101
|
Zhou R, Liu N, Li X, Peng Q, Yiu CK, Huang H, Yang D, Du Z, Kwok HY, Au KK, Cai JP, Fan-Ngai Hung I, Kai-Wang To K, Xu X, Yuen KY, Chen Z. Three-dose vaccination-induced immune responses protect against SARS-CoV-2 Omicron BA.2: a population-based study in Hong Kong. THE LANCET REGIONAL HEALTH. WESTERN PACIFIC 2023; 32:100660. [PMID: 36591327 PMCID: PMC9786166 DOI: 10.1016/j.lanwpc.2022.100660] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 11/16/2022] [Accepted: 11/21/2022] [Indexed: 12/24/2022]
Abstract
Background The ongoing outbreak of SARS-CoV-2 Omicron BA.2 infections in Hong Kong, the model city of universal masking of the world, has resulted in a major public health crisis. Although the third vaccination resulted in strong boosting of neutralization antibody, vaccine efficacy and correlate of immune protection against the major circulating Omicron BA.2 remain to be investigated. Methods We investigated the vaccine efficacy against the Omicron BA.2 breakthrough infection among 470 public servants who had received different SARS-CoV-2 vaccine regimens including two-dose BNT162b2 (2 × BNT, n = 169), three-dose BNT162b2 (3 × BNT, n = 168), two-dose CoronaVac (2 × CorV, n = 34), three-dose CoronaVac (3 × CorV, n = 67) and third-dose BNT162b2 following 2 × CorV (2 × CorV+1BNT, n = 32). Humoral and cellular immune responses after three-dose vaccination were further characterized and correlated with clinical characteristics of BA.2 infection. Findings During the BA.2 outbreak, 27.7% vaccinees were infected. The timely third-dose vaccination provided significant protection with lower incidence rates of breakthrough infections (2 × BNT 46.2% vs 3 × BNT 13.1%, p < 0.0001; 2 × CorV 44.1% vs 3 × CorV 19.4%, p = 0.003). Investigation of immune responses on blood samples derived from 90 subjects in three-dose vaccination cohorts collected before the BA.2 outbreak revealed that the third-dose vaccination activated spike (S)-specific memory B cells and Omicron cross-reactive T cell responses, which correlated with reduced frequencies of breakthrough infections and disease severity rather than with types of vaccines. Moreover, the frequency of S-specific activated memory B cells was significantly lower in infected vaccinees than uninfected vaccinees before vaccine-breakthrough infection whereas IFN-γ+ CD4 T cells were negatively associated with age and viral clearance time. Critically, BA.2 breakthrough infection boosted cross-reactive memory B cells with enhanced cross-neutralizing antibodies to Omicron sublineages, including BA.2.12.1 and BA.4/5, in all vaccinees tested. Interpretation Our results imply that the timely third vaccination and immune responses are likely required for vaccine-mediated protection against Omicron BA.2 pandemic. Although BA.2 conferred the highest neutralization resistance compared with variants of concern tested before the emergence of BA.2.12.1 and BA.4/5, the third dose vaccination-activated S-specific memory B cells and Omicron cross-reactive T cell responses contributed to reduced frequencies of breakthrough infection and disease severity. Neutralizing antibody potency enhanced by BA.2 breakthrough infection in vaccinees with prior 3 doses of CoronaVac or BNT162b2 may reduce the risk of infection against ongoing BA.2.12.1 and BA.4/5. Funding Hong Kong Research Grants Council Collaborative Research Fund, Health and Medical Research Fund, Wellcome Trust, Shenzhen Science and Technology Program, the Health@InnoHK, Innovation and Technology Commission of Hong Kong, China, National Program on Key Research Project, Emergency Key Program of Guangzhou Laboratory, donations from the Friends of Hope Education Fund and the Hong Kong Theme-Based Research Scheme.
Collapse
Affiliation(s)
- Runhong Zhou
- AIDS Institute, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People's Republic of China
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People's Republic of China
- Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong Special Administrative Region, People's Republic of China
| | - Na Liu
- AIDS Institute, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People's Republic of China
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People's Republic of China
- Department of Clinical Microbiology and Infection Control, The University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong, People's Republic of China
| | - Xin Li
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People's Republic of China
- Department of Microbiology, Queen Mary Hospital, Hong Kong Special Administrative Region, People’s Republic of a China
| | - Qiaoli Peng
- AIDS Institute, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People's Republic of China
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People's Republic of China
| | - Cheuk-Kwan Yiu
- Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, People's Republic of China
| | - Haode Huang
- AIDS Institute, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People's Republic of China
| | - Dawei Yang
- AIDS Institute, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People's Republic of China
| | - Zhenglong Du
- AIDS Institute, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People's Republic of China
| | - Hau-Yee Kwok
- AIDS Institute, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People's Republic of China
| | - Ka-Kit Au
- AIDS Institute, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People's Republic of China
| | - Jian-Piao Cai
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People's Republic of China
| | - Ivan Fan-Ngai Hung
- Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, People's Republic of China
| | - Kelvin Kai-Wang To
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People's Republic of China
- Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong Special Administrative Region, People's Republic of China
- Department of Microbiology, Queen Mary Hospital, Hong Kong Special Administrative Region, People’s Republic of a China
| | - Xiaoning Xu
- Centre for Immunology & Vaccinology, Chelsea and Westminster Hospital, Department of Medicine, Imperial College London, London, United Kingdom
| | - Kwok-Yung Yuen
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People's Republic of China
- Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong Special Administrative Region, People's Republic of China
- Department of Clinical Microbiology and Infection Control, The University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong, People's Republic of China
- Department of Microbiology, Queen Mary Hospital, Hong Kong Special Administrative Region, People’s Republic of a China
- State Key Laboratory for Emerging Infectious Diseases, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People's Republic of China
| | - Zhiwei Chen
- AIDS Institute, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People's Republic of China
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People's Republic of China
- Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong Special Administrative Region, People's Republic of China
- Department of Clinical Microbiology and Infection Control, The University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong, People's Republic of China
- State Key Laboratory for Emerging Infectious Diseases, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People's Republic of China
| |
Collapse
|
102
|
Jaber A, Patel M, Sylvester A, Yarussi M, Kalina JT, Mendoza JP, Avila RL, Tremblay MA. COVID-19 Vaccine Response in People with Multiple Sclerosis Treated with Dimethyl Fumarate, Diroximel Fumarate, Natalizumab, Ocrelizumab, or Interferon Beta Therapy. Neurol Ther 2023; 12:687-700. [PMID: 36792812 PMCID: PMC9931564 DOI: 10.1007/s40120-023-00448-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 01/27/2023] [Indexed: 02/17/2023] Open
Abstract
BACKGROUND Some multiple sclerosis (MS) disease-modifying therapies (DMTs) impair responses to vaccines, emphasizing the importance of understanding COVID-19 vaccine immune responses in people with MS (PwMS) receiving different DMTs. METHODS This prospective, open-label observational study enrolled 45 participants treated with natalizumab (n = 12), ocrelizumab (n = 16), fumarates (dimethyl fumarate or diroximel fumarate, n = 11), or interferon beta (n = 6); ages 18-65 years inclusive; stable on DMT for at least 6 months. Responder rates, anti-SARS-CoV-2 spike receptor-binding domain IgG (anti-RBD) geometric mean titers (GMTs), antigen-specific T cells, and vaccination-related adverse events were evaluated at baseline and 8, 24, 36, and 48 weeks after first mRNA-1273 (Moderna) dose. RESULTS At 8 weeks post vaccination, all natalizumab-, fumarate-, and interferon beta-treated participants generated detectable anti-RBD IgG titers, compared to only 25% of the ocrelizumab cohort. At 24 and 36 weeks post vaccination, natalizumab-, fumarate-, and interferon beta-treated participants continued to demonstrate detectable anti-RBD IgG titers, whereas participants receiving ocrelizumab did not. Anti-RBD GMTs decreased 81.5% between 8 and 24 weeks post vaccination for the non-ocrelizumab-treated participants, with no significant difference between groups. At 36 weeks post vaccination, ocrelizumab-treated participants had higher proportions of spike-specific T cells compared to other treatment groups. Vaccine-associated side effects were highest in the ocrelizumab arm for most symptoms. CONCLUSIONS These results suggest that humoral response to mRNA-1273 COVID-19 vaccine is preserved and similar in PwMS treated with natalizumab, fumarate, and interferon beta, but muted with ocrelizumab. All DMTs had preserved T cell response, including the ocrelizumab cohort, which also had a greater risk of vaccine-related side effects.
Collapse
Affiliation(s)
- Aliya Jaber
- Multiple Sclerosis Comprehensive Care Center, RWJ Barnabas Health, Livingston, NJ, USA
| | - Meera Patel
- Multiple Sclerosis Comprehensive Care Center, RWJ Barnabas Health, Livingston, NJ, USA
| | - Andrew Sylvester
- Multiple Sclerosis Comprehensive Care Center, RWJ Barnabas Health, Livingston, NJ, USA
| | - Mary Yarussi
- Multiple Sclerosis Comprehensive Care Center, RWJ Barnabas Health, Livingston, NJ, USA
| | | | | | | | - Matthew A Tremblay
- Multiple Sclerosis Comprehensive Care Center, RWJ Barnabas Health, Livingston, NJ, USA.
| |
Collapse
|
103
|
Immunological Findings in a Group of Individuals Who Were Poor or Non-Responders to Standard Two-Dose SARS-CoV-2 Vaccines. Vaccines (Basel) 2023; 11:vaccines11020461. [PMID: 36851338 PMCID: PMC9963224 DOI: 10.3390/vaccines11020461] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 02/08/2023] [Accepted: 02/14/2023] [Indexed: 02/19/2023] Open
Abstract
Coronavirus disease (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has been declared a pandemic. However, data on the poor or non-responders to SARS-CoV-2 vaccines in the general population are limited. The objective of this study was to comprehensively compare the immunological characteristics of poor or non-responders to SARS-CoV-2 vaccines in the 18-59-year group with those in the ≥60-year group using internationally recognized cut-off values. The main outcome was effective seroconversion characterized by an anti-SARS-CoV-2 spike IgG level of at least a four-fold increase from baseline. Profiling of naïve immune cells was analyzed prior to vaccination to demonstrate baseline immunity. The outcomes of effective seroconversion in patients aged 18-59 years with those in patients aged ≥60 years were compared. The quantitative level of anti-spike IgG was significantly lower in individuals aged ≥60 and men aged 18-59 years. There were 7.5% of poor or non-responders among the 18-59 years and 11.7% of poor or non-responders in the ≥60 years using a four-fold increase parameter. There were 37.0-58.1% with low lymphocyte count (<1000/mm3), 33.3-45.2% with low CD4 cell counts (<500/mm3), and 74.1-96.8% with low B cell counts (<100/mm3) in the non-seroconversion group. An individual with an anti-SARS-CoV-2 spike IgG titer below 50 BAU/mL might be considered a poor or non-responder between 14 and 90 days after the last vaccine dose. Booster vaccination or additional protective measures should be recommended to poor or non-responders as soon as possible to reduce disease severity and mortality.
Collapse
|
104
|
High-Throughput Neutralization and Serology Assays Reveal Correlated but Highly Variable Humoral Immune Responses in a Large Population of Individuals Infected with SARS-CoV-2 in the US between March and August 2020. mBio 2023; 14:e0352322. [PMID: 36786604 PMCID: PMC10128039 DOI: 10.1128/mbio.03523-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023] Open
Abstract
The ability to measure neutralizing antibodies on large scale can be important for understanding features of the natural history and epidemiology of infection, as well as an aid in determining the efficacy of interventions, particularly in outbreaks such as the current severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic. Because of the assay's rapid scalability and high efficiency, serology measurements that quantify the presence rather than function of serum antibodies often serve as proxies of immune protection. Here, we report the development of a high-throughput, automated fluorescence-based neutralization assay using SARS-CoV-2 virus to quantify neutralizing antibody activity in patient specimens. We performed large-scale testing of over 19,000 COVID-19 convalescent plasma (CCP) samples from patients who had been infected with SARS-CoV-2 between March and August 2020 across the United States. The neutralization capacity of the samples was moderately correlated with serological measurements of anti-receptor-binding domain (RBD) IgG levels. The neutralizing antibody levels within these convalescent-phase serum samples were highly variable against the original USA-WA1/2020 strain with almost 10% of individuals who had had PCR-confirmed SARS-CoV-2 infection having no detectable antibodies either by serology or neutralization, and ~1/3 having no or low neutralizing activity. Discordance between neutralization and serology measurements was mainly due to the presence of non-IgG RBD isotypes. Meanwhile, natural infection with the earliest SARS-CoV-2 strain USA-WA1/2020 resulted in weaker neutralization of subsequent B.1.1.7 (alpha) and the B.1.351 (beta) variants, with 88% of samples having no activity against the BA.1 (omicron) variant. IMPORTANCE The ability to directly measure neutralizing antibodies on live SARS-CoV-2 virus in individuals can play an important role in understanding the efficacy of therapeutic interventions or vaccines. In contrast to functional neutralization assays, serological assays only quantify the presence of antibodies as a proxy of immune protection. Here, we have developed a high-throughput, automated neutralization assay for SARS-CoV-2 and measured the neutralizing activity of ~19,000 COVID-19 convalescent plasma (CCP) samples collected across the United States between March and August of 2020. These data were used to support the FDA's interpretation of CCP efficacy in patients with SARS-CoV-2 infection and their issuance of emergency use authorization of CCP in 2020.
Collapse
|
105
|
Aguilar R, Li X, Crowell CS, Burrell T, Vidal M, Rubio R, Jiménez A, Hernández-Luis P, Hofmann D, Mijočević H, Jeske S, Christa C, D'Ippolito E, Lingor P, Knolle PA, Roggendorf H, Priller A, Yazici S, Carolis C, Mayor A, Schreiner P, Poppert H, Beyer H, Schambeck SE, Izquierdo L, Tortajada M, Angulo A, Soutschek E, Engel P, Garcia-Basteiro A, Busch DH, Moncunill G, Protzer U, Dobaño C, Gerhard M. RBD-Based ELISA and Luminex Predict Anti-SARS-CoV-2 Surrogate-Neutralizing Activity in Two Longitudinal Cohorts of German and Spanish Health Care Workers. Microbiol Spectr 2023; 11:e0316522. [PMID: 36622140 PMCID: PMC9927417 DOI: 10.1128/spectrum.03165-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 12/04/2022] [Indexed: 01/10/2023] Open
Abstract
The ability of antibodies to neutralize severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is an important correlate of protection. For routine evaluation of protection, however, a simple and cost-efficient anti-SARS-CoV-2 serological assay predictive of serum neutralizing activity is needed. We analyzed clinical epidemiological data and blood samples from two cohorts of health care workers in Barcelona and Munich to compare several immunological readouts for evaluating antibody levels that could be surrogates of neutralizing activity. We measured IgG levels against SARS-CoV-2 spike protein (S), its S2 subunit, the S1 receptor binding domain (RBD), and the full length and C terminus of nucleocapsid (N) protein by Luminex, and against RBD by enzyme-linked immunosorbent assay (ELISA), and assessed those as predictors of plasma surrogate-neutralizing activity measured by a flow cytometry assay. In addition, we determined the clinical and demographic factors affecting plasma surrogate-neutralizing capacity. Both cohorts showed a high positive correlation between IgG levels to S antigen, especially to RBD, and the levels of plasma surrogate-neutralizing activity, suggesting RBD IgG as a good correlate of plasma neutralizing activity. Symptomatic infection, with symptoms such as loss of taste, dyspnea, rigors, fever and fatigue, was positively associated with anti-RBD IgG positivity by ELISA and Luminex, and with plasma surrogate-neutralizing activity. Our serological assays allow for the prediction of serum neutralization activity without the cost, hazards, time, and expertise needed for surrogate or conventional neutralization assays. Once a cutoff is established, these relatively simple high-throughput antibody assays will provide a fast and cost-effective method of assessing levels of protection from SARS-CoV-2 infection. IMPORTANCE Neutralizing antibody titers are the best correlate of protection against SARS-CoV-2. However, current tests to measure plasma or serum neutralizing activity do not allow high-throughput screening at the population level. Serological tests could be an alternative if they are proved to be good predictors of plasma neutralizing activity. In this study, we analyzed the SARS-CoV-2 serological profiles of two cohorts of health care workers by applying Luminex and ELISA in-house serological assays. Correlations of both serological tests were assessed between them and with a flow cytometry assay to determine plasma surrogate-neutralizing activity. Both assays showed a high positive correlation between IgG levels to S antigens, especially RBD, and the levels of plasma surrogate-neutralizing activity. This result suggests IgG to RBD as a good correlate of plasma surrogate-neutralizing activity and indicates that serology of IgG to RBD could be used to assess levels of protection from SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Ruth Aguilar
- ISGlobal, Hospital Clínic, Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Xue Li
- Institute of Medical Microbiology, Immunology, and Hygiene, School of Medicine, Technical University of Munich (TUM), Munich, Germany
| | - Claudia S. Crowell
- Institute of Medical Microbiology, Immunology, and Hygiene, School of Medicine, Technical University of Munich (TUM), Munich, Germany
| | - Teresa Burrell
- Institute of Medical Microbiology, Immunology, and Hygiene, School of Medicine, Technical University of Munich (TUM), Munich, Germany
| | - Marta Vidal
- ISGlobal, Hospital Clínic, Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Rocio Rubio
- ISGlobal, Hospital Clínic, Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Alfons Jiménez
- ISGlobal, Hospital Clínic, Universitat de Barcelona, Barcelona, Catalonia, Spain
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain
| | - Pablo Hernández-Luis
- Immunology Unit, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universitat de Barcelona, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - Dieter Hofmann
- Institute of Virology, School of Medicine, Technical University of Munich, Munich, Germany
- German Center for Infection Research (DZIF), Munich, Germany
| | - Hrvoje Mijočević
- Institute of Virology, School of Medicine, Technical University of Munich, Munich, Germany
| | - Samuel Jeske
- Institute of Virology, School of Medicine, Technical University of Munich, Munich, Germany
| | - Catharina Christa
- Institute of Virology, School of Medicine, Technical University of Munich, Munich, Germany
| | - Elvira D'Ippolito
- Institute of Medical Microbiology, Immunology, and Hygiene, School of Medicine, Technical University of Munich (TUM), Munich, Germany
| | - Paul Lingor
- Klinikum rechts der Isar, Department of Neurology, School of Medicine, Technical University of Munich, Munich, Germany
| | - Percy A. Knolle
- German Center for Infection Research (DZIF), Munich, Germany
- Klinikum rechts der Isar, Institute of Molecular Immunology and Experimental Oncology, School of Medicine, Technical University of Munich, Munich, Germany
| | - Hedwig Roggendorf
- Klinikum rechts der Isar, Institute of Molecular Immunology and Experimental Oncology, School of Medicine, Technical University of Munich, Munich, Germany
| | - Alina Priller
- Klinikum rechts der Isar, Institute of Molecular Immunology and Experimental Oncology, School of Medicine, Technical University of Munich, Munich, Germany
| | - Sarah Yazici
- Klinikum rechts der Isar, Institute of Molecular Immunology and Experimental Oncology, School of Medicine, Technical University of Munich, Munich, Germany
| | - Carlo Carolis
- Biomolecular Screening and Protein Technologies Unit, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Alfredo Mayor
- ISGlobal, Hospital Clínic, Universitat de Barcelona, Barcelona, Catalonia, Spain
| | | | | | | | - Sophia E. Schambeck
- Institute of Medical Microbiology, Immunology, and Hygiene, School of Medicine, Technical University of Munich (TUM), Munich, Germany
- Helios Klinikum München West, Munich, Germany
| | - Luis Izquierdo
- ISGlobal, Hospital Clínic, Universitat de Barcelona, Barcelona, Catalonia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Barcelona, Spain
| | - Marta Tortajada
- Occupational Health Department, Hospital Clínic, Universitat de Barcelona, Barcelona, Spain
| | - Ana Angulo
- Immunology Unit, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universitat de Barcelona, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | | | - Pablo Engel
- Immunology Unit, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universitat de Barcelona, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - Alberto Garcia-Basteiro
- ISGlobal, Hospital Clínic, Universitat de Barcelona, Barcelona, Catalonia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Barcelona, Spain
- Department of Preventive Medicine and Epidemiology, Hospital Clinic, Universitat de Barcelona, Barcelona, Spain
| | - Dirk H. Busch
- Institute of Medical Microbiology, Immunology, and Hygiene, School of Medicine, Technical University of Munich (TUM), Munich, Germany
- German Center for Infection Research (DZIF), Munich, Germany
| | - Gemma Moncunill
- ISGlobal, Hospital Clínic, Universitat de Barcelona, Barcelona, Catalonia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Barcelona, Spain
| | - Ulrike Protzer
- Institute of Virology, School of Medicine, Technical University of Munich, Munich, Germany
- German Center for Infection Research (DZIF), Munich, Germany
| | - Carlota Dobaño
- ISGlobal, Hospital Clínic, Universitat de Barcelona, Barcelona, Catalonia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Barcelona, Spain
| | - Markus Gerhard
- Institute of Medical Microbiology, Immunology, and Hygiene, School of Medicine, Technical University of Munich (TUM), Munich, Germany
- German Center for Infection Research (DZIF), Munich, Germany
| |
Collapse
|
106
|
Understanding the SARS-CoV-2 Virus Neutralizing Antibody Response: Lessons to Be Learned from HIV and Respiratory Syncytial Virus. Viruses 2023; 15:v15020504. [PMID: 36851717 PMCID: PMC9961721 DOI: 10.3390/v15020504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/07/2023] [Accepted: 02/09/2023] [Indexed: 02/16/2023] Open
Abstract
The SARS-CoV-2 pandemic commenced in 2019 and is still ongoing. Neither infection nor vaccination give long-lasting immunity and, here, in an attempt to understand why this might be, we have compared the neutralizing antibody responses to SARS-CoV-2 with those specific for human immunodeficiency virus type 1 (HIV-1) and respiratory syncytial virus (RSV). Currently, most of the antibodies specific for the SARS-CoV-2 S protein map to three broad antigenic sites, all at the distal end of the S trimer (receptor-binding site (RBD), sub-RBD and N-terminal domain), whereas the structurally similar HIV-1 and the RSV F envelope proteins have six antigenic sites. Thus, there may be several antigenic sites on the S trimer that have not yet been identified. The epitope mapping, quantitation and longevity of the SARS-CoV-2 S-protein-specific antibodies produced in response to infection and those elicited by vaccination are now being reported for specific groups of individuals, but much remains to be determined about these aspects of the host-virus interaction. Finally, there is a concern that the SARS-CoV-2 field may be reprising the HIV-1 experience, which, for many years, used a virus for neutralization studies that did not reflect the neutralizability of wild-type HIV-1. For example, the widely used VSV-SARS-CoV-2-S protein pseudotype has 10-fold more S trimers per virion and a different configuration of the trimers compared with the SARS-CoV-2 wild-type virus. Clarity in these areas would help in advancing understanding and aid countermeasures of the SARS-CoV-2 pandemic.
