101
|
Váraljai R, Zimmer L, Al-Matary Y, Kaptein P, Albrecht LJ, Shannan B, Brase JC, Gusenleitner D, Amaral T, Wyss N, Utikal J, Flatz L, Rambow F, Reinhardt HC, Dick J, Engel DR, Horn S, Ugurel S, Sondermann W, Livingstone E, Sucker A, Paschen A, Zhao F, Placke JM, Klose JM, Fendler WP, Thommen DS, Helfrich I, Schadendorf D, Roesch A. Interleukin 17 signaling supports clinical benefit of dual CTLA-4 and PD-1 checkpoint inhibition in melanoma. NATURE CANCER 2023; 4:1292-1308. [PMID: 37525015 PMCID: PMC10518254 DOI: 10.1038/s43018-023-00610-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 07/06/2023] [Indexed: 08/02/2023]
Abstract
Recent studies suggest that BRAFV600-mutated melanomas in particular respond to dual anti-programmed cell death protein 1 (PD-1) and anti-cytotoxic T lymphocyte-associated protein 4 (CTLA-4) immune checkpoint inhibition (ICI). Here we identified an over-representation of interleukin (IL)-17-type 17 helper T (TH17) gene expression signatures (GES) in BRAFV600-mutated tumors. Moreover, high baseline IL-17 GES consistently predicted clinical responses in dual-ICI-treated patient cohorts but not in mono anti-CTLA-4 or anti-PD-1 ICI cohorts. High IL-17 GES corresponded to tumor infiltration with T cells and neutrophils. Accordingly, high neutrophil infiltration correlated with clinical response specifically to dual ICI, and tumor-associated neutrophils also showed strong IL-17-TH17 pathway activity and T cell activation capacity. Both the blockade of IL-17A and the depletion of neutrophils impaired dual-ICI response and decreased T cell activation. Finally, high IL-17A levels in the blood of patients with melanoma indicated a higher global TH17 cytokine profile preceding clinical response to dual ICI but not to anti-PD-1 monotherapy, suggesting a future role as a biomarker for patient stratification.
Collapse
Affiliation(s)
- Renáta Váraljai
- Department of Dermatology, University Hospital Essen, West German Cancer Center, University Duisburg-Essen and the German Cancer Consortium (DKTK), Essen, Germany
| | - Lisa Zimmer
- Department of Dermatology, University Hospital Essen, West German Cancer Center, University Duisburg-Essen and the German Cancer Consortium (DKTK), Essen, Germany
| | - Yahya Al-Matary
- Department of Dermatology, University Hospital Essen, West German Cancer Center, University Duisburg-Essen and the German Cancer Consortium (DKTK), Essen, Germany
| | - Paulien Kaptein
- Division of Molecular Oncology and Immunology, the Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Lea J Albrecht
- Department of Dermatology, University Hospital Essen, West German Cancer Center, University Duisburg-Essen and the German Cancer Consortium (DKTK), Essen, Germany
| | - Batool Shannan
- Department of Dermatology, University Hospital Essen, West German Cancer Center, University Duisburg-Essen and the German Cancer Consortium (DKTK), Essen, Germany
| | | | | | - Teresa Amaral
- Department of Dermatology, University Hospital of Tübingen, Tübingen, Germany
| | - Nina Wyss
- Institute of Immunobiology, Kantonsspital St. Gallen, Switzerland, Switzerland
| | - Jochen Utikal
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht Karls University of Heidelberg, Mannheim, Germany
- DKFZ Hector Cancer Institute at the University Medical Center Mannheim, Mannheim, Germany
| | - Lukas Flatz
- Department of Dermatology, University Hospital of Tübingen, Tübingen, Germany
- Institute of Immunobiology, Kantonsspital St. Gallen, Switzerland, Switzerland
| | - Florian Rambow
- Department of Dermatology, University Hospital Essen, West German Cancer Center, University Duisburg-Essen and the German Cancer Consortium (DKTK), Essen, Germany
- Department of Applied Computational Cancer Research, Institute for AI in Medicine (IKIM), University Hospital Essen, Essen, Germany
| | - Hans Christian Reinhardt
- Department of Hematology and Stem Cell Transplantation, University Hospital Essen, Essen, Germany
- Center for Medical Biotechnology (ZMB), University of Duisburg-Essen, Essen, Germany
| | - Jenny Dick
- Department of Immunodynamics, Institute of Experimental Immunology and Imaging, University Hospital Essen, Essen, Germany
| | - Daniel R Engel
- Department of Immunodynamics, Institute of Experimental Immunology and Imaging, University Hospital Essen, Essen, Germany
| | - Susanne Horn
- Department of Dermatology, University Hospital Essen, West German Cancer Center, University Duisburg-Essen and the German Cancer Consortium (DKTK), Essen, Germany
