutants (C145A and C145S): MD simulations and binding free-energy calculation to understand drug resistance. J Biomol Struct Dyn 2024; 42:8865-8884. [PMID: 37599474 DOI: 10.1080/07391102.2023.2248519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 08/10/2023] [Indexed: 08/22/2023]
Abstract
Mpro, the main protease and a crucial enzyme in SARS-CoV-2 is the most fascinating molecular target for pharmacological treatment and is also liable for viral protein maturation. For antiviral therapy, no drugs have been approved clinically to date. Targeting the Mpro with a compound having inhibitory properties against it can hinder viral replication. The therapeutic potential of the antiviral compound Nirmatrelvir (NMV) against SARS-CoV-2 Mpro was investigated using a systematic approach of molecular docking, MD simulations, and binding free energy calculation based on the MM-GBSA method. NMV, a covalent inhibitor with a recently revealed chemical structure, is a promising oral antiviral clinical candidate with significant in vitro anti-SARS-CoV-2 action in third-phase clinical trials. To explore the therapeutic ability and possible drug resistance, the Mpro system was studied for WT and two of its primary mutants (C145A & C145S). The protein-ligand (Mpro/NMV) complexes were further examined through long MD simulations to check the possible drug resistance in the mutants. To understand the binding affinity, the MM-GBSA method was applied to the Mpro/NMV complexes. Moreover, PCA analysis confirms the detachment of the linker region from the major domains in C145S and C145A mutants allowing for conformational alterations in the active-site region. Based on the predicted biological activities and binding affinities of NMV to WT and mutant (C145A & C145S) Mpro, it can be stipulated that NMV may have conventional potency to act as an anti-viral agent against WT Mpro, while the catalytic-dyad mutations may show substantial mutation-induced drug resistance.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Priyanka Purohit
- Computational Biology and Bioinformatics Laboratory, PG Department of Botany, Berhampur University, Berhampur, India
| | - Madhusmita Panda
- Computational Biology and Bioinformatics Laboratory, PG Department of Botany, Berhampur University, Berhampur, India
| | - Jules Tshishimbi Muya
- Faculte of Science, Research Centre for Theoretical Chemistry and Physics in Central Africa, University of Kinshasa, Kinshasa, Congo
| | - Pradipta Bandyopadhyay
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Biswa Ranjan Meher
- Computational Biology and Bioinformatics Laboratory, PG Department of Botany, Berhampur University, Berhampur, India
| |
Collapse
|
102
|
Nazir F, John Kombe Kombe A, Khalid Z, Bibi S, Zhang H, Wu S, Jin T. SARS-CoV-2 replication and drug discovery. Mol Cell Probes 2024; 77:101973. [PMID: 39025272 DOI: 10.1016/j.mcp.2024.101973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 07/14/2024] [Accepted: 07/15/2024] [Indexed: 07/20/2024]
Abstract
The coronavirus disease 2019 (COVID-19) caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has killed millions of people and continues to wreak havoc across the globe. This sudden and deadly pandemic emphasizes the necessity for anti-viral drug development that can be rapidly administered to reduce morbidity, mortality, and virus propagation. Thus, lacking efficient anti-COVID-19 treatment, and especially given the lengthy drug development process as well as the critical death tool that has been associated with SARS-CoV-2 since its outbreak, drug repurposing (or repositioning) constitutes so far, the ideal and ready-to-go best approach in mitigating viral spread, containing the infection, and reducing the COVID-19-associated death rate. Indeed, based on the molecular similarity approach of SARS-CoV-2 with previous coronaviruses (CoVs), repurposed drugs have been reported to hamper SARS-CoV-2 replication. Therefore, understanding the inhibition mechanisms of viral replication by repurposed anti-viral drugs and chemicals known to block CoV and SARS-CoV-2 multiplication is crucial, and it opens the way for particular treatment options and COVID-19 therapeutics. In this review, we highlighted molecular basics underlying drug-repurposing strategies against SARS-CoV-2. Notably, we discussed inhibition mechanisms of viral replication, involving and including inhibition of SARS-CoV-2 proteases (3C-like protease, 3CLpro or Papain-like protease, PLpro) by protease inhibitors such as Carmofur, Ebselen, and GRL017, polymerases (RNA-dependent RNA-polymerase, RdRp) by drugs like Suramin, Remdesivir, or Favipiravir, and proteins/peptides inhibiting virus-cell fusion and host cell replication pathways, such as Disulfiram, GC376, and Molnupiravir. When applicable, comparisons with SARS-CoV inhibitors approved for clinical use were made to provide further insights to understand molecular basics in inhibiting SARS-CoV-2 replication and draw conclusions for future drug discovery research.
Collapse
Affiliation(s)
- Farah Nazir
- Center of Disease Immunity and Investigation, College of Medicine, Lishui University, Lishui, 323000, China
| | - Arnaud John Kombe Kombe
- Laboratory of Structural Immunology, Key Laboratory of Immune Response and Immunotherapy, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
| | - Zunera Khalid
- Laboratory of Structural Immunology, Key Laboratory of Immune Response and Immunotherapy, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
| | - Shaheen Bibi
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, University of Science and Technology of China, Anhui, China
| | - Hongliang Zhang
- Center of Disease Immunity and Investigation, College of Medicine, Lishui University, Lishui, 323000, China
| | - Songquan Wu
- Center of Disease Immunity and Investigation, College of Medicine, Lishui University, Lishui, 323000, China.
| | - Tengchuan Jin
- Center of Disease Immunity and Investigation, College of Medicine, Lishui University, Lishui, 323000, China; Laboratory of Structural Immunology, Key Laboratory of Immune Response and Immunotherapy, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China; Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, University of Science and Technology of China, Anhui, China; Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei, Anhui, China; Biomedical Sciences and Health Laboratory of Anhui Province, University of Science & Technology of China, Hefei, 230027, China; Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei, 230001, China.
| |
Collapse
|
103
|
Yang C, Yu Y, Peng Q, Song J, Sun B, Shi Y, Ding Q. Drupacine as a potent SARS-CoV-2 replication inhibitor in vitro. BIOSAFETY AND HEALTH 2024; 6:270-278. [PMID: 40078736 PMCID: PMC11895013 DOI: 10.1016/j.bsheal.2024.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 08/26/2024] [Accepted: 09/02/2024] [Indexed: 03/14/2025] Open
Abstract
Despite the availability of vaccines and antiviral treatments, the continued emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants and breakthrough infections underscores the need for new, potent antiviral therapies. In a previous study, we established a transcription and replication-competent SARS-CoV-2 virus-like particle (trVLP) system that recapitulates the complete viral life cycle. In this study, we combined high-content screening (HCS) with the SARS-CoV-2 trVLP cell culture system, providing a powerful phenotype-oriented approach to assess the antiviral potential of compounds on a large scale. We screened a library of 3,200 natural compounds and identified drupacine as a potential candidate against SARS-CoV-2 infection. Furthermore, we utilized a SARS-CoV-2 replicon system to demonstrate that drupacine could inhibit viral genome transcription and replication. However, in vitro, enzymatic assays revealed that the inhibition could not be attributed to conventional antiviral targets, such as the viral non-structural proteins nsp5 (MPro) or nsp12 (RdRp). In conclusion, our findings position drupacine as a promising antiviral candidate against SARS-CoV-2, providing a novel scaffold for developing anti-coronavirus disease 2019 therapeutics. Further investigation is required to pinpoint its precise target and mechanism of action.
Collapse
Affiliation(s)
- Chen Yang
- School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China
| | - Yanying Yu
- School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China
| | - Qi Peng
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jingwei Song
- School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China
| | - Bo Sun
- School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China
| | - Yi Shi
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Qiang Ding
- School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China
- SXMU-Tsinghua Collaborative Innovation Center for Frontier Medicine, Shanxi Medical University, Taiyuan 030001, China
| |
Collapse
|
104
|
Duvvuri V, Shire F, Isabel S, Braukmann T, Clark S, Marchand-Austin A, Eshaghi A, Bandukwala H, Varghese N, Li Y, Sivaraman K, Hussain H, Cronin K, Sullivan A, Li A, Zygmunt A, Ramotar K, Kus J, Hasso M, Corbeil A, Gubbay J, Patel S. Large scale analysis of the SARS-CoV-2 main protease reveals marginal presence of nirmatrelvir-resistant SARS-CoV-2 Omicron mutants in Ontario, Canada, December 2021-September 2023. CANADA COMMUNICABLE DISEASE REPORT = RELEVE DES MALADIES TRANSMISSIBLES AU CANADA 2024; 50:365-374. [PMID: 39386278 PMCID: PMC11464099 DOI: 10.14745/ccdr.v50i10a05] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Background In response to the COVID-19 pandemic, a new oral antiviral called nirmatrelvir-ritonavir (PaxlovidTM) was authorized for use in Canada in January 2022. In vitro studies have reported mutations in Mpro protein that may be associated with the development of nirmatrelvir resistance. Objectives To survey the prevalence, relevance and temporal patterns of Mpro mutations among SARS-CoV-2 Omicron lineages in Ontario, Canada. Methods A total of 93,082 Mpro gene sequences from December 2021 to September 2023 were analyzed. Reported in vitro Mpro mutations were screened against our database using in-house data science pipelines to determine the nirmatrelvir resistance. Negative binomial regression was conducted to analyze the temporal trends in Mpro mutation counts over the study time period. Results A declining trend was observed in non-synonymous mutations of Mpro sequences, showing a 7.9% reduction (95% CI: 6.5%-9.4%; p<0.001) every 30 days. The P132H was the most prevalent mutation (higher than 95%) in all Omicron lineages. In vitro nirmatrelvir-resistant mutations were found in 3.12% (n=29/929) Omicron lineages with very low counts, ranging from one to 19. Only two mutations, A7T (n=19) and M82I (n=9), showed temporal presence among the BA.1.1 in 2022 and the BQ.1.2.3 in 2022, respectively. Conclusion The observations suggest that, as of September 2023, no significant or widespread resistance to nirmatrelvir has developed among SARS-CoV-2 Omicron variants in Ontario. This study highlights the importance of creating automated monitoring systems to track the emergence of nirmatrelvir-resistant mutations within the SARS-CoV-2 virus, utilizing genomic data generated in real-time.
Collapse
Affiliation(s)
- Venkata Duvvuri
- Public Health Ontario, Toronto, ON
- Department of Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON
| | - Fatima Shire
- Public Health Ontario, Toronto, ON
- Division of Biostatistics, Dalla Lana School of Public Health, University of Toronto, Toronto, ON
| | | | | | | | | | | | | | | | - Ye Li
- Public Health Ontario, Toronto, ON
- Division of Biostatistics, Dalla Lana School of Public Health, University of Toronto, Toronto, ON
| | | | | | | | | | - Aimin Li
- Public Health Ontario, Toronto, ON
| | - Austin Zygmunt
- Public Health Ontario, Toronto, ON
- Department of Family Medicine, University of Ottawa, Ottawa, ON
| | | | - Julianne Kus
- Public Health Ontario, Toronto, ON
- Department of Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON
| | | | | | | | - Samir Patel
- Public Health Ontario, Toronto, ON
- Department of Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON
| |
Collapse
|
105
|
Haribabu J, Madhavan G, Swaminathan S, Panneerselvam M, Moraga D, Dasararaju G, Echeverria C, Arulraj A, Mangalaraja RV, Kokkarachedu V, Santibanez JF, Ramirez-Tagle R. Multifaceted exploration of acylthiourea compounds: In vitro cytotoxicity, DFT calculations, molecular docking and dynamics simulation studies. Int J Biol Macromol 2024; 278:134870. [PMID: 39173802 DOI: 10.1016/j.ijbiomac.2024.134870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/31/2024] [Accepted: 08/17/2024] [Indexed: 08/24/2024]
Abstract
This study reports the synthesis and analysis of biologically active acylthiourea compounds (1 and 2) with a cyclohexyl moiety. The compounds were characterized using UV-Visible, FT-IR, 1H/13C NMR, and elemental analysis. The crystal structure of 2 was solved, revealing intra- and inter-molecular hydrogen bonds. Density functional theory (DFT) calculations provided insights into chemical reactivity and non-covalent interactions. Cytotoxicity assays showed the cyclohexyl group enhanced the activity of compound 2 compared to compound 1. Epoxide hydrolase 1 was predicted as the enzyme target for both compounds. We modeled the structure of epoxide hydrolase 1 and performed molecular dynamics simulation and docking studies. Additionally, in silico docking with SARS-CoV-2 main protease, human ACE2, and avian influenza H5N1 hemagglutinin indicated strong binding potential of the compounds. This integrated approach improves our understanding of the biological potential of acylthiourea derivatives.
Collapse
Affiliation(s)
- Jebiti Haribabu
- ATACAMA-OMICS, Faculty of Medicine, University of Atacama, Los Carreras 1579, 1532502 Copiapo, Chile; Centre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600025, Tamil Nadu, India.
| | - Geetha Madhavan
- Chennai Institute of Technology (CIT), Chennai 600069, Tamil Nadu, India
| | - Srividya Swaminathan
- Centre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600025, Tamil Nadu, India
| | - Murugesan Panneerselvam
- MolMod-CS - Instituto de Química, Universidade Federal Fluminense, Campos de Valonginho s/n, Centro, Niterói 24020-14, Rio de Janeiro, Brazil
| | - Daniel Moraga
- Laboratorio de Fisiología, Departamento de Ciencias Biomédicas, Facultad de Medicina Universidad de Tarapacá, Arica 1000000, Chile
| | | | - Cesar Echeverria
- ATACAMA-OMICS, Faculty of Medicine, University of Atacama, Los Carreras 1579, 1532502 Copiapo, Chile
| | - Arunachalam Arulraj
- Departamento de Electricidad, Facultad de Ingeniería, Universidad Tecnológica Metropolitana (UTEM), Av. José Pedro Alessandri 1242, Ñuñoa-7800002, Santiago, Chile
| | - Ramalinga Viswanathan Mangalaraja
- Faculty of Engineering and Sciences, Universidad Adolfo Ibáñez, Diagonal las Torres 2640, Peñalolén, Santiago, Chile; Department of Mechanical Engineering, Faculty of Engineering, Karpagam Academy of Higher Education, Coimbatore 641 021, Tamil Nadu, India
| | - Varaprasad Kokkarachedu
- Facultad de Ingeniería, Arquitectura y Diseño, Universidad San Sebastián, Lientur 1457, Concepción, Chile
| | - Juan F Santibanez
- Institute for Medical Research, National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia; Integrative Center for Biology and Applied Chemistry (CIBQA), Universidad Bernardo O'Higgins, Santiago, Chile
| | - Rodrigo Ramirez-Tagle
- Facultad de Ingeniería y Arquitectura, Universidad Central de Chile, Santiago, Chile
| |
Collapse
|
106
|
Zhao C, Rong Y, Shi S, Gao WC, Zhang C. A novel method for synthesizing authentic SARS-CoV-2 main protease. Protein Expr Purif 2024; 222:106531. [PMID: 38852715 DOI: 10.1016/j.pep.2024.106531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/01/2024] [Accepted: 06/07/2024] [Indexed: 06/11/2024]
Abstract
The SARS-CoV-2 main protease (Mpro) plays a crucial role in virus amplification and is an ideal target for antiviral drugs. Currently, authentic Mpro is prepared through two rounds of proteolytic cleavage. In this method, Mpro carries a self-cleavage site at the N-terminus and a protease cleavage site followed by an affinity tag at the C-terminus. This article proposes a novel method for producing authentic Mpro through single digestion. Mpro was constructed by fusing a His tag containing TEV protease cleavage sites at the N-terminus. The expressed recombinant protein was digested by TEV protease, and the generated protein had a decreased molecular weight and significantly increased activity, which was consistent with that of authentic Mpro generated by the previous method. These findings indicated that authentic Mpro was successfully obtained. Moreover, the substrate specificity of Mpro was investigated. Mpro had a strong preference for Phe at position the P2, which suggested that the S2 subsite was an outstanding target for designing inhibitors. This article also provides a reference for the preparation of Mpro for sudden coronavirus infection in the future.