Collapse
|
107
|
Rodriguez-Watson CV, Sheils NE, Louder AM, Eldridge EH, Lin ND, Pollock BD, Gatz JL, Grannis SJ, Vashisht R, Ghauri K, Valo G, Chakravarty AG, Lasky T, Jung M, Lovell SL, Major JM, Kabelac C, Knepper C, Leonard S, Embi PJ, Jenkinson WG, Klesh R, Garner OB, Patel A, Dahm L, Barin A, Cooper DM, Andriola T, Byington CL, Crews BO, Butte AJ, Allen J. Real-world utilization of SARS-CoV-2 serological testing in RNA positive patients across the United States. PLoS One 2023; 18:e0281365. [PMID: 36763574 PMCID: PMC9916659 DOI: 10.1371/journal.pone.0281365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 01/22/2023] [Indexed: 02/11/2023] Open
Abstract
BACKGROUND As diagnostic tests for COVID-19 were broadly deployed under Emergency Use Authorization, there emerged a need to understand the real-world utilization and performance of serological testing across the United States. METHODS Six health systems contributed electronic health records and/or claims data, jointly developed a master protocol, and used it to execute the analysis in parallel. We used descriptive statistics to examine demographic, clinical, and geographic characteristics of serology testing among patients with RNA positive for SARS-CoV-2. RESULTS Across datasets, we observed 930,669 individuals with positive RNA for SARS-CoV-2. Of these, 35,806 (4%) were serotested within 90 days; 15% of which occurred <14 days from the RNA positive test. The proportion of people with a history of cardiovascular disease, obesity, chronic lung, or kidney disease; or presenting with shortness of breath or pneumonia appeared higher among those serotested compared to those who were not. Even in a population of people with active infection, race/ethnicity data were largely missing (>30%) in some datasets-limiting our ability to examine differences in serological testing by race. In datasets where race/ethnicity information was available, we observed a greater distribution of White individuals among those serotested; however, the time between RNA and serology tests appeared shorter in Black compared to White individuals. Test manufacturer data was available in half of the datasets contributing to the analysis. CONCLUSION Our results inform the underlying context of serotesting during the first year of the COVID-19 pandemic and differences observed between claims and EHR data sources-a critical first step to understanding the real-world accuracy of serological tests. Incomplete reporting of race/ethnicity data and a limited ability to link test manufacturer data, lab results, and clinical data challenge the ability to assess the real-world performance of SARS-CoV-2 tests in different contexts and the overall U.S. response to current and future disease pandemics.
Collapse
Affiliation(s)
| | | | | | | | - Nancy D. Lin
- Health Catalyst, Salt Lake City, Utah, United States of America
| | | | - Jennifer L. Gatz
- Regenstrief Institute, Indianapolis, Indiana, United States of America
| | - Shaun J. Grannis
- Regenstrief Institute, Indianapolis, Indiana, United States of America
- Department of Informatics and Health Services Research, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Rohit Vashisht
- Bakar Computational Health Sciences Institute, University of California San Francisco, San Francisco, California, United States of America
| | - Kanwal Ghauri
- Reagan-Udall Foundation for the FDA, Washington, District of Columbia, United States of America
| | - Gina Valo
- Office of the Commissioner, U.S. Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Aloka G. Chakravarty
- Office of the Commissioner, U.S. Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Tamar Lasky
- Office of the Commissioner, U.S. Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Mary Jung
- Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Stephen L. Lovell
- Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Jacqueline M. Major
- Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Carly Kabelac
- Aetion, New York, New York, United States of America
| | | | - Sandy Leonard
- HealthVerity, Philadelphia, Pennsylvania, United States of America
| | - Peter J. Embi
- Regenstrief Institute, Indianapolis, Indiana, United States of America
- Department of Informatics and Health Services Research, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | | | - Reyna Klesh
- HealthVerity, Philadelphia, Pennsylvania, United States of America
| | - Omai B. Garner
- Department of Pathology and Laboratory Medicine, UCLA Medical Center, Los Angeles, California, United States of America
| | - Ayan Patel
- Center for Data-driven Insights and Innovation, University of California Health, Oakland, California, United States of America
| | - Lisa Dahm
- Center for Data-driven Insights and Innovation, University of California Health, Oakland, California, United States of America
| | - Aiden Barin
- Center for Data-driven Insights and Innovation, University of California Health, Oakland, California, United States of America
| | - Dan M. Cooper
- Center for Data-driven Insights and Innovation, University of California Health, Oakland, California, United States of America
- Pediatric Exercise and Genomics Research Center, University of California Irvine School of Medicine, Irvine, California, United States of America
| | - Tom Andriola
- Center for Data-driven Insights and Innovation, University of California Health, Oakland, California, United States of America
- Office of Data and Information Technology, University of California, Irvine, California, United States of America
| | - Carrie L. Byington
- Center for Data-driven Insights and Innovation, University of California Health, Oakland, California, United States of America
| | - Bridgit O. Crews
- Department of Pathology and Laboratory Medicine, University of California, Irvine, California, United States of America
| | - Atul J. Butte
- Bakar Computational Health Sciences Institute, University of California San Francisco, San Francisco, California, United States of America
- Center for Data-driven Insights and Innovation, University of California Health, Oakland, California, United States of America
| | - Jeff Allen
- Friends of Cancer Research, Washington, District of Columbia, United States of America
| |
Collapse
|
108
|
Melnyk A, Kozarov L, Wachsmann-Hogiu S. A deconvolution approach to modelling surges in COVID-19 cases and deaths. Sci Rep 2023; 13:2361. [PMID: 36759700 PMCID: PMC9910232 DOI: 10.1038/s41598-023-29198-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 01/31/2023] [Indexed: 02/11/2023] Open
Abstract
The COVID-19 pandemic continues to emphasize the importance of epidemiological modelling in guiding timely and systematic responses to public health threats. Nonetheless, the predictive qualities of these models remain limited by their underlying assumptions of the factors and determinants shaping national and regional disease landscapes. Here, we introduce epidemiological feature detection, a novel latent variable mixture modelling approach to extracting and parameterizing distinct and localized features of real-world trends in daily COVID-19 cases and deaths. In this approach, we combine methods of peak deconvolution that are commonly used in spectroscopy with the susceptible-infected-recovered-deceased model of disease transmission. We analyze the second wave of the COVID-19 pandemic in Israel, Canada, and Germany and find that the lag time between reported cases and deaths, which we term case-death latency, is closely correlated with adjusted case fatality rates across these countries. Our findings illustrate the spatiotemporal variability of both these disease metrics within and between different disease landscapes. They also highlight the complex relationship between case-death latency, adjusted case fatality rate, and COVID-19 management across various degrees of decentralized governments and administrative structures, which provides a retrospective framework for responding to future pandemics and disease outbreaks.
Collapse
Affiliation(s)
- Adam Melnyk
- Department of Bioengineering, McGill University, 3480 Rue University, Montreal, QC, H3A 0E9, Canada.
| | - Lena Kozarov
- Department of Bioengineering, McGill University, 3480 Rue University, Montreal, QC, H3A 0E9, Canada
| | - Sebastian Wachsmann-Hogiu
- Department of Bioengineering, McGill University, 3480 Rue University, Montreal, QC, H3A 0E9, Canada.
| |
Collapse
|
109
|
Celikgil A, Massimi AB, Nakouzi A, Herrera NG, Morano NC, Lee JH, Yoon HA, Garforth SJ, Almo SC. SARS-CoV-2 multi-antigen protein microarray for detailed characterization of antibody responses in COVID-19 patients. PLoS One 2023; 18:e0276829. [PMID: 36757919 PMCID: PMC9910743 DOI: 10.1371/journal.pone.0276829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 01/13/2023] [Indexed: 02/10/2023] Open
Abstract
Antibodies against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) target multiple epitopes on different domains of the spike protein, and other SARS-CoV-2 proteins. We developed a SARS-CoV-2 multi-antigen protein microarray with the nucleocapsid, spike and its domains (S1, S2), and variants with single (D614G, E484K, N501Y) or double substitutions (N501Y/Deletion69/70), allowing a more detailed high-throughput analysis of the antibody repertoire following infection. The assay was demonstrated to be reliable and comparable to ELISA. We analyzed antibodies from 18 COVID-19 patients and 12 recovered convalescent donors. The S IgG level was higher than N IgG in most of the COVID-19 patients, and the receptor-binding domain of S1 showed high reactivity, but no antibodies were detected against the heptad repeat domain 2 of S2. Furthermore, antibodies were detected against S variants with single and double substitutions in COVID-19 patients who were infected with SARS-CoV-2 early in the pandemic. Here we demonstrated that the SARS-CoV-2 multi-antigen protein microarray is a powerful tool for detailed characterization of antibody responses, with potential utility in understanding the disease progress and assessing current vaccines and therapies against evolving SARS-CoV-2.
Collapse
Affiliation(s)
- Alev Celikgil
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Aldo B. Massimi
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Antonio Nakouzi
- Department of Medicine, Division of Infectious Diseases, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, New York, United States of America
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Natalia G. Herrera
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Nicholas C. Morano
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - James H. Lee
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Hyun ah Yoon
- Department of Medicine, Division of Infectious Diseases, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, New York, United States of America
| | - Scott J. Garforth
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Steven C. Almo
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York, United States of America
| |
Collapse
|
110
|
Rodriguez-Watson CV, Louder AM, Kabelac C, Frederick CM, Sheils NE, Eldridge EH, Lin ND, Pollock BD, Gatz JL, Grannis SJ, Vashisht R, Ghauri K, Knepper C, Leonard S, Embi PJ, Jenkinson G, Klesh R, Garner OB, Patel A, Dahm L, Barin A, Cooper DM, Andriola T, Byington CL, Crews BO, Butte AJ, Allen J. Real-world performance of SARS-Cov-2 serology tests in the United States, 2020. PLoS One 2023; 18:e0279956. [PMID: 36735683 PMCID: PMC9897562 DOI: 10.1371/journal.pone.0279956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 12/19/2022] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Real-world performance of COVID-19 diagnostic tests under Emergency Use Authorization (EUA) must be assessed. We describe overall trends in the performance of serology tests in the context of real-world implementation. METHODS Six health systems estimated the odds of seropositivity and positive percent agreement (PPA) of serology test among people with confirmed SARS-CoV-2 infection by molecular test. In each dataset, we present the odds ratio and PPA, overall and by key clinical, demographic, and practice parameters. RESULTS A total of 15,615 people were observed to have at least one serology test 14-90 days after a positive molecular test for SARS-CoV-2. We observed higher PPA in Hispanic (PPA range: 79-96%) compared to non-Hispanic (60-89%) patients; in those presenting with at least one COVID-19 related symptom (69-93%) as compared to no such symptoms (63-91%); and in inpatient (70-97%) and emergency department (93-99%) compared to outpatient (63-92%) settings across datasets. PPA was highest in those with diabetes (75-94%) and kidney disease (83-95%); and lowest in those with auto-immune conditions or who are immunocompromised (56-93%). The odds ratios (OR) for seropositivity were higher in Hispanics compared to non-Hispanics (OR range: 2.59-3.86), patients with diabetes (1.49-1.56), and obesity (1.63-2.23); and lower in those with immunocompromised or autoimmune conditions (0.25-0.70), as compared to those without those comorbidities. In a subset of three datasets with robust information on serology test name, seven tests were used, two of which were used in multiple settings and met the EUA requirement of PPA ≥87%. Tests performed similarly across datasets. CONCLUSION Although the EUA requirement was not consistently met, more investigation is needed to understand how serology and molecular tests are used, including indication and protocol fidelity. Improved data interoperability of test and clinical/demographic data are needed to enable rapid assessment of the real-world performance of in vitro diagnostic tests.
Collapse
Affiliation(s)
| | | | - Carly Kabelac
- Aetion, New York, New York, United States of America
| | | | | | | | - Nancy D. Lin
- Health Catalyst, Salt Lake City, Utah, United States of America
| | | | - Jennifer L. Gatz
- Regenstrief Institute, Indianapolis, Indiana, United States of America
| | - Shaun J. Grannis
- Regenstrief Institute, Indianapolis, Indiana, United States of America
- Department of Family Medicine, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Rohit Vashisht
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, California, United States of America
| | - Kanwal Ghauri
- Reagan-Udall Foundation for the FDA, Washington, District of Columbia, United States of America
| | | | - Sandy Leonard
- HealthVerity, Philadelphia, Pennsylvania, United States of America
| | - Peter J. Embi
- Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | | | - Reyna Klesh
- HealthVerity, Philadelphia, Pennsylvania, United States of America
| | - Omai B. Garner
- Department of Pathology and Laboratory Medicine, UCLA Medical Center, Los Angeles, California, United States of America
| | - Ayan Patel
- Center for Data-Driven Insights and Innovation, University of California Health, Oakland, California, United States of America
| | - Lisa Dahm
- Center for Data-Driven Insights and Innovation, University of California Health, Oakland, California, United States of America
| | - Aiden Barin
- Center for Data-Driven Insights and Innovation, University of California Health, Oakland, California, United States of America
| | - Dan M. Cooper
- Center for Data-Driven Insights and Innovation, University of California Health, Oakland, California, United States of America
- Pediatric Exercise and Genomics Research Center, University of California Irvine School of Medicine, Irvine, California, United States of America
| | - Tom Andriola
- Center for Data-Driven Insights and Innovation, University of California Health, Oakland, California, United States of America
- Office of Data and Information Technology, University of California, Irvine, Irvine, California, United States of America
| | - Carrie L. Byington
- Center for Data-Driven Insights and Innovation, University of California Health, Oakland, California, United States of America
| | - Bridgit O. Crews
- Department of Pathology and Laboratory Medicine, University of California, Irvine, Irvine, California, United States of America
| | - Atul J. Butte
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, California, United States of America
- Center for Data-Driven Insights and Innovation, University of California Health, Oakland, California, United States of America
| | - Jeff Allen
- Friends of Cancer Research, Washington, District of Columbia, United States of America
| |
Collapse
|
111
|
Severe acute respiratory syndrome corona virus-2 (SARS-CoV-2) serology in the vaccination era and post booster vaccination. JOURNAL OF CLINICAL VIROLOGY PLUS 2023; 3:100130. [PMID: 36568023 PMCID: PMC9759815 DOI: 10.1016/j.jcvp.2022.100130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 11/18/2022] [Accepted: 12/17/2022] [Indexed: 12/23/2022] Open
Abstract
Background The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) pandemic has caused over 6 million deaths world-wide. In the pre-vaccination era, we noted a 5·3% SARS-CoV-2 IgG antibody positivity rate in 81,624 subjects. Methods Utilizing assays for serum SARS-CoV-2 spike (S) protein antibody (Roche) and neutralizing antibody (Diazyme), both >90% IgG, we measured antibodies in 13,189 subjects in the post-vaccination era, and in 69 subjects before and 60 days after booster vaccination. Results In 2021, in 10,267 subjects, 25·0% had negative S protein levels (<0.80 U/L), 24·4% had low positive levels (0.80-250 U/L), and 50·7% had high positive levels (>250 U/L). Median neutralizing antibody levels were 1·16 and 2·06 AU/mL in the low and high positive groups, respectively. In 2022, we evaluated 2,016 subjects where samples were diluted 1:100 if S protein antibody levels were >250 U/L. Median S protein and neutralizing antibody levels were 2,065 U/L (86.3% positivity) and 2·68 AU/mL (68.0% positivity), respectively. Antibody levels were also measured in 69 subjects before and 60 days after receiving SARS-CoV-2 booster vaccinations. Treatment resulted in a 15-fold increase in S protein antibody levels from 1,010 to 17,236 U/L, and a 6-fold increase in neutralizing antibody from 1·51 to 12·51 AU/mL in neutralizing antibody levels, respectively (both P<0.00001), with a wide variability in response. Conclusions Our data indicate that by early 2022 86% of subjects had positive SARS-CoV-2 S protein antibody levels, and that these levels and neutralizing antibody levels were increased 15-fold and 6-fold, respectively, 60 days after SARS-Cov-2 booster vaccination.
Collapse
|
112
|
State of the art in epitope mapping and opportunities in COVID-19. Future Sci OA 2023; 16:FSO832. [PMID: 36897962 PMCID: PMC9987558 DOI: 10.2144/fsoa-2022-0048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 02/15/2023] [Indexed: 03/08/2023] Open
Abstract
The understanding of any disease calls for studying specific biological structures called epitopes. One important tool recently drawing attention and proving efficiency in both diagnosis and vaccine development is epitope mapping. Several techniques have been developed with the urge to provide precise epitope mapping for use in designing sensitive diagnostic tools and developing rpitope-based vaccines (EBVs) as well as therapeutics. In this review, we will discuss the state of the art in epitope mapping with a special emphasis on accomplishments and opportunities in combating COVID-19. These comprise SARS-CoV-2 variant analysis versus the currently available immune-based diagnostic tools and vaccines, immunological profile-based patient stratification, and finally, exploring novel epitope targets for potential prophylactic, therapeutic or diagnostic agents for COVID-19.
Collapse
|
113
|
Pidal P, Fernández J, Airola C, Araujo M, Menjiba AM, Martín HS, Bruneau N, Balanda M, Elgueta C, Fasce R, Valenzuela MT, Orellana A, Ramírez E. Reduced neutralization against Delta, Gamma, Mu, and Omicron BA.1 variants of SARS-CoV-2 from previous non-Omicron infection. Med Microbiol Immunol 2023; 212:25-34. [PMID: 36370196 PMCID: PMC9660018 DOI: 10.1007/s00430-022-00753-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 10/31/2022] [Indexed: 11/13/2022]
Abstract
The understanding of the host immune response to SARS-CoV-2 variants of concern is critical for improving diagnostics, therapy development, and vaccines. Here, we analyzed the level of neutralizing antibodies against SARS-CoV-2 D614G, Delta, Gamma, Mu, and Omicron variants in D614G infected healthcare workers during a follow-up up to 6 months after recovery. We followed up 76 patients: 60.5% were women and 39.5% men. The 96.1% and 3.9% were symptomatic and asymptomatic, respectively. The most frequent symptoms were headache, myalgia, and cough. The 65.8%, 65.8%, and 92.1% of the infected individuals were positive for neutralizing antibodies against D614G variant at 2, 4, and 6 months of follow-up, respectively. The 26.3%, 48.7% and 65.8% of patients neutralized Delta variant, 19.7%, 32.9% and 52.6% of patients neutralized Gamma, 7.9%, 19.7% and 44.7% of patients neutralized Mu, and 4.0%, 9.2% and 15.8% of patients neutralized Omicron. Low neutralization against Gamma and Mu variants was observed during the follow-up, and very low against the Omicron variant was detected during the same period. The median of neutralizing antibody titers against D614G and Delta variants increased significantly during the follow-up. An association was observed between the levels of neutralizing antibodies against D614G and Delta variants and the severity of the disease. Our results suggest an immune escape from neutralizing antibodies with the Omicron variant because of the many mutations localized in the S protein.