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, University of Leipzig, Leipzig, Germany
| | - Selma Ugurel
- Department of Dermatology, University Hospital Essen, West German Cancer Center, University Duisburg-Essen and the German Cancer Consortium (DKTK), Essen, Germany
| | - Wiebke Sondermann
- Department of Dermatology, University Hospital Essen, West German Cancer Center, University Duisburg-Essen and the German Cancer Consortium (DKTK), Essen, Germany
| | - Elisabeth Livingstone
- Department of Dermatology, University Hospital Essen, West German Cancer Center, University Duisburg-Essen and the German Cancer Consortium (DKTK), Essen, Germany
| | - Antje Sucker
- Department of Dermatology, University Hospital Essen, West German Cancer Center, University Duisburg-Essen and the German Cancer Consortium (DKTK), Essen, Germany
| | - Annette Paschen
- Department of Dermatology, University Hospital Essen, West German Cancer Center, University Duisburg-Essen and the German Cancer Consortium (DKTK), Essen, Germany
- Center for Medical Biotechnology (ZMB), University of Duisburg-Essen, Essen, Germany
| | - Fang Zhao
- Department of Dermatology, University Hospital Essen, West German Cancer Center, University Duisburg-Essen and the German Cancer Consortium (DKTK), Essen, Germany
| | - Jan M Placke
- Department of Dermatology, University Hospital Essen, West German Cancer Center, University Duisburg-Essen and the German Cancer Consortium (DKTK), Essen, Germany
| | - Jasmin M Klose
- Department of Nuclear Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Wolfgang P Fendler
- Department of Nuclear Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Daniela S Thommen
- Division of Molecular Oncology and Immunology, the Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Iris Helfrich
- Department of Dermatology, University Hospital Essen, West German Cancer Center, University Duisburg-Essen and the German Cancer Consortium (DKTK), Essen, Germany
- Department of Dermatology and Allergology, Ludwig Maximilian University Munich, Munich, Germany
| | - Dirk Schadendorf
- Department of Dermatology, University Hospital Essen, West German Cancer Center, University Duisburg-Essen and the German Cancer Consortium (DKTK), Essen, Germany
- Center for Medical Biotechnology (ZMB), University of Duisburg-Essen, Essen, Germany
- NCT West, Campus Essen and University Alliance Ruhr, Research Center One Health, University Duisburg-Essen, Essen, Germany
| | - Alexander Roesch
- Department of Dermatology, University Hospital Essen, West German Cancer Center, University Duisburg-Essen and the German Cancer Consortium (DKTK), Essen, Germany.
- Center for Medical Biotechnology (ZMB), University of Duisburg-Essen, Essen, Germany.
| |
Collapse
|
102
|
Meiser P, Knolle MA, Hirschberger A, de Almeida GP, Bayerl F, Lacher S, Pedde AM, Flommersfeld S, Hönninger J, Stark L, Stögbauer F, Anton M, Wirth M, Wohlleber D, Steiger K, Buchholz VR, Wollenberg B, Zielinski CE, Braren R, Rueckert D, Knolle PA, Kaissis G, Böttcher JP. A distinct stimulatory cDC1 subpopulation amplifies CD8 + T cell responses in tumors for protective anti-cancer immunity. Cancer Cell 2023; 41:1498-1515.e10. [PMID: 37451271 DOI: 10.1016/j.ccell.2023.06.008] [Citation(s) in RCA: 75] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 04/28/2023] [Accepted: 06/22/2023] [Indexed: 07/18/2023]
Abstract
Type 1 conventional dendritic cells (cDC1) can support T cell responses within tumors but whether this determines protective versus ineffective anti-cancer immunity is poorly understood. Here, we use imaging-based deep learning to identify intratumoral cDC1-CD8+ T cell clustering as a unique feature of protective anti-cancer immunity. These clusters form selectively in stromal tumor regions and constitute niches in which cDC1 activate TCF1+ stem-like CD8+ T cells. We identify a distinct population of immunostimulatory CCR7neg cDC1 that produce CXCL9 to promote cluster formation and cross-present tumor antigens within these niches, which is required for intratumoral CD8+ T cell differentiation and expansion and promotes cancer immune control. Similarly, in human cancers, CCR7neg cDC1 interact with CD8+ T cells in clusters and are associated with patient survival. Our findings reveal an intratumoral phase of the anti-cancer T cell response orchestrated by tumor-residing cDC1 that determines protective versus ineffective immunity and could be exploited for cancer therapy.