Collapse
Affiliation(s)
- Cheng Zhao
- College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, 030024, People's Republic of China.
| | - Yi Rong
- College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, 030024, People's Republic of China
| | - Shuyuan Shi
- College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, 030024, People's Republic of China
| | - Wen-Chao Gao
- College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, 030024, People's Republic of China
| | - Chaofeng Zhang
- College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, 030024, People's Republic of China.
| |
Collapse
|
107
|
Banu HS, Parvin IS, Priyadharshini SD, Gayathiri E, Prakash P, Pratheep T. Molecular insights into the antioxidant and anticancer properties: A comprehensive analysis through molecular modeling, docking, and dynamics studies. J Cell Biochem 2024; 125:e30564. [PMID: 38747366 DOI: 10.1002/jcb.30564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 03/14/2024] [Accepted: 03/24/2024] [Indexed: 10/13/2024]
Abstract
Plants are rich sources of therapeutic compounds that often lack the side effects commonly found in synthetic chemicals. Researchers have effectively synthesized pharmaceuticals from natural sources, taking inspiration from traditional medicine, in their pursuit of modern drugs. This study aims to evaluate the phenolic and flavonoid content of Solanum virginianum seeds using different solvent extracts, enzymatic assays including 2,2-diphenyl-1-picrylhydrazyl activity, reducing power, and superoxide activity. Our phytochemical screening identified active compounds, such as phenols, flavonoids, tannins, and alkaloids. The methanol extract notably possesses higher levels of total phenolic and flavonoid content in comparison to the other extracts. The results highlight the superior antioxidant activity of methanol-extracted leaves, demonstrated by their exceptional IC50 values, which surpass the established standard. In this study, molecular docking techniques were used to assess the binding affinity and to predict the binding conformation of the compounds. Quercetin 3-O beta-d-galactopyranoside displayed a binding energy of -8.35 kcal/mol with several important amino acid residues, PHE222, TRP440, ILE184, LEU192, VAL221, LEU218, SER185, and ALA188. Kaempferol 3-O-beta-l-glucopyranoside exhibited a binding energy of -8.33 kcal/mol, interacting with specific amino acid residues including ALA 441, VAL318, VAL322, MET307, ILI409, GLY442, and PHE439. The results indicate that the methanol extract has a distinct composition of biologically active constituents compared to the other extracts. Overall, seeds exhibit promise as natural antioxidants and potential agents for combating cancer. This study highlights the significance of utilizing the therapeutic capabilities of natural compounds and enhancing our comprehension of their pharmacological characteristics.
Collapse
Affiliation(s)
- Hamza Serina Banu
- Department of Chemistry, Vellalar College for Women (Autonomous), Erode, Tamilnadu, India
| | - Ismail Sheriff Parvin
- Department of Chemistry, Vellalar College for Women (Autonomous), Erode, Tamilnadu, India
| | | | - Ekambaram Gayathiri
- Department of Plant Biology and Plant Biotechnology, Guru Nanak College (Autonomous), Chennai, India
| | - Palanisamy Prakash
- Department of Botany, Periyar University, Periyar Palkalai Nagar, Salem, Tamil Nadu, India
| | - Thangaraj Pratheep
- Department of Biotechnology, Rathinam College of Arts and Science, Coimbatore, Tamil Nadu, India
| |
Collapse
|
108
|
Diogo MA, Cabral AGT, de Oliveira RB. Advances in the Search for SARS-CoV-2 M pro and PL pro Inhibitors. Pathogens 2024; 13:825. [PMID: 39452697 PMCID: PMC11510351 DOI: 10.3390/pathogens13100825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/19/2024] [Accepted: 09/22/2024] [Indexed: 10/26/2024] Open
Abstract
SARS-CoV-2 is a spherical, positive-sense, single-stranded RNA virus with a large genome, responsible for encoding both structural proteins, vital for the viral particle's architecture, and non-structural proteins, critical for the virus's replication cycle. Among the non-structural proteins, two cysteine proteases emerge as promising molecular targets for the design of new antiviral compounds. The main protease (Mpro) is a homodimeric enzyme that plays a pivotal role in the formation of the viral replication-transcription complex, associated with the papain-like protease (PLpro), a cysteine protease that modulates host immune signaling by reversing post-translational modifications of ubiquitin and interferon-stimulated gene 15 (ISG15) in host cells. Due to the importance of these molecular targets for the design and development of novel anti-SARS-CoV-2 drugs, the purpose of this review is to address aspects related to the structure, mechanism of action and strategies for the design of inhibitors capable of targeting the Mpro and PLpro. Examples of covalent and non-covalent inhibitors that are currently being evaluated in preclinical and clinical studies or already approved for therapy will be also discussed to show the advances in medicinal chemistry in the search for new molecules to treat COVID-19.
Collapse
Affiliation(s)
| | | | - Renata Barbosa de Oliveira
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil; (M.A.D.); (A.G.T.C.)
| |
Collapse
|
109
|
Oneto A, Hamwi GA, Schäkel L, Krüger N, Sylvester K, Petry M, Shamleh RA, Pillaiyar T, Claff T, Schiedel AC, Sträter N, Gütschow M, Müller CE. Nonpeptidic Irreversible Inhibitors of SARS-CoV-2 Main Protease with Potent Antiviral Activity. J Med Chem 2024; 67:14986-15011. [PMID: 39146284 DOI: 10.1021/acs.jmedchem.4c00535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
SARS-CoV-2 infections pose a high risk for vulnerable patients. In this study, we designed benzoic acid halopyridyl esters bearing a variety of substituents as irreversible inhibitors of the main viral protease (Mpro). Altogether, 55 benzoyl chloro/bromo-pyridyl esters were synthesized, with broad variation of the substitution pattern on the benzoyl moiety. A workflow was employed for multiparametric optimization, including Mpro inhibition assays of SARS-CoV-2 and related pathogenic coronaviruses, the duration of enzyme inhibition, the compounds' stability versus glutathione, cytotoxicity, and antiviral activity. Several compounds showed IC50 values in the low nanomolar range, kinact/Ki values of >100,000 M-1 s-1 and high antiviral activity. High-resolution X-ray cocrystal structures indicated an important role of ortho-fluorobenzoyl substitution, forming a water network that stabilizes the inhibitor-bound enzyme. The most potent antiviral compound was the p-ethoxy-o-fluorobenzoyl chloropyridyl ester (PSB-21110, 29b, MW 296 g/mol; EC50 2.68 nM), which may serve as a lead structure for broad-spectrum anticoronaviral therapeutics.
Collapse
Affiliation(s)
- Angelo Oneto
- Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, Bonn D-53121, Germany
- PharmaCenter Bonn, University of Bonn, Brühler Straße 7, Bonn D-53121, Germany
| | - Ghazl Al Hamwi
- Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, Bonn D-53121, Germany
- PharmaCenter Bonn, University of Bonn, Brühler Straße 7, Bonn D-53121, Germany
| | - Laura Schäkel
- Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, Bonn D-53121, Germany
- PharmaCenter Bonn, University of Bonn, Brühler Straße 7, Bonn D-53121, Germany
| | - Nadine Krüger
- Platform Infection Models, German Primate Center, Leibniz Institute for Primate Research Göttingen, Kellnerweg 4, Göttingen 37077, Germany
| | - Katharina Sylvester
- Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, Bonn D-53121, Germany
- PharmaCenter Bonn, University of Bonn, Brühler Straße 7, Bonn D-53121, Germany
| | - Marvin Petry
- Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, Bonn D-53121, Germany
- PharmaCenter Bonn, University of Bonn, Brühler Straße 7, Bonn D-53121, Germany
| | - Rasha Abu Shamleh
- Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, Bonn D-53121, Germany
- PharmaCenter Bonn, University of Bonn, Brühler Straße 7, Bonn D-53121, Germany
| | - Thanigaimalai Pillaiyar
- Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, Bonn D-53121, Germany
- PharmaCenter Bonn, University of Bonn, Brühler Straße 7, Bonn D-53121, Germany
| | - Tobias Claff
- Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, Bonn D-53121, Germany
- PharmaCenter Bonn, University of Bonn, Brühler Straße 7, Bonn D-53121, Germany
| | - Anke C Schiedel
- Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, Bonn D-53121, Germany
- PharmaCenter Bonn, University of Bonn, Brühler Straße 7, Bonn D-53121, Germany
| | - Norbert Sträter
- Center for Biotechnology and Biomedicine, Leipzig University, Deutscher Platz 5, Leipzig 04103, Germany
| | - Michael Gütschow
- Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, Bonn D-53121, Germany
- PharmaCenter Bonn, University of Bonn, Brühler Straße 7, Bonn D-53121, Germany
| | - Christa E Müller
- Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, Bonn D-53121, Germany
- PharmaCenter Bonn, University of Bonn, Brühler Straße 7, Bonn D-53121, Germany
| |
Collapse
|
110
|
Chhetri SP, Bhandari VS, Maharjan R, Lamichhane TR. Identification of lead inhibitors for 3CLpro of SARS-CoV-2 target using machine learning based virtual screening, ADMET analysis, molecular docking and molecular dynamics simulations. RSC Adv 2024; 14:29683-29692. [PMID: 39297030 PMCID: PMC11408992 DOI: 10.1039/d4ra04502e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 09/04/2024] [Indexed: 09/21/2024] Open
Abstract
The SARS-CoV-2 3CLpro is a critical target for COVID-19 therapeutics due to its role in viral replication. We employed a screening pipeline to identify novel inhibitors by combining machine learning classification with similarity checks of approved medications. A voting classifier, integrating three machine learning classifiers, was used to filter a large database (∼10 million compounds) for potential inhibitors. This ensemble-based machine learning technique enhances overall performance and robustness compared to individual classifiers. From the screening, three compounds M1, M2 and M3 were selected for further analysis. Absorption, distribution, metabolism, excretion, and toxicity (ADMET) analysis compared these candidates to nirmatrelvir and azvudine. Molecular docking followed by 200 ns MD simulations showed that only M1 (6-[2,4-bis(dimethylamino)-6,8-dihydro-5H-pyrido[3,4-d]pyrimidine-7-carbonyl]-1H-pyrimidine-2,4-dione) remained stable. For azvudine and M1, the estimated median lethal doses are 1000 and 550 mg kg-1, respectively, with maximum tolerated doses of 0.289 and 0.614 log mg per kg per day. The predicted inhibitory activity of M1 is 7.35, similar to that of nirmatrelvir. The binding free energy based on Molecular Mechanics Poisson-Boltzmann Surface Area (MM-PBSA) of M1 is -18.86 ± 4.38 kcal mol-1, indicating strong binding interactions. These findings suggest that M1 merits further investigation as a potential SARS-CoV-2 treatment.
Collapse
Affiliation(s)
| | | | - Rajesh Maharjan
- Central Department of Physics, Tribhuvan University Kathmandu 44600 Nepal
| | | |
Collapse
|
111
|
Tirehdast A, Sheikhi-Mohammareh S, Sabet-Sarvestani H, Organ MG, Semeniuchenko V, Shiri A. Design and synthesis of novel main protease inhibitors of COVID-19: quinoxalino[2,1- b]quinazolin-12-ones. RSC Adv 2024; 14:29122-29133. [PMID: 39282064 PMCID: PMC11393744 DOI: 10.1039/d4ra06025c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 09/05/2024] [Indexed: 09/18/2024] Open
Abstract
The COVID-19 pandemic represents a substantial global challenge, being a significant cause of mortality in numerous countries. Thus, it is imperative to conduct research to develop effective therapies to combat COVID-19. The primary aim of this study is to employ a two-step tandem reaction involving 2,3-dichloroquinoxaline and 2-amino-N-substituted benzamides in alkaline media/DMF at an elevated temperature to design and synthesize a series of polycyclic derivatives endowed with quinoxalino[2,1-b]quinazolin-12-one framework. Following synthesis, the newly synthesized heterocycles were evaluated for their potential as inhibitors of the main protease of SARS-CoV-2 by means of molecular docking and dynamic simulation techniques. The in silico investigation demonstrated that all tested compounds effectively establish stable binding interactions, primarily through multiple hydrogen bonding and hydrophobic interactions, at the active site of the enzyme. These findings offer crucial structural insights that can be employed in future endeavors toward designing potent inhibitors targeting the main protease (Mpro). Among the investigated compounds, the p-tolylamino-substituted quinoxalino[2,1-b]quinazolinone derivative exhibited the most promise as an inhibitor of the main protease in COVID-19. Consequently, it warrants further investigation both in vitro and in vivo to identify it as a prospective candidate for anti-SARS-CoV-2 drug development.
Collapse
Affiliation(s)
- Atefeh Tirehdast
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad Mashhad Iran
| | | | | | - Michael G Organ
- Department of Chemistry and Biomolecular Sciences, Faculty of Science, University of Ottawa Ottawa Canada
| | - Volodymyr Semeniuchenko
- Department of Chemistry and Biomolecular Sciences, Faculty of Science, University of Ottawa Ottawa Canada
| | - Ali Shiri
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad Mashhad Iran
| |
Collapse
|
112
|
Stanisavljević A, Aleksić J, Stojanović M, Baranac-Stojanović M. Solid-state synthesis of polyfunctionalized 2-pyridones and conjugated dienes. Org Biomol Chem 2024; 22:7218-7230. [PMID: 39163014 DOI: 10.1039/d4ob00902a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
Functionalized 2-pyridones are important biologically active compounds, DNA base analogues and synthetic intermediates. Herein, we report a simple, green, solid-state synthesis of differently substituted 2-pyridones. It starts from commercially available amines and activated alkynes, uses silica gel (15%Cs2CO3/SiO2) as the solid phase and a reaction vial as the only equipment. If necessary, heating is performed in a laboratory oven. Since most reactions are completed within a few hours, no additional energy consumption is required. The syntheses do not require solvents and other reagents and are easily monitored by standard analytical techniques. The atom economy is high, since all atoms of reactants are present in the products and EtOH is the only by-product. The syntheses produce polyfunctionalized conjugated dienes as the only intermediates, which are also important building blocks.
Collapse
Affiliation(s)
- Anđela Stanisavljević
- University of Belgrade - Faculty of Chemistry, Studentski trg 12-16, P.O. Box 158, 11000 Belgrade, Serbia.
| | - Jovana Aleksić
- University of Belgrade - Institute of Chemistry, Technology and Metallurgy - Center for Chemistry, Njegoševa 12, P.O. Box 473, 11000 Belgrade, Serbia.
| | - Milovan Stojanović
- University of Belgrade - Institute of Chemistry, Technology and Metallurgy - Center for Chemistry, Njegoševa 12, P.O. Box 473, 11000 Belgrade, Serbia.
| | - Marija Baranac-Stojanović
- University of Belgrade - Faculty of Chemistry, Studentski trg 12-16, P.O. Box 158, 11000 Belgrade, Serbia.
| |
Collapse
|
113
|
Fatima A, Geethakumari AM, Ahmed WS, Biswas KH. A potential allosteric inhibitor of SARS-CoV-2 main protease (M pro) identified through metastable state analysis. Front Mol Biosci 2024; 11:1451280. [PMID: 39310374 PMCID: PMC11413593 DOI: 10.3389/fmolb.2024.1451280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 08/14/2024] [Indexed: 09/25/2024] Open
Abstract
Anti-COVID19 drugs, such as nirmatrelvir, have been developed targeting the SARS-CoV-2 main protease, Mpro, based on the critical requirement of its proteolytic processing of the viral polyproteins into functional proteins essential for viral replication. However, the emergence of SARS-CoV-2 variants with Mpro mutations has raised the possibility of developing resistance against these drugs, likely due to therapeutic targeting of the Mpro catalytic site. An alternative to these drugs is the development of drugs that target an allosteric site distant from the catalytic site in the protein that may reduce the chance of the emergence of resistant mutants. Here, we combine computational analysis with in vitro assay and report the discovery of a potential allosteric site and an allosteric inhibitor of SARS-CoV-2 Mpro. Specifically, we identified an Mpro metastable state with a deformed catalytic site harboring potential allosteric sites, raising the possibility that stabilization of this metastable state through ligand binding can lead to the inhibition of Mpro activity. We then performed a computational screening of a library (∼4.2 million) of drug-like compounds from the ZINC database and identified several candidate molecules with high predicted binding affinity. MD simulations showed stable binding of the three top-ranking compounds to the putative allosteric sites in the protein. Finally, we tested the three compounds in vitro using a BRET-based Mpro biosensor and found that one of the compounds (ZINC4497834) inhibited the Mpro activity. We envisage that the identification of a potential allosteric inhibitor of Mpro will aid in developing improved anti-COVID-19 therapy.