Collapse
Affiliation(s)
- Paola Pidal
- Microbiología y Control de infecciones asociadas a la atención en Salud, Clínica Indisa, Santiago, Chile
| | - Jorge Fernández
- Subdepartment of Molecular Genetics, Instituto de Salud Pública de Chile, Santiago, Chile
| | - Constanza Airola
- Epidemiología y Control de infecciones asociadas a la atención en Salud, Clínica Indisa, Santiago, Chile
| | | | | | - Héctor San Martín
- Section of Oncogenic Viruses, Instituto de Salud Pública de Chile, Santiago, Chile
| | - Nicole Bruneau
- Section of Oncogenic Viruses, Instituto de Salud Pública de Chile, Santiago, Chile
| | - Monserrat Balanda
- Section of Oncogenic Viruses, Instituto de Salud Pública de Chile, Santiago, Chile
| | - Coral Elgueta
- Section of Oncogenic Viruses, Instituto de Salud Pública de Chile, Santiago, Chile
| | - Rodrigo Fasce
- Subdepartment of Viral Diseases, Instituto de Salud Pública de Chile, Santiago, Chile
| | - María Teresa Valenzuela
- Department of Epidemiology and Public Health, Faculty Medicine, Universidad de los Andes, Santiago, Chile
| | - Ariel Orellana
- Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Eugenio Ramírez
- Section of Oncogenic Viruses, Instituto de Salud Pública de Chile, Santiago, Chile.
- Subdepartment of Virology, Instituto de Salud Pública de Chile, Avenida Marathon 1000, Ñuñoa, Santiago, Chile.
| |
Collapse
|
114
|
Atahan E, Çalışkaner Öztürk B, Akçin R, Sarıbaş S, Kocazeybek B. Humoral and Cellular Immunity to Severe Acute Respiratory Syndrome Coronavirus-2 Vaccination in Patients with Sarcoidosis. Balkan Med J 2023; 40:34-39. [PMID: 36484365 PMCID: PMC9874256 DOI: 10.4274/balkanmedj.galenos.2022.2022-8-64] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Background The coronavirus disease 2019 vaccine induces both antibody and T-cell immune responses and has been proven to be effective in preventing coronavirus disease 2019, including its severe disease form, in healthy individuals. However, the details of severe acute respiratory syndrome coronavirus-2 immunoglobulin-G antibody responses and severe acute respiratory syndrome coronavirus-2 specific T-cell responses in patients with sarcoidosis are unknown. Aim To measure and compare antibody responses and T cell responses using enzyme-linked immunosorbent assays and interferon-gamma release assay in sarcoidosis patients infected with coronavirus disease 2019 and vaccinated with CoronaVac. Study Design A prospective cohort study. Methods A total of 28 coronavirus disease 2019 polymerase chain reaction test-positive sarcoidosis patients who were infected with severe acute respiratory syndrome coronavirus-2 in the past 6 months and did not have coronavirus disease 2019 vaccination and 28 sarcoidosis patients who were administered with 2 doses of CoronaVac and never had coronavirus disease 2019 were included in this study. The immune response levels of patients were determined by measuring the severe acute respiratory syndrome coronavirus-2 immunglobulinG and interferon-gamma levels in the blood of the patients by the enzyme-linked immunosorbent assays method and interferon-gamma release assay tests, respectively. Results The mean age of the patients in the COVID-infected group was 48.1 ± 11.3, while the mean age of the patients in the vaccinated group was 55.6 ± 9.32. The mean time elapsed after infection was 97.32 ± 42.1 days, while 61.3 ± 28.7 days had passed since the second vaccination dose. In the COVID-infected group, immunoglobulin-G and interferon-gamma release tests were positive in 64.3% and 89.3% of the patients, respectively. In the vaccinated group, immunoglobulin-G was positive in 10.7% of the patients, and interferon-gamma release test was positive in 14.3%. Conclusion Innate immune responses are better than adaptive immune responses in patients with sarcoidosis. The coronaVac vaccine is insufficient to generate humoral and cellular immunities in patients with sarcoidosis.
Collapse
Affiliation(s)
- Ersan Atahan
- Department of Pulmonary Diseases, Cerrahpaşa Faculty of Medicine, İstanbul University-Cerrahpaşa, İstanbul, Turkey
| | - Buket Çalışkaner Öztürk
- Department of Pulmonary Diseases, Cerrahpaşa Faculty of Medicine, İstanbul University-Cerrahpaşa, İstanbul, Turkey,* Address for Correspondence: Department of Pulmonary Diseases, Cerrahpaşa Faculty of Medicine, İstanbul University-Cerrahpaşa, İstanbul, Turkey E-mail:
| | - Rüveyda Akçin
- Department of Medical Microbiology, Cerrahpaşa Faculty of Medicine, İstanbul University-Cerrahpaşa, İstanbul, Turkey
| | - Suat Sarıbaş
- Department of Medical Microbiology, Cerrahpaşa Faculty of Medicine, İstanbul University-Cerrahpaşa, İstanbul, Turkey
| | - Bekir Kocazeybek
- Department of Medical Microbiology, Cerrahpaşa Faculty of Medicine, İstanbul University-Cerrahpaşa, İstanbul, Turkey
| |
Collapse
|
115
|
Onifade AA, Fowotade A, Rahamon SK, Edem VF, Yaqub SA, Akande OK, Arinola OG. Seroprevalence of anti-SARS-CoV-2 specific antibodies in vaccinated and vaccine naïve adult Nigerians. PLoS One 2023; 18:e0280276. [PMID: 36689402 PMCID: PMC9870169 DOI: 10.1371/journal.pone.0280276] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 12/26/2022] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND Reports on the evaluation of immune responses to different COVID-19 vaccines are limited. Similarly, effects of age and gender have not been well explored as variables that could impact on the vaccine-induced antibody response. Therefore, seroprevalence of anti-SARS-CoV-2 specific antibodies in vaccinated and vaccine naïve adult Nigerians was determined in this study. METHODOLOGY A total of 141 adults were enrolled into this study. Presence or absence of SARS-CoV-2 infection was confirmed by real-time reverse-transcriptase polymerase-chain reaction (RT-PCR) assay on nasopharyngeal and oropharyngeal swab specimens. Anti-SARS-CoV-2 Specific IgG and IgM antibodies were qualitatively detected using a Rapid Diagnostic Test kit. RESULTS Pre-vaccination, 77% of the study participants had never had PCR-confirmed COVID-19 test yet 66.7% of them were seropositive for SARS-CoV-2 antibodies. Of 111 COVID-19 vaccinated participants, 69.2% and 73.8% of them had SARS-CoV-2 specific IgG post-first and second doses of COVID-19 vaccine respectively. However, 23.1% and 21.4% of the participants who have had first and second doses respectively had no detectable anti-SARS-CoV-2 antibodies. The proportion of participants with SARS-CoV-2 specific IgG was insignificantly higher in those between the ages of 18-40 years and 41-59 years compared with individuals aged ≥60 years. No significant association was observed between gender and seropositivity for SARS-CoV-2 antibodies. CONCLUSION There is high SARS-CoV-2 antibody seroprevalence among Nigerian adults who never had PCR-confirmed COVID-19. Also, there is the need for anti-SARS-CoV-2 antibodies screening post vaccination as this could be essential in achieving herd immunity. Age and gender do not seem to have significant association with seropositivity.
Collapse
Affiliation(s)
| | - Adeola Fowotade
- Biorepository Clinical Virology Laboratory, College of Medicine, University of Ibadan, Ibadan, Nigeria
- Department of Medical Microbiology, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Sheu Kadiri Rahamon
- Department of Immunology, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Victory Fabian Edem
- Department of Immunology, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | | | - Olatunji Kadri Akande
- Biorepository Clinical Virology Laboratory, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | | |
Collapse
|
116
|
Abebe EC, Dejenie TA. Protective roles and protective mechanisms of neutralizing antibodies against SARS-CoV-2 infection and their potential clinical implications. Front Immunol 2023; 14:1055457. [PMID: 36742320 PMCID: PMC9892939 DOI: 10.3389/fimmu.2023.1055457] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 01/03/2023] [Indexed: 01/20/2023] Open
Abstract
Neutralizing antibodies (NAbs) are central players in the humoral immunity that defends the body from SARS-CoV-2 infection by blocking viral entry into host cells and neutralizing their biological effects. Even though NAbs primarily work by neutralizing viral antigens, on some occasions, they may also combat the SARS-CoV-2 virus escaping neutralization by employing several effector mechanisms in collaboration with immune cells like natural killer (NK) cells and phagocytes. Besides their prophylactic and therapeutic roles, antibodies can be used for COVID-19 diagnosis, severity evaluation, and prognosis assessment in clinical practice. Furthermore, the measurement of NAbs could have key implications in determining individual or herd immunity against SARS-CoV-2, vaccine effectiveness, and duration of the humoral protective response, as well as aiding in the selection of suitable individuals who can donate convalescent plasma to treat infected people. Despite all these clinical applications of NAbs, using them in clinical settings can present some challenges. This review discusses the protective functions, possible protective mechanisms against SARS-CoV-2, and potential clinical applications of NAbs in COVID-19. This article also highlights the possible challenges and solutions associated with COVID-19 antibody-based prophylaxis, therapy, and vaccination.
Collapse
Affiliation(s)
- Endeshaw Chekol Abebe
- Department of Medical Biochemistry, College of Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia
| | - Tadesse Asmamaw Dejenie
- Department of Medical Biochemistry, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| |
Collapse
|
117
|
Riesenhuber M, Nitsche C, Binder CJ, Schernhammer ES, Stamm T, Jakse F, Anwari E, Hamidi F, Haslacher H, Perkmann T, Hengstenberg C, Zelniker TA. Comparison of the prevalence of SARS-CoV-2 nucleoprotein antibodies in healthcare workers and an unselected adult and paediatric all-comer patient population: insights from a longitudinal study of healthcare workers and concurrent serial cross-sectional studies of patients at an academic medical centre in Austria. BMJ Open 2023; 13:e063760. [PMID: 36657754 PMCID: PMC9852740 DOI: 10.1136/bmjopen-2022-063760] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 12/27/2022] [Indexed: 01/20/2023] Open
Abstract
OBJECTIVES This study aimed to estimate and compare the prevalence of the virus-specific antibodies against the SARS-CoV-2 nucleoprotein antigen (anti-SARS-CoV-2 N) in healthcare workers and an all-comer paediatric and adult patient population. DESIGN, SETTING AND PARTICIPANTS A longitudinal study enrolling healthcare professionals and concurrent serial cross-sectional studies of unselected all-comer patients were conducted at an Austrian academic medical centre. Healthcare workers were tested at enrolment and after 1, 2, 3, 6 and 12 months. The cross-sectional studies in patients were conducted at three time periods, which roughly coincided with the times after the first, second and third wave of SARS-CoV-2 in Austria (ie, 24 August-7 September 2020; 8-22 February 2021 and 9-23 November 2021). Anti-SARS-CoV-2 N antibodies were measured using a sandwich electrochemiluminescence assay (Roche). RESULTS In total, 2735 and 9275 samples were measured in 812 healthcare workers (median age: 40 years, 78% female) and 8451 patients (median age: 55 years, 52% female), respectively. Over the entire study period, anti-SARS-CoV-2 N antibodies were detected in 98 of 812 healthcare workers, resulting in a seroprevalence of 12.1% (95% CI 10.0% to 14.5%), which did not differ significantly (p=0.63) from that of the all-comer patient population at the end of the study period (407/3184; 12.8%, 95% CI 11.7% to 14.0%). The seroprevalence between healthcare workers and patients did not differ significantly at any time and was 1.5-fold to 2-fold higher than the number of confirmed cases in Austria throughout the pandemic. In particular, there was no significant difference in the seroprevalence between paediatric and adult patients at any of the tested time periods. CONCLUSION Throughout the pandemic, healthcare staff and an adult and paediatric all-comer patient population had similar exposure to SARS-CoV-2. TRIAL REGISTRATION NUMBER ClinicalTrials.gov Identifier: NCT04407429.
Collapse
Affiliation(s)
- Martin Riesenhuber
- Department of Internal Medicine II, Division of Cardiology, Medical University of Vienna, Wien, Austria
| | - Christian Nitsche
- Department of Internal Medicine II, Division of Cardiology, Medical University of Vienna, Wien, Austria
| | - Christoph J Binder
- Department of Laboratory Medicine, Medical University of Vienna, Wien, Austria
| | - Eva S Schernhammer
- Department of Epidemiology, Center for Public Health, Medical University of Vienna, Wien, Austria
| | - Tanja Stamm
- Institute for Outcomes Research, Center for Medical Data Science, Medical University of Vienna, Vienna, Austria
| | - Friedrich Jakse
- Department of Internal Medicine II, Division of Cardiology, Medical University of Vienna, Wien, Austria
| | - Elaaha Anwari
- Department of Internal Medicine II, Division of Cardiology, Medical University of Vienna, Wien, Austria
| | - Fardin Hamidi
- Department of Internal Medicine II, Division of Cardiology, Medical University of Vienna, Wien, Austria
| | - Helmuth Haslacher
- Department of Laboratory Medicine, Medical University of Vienna, Wien, Austria
| | - Thomas Perkmann
- Department of Laboratory Medicine, Medical University of Vienna, Wien, Austria
| | - Christian Hengstenberg
- Department of Internal Medicine II, Division of Cardiology, Medical University of Vienna, Wien, Austria
| | - Thomas A Zelniker
- Department of Internal Medicine II, Division of Cardiology, Medical University of Vienna, Wien, Austria
| |
Collapse
|
118
|
Abstract
Enzyme-linked immunosorbent assay (ELISA) is widely employed for detecting target molecules in bioassays including the serological assays that measure specific antibody titers. However, ELISA tests are inherently limited to centralized laboratories staffed with trained personnel as the assay workflow requires multiple steps to be performed in a specific sequence. Here, we report a dipstick ELISA test that automates this otherwise laborious process and reports the titer of a target molecule in a digital manner without the need for an external instrument or operator. Our assay measures titer by gradually immuno-depleting the target analyte from a flowing sample effectively diluting the residual target - a process conventionally achieved through serially diluting the whole sample in numerous, time-consuming pipetting steps performed manually. Furthermore, the execution of the depletion ELISA process is automated by a built-in flow controller which sequentially delivers different reagents with preset delays. We apply the technology to develop assays measuring (1) severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antibody titers (IgM/IgG antibodies to nucleocapsid and spike protein) and (2) troponin I, a cardiac biomarker.
Collapse
Affiliation(s)
- Dohwan Lee
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, USA.
| | - Norh Asmare
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, USA.
| | - A Fatih Sarioglu
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, USA.
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, USA
- Institute for Electronics and Nanotechnology, Georgia Institute of Technology, Atlanta, USA
| |
Collapse
|
119
|
Qin R, An C, Chen W. Physical-Chemical Regulation of Membrane Receptors Dynamics in Viral Invasion and Immune Defense. J Mol Biol 2023; 435:167800. [PMID: 36007627 PMCID: PMC9394170 DOI: 10.1016/j.jmb.2022.167800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 08/13/2022] [Accepted: 08/18/2022] [Indexed: 02/04/2023]
Abstract
Mechanical cues dynamically regulate membrane receptors functions to trigger various physiological and pathological processes from viral invasion to immune defense. These cues mainly include various types of dynamic mechanical forces and the spatial confinement of plasma membrane. However, the molecular mechanisms of how they couple with biochemical cues in regulating membrane receptors functions still remain mysterious. Here, we review recent advances in methodologies of single-molecule biomechanical techniques and in novel biomechanical regulatory mechanisms of critical ligand recognition of viral and immune receptors including SARS-CoV-2 spike protein, T cell receptor (TCR) and other co-stimulatory immune receptors. Furthermore, we provide our perspectives of the general principle of how force-dependent kinetics determine the dynamic functions of membrane receptors and of biomechanical-mechanism-driven SARS-CoV-2 neutralizing antibody design and TCR engineering for T-cell-based therapies.
Collapse
Affiliation(s)
- Rui Qin
- Department of Cell Biology and Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Chenyi An
- Department of Cell Biology and Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China; School of Biology and Engineering, Guizhou Medical University, Guiyang, China
| | - Wei Chen
- Department of Cell Biology and Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China; Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou 311121, China; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the MOE Frontier Science Center for Brain Science & Brain-Machine Integration, State Key Laboratory for Modern Optical Instrumentation Key Laboratory for Biomedical Engineering of the Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou 310058, Zhejiang, China.
| |
Collapse
|
120
|
Schnizer C, Andreas N, Vivas W, Kamradt T, Baier M, Kiehntopf M, Glöckner S, Scherag A, Löffler B, Kolanos S, Guerra J, Pletz MW, Weis S. Persistent humoral and CD4 + T H cell immunity after mild SARS-COV-2 infection-The CoNAN long-term study. Front Immunol 2023; 13:1095129. [PMID: 36713390 PMCID: PMC9880277 DOI: 10.3389/fimmu.2022.1095129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 12/27/2022] [Indexed: 01/15/2023] Open
Abstract
Understanding persistent cellular and humoral immune responses to SARS-CoV-2 will be of major importance to terminate the ongoing pandemic. Here, we assessed long-term immunity in individuals with mild COVID-19 up to 1 year after a localized SARS-CoV-2 outbreak. CoNAN was a longitudinal population-based cohort study performed 1.5 months, 6 months, and 12 months after a SARS-CoV-2 outbreak in a rural German community. We performed a time series of five different IgG immunoassays assessing SARS-CoV-2 antibody responses on serum samples from individuals that had been tested positive after a SARS-CoV-2 outbreak and in control individuals who had a negative PCR result. These analyses were complemented with the determination of spike-antigen specific TH cell responses in the same individuals. All infected participants were presented as asymptomatic or mild cases. Participants initially tested positive for SARS-CoV-2 infection either with PCR, antibody testing, or both had a rapid initial decline in the serum antibody levels in all serological tests but showed a persisting TH cell immunity as assessed by the detection of SARS-CoV-2 specificity of TH cells for up to 1 year after infection. Our data support the notion of a persistent T-cell immunity in mild and asymptomatic cases of SARS-CoV-2 up to 1 year after infection. We show that antibody titers decline over 1 year, but considering several test results, complete seroreversion is rare. Trial registration German Clinical Trials Register DRKS00022416.
