101
|
Zhao F, Zai X, Zhang Z, Xu J, Chen W. Challenges and developments in universal vaccine design against SARS-CoV-2 variants. NPJ Vaccines 2022; 7:167. [PMID: 36535982 PMCID: PMC9761649 DOI: 10.1038/s41541-022-00597-4] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 12/07/2022] [Indexed: 12/23/2022] Open
Abstract
The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) had become a global concern because of its unexpectedly high pathogenicity and transmissibility. SARS-CoV-2 variants that reduce the immune protection elicited from previous vaccination or natural infection raise challenges in controlling the spread of the pandemic. The development of universal vaccines against these variants seems to be a practical solution to alleviate the physical and economic effects caused by this disease, but it is hard to achieve. In this review, we describe the high mutation rate of RNA viruses and dynamic molecular structures of SARS-CoV-2 variants in several major neutralizing epitopes, trying to answer the question of why universal vaccines are difficult to design. Understanding the biological basis of immune evasion is crucial for combating these obstacles. We then summarize several advancements worthy of further study, including heterologous prime-boost regimens, construction of chimeric immunogens, design of protein nanoparticle antigens, and utilization of conserved neutralizing epitopes. The fact that some immunogens can induce cross-reactive immune responses against heterologous coronaviruses provides hints for universal vaccine development. We hope this review can provide inspiration to current universal vaccine studies.
Collapse
Affiliation(s)
- Fangxin Zhao
- Laboratory of Vaccine and Antibody Engineering, Beijing Institute of Biotechnology, Beijing, 10071, China
- School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Xiaodong Zai
- Laboratory of Vaccine and Antibody Engineering, Beijing Institute of Biotechnology, Beijing, 10071, China
| | - Zhiling Zhang
- Laboratory of Vaccine and Antibody Engineering, Beijing Institute of Biotechnology, Beijing, 10071, China
- College of pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Junjie Xu
- Laboratory of Vaccine and Antibody Engineering, Beijing Institute of Biotechnology, Beijing, 10071, China.
| | - Wei Chen
- Laboratory of Vaccine and Antibody Engineering, Beijing Institute of Biotechnology, Beijing, 10071, China.
| |
Collapse
|
102
|
Yolshin ND, Komissarov AB, Varchenko KV, Musaeva TD, Fadeev AV, Lioznov DA. Detection of the Omicron SARS-CoV-2 Lineage and Its BA.1 Variant with Multiplex RT-qPCR. Int J Mol Sci 2022; 23:16153. [PMID: 36555794 PMCID: PMC9784567 DOI: 10.3390/ijms232416153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/14/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022] Open
Abstract
Whole genome sequencing (WGS) is considered the best instrument to track both virus evolution and the spread of new, emerging variants. However, WGS still does not allow the analysis of as many samples as qPCR does. Epidemiological and clinical research needs to develop advanced qPCR methods to identify emerging variants of SARS-CoV-2 while collecting data on their spreading in a faster and cheaper way, which is critical for introducing public health measures. This study aimed at designing a one-step RT-qPCR assay for multiplex detection of the Omicron lineage and providing additional data on its subvariants in clinical samples. The RT-qPCR assay demonstrated high sensitivity and specificity on multiple SARS-CoV-2 variants and was cross-validated by WGS.
Collapse
Affiliation(s)
- Nikita D. Yolshin
- Smorodintsev Research Institute of Influenza, 197376 Saint Petersburg, Russia
| | | | - Kirill V. Varchenko
- Smorodintsev Research Institute of Influenza, 197376 Saint Petersburg, Russia
| | - Tamila D. Musaeva
- Smorodintsev Research Institute of Influenza, 197376 Saint Petersburg, Russia
| | - Artem V. Fadeev
- Smorodintsev Research Institute of Influenza, 197376 Saint Petersburg, Russia
| | - Dmitry A. Lioznov
- Smorodintsev Research Institute of Influenza, 197376 Saint Petersburg, Russia
- Department of Infectious Diseases and Epidemiology, First Pavlov State Medical University, 197022 Saint Petersburg, Russia
| |
Collapse
|
103
|
Gill CJ, Mwananyanda L, MacLeod WB, Kwenda G, Pieciak RC, Etter L, Bridges D, Chikoti C, Chirwa S, Chimoga C, Forman L, Katowa B, Lapidot R, Lungu J, Matoba J, Mwinga G, Mubemba B, Mupila Z, Muleya W, Mwenda M, Ngoma B, Nakazwe R, Nzara D, Pawlak N, Pemba L, Saasa N, Simulundu E, Yankonde B, Thea DM. What is the prevalence of COVID-19 detection by PCR among deceased individuals in Lusaka, Zambia? A postmortem surveillance study. BMJ Open 2022; 12:e066763. [PMID: 36600354 PMCID: PMC9729848 DOI: 10.1136/bmjopen-2022-066763] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVES To determine the prevalence of COVID-19 postmortem setting in Lusaka, Zambia. DESIGN A systematic, postmortem prevalence study. SETTING A busy, inner-city morgue in Lusaka. PARTICIPANTS We sampled a random subset of all decedents who transited the University Teaching Hospital morgue. We sampled the posterior nasopharynx of decedents using quantitative PCR. Prevalence was weighted to account for age-specific enrolment strategies. INTERVENTIONS Not applicable-this was an observational study. PRIMARY OUTCOMES Prevalence of COVID-19 detections by PCR. Results were stratified by setting (facility vs community deaths), age, demographics and geography and time. SECONDARY OUTCOMES Shifts in viral variants; causal inferences based on cycle threshold values and other features; antemortem testing rates. RESULTS From 1118 decedents enrolled between January and June 2021, COVID-19 was detected among 32.0% (358/1116). Roughly four COVID-19+ community deaths occurred for every facility death. Antemortem testing occurred for 52.6% (302/574) of facility deaths but only 1.8% (10/544) of community deaths and overall, only ~10% of COVID-19+ deaths were identified in life. During peak transmission periods, COVID-19 was detected in ~90% of all deaths. We observed three waves of transmission that peaked in July 2020, January 2021 and ~June 2021: the AE.1 lineage and the Beta and Delta variants, respectively. PCR signals were strongest among those whose deaths were deemed 'probably due to COVID-19', and weakest among children, with an age-dependent increase in PCR signal intensity. CONCLUSIONS COVID-19 was common among deceased individuals in Lusaka. Antemortem testing was rarely done, and almost never for community deaths. Suspicion that COVID-19 was the cause of deaths was highest for those with a respiratory syndrome and lowest for individuals <19 years.
Collapse
Affiliation(s)
- Christopher J Gill
- Department of Global Health, Boston University School of Public Health, Boston, Massachusetts, USA
| | - Lawrence Mwananyanda
- Department of Global Health, Boston University School of Public Health, Boston, Massachusetts, USA
| | - William B MacLeod
- Department of Global Health, Boston University School of Public Health, Boston, Massachusetts, USA
| | - Geoffrey Kwenda
- Biomedical Sciences, University of Zambia, Ridgeway Campus, Lusaka, Lusaka, Zambia
| | - Rachel C Pieciak
- Department of Global Health, Boston University School of Public Health, Boston, Massachusetts, USA
| | - Lauren Etter
- Department of Global Health, Boston University School of Public Health, Boston, Massachusetts, USA
| | - Daniel Bridges
- Program for Applied Technology in Health (PATH), Lusaka, Zambia
| | | | | | | | - Leah Forman
- Biostatistics and Epidemiology Data Analytics Center, Boston University School of Public Health, Boston, Massachusetts, USA
| | - Ben Katowa
- Macha Research Trust, Choma, Southern Province, Zambia
| | - Rotem Lapidot
- Pediatric Infectious Diseases, Boston Medical Center, Brookline, Massachusetts, USA
| | | | - Japhet Matoba
- Macha Research Trust, Choma, Southern Province, Zambia
| | | | - Benjamin Mubemba
- Wildlife Sciences, The Copperbelt University, Kitwe, Copperbelt, Zambia
| | | | - Walter Muleya
- Biomedical Sciences, University of Zambia School of Veterinary Medicine, Lusaka, Lusaka, Zambia
| | - Mulenga Mwenda
- Program for Applied Technology in Health, Lusaka, Zambia
| | | | - Ruth Nakazwe
- Biomedical Sciences, University of Zambia University Teaching Hospital, Lusaka, Lusaka, Zambia
| | | | - Natalie Pawlak
- Tufts University School of Medicine, Boston, Massachusetts, USA
| | | | - Ngonda Saasa
- University of Zambia School of Veterinary Medicine, Lusaka, Zambia
| | | | | | - Donald M Thea
- Department of Global Health, Boston University School of Public Health, Boston, Massachusetts, USA
| |
Collapse
|
104
|
Lei S, Chen X, Wu J, Duan X, Men K. Small molecules in the treatment of COVID-19. Signal Transduct Target Ther 2022; 7:387. [PMID: 36464706 PMCID: PMC9719906 DOI: 10.1038/s41392-022-01249-8] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 11/02/2022] [Accepted: 11/08/2022] [Indexed: 12/11/2022] Open
Abstract
The outbreak of COVID-19 has become a global crisis, and brought severe disruptions to societies and economies. Until now, effective therapeutics against COVID-19 are in high demand. Along with our improved understanding of the structure, function, and pathogenic process of SARS-CoV-2, many small molecules with potential anti-COVID-19 effects have been developed. So far, several antiviral strategies were explored. Besides directly inhibition of viral proteins such as RdRp and Mpro, interference of host enzymes including ACE2 and proteases, and blocking relevant immunoregulatory pathways represented by JAK/STAT, BTK, NF-κB, and NLRP3 pathways, are regarded feasible in drug development. The development of small molecules to treat COVID-19 has been achieved by several strategies, including computer-aided lead compound design and screening, natural product discovery, drug repurposing, and combination therapy. Several small molecules representative by remdesivir and paxlovid have been proved or authorized emergency use in many countries. And many candidates have entered clinical-trial stage. Nevertheless, due to the epidemiological features and variability issues of SARS-CoV-2, it is necessary to continue exploring novel strategies against COVID-19. This review discusses the current findings in the development of small molecules for COVID-19 treatment. Moreover, their detailed mechanism of action, chemical structures, and preclinical and clinical efficacies are discussed.
Collapse
Affiliation(s)
- Sibei Lei
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Xiaohua Chen
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Jieping Wu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Xingmei Duan
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China.
| | - Ke Men
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China.
| |
Collapse
|
105
|
Zhang X, Chen S, Cao Z, Yao Y, Yu J, Zhou J, Gao G, He P, Dong Z, Zhong J, Luo J, Wei H, Zhang H. Increased pathogenicity and aerosol transmission for one SARS-CoV-2 B.1.617.2 Delta variant over the wild-type strain in hamsters. Virol Sin 2022; 37:796-803. [PMID: 36182073 PMCID: PMC9519367 DOI: 10.1016/j.virs.2022.09.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 09/26/2022] [Indexed: 12/27/2022] Open
Abstract
During the two-year pandemic of coronavirus disease 2019 (COVID-19), its causative agent, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has been evolving. SARS-CoV-2 Delta, a variant of concern, has become the dominant circulating strain worldwide within just a few months. Here, we performed a comprehensive analysis of a new B.1.617.2 Delta strain (Delta630) compared with the early WIV04 strain (WIV04) in vitro and in vivo, in terms of replication, infectivity, pathogenicity, and transmission in hamsters. When inoculated intranasally, Delta630 led to more pronounced weight loss and more severe disease in hamsters. Moreover, 40% mortality occurred about one week after infection with 104 PFU of Delta630, whereas no deaths occurred even after infection with 105 PFU of WIV04 or other strains belonging to the Delta variant. Moreover, Delta630 outgrew over WIV04 in the competitive aerosol transmission experiment. Taken together, the Delta630 strain showed increased replication ability, pathogenicity, and transmissibility over WIV04 in hamsters. To our knowledge, this is the first SARS-CoV-2 strain that causes death in a hamster model, which could be an asset for the efficacy evaluation of vaccines and antivirals against infections of SARS-CoV-2 Delta strains. The underlying molecular mechanisms of increased virulence and transmission await further analysis.
Collapse
Affiliation(s)
- Xinghai Zhang
- State Key Laboratory of Virology, Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China,Corresponding authors
| | - Shaohong Chen
- State Key Laboratory of Virology, Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China,University of Chinese Academy of Sciences, Beijing, 101409, China
| | - Zengguo Cao
- State Key Laboratory of Virology, Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Yanfeng Yao
- State Key Laboratory of Virology, Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Junping Yu
- State Key Laboratory of Virology, Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Junhui Zhou
- State Key Laboratory of Virology, Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China,University of Chinese Academy of Sciences, Beijing, 101409, China
| | - Ge Gao
- State Key Laboratory of Virology, Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Ping He
- State Key Laboratory of Virology, Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China,University of Chinese Academy of Sciences, Beijing, 101409, China
| | - Zhuo Dong
- Hubei International Travel Healthcare Center (Wuhan Customs Port Outpatient Department), Wuhan, 430040, China
| | - Jie Zhong
- Hubei International Travel Healthcare Center (Wuhan Customs Port Outpatient Department), Wuhan, 430040, China
| | - Jing Luo
- Hubei International Travel Healthcare Center (Wuhan Customs Port Outpatient Department), Wuhan, 430040, China
| | - Hongping Wei
- State Key Laboratory of Virology, Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China,Corresponding authors
| | - Huajun Zhang
- State Key Laboratory of Virology, Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China,Corresponding authors
| |
Collapse
|
106
|
Zhao H, Lu L, Peng Z, Chen LL, Meng X, Zhang C, Ip JD, Chan WM, Chu AWH, Chan KH, Jin DY, Chen H, Yuen KY, To KKW. SARS-CoV-2 Omicron variant shows less efficient replication and fusion activity when compared with Delta variant in TMPRSS2-expressed cells. Emerg Microbes Infect 2022; 11:277-283. [PMID: 34951565 PMCID: PMC8774049 DOI: 10.1080/22221751.2021.2023329] [Citation(s) in RCA: 282] [Impact Index Per Article: 94.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 12/22/2021] [Indexed: 02/07/2023]
Abstract
The novel SARS-CoV-2 Omicron variant (B.1.1.529), first found in early November 2021, has sparked considerable global concern and it has >50 mutations, many of which are known to affect transmissibility or cause immune escape. In this study, we sought to investigate the virological characteristics of the Omicron variant and compared it with the Delta variant which has dominated the world since mid-2021. Omicron variant replicated more slowly than the Delta variant in transmembrane serine protease 2 (TMPRSS2)-overexpressing VeroE6 (VeroE6/TMPRSS2) cells. Notably, the Delta variant replicated well in Calu3 cell line which has robust TMPRSS2 expression, while the Omicron variant replicated poorly in this cell line. Competition assay showed that Delta variant outcompeted Omicron variant in VeroE6/TMPRSS2 and Calu3 cells. To confirm the difference in entry pathway between the Omicron and Delta variants, we assessed the antiviral effect of bafilomycin A1, chloroquine (inhibiting endocytic pathway), and camostat (inhibiting TMPRSS2 pathway). Camostat potently inhibited the Delta variant but not the Omicron variant, while bafilomycin A1 and chloroquine could inhibit both Omicron and Delta variants. Moreover, the Omicron variant also showed weaker cell-cell fusion activity when compared with Delta variant in VeroE6/TMPRSS2 cells. Collectively, our results suggest that Omicron variant infection is not enhanced by TMPRSS2 but is largely mediated via the endocytic pathway. The difference in entry pathway between Omicron and Delta variants may have an implication on the clinical manifestations or disease severity.
Collapse
Affiliation(s)
- Hanjun Zhao
- State Key Laboratory for Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People’s Republic of China
| | - Lu Lu
- State Key Laboratory for Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People’s Republic of China
| | - Zheng Peng
- State Key Laboratory for Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People’s Republic of China
| | - Lin-Lei Chen
- State Key Laboratory for Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People’s Republic of China
| | - Xinjin Meng
- State Key Laboratory for Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People’s Republic of China
| | - Chuyuan Zhang
- State Key Laboratory for Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People’s Republic of China
| | - Jonathan Daniel Ip
- State Key Laboratory for Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People’s Republic of China
| | - Wan-Mui Chan
- State Key Laboratory for Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People’s Republic of China
| | - Allen Wing-Ho Chu
- State Key Laboratory for Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People’s Republic of China
| | - Kwok-Hung Chan
- State Key Laboratory for Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People’s Republic of China
| | - Dong-Yan Jin
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People’s Republic of China
| | - Honglin Chen
- State Key Laboratory for Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People’s Republic of China
| | - Kwok-Yung Yuen
- State Key Laboratory for Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People’s Republic of China
- Department of Microbiology, Queen Mary Hospital, Hong Kong Special Administrative Region, People’s Republic of China
| | - Kelvin Kai-Wang To
- State Key Laboratory for Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People’s Republic of China
- Department of Microbiology, Queen Mary Hospital, Hong Kong Special Administrative Region, People’s Republic of China
| |
Collapse
|
107
|
Zhang L, Li Q, Wu J, Yu Y, Zhang Y, Nie J, Liang Z, Cui Z, Liu S, Wang H, Ding R, Jiang F, Li T, Nie L, Lu Q, Li J, Qin L, Jiang Y, Shi Y, Xu W, Huang W, Wang Y. Analysis of SARS-CoV-2 variants B.1.617: host tropism, proteolytic activation, cell-cell fusion, and neutralization sensitivity. Emerg Microbes Infect 2022; 11:1024-1036. [PMID: 35293847 PMCID: PMC9004538 DOI: 10.1080/22221751.2022.2054369] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 03/12/2022] [Indexed: 12/13/2022]
Abstract
SARS-CoV-2 has caused the COVID-19 pandemic. B.1.617 variants (including Kappa and Delta) have been transmitted rapidly in India. The transmissibility, pathogenicity, and neutralization characteristics of these variants have received considerable interest. In this study, 22 pseudotyped viruses were constructed for B.1.617 variants and their corresponding single amino acid mutations. B.1.617 variants did not exhibit significant enhanced infectivity in human cells, but mutations T478K and E484Q in the receptor binding domain led to enhanced infectivity in mouse ACE2-overexpressing cells. Furin activities were slightly increased against B.1.617 variants and cell-cell fusion after infection of B.1.617 variants were enhanced. Furthermore, B.1.617 variants escaped neutralization by several mAbs, mainly because of mutations L452R, T478K, and E484Q in the receptor binding domain. The neutralization activities of sera from convalescent patients, inactivated vaccine-immunized volunteers, adenovirus vaccine-immunized volunteers, and SARS-CoV-2 immunized animals against pseudotyped B.1.617 variants were reduced by approximately twofold, compared with the D614G variant.