Collapse
|
114
|
Chakraborty A, Ghosh R, Soumya Mohapatra S, Barik S, Biswas A, Chowdhuri S. Repurposing of antimycobacterium drugs for COVID-19 treatment by targeting SARS CoV-2 main protease: An in-silico perspective. Gene 2024; 922:148553. [PMID: 38734190 DOI: 10.1016/j.gene.2024.148553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/27/2024] [Accepted: 05/08/2024] [Indexed: 05/13/2024]
Abstract
The global mortality rate has been significantly impacted by the COVID-19 pandemic, caused by the SARS CoV-2 virus. Although the pursuit for a potent antiviral is still in progress, experimental therapies based on repurposing of existing drugs is being attempted. One important therapeutic target for COVID-19 is the main protease (Mpro) that cleaves the viral polyprotein in its replication process. Recently minocycline, an antimycobacterium drug, has been successfully implemented for the treatment of COVID-19 patients. But it's mode of action is still far from clear. Furthermore, it remains unresolved whether alternative antimycobacterium drugs can effectively regulate SARS CoV-2 by inhibiting the enzymatic activity of Mpro. To comprehend these facets, eight well-established antimycobacterium drugs were put through molecular docking experiments. Four of the antimycobacterium drugs (minocycline, rifampicin, clofazimine and ofloxacin) were selected by comparing their binding affinities towards Mpro. All of the four drugs interacted with both the catalytic residues of Mpro (His41 and Cys145). Additionally, molecular dynamics experiments demonstrated that the Mpro-minocyline complex has enhanced stability, experiences reduced conformational fluctuations and greater compactness than other three Mpro-antimycobacterium and Mpro-N3/lopinavir complexes. This research furnishes evidences for implementation of minocycline against SARS CoV-2. In addition, our findings also indicate other three antimycobacterium/antituberculosis drugs (rifampicin, clofazimine and ofloxacin) could potentially be evaluated for COVID-19 therapy.
Collapse
Affiliation(s)
- Ayon Chakraborty
- University Institute of Biotechnology, University Centre for Research & Development, Chandigarh University, Mohali, India
| | - Rajesh Ghosh
- School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Bhubaneswar, India
| | | | - Subhashree Barik
- School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Bhubaneswar, India
| | - Ashis Biswas
- School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Bhubaneswar, India.
| | - Snehasis Chowdhuri
- School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Bhubaneswar, India.
| |
Collapse
|
115
|
Zhu Y, Meng J, Feng B, Zhao Y, Zang Y, Lu L, Su M, Yang Q, Zhang Q, Feng L, Zhao J, Shao M, Ma Y, Yang X, Yang H, Li J, Jiang X, Rao Z. De novo design of SARS-CoV-2 main protease inhibitors with characteristic binding modes. Structure 2024; 32:1327-1334.e3. [PMID: 38925121 DOI: 10.1016/j.str.2024.05.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 04/09/2024] [Accepted: 05/30/2024] [Indexed: 06/28/2024]
Abstract
The coronavirus disease 2019 (COVID-19) is caused by a novel coronavirus called severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which spreads rapidly all over the world. The main protease (Mpro) is significant to the replication and transcription of viruses, making it an attractive drug target against coronaviruses. Here, we introduce a series of novel inhibitors which are designed de novo through structure-based drug design approach that have great potential to inhibit SARS-CoV-2 Mproin vitro. High-resolution structures show that these inhibitors form covalent bonds with the catalytic cysteine through the novel dibromomethyl ketone (DBMK) as a reactive warhead. At the same time, the designed phenyl group beside the DBMK warhead inserts into the cleft between H41 and C145 through π-π stacking interaction, splitting the catalytic dyad and disrupting proton transfer. This unique binding model provides novel clues for the cysteine protease inhibitor development of SARS-CoV-2 as well as other pathogens.
Collapse
Affiliation(s)
- Yan Zhu
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, Shenzhen 518112, China
| | - Jiaolong Meng
- State Key Laboratory of Molecular & Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Bo Feng
- The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yao Zhao
- National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, Shenzhen 518112, China.
| | - Yi Zang
- The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; Lingang Laboratory, Shanghai 200031, China
| | - Lingling Lu
- State Key Laboratory of Molecular & Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Mingbo Su
- The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Qi Yang
- Guangzhou National Laboratory, Guangzhou, Guangdong 510005, China
| | - Qi Zhang
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Lu Feng
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Response, College of Life Sciences, Nankai University, and Tianjin Key Laboratory of Protein Sciences, Tianjin 300071, China
| | - Jinyi Zhao
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Maolin Shao
- Laboratory of Structural Biology, School of Life Sciences and School of Medicine, Tsinghua University, Beijing 100091, China
| | - Yuanyuan Ma
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Xiuna Yang
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Haitao Yang
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Jia Li
- The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong 264117, China.
| | - Xuefeng Jiang
- State Key Laboratory of Molecular & Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China.
| | - Zihe Rao
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Response, College of Life Sciences, Nankai University, and Tianjin Key Laboratory of Protein Sciences, Tianjin 300071, China; Laboratory of Structural Biology, School of Life Sciences and School of Medicine, Tsinghua University, Beijing 100091, China.
| |
Collapse
|
116
|
Huynh PNH, Khamplong P, Phan MH, Nguyen TP, Vu PNL, Tang QV, Chamsodsai P, Seetaha S, Tuong TL, Vu TY, Vo DD, Choowongkomon K, Vo CVT. Asymmetric imidazole-4,5-dicarboxamide derivatives as SARS-CoV-2 main protease inhibitors: design, synthesis and biological evaluation. RSC Med Chem 2024:d4md00414k. [PMID: 39345712 PMCID: PMC11423687 DOI: 10.1039/d4md00414k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 08/26/2024] [Indexed: 10/01/2024] Open
Abstract
The SARS-CoV-2 main protease, a vital enzyme for virus replication, is a potential target for developing drugs in COVID-19 treatment. Until now, three SARS-CoV-2 main protease inhibitors have been approved for COVID-19 treatment. This study explored the inhibitory potency of asymmetric imidazole-4,5-dicarboxamide derivatives against the SARS-CoV-2 main protease. Fourteen derivatives were designed based on the structure of the SARS-CoV-2 main protease active site, the hydrolysis mechanism, and the experience gained from the reported inhibitor structures. They were synthesized through a four-step procedure from benzimidazole and 2-methylbenzimidazole. SARS-CoV-2 main protease inhibition was evaluated in vitro by fluorogenic assay with lopinavir, ritonavir, and ebselen as positive references. N-(4-Chlorophenyl)-2-methyl-4-(morpholine-4-carbonyl)-1H-imidazole-5-carboxamide (5a2) exhibited the highest potency against the SARS-CoV-2 main protease with an IC50 of 4.79 ± 1.37 μM relative to ebselen with an IC50 of 0.04 ± 0.013 μM. Enzyme kinetic and molecular docking studies were carried out to clarify the inhibitory mechanism and to prove that the compound interacts at the active site. We also performed cytotoxicity assay to confirm that these compounds are not toxic to human cells.
Collapse
Affiliation(s)
- Phuong Nguyen Hoai Huynh
- Department of Medicinal Chemistry, Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City Vietnam
| | - Phatcharin Khamplong
- Department of Biochemistry, Faculty of Science, Kasetsart University Bangkok 10900 Thailand
| | - Minh-Hoang Phan
- Department of Medicinal Chemistry, Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City Vietnam
| | - Thanh-Phuc Nguyen
- Department of Medicinal Chemistry, Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City Vietnam
| | - Phuong Ngoc Lan Vu
- Department of Medicinal Chemistry, Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City Vietnam
| | - Quang-Vinh Tang
- Department of Medicinal Chemistry, Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City Vietnam
| | - Phumin Chamsodsai
- Genetic Engineering Interdisciplinary Program, Graduate School, Kasetsart University Bangkok 10900 Thailand
| | - Supaphorn Seetaha
- Genetic Engineering Interdisciplinary Program, Graduate School, Kasetsart University Bangkok 10900 Thailand
| | - Truong Lam Tuong
- Department of Medicinal Chemistry, Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City Vietnam
| | - Thien Y Vu
- Faculty of Pharmacy, Ton Duc Thang University Ho Chi Minh City Vietnam
| | - Duc-Duy Vo
- Department of Cell and Molecular Biology, Biomedical Centre, Uppsala University Husargatan 3 75237 Uppsala Sweden
- Department of Chemistry, Biomedical Centre, Uppsala University Husargatan 3 75237 Uppsala Sweden
- School of Applied Chemistry, Tra Vinh University 126 Nguyen Thien Thanh Street, Ward 5 Tra Vinh City Vietnam
| | - Kiattawee Choowongkomon
- Department of Biochemistry, Faculty of Science, Kasetsart University Bangkok 10900 Thailand
- Genetic Engineering Interdisciplinary Program, Graduate School, Kasetsart University Bangkok 10900 Thailand
| | - Cam-Van T Vo
- Department of Medicinal Chemistry, Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City Vietnam
| |
Collapse
|
117
|
Aniana A, Nashed NT, Ghirlando R, Drago VN, Kovalevsky A, Louis JM. Characterization of alternate encounter assemblies of SARS-CoV-2 main protease. J Biol Chem 2024; 300:107675. [PMID: 39128719 PMCID: PMC11416275 DOI: 10.1016/j.jbc.2024.107675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/06/2024] [Accepted: 08/07/2024] [Indexed: 08/13/2024] Open
Abstract
The assembly of two monomeric constructs spanning segments 1-199 (MPro1-199) and 10-306 (MPro10-306) of SARS-CoV-2 main protease (MPro) was examined to assess the existence of a transient heterodimer intermediate in the N-terminal autoprocessing pathway of MPro model precursor. Together, they form a heterodimer population accompanied by a 13-fold increase in catalytic activity. Addition of inhibitor GC373 to the proteins increases the activity further by ∼7-fold with a 1:1 complex and higher order assemblies approaching 1:2 and 2:2 molecules of MPro1-199 and MPro10-306 detectable by analytical ultracentrifugation and native mass estimation by light scattering. Assemblies larger than a heterodimer (1:1) are discussed in terms of alternate pathways of domain III association, either through switching the location of helix 201 to 214 onto a second helical domain of MPro10-306 and vice versa or direct interdomain III contacts like that of the native dimer, based on known structures and AlphaFold 3 prediction, respectively. At a constant concentration of MPro1-199 with molar excess of GC373, the rate of substrate hydrolysis displays first order dependency on the MPro10-306 concentration and vice versa. An equimolar composition of the two proteins with excess GC373 exhibits half-maximal activity at ∼6 μM MPro1-199. Catalytic activity arises primarily from MPro1-199 and is dependent on the interface interactions involving the N-finger residues 1 to 9 of MPro1-199 and E290 of MPro10-306. Importantly, our results confirm that a single N-finger region with its associated intersubunit contacts is sufficient to form a heterodimeric MPro intermediate with enhanced catalytic activity.
Collapse
Affiliation(s)
- Annie Aniana
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, DHHS, Bethesda, Maryland, USA
| | - Nashaat T Nashed
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, DHHS, Bethesda, Maryland, USA
| | - Rodolfo Ghirlando
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, DHHS, Bethesda, Maryland, USA
| | - Victoria N Drago
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Andrey Kovalevsky
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - John M Louis
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, DHHS, Bethesda, Maryland, USA.
| |
Collapse
|
118
|
Liang JJ, Pitsillou E, Lau HLY, Mccubbery CP, Gan H, Hung A, Karagiannis TC. Utilization of the EpiMed Coronabank Chemical Collection to identify potential SARS-CoV-2 antivirals: in silico studies targeting the nsp14 ExoN domain and PL pro naphthalene binding site. J Mol Graph Model 2024; 131:108803. [PMID: 38815531 DOI: 10.1016/j.jmgm.2024.108803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 05/22/2024] [Accepted: 05/24/2024] [Indexed: 06/01/2024]
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) genome encodes 29 proteins including four structural, 16 nonstructural (nsps), and nine accessory proteins (https://epimedlab.org/sars-cov-2-proteome/). Many of these proteins contain potential targetable sites for the development of antivirals. Despite the widespread use of vaccinations, the emergence of variants necessitates the investigation of new therapeutics and antivirals. Here, the EpiMed Coronabank Chemical Collection (https://epimedlab.org/crl/) was utilized to investigate potential antivirals against the nsp14 exoribonuclease (ExoN) domain. Molecular docking was performed to evaluate the binding characteristics of our chemical library against the nsp14 ExoN site. Based on the initial screen, trisjuglone, ararobinol, corilagin, and naphthofluorescein were identified as potential lead compounds. Molecular dynamics (MD) simulations were subsequently performed, with the results highlighting the stability of the lead compounds in the nsp14 ExoN site. Protein-RNA docking revealed the potential for the lead compounds to disrupt the interaction with RNA when bound to the ExoN site. Moreover, hypericin, cyanidin-3-O-glucoside, and rutin were previously identified as lead compounds targeting the papain-like protease (PLpro) naphthalene binding site. Through performing MD simulations, the stability and interactions of lead compounds with PLpro were further examined. Overall, given the critical role of the exonuclease activity of nsp14 in ensuring viral fidelity and the multifunctional role of PLpro in viral pathobiology and replication, these nsps represent important targets for antiviral drug development. Our databases can be utilized for in silico studies, such as the ones performed here, and this approach can be applied to other potentially druggable SARS-CoV-2 protein targets.
Collapse
Affiliation(s)
- Julia J Liang
- Epigenomic Medicine Laboratory at prospED Polytechnic, Carlton, VIC, 3053, Australia; School of Science, STEM College, RMIT University, Melbourne, VIC, 3001, Australia; Epigenetics in Human Health and Disease Program, Baker Heart and Diabetes Institute, 75 Commercial Road, Prahran, VIC, 3004, Australia
| | - Eleni Pitsillou
- Epigenomic Medicine Laboratory at prospED Polytechnic, Carlton, VIC, 3053, Australia; School of Science, STEM College, RMIT University, Melbourne, VIC, 3001, Australia
| | - Hannah L Y Lau
- Epigenomic Medicine Laboratory at prospED Polytechnic, Carlton, VIC, 3053, Australia; Department of Microbiology and Immunology, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Cian P Mccubbery
- Epigenomic Medicine Laboratory at prospED Polytechnic, Carlton, VIC, 3053, Australia; Department of Microbiology and Immunology, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Hockxuen Gan
- Epigenomic Medicine Laboratory at prospED Polytechnic, Carlton, VIC, 3053, Australia; Department of Microbiology and Immunology, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Andrew Hung
- School of Science, STEM College, RMIT University, Melbourne, VIC, 3001, Australia
| | - Tom C Karagiannis
- Epigenomic Medicine Laboratory at prospED Polytechnic, Carlton, VIC, 3053, Australia; Epigenetics in Human Health and Disease Program, Baker Heart and Diabetes Institute, 75 Commercial Road, Prahran, VIC, 3004, Australia; Department of Microbiology and Immunology, The University of Melbourne, Parkville, VIC, 3010, Australia; Department of Clinical Pathology, The University of Melbourne, Parkville, VIC, 3010, Australia.
| |
Collapse
|
119
|
Hu Q, Zhang Y, Chen P, Zhang Y, Zhu G, Liu W, Wang C, Zheng S, Shen N, Wang H, Huang P, Ge G. Discovery and characterization of naturally occurring covalent inhibitors of SARS-CoV-2 M pro from the antiviral herb Ephedra. Chin J Nat Med 2024; 22:797-807. [PMID: 39326974 DOI: 10.1016/s1875-5364(24)60577-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Indexed: 09/28/2024]
Abstract
The Chinese herb Ephedra (also known as Mahuang) has been extensively utilized for the prevention and treatment of coronavirus-induced diseases, including coronavirus disease 2019 (COVID-19). However, the specific anti-SARS-CoV-2 compounds and mechanisms have not been fully elucidated. The main protease (Mpro) of SARS-CoV-2 is a highly conserved enzyme responsible for proteolytic processing during the viral life cycle, making it a critical target for the development of antiviral therapies. This study aimed to identify naturally occurring covalent inhibitors of SARS-CoV-2 Mpro from Ephedra and to investigate their covalent binding sites. The results demonstrated that the non-alkaloid fraction of Ephedra (ENA) exhibited a potent inhibitory effect against the SARS-CoV-2 Mpro effect, whereas the alkaloid fraction did not. Subsequently, the chemical constituents in ENA were identified, and the major constituents' anti-SARS-CoV-2 Mpro effects were evaluated. Among the tested constituents, herbacetin (HE) and gallic acid (GA) were found to inhibit SARS-CoV-2 Mpro in a time- and dose-dependent manner. Their combination displayed a significant synergistic effect on this key enzyme. Additionally, various techniques, including inhibition kinetic assays, chemoproteomic methods, and molecular dynamics simulations, were employed to further elucidate the synergistic anti-Mpro mechanisms of the combination of HE and GA. Overall, this study deciphers the naturally occurring covalent inhibitors of SARS-CoV-2 Mpro from Ephedra and characterizes their synergistic anti-Mpro synergistic effect, providing robust evidence to support the anti-coronavirus efficacy of Ephedra.