Collapse
Affiliation(s)
- Clara Schnizer
- Institute for Infectious Diseases and Infection Control, Jena University Hospital- Friedrich Schiller University, Jena, Germany
| | - Nico Andreas
- Institute of Immunology, Jena University Hospital - Friedrich Schiller University, Jena, Germany
| | - Wolfgang Vivas
- Institute for Infectious Diseases and Infection Control, Jena University Hospital- Friedrich Schiller University, Jena, Germany,Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute (HKI), Jena, Germany,Department of Anesthesiology and Intensive Care, Jena University Hospital- Friedrich Schiller University, Jena, Germany
| | - Thomas Kamradt
- Institute of Immunology, Jena University Hospital - Friedrich Schiller University, Jena, Germany
| | - Michael Baier
- Institute of Medical Microbiology, Jena University Hospital- Friedrich Schiller University, Jena, Germany
| | - Michael Kiehntopf
- Institute of Clinical Chemistry and Laboratory Diagnostics and Integrated Biobank Jena (IBBJ), Jena University Hospital- Friedrich Schiller University, Jena, Germany
| | - Stefan Glöckner
- Institute of Medical Microbiology, Jena University Hospital- Friedrich Schiller University, Jena, Germany
| | - André Scherag
- Institute of Medical Statistics, Computer and Data Sciences, Jena University Hospital- Friedrich Schiller University, Jena, Germany
| | - Bettina Löffler
- Institute of Medical Microbiology, Jena University Hospital- Friedrich Schiller University, Jena, Germany
| | - Steffi Kolanos
- Institute for Infectious Diseases and Infection Control, Jena University Hospital- Friedrich Schiller University, Jena, Germany
| | - Joel Guerra
- Institute for Infectious Diseases and Infection Control, Jena University Hospital- Friedrich Schiller University, Jena, Germany,Department of Anesthesiology and Intensive Care, Jena University Hospital- Friedrich Schiller University, Jena, Germany
| | - Mathias W. Pletz
- Institute for Infectious Diseases and Infection Control, Jena University Hospital- Friedrich Schiller University, Jena, Germany,Center for Sepsis Control and Care, Jena University Hospital- Friedrich Schiller University, Jena, Germany,*Correspondence: Sebastian Weis, ; Mathias W. Pletz,
| | - Sebastian Weis
- Institute for Infectious Diseases and Infection Control, Jena University Hospital- Friedrich Schiller University, Jena, Germany,Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute (HKI), Jena, Germany,Department of Anesthesiology and Intensive Care, Jena University Hospital- Friedrich Schiller University, Jena, Germany,*Correspondence: Sebastian Weis, ; Mathias W. Pletz,
| |
Collapse
|
121
|
Emrani J, Hefner EN. Socio-demographic Heterogeneity in Prevalence of SARS-COV-2 Infection and Death Rate: Relevance to Black College Student Knowledge of COVID-19 and SARS-COV-2. J Racial Ethn Health Disparities 2023; 10:14-31. [PMID: 35119679 PMCID: PMC8815385 DOI: 10.1007/s40615-021-01193-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 11/17/2021] [Accepted: 11/17/2021] [Indexed: 02/03/2023]
Abstract
Black and Brown communities are affected disproportionately by COVID-19. In an attempt to learn if young Black college students unknowingly contribute to the spread of the COVID-19 in their communities, using surveys, this pilot study gauges the general safety knowledge and basic scientific knowledge of Black college students about SARS-COV-2 virus and COVID-19 at an HBCU. We also investigated whether students enrolled in chemistry courses designed for STEM (Science, Technology, and Engineering Majors) majors displayed increased knowledge of SARS-COV-2 and COVID-19 in comparison to their non-STEM major peers. Two sets of surveys with multiple choice questions, one with 25 and the other with 34 questions, were designed to assess general safety knowledge and basic scientific knowledge of the students about COVID-19 and the SARS-COV-2 virus. Survey questions were administered through Blackboard learning management system to one hundred eighty-seven (187) students in the summer of 2020 to two freshman non-science majors and in the fall of 2020 to one freshman non-science-major class, two freshmen STEM-major classes, and one senior STEM-major class. All students self-registered in the 6 chemistry classes at North Carolina A&T State University at random with no predetermined criteria. Results of the study show that regardless of their year of study, majority (> 90%) of the students possess basic scientific knowledge and are aware of the safety precautions concerning SARS-COV-2 virus and COVID-19. Majority of non-science major freshmen answered the basic safety questions correctly but were not able to choose the correct answers for the more specific scientific questions concerning SARS-COV-2 and COVID-19. Surprisingly, there was no significant difference in basic scientific knowledge regarding SARS-COV-2 and COVID-19 between STEM and non-STEM student populations, and first year STEM students were just as knowledgeable as senior STEM students. Based on these data, we speculate that students surveyed here have an acceptable basic understanding of how SARS-CoV-2 is transmitted, and therefore, they may not be a source of COVID-19 transmission to Black and Brown communities as this study confirms they are receiving accurate information about SARS-COV-2 and COVID-19. Possession of crucial timely and accurate knowledge about the health and safety is important in fighting racism and to gain equity within the society at large. By sharing the acquired knowledge, students can serve as positive role models for others in the community thus encouraging them to pursue science. Education brings equity, sharing the acquired knowledge encourages others to continue their education and succeed in obtaining higher degrees and better jobs as remedies for social inequality. Spread of accurate knowledge on various aspects of COVID-19 will also help remove fears of vaccination and hesitation towards visits to health clinics to resolve health issues. Relying on the results of this pilot study, we plan to explore these important factors further in our next study.
Collapse
Affiliation(s)
- Jahangir Emrani
- Department of Chemistry, North Carolina A&T State University, Greensboro, NC 27410 USA
| | - Elia Nichelle Hefner
- Department of Chemistry, North Carolina A&T State University, Greensboro, NC 27410 USA
| |
Collapse
|
122
|
Zoughbor SH, AlRasbi Z, Yousif A, Al Ameri M, Hussein MM, Hourani MS, Khamis SM, Ansari H, Syed I, Balaraj K, Azribi F, Bin Sumaida AR, Dawoud E, Ansari J. Unilateral Axillary Lymphadenopathy in Cancer Patients Post-COVID-19 Vaccination: Review and Case Series. Case Rep Oncol 2023; 16:188-203. [PMID: 37033700 PMCID: PMC10080460 DOI: 10.1159/000529913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 02/17/2023] [Indexed: 04/09/2023] Open
Abstract
Novel coronavirus-19 (COVID-19) variants continue to spread worldwide with the development of highly transmissible strains. Several guidelines addressing management of cancer patients during the COVID-19 pandemic have been published, primarily based upon expert opinion. The COVID-19 pandemic has affected all aspects of breast cancer care including screening, diagnosis, treatment, and long-term follow-up. Recent reports indicate that mRNA COVID-19 vaccines can provoke lymphadenopathy in both cancer patients and healthy individuals. Unilateral axillary lymphadenopathy (UAL) post-COVID-19 vaccination is a challenging presentation for cancer patients because of the potential for misinterpretation as malignancy. The World Health Organization's target to vaccinate 70% of the world's population by mid-2023 is likely to increase the incidence of post-COVID-19 vaccination UAL. In this article, we review the published evidence regarding UAL post-COVID-19 vaccination and present diverse cases of breast cancer patients where false-positive UAL post-COVID-19 vaccination proved to be a therapeutic challenge. The United Arab Emirates (UAE) vaccination program is well ahead of other countries in the world, having accomplished the target of 100% vaccination of the population with at least one dose. Therefore, an increasing number of recently vaccinated patients are likely to present with UAL, detected by surveillance imaging, post-vaccination. We have therefore made recommendations regarding the management of cancer patients with UAL post-COVID-19 vaccination in order to avoid misdiagnosis and unnecessary imaging or invasive biopsy procedures.
Collapse
Affiliation(s)
- Sumaya Hasan Zoughbor
- Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, UAE
- Zayed Center of Health Science, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, UAE
| | - Zakeya AlRasbi
- Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, UAE
- Zayed Center of Health Science, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, UAE
| | - Ali Yousif
- Department of Oncology, Tawam Hospital, Al Ain, UAE
| | - Mouza Al Ameri
- Department of Breast Surgery, Tawam Hospital, Al Ain, UAE
| | | | | | | | - Hidayath Ansari
- Department of Nuclear Medicine, Cleveland Clinic Abu Dhabi, Abu Dhabi, UAE
| | | | | | - Fathi Azribi
- Department of Oncology, Tawam Hospital, Al Ain, UAE
| | | | - Emad Dawoud
- Department of Oncology, Tawam Hospital, Al Ain, UAE
| | | |
Collapse
|
123
|
Neutralizing Antibody Responses Among Residents and Staff of Long-Term Care Facilities in the State of New Jersey During the First Wave of the COVID-19 Pandemic. J Community Health 2023; 48:50-58. [PMID: 36197535 PMCID: PMC9532818 DOI: 10.1007/s10900-022-01142-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/10/2022] [Indexed: 10/24/2022]
Abstract
Expanding a previous study of the immune response to SARS-CoV-2 in 10 New Jersey long-term care facilities (LTCFs) during the first wave of the pandemic, this study characterized the neutralizing antibody (NAb) response to infection and vaccination among residents and staff. Sera from the original study were tested using the semi-quantitative enzyme-linked immunosorbent cPass neutralization-antibody detection assay. Almost all residents (97.8%) and staff (98.1%) who were positive for IgG S antibody to the spike protein were positive for NAb. In non-vaccinated subjects with a history of infection (positive polymerase chain reaction (PCR) or antigen test), the distribution of mean intervals from infection to serology date was not significantly different for S antibody positives versus negatives. More than 80% of both were positive at 10 months. Similarly, the mean NAb titer for residents and staff was not associated with interval from PCR/antigen positive to serology date, F = 0.1.01, Pr > F = 0.4269 and F = 0.77, Pr > F = 0.6548 respectively. Titers remained high as the interval reached 10 months. In vaccinees who had no history of infection, the NAb titer was near the test maximum when the serum was drawn seven or more days after the second vaccine dose. In staff the mean NAb titer increased significantly as the vaccine number increased from one to two doses, F = 11.69, Pr > F < 0.0001. NAb titers to SARS-CoV-2 in residents and staff of LTCFs were consistently high 10 months after infection and after two doses of vaccine. Ongoing study is needed to determine whether this antibody provides protection as the virus continues to mutate.
Collapse
|
124
|
Bansia H, Ramakumar S. Homology Modeling of Antibody Variable Regions: Methods and Applications. Methods Mol Biol 2023; 2627:301-319. [PMID: 36959454 DOI: 10.1007/978-1-0716-2974-1_16] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2023]
Abstract
Adaptive immunity specifically protects us from antigenic challenges. Antibodies are key effector proteins of adaptive immunity, and they are remarkable in their ability to recognize a virtually limitless number of antigens. Fragment variable (FV), the antigen-binding region of antibodies, can be split into two main components, namely, framework and complementarity determining regions. The framework (FR) consists of light-chain framework (FRL) and heavy-chain framework (FRH). Similarly, the complementarity determining regions (CDRs) comprises of light-chain CDRs 1-3 (CDRs L1-3) and heavy-chain CDRs 1-3 (CDRs H1-3). While FRs are relatively constant in sequence and structure across diverse antibodies, sequence variation in CDRs leading to differential conformations of CDR loops accounts for the distinct antigenic specificities of diverse antibodies. The conserved structural features in FRs and conformity of CDRs to a limited set of standard conformations allow for the accurate prediction of FV models using homology modeling techniques. Antibody structure prediction from its amino acid sequence has numerous important applications including prediction of antibody-antigen interaction interfaces and redesign of therapeutically and biotechnologically useful antibodies with improved affinity. This chapter summarizes the current practices employed in the successful homology modeling of antibody variable regions and the potential applications of the generated homology models.
Collapse
Affiliation(s)
- Harsh Bansia
- Department of Physics, Indian Institute of Science, Bengaluru, India.
- Advanced Science Research Center at The Graduate Center of the City University of New York, New York, NY, USA.
| | | |
Collapse
|
125
|
McCullagh L, Sheehy N, De Gascun CF, Hassan J. D614G SARS-CoV-2 Pseudovirus Infectivity and Binding of Spike Protein to the ACE2 Receptor Inversely Correlates with Serum SARS-CoV-2-Specific IgG Levels. Viral Immunol 2023; 36:63-70. [PMID: 36648773 DOI: 10.1089/vim.2022.0117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Understanding the functional characteristics of antibodies produced against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) will assist in the determination of disease outcomes for this virus. In this study, the ability of antibodies to inhibit viral entry into the host cell through the interaction of the receptor binding domain of the viral spike protein and the angiotensin-converting enzyme 2 receptor on the human cell surface was investigated. The SARS-CoV-2 IgG levels in 20 SARS-CoV-2 positive patients were measured using an enzyme-linked immunosorbent assay, and the samples were further analyzed using a functional binding assay. Inhibition of viral infectivity was also measured using a pseudovirus neutralization assay against a D614G SARS-CoV-2 virus strain. A significant correlation between IgG levels and neutralizing antibody 50% inhibitory concentration (IC50) titers was observed (p < 0.05). Similarly, the IC50 titers obtained in the neutralization and binding assays were significantly correlated (p < 0.001). Varying levels of IgG and IC50 titers were observed for the SARS-CoV-2 antibody-positive samples, with one sample not showing any neutralizing capability despite detectable IgG levels. Gender comparisons showed no statistical differences in any of the assays. These results suggest that increased SARS-CoV-2 IgG levels correlate with greater protection against the entry of the virus into cells; however, further investigations in larger studies are needed to confirm the correlates of protection.
Collapse
Affiliation(s)
- Laura McCullagh
- National Virus Reference Laboratory, University College Dublin, Dublin, Ireland
| | - Noreen Sheehy
- Centre for Experimental Pathogen Host Research, University College Dublin, Dublin, Ireland
| | - Cillian F De Gascun
- National Virus Reference Laboratory, University College Dublin, Dublin, Ireland
| | - Jaythoon Hassan
- National Virus Reference Laboratory, University College Dublin, Dublin, Ireland
| |
Collapse
|
126
|
Sugiura T, Sugiura H, Kato H, Nariai Y, Mizumoto Y, Hanada K, Takahashi R, Hinotubo Y, Tanaka N, Sasaki M, Eguchi H, Kamino H, Urano T. Kinetics of Anti-SARS-CoV-2 Antibody Response Following Two Doses of the BNT162b2 mRNA Vaccine: A Japanese Single-Center Primary Care Clinic Report Involving Volunteers and Patients with Autoimmune Disease. Infect Dis Rep 2022; 15:24-33. [PMID: 36648857 PMCID: PMC9844396 DOI: 10.3390/idr15010003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 12/07/2022] [Accepted: 12/18/2022] [Indexed: 12/28/2022] Open
Abstract
Despite the promising effectiveness of the coronavirus disease 2019 vaccination using an mRNA vaccine, the short efficacy duration and some poor responses to the vaccination remain major concerns. We aimed to clarify the monthly kinetics of the anti-SARS-CoV-2 spike receptor-binding domain antibody response after two doses of the BNT162b2 vaccine in a Japanese population. A chemiluminescent enzyme immunoassay (CLIA) and an enzyme-linked immunosorbent assay were used to measure the antibody levels in 81 Japanese adults (age, <65 years). The antibody levels increased 10-fold at 2−3 weeks following the second dose of BNT162b2 and declined thereafter to approximately 50%, 20%, and 10% of the peak levels at 2, 3, and 6 months, respectively. To compare the antibody titers among different groups, older adults (age, >65 years; n = 38) and patients with systemic lupus erythematosus (SLE, n = 14) were also investigated. A decline in the mean relative antibody titers was observed in older men compared with younger men and in patients with SLE compared with individuals aged <65 years. Although the antibody levels increased drastically following two BNT162b2 doses, they then declined rapidly. Furthermore, poor responders to the vaccination were observed. Repeated vaccinations are required to maintain high antibody levels.
Collapse
Affiliation(s)
- Tomoko Sugiura
- Department of Biochemistry, Faculty of Medicine, Shimane University, 89-1, Enya-cho, Izumo City 693-0021, Japan
- Sugiura Clinic, 2-8-3, Kitahon-machi, Imachi-cho, Izumo City 693-0002, Japan
| | - Hiroaki Sugiura
- Sugiura Clinic, 2-8-3, Kitahon-machi, Imachi-cho, Izumo City 693-0002, Japan
| | - Hiroaki Kato
- Department of Biochemistry, Faculty of Medicine, Shimane University, 89-1, Enya-cho, Izumo City 693-0021, Japan
| | - Yuko Nariai
- Department of Biochemistry, Faculty of Medicine, Shimane University, 89-1, Enya-cho, Izumo City 693-0021, Japan
| | - Yuuki Mizumoto
- Department of Biochemistry, Faculty of Medicine, Shimane University, 89-1, Enya-cho, Izumo City 693-0021, Japan
| | - Kozue Hanada
- Sugiura Clinic, 2-8-3, Kitahon-machi, Imachi-cho, Izumo City 693-0002, Japan
| | - Rieko Takahashi
- Sugiura Clinic, 2-8-3, Kitahon-machi, Imachi-cho, Izumo City 693-0002, Japan
| | - Yukari Hinotubo
- Sugiura Clinic, 2-8-3, Kitahon-machi, Imachi-cho, Izumo City 693-0002, Japan
| | - Naoko Tanaka
- Sugiura Clinic, 2-8-3, Kitahon-machi, Imachi-cho, Izumo City 693-0002, Japan
| | - Mutsumi Sasaki
- Sugiura Clinic, 2-8-3, Kitahon-machi, Imachi-cho, Izumo City 693-0002, Japan
| | - Haruki Eguchi
- Eguchi Clinic, 6-43, Enya-Arihara-cho, Izumo City 693-0023, Japan
| | - Hiroki Kamino
- Department of Biochemistry, Faculty of Medicine, Shimane University, 89-1, Enya-cho, Izumo City 693-0021, Japan
- mAbProtein Co., Ltd. 89-1, Enya-cho, Izumo City 93-0021, Japan
| | - Takeshi Urano
- Department of Biochemistry, Faculty of Medicine, Shimane University, 89-1, Enya-cho, Izumo City 693-0021, Japan
- mAbProtein Co., Ltd. 89-1, Enya-cho, Izumo City 93-0021, Japan
- Vaccines and Therapeutic Antibodies for Emerging Infectious Diseases, Shimane University, Izumo City 693-0021, Japan
| |
Collapse
|
127
|
Ansari N, Nisar MI, Khalid F, Mehmood U, Usmani AA, Shaheen F, Hotwani A, Begum K, Barkat A, Yoshida S, Manu AA, Sazawal S, Baqui AH, Bahl R, Jehan F. Prevalence and risk factors of Severe Acute Respiratory Syndrome Coronavirus 2 infection in women and children in peri-urban communities in Pakistan: A prospective cohort study. J Glob Health 2022; 12:05055. [PMID: 36527274 PMCID: PMC9757617 DOI: 10.7189/jogh.12.95955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Background Population-based seroepidemiological surveys provide accurate estimates of disease burden. We compare the COVID-19 prevalence estimates from two serial serological surveys and the associated risk factors among women and children in a peri-urban area of Karachi, Pakistan. Methods The AMANHI-COVID-19 study enrolled women and children between November 2020 and March 2021. Blood samples were collected from March to June 2021 (baseline) and September to December 2021 (follow-up) to test for anti-SARS-CoV-2 antibodies using ROCHE Elecsys®. Participants were visited or called weekly during the study for recording symptoms of COVID-19. We report the proportion of participants with anti-SARS-CoV-2 antibodies and symptoms in each survey and describe infection risk factors using step-wise binomial regression analysis. Results The adjusted seroprevalence among women was 45.3% (95% confidence interval (CI) = 42.6-47.9) and 82.3% (95% CI = 79.9-84.4) at baseline and follow-up survey, respectively. Among children, it was 18.4% (95% CI = 16.1-20.7) and 57.4% (95% CI = 54.3-60.3) at baseline and follow-up, respectively. Of the women who were previously seronegative, 404 (74.4%) tested positive at the follow-up survey, as did 365 (50.4%) previously seronegative children. There was a high proportion of asymptomatic infection. At baseline, being poorest and lacking access to safe drinking water lowered the risk of infection for both women (risk ratio (RR) = 0.8, 95% CI = 0.7-0.9 and RR = 1.2, 95% CI = 1.1-1.4, respectively) and children (RR = 0.7, 95% CI = 0.5-1.0 and RR = 1.4, 95% CI = 1.0-1.8, respectively). At the follow-up survey, the risk of infection was lower for underweight women and children (RR = 0.4, 95% CI = 0.3-0.7 and RR = 0.7, 95% CI = 0.5-0.8, respectively) and for women in the 30-39 years age group and children who were 24-36 months of age (RR = 0.6, 95% CI = 0.4-0.9 and RR = 0.7, 95% CI = 0.5-0.9, respectively). In both surveys, paternal employment was an important predictor of seropositivity among children (RR = 0.7, 95% CI = 0.6-0.9 and RR = 0.8, 95% CI = 0.7-1.0, respectively). Conclusion There was a high rate of seroconversion among women and children. Infection was generally mild. Parental education plays an important role in protection of children from COVID-19.