Collapse
Affiliation(s)
- Li Zhang
- Division of HIV/AIDS and Sex-transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC), Beijing, People's Republic of China
| | - Qianqian Li
- Division of HIV/AIDS and Sex-transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC), Beijing, People's Republic of China
- Jiangsu Recbio Technology Co., Ltd., Taizhou, China
| | - Jiajing Wu
- Division of HIV/AIDS and Sex-transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC), Beijing, People's Republic of China
| | - Yuanling Yu
- Division of HIV/AIDS and Sex-transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC), Beijing, People's Republic of China
| | - Yue Zhang
- Division of HIV/AIDS and Sex-transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC), Beijing, People's Republic of China
| | - Jianhui Nie
- Division of HIV/AIDS and Sex-transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC), Beijing, People's Republic of China
| | - Ziteng Liang
- Division of HIV/AIDS and Sex-transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC), Beijing, People's Republic of China
| | - Zhimin Cui
- Division of HIV/AIDS and Sex-transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC), Beijing, People's Republic of China
| | - Shuo Liu
- Division of HIV/AIDS and Sex-transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC), Beijing, People's Republic of China
| | - Haixin Wang
- Division of HIV/AIDS and Sex-transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC), Beijing, People's Republic of China
| | - Ruxia Ding
- Division of HIV/AIDS and Sex-transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC), Beijing, People's Republic of China
| | - Fei Jiang
- Division of HIV/AIDS and Sex-transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC), Beijing, People's Republic of China
| | - Tao Li
- Division of HIV/AIDS and Sex-transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC), Beijing, People's Republic of China
| | - Lingling Nie
- Division of HIV/AIDS and Sex-transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC), Beijing, People's Republic of China
| | - Qiong Lu
- Division of HIV/AIDS and Sex-transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC), Beijing, People's Republic of China
| | - Jiayi Li
- Division of HIV/AIDS and Sex-transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC), Beijing, People's Republic of China
| | - Lili Qin
- Acro Biosystems, Inc., Beijing, People’s Republic of China
| | - Yinan Jiang
- Acro Biosystems, Inc., Beijing, People’s Republic of China
| | - Yi Shi
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, People’s Republic of China
- Research Network of Immunity and Health (RNIH), Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Wenbo Xu
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People’s Republic of China
| | - Weijin Huang
- Division of HIV/AIDS and Sex-transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC), Beijing, People's Republic of China
| | - Youchun Wang
- Division of HIV/AIDS and Sex-transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC), Beijing, People's Republic of China
| |
Collapse
|
108
|
Dingemans J, van der Veer BMJW, Gorgels KMF, Hackert V, den Heijer CDJ, Hoebe CJPA, Savelkoul PHM, van Alphen LB. Investigating SARS-CoV-2 breakthrough infections per variant and vaccine type. Front Microbiol 2022; 13:1027271. [PMID: 36504818 PMCID: PMC9729533 DOI: 10.3389/fmicb.2022.1027271] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 11/02/2022] [Indexed: 11/27/2022] Open
Abstract
Breakthrough SARS-CoV-2 infections have been reported in fully vaccinated individuals, in spite of the high efficacy of the currently available vaccines, proven in trials and real-world studies. Several variants of concern (VOC) have been proffered to be associated with breakthrough infections following immunization. In this study, we investigated 378 breakthrough infections recorded between January and July 2021 and compared the distribution of SARS-CoV-2 genotypes identified in 225 fully vaccinated individuals to the frequency of circulating community lineages in the region of South Limburg (The Netherlands) in a week-by-week comparison. Although the proportion of breakthrough infections was relatively low and stable when the Alpha variant was predominant, the rapid emergence of the Delta variant lead to a strong increase in breakthrough infections, with a higher relative proportion of individuals vaccinated with Vaxzevria or Jcovden being infected compared to those immunized with mRNA-based vaccines. A significant difference in median age was observed when comparing fully vaccinated individuals with severe symptoms (83 years) to asymptomatic cases (46.5 years) or individuals with mild-to-moderate symptoms (42 years). There was no association between SARS-CoV-2 genotype or vaccine type and disease symptoms. Furthermore, the majority of adaptive mutations were concentrated in the N-terminal domain of the Spike protein, highlighting its role in immune evasion. Interestingly, symptomatic individuals harbored significantly higher SARS-CoV-2 loads than asymptomatic vaccinated individuals and breakthrough infections caused by the Delta variant were associated with increased viral loads compared to those caused by the Alpha variant. In addition, we investigated the role of the Omicron variant in causing breakthrough infections by analyzing 135 samples that were randomly selected for genomic surveillance during the transition period from Delta to Omicron. We found that the proportion of Omicron vs. Delta infections was significantly higher in individuals who received a booster vaccine compared to both unvaccinated and fully vaccinated individuals. Altogether, these results indicate that the emergence of the Delta variant and in particular Omicron has lowered the efficiency of particular vaccine types to prevent SARS-CoV-2 infections and that, although rare, the elderly are particularly at risk of becoming severely infected as the consequence of a breakthrough infection.
Collapse
Affiliation(s)
- Jozef Dingemans
- Department of Medical Microbiology, Infectious diseases and Infection prevention, Care and Public Health Research Institute (CAPHRI), Faculty of Health, Medicine and Life Sciences, Maastricht University Medical Center (MUMC+), Maastricht, Netherlands,*Correspondence: Jozef Dingemans, ; Brian M. J. W. van der Veer,
| | - Brian M. J. W. van der Veer
- Department of Medical Microbiology, Infectious diseases and Infection prevention, Care and Public Health Research Institute (CAPHRI), Faculty of Health, Medicine and Life Sciences, Maastricht University Medical Center (MUMC+), Maastricht, Netherlands,*Correspondence: Jozef Dingemans, ; Brian M. J. W. van der Veer,
| | - Koen M. F. Gorgels
- Department of Sexual Health, Infectious Diseases and Environmental Health, South Limburg Public Health Service, Heerlen, Netherlands
| | - Volker Hackert
- Department of Sexual Health, Infectious Diseases and Environmental Health, South Limburg Public Health Service, Heerlen, Netherlands,Department of Social Medicine, Care and Public Health Research Institute (CAPHRI), Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, Netherlands
| | - Casper D. J. den Heijer
- Department of Sexual Health, Infectious Diseases and Environmental Health, South Limburg Public Health Service, Heerlen, Netherlands,Department of Social Medicine, Care and Public Health Research Institute (CAPHRI), Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, Netherlands
| | - Christian J. P. A Hoebe
- Department of Medical Microbiology, Infectious diseases and Infection prevention, Care and Public Health Research Institute (CAPHRI), Faculty of Health, Medicine and Life Sciences, Maastricht University Medical Center (MUMC+), Maastricht, Netherlands,Department of Sexual Health, Infectious Diseases and Environmental Health, South Limburg Public Health Service, Heerlen, Netherlands,Department of Social Medicine, Care and Public Health Research Institute (CAPHRI), Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, Netherlands
| | - Paul H. M. Savelkoul
- Department of Medical Microbiology, Infectious diseases and Infection prevention, Care and Public Health Research Institute (CAPHRI), Faculty of Health, Medicine and Life Sciences, Maastricht University Medical Center (MUMC+), Maastricht, Netherlands
| | - Lieke B. van Alphen
- Department of Medical Microbiology, Infectious diseases and Infection prevention, Care and Public Health Research Institute (CAPHRI), Faculty of Health, Medicine and Life Sciences, Maastricht University Medical Center (MUMC+), Maastricht, Netherlands
| |
Collapse
|
109
|
Chan SW. Fusion assays for screening of fusion inhibitors targeting SARS-CoV-2 entry and syncytia formation. Front Pharmacol 2022; 13:1007527. [PMID: 36438831 PMCID: PMC9691968 DOI: 10.3389/fphar.2022.1007527] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 10/19/2022] [Indexed: 08/30/2023] Open
Abstract
Virus fusion process is evolutionarily conserved and provides a promising pan-viral target. Cell-cell fusion leads to syncytial formation and has implications in pathogenesis, virus spread and immune evasion. Drugs that target these processes can be developed into anti-virals. Here, we have developed sensitive, rapid, adaptable fusion reporter gene assays as models for plasma membrane and alternative fusion pathways as well as syncytial fusion in the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and have confirmed their specificity using neutralizing antibodies and specific protease inhibitors. The fusion report gene assays are more sensitive and unbiased than morphological fusion assay. The fusion assays can differentiate between transmembrane serine protease 2 (TMPRSS2)-dependency in TMPRSS2(+) cells and trypsin-dependency in angiotensin-converting enzyme 2 (ACE2)(+)TMPRSS2(-) cells. Moreover, we have identified putative novel fusion processes that are triggered by an acidic pH with and without trypsin. Coupled with morphological fusion criteria, we have found that syncytia formation is enhanced by TMPRSS2 or trypsin. By testing against our top drug hits previously shown to inhibit SARS-CoV-2 pseudovirus infection, we have identified several fusion inhibitors including structurally related lopsided kite-shaped molecules. Our results have important implications in the development of universal blockers and synergistic therapeutics and the small molecule inhibitors can provide important tools in elucidating the fusion process.
Collapse
Affiliation(s)
- Shiu-Wan Chan
- Faculty of Biology, Medicine and Health, School of Biological Sciences, The University of Manchester, Manchester, United Kingdom
| |
Collapse
|
110
|
Dudouet P, Colson P, Aherfi S, Levasseur A, Beye M, Delerce J, Burel E, Lavrard P, Bader W, Lagier JC, Fournier PE, La Scola B, Raoult D. SARS-CoV-2 quasi-species analysis from patients with persistent nasopharyngeal shedding. Sci Rep 2022; 12:18721. [PMID: 36333340 PMCID: PMC9636146 DOI: 10.1038/s41598-022-22060-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 10/10/2022] [Indexed: 11/06/2022] Open
Abstract
At the time of a new and unprecedented viral pandemic, many questions are being asked about the genomic evolution of SARS-CoV-2 and the emergence of different variants, leading to therapeutic and immune evasion and survival of this genetically highly labile RNA virus. The nasopharyngeal persistence of infectious virus beyond 17 days proves its constant interaction with the human immune system and increases the intra-individual mutational possibilities. We performed a prospective high-throughput sequencing study (ARTIC Nanopore) of SARS-CoV-2 from so-called "persistent" patients, comparing them with a non-persistent population, and analyzing the quasi-species present in a single sample at time t. Global intra-individual variability in persistent patients was found to be higher than in controls (mean 5.3%, Standard deviation 0.9 versus 4.6% SD 0.3, respectively, p < 0.001). In the detailed analysis, we found a greater difference between persistent and non-persistent patients with non-severe COVID 19, and between the two groups infected with clade 20A. Furthermore, we found minority N501Y and P681H mutation clouds in all patients, with no significant differences found both groups. The question of the SARS-CoV-2 viral variants' genesis remains to be further investigated, with the need to prevent new viral propagations and their consequences, and quasi-species analysis could be an important key to watch out.
Collapse
Affiliation(s)
- Pierre Dudouet
- grid.483853.10000 0004 0519 5986IHU Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13005 Marseille, France ,grid.5399.60000 0001 2176 4817Microbes Evolution Phylogeny and Infections (MEPHI), Institut de Recherche Pour Le Développement (IRD), Assistance Publique-Hôpitaux de Marseille (AP-HM), MEPHI, Aix-Marseille Univ., 27 Boulevard Jean Moulin, 13005 Marseille, France
| | - Philippe Colson
- grid.483853.10000 0004 0519 5986IHU Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13005 Marseille, France ,grid.5399.60000 0001 2176 4817Microbes Evolution Phylogeny and Infections (MEPHI), Institut de Recherche Pour Le Développement (IRD), Assistance Publique-Hôpitaux de Marseille (AP-HM), MEPHI, Aix-Marseille Univ., 27 Boulevard Jean Moulin, 13005 Marseille, France
| | - Sarah Aherfi
- grid.483853.10000 0004 0519 5986IHU Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13005 Marseille, France ,grid.5399.60000 0001 2176 4817Microbes Evolution Phylogeny and Infections (MEPHI), Institut de Recherche Pour Le Développement (IRD), Assistance Publique-Hôpitaux de Marseille (AP-HM), MEPHI, Aix-Marseille Univ., 27 Boulevard Jean Moulin, 13005 Marseille, France
| | - Anthony Levasseur
- grid.483853.10000 0004 0519 5986IHU Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13005 Marseille, France ,grid.5399.60000 0001 2176 4817Microbes Evolution Phylogeny and Infections (MEPHI), Institut de Recherche Pour Le Développement (IRD), Assistance Publique-Hôpitaux de Marseille (AP-HM), MEPHI, Aix-Marseille Univ., 27 Boulevard Jean Moulin, 13005 Marseille, France
| | - Mamadou Beye
- grid.483853.10000 0004 0519 5986IHU Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13005 Marseille, France
| | - Jeremy Delerce
- grid.483853.10000 0004 0519 5986IHU Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13005 Marseille, France
| | - Emilie Burel
- grid.483853.10000 0004 0519 5986IHU Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13005 Marseille, France
| | - Philippe Lavrard
- grid.483853.10000 0004 0519 5986IHU Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13005 Marseille, France ,grid.5399.60000 0001 2176 4817Vecteurs-Infections Tropicales et Méditerranéennes (VITROME), Aix-Marseille Univ, Marseille, France
| | - Wahiba Bader
- grid.483853.10000 0004 0519 5986IHU Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13005 Marseille, France ,grid.5399.60000 0001 2176 4817Microbes Evolution Phylogeny and Infections (MEPHI), Institut de Recherche Pour Le Développement (IRD), Assistance Publique-Hôpitaux de Marseille (AP-HM), MEPHI, Aix-Marseille Univ., 27 Boulevard Jean Moulin, 13005 Marseille, France
| | - Jean-Christophe Lagier
- grid.483853.10000 0004 0519 5986IHU Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13005 Marseille, France ,grid.5399.60000 0001 2176 4817Microbes Evolution Phylogeny and Infections (MEPHI), Institut de Recherche Pour Le Développement (IRD), Assistance Publique-Hôpitaux de Marseille (AP-HM), MEPHI, Aix-Marseille Univ., 27 Boulevard Jean Moulin, 13005 Marseille, France
| | - Pierre-Edouard Fournier
- grid.483853.10000 0004 0519 5986IHU Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13005 Marseille, France ,grid.5399.60000 0001 2176 4817Vecteurs-Infections Tropicales et Méditerranéennes (VITROME), Aix-Marseille Univ, Marseille, France
| | - Bernard La Scola
- grid.483853.10000 0004 0519 5986IHU Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13005 Marseille, France ,grid.5399.60000 0001 2176 4817Microbes Evolution Phylogeny and Infections (MEPHI), Institut de Recherche Pour Le Développement (IRD), Assistance Publique-Hôpitaux de Marseille (AP-HM), MEPHI, Aix-Marseille Univ., 27 Boulevard Jean Moulin, 13005 Marseille, France
| | - Didier Raoult
- grid.483853.10000 0004 0519 5986IHU Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13005 Marseille, France ,grid.5399.60000 0001 2176 4817Microbes Evolution Phylogeny and Infections (MEPHI), Institut de Recherche Pour Le Développement (IRD), Assistance Publique-Hôpitaux de Marseille (AP-HM), MEPHI, Aix-Marseille Univ., 27 Boulevard Jean Moulin, 13005 Marseille, France
| |
Collapse
|
111
|
Yin S, Mei S, Li Z, Xu Z, Wu Y, Chen X, Liu D, Niu MM, Li J. Non-covalent cyclic peptides simultaneously targeting Mpro and NRP1 are highly effective against Omicron BA.2.75. Front Pharmacol 2022; 13:1037993. [PMID: 36408220 PMCID: PMC9666779 DOI: 10.3389/fphar.2022.1037993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 10/21/2022] [Indexed: 11/05/2022] Open
Abstract
Available vaccine-based immunity may at high risk of being evaded due to substantial mutations in the variant Omicron. The main protease (Mpro) of SARS-CoV-2 and human neuropilin-1 (NRP1), two less mutable proteins, have been reported to be crucial for SARS-CoV-2 replication and entry into host cells, respectively. Their dual blockade may avoid vaccine failure caused by continuous mutations of the SARS-CoV-2 genome and exert synergistic antiviral efficacy. Herein, four cyclic peptides non-covalently targeting both Mpro and NRP1 were identified using virtual screening. Among them, MN-2 showed highly potent affinity to Mpro (Kd = 18.2 ± 1.9 nM) and NRP1 (Kd = 12.3 ± 1.2 nM), which was about 3,478-fold and 74-fold stronger than that of the positive inhibitors Peptide-21 and EG3287. Furthermore, MN-2 exhibited significant inhibitory activity against Mpro and remarkable anti-infective activity against the pseudotyped variant Omicron BA.2.75 without obvious cytotoxicity. These data demonstrated that MN-2, a novel non-covalent cyclic peptide, is a promising agent against Omicron BA.2.75.
Collapse
Affiliation(s)
- Shengnan Yin
- Department of Pharmacy, Taizhou Hospital Affiliated to Nanjing University of Chinese Medicine, Taizhou, China
| | - Shuang Mei
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, China
| | - Zhiqin Li
- Institute of Clinical Medicine, Department of Pharmacy, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou, China
| | - Zhen Xu
- Institute of Clinical Medicine, Department of Pharmacy, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou, China
| | - Yuting Wu
- Institute of Clinical Medicine, Department of Pharmacy, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou, China
| | - Xiujuan Chen
- Institute of Clinical Medicine, Department of Pharmacy, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou, China
- *Correspondence: Xiujuan Chen, ; Jindong Li, ; Dongmei Liu, ; Miao-Miao Niu,
| | - Dongmei Liu
- Department of Pharmacy, Taizhou Hospital Affiliated to Nanjing University of Chinese Medicine, Taizhou, China
- *Correspondence: Xiujuan Chen, ; Jindong Li, ; Dongmei Liu, ; Miao-Miao Niu,
| | - Miao-Miao Niu
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, China
- *Correspondence: Xiujuan Chen, ; Jindong Li, ; Dongmei Liu, ; Miao-Miao Niu,
| | - Jindong Li
- Institute of Clinical Medicine, Department of Pharmacy, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou, China
- *Correspondence: Xiujuan Chen, ; Jindong Li, ; Dongmei Liu, ; Miao-Miao Niu,
| |
Collapse
|
112
|
Niemeyer D, Stenzel S, Veith T, Schroeder S, Friedmann K, Weege F, Trimpert J, Heinze J, Richter A, Jansen J, Emanuel J, Kazmierski J, Pott F, Jeworowski LM, Olmer R, Jaboreck MC, Tenner B, Papies J, Walper F, Schmidt ML, Heinemann N, Möncke-Buchner E, Baumgardt M, Hoffmann K, Widera M, Thao TTN, Balázs A, Schulze J, Mache C, Jones TC, Morkel M, Ciesek S, Hanitsch LG, Mall MA, Hocke AC, Thiel V, Osterrieder K, Wolff T, Martin U, Corman VM, Müller MA, Goffinet C, Drosten C. SARS-CoV-2 variant Alpha has a spike-dependent replication advantage over the ancestral B.1 strain in human cells with low ACE2 expression. PLoS Biol 2022; 20:e3001871. [PMID: 36383605 PMCID: PMC9710838 DOI: 10.1371/journal.pbio.3001871] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 11/30/2022] [Accepted: 10/06/2022] [Indexed: 11/17/2022] Open
Abstract
Epidemiological data demonstrate that Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) variants of concern (VOCs) Alpha and Delta are more transmissible, infectious, and pathogenic than previous variants. Phenotypic properties of VOC remain understudied. Here, we provide an extensive functional study of VOC Alpha replication and cell entry phenotypes assisted by reverse genetics, mutational mapping of spike in lentiviral pseudotypes, viral and cellular gene expression studies, and infectivity stability assays in an enhanced range of cell and epithelial culture models. In almost all models, VOC Alpha spread less or equally efficiently as ancestral (B.1) SARS-CoV-2. B.1. and VOC Alpha shared similar susceptibility to serum neutralization. Despite increased relative abundance of specific sgRNAs in the context of VOC Alpha infection, immune gene expression in infected cells did not differ between VOC Alpha and B.1. However, inferior spreading and entry efficiencies of VOC Alpha corresponded to lower abundance of proteolytically cleaved spike products presumably linked to the T716I mutation. In addition, we identified a bronchial cell line, NCI-H1299, which supported 24-fold increased growth of VOC Alpha and is to our knowledge the only cell line to recapitulate the fitness advantage of VOC Alpha compared to B.1. Interestingly, also VOC Delta showed a strong (595-fold) fitness advantage over B.1 in these cells. Comparative analysis of chimeric viruses expressing VOC Alpha spike in the backbone of B.1, and vice versa, showed that the specific replication phenotype of VOC Alpha in NCI-H1299 cells is largely determined by its spike protein. Despite undetectable ACE2 protein expression in NCI-H1299 cells, CRISPR/Cas9 knock-out and antibody-mediated blocking experiments revealed that multicycle spread of B.1 and VOC Alpha required ACE2 expression. Interestingly, entry of VOC Alpha, as opposed to B.1 virions, was largely unaffected by treatment with exogenous trypsin or saliva prior to infection, suggesting enhanced resistance of VOC Alpha spike to premature proteolytic cleavage in the extracellular environment of the human respiratory tract. This property may result in delayed degradation of VOC Alpha particle infectivity in conditions typical of mucosal fluids of the upper respiratory tract that may be recapitulated in NCI-H1299 cells closer than in highly ACE2-expressing cell lines and models. Our study highlights the importance of cell model evaluation and comparison for in-depth characterization of virus variant-specific phenotypes and uncovers a fine-tuned interrelationship between VOC Alpha- and host cell-specific determinants that may underlie the increased and prolonged virus shedding detected in patients infected with VOC Alpha.