Collapse
Affiliation(s)
- Qing Hu
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou 310014, China
| | - Yiwen Zhang
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou 310014, China
| | - Pengcheng Chen
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou 310014, China
| | - Yani Zhang
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Guanghao Zhu
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Wei Liu
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200021, China
| | - Chaoran Wang
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Shuilian Zheng
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou 310014, China
| | - Nonger Shen
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou 310014, China
| | - Haonan Wang
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Ping Huang
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou 310014, China.
| | - Guangbo Ge
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
120
|
Molaakbari E, Aallae MR, Golestanifar F, Garakani-Nejad Z, Khosravi A, Rezapour M, Eshaghi Malekshah R, Ghomi M, Ren G. In silico assessment of hesperidin on SARS-CoV-2 main protease and RNA polymerase: Molecular docking and dynamics simulation approach. Biochem Biophys Rep 2024; 39:101804. [PMID: 39193225 PMCID: PMC11347860 DOI: 10.1016/j.bbrep.2024.101804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/31/2024] [Accepted: 07/31/2024] [Indexed: 08/29/2024] Open
Abstract
The present study uses molecular docking and dynamic simulations to evaluate the inhibitory effect of flavonoid glycosides-based compounds on coronavirus Main protease (Mpro) and RNA polymerase. The Molegro Virtual Docker (MVD) software is utilized to simulate and calculate the binding parameters of compounds with coronavirus. The docking results show that the selected herbal compounds are more effective than those of chemical compounds. It is also revealed that five herbal ligands and two chemical ligands have the best docking scores. Furthermore, a Molecular Dynamics (MD) simulation was conducted for Hesperidin, confirming docking results. Analysis based on different parameters such as Root-mean-square deviation (RMSD), Root mean square fluctuation (RMSF), Radius of gyration (Rg), Solvent accessibility surface area (SASA), and the total number of hydrogen bonds suggests that Hesperidin formed a stable complex with Mpro. Absorption, Distribution, Metabolism, Excretion, And Toxicity (ADMET) analysis was performed to compare Hesperidin and Grazoprevir as potential antiviral medicines, evaluating both herbal and chemical ligand results. According to the study, herbal compounds could be effective on coronavirus and are admissible candidates for developing potential operative anti-viral medicines. Hesperidin was found to be the most acceptable interaction. Grazoprevir is an encouraging candidate for drug development and clinical trials, with the potential to become a highly effective Mpro inhibitor. Compared to RNA polymerase, Mpro showed a greater affinity for bonding with Hesperidin. van der Waals and electrostatic energies dominated, creating a stable Hesperidin-Mpro and Hesperidin-RNA polymerase complex.
Collapse
Affiliation(s)
- Elaheh Molaakbari
- Leishmaniasis Research Center, Kerman University of Medical Science, Kerman, Iran
| | | | | | | | - Ahmad Khosravi
- Leishmaniasis Research Center, Kerman University of Medical Science, Kerman, Iran
| | - Mohsen Rezapour
- Department of Biostatics and Data Science, University of Texas, Health Science Center at Houston, Texas, USA
| | | | - Mahsa Ghomi
- Students Research Committee, Faculty of Medicine, Zabol University of Medical Sciences, Zabol, Iran
| | - Guogang Ren
- School of Physics, Engineering and Computer Science, University of Hertfordshire, Hatfield, AL10 9AB, UK
| |
Collapse
|
121
|
Chan CCY, Guo Q, Chan JFW, Tang K, Cai JP, Chik KKH, Huang Y, Dai M, Qin B, Ong CP, Chu AWH, Chan WM, Ip JD, Wen L, Tsang JOL, Wang TY, Xie Y, Qin Z, Cao J, Ye ZW, Chu H, To KKW, Ge XY, Ni T, Jin DY, Cui S, Yuen KY, Yuan S. Identification of novel small-molecule inhibitors of SARS-CoV-2 by chemical genetics. Acta Pharm Sin B 2024; 14:4028-4044. [PMID: 39309487 PMCID: PMC11413674 DOI: 10.1016/j.apsb.2024.05.026] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 04/24/2024] [Accepted: 05/16/2024] [Indexed: 09/25/2024] Open
Abstract
There are only eight approved small molecule antiviral drugs for treating COVID-19. Among them, four are nucleotide analogues (remdesivir, JT001, molnupiravir, and azvudine), while the other four are protease inhibitors (nirmatrelvir, ensitrelvir, leritrelvir, and simnotrelvir-ritonavir). Antiviral resistance, unfavourable drug‒drug interaction, and toxicity have been reported in previous studies. Thus there is a dearth of new treatment options for SARS-CoV-2. In this work, a three-tier cell-based screening was employed to identify novel compounds with anti-SARS-CoV-2 activity. One compound, designated 172, demonstrated broad-spectrum antiviral activity against multiple human pathogenic coronaviruses and different SARS-CoV-2 variants of concern. Mechanistic studies validated by reverse genetics showed that compound 172 inhibits the 3-chymotrypsin-like protease (3CLpro) by binding to an allosteric site and reduces 3CLpro dimerization. A drug synergistic checkerboard assay demonstrated that compound 172 can achieve drug synergy with nirmatrelvir in vitro. In vivo studies confirmed the antiviral activity of compound 172 in both Golden Syrian Hamsters and K18 humanized ACE2 mice. Overall, this study identified an alternative druggable site on the SARS-CoV-2 3CLpro, proposed a potential combination therapy with nirmatrelvir to reduce the risk of antiviral resistance and shed light on the development of allosteric protease inhibitors for treating a range of coronavirus diseases.
Collapse
Affiliation(s)
- Chris Chun-Yiu Chan
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Pokfulam, Hong Kong SAR 999077, China
| | - Qian Guo
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Pokfulam, Hong Kong SAR 999077, China
| | - Jasper Fuk-Woo Chan
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Pokfulam, Hong Kong SAR 999077, China
- Department of Infectious Diseases and Microbiology, the University of Hong Kong-Shenzhen Hospital, Shenzhen 518000, China
- Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong SAR 999077, China
- Academician Workstation of Hainan Province, Hainan Medical University-the University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Haikou 571100, China
| | - Kaiming Tang
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Pokfulam, Hong Kong SAR 999077, China
| | - Jian-Piao Cai
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Pokfulam, Hong Kong SAR 999077, China
| | - Kenn Ka-Heng Chik
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Pokfulam, Hong Kong SAR 999077, China
- Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong SAR 999077, China
| | - Yixin Huang
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Pokfulam, Hong Kong SAR 999077, China
| | - Mei Dai
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Bo Qin
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Chon Phin Ong
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Pokfulam, Hong Kong SAR 999077, China
| | - Allen Wing-Ho Chu
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Pokfulam, Hong Kong SAR 999077, China
- Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong SAR 999077, China
| | - Wan-Mui Chan
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Pokfulam, Hong Kong SAR 999077, China
| | - Jonathan Daniel Ip
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Pokfulam, Hong Kong SAR 999077, China
| | - Lei Wen
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Pokfulam, Hong Kong SAR 999077, China
- Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong SAR 999077, China
| | - Jessica Oi-Ling Tsang
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Pokfulam, Hong Kong SAR 999077, China
- Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong SAR 999077, China
| | - Tong-Yun Wang
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Pokfulam, Hong Kong SAR 999077, China
| | - Yubin Xie
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Pokfulam, Hong Kong SAR 999077, China
| | - Zhenzhi Qin
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Pokfulam, Hong Kong SAR 999077, China
| | - Jianli Cao
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Pokfulam, Hong Kong SAR 999077, China
- Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong SAR 999077, China
| | - Zi-Wei Ye
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Pokfulam, Hong Kong SAR 999077, China
| | - Hin Chu
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Pokfulam, Hong Kong SAR 999077, China
- Department of Infectious Diseases and Microbiology, the University of Hong Kong-Shenzhen Hospital, Shenzhen 518000, China
- Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong SAR 999077, China
| | - Kelvin Kai-Wang To
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Pokfulam, Hong Kong SAR 999077, China
- Department of Infectious Diseases and Microbiology, the University of Hong Kong-Shenzhen Hospital, Shenzhen 518000, China
- Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong SAR 999077, China
| | - Xing-Yi Ge
- College of Biology, Hunan Provincial Key Laboratory of Medical Virology, Hunan University, Changsha 410082, China
| | - Tao Ni
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Pokfulam, Hong Kong SAR 999077, China
| | - Dong-Yan Jin
- Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong SAR 999077, China
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Pokfulam, Hong Kong SAR 999077, China
| | - Sheng Cui
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Kwok-Yung Yuen
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Pokfulam, Hong Kong SAR 999077, China
- Department of Infectious Diseases and Microbiology, the University of Hong Kong-Shenzhen Hospital, Shenzhen 518000, China
- Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong SAR 999077, China
- Academician Workstation of Hainan Province, Hainan Medical University-the University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Haikou 571100, China
| | - Shuofeng Yuan
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Pokfulam, Hong Kong SAR 999077, China
- Department of Infectious Diseases and Microbiology, the University of Hong Kong-Shenzhen Hospital, Shenzhen 518000, China
- Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong SAR 999077, China
| |
Collapse
|
122
|
Lopez UM, Hasan MM, Havranek B, Islam SM. SARS-CoV-2 Resistance to Small Molecule Inhibitors. CURRENT CLINICAL MICROBIOLOGY REPORTS 2024; 11:127-139. [PMID: 39559548 PMCID: PMC11573241 DOI: 10.1007/s40588-024-00229-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/05/2024] [Indexed: 11/20/2024]
Abstract
Purpose of the Review SARS-CoV-2 undergoes genetic mutations like many other viruses. Some mutations lead to the emergence of new Variants of Concern (VOCs), affecting transmissibility, illness severity, and the effectiveness of antiviral drugs. Continuous monitoring and research are crucial to comprehend variant behavior and develop effective response strategies, including identifying mutations that may affect current drug therapies. Recent Findings Antiviral therapies such as Nirmatrelvir and Ensitrelvir focus on inhibiting 3CLpro, whereas Remdesivir, Favipiravir, and Molnupiravir target nsp12, thereby reducing the viral load. However, the emergence of resistant mutations in 3CLpro and nsp12 could impact the efficiency of these small molecule drug therapeutics. Summary This manuscript summarizes mutations in 3CLpro and nsp12, which could potentially reduce the efficacy of drugs. Additionally, it encapsulates recent advancements in small molecule antivirals targeting SARS-CoV-2 viral proteins, including their potential for developing resistance against emerging variants.
Collapse
Affiliation(s)
- Uxua Modrego Lopez
- Department of Chemistry, Delaware State University, Dover, DE 19901, USA
| | - Md Mehedi Hasan
- Department of Chemistry, Delaware State University, Dover, DE 19901, USA
| | - Brandon Havranek
- Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Shahidul M Islam
- Department of Chemistry, Delaware State University, Dover, DE 19901, USA
| |
Collapse
|
123
|
Rut W, Groborz K, Sun X, Hilgenfeld R, Drag M. Profiling of coronaviral M pro and enteroviral 3C pro specificity provides a framework for the development of broad-spectrum antiviral compounds. Protein Sci 2024; 33:e5139. [PMID: 39150063 PMCID: PMC11328108 DOI: 10.1002/pro.5139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/04/2024] [Accepted: 07/20/2024] [Indexed: 08/17/2024]
Abstract
The main protease from coronaviruses and the 3C protease from enteroviruses play a crucial role in processing viral polyproteins, making them attractive targets for the development of antiviral agents. In this study, we employed a combinatorial chemistry approach-HyCoSuL-to compare the substrate specificity profiles of the main and 3C proteases from alphacoronaviruses, betacoronaviruses, and enteroviruses. The obtained data demonstrate that coronavirus Mpros exhibit overlapping substrate specificity in all binding pockets, whereas the 3Cpro from enterovirus displays slightly different preferences toward natural and unnatural amino acids at the P4-P2 positions. However, chemical tools such as substrates, inhibitors, and activity-based probes developed for SARS-CoV-2 Mpro can be successfully applied to investigate the activity of the Mpro from other coronaviruses as well as the 3Cpro from enteroviruses. Our study provides a structural framework for the development of broad-spectrum antiviral compounds.
Collapse
Affiliation(s)
- Wioletta Rut
- Department of Chemical Biology and Bioimaging, Wroclaw University of Science and Technology, Wroclaw, Poland
| | - Katarzyna Groborz
- Department of Chemical Biology and Bioimaging, Wroclaw University of Science and Technology, Wroclaw, Poland
| | - Xinyuanyuan Sun
- Institute of Molecular Medicine, University of Lübeck, Lübeck, Germany
| | - Rolf Hilgenfeld
- Institute of Molecular Medicine, University of Lübeck, Lübeck, Germany
- German Center for Infection Research (DZIF), Hamburg-Lübeck-Borstel-Riems Site, University of Lübeck, Lübeck, Germany
| | - Marcin Drag
- Department of Chemical Biology and Bioimaging, Wroclaw University of Science and Technology, Wroclaw, Poland
| |
Collapse
|
124
|
Kovar P, Richardson PL, Korepanova A, Afanador GA, Stojkovic V, Li T, Schrimpf MR, Ng TI, Degoey DA, Gopalakrishnan SM, Chen J. Development of a sensitive high-throughput enzymatic assay capable of measuring sub-nanomolar inhibitors of SARS-CoV2 Mpro. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2024; 29:100179. [PMID: 39151824 DOI: 10.1016/j.slasd.2024.100179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/23/2024] [Accepted: 08/13/2024] [Indexed: 08/19/2024]
Abstract
The SARS-CoV-2 main protease (Mpro) is essential for viral replication because it is responsible for the processing of most of the non-structural proteins encoded by the virus. Inhibition of Mpro prevents viral replication and therefore constitutes an attractive antiviral strategy. We set out to develop a high-throughput Mpro enzymatic activity assay using fluorescently labeled peptide substrates. A library of fluorogenic substrates of various lengths, sequences and dye/quencher positions was prepared and tested against full length SARS-CoV-2 Mpro enzyme for optimal activity. The addition of buffers containing strongly hydrated kosmotropic anion salts, such as citrate, from the Hofmeister series significantly boosted the enzyme activity and enhanced the assay detection limit, enabling the ranking of sub-nanomolar inhibitors without relying on the low-throughput Morrison equation method. By comparing cooperativity in citrate or non-citrate buffer while titrating the Mpro enzyme concentration, we found full positive cooperativity of Mpro with citrate buffer at less than one nanomolar (nM), but at a much higher enzyme concentration (∼320 nM) with non-citrate buffer. In addition, using a tight binding Mpro inhibitor, we confirmed there was only one active catalytical site in each Mpro monomer. Since cooperativity requires at least two binding sites, we hypothesized that citrate facilitates dimerization of Mpro at sub-nanomolar concentration as one of the mechanisms enhances Mpro catalytic efficiency. This assay has been used in high-throughput screening and structure activity relationship (SAR) studies to support medicinal chemistry efforts. IC50 values determined in this assay correlates well with EC50 values generated by a SARS-CoV-2 antiviral assay after adjusted for cell penetration.