Collapse
Affiliation(s)
- Nadia Ansari
- Department of Pediatrics and Child Health, The Aga Khan University, Karachi
| | - Muhammad I Nisar
- Department of Pediatrics and Child Health, The Aga Khan University, Karachi
| | - Farah Khalid
- Department of Pediatrics and Child Health, The Aga Khan University, Karachi
| | - Usma Mehmood
- Department of Pediatrics and Child Health, The Aga Khan University, Karachi
| | - Asra A Usmani
- Department of Pediatrics and Child Health, The Aga Khan University, Karachi
| | - Fariha Shaheen
- Department of Pediatrics and Child Health, The Aga Khan University, Karachi
| | - Aneeta Hotwani
- Department of Pediatrics and Child Health, The Aga Khan University, Karachi
| | - Kehkashan Begum
- Department of Pediatrics and Child Health, The Aga Khan University, Karachi
| | - Amina Barkat
- Department of Pediatrics and Child Health, The Aga Khan University, Karachi
| | - Sachiyo Yoshida
- Department for Maternal, Child, Adolescents and Ageing Health, World Health Organization, Geneva, Switzerland
| | - Alexander A Manu
- Department of Epidemiology and Disease Control, University of Ghana School of Public Health, Legon, Accra, Ghana
| | - Sunil Sazawal
- Center for Public Health Kinetics, Global Division, LGL Vinoba Puri, Lajpat Nagar II, New Delhi, India
- Public Health Laboratory-IDC, Chake Chake, Pemba, Tanzania
| | - Abdullah H Baqui
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Rajiv Bahl
- Department for Maternal, Child, Adolescents and Ageing Health, World Health Organization, Geneva, Switzerland
| | - Fyezah Jehan
- Department of Pediatrics and Child Health, The Aga Khan University, Karachi
| |
Collapse
|
128
|
Fryer HA, Hartley GE, Edwards ES, O'Hehir RE, van Zelm MC. Humoral immunity and B-cell memory in response to SARS-CoV-2 infection and vaccination. Biochem Soc Trans 2022; 50:1643-1658. [PMID: 36421662 PMCID: PMC9788580 DOI: 10.1042/bst20220415] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 11/08/2022] [Accepted: 11/09/2022] [Indexed: 01/15/2024]
Abstract
Natural infection with SARS-CoV-2 induces a robust circulating memory B cell (Bmem) population, which remains stable in number at least 8 months post-infection despite the contraction of antibody levels after 1 month. Multiple vaccines have been developed to combat the virus. These include two new formulations, mRNA and adenoviral vector vaccines, which have varying efficacy rates, potentially related to their distinct capacities to induce humoral immune responses. The mRNA vaccines BNT162b2 (Pfizer-BioNTech) and mRNA-1273 (Moderna) elicit significantly higher serum IgG and neutralizing antibody levels than the adenoviral vector ChAdOx1 (AstraZeneca) and Ad26.COV2.S (Janssen) vaccines. However, all vaccines induce Spike- and RBD-specific Bmem, which are vital in providing long-lasting protection in the form of rapid recall responses to subsequent infections. Past and current SARS-CoV-2 variants of concern (VoC) have shown the capacity to escape antibody neutralization to varying degrees. A booster dose with an mRNA vaccine following primary vaccination restores antibody levels and improves the capacity of these antibodies and Bmem to bind viral variants, including the current VoC Omicron. Future experimental research will be essential to evaluate the durability of protection against VoC provided by each vaccine and to identify immune markers of protection to enable prognostication of people who are at risk of severe complications from COVID-19.
Collapse
Affiliation(s)
- Holly A. Fryer
- Allergy and Clinical Immunology Laboratory, Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Gemma E. Hartley
- Allergy and Clinical Immunology Laboratory, Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Emily S.J. Edwards
- Allergy and Clinical Immunology Laboratory, Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Robyn E. O'Hehir
- Allergy and Clinical Immunology Laboratory, Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, VIC, Australia
- Allergy, Asthma and Clinical Immunology Service, Alfred Hospital, Melbourne, VIC, Australia
| | - Menno C. van Zelm
- Allergy and Clinical Immunology Laboratory, Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, VIC, Australia
- Allergy, Asthma and Clinical Immunology Service, Alfred Hospital, Melbourne, VIC, Australia
| |
Collapse
|
129
|
Liang H, Nian X, Wu J, Liu D, Feng L, Lu J, Peng Y, Zhou Z, Deng T, Liu J, Ji D, Qiu R, Lin L, Zeng Y, Xia F, Hu Y, Li T, Duan K, Li X, Wang Z, Zhang Y, Zhang H, Zhu C, Wang S, Wu X, Wang X, Li Y, Huang S, Mao M, Guo H, Yang Y, Jia R, Xufang J, Wang X, Liang S, Qiu Z, Zhang J, Ding Y, Li C, Zhang J, Fu D, He Y, Zhou D, Li C, Zhang J, Yu D, Yang XM. COVID-19 vaccination boosts the potency and breadth of the immune response against SARS-CoV-2 among recovered patients in Wuhan. Cell Discov 2022; 8:131. [PMID: 36494338 PMCID: PMC9734167 DOI: 10.1038/s41421-022-00496-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 11/11/2022] [Indexed: 12/13/2022] Open
Abstract
The immunity of patients who recover from coronavirus disease 2019 (COVID-19) could be long lasting but persist at a lower level. Thus, recovered patients still need to be vaccinated to prevent reinfection by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) or its mutated variants. Here, we report that the inactivated COVID-19 vaccine can stimulate immunity in recovered patients to maintain high levels of anti-receptor-binding domain (RBD) and anti-nucleocapsid protein (NP) antibody titers within 9 months, and high neutralizing activity against the prototype, Delta, and Omicron strains was observed. Nevertheless, the antibody response decreased over time, and the Omicron variant exhibited more pronounced resistance to neutralization than the prototype and Delta strains. Moreover, the intensity of the SARS-CoV-2-specific CD4+ T cell response was also increased in recovered patients who received COVID-19 vaccines. Overall, the repeated antigen exposure provided by inactivated COVID-19 vaccination greatly boosted both the potency and breadth of the humoral and cellular immune responses against SARS-CoV-2, effectively protecting recovered individuals from reinfection by circulating SARS-CoV-2 and its variants.
Collapse
Affiliation(s)
- Hong Liang
- Beijing Tiantan Biological Products Co., Ltd., Beijing, China
| | - Xuanxuan Nian
- National Engineering Technology Research Center for Combined Vaccines, Wuhan, Hubei, China
- Wuhan Institute of Biological Products Co., Ltd., Wuhan, Hubei, China
| | - Junzheng Wu
- Chengdu Rongsheng Pharmaceuticals Co., Ltd., Chengdu, Sichuan, China
| | - Dong Liu
- Beijing Tiantan Biological Products Co., Ltd., Beijing, China
| | - Lu Feng
- Sinopharm Wuhan Plasma-derived Biotherapies Co., Ltd., Wuhan, Hubei, China
| | - Jia Lu
- National Engineering Technology Research Center for Combined Vaccines, Wuhan, Hubei, China
- Wuhan Institute of Biological Products Co., Ltd., Wuhan, Hubei, China
| | - Yan Peng
- Sinopharm Wuhan Plasma-derived Biotherapies Co., Ltd., Wuhan, Hubei, China
| | - Zhijun Zhou
- Sinopharm Wuhan Plasma-derived Biotherapies Co., Ltd., Wuhan, Hubei, China
| | - Tao Deng
- National Engineering Technology Research Center for Combined Vaccines, Wuhan, Hubei, China
- Wuhan Institute of Biological Products Co., Ltd., Wuhan, Hubei, China
| | - Jing Liu
- National Engineering Technology Research Center for Combined Vaccines, Wuhan, Hubei, China
- Wuhan Institute of Biological Products Co., Ltd., Wuhan, Hubei, China
| | - Deming Ji
- Sinopharm Wuhan Plasma-derived Biotherapies Co., Ltd., Wuhan, Hubei, China
| | - Ran Qiu
- National Engineering Technology Research Center for Combined Vaccines, Wuhan, Hubei, China
- Wuhan Institute of Biological Products Co., Ltd., Wuhan, Hubei, China
| | - Lianzhen Lin
- Sinopharm Wuhan Plasma-derived Biotherapies Co., Ltd., Wuhan, Hubei, China
| | - Yan Zeng
- National Engineering Technology Research Center for Combined Vaccines, Wuhan, Hubei, China
- Wuhan Institute of Biological Products Co., Ltd., Wuhan, Hubei, China
| | - Fei Xia
- National Engineering Technology Research Center for Combined Vaccines, Wuhan, Hubei, China
- Wuhan Institute of Biological Products Co., Ltd., Wuhan, Hubei, China
| | - Yong Hu
- Sinopharm Wuhan Plasma-derived Biotherapies Co., Ltd., Wuhan, Hubei, China
| | - Taojing Li
- Beijing Tiantan Biological Products Co., Ltd., Beijing, China
| | - Kai Duan
- National Engineering Technology Research Center for Combined Vaccines, Wuhan, Hubei, China
- Wuhan Institute of Biological Products Co., Ltd., Wuhan, Hubei, China
| | - Xinguo Li
- National Engineering Technology Research Center for Combined Vaccines, Wuhan, Hubei, China
- Wuhan Institute of Biological Products Co., Ltd., Wuhan, Hubei, China
| | - Zejun Wang
- National Engineering Technology Research Center for Combined Vaccines, Wuhan, Hubei, China
- Wuhan Institute of Biological Products Co., Ltd., Wuhan, Hubei, China
| | - Yong Zhang
- Beijing Tiantan Biological Products Co., Ltd., Beijing, China
| | - Hang Zhang
- Beijing Tiantan Biological Products Co., Ltd., Beijing, China
| | - Chen Zhu
- Sinopharm Wuhan Plasma-derived Biotherapies Co., Ltd., Wuhan, Hubei, China
| | - Shang Wang
- Sinopharm Wuhan Plasma-derived Biotherapies Co., Ltd., Wuhan, Hubei, China
| | - Xiao Wu
- Sinopharm Wuhan Plasma-derived Biotherapies Co., Ltd., Wuhan, Hubei, China
| | - Xiang Wang
- National Engineering Technology Research Center for Combined Vaccines, Wuhan, Hubei, China
- Wuhan Institute of Biological Products Co., Ltd., Wuhan, Hubei, China
| | - Yuwei Li
- National Engineering Technology Research Center for Combined Vaccines, Wuhan, Hubei, China
- Wuhan Institute of Biological Products Co., Ltd., Wuhan, Hubei, China
| | - Shihe Huang
- National Engineering Technology Research Center for Combined Vaccines, Wuhan, Hubei, China
- Wuhan Institute of Biological Products Co., Ltd., Wuhan, Hubei, China
| | - Min Mao
- Sinopharm Wuhan Plasma-derived Biotherapies Co., Ltd., Wuhan, Hubei, China
| | - Huanhuan Guo
- Wuxue Wusheng Plasma Collection Center, Wuxue, Hubei, China
| | - Yunkai Yang
- China National Biotec Group Company Limited, Beijing, China
| | - Rui Jia
- China National Biotec Group Company Limited, Beijing, China
| | - Jingwei Xufang
- China National Biotec Group Company Limited, Beijing, China
| | - Xuewei Wang
- China National Biotec Group Company Limited, Beijing, China
| | | | - Zhixin Qiu
- Wuhan Biobank Co., Ltd., Wuhan, Hubei, China
| | - Juan Zhang
- Wuhan Biobank Co., Ltd., Wuhan, Hubei, China
| | - Yaling Ding
- Chengdu Rongsheng Pharmaceuticals Co., Ltd., Chengdu, Sichuan, China
| | - Chunyan Li
- Beijing Tiantan Biological Products Co., Ltd., Beijing, China
| | - Jin Zhang
- Sinopharm Wuhan Plasma-derived Biotherapies Co., Ltd., Wuhan, Hubei, China
| | - Daoxing Fu
- Beijing Tiantan Biological Products Co., Ltd., Beijing, China
| | - Yanlin He
- Beijing Tiantan Biological Products Co., Ltd., Beijing, China
- Sinopharm Wuhan Plasma-derived Biotherapies Co., Ltd., Wuhan, Hubei, China
| | - Dongbo Zhou
- Beijing Tiantan Biological Products Co., Ltd., Beijing, China
| | - Cesheng Li
- Sinopharm Wuhan Plasma-derived Biotherapies Co., Ltd., Wuhan, Hubei, China.
| | - Jiayou Zhang
- National Engineering Technology Research Center for Combined Vaccines, Wuhan, Hubei, China.
- Wuhan Institute of Biological Products Co., Ltd., Wuhan, Hubei, China.
| | - Ding Yu
- Beijing Tiantan Biological Products Co., Ltd., Beijing, China.
- Chengdu Rongsheng Pharmaceuticals Co., Ltd., Chengdu, Sichuan, China.
| | - Xiao-Ming Yang
- National Engineering Technology Research Center for Combined Vaccines, Wuhan, Hubei, China.
- China National Biotec Group Company Limited, Beijing, China.
| |
Collapse
|
130
|
Toptygina A, Afridonova Z, Zakirov R, Semikina E. Maintaining immunological memory to the SARS-CoV-2 virus during a pandemic. RUSSIAN JOURNAL OF INFECTION AND IMMUNITY 2022. [DOI: 10.15789/2220-7619-mim-2009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
The question of the duration and effectiveness of post-infection immunity to SARS-CoV-2 and its comparison with post-vaccination remains at the center of study by many researchers. The aim of the work was to study the duration of maintaining post-infection and post-vaccination immunity to the SARS-CoV-2 virus, as well as the formation of hybrid (vaccination after infection) and breakthrough (repeated disease or disease after vaccination) immunity in the context of an ongoing pandemic. 107 adults who had mild or moderate COVID-19 3-18 months after the disease and 30 people vaccinated twice with the Sputnik V vaccine were examined 1-6 times. Antibodies to the SARS-CoV-2 virus were determined by ELISA on the SARS-CoV-2-IgG quantitative-ELISA-BEST test systems. The avidity of antibodies was determined by additional incubation with and without denaturing solution. Mononuclear cells were isolated from blood by gradient centrifugation, incubated with and without coronavirus S-protein for 20 hours, stained with fluorescently labeled antibodies, and the percentage of CD8highCD107a+ was counted on a FACSCanto II cytometer. It was shown that in the group of reconvalescent and vaccinated, the level of antibodies specific to the virus decreased more pronounced in individuals with an initially high humoral response, but after 9 months the decrease slowed down and reached a plateau. The avidity of antibodies rose to 50% and persisted for 18 months. Cellular immunity in recovered patients did not change for 1.5 years, while in vaccinated patients it gradually decreased after 6 months, but remained at a detectable level. After revaccination of the vaccinated, a significant increase in the level of antibodies, avidity to 67.6% and cellular immunity to the initial level was noted. Hybrid immunity turned out to be significantly higher than post-infection and post-vaccination immunity. The level of antibodies increased to 1218.2 BAU/ml, avidity to 69.85%, and cellular immunity to 9.94%. Breakthrough immunity was significantly higher than after the first disease. The level of antibodies rose to 1601 BAU/ml, avidity - up to 81.6%, cellular immunity - up to 13.71%. Using the example of dynamic observation of four COVID-19 reconvalescents, it has been shown that in the context of the ongoing pandemic and active mutation of the coronavirus, natural boosting occurs both asymptomatically and as a result of a mild re-infection, which prevents the disappearance of humoral and cellular immunity specific to SARS-CoV -2.
Collapse
|
131
|
Vachon CM, Norman AD, Prasad K, Jensen D, Schaeferle GM, Vierling KL, Sherden M, Majerus MR, Bews KA, Heinzen EP, Hebl A, Yost KJ, Kennedy RB, Theel ES, Ghosh A, Fries M, Wi CI, Juhn YJ, Sampathkumar P, Morice WG, Rocca WA, Tande AJ, Cerhan JR, Limper AH, Ting HH, Farrugia G, Carter RE, Finney Rutten LJ, Jacobson RM, St. Sauver J. Rates of Asymptomatic COVID-19 Infection and Associated Factors in Olmsted County, Minnesota, in the Prevaccination Era. Mayo Clin Proc Innov Qual Outcomes 2022; 6:605-617. [PMID: 36277251 PMCID: PMC9578336 DOI: 10.1016/j.mayocpiqo.2022.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Objective To estimate rates and identify factors associated with asymptomatic COVID-19 in the population of Olmsted County during the prevaccination era. Patients and Methods We screened first responders (n=191) and Olmsted County employees (n=564) for antibodies to SARS-CoV-2 from November 1, 2020 to February 28, 2021 to estimate seroprevalence and asymptomatic infection. Second, we retrieved all polymerase chain reaction (PCR)-confirmed COVID-19 diagnoses in Olmsted County from March 2020 through January 2021, abstracted symptom information, estimated rates of asymptomatic infection and examined related factors. Results Twenty (10.5%; 95% CI, 6.9%-15.6%) first responders and 38 (6.7%; 95% CI, 5.0%-9.1%) county employees had positive antibodies; an additional 5 (2.6%) and 10 (1.8%) had prior positive PCR tests per self-report or medical record, but no antibodies detected. Of persons with symptom information, 4 of 20 (20%; 95% CI, 3.0%-37.0%) first responders and 10 of 39 (26%; 95% CI, 12.6%-40.0%) county employees were asymptomatic. Of 6020 positive PCR tests in Olmsted County with symptom information between March 1, 2020, and January 31, 2021, 6% (n=385; 95% CI, 5.8%-7.1%) were asymptomatic. Factors associated with asymptomatic disease included age (0-18 years [odds ratio {OR}, 2.3; 95% CI, 1.7-3.1] and >65 years [OR, 1.40; 95% CI, 1.0-2.0] compared with ages 19-44 years), body mass index (overweight [OR, 0.58; 95% CI, 0.44-0.77] or obese [OR, 0.48; 95% CI, 0.57-0.62] compared with normal or underweight) and tests after November 20, 2020 ([OR, 1.35; 95% CI, 1.13-1.71] compared with prior dates). Conclusion Asymptomatic rates in Olmsted County before COVID-19 vaccine rollout ranged from 6% to 25%, and younger age, normal weight, and later tests dates were associated with asymptomatic infection.
Collapse
Affiliation(s)
- Celine M. Vachon
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN
| | - Aaron D. Norman
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN
| | - Kavita Prasad
- Integrative Medicine, Zumbro Valley Health Center, Mayo Clinic, Rochester, MN
| | - Dan Jensen
- Department of Health, Housing and Human Services Administration, Olmsted County Public Health, Mayo Clinic, Rochester, MN
| | - Gavin M. Schaeferle
- Robert D. and Patricia E. Kern Center for the Science of Health Care Delivery, Mayo Clinic, Rochester, MN
| | - Kristy L. Vierling
- Robert D. and Patricia E. Kern Center for the Science of Health Care Delivery, Mayo Clinic, Rochester, MN
| | - Meaghan Sherden
- Department of Epidemiology, Surveillance and Preparedness Team, Olmsted County Public Health, Mayo Clinic, Rochester, MN
| | | | - Katherine A. Bews
- Robert D. and Patricia E. Kern Center for the Science of Health Care Delivery, Mayo Clinic, Rochester, MN
| | - Ethan P. Heinzen
- Robert D. and Patricia E. Kern Center for the Science of Health Care Delivery, Mayo Clinic, Rochester, MN
| | - Amy Hebl
- Department of Human Resources, Olmsted County, Mayo Clinic, Rochester, MN
| | - Kathleen J. Yost
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN
| | - Richard B. Kennedy
- Vaccine Research Group, Division of General Internal Medicine, Mayo Clinic, Rochester, MN
| | - Elitza S. Theel
- Department of Laboratory Medicine and Pathology, Division of Clinical Microbiology, Mayo Clinic, Rochester, MN
| | - Aditya Ghosh
- Department of Internal Medicine, Northeast Georgia Medical Center, Gainesville, GA
| | | | - Chung-Il Wi
- Department of Precision Population Science Lab, Mayo Clinic, Rochester, MN
| | - Young J. Juhn
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN
| | - Priya Sampathkumar
- Division of Infectious Diseases, Department of Medicine, Mayo Clinic, Rochester, MN
| | - William G. Morice
- Department of Laboratory Medicine & Pathology, Mayo Clinic, Rochester, MN
| | - Walter A. Rocca
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN
- Department of Neurology and Women’s Health Research Center, Mayo Clinic, Rochester, MN
| | - Aaron J. Tande
- Division of Public Health, Infectious Diseases, and Occupational Medicine, Mayo Clinic, Rochester, MN
| | - James R. Cerhan
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN
| | - Andrew H. Limper
- Department of Pulmonary and Critical Care Medicine, Mayo Clinic, Rochester, MN
| | - Henry H. Ting
- Department of Cardiology, Emory University, Atlanta, GA
| | - Gianrico Farrugia
- Division of Gastroenterology & Hepatology, Department of Medicine, Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN
| | - Rickey E. Carter
- Department of Quantitative Health Sciences, Mayo Clinic, Jacksonville, FL
| | | | - Robert M. Jacobson
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN
| | | |
Collapse
|
132
|
Field CJ, Heinly TA, Patel DR, Sim DG, Luley E, Gupta SL, Vanderford TH, Wrammert J, Sutton TC. Immune durability and protection against SARS-CoV-2 re-infection in Syrian hamsters. Emerg Microbes Infect 2022; 11:1103-1114. [PMID: 35333692 PMCID: PMC9037228 DOI: 10.1080/22221751.2022.2058419] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 03/22/2022] [Indexed: 01/08/2023]
Abstract
Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has caused a pandemic. As immunity to endemic human coronaviruses (i.e. NL63 or OC43) wanes leading to re-infection, it was unknown if SARS-CoV-2 immunity would also decline permitting repeat infections. Recent case reports confirm previously infected individuals can become re-infected; however, re-infection may be due to heterogeneity in the initial infection or the host immune response, or may be the result of infection with a variant strain that escapes pre-existing immunity. To control these variables, we utilized the Syrian hamster model to evaluate the duration of immunity and susceptibility to re-infection with SARS-CoV-2. Hamsters were given a primary mock or SARS-CoV-2 infection (culture media or 105 TCID50 USA/WA1/2020 isolate, respectively). Mock and SARS-CoV-2 infected hamsters were then given a secondary SARS-CoV-2 infection at 1, 2, 4, or 6 months post-primary infection (n = 14/time point/group). After the primary SARS-CoV-2 infection, hamsters developed anti-spike protein IgG, IgA, and neutralizing antibodies, and these antibodies were maintained for at least 6 months. Upon secondary SARS-CoV-2 challenge, previously SARS-CoV-2 infected animals were protected from weight loss, while all previously mock-infected animals became infected and lost weight. Importantly, despite having high titres of antibodies, one SARS-CoV-2 infected animal re-challenged at 4 months had a breakthrough infection with replicating virus in the upper and lower respiratory tract. These studies demonstrate immunity to SARS-CoV-2 is maintained for 6 months; however, protection may be incomplete and, even in the presence of high antibody titres, previously infected hosts may become re-infected.