Collapse
Affiliation(s)
- Daniela Niemeyer
- Institute of Virology, Campus Charité Mitte, Charité — Universitätsmedizin Berlin, Berlin, Germany
- German Center for Infection Research, associated partner Charité, Berlin, Germany
| | - Saskia Stenzel
- Institute of Virology, Campus Charité Mitte, Charité — Universitätsmedizin Berlin, Berlin, Germany
- Berlin Institute of Health, Berlin, Germany
| | - Talitha Veith
- Institute of Virology, Campus Charité Mitte, Charité — Universitätsmedizin Berlin, Berlin, Germany
- German Center for Infection Research, associated partner Charité, Berlin, Germany
| | - Simon Schroeder
- Institute of Virology, Campus Charité Mitte, Charité — Universitätsmedizin Berlin, Berlin, Germany
| | - Kirstin Friedmann
- Institute of Virology, Campus Charité Mitte, Charité — Universitätsmedizin Berlin, Berlin, Germany
| | - Friderike Weege
- Institute of Virology, Campus Charité Mitte, Charité — Universitätsmedizin Berlin, Berlin, Germany
| | - Jakob Trimpert
- Institut für Virologie, Freie Universität Berlin, Berlin, Germany
| | - Julian Heinze
- Institute of Virology, Campus Charité Mitte, Charité — Universitätsmedizin Berlin, Berlin, Germany
- German Center for Infection Research, associated partner Charité, Berlin, Germany
| | - Anja Richter
- Institute of Virology, Campus Charité Mitte, Charité — Universitätsmedizin Berlin, Berlin, Germany
| | - Jenny Jansen
- Institute of Virology, Campus Charité Mitte, Charité — Universitätsmedizin Berlin, Berlin, Germany
- Berlin Institute of Health, Berlin, Germany
| | - Jackson Emanuel
- Institute of Virology, Campus Charité Mitte, Charité — Universitätsmedizin Berlin, Berlin, Germany
| | - Julia Kazmierski
- Institute of Virology, Campus Charité Mitte, Charité — Universitätsmedizin Berlin, Berlin, Germany
- Berlin Institute of Health, Berlin, Germany
| | - Fabian Pott
- Institute of Virology, Campus Charité Mitte, Charité — Universitätsmedizin Berlin, Berlin, Germany
- Berlin Institute of Health, Berlin, Germany
| | - Lara M. Jeworowski
- Institute of Virology, Campus Charité Mitte, Charité — Universitätsmedizin Berlin, Berlin, Germany
| | - Ruth Olmer
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation and Vascular Surgery, REBIRTH — Center for Translational Regenerative Medicine, Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), Hannover Medical School, Hannover, Germany
| | - Mark-Christian Jaboreck
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation and Vascular Surgery, REBIRTH — Center for Translational Regenerative Medicine, Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), Hannover Medical School, Hannover, Germany
| | - Beate Tenner
- Institute of Virology, Campus Charité Mitte, Charité — Universitätsmedizin Berlin, Berlin, Germany
| | - Jan Papies
- Institute of Virology, Campus Charité Mitte, Charité — Universitätsmedizin Berlin, Berlin, Germany
| | - Felix Walper
- Institute of Virology, Campus Charité Mitte, Charité — Universitätsmedizin Berlin, Berlin, Germany
| | - Marie L. Schmidt
- Institute of Virology, Campus Charité Mitte, Charité — Universitätsmedizin Berlin, Berlin, Germany
| | - Nicolas Heinemann
- Institute of Virology, Campus Charité Mitte, Charité — Universitätsmedizin Berlin, Berlin, Germany
| | - Elisabeth Möncke-Buchner
- Institute of Virology, Campus Charité Mitte, Charité — Universitätsmedizin Berlin, Berlin, Germany
| | - Morris Baumgardt
- Department of Infectious Diseases and Respiratory Medicine, Charité — Universitätsmedizin Berlin, Berlin, Germany
| | - Karen Hoffmann
- Department of Infectious Diseases and Respiratory Medicine, Charité — Universitätsmedizin Berlin, Berlin, Germany
| | - Marek Widera
- Institute for Medical Virology, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
| | | | - Anita Balázs
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Jessica Schulze
- Unit 17 “Influenza and other Respiratory Viruses", Robert Koch Institute, Berlin, Germany
| | - Christin Mache
- Unit 17 “Influenza and other Respiratory Viruses", Robert Koch Institute, Berlin, Germany
| | - Terry C. Jones
- Institute of Virology, Campus Charité Mitte, Charité — Universitätsmedizin Berlin, Berlin, Germany
| | - Markus Morkel
- Institute of Pathology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt - Universität zu Berlin, Berlin, Germany
- BIH Bioportal Single Cells, Berlin Institute of Health at Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Sandra Ciesek
- Institute for Medical Virology, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
- German Center for Infection Research, DZIF, Braunschweig, Germany
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Branch Translational Medicine and Pharmacology, Frankfurt am Main, Germany
| | - Leif G. Hanitsch
- Institute of Medical Immunology, Charité — Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
| | - Marcus A. Mall
- Institut für Virologie, Freie Universität Berlin, Berlin, Germany
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité - Universitätsmedizin Berlin, Berlin, Germany
- German Centre for Lung Research (DZL), associated partner Charité, Berlin, Germany
| | - Andreas C. Hocke
- Department of Infectious Diseases and Respiratory Medicine, Charité — Universitätsmedizin Berlin, Berlin, Germany
| | - Volker Thiel
- Institute of Virology and Immunology, Bern, Switzerland
| | - Klaus Osterrieder
- Berlin Institute of Health, Berlin, Germany
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong
| | - Thorsten Wolff
- Unit 17 “Influenza and other Respiratory Viruses", Robert Koch Institute, Berlin, Germany
| | - Ulrich Martin
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation and Vascular Surgery, REBIRTH — Center for Translational Regenerative Medicine, Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), Hannover Medical School, Hannover, Germany
| | - Victor M. Corman
- Institute of Virology, Campus Charité Mitte, Charité — Universitätsmedizin Berlin, Berlin, Germany
- German Center for Infection Research, associated partner Charité, Berlin, Germany
- Labor Berlin – Charité Vivantes GmbH, Berlin, Germany
| | - Marcel A. Müller
- Institute of Virology, Campus Charité Mitte, Charité — Universitätsmedizin Berlin, Berlin, Germany
- German Center for Infection Research, associated partner Charité, Berlin, Germany
| | - Christine Goffinet
- Institute of Virology, Campus Charité Mitte, Charité — Universitätsmedizin Berlin, Berlin, Germany
- Berlin Institute of Health, Berlin, Germany
| | - Christian Drosten
- Institute of Virology, Campus Charité Mitte, Charité — Universitätsmedizin Berlin, Berlin, Germany
- German Center for Infection Research, associated partner Charité, Berlin, Germany
- Berlin Institute of Health, Berlin, Germany
- Labor Berlin – Charité Vivantes GmbH, Berlin, Germany
| |
Collapse
|
113
|
Bauer G, Struck F, Staschik E, Maile J, Wochinz‐Richter K, Motz M, Soutschek E. Differential avidity determination of IgG directed towards the receptor-binding domain (RBD) of SARS-CoV-2 wild-type and its variants in one assay: Rational tool for the assessment of protective immunity. J Med Virol 2022; 94:5294-5303. [PMID: 35851961 PMCID: PMC9349558 DOI: 10.1002/jmv.28006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/02/2022] [Accepted: 07/14/2022] [Indexed: 12/15/2022]
Abstract
The avidity (binding strength) of IgG directed towards the receptor-binding domain (RBD) of spike protein has been recognized as a central marker in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) serology. It seems to be linked to increased infection-neutralization potential and therefore might indicate protective immunity. Using a prototype line assay based on the established recomLine SARS-CoV-2 assay, supplemented with RBD of the delta and the omicron variant, differential avidity determination of IgG directed towards RBD of wild-type (WT) SARS-CoV-2 and distinct variants was possible within one assay. Our data confirm that natural SARS-CoV-2 infection or one vaccination step lead to low avidity IgG, whereas further vaccination steps gradually increase avidity to high values. High avidity is not reached by infection alone. After infection with WT SARS-CoV-2 or vaccination based on mRNA WT, the avidity of cross-reacting IgG directed towards RBD of the delta variant only showed marginal differences compared to IgG directed towards RBD WT. In contrast, the avidity of IgG cross-reacting with RBD of the omicron variant was always much lower than for IgG RBD WT, except after the third vaccination step. Therefore, parallel avidity testing of RBD WT and omicron seems to be mandatory for a significant assessment of protective immunity towards SARS-CoV-2.
Collapse
Affiliation(s)
- Georg Bauer
- Institute of Virology, Medical CenterUniversity of FreiburgFreiburgGermany,Faculty of MedicineUniversity of FreiburgFreiburgGermany
| | | | | | | | | | | | | |
Collapse
|
114
|
Cruz CAK, Medina PMB. Temporal changes in the accessory protein mutations of SARS-CoV-2 variants and their predicted structural and functional effects. J Med Virol 2022; 94:5189-5200. [PMID: 35764775 PMCID: PMC9349927 DOI: 10.1002/jmv.27964] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 06/22/2022] [Accepted: 06/26/2022] [Indexed: 12/15/2022]
Abstract
Emerging variants enable the continuous spread of SARS-CoV-2 in humans. The factors contributing to behavioral differences in variants remain elusive despite associations with several Spike protein mutations. Exploring accessory proteins may provide a wider understanding of these differences since these proteins may affect viral processes that occur beyond infection. Various bioinformatics tools were utilized to identify significant accessory protein mutations and determine their structural and functional effects over time. The ViruClust web application was used to retrieve accessory protein amino acid sequences and determine mutation frequencies in these sequences across time. The structural and functional effects of the mutations were determined using Missense3D and PROVEAN, respectively. The accessory and Spike protein mutations were compared using mutation densities. Q57H and T151I of ORF3a; T21I and W27L of ORF6; G38V, V82A, and T120I of ORF7a; S31P and T40I of ORF7b; and R52I, C61F, and I121L of ORF8 were highly frequent in most variants of concern and were within known functional domains. Thus, these are good candidates for further experimental evaluation. Among the accessory proteins, ORF6 and ORF8 were highlighted because of their strong and weak correlation with Spike protein mutations, respectively.
Collapse
Affiliation(s)
- Christian Alfredo K. Cruz
- Biological Models Laboratory, Department of Biochemistry and Molecular Biology, College of MedicineUniversity of the Philippines ManilaManila, Metro ManilaPhilippines
| | - Paul Mark B. Medina
- Biological Models Laboratory, Department of Biochemistry and Molecular Biology, College of MedicineUniversity of the Philippines ManilaManila, Metro ManilaPhilippines
| |
Collapse
|
115
|
Wilson IM, Frazier MN, Li JL, Randall TA, Stanley RE. Biochemical Characterization of Emerging SARS-CoV-2 Nsp15 Endoribonuclease Variants. J Mol Biol 2022; 434:167796. [PMID: 35995266 PMCID: PMC9389836 DOI: 10.1016/j.jmb.2022.167796] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 08/08/2022] [Accepted: 08/15/2022] [Indexed: 12/02/2022]
Abstract
Global sequencing efforts from the ongoing COVID-19 pandemic, caused by the novel coronavirus SARS-CoV-2, continue to provide insight into the evolution of the viral genome. Coronaviruses encode 16 nonstructural proteins, within the first two-thirds of their genome, that facilitate viral replication and transcription as well as evasion of the host immune response. However, many of these viral proteins remain understudied. Nsp15 is a uridine-specific endoribonuclease conserved across all coronaviruses. The nuclease activity of Nsp15 helps the virus evade triggering an innate immune response. Understanding how Nsp15 has changed over the course of the pandemic, and how mutations affect its RNA processing function, will provide insight into the evolution of an oligomerization-dependent endoribonuclease and inform drug design. In combination with previous structural data, bioinformatics analyses of 1.9 + million SARS-CoV-2 sequences revealed mutations across Nsp15's three structured domains (N-terminal, Middle, EndoU). Selected Nsp15 variants were characterized biochemically and compared to wild type Nsp15. We found that mutations to important catalytic residues decreased cleavage activity but increased the hexamer/monomer ratio of the recombinant protein. Many of the highly prevalent variants we analyzed led to decreased nuclease activity as well as an increase in the inactive, monomeric form. Overall, our work establishes how Nsp15 variants seen in patient samples affect nuclease activity and oligomerization, providing insight into the effect of these variants in vivo.
Collapse
Affiliation(s)
- Isha M Wilson
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, 111 T. W. Alexander Drive, Research Triangle Park, NC 27709, USA. https://twitter.com/@ishamyana
| | - Meredith N Frazier
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, 111 T. W. Alexander Drive, Research Triangle Park, NC 27709, USA; Department of Chemistry and Biochemistry, College of Charleston, Charleston, SC, 29424, USA(†). https://twitter.com/@MNFrazier5
| | - Jian-Liang Li
- Integrative Bioinformatics Support Group, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, 111 T. W. Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Thomas A Randall
- Integrative Bioinformatics Support Group, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, 111 T. W. Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Robin E Stanley
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, 111 T. W. Alexander Drive, Research Triangle Park, NC 27709, USA.
| |
Collapse
|
116
|
Ovchynnykova O, Kapusta K, Sizochenko N, Sukhyy KM, Kolodziejczyk W, Hill GA, Saloni J. Homology Modeling and Molecular Dynamics-Driven Search for Natural Inhibitors That Universally Target Receptor-Binding Domain of Spike Glycoprotein in SARS-CoV-2 Variants. Molecules 2022; 27:7336. [PMID: 36364158 PMCID: PMC9657887 DOI: 10.3390/molecules27217336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/16/2022] [Accepted: 10/20/2022] [Indexed: 11/24/2022] Open
Abstract
The rapid spread of SARS-CoV-2 required immediate actions to control the transmission of the virus and minimize its impact on humanity. An extensive mutation rate of this viral genome contributes to the virus' ability to quickly adapt to environmental changes, impacts transmissibility and antigenicity, and may facilitate immune escape. Therefore, it is of great interest for researchers working in vaccine development and drug design to consider the impact of mutations on virus-drug interactions. Here, we propose a multitarget drug discovery pipeline for identifying potential drug candidates which can efficiently inhibit the Receptor Binding Domain (RBD) of spike glycoproteins from different variants of SARS-CoV-2. Eight homology models of RBDs for selected variants were created and validated using reference crystal structures. We then investigated interactions between host receptor ACE2 and RBDs from nine variants of SARS-CoV-2. It led us to conclude that efficient multi-variant targeting drugs should be capable of blocking residues Q(R)493 and N487 in RBDs. Using methods of molecular docking, molecular mechanics, and molecular dynamics, we identified three lead compounds (hesperidin, narirutin, and neohesperidin) suitable for multitarget SARS-CoV-2 inhibition. These compounds are flavanone glycosides found in citrus fruits - an active ingredient of Traditional Chinese Medicines. The developed pipeline can be further used to (1) model mutants for which crystal structures are not yet available and (2) scan a more extensive library of compounds against other mutated viral proteins.
Collapse
Affiliation(s)
- Olha Ovchynnykova
- Department of Fuel, Polymer, and Polygraphic Materials Technologies, Ukrainian State University of Chemical Technology, 49005 Dnipro, Ukraine
| | - Karina Kapusta
- Department of Chemistry and Physics, Tougaloo College, Tougaloo, MS 39174, USA
| | - Natalia Sizochenko
- The Ronin Institute for Independent Scholarship, Montclair, NJ 07043, USA
| | - Kostyantyn M. Sukhyy
- Department of Fuel, Polymer, and Polygraphic Materials Technologies, Ukrainian State University of Chemical Technology, 49005 Dnipro, Ukraine
| | - Wojciech Kolodziejczyk
- Interdisciplinary Center for Nanotoxicity, Department of Chemistry, Physics and Atmospheric Sciences, Jackson State University, Jackson, MS 39217, USA
| | - Glake A. Hill
- Interdisciplinary Center for Nanotoxicity, Department of Chemistry, Physics and Atmospheric Sciences, Jackson State University, Jackson, MS 39217, USA
| | - Julia Saloni
- Interdisciplinary Center for Nanotoxicity, Department of Chemistry, Physics and Atmospheric Sciences, Jackson State University, Jackson, MS 39217, USA
| |
Collapse
|
117
|
Luo S, Zhang J, Kreutzberger AJ, Eaton A, Edwards RJ, Jing C, Dai HQ, Sempowski GD, Cronin K, Parks R, Ye AY, Mansouri K, Barr M, Pishesha N, Williams AC, Vieira Francisco L, Saminathan A, Peng H, Batra H, Bellusci L, Khurana S, Alam SM, Montefiori DC, Saunders KO, Tian M, Ploegh H, Kirchhausen T, Chen B, Haynes BF, Alt FW. An antibody from single human V H-rearranging mouse neutralizes all SARS-CoV-2 variants through BA.5 by inhibiting membrane fusion. Sci Immunol 2022; 7:eadd5446. [PMID: 35951767 PMCID: PMC9407951 DOI: 10.1126/sciimmunol.add5446] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 08/03/2022] [Indexed: 12/14/2022]
Abstract
SARS-CoV-2 Omicron subvariants have generated a worldwide health crisis due to resistance to most approved SARS-CoV-2 neutralizing antibodies and evasion of vaccination-induced antibodies. To manage Omicron subvariants and prepare for new ones, additional means of isolating broad and potent humanized SARS-CoV-2 neutralizing antibodies are desirable. Here, we describe a mouse model in which the primary B cell receptor (BCR) repertoire is generated solely through V(D)J recombination of a human VH1-2 heavy chain (HC) and, substantially, a human Vκ1-33 light chain (LC). Thus, primary humanized BCR repertoire diversity in these mice derives from immensely diverse HC and LC antigen-contact CDR3 sequences generated by nontemplated junctional modifications during V(D)J recombination. Immunizing this mouse model with SARS-CoV-2 (Wuhan-Hu-1) spike protein immunogens elicited several VH1-2/Vκ1-33-based neutralizing antibodies that bound RBD in a different mode from each other and from those of many prior patient-derived VH1-2-based neutralizing antibodies. Of these, SP1-77 potently and broadly neutralized all SARS-CoV-2 variants through BA.5. Cryo-EM studies revealed that SP1-77 bound RBD away from the receptor-binding motif via a CDR3-dominated recognition mode. Lattice light-sheet microscopy-based studies showed that SP1-77 did not block ACE2-mediated viral attachment or endocytosis but rather blocked viral-host membrane fusion. The broad and potent SP1-77 neutralization activity and nontraditional mechanism of action suggest that it might have therapeutic potential. Likewise, the SP1-77 binding epitope may inform vaccine strategies. Last, the type of humanized mouse models that we have described may contribute to identifying therapeutic antibodies against future SARS-CoV-2 variants and other pathogens.