Collapse
Affiliation(s)
- Peter Kovar
- SMTPT, AbbVie Discovery, AbbVie, 1 N Waukegan Rd., North Chicago, IL 60065, USA
| | - Paul L Richardson
- SMTPT, AbbVie Discovery, AbbVie, 1 N Waukegan Rd., North Chicago, IL 60065, USA
| | - Alla Korepanova
- SMTPT, AbbVie Discovery, AbbVie, 1 N Waukegan Rd., North Chicago, IL 60065, USA
| | - Gustavo A Afanador
- SMTPT, AbbVie Discovery, AbbVie, 1 N Waukegan Rd., North Chicago, IL 60065, USA
| | - Vladimir Stojkovic
- SMTPT, AbbVie Discovery, AbbVie, 1 N Waukegan Rd., North Chicago, IL 60065, USA
| | - Tao Li
- SMTPT, AbbVie Discovery, AbbVie, 1 N Waukegan Rd., North Chicago, IL 60065, USA
| | - Michael R Schrimpf
- SMTPT, AbbVie Discovery, AbbVie, 1 N Waukegan Rd., North Chicago, IL 60065, USA
| | - Teresa I Ng
- SMTPT, AbbVie Discovery, AbbVie, 1 N Waukegan Rd., North Chicago, IL 60065, USA
| | - David A Degoey
- SMTPT, AbbVie Discovery, AbbVie, 1 N Waukegan Rd., North Chicago, IL 60065, USA
| | | | - Jun Chen
- SMTPT, AbbVie Discovery, AbbVie, 1 N Waukegan Rd., North Chicago, IL 60065, USA.
| |
Collapse
|
125
|
Menacer R, Bouchekioua S, Meliani S, Belattar N. New combined Inverse-QSAR and molecular docking method for scaffold-based drug discovery. Comput Biol Med 2024; 180:108992. [PMID: 39128176 DOI: 10.1016/j.compbiomed.2024.108992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 07/14/2024] [Accepted: 08/02/2024] [Indexed: 08/13/2024]
Abstract
Computer-aided drug discovery plays a vital role in developing novel medications for various diseases. The COVID-19 pandemic has heightened the need for innovative approaches to design lead compounds with the potential to become effective drugs. Specifically, designing promising inhibitors of the SARS-CoV-2 main protease (Mpro) is crucial, as it plays a key role in viral replication. Phytochemicals, primarily flavonoids and flavonols from medicinal plants, were screened. Fifty small molecules were selected for molecular docking analysis against SARS-CoV-2 Mpro (PDB ID: 6LU7). Binding energies and interactions were analyzed and compared to those of the anti-SARS-CoV-2 inhibitor Nirmatrelvir. Using these 50 structures as a training set, a QSAR model was built employing simple, reversible topological descriptors. An inverse-QSAR analysis was then performed on 2⁹ = 512 hydroxyl combinations at nine possible positions on the flavone and flavonol scaffold. The model predicted three novel, promising compounds exhibiting the most favorable binding energies (-8.5 kcal/mol) among the 512 possible hydroxyl combinations: 3,6,7,2',4'-pentahydroxyflavone (PF9), 6,7,2',4'-tetrahydroxyflavone (PF11), and 3,6,7,4'-tetrahydroxyflavone (PF15). Molecular dynamics (MD) simulations demonstrated the stability of the PF9/Mpro complex over 300 ns of simulation. These predicted structures, reported here for the first time, warrant synthesis and further evaluation of their biological activity through in vitro and in vivo studies.
Collapse
Affiliation(s)
- Rafik Menacer
- Centre de Recherche en Sciences Pharmaceutiques, Constantine, 25000, Algeria; Centre de Recherche Scientifique et Technique en Analyses Physico-Chimiques CRAPC, BP 384, Zone Industrielle, Bou-ismail, Tipaza, RP, 42004, Algeria.
| | - Saad Bouchekioua
- Centre de Recherche en Sciences Pharmaceutiques, Constantine, 25000, Algeria
| | - Saida Meliani
- Centre de Recherche en Sciences Pharmaceutiques, Constantine, 25000, Algeria
| | - Nadjah Belattar
- Centre de Recherche en Sciences Pharmaceutiques, Constantine, 25000, Algeria
| |
Collapse
|
126
|
Lloyd MD, Gregory KS, Acharya KR. Functional implications of unusual NOS and SONOS covalent linkages found in proteins. Chem Commun (Camb) 2024; 60:9463-9471. [PMID: 39109843 DOI: 10.1039/d4cc03191a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2024]
Abstract
The tertiary and quaternary structures of many proteins are stabilized by strong covalent forces, of which disulfide bonds are the most well known. A new type of intramolecular and intermolecular covalent bond has been recently reported, consisting of the Lys and Cys side-chains linked by an oxygen atom (NOS). These post-translational modifications are widely distributed amongst proteins, and are formed under oxidative conditions. Similar linkages are observed during antibiotic biosynthesis, where hydroxylamine intermediates are tethered to the sulfur of enzyme active site Cys residues. These linkages open the way to understanding protein structure and function, give new insights into enzyme catalysis and natural product biosynthesis, and offer new strategies for drug design.
Collapse
Affiliation(s)
- Matthew D Lloyd
- Department of Life Sciences, University of Bath, Claverton Down, Bath BA2 7AY, UK.
| | - Kyle S Gregory
- Department of Life Sciences, University of Bath, Claverton Down, Bath BA2 7AY, UK.
| | - K Ravi Acharya
- Department of Life Sciences, University of Bath, Claverton Down, Bath BA2 7AY, UK.
| |
Collapse
|
127
|
Badawy AM, Donia MSM, Hamdy NG, El-Ayouty MM, Mohamed OG, Darwish KM, Tripathi A, Ahmed SA. Dual SARS-CoV-2 and MERS-CoV inhibitors from Artemisia monosperma: isolation, structure elucidation, molecular modelling studies, and in vitro activities. Org Biomol Chem 2024; 22:7006-7016. [PMID: 39135436 DOI: 10.1039/d4ob00929k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
The COVID-19 pandemic has spread throughout the whole globe, so it is imperative that all available resources be used to treat this scourge. In reality, the development of new pharmaceuticals has mostly benefited from natural products. The widespread medicinal usage of species in the Asteraceae family is extensively researched. In this study, compounds isolated from methanolic extract of Artemisia monosperma Delile, a wild plant whose grows in Egypt's Sinai Peninsula. Three compounds, stigmasterol 3-O-β-D-glucopyranoside 1, rhamnetin 3, and padmatin 6, were first isolated from this species. In addition, five previously reported compounds, arcapillin 2, jaceosidin 4, hispidulin 5, 7-O-methyleriodictyol 7, and eupatilin 8, were isolated. Applying molecular modelling simulations revealed two compounds, arcapillin 2 and rhamnetin 3 with the best docking interactions and energies within SARS-CoV-2 Mpro-binding site (-6.16, and -6.70 kcal mol-1, respectively). The top-docked compounds (2-3) were further evaluated for inhibitory concentrations (IC50), and half-maximal cytotoxicity (CC50) of both SARS-CoV-2 and MERS-CoV. Interestingly, arcapillin showed high antiviral activity towards SARS-CoV-2 and MERS-CoV, with IC50 values of 190.8 μg mL-1 and 16.58 μg mL-1, respectively. These findings may hold promise for further preclinical and clinical research, particularly on arcapillin itself or in collaboration with other drugs for COVID-19 treatment.
Collapse
Affiliation(s)
- Ahmed M Badawy
- Department of Pharmacognosy, Faculty of Pharmacy, Sinai University, El-Arish 45511, Egypt.
| | - Marwa Samir M Donia
- Department of Pharmacognosy, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt.
| | - Nehal G Hamdy
- Department of Pharmacognosy, Faculty of Pharmacy, Sinai University, El-Arish 45511, Egypt.
| | - Mayada M El-Ayouty
- Department of Pharmacognosy, Faculty of Pharmacy, Sinai University, El-Arish 45511, Egypt.
| | - Osama G Mohamed
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Kasr el Aini St., Cairo 11562, Egypt.
- Natural Products Discovery Core, Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Khaled M Darwish
- Department of Medicinal Chemistry, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt.
| | - Ashootosh Tripathi
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109, USA.
- Natural Products Discovery Core, Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Safwat A Ahmed
- Department of Pharmacognosy, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt.
| |
Collapse
|
128
|
Al Adem K, Ferreira J, Villanueva A, Fadl S, El-Sadaany F, Masmoudi I, Gidiya Y, Gurudza T, Cardoso T, Saksena N, Rabeh W. 3-chymotrypsin-like protease in SARS-CoV-2. Biosci Rep 2024; 44:BSR20231395. [PMID: 39036877 PMCID: PMC11300678 DOI: 10.1042/bsr20231395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 07/16/2024] [Accepted: 07/19/2024] [Indexed: 07/23/2024] Open
Abstract
Coronaviruses constitute a significant threat to the human population. Severe acute respiratory syndrome coronavirus-2, SARS-CoV-2, is a highly pathogenic human coronavirus that has caused the coronavirus disease 2019 (COVID-19) pandemic. It has led to a global viral outbreak with an exceptional spread and a high death toll, highlighting the need for effective antiviral strategies. 3-Chymotrypsin-like protease (3CLpro), the main protease in SARS-CoV-2, plays an indispensable role in the SARS-CoV-2 viral life cycle by cleaving the viral polyprotein to produce 11 individual non-structural proteins necessary for viral replication. 3CLpro is one of two proteases that function to produce new viral particles. It is a highly conserved cysteine protease with identical structural folds in all known human coronaviruses. Inhibitors binding with high affinity to 3CLpro will prevent the cleavage of viral polyproteins, thus impeding viral replication. Multiple strategies have been implemented to screen for inhibitors against 3CLpro, including peptide-like and small molecule inhibitors that covalently and non-covalently bind the active site, respectively. In addition, allosteric sites of 3CLpro have been identified to screen for small molecules that could make non-competitive inhibitors of 3CLpro. In essence, this review serves as a comprehensive guide to understanding the structural intricacies and functional dynamics of 3CLpro, emphasizing key findings that elucidate its role as the main protease of SARS-CoV-2. Notably, the review is a critical resource in recognizing the advancements in identifying and developing 3CLpro inhibitors as effective antiviral strategies against COVID-19, some of which are already approved for clinical use in COVID-19 patients.
Collapse
Affiliation(s)
- Kenana Al Adem
- Science Division, New York University Abu Dhabi, PO Box 129188, Abu Dhabi, United Arab Emirates
| | - Juliana C. Ferreira
- Science Division, New York University Abu Dhabi, PO Box 129188, Abu Dhabi, United Arab Emirates
| | - Adrian J. Villanueva
- Science Division, New York University Abu Dhabi, PO Box 129188, Abu Dhabi, United Arab Emirates
| | - Samar Fadl
- Science Division, New York University Abu Dhabi, PO Box 129188, Abu Dhabi, United Arab Emirates
| | - Farah El-Sadaany
- Science Division, New York University Abu Dhabi, PO Box 129188, Abu Dhabi, United Arab Emirates
| | - Imen Masmoudi
- Science Division, New York University Abu Dhabi, PO Box 129188, Abu Dhabi, United Arab Emirates
| | - Yugmee Gidiya
- Science Division, New York University Abu Dhabi, PO Box 129188, Abu Dhabi, United Arab Emirates
| | - Tariro Gurudza
- Science Division, New York University Abu Dhabi, PO Box 129188, Abu Dhabi, United Arab Emirates
| | - Thyago H.S. Cardoso
- OMICS Centre of Excellence, G42 Healthcare, Masdar City, Abu Dhabi, United Arab Emirates
| | - Nitin K. Saksena
- Victoria University, Footscray Campus, Melbourne, VIC. Australia
| | - Wael M. Rabeh
- Science Division, New York University Abu Dhabi, PO Box 129188, Abu Dhabi, United Arab Emirates
| |
Collapse
|
129
|
Ji J, Du S, Wang K, Qi Z, Zhang C, Wang R, Bruening G, Wang P, Duanmu D, Fan Q. Cowpea lipid transfer protein 1 regulates plant defense by inhibiting the cysteine protease of cowpea mosaic virus. Proc Natl Acad Sci U S A 2024; 121:e2403424121. [PMID: 39159367 PMCID: PMC11363299 DOI: 10.1073/pnas.2403424121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 06/28/2024] [Indexed: 08/21/2024] Open
Abstract
Many virus genomes encode proteases that facilitate infection. The molecular mechanism of plant recognition of viral proteases is largely unexplored. Using the system of Vigna unguiculata and cowpea mosaic virus (CPMV), we identified a cowpea lipid transfer protein (LTP1) which interacts with CPMV-encoded 24KPro, a cysteine protease, but not with the enzymatically inactive mutant 24KPro(C166A). Biochemical assays showed that LTP1 inhibited 24KPro proteolytic cleavage of the coat protein precursor large coat protein-small coat protein. Transient overexpression of LTP1 in cowpea reduced CPMV infection, whereas RNA interference-mediated LTP1 silencing increased CPMV accumulation in cowpea. LTP1 is mainly localized in the apoplast of uninfected plant cells, and after CPMV infection, most of the LTP1 is relocated to intracellular compartments, including chloroplast. Moreover, in stable LTP1-transgenic Nicotiana benthamiana plants, LTP1 repressed soybean mosaic virus (SMV) nuclear inclusion a protease activity, and accumulation of SMV was significantly reduced. We propose that cowpea LTP1 suppresses CPMV and SMV accumulation by directly inhibiting viral cysteine protease activity.
Collapse
Affiliation(s)
- Jie Ji
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan430070, China
| | - Shengli Du
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan430070, China
| | - Kun Wang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan430070, China
| | - Ziyan Qi
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan430070, China
| | - Chunyang Zhang
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan430070, China
| | - Rui Wang
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan430070, China
| | - George Bruening
- Department of Plant Pathology, University of California, Davis, CA95616
| | - Pengwei Wang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan430070, China
| | - Deqiang Duanmu
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan430070, China
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan430070, China
| | - Qiuling Fan
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan430070, China
| |
Collapse
|
130
|
Chen P, Van Oers TJ, Arutyunova E, Fischer C, Wang C, Lamer T, van Belkum MJ, Young HS, Vederas JC, Lemieux MJ. A Structural Comparison of Oral SARS-CoV-2 Drug Candidate Ibuzatrelvir Complexed with the Main Protease (M pro) of SARS-CoV-2 and MERS-CoV. JACS AU 2024; 4:3217-3227. [PMID: 39211604 PMCID: PMC11350714 DOI: 10.1021/jacsau.4c00508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/21/2024] [Accepted: 07/22/2024] [Indexed: 09/04/2024]
Abstract
Ibuzatrelvir (1) was recently disclosed and patented by Pfizer for the treatment of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). It has received fast-track status from the USA Food and Drug Administration (FDA) and has entered phase III clinical trials as a possible replacement for Paxlovid. Like nirmatrelvir (2) in Paxlovid, this orally active drug candidate is designed to target viral main proteases (Mpro) through reversible covalent interaction of its nitrile warhead with the active site thiol of the chymotrypsin-like cysteine protease (3CL protease). Inhibition of Mpro hinders the processing of the proteins essential for viral replication in vivo. However, ibuzatrelvir apparently does not require ritonavir (3), which is coadministered in Paxlovid to block human oxidative metabolism of nirmatrelvir. Here, we report the crystal structure of the complex of ibuzatrelvir with the active site of SARS-CoV-2 Mpro at 2.0 Å resolution. In addition, we show that ibuzatrelvir also potently inhibits the Mpro of Middle East respiratory syndrome-related coronavirus (MERS-CoV), which is fortunately not widespread but can be dangerously lethal (∼36% mortality). Co-crystal structures show that the binding mode of the drug to both active sites is similar and that the trifluoromethyl group of the inhibitor fits precisely into a critical S2 substrate binding pocket of the main proteases. However, our results also provide a rationale for the differences in potency of ibuzatrelvir for these two proteases due to minor differences in the substrate preferences leading to a weaker H-bond network in MERS-CoV Mpro. In addition, we examined the reversibility of compound binding to both proteases, which is an important parameter in reducing off-target effects as well as the potential immunogenicity. The crystal structures of the ibuzatrelvir complexes with Mpro of SARS-CoV-2 and of MERS-CoV will further assist drug design for coronaviral infections in humans and animals.