Collapse
Affiliation(s)
- C. J. Field
- Department of Veterinary and Biomedical Science, The Pennsylvania State University, University Park, PA, USA
- The Huck Institutes of Life Sciences, The Pennsylvania State University, University Park, PA, USA
- Emory-UGA Center of Excellence of Influenza Research and Surveillance (CEIRS), University Park, PA, USA
| | - T. A. Heinly
- Department of Veterinary and Biomedical Science, The Pennsylvania State University, University Park, PA, USA
- The Huck Institutes of Life Sciences, The Pennsylvania State University, University Park, PA, USA
- Emory-UGA Center of Excellence of Influenza Research and Surveillance (CEIRS), University Park, PA, USA
| | - D. R. Patel
- Department of Veterinary and Biomedical Science, The Pennsylvania State University, University Park, PA, USA
- The Huck Institutes of Life Sciences, The Pennsylvania State University, University Park, PA, USA
| | - D. G. Sim
- The Huck Institutes of Life Sciences, The Pennsylvania State University, University Park, PA, USA
- Department of Biology, The Pennsylvania State University, University Park, PA, USA
| | - E. Luley
- Animal Diagnostic Lab, The Pennsylvania State University, University Park, PA, USA
| | - S. L. Gupta
- Department of Pediatrics, Division of Infectious Disease, School of Medicine, Emory University, Atlanta, GA, USA
| | - T. H. Vanderford
- Division of Microbiology and Immunology, Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
| | - J. Wrammert
- Emory-UGA Center of Excellence of Influenza Research and Surveillance (CEIRS), University Park, PA, USA
- Department of Pediatrics, Division of Infectious Disease, School of Medicine, Emory University, Atlanta, GA, USA
| | - T. C. Sutton
- Department of Veterinary and Biomedical Science, The Pennsylvania State University, University Park, PA, USA
- The Huck Institutes of Life Sciences, The Pennsylvania State University, University Park, PA, USA
- Emory-UGA Center of Excellence of Influenza Research and Surveillance (CEIRS), University Park, PA, USA
| |
Collapse
|
133
|
Chen Q, Zhu K, Liu X, Zhuang C, Huang X, Huang Y, Yao X, Quan J, Lin H, Huang S, Su Y, Wu T, Zhang J, Xia N. The Protection of Naturally Acquired Antibodies Against Subsequent SARS-CoV-2 Infection: A Systematic Review and Meta-Analysis. Emerg Microbes Infect 2022; 11:793-803. [PMID: 35195494 PMCID: PMC8920404 DOI: 10.1080/22221751.2022.2046446] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 02/21/2022] [Indexed: 01/18/2023]
Abstract
The specific antibodies induced by SARS-CoV-2 infection may provide protection against a subsequent infection. However, the efficacy and duration of protection provided by naturally acquired immunity against subsequent SARS-CoV-2 infection remain controversial. We systematically searched for the literature describing COVID-19 reinfection published before 07 February 2022. The outcomes were the pooled incidence rate ratio (IRR) for estimating the risk of subsequent infection. The Newcastle-Ottawa Scale (NOS) was used to assess the quality of the included studies. Statistical analyses were conducted using the R programming language 4.0.2. We identified 19 eligible studies including more than 3.5 million individuals without the history of COVID-19 vaccination. The efficacy of naturally acquired antibodies against reinfection was estimated at 84% (pooled IRR = 0.16, 95% CI: 0.14-0.18), with higher efficacy against symptomatic COVID-19 cases (pooled IRR = 0.09, 95% CI = 0.07-0.12) than asymptomatic infection (pooled IRR = 0.28, 95% CI = 0.14-0.54). In the subgroup analyses, the pooled IRRs of COVID-19 infection in health care workers (HCWs) and the general population were 0.22 (95% CI = 0.16-0.31) and 0.14 (95% CI = 0.12-0.17), respectively, with a significant difference (P = 0.02), and those in older (over 60 years) and younger (under 60 years) populations were 0.26 (95% CI = 0.15-0.48) and 0.16 (95% CI = 0.14-0.19), respectively. The risk of subsequent infection in the seropositive population appeared to increase slowly over time. In conclusion, naturally acquired antibodies against SARS-CoV-2 can significantly reduce the risk of subsequent infection, with a protection efficacy of 84%.Registration number: CRD42021286222.
Collapse
Affiliation(s)
- Qi Chen
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Strait Collaborative Innovation Center of Biomedicine and Pharmaceutics, School of Public Health, Xiamen University, Xiamen City, Fujian Province, People’s Republic of China
| | - Kongxin Zhu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Strait Collaborative Innovation Center of Biomedicine and Pharmaceutics, School of Public Health, Xiamen University, Xiamen City, Fujian Province, People’s Republic of China
| | - Xiaohui Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Strait Collaborative Innovation Center of Biomedicine and Pharmaceutics, School of Public Health, Xiamen University, Xiamen City, Fujian Province, People’s Republic of China
| | - Chunlan Zhuang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Strait Collaborative Innovation Center of Biomedicine and Pharmaceutics, School of Public Health, Xiamen University, Xiamen City, Fujian Province, People’s Republic of China
| | - Xingcheng Huang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Strait Collaborative Innovation Center of Biomedicine and Pharmaceutics, School of Public Health, Xiamen University, Xiamen City, Fujian Province, People’s Republic of China
| | - Yue Huang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Strait Collaborative Innovation Center of Biomedicine and Pharmaceutics, School of Public Health, Xiamen University, Xiamen City, Fujian Province, People’s Republic of China
| | - Xingmei Yao
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Strait Collaborative Innovation Center of Biomedicine and Pharmaceutics, School of Public Health, Xiamen University, Xiamen City, Fujian Province, People’s Republic of China
| | - Jiali Quan
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Strait Collaborative Innovation Center of Biomedicine and Pharmaceutics, School of Public Health, Xiamen University, Xiamen City, Fujian Province, People’s Republic of China
| | - Hongyan Lin
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Strait Collaborative Innovation Center of Biomedicine and Pharmaceutics, School of Public Health, Xiamen University, Xiamen City, Fujian Province, People’s Republic of China
| | - Shoujie Huang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Strait Collaborative Innovation Center of Biomedicine and Pharmaceutics, School of Public Health, Xiamen University, Xiamen City, Fujian Province, People’s Republic of China
| | - Yingying Su
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Strait Collaborative Innovation Center of Biomedicine and Pharmaceutics, School of Public Health, Xiamen University, Xiamen City, Fujian Province, People’s Republic of China
| | - Ting Wu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Strait Collaborative Innovation Center of Biomedicine and Pharmaceutics, School of Public Health, Xiamen University, Xiamen City, Fujian Province, People’s Republic of China
| | - Jun Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Strait Collaborative Innovation Center of Biomedicine and Pharmaceutics, School of Public Health, Xiamen University, Xiamen City, Fujian Province, People’s Republic of China
| | - Ningshao Xia
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Strait Collaborative Innovation Center of Biomedicine and Pharmaceutics, School of Public Health, Xiamen University, Xiamen City, Fujian Province, People’s Republic of China
- The Research Unit of Frontier Technology of Structural Vaccinology of Chinese Academy of Medical Sciences, Xiamen City, Fujian Province, People's Republic of China
| |
Collapse
|
134
|
Querido S, Adragão T, Pinto I, Ormonde C, Papoila AL, Pessanha MA, Gomes P, Ferreira S, Figueira JM, Cardoso C, Viana JF, Weigert A. Torquetenovirus viral load is associated with anti-spike antibody response in SARS-CoV-2 mRNA BNT162b2 vaccinated kidney transplant patients. Clin Transplant 2022; 36:e14825. [PMID: 36301197 PMCID: PMC9874652 DOI: 10.1111/ctr.14825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 08/30/2022] [Accepted: 09/19/2022] [Indexed: 01/27/2023]
Abstract
INTRODUCTION Kidney transplant patients (KT) are at high risk for severe COVID-19 and presented attenuated antibody responses to vaccination when compared to immunocompetent individuals. Torquetenovirus (TTV) has recently gained attention as a potential surrogate marker of the net state of immunosuppression. We evaluated the association between pre-vaccination TTV viral load and anti-spike total antibody response to SARS-CoV-2 vaccination in KT. MATERIAL AND METHODS The 114 adult KT recipients enrolled in this prospective single-center cohort study received two doses of SARS-CoV-2 mRNA BNT162b2 vaccine. Serum samples were collected immediately before vaccination at the days when patients received both the first (T0) and the second dose (T1) and 16-45 days after the second dose (T2). Primary endpoint was the development of anti-spike total antibodies after vaccination. Demographic, clinical, and laboratorial parameters were compared between patients with and without detectable SARS-CoV-2 antibodies at T2. RESULTS Ninety-nine patients (86.8%) were naïve for SARS-CoV-2 before vaccination. Fifty-six (56.6%) patients developed anti-spike total antibodies at T2. The use of mTOR inhibitors was associated with a favorable response (p = .005); conversely, mycophenolic acid (MPA) was associated with a negative response (p = .006). In a multivariable model, the presence of TTV at T0 ≥ 3.36 log10 cp/ml was associated with unfavorable vaccine response (OR: 5.40; 95% CI: 1.47-19.80; p = .011), after adjusting for age and eGFR at T0. CONCLUSIONS Higher TTV viral loads before vaccination are associated with reduced anti-spike total antibody response in SARS-CoV-2 mRNA BNT162b2 vaccinated KT patients. The association between TTV viral load and vaccine response may be an added-value in the optimization of vaccination regimens in KT.
Collapse
Affiliation(s)
- Sara Querido
- Department of NephrologyUnit of Renal TransplantationHospital de Santa Cruz, Centro Hospitalar de Lisboa OcidentalCarnaxidePortugal
| | - Teresa Adragão
- Department of NephrologyUnit of Renal TransplantationHospital de Santa Cruz, Centro Hospitalar de Lisboa OcidentalCarnaxidePortugal
| | - Iola Pinto
- CMAFaculdade de Ciências e Tecnologia da Universidade Nova de LisboaLisboaPortugal,ISELInstituto Superior de Engenharia de LisboaLisboaPortugal
| | - Carolina Ormonde
- Department of NephrologyHospital do Divino Espírito SantoPonta DelgadaPortugal
| | - Ana Luísa Papoila
- CEAULCentro de Estatística e Aplicações da Universidade de LisboaLisboaPortugal,NOVAMedicalSchoolFaculdade de Ciências Médicas da Universidade Nova de LisboaLisboaPortugal
| | - Maria Ana Pessanha
- Department of Clinical PathologyLaboratory of Clinical Microbiology and Molecular BiologyCentro Hospitalar de Lisboa OcidentalLisboaPortugal
| | - Perpétua Gomes
- Department of Clinical PathologyLaboratory of Clinical Microbiology and Molecular BiologyCentro Hospitalar de Lisboa OcidentalLisboaPortugal,Centro de Investigação Interdisciplinar Egas Moniz (CiiEM)IUEMAlmadaPortugal
| | - Sílvia Ferreira
- Department of Clinical PathologyLaboratory of BiochemistryCentro Hospitalar de Lisboa OcidentalLisboaPortugal
| | - João Mário Figueira
- Department of Clinical PathologyLaboratory of BiochemistryCentro Hospitalar de Lisboa OcidentalLisboaPortugal
| | - Conceição Cardoso
- Department of Clinical PathologyLaboratory of BiochemistryCentro Hospitalar de Lisboa OcidentalLisboaPortugal
| | - João Faro Viana
- Department of Clinical PathologyCentro Hospitalar de Lisboa OcidentalLisboaPortugal
| | - André Weigert
- Department of NephrologyUnit of Renal TransplantationHospital de Santa Cruz, Centro Hospitalar de Lisboa OcidentalCarnaxidePortugal
| |
Collapse
|
135
|
Turkkan A, Saglik I, Turan C, Sahin A, Akalin H, Ener B, Kara A, Celebi S, Sahin E, Hacimustafaoglu M. Nine-month course of SARS-CoV-2 antibodies in individuals with COVID-19 infection. Ir J Med Sci 2022; 191:2803-2811. [PMID: 35048229 PMCID: PMC8769943 DOI: 10.1007/s11845-021-02716-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 07/07/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND The continual course of the pandemic points to the importance of studies on the rate and durability of protective immunity after infection or vaccination. AIMS In this study, we aimed to monitor anti-nucleocapsid (N) and anti-spike (S) antibodies against SARS-CoV-2 nearly 9 months duration after infection. METHODS Anti-nucleocapsid (N) (at 11-15-20-29-38 weeks) and anti-spike antibodies (at 11 and 38 weeks) against SARS-CoV-2 were monitored during 38 weeks after the initial symptoms of COVID-19. RESULTS Of 37 cases between 18 and 57 years old, 54% were women. The findings showed that anti-N antibodies decreased significantly after the 15th week (between 15 and 20 weeks, p = 0.016; 20-29 weeks, p = 0.0009; and 29-38 weeks, p = 0.049). At the 38th week, mean antibody levels decreased 35% compared to the 11th week, and 8% of the cases turned negative results. Anti-N antibody average level was 56.48 on the 11th week (the cut-off index threshold ≥ 1). It was estimated statistically that it would decrease to an average of 20.48 in weeks 53-62. In females, average antibody levels of all measurements were lower than males (p > 0.05). Anti-S antibody levels 14% increased at 38th week compared to 11th week (quantitative positivity threshold ≥ 0.8 U/ml), and no cases were negative at 38th week. CONCLUSIONS Patients had ≥ 90% positivity after at least 9 months of symptoms, both anti-N and anti-S antibodies. In all samples, both anti-N and anti-S antibody levels were lower in females. The findings suggest that the quantitative values of anti-S antibodies remained high for at least 9 months and could provide protection.
Collapse
Affiliation(s)
- Alpaslan Turkkan
- Department of Public Health, Bursa Uludag University Medical Faculty, Bursa, Turkey
| | - Imran Saglik
- Department of Medical Microbiology, Bursa Uludag University Medical Faculty, Bursa, Turkey
| | - Cansu Turan
- Department of Pediatric Infectious Diseases, Bursa Uludag University Medical Faculty, Bursa, Turkey
| | - Ahmet Sahin
- Biochemistry and Clinical Biochemistry, Guven Tip Laboratuarı, Bursa, Turkey
| | - Halis Akalin
- Department of Infectious Diseases and Clinical Microbiology, Bursa Uludag University Medical Faculty, Bursa, Turkey
| | - Beyza Ener
- Department of Medical Microbiology, Bursa Uludag University Medical Faculty, Bursa, Turkey
| | - Ates Kara
- Department of Pediatric Infectious Diseases, Hacettepe University Medical Faculty, Ankara, Turkey
| | - Solmaz Celebi
- Department of Pediatric Infectious Diseases, Bursa Uludag University Medical Faculty, Bursa, Turkey
| | - Emre Sahin
- Department of Pediatric Infectious Diseases, Bursa Uludag University Medical Faculty, Bursa, Turkey
| | - Mustafa Hacimustafaoglu
- Department of Pediatric Infectious Diseases, Bursa Uludag University Medical Faculty, Bursa, Turkey.
| |
Collapse
|
136
|
Mohseni Afshar Z, Barary M, Hosseinzadeh R, Alijanpour A, Hosseinzadeh D, Ebrahimpour S, Nazary K, Sio TT, Sullman MJM, Carson-Chahhoud K, Babazadeh A. Breakthrough SARS-CoV-2 infections after vaccination: a critical review. Hum Vaccin Immunother 2022; 18:2051412. [PMID: 35302905 PMCID: PMC9115792 DOI: 10.1080/21645515.2022.2051412] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 03/06/2022] [Indexed: 12/28/2022] Open
Abstract
At the beginning of the current pandemic, it was believed that severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection would induce lifelong immunity and that reinfections would be unlikely. However, after several cases of reinfection were documented in previously infected patients, this was understood to be a false assumption, and this waning humoral immunity has raised significant concerns. Accordingly, long-term and durable vaccine-induced antibody protection against infection have also become a challenge, as several breakthroughs of COVID-19 infection have been identified in individuals who were fully vaccinated. This review discusses the current evidence on breakthrough COVID-19 infections occurring after vaccination.
Collapse
Affiliation(s)
- Zeinab Mohseni Afshar
- Clinical Research Development Center, Imam Reza Hospital, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mohammad Barary
- Student Research Committee, Virtual School of Medical Education and Management, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Students’ Scientific Research Center (SSRC), Tehran University of Medical Sciences, Tehran, Iran
| | - Rezvan Hosseinzadeh
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
| | | | | | - Soheil Ebrahimpour
- Infectious Diseases and Tropical Medicine Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Kosar Nazary
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
| | - Terence T. Sio
- Department of Radiation Oncology, Mayo Clinic, Phoenix, Arizona, USA
| | - Mark J. M. Sullman
- Department of Social Sciences, University of Nicosia, Nicosia, Cyprus
- Department of Life and Health Sciences, University of Nicosia, Nicosia, Cyprus
| | | | - Arefeh Babazadeh
- Infectious Diseases and Tropical Medicine Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| |
Collapse
|
137
|
Trombetta CM, Marchi S, Viviani S, Manenti A, Casa E, Dapporto F, Remarque EJ, Bollati V, Manini I, Lazzeri G, Montomoli E. A serological investigation in Southern Italy: was SARS-CoV-2 circulating in late 2019? Hum Vaccin Immunother 2022; 18:2047582. [PMID: 35289714 PMCID: PMC8935457 DOI: 10.1080/21645515.2022.2047582] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
In March 2020, the first pandemic caused by a coronavirus was declared by the World Health Organization. Italy was one of the first and most severely affected countries, particularly the northern part of the country. The latest evidence suggests that the virus could have been circulating, at least in Italy, before the first autochthonous SARS-COV-2 case was detected in February 2020. The present study aimed to investigate the presence of antibodies against SARS-CoV-2 in human serum samples collected in the last months of 2019 (September–December) in the Apulia region, Southern Italy. Eight of 455 samples tested proved positive on in-house receptor-binding-domain-based ELISA. Given the month of collection of the positive samples, these findings may indicate early circulation of SARS-CoV-2 in Apulia region in the autumn of 2019. However, it cannot be completely ruled out that the observed sero-reactivity could be an unknown antigen specificity in another virus to which subjects were exposed containing an epitope adventitiously cross-reactive with an epitope of SARS-CoV-2.