Collapse
Affiliation(s)
- Sai Luo
- Howard Hughes Medical Institute, Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Jun Zhang
- Division of Molecular Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Alex J.B. Kreutzberger
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Amanda Eaton
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Robert J. Edwards
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Changbin Jing
- Howard Hughes Medical Institute, Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Hai-Qiang Dai
- Howard Hughes Medical Institute, Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Gregory D. Sempowski
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Kenneth Cronin
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Robert Parks
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Adam Yongxin Ye
- Howard Hughes Medical Institute, Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Katayoun Mansouri
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Maggie Barr
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Novalia Pishesha
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Aimee Chapdelaine Williams
- Howard Hughes Medical Institute, Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Lucas Vieira Francisco
- Howard Hughes Medical Institute, Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Anand Saminathan
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Hanqin Peng
- Division of Molecular Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Himanshu Batra
- Howard Hughes Medical Institute, Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Lorenza Bellusci
- Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration (FDA), Silver Spring, MD, USA
| | - Surender Khurana
- Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration (FDA), Silver Spring, MD, USA
| | - S. Munir Alam
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - David C. Montefiori
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Surgery, Duke University, Durham, NC 27710, USA
| | - Kevin O. Saunders
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Surgery, Duke University, Durham, NC 27710, USA
- Department of Immunology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Ming Tian
- Howard Hughes Medical Institute, Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Hidde Ploegh
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Tom Kirchhausen
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Bing Chen
- Division of Molecular Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Barton F. Haynes
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Immunology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Frederick W. Alt
- Howard Hughes Medical Institute, Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
118
|
Chen Q, Zhang J, Wang P, Zhang Z. The mechanisms of immune response and evasion by the main SARS-CoV-2 variants. iScience 2022; 25:105044. [PMID: 36068846 PMCID: PMC9436868 DOI: 10.1016/j.isci.2022.105044] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a global pandemic. SARS-CoV-2 carries a unique group of mutations, and the transmission of the virus has led to the emergence of other mutants such as Alpha (B.1.1.7), Beta (B.1.351), Gamma (P.1), Kappa (B.1.617.1), Delta (B.1.617.2) and Omicron (B.1.1.529). The advent of a vaccine has raised hopes of ending the pandemic. However, the mutation variants of SARS-CoV-2 have raised concerns about the effectiveness of vaccines because the data showed that the vaccine was less effective against mutation variants compared to the previous variants. Mutation variants could easily mutate the N-segment structure and receptor domain of its spike glycoprotein (S) protein to escape antibody recognition. Therefore, it is vital to understand the potential immune response and evasion mechanism of SARS-CoV-2 variants. In this review, immune response and evasion mechanisms of several SARS-CoV-2 variants are described, which could provide some helpful advice for future vaccines.
Collapse
Affiliation(s)
- Qiuli Chen
- Department of Research and Development, Zhejiang Zhongwei Medical Research Center, Hangzhou, Zhejiang 310018, China
| | - Jiawei Zhang
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Peter Wang
- Department of Research and Development, Zhejiang Zhongwei Medical Research Center, Hangzhou, Zhejiang 310018, China
| | - Zuyong Zhang
- The Affiliated Hangzhou Xixi Hospital, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310023, China
| |
Collapse
|
119
|
Evolutionary Pattern Comparisons of the SARS-CoV-2 Delta Variant in Countries/Regions with High and Low Vaccine Coverage. Viruses 2022; 14:v14102296. [PMID: 36298851 PMCID: PMC9611485 DOI: 10.3390/v14102296] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/09/2022] [Accepted: 10/10/2022] [Indexed: 11/16/2022] Open
Abstract
It has been argued that vaccine-breakthrough infections of SARS-CoV-2 would likely accelerate the emergence of novel variants with immune evasion. This study explored the evolutionary patterns of the Delta variant in countries/regions with relatively high and low vaccine coverage based on large-scale sequences. Our results showed that (i) the sequences were grouped into two clusters (L and R); the R cluster was dominant, its proportion increased over time and was higher in the high-vaccine-coverage areas; (ii) genetic diversities in the countries/regions with low vaccine coverage were higher than those in the ones with high vaccine coverage; (iii) unique mutations and co-mutations were detected in different countries/regions; in particular, common co-mutations were exhibited in highly occurring frequencies in the areas with high vaccine coverage and presented in increasing frequencies over time in the areas with low vaccine coverage; (iv) five sites on the S protein were under strong positive selection in different countries/regions, with three in non-C to U sites (I95T, G142D and T950N), and the occurring frequencies of I95T in high vaccine coverage areas were higher, while G142D and T950N were potentially immune-pressure-selected sites; and (v) mutation at the N6-methyladenosine site 4 on ORF7a (C27527T, P45L) was detected and might be caused by immune pressure. Our study suggested that certain variation differences existed between countries/regions with high and low vaccine coverage, but they were not likely caused by host immune pressure. We inferred that no extra immune pressures on SARS-CoV-2 were generated with high vaccine coverage, and we suggest promoting and strengthening the uptake of the COVID-19 vaccine worldwide, especially in less developed areas.
Collapse
|
120
|
Zhu Y, Hu Y, Liu N, Chong H, He Y. Potent inhibition of diverse Omicron sublineages by SARS-CoV-2 fusion-inhibitory lipopeptides. Antiviral Res 2022; 208:105445. [PMID: 36265805 PMCID: PMC9574594 DOI: 10.1016/j.antiviral.2022.105445] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/03/2022] [Accepted: 10/10/2022] [Indexed: 11/05/2022]
Abstract
The emergence and rapid spreading of SARS-CoV-2 variants of concern (VOCs) have posed a great challenge to the efficacy of vaccines and therapeutic antibodies, calling for antivirals that can overcome viral evasion. We recently reported that SARS-CoV-2 fusion-inhibitory lipopeptides, IPB02V3 and IPB24, possessed the potent activities against divergent VOCs, including Alpha, Beta, Gamma, Delta, and the initial Omicron strain (B.1.1.529); however, multiple Omicron sublineages have emerged and BA.4/5 is now becoming predominant globally. In this study, we focused on characterizing the functionality of the spike (S) proteins derived from Omicron sublineages and their susceptibility to the inhibition of IPB02V3 and IPB24. We first found that the S proteins of BA.2, BA.2.12.1, BA.3, and BA.4/5 exhibited significantly increased cell fusion capacities compared to BA.1, whereas the pseudoviruses of BA.2.12.1, BA.3, and BA.4/5 had significantly increased infectivity relative to BA.1 or BA.2. Next, we verified that IPB02V3 and IPB24 also maintained their very high potent activities in inhibiting diverse Omicron sublineages, even with enhanced potencies relative to the inhibition on ancestral virus. Moreover, we demonstrated that evolved Omicron mutations in the inhibitor-binding heptad repeat 1 (HR1) site could impair the S protein-driven cell fusogenicity and infectivity, but none of single or combined mutations affected the antiviral activity of IPB02V3 and IPB24. Therefore, we believe that viral fusion inhibitors possess high potential to be developed as effective drugs for fighting SARS-CoV-2 variants including diverse Omicron sublineages.
Collapse
Affiliation(s)
- Yuanmei Zhu
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology and Center for AIDS Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Yue Hu
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology and Center for AIDS Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Nian Liu
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology and Center for AIDS Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Huihui Chong
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology and Center for AIDS Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Yuxian He
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology and Center for AIDS Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| |
Collapse
|
121
|
Bendall EE, Callear A, Getz A, Goforth K, Edwards D, Monto AS, Martin ET, Lauring AS. Rapid transmission and tight bottlenecks constrain the evolution of highly transmissible SARS-CoV-2 variants. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2022.10.12.511991. [PMID: 36263068 PMCID: PMC9580385 DOI: 10.1101/2022.10.12.511991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Transmission bottlenecks limit the spread of novel mutations and reduce the efficiency of natural selection along a transmission chain. Many viruses exhibit tight bottlenecks, and studies of early SARS-CoV-2 lineages identified a bottleneck of 1-3 infectious virions. While increased force of infection, host receptor binding, or immune evasion may influence bottleneck size, the relationship between transmissibility and the transmission bottleneck is unclear. Here, we compare the transmission bottleneck of non-variant-of-concern (non-VOC) SARS-CoV-2 lineages to those of the Alpha, Delta, and Omicron variants. We sequenced viruses from 168 individuals in 65 multiply infected households in duplicate to high depth of coverage. In 110 specimens collected close to the time of transmission, within-host diversity was extremely low. At a 2% frequency threshold, 51% had no intrahost single nucleotide variants (iSNV), and 42% had 1-2 iSNV. In 64 possible transmission pairs with detectable iSNV, we identified a bottleneck of 1 infectious virion (95% CI 1-1) for Alpha, Delta, and Omicron lineages and 2 (95% CI 2-2) in non-VOC lineages. The latter was driven by a single iSNV shared in one non-VOC household. The tight transmission bottleneck in SARS-CoV-2 is due to low genetic diversity at the time of transmission, a relationship that may be more pronounced in rapidly transmissible variants. The tight bottlenecks identified here will limit the development of highly mutated VOC in typical transmission chains, adding to the evidence that selection over prolonged infections in immunocompromised patients may drive their evolution.
Collapse
Affiliation(s)
- Emily E. Bendall
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, USA
| | - Amy Callear
- Department of Epidemiology, University of Michigan, Ann Arbor, MI, USA
| | - Amy Getz
- Department of Epidemiology, University of Michigan, Ann Arbor, MI, USA
| | - Kendra Goforth
- Department of Epidemiology, University of Michigan, Ann Arbor, MI, USA
| | - Drew Edwards
- Department of Epidemiology, University of Michigan, Ann Arbor, MI, USA
| | - Arnold S. Monto
- Department of Epidemiology, University of Michigan, Ann Arbor, MI, USA
| | - Emily T. Martin
- Department of Epidemiology, University of Michigan, Ann Arbor, MI, USA
| | - Adam S. Lauring
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, USA
- Division of Infectious Diseases, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
122
|
Coderc de Lacam EG, Blazhynska M, Chen H, Gumbart JC, Chipot C. When the Dust Has Settled: Calculation of Binding Affinities from First Principles for SARS-CoV-2 Variants with Quantitative Accuracy. J Chem Theory Comput 2022; 18:5890-5900. [PMID: 36108303 PMCID: PMC9518821 DOI: 10.1021/acs.jctc.2c00604] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Indexed: 11/30/2022]
Abstract
Accurate determination of binding free energy is pivotal for the study of many biological processes and has been applied in a number of theoretical investigations to compare the affinity of severe acute respiratory syndrome coronavirus 2 variants toward the host cell. Diversity of these variants challenges the development of effective general therapies, their transmissibility relying either on an increased affinity toward their dedicated human receptor, the angiotensin-converting enzyme 2 (ACE2), or on escaping the immune response. Now that robust structural data are available, we have determined with utmost accuracy the standard binding free energy of the receptor-binding domain to the most widespread variants, namely, Alpha, Beta, Delta, and Omicron BA.2, as well as the wild type (WT) in complex either with ACE2 or with antibodies, namely, S2E12 and H11-D4, using a rigorous theoretical framework that combines molecular dynamics and potential-of-mean-force calculations. Our results show that an appropriate starting structure is crucial to ensure appropriate reproduction of the binding affinity, allowing the variants to be compared. They also emphasize the necessity to apply the relevant methodology, bereft of any shortcut, to account for all the contributions to the standard binding free energy. Our estimates of the binding affinities support the view that while the Alpha and Beta variants lean on an increased affinity toward the host cell, the Delta and Omicron BA.2 variants choose immune escape. Moreover, the S2E12 antibody, already known to be active against the WT (Starr et al., 2021; Mlcochova et al., 2021), proved to be equally effective against the Delta variant. In stark contrast, H11-D4 retains a low affinity toward the WT compared to that of ACE2 for the latter. Assuming robust structural information, the methodology employed herein successfully addresses the challenging protein-protein binding problem in the context of coronavirus disease 2019 while offering promising perspectives for predictive studies of ever-emerging variants.
Collapse
Affiliation(s)
- Emma Goulard Coderc de Lacam
- Laboratoire International Associé Centre
National de la Recherche Scientifique et University of Illinois at Urbana-Champaign,
Unité Mixte de Recherche No 7019, Université de
Lorraine, B.P. 70239, Vandœuvre-lès-Nancy Cedex54506,
France
| | - Marharyta Blazhynska
- Laboratoire International Associé Centre
National de la Recherche Scientifique et University of Illinois at Urbana-Champaign,
Unité Mixte de Recherche No 7019, Université de
Lorraine, B.P. 70239, Vandœuvre-lès-Nancy Cedex54506,
France
| | - Haochuan Chen
- Laboratoire International Associé Centre
National de la Recherche Scientifique et University of Illinois at Urbana-Champaign,
Unité Mixte de Recherche No 7019, Université de
Lorraine, B.P. 70239, Vandœuvre-lès-Nancy Cedex54506,
France
| | - James C. Gumbart
- School of Physics, Georgia Institute of
Technology, Atlanta, Georgia30332, United States
| | - Christophe Chipot
- Laboratoire International Associé Centre
National de la Recherche Scientifique et University of Illinois at Urbana-Champaign,
Unité Mixte de Recherche No 7019, Université de
Lorraine, B.P. 70239, Vandœuvre-lès-Nancy Cedex54506,
France
- Theoretical and Computational Biophysics Group, Beckman
Institute, and Department of Physics, University of Illinois at
Urbana-Champaign, UrbanaIllinois61802, United
States
- Department of Biochemistry and Molecular Biology,
The University of Chicago, 929 E. 57th Street W225, Chicago,
Illinois60637, United States
| |
Collapse
|
123
|
Forsyth CB, Zhang L, Bhushan A, Swanson B, Zhang L, Mamede JI, Voigt RM, Shaikh M, Engen PA, Keshavarzian A. The SARS-CoV-2 S1 Spike Protein Promotes MAPK and NF-kB Activation in Human Lung Cells and Inflammatory Cytokine Production in Human Lung and Intestinal Epithelial Cells. Microorganisms 2022; 10:microorganisms10101996. [PMID: 36296272 PMCID: PMC9607240 DOI: 10.3390/microorganisms10101996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 09/12/2022] [Accepted: 10/05/2022] [Indexed: 11/18/2022] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic began in January 2020 in Wuhan, China, with a new coronavirus designated SARS-CoV-2. The principal cause of death from COVID-19 disease quickly emerged as acute respiratory distress syndrome (ARDS). A key ARDS pathogenic mechanism is the “Cytokine Storm”, which is a dramatic increase in inflammatory cytokines in the blood. In the last two years of the pandemic, a new pathology has emerged in some COVID-19 survivors, in which a variety of long-term symptoms occur, a condition called post-acute sequelae of COVID-19 (PASC) or “Long COVID”. Therefore, there is an urgent need to better understand the mechanisms of the virus. The spike protein on the surface of the virus is composed of joined S1–S2 subunits. Upon S1 binding to the ACE2 receptor on human cells, the S1 subunit is cleaved and the S2 subunit mediates the entry of the virus. The S1 protein is then released into the blood, which might be one of the pivotal triggers for the initiation and/or perpetuation of the cytokine storm. In this study, we tested the hypothesis that the S1 spike protein is sufficient to activate inflammatory signaling and cytokine production, independent of the virus. Our data support a possible role for the S1 spike protein in the activation of inflammatory signaling and cytokine production in human lung and intestinal epithelial cells in culture. These data support a potential role for the SARS-CoV-2 S1 spike protein in COVID-19 pathogenesis and PASC.
Collapse
Affiliation(s)
- Christopher B. Forsyth
- Department of Internal Medicine, Section of Gastroenterology, Rush Center for Integrated Microbiome and Chronobiology Research, Department of Anatomy and Cell Biology, Rush University Graduate College, Rush University Medical Center, Chicago, IL 60612, USA
| | - Lijuan Zhang
- Rush Center for Integrated Microbiome and Chronobiology Research, Rush University Medical Center, Chicago, IL 60612, USA
| | - Abhinav Bhushan
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, IL 60616, USA
| | - Barbara Swanson
- Department of Adult Health & Gerontological Nursing, Rush University Medical Center, Chicago, IL 60612, USA
| | - Li Zhang
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, IL 60612, USA
| | - João I. Mamede
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, IL 60612, USA
| | - Robin M. Voigt
- Department of Internal Medicine, Section of Gastroenterology, Rush Center for Integrated Microbiome and Chronobiology Research, Department of Anatomy and Cell Biology, Rush University Graduate College, Rush University Medical Center, Chicago, IL 60612, USA
| | - Maliha Shaikh
- Rush Center for Integrated Microbiome and Chronobiology Research, Rush University Medical Center, Chicago, IL 60612, USA
| | - Phillip A. Engen
- Rush Center for Integrated Microbiome and Chronobiology Research, Rush University Medical Center, Chicago, IL 60612, USA
| | - Ali Keshavarzian
- Department of Internal Medicine, Section of Gastroenterology, Rush Center for Integrated Microbiome and Chronobiology Research, Department of Anatomy and Cell Biology, Rush University Graduate College, Rush University Medical Center, Chicago, IL 60612, USA
- Correspondence:
| |
Collapse
|
124
|
Yang K, Wang C, Kreutzberger AJB, Ojha R, Kuivanen S, Couoh-Cardel S, Muratcioglu S, Eisen TJ, White KI, Held RG, Subramanian S, Marcus K, Pfuetzner RA, Esquivies L, Doyle CA, Kuriyan J, Vapalahti O, Balistreri G, Kirchhausen T, Brunger AT. Nanomolar inhibition of SARS-CoV-2 infection by an unmodified peptide targeting the prehairpin intermediate of the spike protein. Proc Natl Acad Sci U S A 2022; 119:e2210990119. [PMID: 36122200 PMCID: PMC9546559 DOI: 10.1073/pnas.2210990119] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 08/16/2022] [Indexed: 12/02/2022] Open
Abstract
Variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) challenge currently available coronavirus disease 2019 vaccines and monoclonal antibody therapies through epitope change on the receptor binding domain of the viral spike glycoprotein. Hence, there is a specific urgent need for alternative antivirals that target processes less likely to be affected by mutation, such as the membrane fusion step of viral entry into the host cell. One such antiviral class includes peptide inhibitors, which block formation of the so-called heptad repeat 1 and 2 (HR1HR2) six-helix bundle of the SARS-CoV-2 spike (S) protein and thus interfere with viral membrane fusion. We performed structural studies of the HR1HR2 bundle, revealing an extended, well-folded N-terminal region of HR2 that interacts with the HR1 triple helix. Based on this structure, we designed an extended HR2 peptide that achieves single-digit nanomolar inhibition of SARS-CoV-2 in cell-based and virus-based assays without the need for modifications such as lipidation or chemical stapling. The peptide also strongly inhibits all major SARS-CoV-2 variants to date. This extended peptide is ∼100-fold more potent than all previously published short, unmodified HR2 peptides, and it has a very long inhibition lifetime after washout in virus infection assays, suggesting that it targets a prehairpin intermediate of the SARS-CoV-2 S protein. Together, these results suggest that regions outside the HR2 helical region may offer new opportunities for potent peptide-derived therapeutics for SARS-CoV-2 and its variants, and even more distantly related viruses, and provide further support for the prehairpin intermediate of the S protein.