Collapse
Affiliation(s)
- Pu Chen
- Department
of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
- Li Ka
Shing Institute of Virology, University
of Alberta, Edmonton, Alberta T6G 2E1, Canada
| | - Tayla J. Van Oers
- Department
of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Elena Arutyunova
- Department
of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
- Li Ka
Shing Institute of Virology, University
of Alberta, Edmonton, Alberta T6G 2E1, Canada
| | - Conrad Fischer
- Department
of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Chaoxiang Wang
- Department
of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Tess Lamer
- Department
of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Marco J. van Belkum
- Department
of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Howard S. Young
- Department
of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | - John C. Vederas
- Department
of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - M. Joanne Lemieux
- Department
of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
- Li Ka
Shing Institute of Virology, University
of Alberta, Edmonton, Alberta T6G 2E1, Canada
| |
Collapse
|
131
|
Chihab A, El Brahmi N, Hamdoun G, El Abbouchi A, Ghammaz H, Touil N, Bousmina M, El Fahime E, El Kazzouli S. Development of a new experimental NMR strategy for covalent cysteine protease inhibitors screening: toward enhanced drug discovery. RSC Adv 2024; 14:26829-26836. [PMID: 39184001 PMCID: PMC11342919 DOI: 10.1039/d4ra04938a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 08/13/2024] [Indexed: 08/27/2024] Open
Abstract
In the development of antiviral drugs, proteases and polymerases are among the most important targets. Cysteine proteases, also known as thiol proteases, catalyze the degradation of proteins by cleaving peptide bonds using the nucleophilic thiol group of cysteine. As part of our research, we are examining how cysteine, an essential amino acid found in the active site of the main protease (Mpro) enzyme in SARS-CoV-2, interacts with electrophilic groups present in ethacrynic acid (EA) and compounds 4, 6, and 8 to form sulfur-carbon bonds. Nuclear magnetic resonance (NMR) spectroscopy was used to monitor the reaction rate between cysteine and Michael acceptors. We found that the inhibitory activity of these compounds towards Mpro is correlated to their chemical reactivity toward cysteine. This approach may serve as a valuable tool in drug development for detecting potential covalent inhibitors of Mpro and other cysteine proteases.
Collapse
Affiliation(s)
| | | | | | | | - Hamza Ghammaz
- Centre National de la Recherche Scientifique et Technique (CNRST) Angle avenues des FAR et Allal El Fassi, Hay Ryad 10102 Rabat Morocco
| | - Nadia Touil
- Cell Culture Unit, Center of Virology, Infectious, and Tropical Diseases Mohammed V Military Hospital Rabat Morocco
| | | | - Elmostafa El Fahime
- Centre National de la Recherche Scientifique et Technique (CNRST) Angle avenues des FAR et Allal El Fassi, Hay Ryad 10102 Rabat Morocco
| | | |
Collapse
|
132
|
Yang Y, Luo YD, Zhang CB, Xiang Y, Bai XY, Zhang D, Fu ZY, Hao RB, Liu XL. Progress in Research on Inhibitors Targeting SARS-CoV-2 Main Protease (M pro). ACS OMEGA 2024; 9:34196-34219. [PMID: 39157135 PMCID: PMC11325518 DOI: 10.1021/acsomega.4c03023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 07/12/2024] [Accepted: 07/19/2024] [Indexed: 08/20/2024]
Abstract
Since 2019, the novel coronavirus (SARS-CoV-2) has caused significant morbidity and millions of deaths worldwide. The Coronavirus Disease 2019 (COVID-19), caused by SARS-CoV-2 and its variants, has further highlighted the urgent need for the development of effective therapeutic agents. Currently, the highly conserved and broad-spectrum nature of main proteases (Mpro) renders them of great importance in the field of inhibitor study. In this study, we categorize inhibitors targeting Mpro into three major groups: mimetic, nonmimetic, and natural inhibitors. We then present the research progress of these inhibitors in detail, including their mechanism of action, antiviral activity, pharmacokinetic properties, animal experiments, and clinical studies. This review aims to provide valuable insights and potential avenues for the development of more effective antiviral drugs against SARS-CoV-2.
Collapse
Affiliation(s)
- Yue Yang
- School
of Medicine, Yan’an University, Yan’an 716000, China
| | - Yi-Dan Luo
- School
of Medicine, Yan’an University, Yan’an 716000, China
| | - Chen-Bo Zhang
- School
of Medicine, Yan’an University, Yan’an 716000, China
| | - Yang Xiang
- School
of Medicine, Yan’an University, Yan’an 716000, China
- College
of Physical Education, Yan’an University, Yan’an 716000, China
| | - Xin-Yue Bai
- School
of Medicine, Yan’an University, Yan’an 716000, China
| | - Die Zhang
- School
of Medicine, Yan’an University, Yan’an 716000, China
| | - Zhao-Ying Fu
- School
of Medicine, Yan’an University, Yan’an 716000, China
| | - Ruo-Bing Hao
- School
of Medicine, Yan’an University, Yan’an 716000, China
| | - Xiao-Long Liu
- School
of Medicine, Yan’an University, Yan’an 716000, China
| |
Collapse
|
133
|
Harrison K, Carlos PW, Ullrich S, Aggarwal A, Johansen-Leete J, Sasi VM, Barter I, Maxwell JWC, Bedding MJ, Larance M, Turville S, Norman A, Jackson CJ, Nitsche C, Payne RJ. Exploiting Hydrophobic Amino Acid Scanning to Develop Cyclic Peptide Inhibitors of the SARS-CoV-2 Main Protease with Antiviral Activity. Chemistry 2024; 30:e202401606. [PMID: 38801240 DOI: 10.1002/chem.202401606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/27/2024] [Accepted: 05/27/2024] [Indexed: 05/29/2024]
Abstract
The development of novel antivirals is crucial not only for managing current COVID-19 infections but for addressing potential future zoonotic outbreaks. SARS-CoV-2 main protease (Mpro) is vital for viral replication and viability and therefore serves as an attractive target for antiviral intervention. Herein, we report the optimization of a cyclic peptide inhibitor that emerged from an mRNA display selection against the SARS-CoV-2 Mpro to enhance its cell permeability and in vitro antiviral activity. By identifying mutation-tolerant amino acid residues within the peptide sequence, we describe the development of a second-generation Mpro inhibitor bearing five cyclohexylalanine residues. This cyclic peptide analogue exhibited significantly improved cell permeability and antiviral activity compared to the parent peptide. This approach highlights the importance of optimizing cyclic peptide hits for activity against intracellular targets such as the SARS-CoV-2 Mpro.
Collapse
Affiliation(s)
- Katriona Harrison
- School of Chemistry, The University of Sydney, Sydney, NSW, 2006, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Patrick W Carlos
- School of Chemistry, The University of Sydney, Sydney, NSW, 2006, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Sven Ullrich
- Research School of Chemistry, Australian National University, Canberra, ACT, 2601, Australia
| | - Anupriya Aggarwal
- The Kirby Institute, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Jason Johansen-Leete
- School of Chemistry, The University of Sydney, Sydney, NSW, 2006, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Vishnu Mini Sasi
- Research School of Chemistry, Australian National University, Canberra, ACT, 2601, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, Australian National University, Canberra, ACT, 2601, Australia
| | - Isabel Barter
- School of Chemistry, The University of Sydney, Sydney, NSW, 2006, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, NSW, 2006, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia
- School of Medical Sciences, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Joshua W C Maxwell
- School of Chemistry, The University of Sydney, Sydney, NSW, 2006, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Max J Bedding
- School of Chemistry, The University of Sydney, Sydney, NSW, 2006, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Mark Larance
- Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia
- School of Medical Sciences, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Stuart Turville
- The Kirby Institute, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Alexander Norman
- School of Chemistry, The University of Sydney, Sydney, NSW, 2006, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Colin J Jackson
- Research School of Chemistry, Australian National University, Canberra, ACT, 2601, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, Australian National University, Canberra, ACT, 2601, Australia
| | - Christoph Nitsche
- Research School of Chemistry, Australian National University, Canberra, ACT, 2601, Australia
| | - Richard J Payne
- School of Chemistry, The University of Sydney, Sydney, NSW, 2006, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, NSW, 2006, Australia
| |
Collapse
|
134
|
Jony MR, Ahn S. Drug-Drug Interactions between COVID-19 and Tuberculosis Medications: A Comprehensive Review of CYP450 and Transporter-Mediated Effects. Pharmaceuticals (Basel) 2024; 17:1035. [PMID: 39204140 PMCID: PMC11360778 DOI: 10.3390/ph17081035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/02/2024] [Accepted: 08/03/2024] [Indexed: 09/03/2024] Open
Abstract
Most medications undergo metabolism and elimination via CYP450 enzymes, while uptake and efflux transporters play vital roles in drug elimination from various organs. Interactions often occur when multiple drugs share CYP450-transporter-mediated metabolic pathways, necessitating a unique clinical care strategy to address the diverse types of CYP450 and transporter-mediated drug-drug interactions (DDI). The primary focus of this review is to record relevant mechanisms regarding DDI between COVID-19 and tuberculosis (TB) treatments, specifically through the influence of CYP450 enzymes and transporters on drug absorption, distribution, metabolism, elimination, and pharmacokinetics. This understanding empowers clinicians to prevent subtherapeutic and supratherapeutic drug levels of COVID medications when co-administered with TB drugs, thereby mitigating potential challenges and ensuring optimal treatment outcomes. A comprehensive analysis is presented, encompassing various illustrative instances of TB drugs that may impact COVID-19 clinical behavior, and vice versa. This review aims to provide valuable insights to healthcare providers, facilitating informed decision-making and enhancing patient safety while managing co-infections. Ultimately, this study contributes to the body of knowledge necessary to optimize therapeutic approaches and improve patient outcomes in the face of the growing challenges posed by infectious diseases.
Collapse
Affiliation(s)
- M. Rasheduzzaman Jony
- Department of Pharmacology and Pharmacogenomics Research Center, Inje University College of Medicine, Busan 47392, Republic of Korea;
- Center for Personalized Precision Medicine of Tuberculosis, Inje University College of Medicine, Busan 47392, Republic of Korea
| | - Sangzin Ahn
- Department of Pharmacology and Pharmacogenomics Research Center, Inje University College of Medicine, Busan 47392, Republic of Korea;
- Center for Personalized Precision Medicine of Tuberculosis, Inje University College of Medicine, Busan 47392, Republic of Korea
| |
Collapse
|
135
|
Philippsen GS, Seixas FAV. In silico identification of D449-0032 compound as a putative SARS-CoV-2 M pro inhibitor. J Biomol Struct Dyn 2024; 42:6440-6447. [PMID: 37424215 DOI: 10.1080/07391102.2023.2234045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 07/03/2023] [Indexed: 07/11/2023]
Abstract
The SARS-CoV-2 pandemic originated the urgency in developing therapeutic resources for the treatment of COVID-19. Despite the current availability of vaccines and some antivirals, the occurence of severe cases of the disease and the risk of the emergence of new virus variants still motivate research in this field. In this context, this study aimed at the computational prospection of likely inhibitors of the main protease (Mpro) of SARS-CoV-2 since inhibiting this enzyme leads to disruption of the viral replication process. The virtual screening of the antiviral libraries Asinex, ChemDiv, and Enamine targeting SARS-CoV-2 Mpro was performed, indicating the D449-0032 compound as a promising inhibitor. Molecular dynamics simulations showed the stability of the protein-ligand complex and in silico predictions of toxicity and pharmacokinetic parameters indicated the probable drug-like behavior of the compound. In vitro and in vivo studies are essential to confirm the Mpro inhibition by the D449-0032.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
| | - Flavio Augusto Vicente Seixas
- Laboratory of Structural Biochemistry, Departamento de Tecnologia, Universidade Estadual de Maringá, Umuarama, Brazil
| |
Collapse
|
136
|
Mittal RK, Purohit P, Sankaranarayanan M, Muzaffar-Ur-Rehman M, Taramelli D, Signorini L, Dolci M, Basilico N. In-vitro antiviral activity and in-silico targeted study of quinoline-3-carboxylate derivatives against SARS-Cov-2 isolate. Mol Divers 2024; 28:2651-2665. [PMID: 37480422 DOI: 10.1007/s11030-023-10703-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 07/16/2023] [Indexed: 07/24/2023]
Abstract
In recent years, the viral outbreak named COVID-19 showed that infectious diseases have a huge impact on both global health and the financial and economic sectors. The lack of efficacious antiviral drugs worsened the health problem. Based on our previous experience, we investigated in vitro and in silico a series of quinoline-3-carboxylate derivatives against a SARS-CoV-2 isolate. In the present study, the in-vitro antiviral activity of a series of quinoline-3-carboxylate compounds and the in silico target-based molecular dynamics (MD) and metabolic studies are reported. The compounds' activity against SARS-CoV-2 was evaluated using plaque assay and RT-qPCR. Moreover, from the docking scores, it appears that the most active compounds (1j and 1o) exhibit stronger binding affinity to the primary viral protease (NSP5) and the exoribonuclease domain of non structural protein 14 (NSP14). Additionally, the in-silico metabolic analysis of 1j and 1o defines CYP2C9 and CYP3A4 as the major P450 enzymes involved in their metabolism.
Collapse
Affiliation(s)
- Ravi Kumar Mittal
- National Institute of Pharmaceutical Education and Research, S A S Nagar Mohali, Punjab, 160062, India
- Galgotias College of Pharmacy, Greater Noida, UttarPradesh, India
| | - Priyank Purohit
- School of Pharmacy, Graphic Era Hill University, Dehradun, Uttarakhand, 248002, India.
| | - Murugesan Sankaranarayanan
- Medicinal Chemistry Research Laboratory, Department of Pharmacy, BITS Pilani, Pilani Campus, Pilani, Rajasthan, 333031, India
| | - Mohammed Muzaffar-Ur-Rehman
- Medicinal Chemistry Research Laboratory, Department of Pharmacy, BITS Pilani, Pilani Campus, Pilani, Rajasthan, 333031, India
| | - Donatella Taramelli
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Pascal Street 36, 20133, Milan, Italy
| | - Lucia Signorini
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Pascal Street 36, 20133, Milan, Italy
| | - Maria Dolci
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Pascal Street 36, 20133, Milan, Italy
| | - Nicoletta Basilico
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Pascal Street 36, 20133, Milan, Italy
| |
Collapse
|
137
|
Huang L, Gish M, Boehlke J, Jeep RH, Chen C. Assay Development and Validation for Innovative Antiviral Development Targeting the N-Terminal Autoprocessing of SARS-CoV-2 Main Protease Precursors. Viruses 2024; 16:1218. [PMID: 39205192 PMCID: PMC11359197 DOI: 10.3390/v16081218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/14/2024] [Accepted: 07/23/2024] [Indexed: 09/04/2024] Open
Abstract
The SARS-CoV-2 main protease (Mpro) is initially synthesized as part of polyprotein precursors that undergo autoproteolysis to release the free mature Mpro. To investigate the autoprocessing mechanism in transfected mammalian cells, we examined several fusion precursors, with the mature SARS-CoV-2 Mpro along with the flanking amino acids (to keep the native substrate sequences) sandwiched between different tags. Our analyses revealed differential proteolysis kinetics at the N- and C-terminal cleavage sites. Particularly, N-terminal processing is differentially influenced by various upstream fusion tags (GST, sGST, CD63, and Nsp4) and amino acid variations at the N-terminal P1 position, suggesting that precursor catalysis is flexible and subject to complex regulation. Mutating Q to E at the N-terminal P1 position altered both precursor catalysis and the properties of the released Mpro. Interestingly, the wild-type precursors exhibited different enzymatic activities compared to those of the released Mpro, displaying much lower susceptibility to known inhibitors targeting the mature form. These findings suggest the precursors as alternative targets for antiviral development. Accordingly, we developed and validated a high-throughput screening (HTS)-compatible platform for functional screening of compounds targeting either the N-terminal processing of the SARS-CoV-2 Mpro precursor autoprocessing or the released mature Mpro through different mechanisms of action.