Collapse
Affiliation(s)
| | - Serena Marchi
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Simonetta Viviani
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | | | | | | | - Edmond J Remarque
- Department of Virology, Biomedical Primate Research Centre, Rijswijk, The Netherlands
| | - Valentina Bollati
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Ilaria Manini
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Giacomo Lazzeri
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Emanuele Montomoli
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy.,VisMederi srl, Siena, Italy.,VisMederi Research srl, Siena, Italy
| |
Collapse
|
138
|
Noto A, Joo V, Mancarella A, Suffiotti M, Pellaton C, Fenwick C, Perreau M, Pantaleo G. CXCL12 and CXCL13 Cytokine Serum Levels Are Associated with the Magnitude and the Quality of SARS-CoV-2 Humoral Responses. Viruses 2022; 14:2665. [PMID: 36560669 PMCID: PMC9785906 DOI: 10.3390/v14122665] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/21/2022] [Accepted: 11/24/2022] [Indexed: 11/30/2022] Open
Abstract
A better understanding of the immunological markers associated with long-lasting immune responses to SARS-CoV-2 infection is of paramount importance. In the present study, we characterized SARS-CoV-2-specific humoral responses in hospitalized (ICU and non-ICU) and non-hospitalized individuals at six months post-onset of symptoms (POS) (N = 95). We showed that the proportion of individuals with detectable anti-SARS-CoV-2 IgG or neutralizing (NAb) responses and the titers of antibodies were significantly reduced in non-hospitalized individuals, compared to ICU- or non-ICU-hospitalized individuals at 6 months POS. Interestingly, SARS-CoV-2-specific memory B cells persist at 6 months POS in both ICU and non-ICU patients and were enriched in cells harboring an activated and/or exhausted phenotype. The frequency/phenotype of SARS-CoV-2-specific memory B cells and the magnitude of IgG or NAb responses at 6 months POS correlated with the serum immune signature detected at patient admission. In particular, the serum levels of CXCL13, IL-1RA, and G-CSF directly correlated with the frequency of Spike-specific B cells and the magnitude of Spike-specific IgG or NAb, while the serum levels of CXCL12 showed an antagonizing effect. Our results indicate that the balance between CXCL12 and CXCL13 is an early marker associated with the magnitude and the quality of the SARS-CoV-2 humoral memory.
Collapse
Affiliation(s)
- Alessandra Noto
- Service of Immunology and Allergy, Lausanne University Hospital, University of Lausanne, 1011 Lausanne, Switzerland
| | - Victor Joo
- Service of Immunology and Allergy, Lausanne University Hospital, University of Lausanne, 1011 Lausanne, Switzerland
| | - Antonio Mancarella
- Service of Immunology and Allergy, Lausanne University Hospital, University of Lausanne, 1011 Lausanne, Switzerland
| | - Madeleine Suffiotti
- Service of Immunology and Allergy, Lausanne University Hospital, University of Lausanne, 1011 Lausanne, Switzerland
| | - Celine Pellaton
- Service of Immunology and Allergy, Lausanne University Hospital, University of Lausanne, 1011 Lausanne, Switzerland
| | - Craig Fenwick
- Service of Immunology and Allergy, Lausanne University Hospital, University of Lausanne, 1011 Lausanne, Switzerland
| | - Matthieu Perreau
- Service of Immunology and Allergy, Lausanne University Hospital, University of Lausanne, 1011 Lausanne, Switzerland
| | - Giuseppe Pantaleo
- Service of Immunology and Allergy, Lausanne University Hospital, University of Lausanne, 1011 Lausanne, Switzerland
- Swiss Vaccine Research Institute, Lausanne University Hospital, University of Lausanne, 1011 Lausanne, Switzerland
| |
Collapse
|
139
|
Decarreaux D, Sevila J, Masse S, Capai L, Fourié T, Villarroel PMS, Amroun A, Nurtop E, Vareille M, Blanchon T, de Lamballerie X, Charrel R, Falchi A. Eight Months of Serological Follow-Up of Anti-SARS-CoV-2 Antibodies in France: A Study among an Adult Population. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:15257. [PMID: 36429974 PMCID: PMC9691066 DOI: 10.3390/ijerph192215257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/10/2022] [Accepted: 11/14/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Uncertainties remain regarding the nature and durability of the humoral immune response to severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). AIM This study investigated immunoglobulin G response and neutralizing activity to evaluate the mean antibody concentrations and response duration induced by each vaccination regimen in a French adult population. METHODS A study including blood sampling and questionnaires was carried out from November 2020 to July 2021 with three separate follow-up phases. Spike proteins and neutralizing antibodies were quantified using ELISA and a virus-neutralization test. RESULTS Overall, 295 participants were included. Seroprevalences were 11.5% (n = 34), 10.5% (n = 31), and 68.1% (n = 201) in phases 1, 2, and 3, respectively. Importantly, 5.8% (n = 17) of participants lost their natural antibodies. Antibody response of participants with only a prior infection was 88.2 BAU/mL, significantly lower than those vaccinated, which was 1909.3 BAU/mL (p = 0.04). Moreover, the antibody response of vaccinated participants with a prior infection was higher (3593.8 BAU/mL) than those vaccinated without prior infection (3402.9 BAU/mL) (p = 0.78). Vaccinated participants with or without prior infection had a higher seroneutralization rate (91.0%) than those unvaccinated with prior infection (65.0%). CONCLUSION These results demonstrated that single infection does not confer effective protection against SARS-CoV-2.
Collapse
Affiliation(s)
- Dorine Decarreaux
- Laboratoire de Virologie, Université de Corse Pascal Paoli, UR7310 Bioscope, 20250 Corte, France
- INSERM, Sorbonne Université, Institut Pierre Louis d’Epidémiologie et de Santé Publique, IPLESP, 75012 Paris, France
- Unité des Virus émergents, Aix Marseille University, IRD 190, INSERM U1207, IHU Méditerranée Infection, 13005 Marseille, France
| | - Julie Sevila
- Laboratoire de Virologie, Université de Corse Pascal Paoli, UR7310 Bioscope, 20250 Corte, France
| | - Shirley Masse
- Laboratoire de Virologie, Université de Corse Pascal Paoli, UR7310 Bioscope, 20250 Corte, France
| | - Lisandru Capai
- Laboratoire de Virologie, Université de Corse Pascal Paoli, UR7310 Bioscope, 20250 Corte, France
| | - Toscane Fourié
- Unité des Virus émergents, Aix Marseille University, IRD 190, INSERM U1207, IHU Méditerranée Infection, 13005 Marseille, France
| | - Paola Mariela Saba Villarroel
- Unité des Virus émergents, Aix Marseille University, IRD 190, INSERM U1207, IHU Méditerranée Infection, 13005 Marseille, France
| | - Abdennour Amroun
- Unité des Virus émergents, Aix Marseille University, IRD 190, INSERM U1207, IHU Méditerranée Infection, 13005 Marseille, France
| | - Elif Nurtop
- Unité des Virus émergents, Aix Marseille University, IRD 190, INSERM U1207, IHU Méditerranée Infection, 13005 Marseille, France
| | - Matthieu Vareille
- Laboratoire de Virologie, Université de Corse Pascal Paoli, UR7310 Bioscope, 20250 Corte, France
| | - Thierry Blanchon
- INSERM, Sorbonne Université, Institut Pierre Louis d’Epidémiologie et de Santé Publique, IPLESP, 75012 Paris, France
| | - Xavier de Lamballerie
- Unité des Virus émergents, Aix Marseille University, IRD 190, INSERM U1207, IHU Méditerranée Infection, 13005 Marseille, France
| | - Remi Charrel
- Unité des Virus émergents, Aix Marseille University, IRD 190, INSERM U1207, IHU Méditerranée Infection, 13005 Marseille, France
| | - Alessandra Falchi
- Laboratoire de Virologie, Université de Corse Pascal Paoli, UR7310 Bioscope, 20250 Corte, France
| |
Collapse
|
140
|
Host Protective Immunity against Severe Acute Respiratory Coronavirus 2 (SARS-CoV-2) and the COVID-19 Vaccine-Induced Immunity against SARS-CoV-2 and Its Variants. Viruses 2022; 14:v14112541. [PMID: 36423150 PMCID: PMC9697230 DOI: 10.3390/v14112541] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/14/2022] [Accepted: 11/15/2022] [Indexed: 11/19/2022] Open
Abstract
The world is now apparently at the last/recovery stage of the COVID-19 pandemic, starting from 29 December 2019, caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). With the progression of time, several mutations have taken place in the original SARS-CoV-2 Wuhan strain, which have generated variants of concern (VOC). Therefore, combatting COVID-19 has required the development of COVID-19 vaccines using several platforms. The immunity induced by those vaccines is vital to study in order to assure total protection against SARS-CoV-2 and its emerging variants. Indeed, understanding and identifying COVID-19 protection mechanisms or the host immune responses are of significance in terms of designing both new and repurposed drugs as well as the development of novel vaccines with few to no side effects. Detecting the immune mechanisms for host protection against SARS-CoV-2 and its variants is crucial for the development of novel COVID-19 vaccines as well as to monitor the effectiveness of the currently used vaccines worldwide. Immune memory in terms of the production of neutralizing antibodies (NAbs) during reinfection is also very crucial to formulate the vaccine administration schedule/vaccine doses. The response of antigen-specific antibodies and NAbs as well as T cell responses, along with the protective cytokine production and the innate immunity generated upon COVID-19 vaccination, are discussed in the current review in comparison to the features of naturally induced protective immunity.
Collapse
|
141
|
Boretti A. Some Doubts Vaccine Boosters, Vaccine Passports, and Prohibition to Use Antivirals Help with Cases and Fatalities of COVID-19 Infection. Indian J Otolaryngol Head Neck Surg 2022:1-4. [PMCID: PMC9638405 DOI: 10.1007/s12070-022-03202-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 09/23/2022] [Indexed: 11/07/2022] Open
|
142
|
Delgado-Fernández M, García-Gemar GM, Fuentes-López A, Muñoz-Pérez MI, Oyonarte-Gómez S, Ruíz-García I, Martín-Carmona J, Sanz-Cánovas J, Castaño-Carracedo MÁ, Reguera-Iglesias JM, Ruíz-Mesa JD. Treatment of COVID-19 with convalescent plasma in patients with humoral immunodeficiency - Three consecutive cases and review of the literature. ENFERMEDADES INFECCIOSAS Y MICROBIOLOGIA CLINICA (ENGLISH ED.) 2022; 40:507-516. [PMID: 36336380 PMCID: PMC9631336 DOI: 10.1016/j.eimce.2021.01.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 01/20/2021] [Indexed: 06/16/2023]
Abstract
Patients lacking humoral response have been suggested to develop a less severe COVID-19, but there are some reports with a prolonged, relapsing or deadly course. From April 2020, there is growing evidence on the benefits of COVID-19 convalescent plasma (CCP) for patients with humoral immunodeficiency. Most of them had a congenital primary immunodeficiency or were on treatment with anti CD20 antibodies. We report on three patients treated in our hospital and review thirty-one more cases described in the literature. All patients but three resolved clinical picture with CCP. A dose from 200 to 800ml was enough in most cases. Antibody levels after transfusion were negative or low, suggesting consumption of them in SARS-CoV-2 neutralization. These patients have a protracted clinical course shortened after CCP. CCP could be helpful for patients with humoral immunodeficiency. It avoid relapses and chronification. CCP should be transfused as early as possible in patients with COVID-19 and humoral immunodeficiency.
Collapse
Affiliation(s)
| | | | - Ana Fuentes-López
- Microbiology Department, Hospital Universitario Clínico San Cecilio, Granada, Spain
| | | | - Salvador Oyonarte-Gómez
- Director of "Red andaluza de Medicina transfusional, tejidos y células" del Sistema Sanitario Público de Andalucía, Spain
| | | | | | - Jaime Sanz-Cánovas
- Internal Medicine Department, Hospital Regional Universitario de Málaga, Spain
| | | | | | - Juan Diego Ruíz-Mesa
- Infectious Diseases Department, Hospital Regional Universitario de Málaga, Spain
| |
Collapse
|
143
|
Fisher BT, Sharova A, Boge CLK, Gouma S, Kamrin A, Blumenstock J, Shuster S, Gianchetti L, Collins D, Akaho E, Weirick ME, McAllister CM, Bolton MJ, Arevalo CP, Goodwin EC, Anderson EM, Christensen SR, Balamuth F, John ARO, Li Y, Coffin S, Gerber JS, Hensley SE. Evolution of severe acute respiratory coronavirus virus 2 (SARS-CoV-2) seroprevalence among employees of a US academic children's hospital during coronavirus disease 2019 (COVID-19) pandemic. Infect Control Hosp Epidemiol 2022; 43:1647-1655. [PMID: 34852866 PMCID: PMC8668398 DOI: 10.1017/ice.2021.487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 10/30/2021] [Accepted: 11/12/2021] [Indexed: 11/13/2022]
Abstract
OBJECTIVE To describe the cumulative seroprevalence of severe acute respiratory coronavirus virus 2 (SARS-CoV-2) antibodies during the coronavirus disease 2019 (COVID-19) pandemic among employees of a large pediatric healthcare system. DESIGN, SETTING, AND PARTICIPANTS Prospective observational cohort study open to adult employees at the Children's Hospital of Philadelphia, conducted April 20-December 17, 2020. METHODS Employees were recruited starting with high-risk exposure groups, utilizing e-mails, flyers, and announcements at virtual town hall meetings. At baseline, 1 month, 2 months, and 6 months, participants reported occupational and community exposures and gave a blood sample for SARS-CoV-2 antibody measurement by enzyme-linked immunosorbent assays (ELISAs). A post hoc Cox proportional hazards regression model was performed to identify factors associated with increased risk for seropositivity. RESULTS In total, 1,740 employees were enrolled. At 6 months, the cumulative seroprevalence was 5.3%, which was below estimated community point seroprevalence. Seroprevalence was 5.8% among employees who provided direct care and was 3.4% among employees who did not perform direct patient care. Most participants who were seropositive at baseline remained positive at follow-up assessments. In a post hoc analysis, direct patient care (hazard ratio [HR], 1.95; 95% confidence interval [CI], 1.03-3.68), Black race (HR, 2.70; 95% CI, 1.24-5.87), and exposure to a confirmed case in a nonhealthcare setting (HR, 4.32; 95% CI, 2.71-6.88) were associated with statistically significant increased risk for seropositivity. CONCLUSIONS Employee SARS-CoV-2 seroprevalence rates remained below the point-prevalence rates of the surrounding community. Provision of direct patient care, Black race, and exposure to a confirmed case in a nonhealthcare setting conferred increased risk. These data can inform occupational protection measures to maximize protection of employees within the workplace during future COVID-19 waves or other epidemics.
Collapse
Affiliation(s)
- Brian T. Fisher
- Division of Infectious Diseases, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Anna Sharova
- Division of Infectious Diseases, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Craig L. K. Boge
- Division of Infectious Diseases, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Sigrid Gouma
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Audrey Kamrin
- Center for Human Phenomic Science, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Jesse Blumenstock
- Division of Infectious Diseases, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Sydney Shuster
- Division of Infectious Diseases, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Lauren Gianchetti
- Division of Infectious Diseases, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Danielle Collins
- Division of Infectious Diseases, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Elikplim Akaho
- Division of Infectious Diseases, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Madison E. Weirick
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Christopher M. McAllister
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Marcus J. Bolton
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Claudia P. Arevalo
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Eileen C. Goodwin
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Elizabeth M. Anderson
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Shannon R. Christensen
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Fran Balamuth
- Division of Infectious Diseases, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Audrey R. Odom John
- Division of Infectious Diseases, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Yun Li
- Division of Infectious Diseases, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Susan Coffin
- Division of Infectious Diseases, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Jeffrey S. Gerber
- Division of Infectious Diseases, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Scott E. Hensley
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
144
|
Schwarz M, Torre D, Lozano-Ojalvo D, Tan AT, Tabaglio T, Mzoughi S, Sanchez-Tarjuelo R, Le Bert N, Lim JME, Hatem S, Tuballes K, Camara C, Lopez-Granados E, Paz-Artal E, Correa-Rocha R, Ortiz A, Lopez-Hoyos M, Portoles J, Cervera I, Gonzalez-Perez M, Bodega-Mayor I, Conde P, Oteo-Iglesias J, Borobia AM, Carcas AJ, Frías J, Belda-Iniesta C, Ho JSY, Nunez K, Hekmaty S, Mohammed K, Marsiglia WM, Carreño JM, Dar AC, Berin C, Nicoletti G, Della Noce I, Colombo L, Lapucci C, Santoro G, Ferrari M, Nie K, Patel M, Barcessat V, Gnjatic S, Harris J, Sebra R, Merad M, Krammer F, Kim-Schulze S, Marazzi I, Bertoletti A, Ochando J, Guccione E. Rapid, scalable assessment of SARS-CoV-2 cellular immunity by whole-blood PCR. Nat Biotechnol 2022; 40:1680-1689. [PMID: 35697804 PMCID: PMC10603792 DOI: 10.1038/s41587-022-01347-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 05/02/2022] [Indexed: 12/30/2022]
Abstract
Fast, high-throughput methods for measuring the level and duration of protective immune responses to SARS-CoV-2 are needed to anticipate the risk of breakthrough infections. Here we report the development of two quantitative PCR assays for SARS-CoV-2-specific T cell activation. The assays are rapid, internally normalized and probe-based: qTACT requires RNA extraction and dqTACT avoids sample preparation steps. Both assays rely on the quantification of CXCL10 messenger RNA, a chemokine whose expression is strongly correlated with activation of antigen-specific T cells. On restimulation of whole-blood cells with SARS-CoV-2 viral antigens, viral-specific T cells secrete IFN-γ, which stimulates monocytes to produce CXCL10. CXCL10 mRNA can thus serve as a proxy to quantify cellular immunity. Our assays may allow large-scale monitoring of the magnitude and duration of functional T cell immunity to SARS-CoV-2, thus helping to prioritize revaccination strategies in vulnerable populations.