Collapse
Affiliation(s)
- Kailu Yang
- HHMI, Stanford University, Stanford, CA 94305
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA 94305
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA 94305
- Department of Structural Biology, Stanford University, Stanford, CA 94305
- Department of Photon Science, Stanford University, Stanford, CA 94305
| | - Chuchu Wang
- HHMI, Stanford University, Stanford, CA 94305
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA 94305
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA 94305
- Department of Structural Biology, Stanford University, Stanford, CA 94305
- Department of Photon Science, Stanford University, Stanford, CA 94305
| | - Alex J. B. Kreutzberger
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA 02115
| | - Ravi Ojha
- Department of Virology, University of Helsinki, Helsinki 00290, Finland
| | - Suvi Kuivanen
- Department of Virology, University of Helsinki, Helsinki 00290, Finland
| | - Sergio Couoh-Cardel
- HHMI, Stanford University, Stanford, CA 94305
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA 94305
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA 94305
- Department of Structural Biology, Stanford University, Stanford, CA 94305
- Department of Photon Science, Stanford University, Stanford, CA 94305
| | - Serena Muratcioglu
- HHMI, University of California, Berkeley, Berkeley, CA 94720
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720
| | - Timothy J. Eisen
- HHMI, University of California, Berkeley, Berkeley, CA 94720
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720
| | - K. Ian White
- HHMI, Stanford University, Stanford, CA 94305
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA 94305
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA 94305
- Department of Structural Biology, Stanford University, Stanford, CA 94305
- Department of Photon Science, Stanford University, Stanford, CA 94305
| | - Richard G. Held
- HHMI, Stanford University, Stanford, CA 94305
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA 94305
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA 94305
- Department of Structural Biology, Stanford University, Stanford, CA 94305
- Department of Photon Science, Stanford University, Stanford, CA 94305
| | - Subu Subramanian
- HHMI, University of California, Berkeley, Berkeley, CA 94720
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720
| | - Kendra Marcus
- HHMI, University of California, Berkeley, Berkeley, CA 94720
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720
| | - Richard A. Pfuetzner
- HHMI, Stanford University, Stanford, CA 94305
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA 94305
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA 94305
- Department of Structural Biology, Stanford University, Stanford, CA 94305
- Department of Photon Science, Stanford University, Stanford, CA 94305
| | - Luis Esquivies
- HHMI, Stanford University, Stanford, CA 94305
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA 94305
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA 94305
- Department of Structural Biology, Stanford University, Stanford, CA 94305
- Department of Photon Science, Stanford University, Stanford, CA 94305
| | - Catherine A. Doyle
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22903
| | - John Kuriyan
- HHMI, University of California, Berkeley, Berkeley, CA 94720
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720
| | - Olli Vapalahti
- Department of Virology, University of Helsinki, Helsinki 00290, Finland
- Department of Veterinary Biosciences, University of Helsinki, Helsinki 00290, Finland
- Helsinki University Hospital Diagnostic Center, Clinical Microbiology, University of Helsinki, Helsinki 00290, Finland
| | | | - Tom Kirchhausen
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA 02115
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115
| | - Axel T. Brunger
- HHMI, Stanford University, Stanford, CA 94305
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA 94305
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA 94305
- Department of Structural Biology, Stanford University, Stanford, CA 94305
- Department of Photon Science, Stanford University, Stanford, CA 94305
| |
Collapse
|
125
|
Nguyen KQ, Nguyen LMA, Taylor-Robinson AW. Global "flu-ization" of COVID-19: A perspective from Vietnam. Front Public Health 2022; 10:987467. [PMID: 36262220 PMCID: PMC9574250 DOI: 10.3389/fpubh.2022.987467] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 09/12/2022] [Indexed: 01/26/2023] Open
Affiliation(s)
| | - Le My Anh Nguyen
- College of Health Sciences, VinUniversity, Hanoi, Vietnam
- Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Andrew W. Taylor-Robinson
- College of Health Sciences, VinUniversity, Hanoi, Vietnam
- Center for Global Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
126
|
Karimian A, Behjati M, Karimian M. Molecular mechanisms involved in anosmia induced by SARS-CoV-2, with a focus on the transmembrane serine protease TMPRSS2. Arch Virol 2022; 167:1931-1946. [PMID: 35939103 PMCID: PMC9358639 DOI: 10.1007/s00705-022-05545-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 05/31/2022] [Indexed: 11/26/2022]
Abstract
Since 2020, SARS-CoV-2 has caused a pandemic virus that has posed many challenges worldwide. Infection with this virus can result in a number of symptoms, one of which is anosmia. Olfactory dysfunction can be a temporary or long-term viral complication caused by a disorder of the olfactory neuroepithelium. Processes such as inflammation, apoptosis, and neuronal damage are involved in the development of SARS-CoV-2-induced anosmia. One of the receptors that play a key role in the entry of SARS-CoV-2 into the host cell is the transmembrane serine protease TMPRSS2, which facilitates this process by cleaving the viral S protein. The gene encoding TMPRSS2 is located on chromosome 21. It contains 15 exons and has many genetic variations, some of which increase the risk of disease. Delta strains have been shown to be more dependent on TMPRSS2 for cell entry than Omicron strains. Blockade of this receptor by serine protease inhibitors such as camostat and nafamostat can be helpful for treating SARS-CoV-2 symptoms, including anosmia. Proper understanding of the different functional aspects of this serine protease can help to overcome the therapeutic challenges of SARS-CoV-2 symptoms, including anosmia. In this review, we describe the cellular and molecular events involved in anosmia induced by SARS-CoV-2 with a focus on the function of the TMPRSS2 receptor.
Collapse
Affiliation(s)
- Ali Karimian
- Department of Otorhinolaryngology, School of Medicine, Kashan University of Medical Science, Kashan, Iran
| | - Mohaddeseh Behjati
- Cellular, Molecular and Genetics Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Karimian
- Department of Molecular and Cell Biology, Faculty of Basic Sciences, University of Mazandaran, Babolsar, 47416-95447, Iran.
| |
Collapse
|
127
|
Singh J, Vashishtha S, Rahman SA, Ehtesham NZ, Alam A, Kundu B, Dobrindt U. Energetics of Spike Protein Opening of SARS-CoV-1 and SARS-CoV-2 and Its Variants of Concern: Implications in Host Receptor Scanning and Transmission. Biochemistry 2022; 61:2188-2197. [PMID: 36166360 DOI: 10.1021/acs.biochem.2c00301] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The receptor binding domain(s) (RBD) of spike (S) proteins of SARS-CoV-1 and SARS-CoV-2 (severe acute respiratory syndrome coronavirus) undergoes closed to open transition to engage with host ACE2 receptors. In this study, using multi atomistic (equilibrium) and targeted (non-equilibrium) molecular dynamics simulations, we have compared energetics of RBD opening pathways in full-length (modeled from cryo-EM structures) S proteins of SARS-CoV-1 and SARS-CoV-2. Our data indicate that amino acid variations at the RBD interaction interface can culminate into distinct free energy landscapes of RBD opening in these S proteins. We further report that mutations in the S protein of SARS-CoV-2 variants of concern can reduce the protein-protein interaction affinity of RBD(s) with its neighboring domains and could favor its opening to access ACE2 receptors. The findings can also aid in predicting the impact of future mutations on the rate of S protein opening for rapid host receptor scanning.
Collapse
Affiliation(s)
- Jasdeep Singh
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology-Delhi, Hauz Khas, New Delhi 110016, India
| | - Shubham Vashishtha
- Kusuma School of Biological Sciences, Indian Institute of Technology-Delhi, Hauz Khas, New Delhi 110016, India
| | - Syed Asad Rahman
- BioInception Pvt. Ltd., Future Business Centre, Kings Hedges Road, Cambridge CB4 2HY, U.K
| | - Nasreen Zafar Ehtesham
- ICMR National Institute of Pathology, Safdarjung Hospital Campus, New Delhi 110029, India
| | - Anwar Alam
- ICMR National Institute of Pathology, Safdarjung Hospital Campus, New Delhi 110029, India
| | - Bishwajit Kundu
- Kusuma School of Biological Sciences, Indian Institute of Technology-Delhi, Hauz Khas, New Delhi 110016, India
| | - Ulrich Dobrindt
- Institute of Hygiene, University of Münster, Münster 48149, Germany
| |
Collapse
|
128
|
Zhang J, Huang Y, Sun M, Song T, Wan S, Yang C, Song Y. Mechanosensing view of SARS-CoV-2 infection by a DNA nano-assembly. CELL REPORTS. PHYSICAL SCIENCE 2022; 3:101048. [PMID: 36157982 PMCID: PMC9490855 DOI: 10.1016/j.xcrp.2022.101048] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/18/2022] [Accepted: 08/22/2022] [Indexed: 06/16/2023]
Abstract
The mechanical force between a virus and its host cell plays a critical role in viral infection. However, characterization of the virus-cell mechanical force at the whole-virus level remains a challenge. Herein, we develop a platform in which the virus is anchored with multivalence-controlled aptamers to achieve transfer of the virus-cell mechanical force to a DNA tension gauge tether (Virus-TGT). When the TGT is ruptured, the complex of binding module-virus-cell is detached from the substrate, accompanied by decreased host cell-substrate adhesion, thus revealing the mechanical force between whole-virus and cell. Using Virus-TGT, direct evidence about the biomechanical force between SARS-CoV-2 and the host cell is obtained. The relative mechanical force gap (<10 pN) at the cellular level between the wild-type virus to cell and a variant virus to cell is measured, suggesting a possible positive correlation between virus-cell mechanical force and infectivity. Overall, this strategy provides a new perspective to probe the SARS-CoV-2 mechanical force.
Collapse
Affiliation(s)
- Jialu Zhang
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Yihao Huang
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Miao Sun
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Ting Song
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Shuang Wan
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Chaoyong Yang
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
- Institute of Molecular Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Yanling Song
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| |
Collapse
|
129
|
Barroso da Silva FL, Giron CC, Laaksonen A. Electrostatic Features for the Receptor Binding Domain of SARS-COV-2 Wildtype and Its Variants. Compass to the Severity of the Future Variants with the Charge-Rule. J Phys Chem B 2022; 126:6835-6852. [PMID: 36066414 DOI: 10.1021/acs.jpcb.2c04225] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Electrostatic intermolecular interactions are important in many aspects of biology. We have studied the main electrostatic features involved in the interaction of the receptor-binding domain (RBD) of the SARS-CoV-2 spike protein with the human receptor Angiotensin-converting enzyme 2 (ACE2). As the principal computational tool, we have used the FORTE approach, capable to model proton fluctuations and computing free energies for a very large number of protein-protein systems under different physical-chemical conditions, here focusing on the RBD-ACE2 interactions. Both the wild-type and all critical variants are included in this study. From our large ensemble of extensive simulations, we obtain, as a function of pH, the binding affinities, charges of the proteins, their charge regulation capacities, and their dipole moments. In addition, we have calculated the pKas for all ionizable residues and mapped the electrostatic coupling between them. We are able to present a simple predictor for the RBD-ACE2 binding based on the data obtained for Alpha, Beta, Gamma, Delta, and Omicron variants, as a linear correlation between the total charge of the RBD and the corresponding binding affinity. This "RBD charge rule" should work as a quick test of the degree of severity of the coming SARS-CoV-2 variants in the future.
Collapse
Affiliation(s)
- Fernando L Barroso da Silva
- Departamento de Ciências Biomoleculares, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Av. café, s/no-campus da USP, BR-14040-903 Ribeirão Preto, SP, Brazil.,Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Carolina Corrêa Giron
- Departamento de Ciências Biomoleculares, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Av. café, s/no-campus da USP, BR-14040-903 Ribeirão Preto, SP, Brazil.,Hospital de Clínicas, Universidade Federal do Triângulo Mineiro, Av. Getúlio Guaritá, 38025-440 Uberaba, MG, Brazil
| | - Aatto Laaksonen
- Department of Materials and Environmental Chemistry, Arrhenius Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden.,State Key Laboratory of Materials-Oriented and Chemical Engineering, Nanjing Tech University, Nanjing, 210009, P. R. China.,Centre of Advanced Research in Bionanoconjugates and Biopolymers, Petru Poni Institute of Macromolecular Chemistry, Aleea Grigore Ghica-Voda, 41A, 700487 Iasi, Romania.,Department of Engineering Sciences and Mathematics, Division of Energy Science, Luleå University of Technology, SE-97187 Luleå, Sweden.,Department of Chemical and Geological Sciences, Campus Monserrato, University of Cagliari, SS 554 bivio per Sestu, 09042 Monserrato, Italy
| |
Collapse
|
130
|
Ching WY, Adhikari P, Jawad B, Podgornik R. Effect of Delta and Omicron Mutations on the RBD-SD1 Domain of the Spike Protein in SARS-CoV-2 and the Omicron Mutations on RBD-ACE2 Interface Complex. Int J Mol Sci 2022; 23:10091. [PMID: 36077490 PMCID: PMC9456519 DOI: 10.3390/ijms231710091] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/30/2022] [Accepted: 09/01/2022] [Indexed: 11/30/2022] Open
Abstract
The receptor-binding domain (RBD) is the essential part in the Spike-protein (S-protein) of SARS-CoV-2 virus that directly binds to the human ACE2 receptor, making it a key target for many vaccines and therapies. Therefore, any mutations at this domain could affect the efficacy of these treatments as well as the viral-cell entry mechanism. We introduce ab initio DFT-based computational study that mainly focuses on two parts: (1) Mutations effects of both Delta and Omicron variants in the RBD-SD1 domain. (2) Impact of Omicron RBD mutations on the structure and properties of the RBD-ACE2 interface system. The in-depth analysis is based on the novel concept of amino acid-amino acid bond pair units (AABPU) that reveal the differences between the Delta and/or Omicron mutations and its corresponding wild-type strain in terms of the role played by non-local amino acid interactions, their 3D shapes and sizes, as well as contribution to hydrogen bonding and partial charge distributions. Our results also show that the interaction of Omicron RBD with ACE2 significantly increased its bonding between amino acids at the interface providing information on the implications of penetration of S-protein into ACE2, and thus offering a possible explanation for its high infectivity. Our findings enable us to present, in more conspicuous atomic level detail, the effect of specific mutations that may help in predicting and/or mitigating the next variant of concern.
Collapse
Affiliation(s)
- Wai-Yim Ching
- Department of Physics and Astronomy, University of Missouri-Kansas City, Kansas City, MO 64110, USA
| | - Puja Adhikari
- Department of Physics and Astronomy, University of Missouri-Kansas City, Kansas City, MO 64110, USA
| | - Bahaa Jawad
- Department of Physics and Astronomy, University of Missouri-Kansas City, Kansas City, MO 64110, USA
- Department of Applied Sciences, University of Technology, Baghdad 10066, Iraq
| | - Rudolf Podgornik
- School of Physical Sciences and Kavli Institute of Theoretical Science, University of Chinese Academy of Sciences, Beijing 100049, China
- CAS Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100090, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, China
| |
Collapse
|
131
|
Beaudoin CA, Pandurangan AP, Kim SY, Hamaia SW, Huang CL, Blundell TL, Vedithi SC, Jackson AP. In silico analysis of mutations near S1/S2 cleavage site in SARS-CoV-2 spike protein reveals increased propensity of glycosylation in Omicron strain. J Med Virol 2022; 94:4181-4192. [PMID: 35575289 PMCID: PMC9348480 DOI: 10.1002/jmv.27845] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 05/03/2022] [Accepted: 05/05/2022] [Indexed: 11/06/2022]
Abstract
Cleavage of the severe respiratory syndrome coronavirus-2 (SARS-CoV-2) spike protein has been demonstrated to contribute to viral-cell fusion and syncytia formation. Studies have shown that variants of concern (VOC) and variants of interest (VOI) show differing membrane fusion capacity. Mutations near cleavage motifs, such as the S1/S2 and S2' sites, may alter interactions with host proteases and, thus, the potential for fusion. The biochemical basis for the differences in interactions with host proteases for the VOC/VOI spike proteins has not yet been explored. Using sequence and structure-based bioinformatics, mutations near the VOC/VOI spike protein cleavage sites were inspected for their structural effects. All mutations found at the S1/S2 sites were predicted to increase affinity to the furin protease but not TMPRSS2. Mutations at the spike residue P681 in several strains, such P681R in the Delta strain, resulted in the disruption of a proline-directed kinase phosphorylation motif at the S1/S2 site, which may lessen the impact of phosphorylation for these variants. However, the unique N679K mutation in the Omicron strain was found to increase the propensity for O-linked glycosylation at the S1/S2 cleavage site, which may prevent recognition by proteases. Such glycosylation in the Omicron strain may hinder entry at the cell surface and, thus, decrease syncytia formation and induce cell entry through the endocytic pathway as has been shown in previous studies. Further experimental work is needed to confirm the effect of mutations and posttranslational modifications on SARS-CoV-2 spike protein cleavage sites.
Collapse
Affiliation(s)
| | - Arun P. Pandurangan
- Department of Biochemistry, Sanger BuildingUniversity of CambridgeCambridgeUnited Kingdom
| | - So Yeon Kim
- Department of Biochemistry, Sanger BuildingUniversity of CambridgeCambridgeUnited Kingdom
| | - Samir W. Hamaia
- Department of Biochemistry, Hopkins BuildingUniversity of CambridgeCambridgeUnited Kingdom
| | - Christopher L.‐H. Huang
- Department of Biochemistry, Hopkins BuildingUniversity of CambridgeCambridgeUnited Kingdom
- Physiological LaboratoryUniversity of CambridgeCambridgeUnited Kingdom
| | - Tom L. Blundell
- Department of Biochemistry, Sanger BuildingUniversity of CambridgeCambridgeUnited Kingdom
| | | | - Antony P. Jackson
- Department of Biochemistry, Hopkins BuildingUniversity of CambridgeCambridgeUnited Kingdom
| |
Collapse
|
132
|
Zhao Z, Zhou J, Tian M, Huang M, Liu S, Xie Y, Han P, Bai C, Han P, Zheng A, Fu L, Gao Y, Peng Q, Li Y, Chai Y, Zhang Z, Zhao X, Song H, Qi J, Wang Q, Wang P, Gao GF. Omicron SARS-CoV-2 mutations stabilize spike up-RBD conformation and lead to a non-RBM-binding monoclonal antibody escape. Nat Commun 2022; 13:4958. [PMID: 36002453 PMCID: PMC9399999 DOI: 10.1038/s41467-022-32665-7] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 08/10/2022] [Indexed: 12/14/2022] Open
Abstract
Omicron SARS-CoV-2 is rapidly spreading worldwide. To delineate the impact of emerging mutations on spike's properties, we performed systematic structural analyses on apo Omicron spike and its complexes with human ACE2 or S309 neutralizing antibody (NAb) by cryo-EM. The Omicron spike preferentially adopts the one-RBD-up conformation both before and after ACE2 binding, which is in sharp contrast to the orchestrated conformational changes to create more up-RBDs upon ACE2 binding as observed in the prototype and other four variants of concern (VOCs). Furthermore, we found that S371L, S373P and S375F substitutions enhance the stability of the one-RBD-up conformation to prevent exposing more up-RBDs triggered by ACE2 binding. The increased stability of the one-RBD-up conformation restricts the accessibility of S304 NAb, which targets a cryptic epitope in the closed conformation, thus facilitating the immune evasion by Omicron. These results expand our understanding of Omicron spike's conformation, receptor binding and antibody evasion mechanism.