Collapse
Affiliation(s)
| | | | | | | | - Chaoping Chen
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA; (L.H.); (M.G.); (J.B.); (R.H.J.)
| |
Collapse
|
138
|
Jiang Z, Feng B, Chen L, Nie T, Chen S, Wang L, Liu H, Yu T, Zhang Y, Zheng M, Xu Y, Liu H, Zang Y, Su H, Zhang L, Li J, Zhou Y. Discovery of Novel Nonpeptidic and Noncovalent Small Molecule 3CL pro Inhibitors as anti-SARS-CoV-2 Drug Candidate. J Med Chem 2024. [PMID: 39072488 DOI: 10.1021/acs.jmedchem.4c00739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
SARS-CoV-2 has still been threatening global public health with its emerging variants. Our previous work reported lead compound JZD-07 that displayed good 3CLpro inhibitory activity. Here, an in-depth structural optimization for JZD-07 was launched to obtain more desirable drug candidates for the therapy of SARS-CoV-2 infection, in which 54 novel derivatives were designed and synthesized by a structure-based drug design strategy. Among them, 24 compounds show significantly enhanced 3CLpro inhibitory potencies with IC50 values less than 100 nM, and 11 compounds dose-dependently inhibit the replication of the SARS-CoV-2 delta variant. In particular, compound 49 has the most desirable antiviral activity with EC50 of 0.272 ± 0.013 μM against the delta variant, which was more than 20 times stronger than JZD-07. Oral administration of 49 could significantly reduce the lung viral copies of mice, exhibiting a more favorable therapeutic potential. Overall, this investigation presents a promising drug candidate for further development to treat SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Zhidong Jiang
- Lingang Laboratory, Shanghai 200031, China
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bo Feng
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Lu Chen
- College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang, Hubei 443002, China
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China
| | - Tianqing Nie
- Lingang Laboratory, Shanghai 200031, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Shizhao Chen
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Li Wang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Hui Liu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Pharmaceutical College of Henan University, Kaifeng 475004, China
| | - Ting Yu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yumin Zhang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China
| | - Miao Zheng
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yechun Xu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Hong Liu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yi Zang
- Lingang Laboratory, Shanghai 200031, China
| | - Haixia Su
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Leike Zhang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China
- Hubei Jiangxia Laboratory, Wuhan 430200, China
| | - Jia Li
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Shenyang Pharmaceutical University, Shenyang 110016, China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong 264117, China
| | - Yu Zhou
- Lingang Laboratory, Shanghai 200031, China
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Shenyang Pharmaceutical University, Shenyang 110016, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| |
Collapse
|
139
|
Hangyu W, Panpan L, Jie S, Hongyan W, Linmiao W, Kangning H, Yichen S, Shuai W, Cheng W. Advancements in Antiviral Drug Development: Comprehensive Insights into Design Strategies and Mechanisms Targeting Key Viral Proteins. J Microbiol Biotechnol 2024; 34:1376-1384. [PMID: 38934770 PMCID: PMC11294656 DOI: 10.4014/jmb.2403.03008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 03/27/2024] [Accepted: 04/09/2024] [Indexed: 06/28/2024]
Abstract
Viral infectious diseases have always been a threat to human survival and quality of life, impeding the stability and progress of human society. As such, researchers have persistently focused on developing highly efficient, low-toxicity antiviral drugs, whether for acute or chronic infectious diseases. This article presents a comprehensive review of the design concepts behind virus-targeted drugs, examined through the lens of antiviral drug mechanisms. The intention is to provide a reference for the development of new, virus-targeted antiviral drugs and guide their clinical usage.
Collapse
Affiliation(s)
- Wang Hangyu
- Key Laboratory of Immune Microenvironment and Inflammatory Disease Research in Universities of Shandong Province, School of Basic Medical Sciences, Shandong Second Medical University, Weifang 261053, P.R. China
| | - Li Panpan
- Key Laboratory of Immune Microenvironment and Inflammatory Disease Research in Universities of Shandong Province, School of Basic Medical Sciences, Shandong Second Medical University, Weifang 261053, P.R. China
| | - Shen Jie
- School of Medical Laboratory, Shandong Second Medical University, Weifang 261053, P.R. China
| | - Wang Hongyan
- Key Laboratory of Immune Microenvironment and Inflammatory Disease Research in Universities of Shandong Province, School of Basic Medical Sciences, Shandong Second Medical University, Weifang 261053, P.R. China
| | - Wei Linmiao
- Key Laboratory of Immune Microenvironment and Inflammatory Disease Research in Universities of Shandong Province, School of Basic Medical Sciences, Shandong Second Medical University, Weifang 261053, P.R. China
| | - Han Kangning
- Key Laboratory of Immune Microenvironment and Inflammatory Disease Research in Universities of Shandong Province, School of Basic Medical Sciences, Shandong Second Medical University, Weifang 261053, P.R. China
| | - Shi Yichen
- School of Stomatology, Shandong Second Medical University, Weifang 261053, P.R. China
| | - Wang Shuai
- Department of Rheumatology and Immunology, The Affiliated Hospital of Inner Mongolia Medical University, Inner Mongolia 010050, P.R. China
- Inner Mongolia Key Laboratory for Pathogenesis and Diagnosis of Rheumatic and Autoimmune Diseases, Inner Mongolia 010110, P.R. China
| | - Wang Cheng
- Department of Rheumatology and Immunology, The Affiliated Hospital of Inner Mongolia Medical University, Inner Mongolia 010050, P.R. China
- Inner Mongolia Key Laboratory for Pathogenesis and Diagnosis of Rheumatic and Autoimmune Diseases, Inner Mongolia 010110, P.R. China
| |
Collapse
|
140
|
Chung YS, Lam CY, Tan PH, Tsang HF, Wong SCC. Comprehensive Review of COVID-19: Epidemiology, Pathogenesis, Advancement in Diagnostic and Detection Techniques, and Post-Pandemic Treatment Strategies. Int J Mol Sci 2024; 25:8155. [PMID: 39125722 PMCID: PMC11312261 DOI: 10.3390/ijms25158155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/22/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024] Open
Abstract
At present, COVID-19 remains a public health concern due to the ongoing evolution of SARS-CoV-2 and its prevalence in particular countries. This paper provides an updated overview of the epidemiology and pathogenesis of COVID-19, with a focus on the emergence of SARS-CoV-2 variants and the phenomenon known as 'long COVID'. Meanwhile, diagnostic and detection advances will be mentioned. Though many inventions have been made to combat the COVID-19 pandemic, some outstanding ones include multiplex RT-PCR, which can be used for accurate diagnosis of SARS-CoV-2 infection. ELISA-based antigen tests also appear to be potential diagnostic tools to be available in the future. This paper also discusses current treatments, vaccination strategies, as well as emerging cell-based therapies for SARS-CoV-2 infection. The ongoing evolution of SARS-CoV-2 underscores the necessity for us to continuously update scientific understanding and treatments for it.
Collapse
Affiliation(s)
| | | | | | | | - Sze-Chuen Cesar Wong
- Department of Applied Biology & Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China; (Y.-S.C.); (C.-Y.L.); (P.-H.T.); (H.-F.T.)
| |
Collapse
|
141
|
Zhu Y, Yurgelonis I, Noell S, Yang Q, Guan S, Li Z, Hao L, Rothan H, Rai DK, McMonagle P, Baniecki ML, Greasley SE, Plotnikova O, Lee J, Nicki JA, Ferre R, Byrnes LJ, Liu W, Craig TK, Steppan CM, Liberator P, Soares HD, Allerton CMN, Anderson AS, Cardin RD. In vitro selection and analysis of SARS-CoV-2 nirmatrelvir resistance mutations contributing to clinical virus resistance surveillance. SCIENCE ADVANCES 2024; 10:eadl4013. [PMID: 39047088 PMCID: PMC11268423 DOI: 10.1126/sciadv.adl4013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 06/11/2024] [Indexed: 07/27/2024]
Abstract
To facilitate the detection and management of potential clinical antiviral resistance, in vitro selection of drug-resistant severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) against the virus Mpro inhibitor nirmatrelvir (Paxlovid active component) was conducted. Six Mpro mutation patterns containing T304I alone or in combination with T21I, L50F, T135I, S144A, or A173V emerged, with A173V+T304I and T21I+S144A+T304I mutations showing >20-fold resistance each. Biochemical analyses indicated inhibition constant shifts aligned to antiviral results, with S144A and A173V each markedly reducing nirmatrelvir inhibition and Mpro activity. SARS-CoV-2 surveillance revealed that in vitro resistance-associated mutations from our studies and those reported in the literature were rarely detected in the Global Initiative on Sharing All Influenza Data database. In the Paxlovid Evaluation of Protease Inhibition for COVID-19 in High-Risk Patients trial, E166V was the only emergent resistance mutation, observed in three Paxlovid-treated patients, none of whom experienced COVID-19-related hospitalization or death.
Collapse
Affiliation(s)
- Yuao Zhu
- Pfizer Worldwide Research, Development & Medical, Pearl River, NY 10965, USA
| | - Irina Yurgelonis
- Pfizer Worldwide Research, Development & Medical, Pearl River, NY 10965, USA
| | - Stephen Noell
- Pfizer Worldwide Research, Development & Medical, Groton, CT 06340, USA
| | - Qingyi Yang
- Pfizer Worldwide Research, Development & Medical, Cambridge MA 02139, USA
| | - Shunjie Guan
- Pfizer Worldwide Research, Development & Medical, Cambridge MA 02139, USA
| | - Zhenghui Li
- Pfizer Worldwide Research, Development & Medical, Pearl River, NY 10965, USA
| | - Li Hao
- Pfizer Worldwide Research, Development & Medical, Pearl River, NY 10965, USA
| | - Hussin Rothan
- Pfizer Worldwide Research, Development & Medical, Pearl River, NY 10965, USA
| | - Devendra K. Rai
- Pfizer Worldwide Research, Development & Medical, Pearl River, NY 10965, USA
| | - Patricia McMonagle
- Pfizer Worldwide Research, Development & Medical, Pearl River, NY 10965, USA
| | - Mary Lynn Baniecki
- Pfizer Worldwide Research, Development & Medical, Cambridge MA 02139, USA
| | | | - Olga Plotnikova
- Pfizer Worldwide Research, Development & Medical, Groton, CT 06340, USA
| | - Jonathan Lee
- Pfizer Worldwide Research, Development & Medical, Pearl River, NY 10965, USA
| | - Jennifer A. Nicki
- Pfizer Worldwide Research, Development & Medical, Groton, CT 06340, USA
| | - RoseAnn Ferre
- Pfizer Worldwide Research, Development & Medical, La Jolla, CA 92121, USA
| | - Laura J. Byrnes
- Pfizer Worldwide Research, Development & Medical, Groton, CT 06340, USA
| | - Wei Liu
- Pfizer Worldwide Research, Development & Medical, La Jolla, CA 92121, USA
| | - Timothy K. Craig
- Pfizer Worldwide Research, Development & Medical, Groton, CT 06340, USA
| | - Claire M. Steppan
- Pfizer Worldwide Research, Development & Medical, Groton, CT 06340, USA
| | - Paul Liberator
- Pfizer Worldwide Research, Development & Medical, Pearl River, NY 10965, USA
| | - Holly D. Soares
- Pfizer Worldwide Research, Development & Medical, Groton, CT 06340, USA
| | | | | | - Rhonda D. Cardin
- Pfizer Worldwide Research, Development & Medical, Pearl River, NY 10965, USA
| |
Collapse
|
142
|
Dampalla CS, Kim Y, Zabiegala A, Howard DJ, Nguyen HN, Madden TK, Thurman HA, Cooper A, Liu L, Battaile KP, Lovell S, Chang KO, Groutas WC. Structure-Guided Design of Potent Coronavirus Inhibitors with a 2-Pyrrolidone Scaffold: Biochemical, Crystallographic, and Virological Studies. J Med Chem 2024; 67:11937-11956. [PMID: 38953866 DOI: 10.1021/acs.jmedchem.4c00551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Zoonotic coronaviruses are known to produce severe infections in humans and have been the cause of significant morbidity and mortality worldwide. SARS-CoV-2 was the largest and latest contributor of fatal cases, even though MERS-CoV has the highest case-fatality ratio among zoonotic coronaviruses. These infections pose a high risk to public health worldwide warranting efforts for the expeditious discovery of antivirals. Hence, we hereby describe a novel series of inhibitors of coronavirus 3CLpro embodying an N-substituted 2-pyrrolidone scaffold envisaged to exploit favorable interactions with the S3-S4 subsites and connected to an invariant Leu-Gln P2-P1 recognition element. Several inhibitors showed nanomolar antiviral activity in enzyme and cell-based assays, with no significant cytotoxicity. High-resolution crystal structures of inhibitors bound to the 3CLpro were determined to probe and identify the molecular determinants associated with binding, to inform the structure-guided optimization of the inhibitors, and to confirm the mechanism of action of the inhibitors.
Collapse
Affiliation(s)
- Chamandi S Dampalla
- Department of Chemistry and Biochemistry, Wichita State University, Wichita, Kansas 67260, United States
| | - Yunjeong Kim
- Department of Diagnostic Medicine & Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas 66506, United States
| | - Alexandria Zabiegala
- Department of Diagnostic Medicine & Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas 66506, United States
| | - Dennis J Howard
- Department of Chemistry and Biochemistry, Wichita State University, Wichita, Kansas 67260, United States
| | - Harry Nhat Nguyen
- Department of Chemistry and Biochemistry, Wichita State University, Wichita, Kansas 67260, United States
| | - Trent K Madden
- Department of Chemistry and Biochemistry, Wichita State University, Wichita, Kansas 67260, United States
| | - Hayden A Thurman
- Department of Chemistry and Biochemistry, Wichita State University, Wichita, Kansas 67260, United States
| | - Anne Cooper
- Protein Structure and X-ray Crystallography Laboratory, The University of Kansas, Lawrence, Kansas 66047, United States
| | - Lijun Liu
- Protein Structure and X-ray Crystallography Laboratory, The University of Kansas, Lawrence, Kansas 66047, United States
| | - Kevin P Battaile
- NYX, New York Structural Biology Center, Upton, New York 11973, United States
| | - Scott Lovell
- Protein Structure and X-ray Crystallography Laboratory, The University of Kansas, Lawrence, Kansas 66047, United States
| | - Kyeong-Ok Chang
- Department of Diagnostic Medicine & Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas 66506, United States
| | - William C Groutas
- Department of Chemistry and Biochemistry, Wichita State University, Wichita, Kansas 67260, United States
| |
Collapse
|
143
|
Papaneophytou C. Breaking the Chain: Protease Inhibitors as Game Changers in Respiratory Viruses Management. Int J Mol Sci 2024; 25:8105. [PMID: 39125676 PMCID: PMC11311956 DOI: 10.3390/ijms25158105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 07/14/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024] Open
Abstract
Respiratory viral infections (VRTIs) rank among the leading causes of global morbidity and mortality, affecting millions of individuals each year across all age groups. These infections are caused by various pathogens, including rhinoviruses (RVs), adenoviruses (AdVs), and coronaviruses (CoVs), which are particularly prevalent during colder seasons. Although many VRTIs are self-limiting, their frequent recurrence and potential for severe health complications highlight the critical need for effective therapeutic strategies. Viral proteases are crucial for the maturation and replication of viruses, making them promising therapeutic targets. This review explores the pivotal role of viral proteases in the lifecycle of respiratory viruses and the development of protease inhibitors as a strategic response to these infections. Recent advances in antiviral therapy have highlighted the effectiveness of protease inhibitors in curtailing the spread and severity of viral diseases, especially during the ongoing COVID-19 pandemic. It also assesses the current efforts aimed at identifying and developing inhibitors targeting key proteases from major respiratory viruses, including human RVs, AdVs, and (severe acute respiratory syndrome coronavirus-2) SARS-CoV-2. Despite the recent identification of SARS-CoV-2, within the last five years, the scientific community has devoted considerable time and resources to investigate existing drugs and develop new inhibitors targeting the virus's main protease. However, research efforts in identifying inhibitors of the proteases of RVs and AdVs are limited. Therefore, herein, it is proposed to utilize this knowledge to develop new inhibitors for the proteases of other viruses affecting the respiratory tract or to develop dual inhibitors. Finally, by detailing the mechanisms of action and therapeutic potentials of these inhibitors, this review aims to demonstrate their significant role in transforming the management of respiratory viral diseases and to offer insights into future research directions.
Collapse
Affiliation(s)
- Christos Papaneophytou
- Department of Life Sciences, School of Life and Health Sciences, University of Nicosia, Nicosia 2417, Cyprus
| |
Collapse
|
144
|
Brewitz L, Schofield CJ. Fixing the Achilles Heel of Pfizer's Paxlovid for COVID-19 Treatment. J Med Chem 2024; 67:11656-11661. [PMID: 38967233 DOI: 10.1021/acs.jmedchem.4c01342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/06/2024]
Abstract
Nirmatrelvir (PF-07321332), a first-in-class inhibitor of the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) main protease (Mpro), was developed by Pfizer under intense pressure during the pandemic to treat COVID-19. A weakness of nirmatrelvir is its limited metabolic stability, which led to the development of a combination therapy (paxlovid), involving coadministration of nirmatrelvir with the cytochrome P450 inhibitor ritonavir. However, limitations in tolerability of the ritonavir component reduce the scope of paxlovid. In response to these limitations, researchers at Pfizer have now developed the second-generation Mpro inhibitor PF-07817883 (ibuzatrelvir). Structurally related to nirmatrelvir, including with the presence of a trifluoromethyl group, albeit located differently, ibuzatrelvir manifests enhanced oral bioavailability, so it does not require coadministration with ritonavir. The development of ibuzatrelvir is an important milestone, because it is expected to enhance the treatment of COVID-19 without the drawbacks associated with ritonavir. Given the success of paxlovid in treating COVID-19, it is likely that ibuzatrelvir will be granted approval as an improved drug for treatment of COVID-19 infections, so complementing vaccination efforts and improving pandemic preparedness. The development of nirmatrelvir and ibuzatrelvir dramatically highlights the power of appropriately resourced modern medicinal chemistry to very rapidly enable the development of breakthrough medicines. Consideration of how analogous approaches can be used to develop similarly breakthrough medicines for infectious diseases such as tuberculosis and malaria is worthwhile.