Collapse
Affiliation(s)
- Philippa Meiser
- Institute of Molecular Immunology, School of Medicine, Technical University of Munich (TUM), Munich, Germany
| | - Moritz A Knolle
- Institute for Artificial Intelligence in Medicine & Healthcare, School of Medicine, TUM, Munich, Germany; Institute for Diagnostic and Interventional Radiology, School of Medicine, TUM, Munich, Germany; Department of Computing, Imperial College London, London, UK
| | - Anna Hirschberger
- Institute of Molecular Immunology, School of Medicine, Technical University of Munich (TUM), Munich, Germany
| | - Gustavo P de Almeida
- Institute of Animal Physiology and Immunology, School of Life Science, TUM, Freising, Germany; Institute of Virology, School of Medicine, TUM, Munich, Germany
| | - Felix Bayerl
- Institute of Molecular Immunology, School of Medicine, Technical University of Munich (TUM), Munich, Germany
| | - Sebastian Lacher
- Institute of Molecular Immunology, School of Medicine, Technical University of Munich (TUM), Munich, Germany
| | - Anna-Marie Pedde
- Institute of Molecular Immunology, School of Medicine, Technical University of Munich (TUM), Munich, Germany
| | - Sophie Flommersfeld
- Institute for Medical Microbiology, Immunology and Hygiene, School of Medicine, TUM, Munich, Germany
| | - Julian Hönninger
- Institute of Molecular Immunology, School of Medicine, Technical University of Munich (TUM), Munich, Germany; Institute for Medical Microbiology, Immunology and Hygiene, School of Medicine, TUM, Munich, Germany
| | - Leonhard Stark
- Department of Otolaryngology Head and Neck Surgery, School of Medicine, TUM, Munich, Germany
| | - Fabian Stögbauer
- Institute of Pathology, School of Medicine, TUM, Munich, Germany
| | - Martina Anton
- Institute of Molecular Immunology, School of Medicine, Technical University of Munich (TUM), Munich, Germany
| | - Markus Wirth
- Department of Otolaryngology Head and Neck Surgery, School of Medicine, TUM, Munich, Germany
| | - Dirk Wohlleber
- Institute of Molecular Immunology, School of Medicine, Technical University of Munich (TUM), Munich, Germany
| | - Katja Steiger
- Institute of Pathology, School of Medicine, TUM, Munich, Germany; Comparative Experimental Pathology, School of Medicine, TUM, Munich, Germany; German Cancer Consortium, partner site Munich, Munich, Germany
| | - Veit R Buchholz
- Institute for Medical Microbiology, Immunology and Hygiene, School of Medicine, TUM, Munich, Germany
| | - Barbara Wollenberg
- Department of Otolaryngology Head and Neck Surgery, School of Medicine, TUM, Munich, Germany
| | - Christina E Zielinski
- Department of Infection Immunology, Leibniz Institute for Natural Product Research and Infection Biology, Hans-Knöll-Institute, Jena, Germany; Institute of Microbiology, Faculty of Biological Sciences, Friedrich Schiller University, Jena, Germany
| | - Rickmer Braren
- Institute for Diagnostic and Interventional Radiology, School of Medicine, TUM, Munich, Germany
| | - Daniel Rueckert
- Institute for Artificial Intelligence in Medicine & Healthcare, School of Medicine, TUM, Munich, Germany; Department of Computing, Imperial College London, London, UK; Chair for Artificial Intelligence in Medicine and Healthcare, School of Medicine and School of Computation, Information and Technology, Klinikum rechts der Isar, TUM, Munich, Germany
| | - Percy A Knolle
- Institute of Molecular Immunology, School of Medicine, Technical University of Munich (TUM), Munich, Germany; Institute of Molecular Immunology, School of Life Science, TUM, Freising, Germany; German Center for Infection Research, Munich site, Munich, Germany
| | - Georgios Kaissis
- Institute for Artificial Intelligence in Medicine & Healthcare, School of Medicine, TUM, Munich, Germany; Institute for Diagnostic and Interventional Radiology, School of Medicine, TUM, Munich, Germany; Department of Computing, Imperial College London, London, UK
| | - Jan P Böttcher
- Institute of Molecular Immunology, School of Medicine, Technical University of Munich (TUM), Munich, Germany.