Collapse
Affiliation(s)
- Zhennan Zhao
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jingya Zhou
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Research Network of Immunity and Health (RNIH), Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, 100101, China
| | - Mingxiong Tian
- College of life Science, Shanxi University, Taiyuan, 030006, China
| | - Min Huang
- School of Life Science, University of Science and Technology of China, Hefei, 230026, China
| | - Sheng Liu
- Cryo-EM Center, Department of Biology, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yufeng Xie
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Pu Han
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Chongzhi Bai
- Central Laboratory, Shanxi Province Hospital of Traditional Chinese Medicine, Taiyuan, 030012, China
- Shanxi Academy of Advanced Research and Innovation, Taiyuan, 030032, China
| | - Pengcheng Han
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- School of Medicine, Zhongda Hospital, Southeast University, Nanjing, 210009, China
| | - Anqi Zheng
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lutang Fu
- Cryo-EM Center, Department of Biology, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yuanzhu Gao
- Cryo-EM Center, Department of Biology, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Qi Peng
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Ying Li
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yan Chai
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Zengyuan Zhang
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xin Zhao
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Hao Song
- Research Network of Immunity and Health (RNIH), Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Jianxun Qi
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Qihui Wang
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Peiyi Wang
- Cryo-EM Center, Department of Biology, Southern University of Science and Technology, Shenzhen, 518055, China.
| | - George F Gao
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Research Network of Immunity and Health (RNIH), Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, 100101, China.
- School of Life Science, University of Science and Technology of China, Hefei, 230026, China.
| |
Collapse
|
133
|
Magnus CL, Hiergeist A, Schuster P, Rohrhofer A, Medenbach J, Gessner A, Peterhoff D, Schmidt B. Targeted escape of SARS-CoV-2 in vitro from monoclonal antibody S309, the precursor of sotrovimab. Front Immunol 2022; 13:966236. [PMID: 36090991 PMCID: PMC9449809 DOI: 10.3389/fimmu.2022.966236] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 08/03/2022] [Indexed: 12/01/2022] Open
Abstract
Class 1 and 2 monoclonal antibodies inhibit SARS-CoV-2 entry by blocking the interaction of the viral receptor-binding domain with angiotensin-converting enzyme 2 (ACE2), while class 3 antibodies target a highly conserved epitope outside the ACE2 binding site. We aimed to investigate the plasticity of the spike protein by propagating wild-type SARS-CoV-2 in the presence of class 3 antibody S309. After 12 weeks, we obtained a viral strain that was completely resistant to inhibition by S309, due to successively evolving amino acid exchanges R346S and P337L located in the paratope of S309. The antibody lost affinity to receptor-binding domains carrying P337L or both amino acid exchanges, while ACE2 binding was not affected. The resistant strain replicated efficiently in human CaCo-2 cells and was more susceptible to inhibition of fusion than the original strain. Overall, SARS-CoV-2 escaped inhibition by class 3 antibody S309 through a slow, but targeted evolution enabling immune escape and altering cell entry. This immune-driven enhancement of infectivity and pathogenicity could play an important role in the future evolution of SARS-CoV-2, which is under increasing immunological pressure from vaccination and previous infections.
Collapse
Affiliation(s)
- Clara Luzia Magnus
- Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, Regensburg, Germany
| | - Andreas Hiergeist
- Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, Regensburg, Germany
| | - Philipp Schuster
- Institute of Medical Microbiology and Hygiene, University of Regensburg, Regensburg, Germany
| | - Anette Rohrhofer
- Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, Regensburg, Germany
| | - Jan Medenbach
- Biochemistry I, Faculty of Biology and Pre-Clinical Medicine, University of Regensburg, Regensburg, Germany
| | - André Gessner
- Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, Regensburg, Germany
- Institute of Medical Microbiology and Hygiene, University of Regensburg, Regensburg, Germany
| | - David Peterhoff
- Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, Regensburg, Germany
- Institute of Medical Microbiology and Hygiene, University of Regensburg, Regensburg, Germany
| | - Barbara Schmidt
- Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, Regensburg, Germany
- Institute of Medical Microbiology and Hygiene, University of Regensburg, Regensburg, Germany
| |
Collapse
|
134
|
Ao Z, Ouyang MJ, Olukitibi TA, Yao X. SARS-CoV-2 Delta spike protein enhances the viral fusogenicity and inflammatory cytokine production. iScience 2022; 25:104759. [PMID: 35854977 PMCID: PMC9281453 DOI: 10.1016/j.isci.2022.104759] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 04/14/2022] [Accepted: 07/11/2022] [Indexed: 12/24/2022] Open
Abstract
The Delta variant had spread globally in 2021 and caused more serious disease than the original virus and Omicron variant. In this study, we investigated several virological features of Delta spike protein (SPDelta), including protein maturation, its impact on viral entry of pseudovirus and cell-cell fusion, and its induction of inflammatory cytokine production in human macrophages and dendritic cells. The results showed that SPΔCDelta exhibited enhanced S1/S2 cleavage in cells and pseudotyped virus-like particles (PVLPs). Further, SPΔCDelta elevated pseudovirus entry in human lung cell lines and significantly enhanced syncytia formation. Furthermore, we revealed that SPΔCDelta-PVLPs had stronger effects on stimulating NF-κB and AP-1 signaling in human monocytic THP1 cells and induced significantly higher levels of proinflammatory cytokine, such as TNF-α, IL-1β, and IL-6, released from human macrophages and dendritic cells. Overall, these studies provide evidence to support the important role of SPΔCDelta during virus infection, transmission, and pathogenesis.
Collapse
Affiliation(s)
- Zhujun Ao
- Laboratory of Molecular Human Retrovirology, Department of Medical Microbiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Maggie Jing Ouyang
- Laboratory of Molecular Human Retrovirology, Department of Medical Microbiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Titus Abiola Olukitibi
- Laboratory of Molecular Human Retrovirology, Department of Medical Microbiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Xiaojian Yao
- Laboratory of Molecular Human Retrovirology, Department of Medical Microbiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
135
|
Overduin M, Kervin TA, Tran A. Progressive membrane-binding mechanism of SARS-CoV-2 variant spike proteins. iScience 2022; 25:104722. [PMID: 35813872 PMCID: PMC9251956 DOI: 10.1016/j.isci.2022.104722] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 05/15/2022] [Accepted: 06/28/2022] [Indexed: 12/09/2022] Open
Abstract
Membrane recognition by viral spike proteins is critical for infection. Here we show the host cell membrane-binding surfaces of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike variants Alpha, Beta, Gamma, Delta, Epsilon, Kappa, and Omicron as well as SARS-CoV-1 and pangolin and bat relatives. They show increases in membrane binding propensities over time, with all spike head mutations in variants, and particularly BA.1, impacting the protein's affinity to cell membranes. Comparison of hundreds of structures yields a progressive model of membrane docking in which spike protein trimers shift from initial perpendicular stances to increasingly tilted positions that draw viral particles alongside host cell membranes before optionally engaging angiotensin-converting enzyme 2 (ACE2) receptors. This culminates in the assembly of the symmetric fusion apparatus, with enhanced membrane interactions of variants explaining their unique cell fusion capacities and COVID-19 disease transmission rates.
Collapse
Affiliation(s)
- Michael Overduin
- Department of Biochemistry, University of Alberta, Edmonton, AB, Canada
| | - Troy A. Kervin
- Department of Biochemistry, University of Alberta, Edmonton, AB, Canada
| | - Anh Tran
- Department of Biochemistry, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
136
|
Meng B, Datir R, Choi J, Bradley JR, Smith KGC, Lee JH, Gupta RK. SARS-CoV-2 spike N-terminal domain modulates TMPRSS2-dependent viral entry and fusogenicity. Cell Rep 2022; 40:111220. [PMID: 35963244 PMCID: PMC9346021 DOI: 10.1016/j.celrep.2022.111220] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/30/2022] [Accepted: 07/22/2022] [Indexed: 11/28/2022] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike N-terminal domain (NTD) remains poorly characterized despite enrichment of mutations in this region across variants of concern (VOCs). Here, we examine the contribution of the NTD to infection and cell-cell fusion by constructing chimeric spikes bearing B.1.617 lineage (Delta and Kappa variants) NTDs and generating spike pseudotyped lentivirus. We find that the Delta NTD on a Kappa or wild-type (WT) background increases S1/S2 cleavage efficiency and virus entry, specifically in lung cells and airway organoids, through use of TMPRSS2. Delta exhibits increased cell-cell fusogenicity that could be conferred to WT and Kappa spikes by Delta NTD transfer. However, chimeras of Omicron BA.1 and BA.2 spikes with a Delta NTD do not show more efficient TMPRSS2 use or fusogenicity. We conclude that the NTD allosterically modulates S1/S2 cleavage and spike-mediated functions in a spike context-dependent manner, and allosteric interactions may be lost when combining regions from more distantly related VOCs.
Collapse
Affiliation(s)
- Bo Meng
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Cambridge, UK; Department of Medicine, University of Cambridge, Cambridge, UK.
| | - Rawlings Datir
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Cambridge, UK; Department of Medicine, University of Cambridge, Cambridge, UK
| | - Jinwook Choi
- Wellcome-MRC Cambridge Stem Cell Institute, Cambridge, UK
| | - John R Bradley
- Department of Medicine, University of Cambridge, Cambridge, UK; NIHR Bioresource, Cambridge, UK
| | - Kenneth G C Smith
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Cambridge, UK; Department of Medicine, University of Cambridge, Cambridge, UK
| | - Joo Hyeon Lee
- Wellcome-MRC Cambridge Stem Cell Institute, Cambridge, UK; Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Ravindra K Gupta
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Cambridge, UK; Department of Medicine, University of Cambridge, Cambridge, UK; Africa Health Research Institute, Durban, South Africa.
| |
Collapse
|
137
|
Yang K, Wang C, Kreutzberger AJB, Ojha R, Kuivanen S, Couoh-Cardel S, Muratcioglu S, Eisen TJ, White KI, Held RG, Subramanian S, Marcus K, Pfuetzner RA, Esquivies L, Doyle CA, Kuriyan J, Vapalahti O, Balistreri G, Kirchhausen T, Brunger AT. Nanomolar inhibition of SARS-CoV-2 infection by an unmodified peptide targeting the pre-hairpin intermediate of the spike protein. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2022.08.11.503553. [PMID: 35982670 PMCID: PMC9387137 DOI: 10.1101/2022.08.11.503553] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) challenge currently available COVID-19 vaccines and monoclonal antibody therapies through epitope change on the receptor binding domain of the viral spike glycoprotein. Hence, there is a specific urgent need for alternative antivirals that target processes less likely to be affected by mutation, such as the membrane fusion step of viral entry into the host cell. One such antiviral class includes peptide inhibitors which block formation of the so-called HR1HR2 six-helix bundle of the SARS-CoV-2 spike (S) protein and thus interfere with viral membrane fusion. Here we performed structural studies of the HR1HR2 bundle, revealing an extended, well-folded N-terminal region of HR2 that interacts with the HR1 triple helix. Based on this structure, we designed an extended HR2 peptide that achieves single-digit nanomolar inhibition of SARS-CoV-2 in cell-based fusion, VSV-SARS-CoV-2 chimera, and authentic SARS-CoV-2 infection assays without the need for modifications such as lipidation or chemical stapling. The peptide also strongly inhibits all major SARS-CoV-2 variants to date. This extended peptide is ~100-fold more potent than all previously published short, unmodified HR2 peptides, and it has a very long inhibition lifetime after washout in virus infection assays, suggesting that it targets a pre-hairpin intermediate of the SARS-CoV-2 S protein. Together, these results suggest that regions outside the HR2 helical region may offer new opportunities for potent peptide-derived therapeutics for SARS-CoV-2 and its variants, and even more distantly related viruses, and provide further support for the pre-hairpin intermediate of the S protein. Significance Statement SARS-CoV-2 infection requires fusion of viral and host membranes, mediated by the viral spike glycoprotein (S). Due to the importance of viral membrane fusion, S has been a popular target for developing vaccines and therapeutics. We discovered a simple peptide that inhibits infection by all major variants of SARS-CoV-2 with nanomolar efficacies. In marked contrast, widely used shorter peptides that lack a key N-terminal extension are about 100 x less potent than this peptide. Our results suggest that a simple peptide with a suitable sequence can be a potent and cost-effective therapeutic against COVID-19 and they provide new insights at the virus entry mechanism.
Collapse
|
138
|
Clinical and genomic signatures of SARS-CoV-2 Delta breakthrough infections in New York. EBioMedicine 2022; 82:104141. [PMID: 35906172 PMCID: PMC9323230 DOI: 10.1016/j.ebiom.2022.104141] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 06/15/2022] [Accepted: 06/21/2022] [Indexed: 12/20/2022] Open
Abstract
Background In 2021, Delta became the predominant SARS-CoV-2 variant worldwide. While vaccines have effectively prevented COVID-19 hospitalization and death, vaccine breakthrough infections increasingly occurred. The precise role of clinical and genomic determinants in Delta infections is not known, and whether they contributed to increased rates of breakthrough infections compared to unvaccinated controls. Methods We studied SARS-CoV-2 variant distribution, dynamics, and adaptive selection over time in relation to vaccine status, phylogenetic relatedness of viruses, full genome mutation profiles, and associated clinical and demographic parameters. Findings We show a steep and near-complete replacement of circulating variants with Delta between May and August 2021 in metropolitan New York. We observed an increase of the Delta sublineage AY.25 (14% in vaccinated, 7% in unvaccinated), its spike mutation S112L, and AY.44 (8% in vaccinated, 2% in unvaccinated) with its nsp12 mutation F192V in breakthroughs. Delta infections were associated with younger age and lower hospitalization rates than Alpha. Delta breakthrough infections increased significantly with time since vaccination, and, after adjusting for confounders, they rose at similar rates as in unvaccinated individuals. Interpretation We observed a modest adaptation of Delta genomes in breakthrough infections in New York, suggesting an improved genomic framework to support Delta's epidemic growth in times of waning vaccine protection despite limited impact on vaccine escape. Funding The study was supported by NYU institutional funds. The NYULH Genome Technology Center is partially supported by the Cancer Center Support Grant P30CA016087 at the Laura and Isaac Perlmutter Cancer Center.
Collapse
|
139
|
Willett BJ, Grove J, MacLean OA, Wilkie C, De Lorenzo G, Furnon W, Cantoni D, Scott S, Logan N, Ashraf S, Manali M, Szemiel A, Cowton V, Vink E, Harvey WT, Davis C, Asamaphan P, Smollett K, Tong L, Orton R, Hughes J, Holland P, Silva V, Pascall DJ, Puxty K, da Silva Filipe A, Yebra G, Shaaban S, Holden MTG, Pinto RM, Gunson R, Templeton K, Murcia PR, Patel AH, Klenerman P, Dunachie S, Haughney J, Robertson DL, Palmarini M, Ray S, Thomson EC. SARS-CoV-2 Omicron is an immune escape variant with an altered cell entry pathway. Nat Microbiol 2022; 7:1161-1179. [PMID: 35798890 PMCID: PMC9352574 DOI: 10.1038/s41564-022-01143-7] [Citation(s) in RCA: 410] [Impact Index Per Article: 136.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 05/03/2022] [Indexed: 12/12/2022]
Abstract
Vaccines based on the spike protein of SARS-CoV-2 are a cornerstone of the public health response to COVID-19. The emergence of hypermutated, increasingly transmissible variants of concern (VOCs) threaten this strategy. Omicron (B.1.1.529), the fifth VOC to be described, harbours multiple amino acid mutations in spike, half of which lie within the receptor-binding domain. Here we demonstrate substantial evasion of neutralization by Omicron BA.1 and BA.2 variants in vitro using sera from individuals vaccinated with ChAdOx1, BNT162b2 and mRNA-1273. These data were mirrored by a substantial reduction in real-world vaccine effectiveness that was partially restored by booster vaccination. The Omicron variants BA.1 and BA.2 did not induce cell syncytia in vitro and favoured a TMPRSS2-independent endosomal entry pathway, these phenotypes mapping to distinct regions of the spike protein. Impaired cell fusion was determined by the receptor-binding domain, while endosomal entry mapped to the S2 domain. Such marked changes in antigenicity and replicative biology may underlie the rapid global spread and altered pathogenicity of the Omicron variant.
Collapse
Affiliation(s)
- Brian J Willett
- MRC-University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow, UK.
| | - Joe Grove
- MRC-University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow, UK.
| | - Oscar A MacLean
- MRC-University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow, UK
| | - Craig Wilkie
- School of Mathematics & Statistics, University of Glasgow, Glasgow, UK
| | - Giuditta De Lorenzo
- MRC-University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow, UK
| | - Wilhelm Furnon
- MRC-University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow, UK
| | - Diego Cantoni
- MRC-University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow, UK
| | - Sam Scott
- MRC-University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow, UK
| | - Nicola Logan
- MRC-University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow, UK
| | - Shirin Ashraf
- MRC-University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow, UK
| | - Maria Manali
- MRC-University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow, UK
| | - Agnieszka Szemiel
- MRC-University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow, UK
| | - Vanessa Cowton
- MRC-University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow, UK
| | - Elen Vink
- MRC-University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow, UK
| | - William T Harvey
- MRC-University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow, UK
| | - Chris Davis
- MRC-University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow, UK
| | - Patawee Asamaphan
- MRC-University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow, UK
| | - Katherine Smollett
- MRC-University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow, UK
| | - Lily Tong
- MRC-University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow, UK
| | - Richard Orton
- MRC-University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow, UK
| | - Joseph Hughes
- MRC-University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow, UK
| | | | | | - David J Pascall
- MRC Biostatistics Unit, University of Cambridge, Cambridge, UK
| | | | - Ana da Silva Filipe
- MRC-University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow, UK
| | | | | | - Matthew T G Holden
- Public Health Scotland, Glasgow, UK
- School of Medicine, University of St Andrews, St Andrews, UK
| | - Rute Maria Pinto
- MRC-University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow, UK
| | | | | | - Pablo R Murcia
- MRC-University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow, UK
| | - Arvind H Patel
- MRC-University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow, UK
| | | | | | | | - David L Robertson
- MRC-University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow, UK
| | - Massimo Palmarini
- MRC-University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow, UK
| | - Surajit Ray
- School of Mathematics & Statistics, University of Glasgow, Glasgow, UK
| | - Emma C Thomson
- MRC-University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow, UK.