Collapse
Affiliation(s)
- Lennart Brewitz
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford, 12 Mansfield Road, OX1 3TA Oxford, United Kingdom
| | - Christopher J Schofield
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford, 12 Mansfield Road, OX1 3TA Oxford, United Kingdom
| |
Collapse
|
145
|
Anton DB, de Lima JC, Dahmer BR, Camini AM, Goettert MI, Timmers LFSM. Taming the storm: potential anti-inflammatory compounds targeting SARS-CoV-2 MPro. Inflammopharmacology 2024:10.1007/s10787-024-01525-9. [PMID: 39048773 DOI: 10.1007/s10787-024-01525-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 07/05/2024] [Indexed: 07/27/2024]
Abstract
In severe COVID-19 cases, an exacerbated inflammatory response triggers a cytokine storm that can worsen the prognosis. Compounds with both antiviral and anti-inflammatory activities show promise as candidates for COVID-19 therapy, as they potentially act against the SARS-CoV-2 infection regardless of the disease stage. One of the most attractive drug targets among coronaviruses is the main protease (MPro). This enzyme is crucial for cleaving polyproteins into non-structural proteins required for viral replication. The aim of this review was to identify SARS-CoV-2 MPro inhibitors with both antiviral and anti-inflammatory properties. The interactions of the compounds within the SARS-CoV-2 MPro binding site were analyzed through molecular docking when data from crystallographic structures were unavailable. 18 compounds were selected and classified into five different superclasses. Five of them exhibit high potency against MPro: GC-376, baicalein, naringenin, heparin, and carmofur, with IC50 values below 0.2 μM. The MPro inhibitors selected have the potential to alleviate lung edema and decrease cytokine release. These molecules mainly target three critical inflammatory pathways: NF-κB, JAK/STAT, and MAPK, all previously associated with COVID-19 pathogenesis. The structures of the compounds occupy the S1/S2 substrate binding subsite of the MPro. They interact with residues from the catalytic dyad (His41 and Cys145) and/or with the oxyanion hole (Gly143, Ser144, and Cys145), which are pivotal for substrate recognition. The MPro SARS-CoV-2 inhibitors with potential anti-inflammatory activities present here could be optimized for maximum efficacy and safety and be explored as potential treatment of both mild and severe COVID-19.
Collapse
Affiliation(s)
- Débora Bublitz Anton
- Biotechnology Graduate Program, Universidade do Vale do Taquari (Univates), Lajeado, CEP 95914-014, Brazil
| | - Jeferson Camargo de Lima
- Biotechnology Graduate Program, Universidade do Vale do Taquari (Univates), Lajeado, CEP 95914-014, Brazil
| | - Bruno Rampanelli Dahmer
- Biotechnology Graduate Program, Universidade do Vale do Taquari (Univates), Lajeado, CEP 95914-014, Brazil
| | - Ana Micaela Camini
- Biotechnology Graduate Program, Universidade do Vale do Taquari (Univates), Lajeado, CEP 95914-014, Brazil
| | - Marcia Inês Goettert
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmaceutical Sciences, Eberhard Karls Universität Tübingen, 72076, Tübingen, Germany
| | - Luis Fernando Saraiva Macedo Timmers
- Biotechnology Graduate Program, Universidade do Vale do Taquari (Univates), Lajeado, CEP 95914-014, Brazil.
- Medical Science Graduate Program, Universidade do Vale do Taquari (Univates), Lajeado, CEP 95914-014, Brazil.
| |
Collapse
|
146
|
Yaghi R, Andrews CL, Wylie DC, Iverson BL. High-Resolution Substrate Specificity Profiling of SARS-CoV-2 M pro; Comparison to SARS-CoV M pro. ACS Chem Biol 2024; 19:1474-1483. [PMID: 38865301 PMCID: PMC11267570 DOI: 10.1021/acschembio.4c00096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 05/08/2024] [Accepted: 05/09/2024] [Indexed: 06/14/2024]
Abstract
The SARS-CoV-2 Mpro protease from COVID-19 cleaves the pp1a and pp2b polyproteins at 11 sites during viral maturation and is the target of Nirmatrelvir, one of the two components of the frontline treatment sold as Paxlovid. We used the YESS 2.0 platform, combining protease and substrate expression in the yeast endoplasmic reticulum with fluorescence-activated cell sorting and next-generation sequencing, to carry out the high-resolution substrate specificity profiling of SARS-CoV-2 Mpro as well as the related SARS-CoV Mpro from SARS 2003. Even at such a high level of resolution, the substrate specificity profiles of both enzymes are essentially identical. The population of cleaved substrates isolated in our sorts is so deep, the relative catalytic efficiencies of the different cleavage sites on the SARS-CoV-2 polyproteins pp1a and pp2b are qualitatively predicted. These results not only demonstrated the precise and reproducible nature of the YESS 2.0/NGS approach to protease substrate specificity profiling but also should be useful in the design of next generation SARS-CoV-2 Mpro inhibitors, and by analogy, SARS-CoV Mpro inhibitors as well.
Collapse
Affiliation(s)
- Rasha
M. Yaghi
- Department
of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
of America
| | - Collin L. Andrews
- Department
of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
of America
| | - Dennis C. Wylie
- Center
of Biomedical Research Support, University
of Texas at Austin, Austin, Texas 78712, United States of America
| | - Brent L. Iverson
- Department
of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
of America
| |
Collapse
|
147
|
Wang YW, Liu XN, Zheng J, Su J, Li QJ, Cai XR, Wang Q, Liang XY. DMAP-promoted oxidative functionalization of α-amino ketones via oxygen delivery from water/alcohols. Chem Commun (Camb) 2024; 60:7359-7362. [PMID: 38919041 DOI: 10.1039/d4cc02348j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
This paper shows a novel oxidative functionalization of α-amino ketones to yield the corresponding α-ketoamides and α-acylimidates. The reaction proceeds via oxygen delivery from water/alcohols in conjunction with an electron acceptor and 4-dimethylaminopyridine (DMAP). Mechanistic study indicates that DMAP exhibits a dual function of nucleophilic catalysis and proton abstraction.
Collapse
Affiliation(s)
- Ying-Wei Wang
- College of Chemical Engineering, Sichuan University of Science & Engineering Zigong, Sichuan 643000, China.
| | - Xiao-Nan Liu
- College of Chemical Engineering, Sichuan University of Science & Engineering Zigong, Sichuan 643000, China.
| | - Jia Zheng
- Wuliangye Yibing CO., Ltd, Yibing, Sichuan 644000, China
| | - Jian Su
- Wuliangye Yibing CO., Ltd, Yibing, Sichuan 644000, China
| | - Qi-Jun Li
- Wuliangye Yibing CO., Ltd, Yibing, Sichuan 644000, China
| | - Xian-Rong Cai
- College of Chemical Engineering, Sichuan University of Science & Engineering Zigong, Sichuan 643000, China.
| | - Qiang Wang
- Wuliangye Yibing CO., Ltd, Yibing, Sichuan 644000, China
| | - Xing-Yong Liang
- College of Chemical Engineering, Sichuan University of Science & Engineering Zigong, Sichuan 643000, China.
| |
Collapse
|
148
|
Gao Q, Liu S, Zhou Y, Fan J, Ke S, Zhou Y, Fan K, Wang Y, Zhou Y, Xia Z, Deng X. Discovery of meisoindigo derivatives as noncovalent and orally available M pro inhibitors: their therapeutic implications in the treatment of COVID-19. Eur J Med Chem 2024; 273:116498. [PMID: 38762916 DOI: 10.1016/j.ejmech.2024.116498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 05/08/2024] [Accepted: 05/11/2024] [Indexed: 05/21/2024]
Abstract
The progressive emergence of SARS-CoV-2 variants has necessitated the urgent exploration of novel therapeutic strategies to combat the COVID-19 pandemic. The SARS-CoV-2 main protease (Mpro) represents an evolutionarily conserved therapeutic target for drug discovery. This study highlights the discovery of meisoindigo (Mei), derived from the traditional Chinese medicine (TCM) Indigo naturalis, as a novel non-covalent and nonpeptidic Mpro inhibitor. Substantial optimizations and structure-activity relationship (SAR) studies, guided by a structure-based drug design approach, led to the identification of several Mei derivatives, including S5-27 and S5-28, exhibiting low micromolar inhibition against SARS-CoV-2 Mpro with high binding affinity. Notably, S5-28 provided significant protection against wild-type SARS-CoV-2 in HeLa-hACE2 cells, with EC50 up to 2.66 μM. Furthermore, it displayed favorable physiochemical properties and remarkable gastrointestinal and metabolic stability, demonstrating its potential as an orally bioavailable drug for anti-COVID-19 therapy. This research presents a promising avenue for the development of new antiviral agents, offering hope in the ongoing battle against COVID-19.
Collapse
Affiliation(s)
- Qingtian Gao
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan, China
| | - Sixu Liu
- School of Life Sciences, Central South University, Changsha, 410013, Hunan, China
| | - Yuzheng Zhou
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, Southern University of Science and Technology, Shenzhen, China
| | - Jinbao Fan
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan, China
| | - Shufen Ke
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan, China
| | - Yuqing Zhou
- School of Life Sciences, Central South University, Changsha, 410013, Hunan, China
| | - Kaiqiang Fan
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan, China
| | - Yuxuan Wang
- School of Life Sciences, Central South University, Changsha, 410013, Hunan, China
| | - Yingjun Zhou
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan, China; Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Central South University, Changsha, 410013, Hunan, China
| | - Zanxian Xia
- School of Life Sciences, Central South University, Changsha, 410013, Hunan, China.
| | - Xu Deng
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan, China; Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Central South University, Changsha, 410013, Hunan, China.
| |
Collapse
|
149
|
Wei X, Chan CL, Zhou Y, Tang K, Chen J, Wang S, Chan JFW, Yuan S, Li H, Sun H. Mechanistic insights into bismuth(iii) inhibition of SARS-CoV-2 helicase. Chem Sci 2024; 15:10065-10072. [PMID: 38966375 PMCID: PMC11220592 DOI: 10.1039/d3sc06961c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 05/03/2024] [Indexed: 07/06/2024] Open
Abstract
The COVID-19 pandemic caused by SARS-CoV-2 resulted in a global public health crisis. In addition to vaccines, the development of effective therapy is highly desirable. Targeting a protein that plays a critical role in virus replication may allow pan-spectrum antiviral drugs to be developed. Among SARS-CoV-2 proteins, helicase (i.e., non-structural protein 13) is considered as a promising antiviral drug target due to its highly conserved sequence, unique structure and function. Herein, we demonstrate SARS-CoV-2 helicase as a target of bismuth-based antivirals in virus-infected mammalian cells by a metal-tagged antibody approach. To search for more potent bismuth-based antivirals, we further screened a panel of bismuth compounds towards inhibition of ATPase and DNA unwinding activity of nsp13 and identified a highly potent bismuth compound Bi(5-aminotropolonate)3, namely Bi(Tro-NH2)3 with an IC50 of 30 nM for ATPase. We show that bismuth-based compounds inhibited nsp13 unwinding activity via disrupting the binding of ATP and the DNA substrate to viral helicase. Binding of Bi(iii) to nsp13 also abolished the interaction between nsp12 and nsp13 as evidenced by immunofluorescence and co-immunoprecipitation assays. Finally, we validate our in vitro data in SARS-CoV-2 infected mammalian cells. Notably, Bi(6-TG)3 exhibited an EC50 of 1.18 ± 0.09 μM with a selective index of 847 in VeroE6-TMPRSS2 infected cells. This study highlights the important role of helicase for the development of more effective antiviral drugs to combat SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Xueying Wei
- Department of Chemistry and CAS-HKU Joint Laboratory of Metallomics on Heath and Environment, The University of Hong Kong Pokfulam Hong Kong Special Administrative Region China
- Department of Microbiology and State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong Pokfulam Hong Kong Special Administrative Region China
| | - Chun-Lung Chan
- Department of Chemistry and CAS-HKU Joint Laboratory of Metallomics on Heath and Environment, The University of Hong Kong Pokfulam Hong Kong Special Administrative Region China
| | - Ying Zhou
- Department of Chemistry and CAS-HKU Joint Laboratory of Metallomics on Heath and Environment, The University of Hong Kong Pokfulam Hong Kong Special Administrative Region China
| | - Kaiming Tang
- Department of Microbiology and State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong Pokfulam Hong Kong Special Administrative Region China
| | - Jingxin Chen
- Department of Chemistry and CAS-HKU Joint Laboratory of Metallomics on Heath and Environment, The University of Hong Kong Pokfulam Hong Kong Special Administrative Region China
| | - Suyu Wang
- Department of Chemistry and CAS-HKU Joint Laboratory of Metallomics on Heath and Environment, The University of Hong Kong Pokfulam Hong Kong Special Administrative Region China
| | - Jasper Fuk-Woo Chan
- Department of Microbiology and State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong Pokfulam Hong Kong Special Administrative Region China
| | - Shuofeng Yuan
- Department of Microbiology and State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong Pokfulam Hong Kong Special Administrative Region China
| | - Hongyan Li
- Department of Chemistry and CAS-HKU Joint Laboratory of Metallomics on Heath and Environment, The University of Hong Kong Pokfulam Hong Kong Special Administrative Region China
| | - Hongzhe Sun
- Department of Chemistry and CAS-HKU Joint Laboratory of Metallomics on Heath and Environment, The University of Hong Kong Pokfulam Hong Kong Special Administrative Region China
| |
Collapse
|
150
|
Zhang Y, Tian Y, Yan A. A SAR and QSAR study on 3CLpro inhibitors of SARS-CoV-2 using machine learning methods. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2024; 35:531-563. [PMID: 39077983 DOI: 10.1080/1062936x.2024.2375513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 06/27/2024] [Indexed: 07/31/2024]
Abstract
The 3C-like Proteinase (3CLpro) of novel coronaviruses is intricately linked to viral replication, making it a crucial target for antiviral agents. In this study, we employed two fingerprint descriptors (ECFP_4 and MACCS) to comprehensively characterize 889 compounds in our dataset. We constructed 24 classification models using machine learning algorithms, including Support Vector Machine (SVM), Random Forest (RF), extreme Gradient Boosting (XGBoost), and Deep Neural Networks (DNN). Among these models, the DNN- and ECFP_4-based Model 1D_2 achieved the most promising results, with a remarkable Matthews correlation coefficient (MCC) value of 0.796 in the 5-fold cross-validation and 0.722 on the test set. The application domains of the models were analysed using dSTD-PRO calculations. The collected 889 compounds were clustered by K-means algorithm, and the relationships between structural fragments and inhibitory activities of the highly active compounds were analysed for the 10 obtained subsets. In addition, based on 464 3CLpro inhibitors, 27 QSAR models were constructed using three machine learning algorithms with a minimum root mean square error (RMSE) of 0.509 on the test set. The applicability domains of the models and the structure-activity relationships responded from the descriptors were also analysed.
Collapse
Affiliation(s)
- Y Zhang
- State Key Laboratory of Chemical Resource Engineering, Department of Pharmaceutical Engineering, Beijing University of Chemical Technology, Beijing, P. R. China
| | - Y Tian
- State Key Laboratory of Chemical Resource Engineering, Department of Pharmaceutical Engineering, Beijing University of Chemical Technology, Beijing, P. R. China
| | - A Yan
- State Key Laboratory of Chemical Resource Engineering, Department of Pharmaceutical Engineering, Beijing University of Chemical Technology, Beijing, P. R. China
| |
Collapse
|