Collapse
Affiliation(s)
- Megan Schwarz
- Department of Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Therapeutics Discovery, Department of Oncological Sciences and Pharmacological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Denis Torre
- Department of Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Therapeutics Discovery, Department of Oncological Sciences and Pharmacological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Daniel Lozano-Ojalvo
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Anthony T Tan
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
| | - Tommaso Tabaglio
- Institute of Molecular and Cell Biology, IMCB, A*STAR, Singapore, Singapore
| | - Slim Mzoughi
- Department of Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Therapeutics Discovery, Department of Oncological Sciences and Pharmacological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Rodrigo Sanchez-Tarjuelo
- Department of Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- National Center for Microbiology, Carlos III Health Institute, Madrid, Spain
| | - Nina Le Bert
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
| | - Joey Ming Er Lim
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
| | - Sandra Hatem
- Department of Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kevin Tuballes
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Carmen Camara
- Department of Immunology, University Hospital La Paz-IdiPAZ, Madrid, Spain
| | | | - Estela Paz-Artal
- Department of Immunology, Research Institution, Sanitaria Hospital, Madrid, Spain
- Department of Immunology, Ophthalmology and ENT, Complutense University of Madrid, Madrid, Spain
- CIBER de Enfermedades Infecciosas (CIBERINFEC), Carlos III Health Institute, Madrid, Spain
| | - Rafael Correa-Rocha
- Laboratory of Immune-Regulation, Research Institute Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
| | - Alberto Ortiz
- Department of Nephrology, IIS-Fundación Jimenez Díaz, Madrid, Spain
| | - Marcos Lopez-Hoyos
- Department of Immunology, Hospital University of Marqués de Valdecilla-IDIVAL, Santander, Spain
| | - Jose Portoles
- Department of Nephrology, Hospital of Puerta de Hierro, Madrid, Spain
| | - Isabel Cervera
- National Center for Microbiology, Carlos III Health Institute, Madrid, Spain
| | | | - Irene Bodega-Mayor
- National Center for Microbiology, Carlos III Health Institute, Madrid, Spain
| | - Patricia Conde
- National Center for Microbiology, Carlos III Health Institute, Madrid, Spain
| | - Jesús Oteo-Iglesias
- National Center for Microbiology, Carlos III Health Institute, Madrid, Spain
- CIBER de Enfermedades Infecciosas (CIBERINFEC), Carlos III Health Institute, Madrid, Spain
| | - Alberto M Borobia
- Clinical Pharmacology, University Hospital La Paz-IDIPAZ, Platform of Clinical Research Units and Clinical Trials, Spain Faculty of Medicine Autonomous University of Madrid, Madrid, Spain
| | - Antonio J Carcas
- Clinical Pharmacology, University Hospital La Paz-IDIPAZ, Platform of Clinical Research Units and Clinical Trials, Spain Faculty of Medicine Autonomous University of Madrid, Madrid, Spain
| | - Jesús Frías
- Clinical Pharmacology, University Hospital La Paz-IDIPAZ, Platform of Clinical Research Units and Clinical Trials, Spain Faculty of Medicine Autonomous University of Madrid, Madrid, Spain
| | | | - Jessica S Y Ho
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kemuel Nunez
- Department of Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Therapeutics Discovery, Department of Oncological Sciences and Pharmacological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Saboor Hekmaty
- Department of Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kevin Mohammed
- Department of Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - William M Marsiglia
- Department of Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Juan Manuel Carreño
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Arvin C Dar
- Department of Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Therapeutics Discovery, Department of Oncological Sciences and Pharmacological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Cecilia Berin
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | | | | | | | | | | | - Kai Nie
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Human Immune Monitoring Core, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Manishkumar Patel
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Human Immune Monitoring Core, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Vanessa Barcessat
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sacha Gnjatic
- Department of Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Human Immune Monitoring Core, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jocelyn Harris
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Human Immune Monitoring Core, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Robert Sebra
- Department of Genetics and Genomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Sema4, a Mount Sinai venture, Stamford, CT, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Miriam Merad
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Human Immune Monitoring Core, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Seunghee Kim-Schulze
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Human Immune Monitoring Core, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ivan Marazzi
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Antonio Bertoletti
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore.
| | - Jordi Ochando
- Department of Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- National Center for Microbiology, Carlos III Health Institute, Madrid, Spain.
| | - Ernesto Guccione
- Department of Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Center for Therapeutics Discovery, Department of Oncological Sciences and Pharmacological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Bioinformatics for Next Generation Sequencing (BiNGS) Shared Resource Facility, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
145
|
Findlater L, Trickey A, Jones HE, Trindall A, Taylor-Phillips S, Mulchandani R, Oliver I, Wyllie D. Association of Results of Four Lateral Flow Antibody Tests with Subsequent SARS-CoV-2 Infection. Microbiol Spectr 2022; 10:e0246822. [PMID: 36135374 PMCID: PMC9602656 DOI: 10.1128/spectrum.02468-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 09/06/2022] [Indexed: 01/04/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccine coverage remains incomplete, being only 15% in low-income countries. Rapid point-of-care tests predicting SARS-CoV-2 infection susceptibility in the unvaccinated may assist in risk management and vaccine prioritization. We conducted a prospective cohort study in 2,826 participants working in hospitals and Fire and Police services in England, UK, during the pandemic (ISRCTN5660922). Plasma taken at recruitment in June 2020 was tested using four lateral flow immunoassay (LFIA) devices and two laboratory immunoassays detecting antibodies against SARS-CoV-2 (UK Rapid Test Consortium's AbC-19 rapid test, OrientGene COVID IgG/IgM rapid test cassette, SureScreen COVID-19 rapid test cassette, and Biomerica COVID-19 IgG/IgM rapid test; Roche N and Euroimmun S laboratory assays). We monitored participants for microbiologically confirmed SARS-CoV-2 infection for 200 days. We estimated associations between test results at baseline and subsequent infection, using Poisson regression models adjusted for baseline demographic risk factors for SARS-CoV-2 exposure. Positive IgG results on each of the four LFIAs were associated with lower rates of subsequent infection with adjusted incidence rate ratios (aIRRs) of 0.00 (95% confidence interval, 0.00 to 0.01), 0.03 (0.02 to 0.05), 0.07 (0.05 to 0.10), and 0.09 (0.07 to 0.12), respectively. The protective association was strongest for AbC-19 and SureScreen. The aIRR for the laboratory Roche N antibody assay at the manufacturer-recommended threshold was similar to those of the two best performing LFIAs at 0.03 (0.01 to 0.10). Lateral flow devices measuring SARS-CoV-2 IgG predicted disease risk in unvaccinated individuals over a 200-day follow-up. The association of some LFIAs with subsequent infection was similar to laboratory immunoassays. IMPORTANCE Previous research has demonstrated an association between the detection of antibodies to SARS-CoV-2 following natural infection and protection from subsequent symptomatic SARS-CoV-2 infection. Lateral flow immunoassays (LFIAs) detecting anti-SARS-CoV-2 IgG are a cheap, readily deployed technology that has been used on a large scale in population screening programs, yet no studies have investigated whether LFIA results are associated with subsequent SARS-CoV-2 infection. In a prospective cohort study of 2,826 United Kingdom key workers, we found positivity in lateral flow test results had a strong negative association with subsequent SARS-CoV-2 infection within 200 days in an unvaccinated population. Positivity on more-specific but less-sensitive tests was associated with a markedly decreased rate of disease; protection associated with testing positive using more sensitive devices detecting lower levels of anti-SARS-CoV-2 IgG was more modest. Lateral flow tests with high specificity may have a role in estimation of SARS-CoV-2 disease risk in unvaccinated populations.
Collapse
Affiliation(s)
- Lucy Findlater
- UK Health Security Agency, Cambridge, United Kingdom
- National Institute of Health Research Health Protection Research Unit on Behavioural Science and Evaluation at the University of Bristol, Bristol, United Kingdom
| | - Adam Trickey
- Population Health Sciences, University of Bristol, Bristol, United Kingdom
| | - Hayley E. Jones
- National Institute of Health Research Health Protection Research Unit on Behavioural Science and Evaluation at the University of Bristol, Bristol, United Kingdom
- Population Health Sciences, University of Bristol, Bristol, United Kingdom
| | - Amy Trindall
- UK Health Security Agency, Cambridge, United Kingdom
| | | | | | - EDSAB-HOME Investigators
- UK Health Security Agency, Cambridge, United Kingdom
- National Institute of Health Research Health Protection Research Unit on Behavioural Science and Evaluation at the University of Bristol, Bristol, United Kingdom
- Population Health Sciences, University of Bristol, Bristol, United Kingdom
- University of Warwick, Coventry, United Kingdom
| | - Isabel Oliver
- UK Health Security Agency, Cambridge, United Kingdom
- National Institute of Health Research Health Protection Research Unit on Behavioural Science and Evaluation at the University of Bristol, Bristol, United Kingdom
| | - David Wyllie
- UK Health Security Agency, Cambridge, United Kingdom
| |
Collapse
|
146
|
Kubale J, Gleason C, Carreño JM, Srivastava K, Singh G, Gordon A, Krammer F, Simon V. SARS-CoV-2 Spike-Binding Antibody Longevity and Protection from Reinfection with Antigenically Similar SARS-CoV-2 Variants. mBio 2022; 13:e0178422. [PMID: 35997286 PMCID: PMC9600418 DOI: 10.1128/mbio.01784-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 07/25/2022] [Indexed: 11/20/2022] Open
Abstract
The PARIS (Protection Associated with Rapid Immunity to SARS-CoV-2) cohort follows health care workers with and without documented coronavirus disease 2019 (COVID-19) since April 2020. We report our findings regarding severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike-binding antibody stability and protection from infection in the pre-variant era. We analyzed data from 400 health care workers (150 seropositive and 250 seronegative at enrollment) for a median of 84 days. The SARS-CoV-2 spike-binding antibody titers were highly variable with antibody levels decreasing over the first 3 months, followed by a relative stabilization. We found that both more advanced age (>40 years) and female sex were associated with higher antibody levels (1.6-fold and 1.4-fold increases, respectively). Only six percent of the initially seropositive participants "seroreverted." We documented a total of 11 new SARS-CoV-2 infections (10 naive participants and 1 previously infected participant without detectable antibodies; P < 0.01), indicating that spike antibodies limit the risk of reinfection. These observations, however, only apply to SARS-CoV-2 variants antigenically similar to the ancestral SARS-CoV-2 ones. In conclusion, SARS-CoV-2 antibody titers mounted upon infection are stable over several months and provide protection from infection with antigenically similar viruses. IMPORTANCE SARS-CoV-2 is the cause of one of the largest noninfluenza pandemics of this century. This exceptional public health crisis highlights the urgent need for better understanding of the correlates of protection from infection and severe COVID-19. We established the PARIS cohort to determine durability and effectiveness of SARS-CoV-2 immune responses. Here, we report on the kinetics of SARS-CoV-2 spike-binding antibody after SARS-CoV-2 infection as well as reinfection rates using data collected between April 2020 and August 2021. We found that antibody levels stabilized at individual steady state levels after an initial decrease with seroreversion being found in only 6% of the convalescent participants. SARS-CoV-2 infections only occurred in participants without detectable spike-binding antibodies, indicating significant protection from reinfection with antigenically similar viruses. Our data indicate the importance of spike-binding antibody titers in protection prior to vaccination and the wide circulation of antigenically diverse variants of concern.
Collapse
Affiliation(s)
- John Kubale
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, Michigan, USA
| | - Charles Gleason
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Center for Vaccine Research and Pandemic Preparedness, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Juan Manuel Carreño
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Center for Vaccine Research and Pandemic Preparedness, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Komal Srivastava
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Center for Vaccine Research and Pandemic Preparedness, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Gagandeep Singh
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Center for Vaccine Research and Pandemic Preparedness, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - PARIS Study Team
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Center for Vaccine Research and Pandemic Preparedness, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Aubree Gordon
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, Michigan, USA
| | - Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Pathology, Molecular and Cell Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Center for Vaccine Research and Pandemic Preparedness, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Viviana Simon
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Pathology, Molecular and Cell Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Center for Vaccine Research and Pandemic Preparedness, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
147
|
Diani S, Leonardi E, Cavezzi A, Ferrari S, Iacono O, Limoli A, Bouslenko Z, Natalini D, Conti S, Mantovani M, Tramonte S, Donzelli A, Serravalle E. SARS-CoV-2-The Role of Natural Immunity: A Narrative Review. J Clin Med 2022; 11:6272. [PMID: 36362500 PMCID: PMC9655392 DOI: 10.3390/jcm11216272] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 10/17/2022] [Accepted: 10/20/2022] [Indexed: 10/21/2023] Open
Abstract
BACKGROUND Both natural immunity and vaccine-induced immunity to COVID-19 may be useful to reduce the mortality/morbidity of this disease, but still a lot of controversy exists. AIMS This narrative review analyzes the literature regarding these two immunitary processes and more specifically: (a) the duration of natural immunity; (b) cellular immunity; (c) cross-reactivity; (d) the duration of post-vaccination immune protection; (e) the probability of reinfection and its clinical manifestations in the recovered patients; (f) the comparisons between vaccinated and unvaccinated as to the possible reinfections; (g) the role of hybrid immunity; (h) the effectiveness of natural and vaccine-induced immunity against Omicron variant; (i) the comparative incidence of adverse effects after vaccination in recovered individuals vs. COVID-19-naïve subjects. MATERIAL AND METHODS through multiple search engines we investigated COVID-19 literature related to the aims of the review, published since April 2020 through July 2022, including also the previous articles pertinent to the investigated topics. RESULTS nearly 900 studies were collected, and 246 pertinent articles were included. It was highlighted that the vast majority of the individuals after suffering from COVID-19 develop a natural immunity both of cell-mediated and humoral type, which is effective over time and provides protection against both reinfection and serious illness. Vaccine-induced immunity was shown to decay faster than natural immunity. In general, the severity of the symptoms of reinfection is significantly lower than in the primary infection, with a lower degree of hospitalizations (0.06%) and an extremely low mortality. CONCLUSIONS this extensive narrative review regarding a vast number of articles highlighted the valuable protection induced by the natural immunity after COVID-19, which seems comparable or superior to the one induced by anti-SARS-CoV-2 vaccination. Consequently, vaccination of the unvaccinated COVID-19-recovered subjects may not be indicated. Further research is needed in order to: (a) measure the durability of immunity over time; (b) evaluate both the impacts of Omicron BA.5 on vaccinated and healed subjects and the role of hybrid immunity.
Collapse
Affiliation(s)
- Sara Diani
- School of Musictherapy, Université Européenne Jean Monnet, 35129 Padova, Italy
| | | | | | | | - Oriana Iacono
- Physical Medicine and Rehabilitation Department, Mirandola Hospital, 41037 Mirandola, Italy
| | - Alice Limoli
- ARPAV (Regional Agency for the Environment Protection), 31100 Treviso, Italy
| | - Zoe Bouslenko
- Cardiology Department, Valdese Hospital, 10100 Torino, Italy
| | | | | | | | - Silvano Tramonte
- Environment and Health Commission, National Bioarchitecture Institute, 20121 Milano, Italy
| | | | | |
Collapse
|
148
|
Sun Y, Zou Y, Wang H, Cui G, Yu Z, Ren Z. Immune response induced by novel coronavirus infection. Front Cell Infect Microbiol 2022; 12:988604. [PMID: 36389144 PMCID: PMC9641212 DOI: 10.3389/fcimb.2022.988604] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 09/29/2022] [Indexed: 11/07/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus (SARS-CoV)-2 has been prominent around the world since it was first discovered, affecting more than 100 million people. Although the symptoms of most infected patients are not serious, there is still a considerable proportion of patients who need hospitalization and even develop fatal symptoms such as cytokine storms, acute respiratory distress syndrome and so on. Cytokine storm is usually described as a collection of clinical manifestations caused by overactivation of the immune system, which plays an important role in tissue injury and multiorgan failure. The immune system of healthy individuals is composed of two interrelated parts, the innate immune system and the adaptive immune system. Innate immunity is the body's first line of defense against viruses; it can quickly perceive viruses through pattern recognition receptors and activate related inflammatory pathways to clear pathogens. The adaptive immune system is activated by specific antigens and is mainly composed of CD4+ T cells, CD8+ T cells and B cells, which play different roles in viral infection. Here, we discuss the immune response after SARS-CoV-2 infection. In-depth study of the recognition of and response of innate immunity and adaptive immunity to SARS-CoV-2 will help to prevent the development of critical cases and aid the exploration of more targeted treatments.
Collapse
Affiliation(s)
- Ying Sun
- Department of Infectious Diseases, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, China
- Gene Hospital of Henan Province, Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yawen Zou
- Department of Infectious Diseases, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, China
- Gene Hospital of Henan Province, Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Haiyu Wang
- Department of Infectious Diseases, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, China
- Gene Hospital of Henan Province, Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Guangying Cui
- Department of Infectious Diseases, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, China
- Gene Hospital of Henan Province, Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zujiang Yu
- Department of Infectious Diseases, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Gene Hospital of Henan Province, Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhigang Ren
- Department of Infectious Diseases, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, China
- Gene Hospital of Henan Province, Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
149
|
Fülöp GÁ, Lakatos B, Ruppert M, Kovács A, Juhász V, Dér G, Tállay A, Vágó H, Kiss B, Merkely B, Zima E. A Case Series of SARS-CoV-2 Reinfection in Elite Athletes. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:13798. [PMID: 36360678 PMCID: PMC9654332 DOI: 10.3390/ijerph192113798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 10/02/2022] [Accepted: 10/09/2022] [Indexed: 06/16/2023]
Abstract
OBJECTIVES The actual frequency and the risk factors of SARS-CoV-2 reinfection is still a matter of intense scientific discussion. In this case series, we report three elite athletes who underwent COVID-19 reinfection with a short time frame. CASE PRESENTATIONS As a part of contact tracing, three speed skaters (22-, 24-, and 29-year-old males) were found to be SARS-CoV-2 positive by polymerase chain reaction (PCR) tests. Later on, only one of the athletes experienced mild symptoms, such as fatigue, loss of smell and taste and subfebrility, while the other two athletes were asymptomatic. Following the quarantine period, detailed return-to-play examinations, including laboratory testing, ECG, 24-h Holter monitoring, transthoracic echocardiography and cardiac magnetic resonance imaging, revealed no apparent abnormality; therefore, the athletes restarted training. After a median of 74 days, all three athletes presented with typical symptoms of COVID-19, such as fever, marked fatigue and headache. SARS-CoV-2 PCR tests were performed again, showing recurrent positivity. Repeated return-to-play assessments were initiated, finding no relevant abnormality. Athletes were also tested for SARS-CoV-2 anti-nucleoprotein antibody titers, showing only modest increases following the second infection. CONCLUSIONS We report a small cluster of elite athletes who underwent a PCR-proven SARS-CoV-2 reinfection. According to these findings, athletes may be considered as a high-risk group in terms of recurrent COVID-19.
Collapse
Affiliation(s)
- Gábor Áron Fülöp
- The Heart and Vascular Center, Semmelweis University, H-1122 Budapest, Hungary
| | - Bálint Lakatos
- The Heart and Vascular Center, Semmelweis University, H-1122 Budapest, Hungary
| | - Mihály Ruppert
- The Heart and Vascular Center, Semmelweis University, H-1122 Budapest, Hungary
| | - Attila Kovács
- The Heart and Vascular Center, Semmelweis University, H-1122 Budapest, Hungary
| | - Vencel Juhász
- The Heart and Vascular Center, Semmelweis University, H-1122 Budapest, Hungary
| | - Gábor Dér
- The Heart and Vascular Center, Semmelweis University, H-1122 Budapest, Hungary
| | - András Tállay
- Department of Sports Medicine, Semmelweis University, H-1122 Budapest, Hungary
| | - Hajnalka Vágó
- The Heart and Vascular Center, Semmelweis University, H-1122 Budapest, Hungary
- Department of Sports Medicine, Semmelweis University, H-1122 Budapest, Hungary
| | - Boldizsár Kiss
- The Heart and Vascular Center, Semmelweis University, H-1122 Budapest, Hungary
| | - Béla Merkely
- The Heart and Vascular Center, Semmelweis University, H-1122 Budapest, Hungary
- Department of Sports Medicine, Semmelweis University, H-1122 Budapest, Hungary
| | - Endre Zima
- The Heart and Vascular Center, Semmelweis University, H-1122 Budapest, Hungary
- Department of Sports Medicine, Semmelweis University, H-1122 Budapest, Hungary
| |
Collapse
|
150
|
Gouvea MDPG, Moulaz IR, Gouveia TM, Lança KEM, Lacerda BSDP, Thompson BP, Polese J, de Lima MD, Ribeiro-Rodrigues R, Mill JG, Valim V. Anti-SARS-CoV-2 antibody immunoreactivity profiles during COVID-19 recurrence. Rev Soc Bras Med Trop 2022; 55:e01062022. [PMID: 36287469 PMCID: PMC9592100 DOI: 10.1590/0037-8682-0106-2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 09/09/2022] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND This study aimed to evaluate IgG and IgM levels in COVID-19 recurrence. METHODS The serum antibody levels and clinical data from 73 healthcare workers with SARS-CoV-2 divided into seroconverted (n=51) and non-seroconverted (n=22) groups were assessed. The presence of specific anti-nucleocapsid (anti-N) IgM and IgG for SARS-CoV-2 was evaluated. IgG antibodies to the SARS-CoV-2 spike receptor-binding domain were used to confirm non-seroconversion in all negative anti-N. RESULTS Four recurrent cases displayed mild symptoms and were non-seroconverted until the recurrence of symptoms. CONCLUSIONS Undetectable anti-nucleocapsid IgM and IgG levels may be correlated with symptomatic COVID-19 recurrence.
Collapse
Affiliation(s)
| | - Isac Ribeiro Moulaz
- Universidade Federal do Espírito Santo, Centro de Ciências da Saúde, Vitória, ES, Brasil
| | - Thayná Martins Gouveia
- Universidade Federal do Espírito Santo, Centro de Ciências da Saúde, Vitória, ES, Brasil
| | | | | | - Beatriz Paoli Thompson
- Universidade Federal do Espírito Santo, Centro de Ciências da Saúde, Vitória, ES, Brasil
| | - Jéssica Polese
- Universidade Federal do Espírito Santo, Centro de Ciências da Saúde, Departamento de Pneumologia, Vitória, ES, Brasil
| | - Marina Deorce de Lima
- Universidade Federal do Espírito Santo, Centro de Ciências da Saúde, Vitória, ES, Brasil
| | - Rodrigo Ribeiro-Rodrigues
- Departamento de Saúde do Estado do Espírito Santo, Laboratório de Saúde Pública do Estado do Espírito Santo, Vitória, ES, Brasil., Universidade Federal do Espírito Santo, Centro de Ciências da Saúde, Centro de Doenças Infecciosas, Vitória, ES, Brasil
| | - José Geraldo Mill
- Universidade Federal do Espírito Santo, Centro de Ciências da Saúde, Departamento de Ciências Fisiológicas, Vitória, ES, Brasil
| | - Valéria Valim
- Universidade Federal do Espírito Santo, Hospital Universitário Cassiano Antonio Moraes, Divisão de Reumatologia, Vitória, ES, Brasil
| |
Collapse
|