- NHS Greater Glasgow & Clyde, Glasgow, UK.
- London School of Hygiene and Tropical Medicine, London, UK.
| |
Collapse
|
140
|
Lan J, Chen P, Liu W, Ren W, Zhang L, Ding Q, Zhang Q, Wang X, Ge J. Structural insights into the binding of SARS-CoV-2, SARS-CoV, and hCoV-NL63 spike receptor-binding domain to horse ACE2. Structure 2022; 30:1432-1442.e4. [PMID: 35917815 PMCID: PMC9341007 DOI: 10.1016/j.str.2022.07.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 06/06/2022] [Accepted: 07/07/2022] [Indexed: 11/22/2022]
Abstract
Severe acute respiratory syndrome coronavirus (SARS-CoV), SARS-CoV-2, and human coronavirus (hCoV)-NL63 utilize ACE2 as the functional receptor for cell entry, which leads to zoonotic infection. Horses (Equus caballus) attracted our attention because the spike protein receptor-binding domains (RBDs) of SARS-CoV-2 and SARS-CoV-2-related coronaviruses bind equine ACE2 (eACE2) with high affinity. Here we show that eACE2 binds the RBDs of these three coronaviruses and also SARS-CoV-2 variants but with lower affinities compared with human ACE2 (hACE2). Structural analysis and mutation assays indicated that eACE2-H41 accounts for the lower binding affinity of eACE2 to the RBDs of SARS-CoV-2 variants (Alpha, Beta, and Gamma), SARS-CoV, and hCoV-NL63. Pseudovirus infection assays showed that the SARS-CoV-2 Delta strain (B.1.617.2) displayed a significantly increased infection efficiency in eACE2-expressing HeLa cells. Our results reveal the molecular basis of eACE2 binding to the RBDs of SARS-CoV, SARS-CoV-2, and hCoV-NL63, which provides insights into the potential animal transmission of these ACE2-dependent coronaviruses.
Collapse
Affiliation(s)
- Jun Lan
- The Ministry of Education Key Laboratory of Protein Science, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing, China
| | - Peng Chen
- Comprehensive AIDS Research Center, Beijing Advanced Innovation Center for Structural Biology, School of Medicine and Vanke School of Public Health, Tsinghua University, Beijing, China
| | - Weiming Liu
- Department of Critical Care Medicine, Beijing Boai Hospital, China Rehabilitation Research Centre, No. 10 Jiaomen Beilu, Fengtai District, Beijing 100068, China
| | - Wenlin Ren
- Center for Infectious Disease Research, Beijing Advanced Innovation Center for Structural Biology, School of Medicine, Tsinghua University, Beijing, China
| | - Linqi Zhang
- Comprehensive AIDS Research Center, Beijing Advanced Innovation Center for Structural Biology, School of Medicine and Vanke School of Public Health, Tsinghua University, Beijing, China
| | - Qiang Ding
- Center for Infectious Disease Research, Beijing Advanced Innovation Center for Structural Biology, School of Medicine, Tsinghua University, Beijing, China
| | - Qi Zhang
- Comprehensive AIDS Research Center, Beijing Advanced Innovation Center for Structural Biology, School of Medicine and Vanke School of Public Health, Tsinghua University, Beijing, China.
| | - Xinquan Wang
- The Ministry of Education Key Laboratory of Protein Science, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing, China.
| | - Jiwan Ge
- The Ministry of Education Key Laboratory of Protein Science, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing, China; Tsinghua-Peking Center for Life Sciences, Beijing, China.
| |
Collapse
|
141
|
The importance of effect sizes when comparing cycle threshold values of SARS-CoV-2 variants. PLoS One 2022; 17:e0271808. [PMID: 35862414 PMCID: PMC9302753 DOI: 10.1371/journal.pone.0271808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 07/07/2022] [Indexed: 12/02/2022] Open
Abstract
Purpose We aimed to elaborate whether cycle threshold (Ct) values differ significantly between wild type SARS-CoV-2 (wtV) and certain viral variants and how strong or weak a potential significant effect might be. Methods In a retrospective study, we investigated 1873 SARS-CoV-2 positive samples for the occurrence of viral marker mutations. Age, gender, clinical setting, days after onset of symptoms, and Ct values were recorded. Statistical analysis was carried out with special consideration of effect sizes. Results During the study period wtV was detected in 1013 samples (54%), while 845 (45%) patients carried the Alpha variant of concern (VOC), and 15 (1%) the Beta VOC. For further analysis, only wtV and the Alpha VOC were included. In a multi-factor ANOVA and post-hoc test with Bonferroni-correction for the age groups we found significant main-effects for Ct values of the viral variant (wtV mean 26.4 (SD 4.27); Alpha VOC mean 25.0 (SD 3.84); F (1,1850) = 55.841; p < .001) and the clinical setting (outpatients: mean 25.7 (SD 4.1); inpatients: mean 27.0 (SD 4.2); F (1,1850) = 8.520, p = .004). However, since the effect sizes were very small (eta squared for the Alpha VOC = .029 and the clinical setting = .004), there was only a slight trend towards higher viral loads of the Alpha VOC compared to wtV. Conclusions In order to compare different variants of SARS-CoV-2 the calculation of effect sizes seems to be necessary. A combination of p-values as estimates of the existance of an effect and effect sizes as estimates of the magnitude of a potential effect may allow a better insight into transmission mechanisms of SARS-CoV-2.
Collapse
|
142
|
Yang KS, Leeuwon SZ, Xu S, Liu WR. Evolutionary and Structural Insights about Potential SARS-CoV-2 Evasion of Nirmatrelvir. J Med Chem 2022; 65:8686-8698. [PMID: 35731933 PMCID: PMC9236210 DOI: 10.1021/acs.jmedchem.2c00404] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Indexed: 12/15/2022]
Abstract
The U.S. FDA approval of PAXLOVID, a combination therapy of nirmatrelvir and ritonavir has significantly boosted our morale in fighting the COVID-19 pandemic. Nirmatrelvir is an inhibitor of the main protease (MPro) of SARS-CoV-2. Since many SARS-CoV-2 variants that resist vaccines and antibodies have emerged, a concern of acquired viral resistance to nirmatrelvir naturally arises. Here, possible mutations in MPro to confer viral evasion of nirmatrelvir are analyzed and discussed from both evolutionary and structural standpoints. The analysis indicates that those mutations will likely reside in the whole aa45-51 helical region and residues including M165, L167, P168, R188, and Q189. Relevant mutations have also been observed in existing SARS-CoV-2 samples. Implications of this analysis to the fight against future drug-resistant viral variants and the development of broad-spectrum antivirals are discussed as well.
Collapse
Affiliation(s)
- Kai S. Yang
- Texas A&M Drug Discovery Laboratory, Department of Chemistry, Texas A&M University, College Station, TX 7743, USA
| | - Sunshine Z. Leeuwon
- Texas A&M Drug Discovery Laboratory, Department of Chemistry, Texas A&M University, College Station, TX 7743, USA
| | - Shiqing Xu
- Texas A&M Drug Discovery Laboratory, Department of Chemistry, Texas A&M University, College Station, TX 7743, USA
| | - Wenshe Ray Liu
- Texas A&M Drug Discovery Laboratory, Department of Chemistry, Texas A&M University, College Station, TX 7743, USA
- Institute of Biosciences and Technology and Department of Translational Medical Sciences, College of Medicine, Texas A&M University, Houston, TX 77030, USA
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
- Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
143
|
Zhu Y, Dong X, Liu N, Wu T, Chong H, Lei X, Ren L, Wang J, He Y. SARS-CoV-2 fusion-inhibitory lipopeptides maintain high potency against divergent variants of concern (VOCs) including Omicron. Emerg Microbes Infect 2022; 11:1819-1827. [PMID: 35786417 PMCID: PMC9310806 DOI: 10.1080/22221751.2022.2098060] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The emergence of SARS-CoV-2 Omicron and other variants of concern (VOCs) has brought huge challenges to control the COVID-19 pandemic, calling for urgent development of effective vaccines and therapeutic drugs. In this study, we focused on characterizing the impacts of divergent VOCs on the antiviral activity of lipopeptide-based fusion inhibitors that we previously developed. First, we found that pseudoviruses bearing the S proteins of five VOCs (Alpha, Beta, Gamma, Delta, and Omicron) and one variant of interest (Lambda) exhibited greatly decreased infectivity relative to the wild-type (WT) strain or single D614G mutant, especially the Omicron pseudovirus. Differently, the most of variants exhibited an S protein with significantly enhanced cell fusion activity, whereas the S protein of Omicron still mediated decreased cell–cell fusion. Next, we verified that two lipopeptide-based fusion inhibitors, IPB02V3 and IPB24, maintained the highly potent activities in inhibiting various S proteins-driven cell fusion and pseudovirus infection. Surprisingly, both IPB02V3 and IPB24 lipopeptides displayed greatly increased potencies against the infection of authentic Omicron strain relative to the WT virus. The results suggest that Omicron variant evolves with a reduced cell fusion capacity and is more sensitive to the inhibition of fusion-inhibitory lipopeptides; thus, IPB02V3 and IPB24 can be further developed as potent, broad-spectrum antivirals for combating Omicron and the potential future outbreak of other emerging variants.
Collapse
Affiliation(s)
- Yuanmei Zhu
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology and Center for AIDS Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Xiaojing Dong
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology and Center for AIDS Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Nian Liu
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology and Center for AIDS Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Tong Wu
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology and Center for AIDS Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Huihui Chong
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology and Center for AIDS Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Xiaobo Lei
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology and Center for AIDS Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Lili Ren
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology and Center for AIDS Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Jianwei Wang
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology and Center for AIDS Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Yuxian He
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology and Center for AIDS Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| |
Collapse
|
144
|
Fibke CD, Joffres Y, Tyson JR, Colijn C, Janjua NZ, Fjell C, Prystajecky N, Jassem A, Sbihi H. Spike Mutation Profiles Associated With SARS-CoV-2 Breakthrough Infections in Delta Emerging and Predominant Time Periods in British Columbia, Canada. Front Public Health 2022; 10:915363. [PMID: 35859775 PMCID: PMC9289444 DOI: 10.3389/fpubh.2022.915363] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 06/10/2022] [Indexed: 11/24/2022] Open
Abstract
Background COVID-19 vaccination is a key public health measure in the pandemic response. The rapid evolution of SARS-CoV-2 variants introduce new groups of spike protein mutations. These new mutations are thought to aid in the evasion of vaccine-induced immunity and render vaccines less effective. However, not all spike mutations contribute equally to vaccine escape. Previous studies associate mutations with vaccine breakthrough infections (BTI), but information at the population level remains scarce. We aimed to identify spike mutations associated with SARS-CoV-2 vaccine BTI in a community setting during the emergence and predominance of the Delta-variant. Methods This case-control study used both genomic, and epidemiological data from a provincial COVID-19 surveillance program. Analyses were stratified into two periods approximating the emergence and predominance of the Delta-variant, and restricted to primary SARS-CoV-2 infections from either unvaccinated individuals, or those infected ≥14 days after their second vaccination dose in a community setting. Each sample's spike mutations were concatenated into a unique spike mutation profile (SMP). Penalized logistic regression was used to identify spike mutations and SMPs associated with SARS-CoV-2 vaccine BTI in both time periods. Results and Discussion This study reports population level relative risk estimates, between 2 and 4-folds, of spike mutation profiles associated with BTI during the emergence and predominance of the Delta-variant, which comprised 19,624 and 17,331 observations, respectively. The identified mutations cover multiple spike domains including the N-terminal domain (NTD), receptor binding domain (RBD), S1/S2 cleavage region, fusion peptide and heptad regions. Mutations in these different regions imply various mechanisms contribute to vaccine escape. Our profiling method identifies naturally occurring spike mutations associated with BTI, and can be applied to emerging SARS-CoV-2 variants with novel groups of spike mutations.
Collapse
Affiliation(s)
- Chad D. Fibke
- BC Centre for Disease Control, UBC BCCDC, Vancouver, BC, Canada
| | - Yayuk Joffres
- BC Center for Disease Control, Data and Analytics Services, Vancouver, BC, Canada
| | - John R. Tyson
- Public Health Laboratory, BC Center for Disease Control, Vancouver, BC, Canada
| | - Caroline Colijn
- Department of Mathematics, Simon Fraser University, Burnaby, BC, Canada
| | - Naveed Z. Janjua
- BC Center for Disease Control, Data and Analytics Services, Vancouver, BC, Canada
- School of Population and Public Health, The University of British Columbia, Vancouver, BC, Canada
| | - Chris Fjell
- Public Health Laboratory, BC Center for Disease Control, Vancouver, BC, Canada
| | - Natalie Prystajecky
- Public Health Laboratory, BC Center for Disease Control, Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, The University of British Columbia, Vancouver, BC, Canada
| | - Agatha Jassem
- Public Health Laboratory, BC Center for Disease Control, Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, The University of British Columbia, Vancouver, BC, Canada
| | - Hind Sbihi
- BC Center for Disease Control, Data and Analytics Services, Vancouver, BC, Canada
- School of Population and Public Health, The University of British Columbia, Vancouver, BC, Canada
- *Correspondence: Hind Sbihi
| |
Collapse
|
145
|
Qi H, Liu B, Wang X, Zhang L. The humoral response and antibodies against SARS-CoV-2 infection. Nat Immunol 2022; 23:1008-1020. [PMID: 35761083 DOI: 10.1038/s41590-022-01248-5] [Citation(s) in RCA: 115] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 04/22/2022] [Indexed: 12/14/2022]
Abstract
Two and a half years into the COVID-19 pandemic, we have gained many insights into the human antibody response to the causative SARS-CoV-2 virus. In this Review, we summarize key observations of humoral immune responses in people with COVID-19, discuss key features of infection- and vaccine-induced neutralizing antibodies, and consider vaccine designs for inducing antibodies that are broadly protective against different variants of the SARS-CoV-2 virus.
Collapse
Affiliation(s)
- Hai Qi
- Tsinghua-Peking Center for Life Sciences, Beijing, China. .,Laboratory of Dynamic Immunobiology, Institute for Immunology, Tsinghua University, Beijing, China. .,Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China. .,NexVac Research Center, Tsinghua University, Beijing, China. .,Beijing Key Laboratory for Immunological Research on Chronic Diseases, Beijing, China. .,Beijing Frontier Research Center for Biological Structure, Tsinghua University, Beijing, China.
| | - Bo Liu
- Tsinghua-Peking Center for Life Sciences, Beijing, China.,Laboratory of Dynamic Immunobiology, Institute for Immunology, Tsinghua University, Beijing, China.,Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - Xinquan Wang
- Beijing Frontier Research Center for Biological Structure, Tsinghua University, Beijing, China.,School of Life Sciences, Tsinghua University, Beijing, China
| | - Linqi Zhang
- Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China. .,NexVac Research Center, Tsinghua University, Beijing, China. .,Beijing Frontier Research Center for Biological Structure, Tsinghua University, Beijing, China. .,Comprehensive AIDS Research Center, Center for Global Health and Infectious Diseases, Tsinghua University, Beijing, China.
| |
Collapse
|
146
|
Routhu NK, Gangadhara S, Lai L, Davis Gardner ME, Floyd K, Shiferaw A, Bartsch YC, Fischinger S, Khoury G, Rahman SA, Stampfer SD, Schaefer A, Jean SM, Wallace C, Stammen RL, Wood J, Cohen J, Nagy T, Parsons MS, Gralinski L, Kozlowski PA, Alter G, Suthar MS, Amara RR. A modified vaccinia Ankara vaccine expressing spike and nucleocapsid protects rhesus macaques against SARS-CoV-2 Delta infection. Sci Immunol 2022; 7:eabo0226. [PMID: 35357886 PMCID: PMC8995033 DOI: 10.1126/sciimmunol.abo0226] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 03/25/2022] [Indexed: 12/19/2022]
Abstract
SARS-CoV-2 vaccines should induce broadly cross-reactive humoral and T cell responses to protect against emerging variants of concern (VOCs). Here, we inactivated the furin cleavage site (FCS) of spike expressed by a modified vaccinia Ankara (MVA) virus vaccine (MVA/SdFCS) and found that FCS inactivation markedly increased spike binding to human ACE2. After vaccination of mice, the MVA/SdFCS vaccine induced eightfold higher neutralizing antibodies compared with MVA/S, which expressed spike without FCS inactivation, and protected against the Beta variant. We next added nucleocapsid to the MVA/SdFCS vaccine (MVA/SdFCS-N) and tested its immunogenicity and efficacy via intramuscular (IM), buccal (BU), or sublingual (SL) routes in rhesus macaques. IM vaccination induced spike-specific IgG in serum and mucosae (nose, throat, lung, and rectum) that neutralized the homologous (WA-1/2020) and heterologous VOCs, including Delta, with minimal loss (<2-fold) of activity. IM vaccination also induced both spike- and nucleocapsid-specific CD4 and CD8 T cell responses in the blood. In contrast, the SL and BU vaccinations induced less spike-specific IgG in secretions and lower levels of polyfunctional IgG in serum compared with IM vaccination. After challenge with the SARS-CoV-2 Delta variant, the IM route induced robust protection, the BU route induced moderate protection, and the SL route induced no protection. Vaccine-induced neutralizing and non-neutralizing antibody effector functions positively correlated with protection, but only the effector functions correlated with early protection. Thus, IM vaccination with MVA/SdFCS-N vaccine elicited cross-reactive antibody and T cell responses, protecting against heterologous SARS-CoV-2 VOC more effectively than other routes of vaccination.
Collapse
Affiliation(s)
- Nanda Kishore Routhu
- Division of Microbiology and Immunology, Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, Georgia 30329, USA
- Department of Microbiology and Immunology, Emory School of Medicine, Emory University, Atlanta, Georgia 30322, USA
| | - Sailaja Gangadhara
- Division of Microbiology and Immunology, Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, Georgia 30329, USA
- Department of Microbiology and Immunology, Emory School of Medicine, Emory University, Atlanta, Georgia 30322, USA
| | - Lilin Lai
- Division of Microbiology and Immunology, Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, Georgia 30329, USA
| | - Meredith Elizabeth Davis Gardner
- Division of Microbiology and Immunology, Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, Georgia 30329, USA
| | - Katharine Floyd
- Division of Microbiology and Immunology, Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, Georgia 30329, USA
| | - Ayalnesh Shiferaw
- Division of Microbiology and Immunology, Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, Georgia 30329, USA
- Department of Microbiology and Immunology, Emory School of Medicine, Emory University, Atlanta, Georgia 30322, USA
| | - Yannic C Bartsch
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts 02139, USA
| | | | - Georges Khoury
- Division of Microbiology and Immunology, Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, Georgia 30329, USA
| | - Sheikh Abdul Rahman
- Division of Microbiology and Immunology, Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, Georgia 30329, USA
- Department of Microbiology and Immunology, Emory School of Medicine, Emory University, Atlanta, Georgia 30322, USA
| | - Samuel David Stampfer
- Division of Microbiology and Immunology, Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, Georgia 30329, USA
- Department of Microbiology and Immunology, Emory School of Medicine, Emory University, Atlanta, Georgia 30322, USA
| | - Alexandra Schaefer
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Sherrie M. Jean
- Division of Animal Resources, Yerkes National Primate Research Center, Emory University, Atlanta, Georgia 30329, USA
| | - Chelsea Wallace
- Division of Animal Resources, Yerkes National Primate Research Center, Emory University, Atlanta, Georgia 30329, USA
| | - Rachelle L. Stammen
- Division of Animal Resources, Yerkes National Primate Research Center, Emory University, Atlanta, Georgia 30329, USA
| | - Jennifer Wood
- Division of Animal Resources, Yerkes National Primate Research Center, Emory University, Atlanta, Georgia 30329, USA
| | - Joyce Cohen
- Division of Animal Resources, Yerkes National Primate Research Center, Emory University, Atlanta, Georgia 30329, USA
| | - Tamas Nagy
- College of Veterinary Medicine, University of Georgia, Athens, Georgia 30602, USA
| | - Matthew S. Parsons
- Division of Microbiology and Immunology, Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, Georgia 30329, USA
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Lisa Gralinski
- Department of Epidemiology, University of North Carolina, Chapel Hill, North Carolina 27516, USA
| | - Pamela A. Kozlowski
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center, New Orleans, Louisiana 70112, USA
| | - Galit Alter
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts 02139, USA
| | - Mehul S. Suthar
- Division of Microbiology and Immunology, Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, Georgia 30329, USA
- Department of Pediatrics, Division of Infectious Diseases, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Rama Rao Amara
- Division of Microbiology and Immunology, Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, Georgia 30329, USA
- Department of Microbiology and Immunology, Emory School of Medicine, Emory University, Atlanta, Georgia 30322, USA
| |
Collapse
|
147
|
Mezger MC, Conzelmann C, Weil T, von Maltitz P, Albers DPJ, Münch J, Stamminger T, Schilling EM. Inhibitors of Activin Receptor-like Kinase 5 Interfere with SARS-CoV-2 S-Protein Processing and Spike-Mediated Cell Fusion via Attenuation of Furin Expression. Viruses 2022; 14:v14061308. [PMID: 35746781 PMCID: PMC9228453 DOI: 10.3390/v14061308] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/08/2022] [Accepted: 06/13/2022] [Indexed: 01/18/2023] Open
Abstract
Screening of a protein kinase inhibitor library identified SB431542, targeting activin receptor-like kinase 5 (ALK5), as a compound interfering with SARS-CoV-2 replication. Since ALK5 is implicated in transforming growth factor β (TGF-β) signaling and regulation of the cellular endoprotease furin, we pursued this research to clarify the role of this protein kinase for SARS-CoV-2 infection. We show that TGF-β1 induces the expression of furin in a broad spectrum of cells including Huh-7 and Calu-3 that are permissive for SARS-CoV-2. The inhibition of ALK5 by incubation with SB431542 revealed a dose-dependent downregulation of both basal and TGF-β1 induced furin expression. Furthermore, we demonstrate that the ALK5 inhibitors SB431542 and Vactosertib negatively affect the proteolytic processing of the SARS-CoV-2 Spike protein and significantly reduce spike-mediated cell-cell fusion. This correlated with an inhibitory effect of ALK5 inhibition on the production of infectious SARS-CoV-2. Altogether, our study shows that interference with ALK5 signaling attenuates SARS-CoV-2 infectivity and cell-cell spread via downregulation of furin which is most pronounced upon TGF-β stimulation. Since a TGF-β dominated cytokine storm is a hallmark of severe COVID-19, ALK5 inhibitors undergoing clinical trials might represent a potential therapy option for COVID-19.
Collapse
Affiliation(s)
- Maja C. Mezger
- Institute of Virology, Ulm University Medical Center, 89081 Ulm, Germany; (M.C.M.); (E.-M.S.)
| | - Carina Conzelmann
- Institute of Molecular Virology, Ulm University Medical Center, 89081 Ulm, Germany; (C.C.); (T.W.); (P.v.M.); (D.P.J.A.); (J.M.)
| | - Tatjana Weil
- Institute of Molecular Virology, Ulm University Medical Center, 89081 Ulm, Germany; (C.C.); (T.W.); (P.v.M.); (D.P.J.A.); (J.M.)
| | - Pascal von Maltitz
- Institute of Molecular Virology, Ulm University Medical Center, 89081 Ulm, Germany; (C.C.); (T.W.); (P.v.M.); (D.P.J.A.); (J.M.)
| | - Dan P. J. Albers
- Institute of Molecular Virology, Ulm University Medical Center, 89081 Ulm, Germany; (C.C.); (T.W.); (P.v.M.); (D.P.J.A.); (J.M.)
| | - Jan Münch
- Institute of Molecular Virology, Ulm University Medical Center, 89081 Ulm, Germany; (C.C.); (T.W.); (P.v.M.); (D.P.J.A.); (J.M.)
| | - Thomas Stamminger
- Institute of Virology, Ulm University Medical Center, 89081 Ulm, Germany; (M.C.M.); (E.-M.S.)
- Correspondence: ; Tel.: +49-731-50065100
| | - Eva-Maria Schilling
- Institute of Virology, Ulm University Medical Center, 89081 Ulm, Germany; (M.C.M.); (E.-M.S.)
| |
Collapse
|
148
|
Guérin P, Yahi N, Azzaz F, Chahinian H, Sabatier JM, Fantini J. Structural Dynamics of the SARS-CoV-2 Spike Protein: A 2-Year Retrospective Analysis of SARS-CoV-2 Variants (from Alpha to Omicron) Reveals an Early Divergence between Conserved and Variable Epitopes. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27123851. [PMID: 35744971 PMCID: PMC9230616 DOI: 10.3390/molecules27123851] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/09/2022] [Accepted: 06/13/2022] [Indexed: 12/17/2022]
Abstract
We analyzed the epitope evolution of the spike protein in 1,860,489 SARS-CoV-2 genomes. The structural dynamics of these epitopes was determined by molecular modeling approaches. The D614G mutation, selected in the first months of the pandemic, is still present in currently circulating SARS-CoV-2 strains. This mutation facilitates the conformational change leading to the demasking of the ACE2 binding domain. D614G also abrogated the binding of facilitating antibodies to a linear epitope common to SARS-CoV-1 and SARS-CoV-2. The main neutralizing epitope of the N-terminal domain (NTD) of the spike protein showed extensive structural variability in SARS-CoV-2 variants, especially Delta and Omicron. This epitope is located on the flat surface of the NTD, a large electropositive area which binds to electronegatively charged lipid rafts of host cells. A facilitating epitope located on the lower part of the NTD appeared to be highly conserved among most SARS-CoV-2 variants, which may represent a risk of antibody-dependent enhancement (ADE). Overall, this retrospective analysis revealed an early divergence between conserved (facilitating) and variable (neutralizing) epitopes of the spike protein. These data aid in the designing of new antiviral strategies that could help to control COVID-19 infection by mimicking neutralizing antibodies or by blocking facilitating antibodies.
Collapse
Affiliation(s)
| | - Nouara Yahi
- INSERM UMR_S 1072, Aix-Marseille University, CEDEX, 13015 Marseille, France; (N.Y.); (F.A.); (H.C.)
| | - Fodil Azzaz
- INSERM UMR_S 1072, Aix-Marseille University, CEDEX, 13015 Marseille, France; (N.Y.); (F.A.); (H.C.)
| | - Henri Chahinian
- INSERM UMR_S 1072, Aix-Marseille University, CEDEX, 13015 Marseille, France; (N.Y.); (F.A.); (H.C.)
| | - Jean-Marc Sabatier
- Inst Neurophysiopathol, Aix-Marseille University, CNRS, INP, CEDEX, 13005 Marseille, France;
| | - Jacques Fantini
- INSERM UMR_S 1072, Aix-Marseille University, CEDEX, 13015 Marseille, France; (N.Y.); (F.A.); (H.C.)
- Correspondence:
| |
Collapse
|
149
|
Wang Z, Muecksch F, Cho A, Gaebler C, Hoffmann HH, Ramos V, Zong S, Cipolla M, Johnson B, Schmidt F, DaSilva J, Bednarski E, Ben Tanfous T, Raspe R, Yao K, Lee YE, Chen T, Turroja M, Milard KG, Dizon J, Kaczynska A, Gazumyan A, Oliveira TY, Rice CM, Caskey M, Bieniasz PD, Hatziioannou T, Barnes CO, Nussenzweig MC. Analysis of memory B cells identifies conserved neutralizing epitopes on the N-terminal domain of variant SARS-Cov-2 spike proteins. Immunity 2022; 55:998-1012.e8. [PMID: 35447092 PMCID: PMC8986478 DOI: 10.1016/j.immuni.2022.04.003] [Citation(s) in RCA: 81] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/15/2022] [Accepted: 04/01/2022] [Indexed: 11/17/2022]
Abstract
SARS-CoV-2 infection or vaccination produces neutralizing antibody responses that contribute to better clinical outcomes. The receptor-binding domain (RBD) and the N-terminal domain (NTD) of the spike trimer (S) constitute the two major neutralizing targets for antibodies. Here, we use NTD-specific probes to capture anti-NTD memory B cells in a longitudinal cohort of infected individuals, some of whom were vaccinated. We found 6 complementation groups of neutralizing antibodies. 58% targeted epitopes outside the NTD supersite, 58% neutralized either Gamma or Omicron, and 14% were broad neutralizers that also neutralized Omicron. Structural characterization revealed that broadly active antibodies targeted three epitopes outside the NTD supersite including a class that recognized both the NTD and SD2 domain. Rapid recruitment of memory B cells producing these antibodies into the plasma cell compartment upon re-infection likely contributes to the relatively benign course of subsequent infections with SARS-CoV-2 variants, including Omicron.
Collapse
Affiliation(s)
- Zijun Wang
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Frauke Muecksch
- Laboratory of Retrovirology, The Rockefeller University, New York, NY 10065, USA
| | - Alice Cho
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Christian Gaebler
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Hans-Heinrich Hoffmann
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY, USA
| | - Victor Ramos
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Shuai Zong
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Melissa Cipolla
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Briana Johnson
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Fabian Schmidt
- Laboratory of Retrovirology, The Rockefeller University, New York, NY 10065, USA
| | - Justin DaSilva
- Laboratory of Retrovirology, The Rockefeller University, New York, NY 10065, USA
| | - Eva Bednarski
- Laboratory of Retrovirology, The Rockefeller University, New York, NY 10065, USA
| | - Tarek Ben Tanfous
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Raphael Raspe
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Kaihui Yao
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Yu E Lee
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Teresia Chen
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Martina Turroja
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Katrina G Milard
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Juan Dizon
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Anna Kaczynska
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Anna Gazumyan
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Thiago Y Oliveira
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Charles M Rice
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY, USA
| | - Marina Caskey
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Paul D Bieniasz
- Laboratory of Retrovirology, The Rockefeller University, New York, NY 10065, USA; Howard Hughes Medical Institute, Chevy Chase, MD, USA.
| | | | - Christopher O Barnes
- Department of Biology, Stanford University, Stanford, CA 94305, USA; Chan Zuckerberg Biohub, San Francisco, CA 94158, USA.
| | - Michel C Nussenzweig
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA; Howard Hughes Medical Institute, Chevy Chase, MD, USA.
| |
Collapse
|
150
|
Granata V, Fusco R, Villanacci A, Magliocchetti S, Urraro F, Tetaj N, Marchioni L, Albarello F, Campioni P, Cristofaro M, Di Stefano F, Fusco N, Petrone A, Schininà V, Grassi F, Girardi E, Ianniello S. Imaging Severity COVID-19 Assessment in Vaccinated and Unvaccinated Patients: Comparison of the Different Variants in a High Volume Italian Reference Center. J Pers Med 2022; 12:955. [PMID: 35743740 PMCID: PMC9224665 DOI: 10.3390/jpm12060955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/03/2022] [Accepted: 06/09/2022] [Indexed: 11/17/2022] Open
Abstract
Purpose: To analyze the vaccine effect by comparing five groups: unvaccinated patients with Alpha variant, unvaccinated patients with Delta variant, vaccinated patients with Delta variant, unvaccinated patients with Omicron variant, and vaccinated patients with Omicron variant, assessing the “gravity” of COVID-19 pulmonary involvement, based on CT findings in critically ill patients admitted to Intensive Care Unit (ICU). Methods: Patients were selected by ICU database considering the period from December 2021 to 23 March 2022, according to the following inclusion criteria: patients with proven Omicron variant COVID-19 infection with known COVID-19 vaccination with at least two doses and with chest Computed Tomography (CT) study during ICU hospitalization. Wee also evaluated the ICU database considering the period from March 2020 to December 2021, to select unvaccinated consecutive patients with Alpha variant, subjected to CT study, consecutive unvaccinated and vaccinated patients with Delta variant, subjected to CT study, and, consecutive unvaccinated patients with Omicron variant, subjected to CT study. CT images were evaluated qualitatively using a severity score scale of 5 levels (none involvement, mild: ≤25% of involvement, moderate: 26−50% of involvement, severe: 51−75% of involvement, and critical involvement: 76−100%) and quantitatively, using the Philips IntelliSpace Portal clinical application CT COPD computer tool. For each patient the lung volumetry was performed identifying the percentage value of aerated residual lung volume. Non-parametric tests for continuous and categorical variables were performed to assess statistically significant differences among groups. Results: The patient study group was composed of 13 vaccinated patients affected by the Omicron variant (Omicron V). As control groups we identified: 20 unvaccinated patients with Alpha variant (Alpha NV); 20 unvaccinated patients with Delta variant (Delta NV); 18 vaccinated patients with Delta variant (Delta V); and 20 unvaccinated patients affected by the Omicron variant (Omicron NV). No differences between the groups under examination were found (p value > 0.05 at Chi square test) in terms of risk factors (age, cardiovascular diseases, diabetes, immunosuppression, chronic kidney, cardiac, pulmonary, neurologic, and liver disease, etc.). A different median value of aerated residual lung volume was observed in the Delta variant groups: median value of aerated residual lung volume was 46.70% in unvaccinated patients compared to 67.10% in vaccinated patients. In addition, in patients with Delta variant every other extracted volume by automatic tool showed a statistically significant difference between vaccinated and unvaccinated group. Statistically significant differences were observed for each extracted volume by automatic tool between unvaccinated patients affected by Alpha variant and vaccinated patients affected by Delta variant of COVID-19. Good statistically significant correlations among volumes extracted by automatic tool for each lung lobe and overall radiological severity score were obtained (ICC range 0.71−0.86). GGO was the main sign of COVID-19 lesions on CT images found in 87 of the 91 (95.6%) patients. No statistically significant differences were observed in CT findings (ground glass opacities (GGO), consolidation or crazy paving sign) among patient groups. Conclusion: In our study, we showed that in critically ill patients no difference were observed in terms of severity of disease or exitus, between unvaccinated and vaccinated patients. The only statistically significant differences were observed, with regard to the severity of COVID-19 pulmonary parenchymal involvement, between unvaccinated patients affected by Alpha variant and vaccinated patients affected by Delta variant, and between unvaccinated patients with Delta variant and vaccinated patients with Delta variant.
Collapse
Affiliation(s)
- Vincenza Granata
- Division of Radiology, Istituto Nazionale Tumori IRCCS Fondazione Pascale—IRCCS di Napoli, 80131 Naples, Italy;
| | - Roberta Fusco
- Medical Oncology Division, Igea SpA, 80013 Napoli, Italy
| | - Alberta Villanacci
- Diagnostic Imaging of Infectious Diseases, National Institute for Infectious Diseases Lazzaro Spallanzani IRCCS, 00149 Rome, Italy; (A.V.); (F.A.); (P.C.); (M.C.); (F.D.S.); (N.F.); (A.P.); (V.S.); (S.I.)
| | - Simona Magliocchetti
- Division of Radiology, Università degli Studi della Campania Luigi Vanvitelli, 80128 Naples, Italy; (S.M.); (F.U.); (F.G.)
| | - Fabrizio Urraro
- Division of Radiology, Università degli Studi della Campania Luigi Vanvitelli, 80128 Naples, Italy; (S.M.); (F.U.); (F.G.)
| | - Nardi Tetaj
- Intensive Care Unit, National Institute for Infectious Diseases Lazzaro Spallanzani IRCCS, 00149 Rome, Italy; (N.T.); (L.M.)
| | - Luisa Marchioni
- Intensive Care Unit, National Institute for Infectious Diseases Lazzaro Spallanzani IRCCS, 00149 Rome, Italy; (N.T.); (L.M.)
| | - Fabrizio Albarello
- Diagnostic Imaging of Infectious Diseases, National Institute for Infectious Diseases Lazzaro Spallanzani IRCCS, 00149 Rome, Italy; (A.V.); (F.A.); (P.C.); (M.C.); (F.D.S.); (N.F.); (A.P.); (V.S.); (S.I.)
| | - Paolo Campioni
- Diagnostic Imaging of Infectious Diseases, National Institute for Infectious Diseases Lazzaro Spallanzani IRCCS, 00149 Rome, Italy; (A.V.); (F.A.); (P.C.); (M.C.); (F.D.S.); (N.F.); (A.P.); (V.S.); (S.I.)
| | - Massimo Cristofaro
- Diagnostic Imaging of Infectious Diseases, National Institute for Infectious Diseases Lazzaro Spallanzani IRCCS, 00149 Rome, Italy; (A.V.); (F.A.); (P.C.); (M.C.); (F.D.S.); (N.F.); (A.P.); (V.S.); (S.I.)
| | - Federica Di Stefano
- Diagnostic Imaging of Infectious Diseases, National Institute for Infectious Diseases Lazzaro Spallanzani IRCCS, 00149 Rome, Italy; (A.V.); (F.A.); (P.C.); (M.C.); (F.D.S.); (N.F.); (A.P.); (V.S.); (S.I.)
| | - Nicoletta Fusco
- Diagnostic Imaging of Infectious Diseases, National Institute for Infectious Diseases Lazzaro Spallanzani IRCCS, 00149 Rome, Italy; (A.V.); (F.A.); (P.C.); (M.C.); (F.D.S.); (N.F.); (A.P.); (V.S.); (S.I.)
| | - Ada Petrone
- Diagnostic Imaging of Infectious Diseases, National Institute for Infectious Diseases Lazzaro Spallanzani IRCCS, 00149 Rome, Italy; (A.V.); (F.A.); (P.C.); (M.C.); (F.D.S.); (N.F.); (A.P.); (V.S.); (S.I.)
| | - Vincenzo Schininà
- Diagnostic Imaging of Infectious Diseases, National Institute for Infectious Diseases Lazzaro Spallanzani IRCCS, 00149 Rome, Italy; (A.V.); (F.A.); (P.C.); (M.C.); (F.D.S.); (N.F.); (A.P.); (V.S.); (S.I.)
| | - Francesca Grassi
- Division of Radiology, Università degli Studi della Campania Luigi Vanvitelli, 80128 Naples, Italy; (S.M.); (F.U.); (F.G.)
- Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, Via Della Signora 2, 20122 Milan, Italy
| | - Enrico Girardi
- Department of Epidemiology and Research, National Institute for Infectious Diseases Lazzaro Spallanzani IRCCS, 00149 Rome, Italy;
| | - Stefania Ianniello
- Diagnostic Imaging of Infectious Diseases, National Institute for Infectious Diseases Lazzaro Spallanzani IRCCS, 00149 Rome, Italy; (A.V.); (F.A.); (P.C.); (M.C.); (F.D.S.); (N.F.); (A.P.); (V.S.); (S.I.)
| |
Collapse
|