| |
Collapse
|
103
|
Fu X, Sahai E, Wilkins A. Application of digital pathology-based advanced analytics of tumour microenvironment organisation to predict prognosis and therapeutic response. J Pathol 2023; 260:578-591. [PMID: 37551703 PMCID: PMC10952145 DOI: 10.1002/path.6153] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/25/2023] [Accepted: 06/07/2023] [Indexed: 08/09/2023]
Abstract
In recent years, the application of advanced analytics, especially artificial intelligence (AI), to digital H&E images, and other histological image types, has begun to radically change how histological images are used in the clinic. Alongside the recognition that the tumour microenvironment (TME) has a profound impact on tumour phenotype, the technical development of highly multiplexed immunofluorescence platforms has enhanced the biological complexity that can be captured in the TME with high precision. AI has an increasingly powerful role in the recognition and quantitation of image features and the association of such features with clinically important outcomes, as occurs in distinct stages in conventional machine learning. Deep-learning algorithms are able to elucidate TME patterns inherent in the input data with minimum levels of human intelligence and, hence, have the potential to achieve clinically relevant predictions and discovery of important TME features. Furthermore, the diverse repertoire of deep-learning algorithms able to interrogate TME patterns extends beyond convolutional neural networks to include attention-based models, graph neural networks, and multimodal models. To date, AI models have largely been evaluated retrospectively, outside the well-established rigour of prospective clinical trials, in part because traditional clinical trial methodology may not always be suitable for the assessment of AI technology. However, to enable digital pathology-based advanced analytics to meaningfully impact clinical care, specific measures of 'added benefit' to the current standard of care and validation in a prospective setting are important. This will need to be accompanied by adequate measures of explainability and interpretability. Despite such challenges, the combination of expanding datasets, increased computational power, and the possibility of integration of pre-clinical experimental insights into model development means there is exciting potential for the future progress of these AI applications. © 2023 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Xiao Fu
- Tumour Cell Biology LaboratoryThe Francis Crick InstituteLondonUK
- Biomolecular Modelling LaboratoryThe Francis Crick InstituteLondonUK
| | - Erik Sahai
- Tumour Cell Biology LaboratoryThe Francis Crick InstituteLondonUK
| | - Anna Wilkins
- Tumour Cell Biology LaboratoryThe Francis Crick InstituteLondonUK
- Division of Radiotherapy and ImagingInstitute of Cancer ResearchLondonUK
- Royal Marsden Hospitals NHS TrustLondonUK
| |
Collapse
|
104
|
Haake M, Haack B, Schäfer T, Harter PN, Mattavelli G, Eiring P, Vashist N, Wedekink F, Genssler S, Fischer B, Dahlhoff J, Mokhtari F, Kuzkina A, Welters MJP, Benz TM, Sorger L, Thiemann V, Almanzar G, Selle M, Thein K, Späth J, Gonzalez MC, Reitinger C, Ipsen-Escobedo A, Wistuba-Hamprecht K, Eichler K, Filipski K, Zeiner PS, Beschorner R, Goedemans R, Gogolla FH, Hackl H, Rooswinkel RW, Thiem A, Roche PR, Joshi H, Pühringer D, Wöckel A, Diessner JE, Rüdiger M, Leo E, Cheng PF, Levesque MP, Goebeler M, Sauer M, Nimmerjahn F, Schuberth-Wagner C, von Felten S, Mittelbronn M, Mehling M, Beilhack A, van der Burg SH, Riedel A, Weide B, Dummer R, Wischhusen J. Tumor-derived GDF-15 blocks LFA-1 dependent T cell recruitment and suppresses responses to anti-PD-1 treatment. Nat Commun 2023; 14:4253. [PMID: 37474523 PMCID: PMC10359308 DOI: 10.1038/s41467-023-39817-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 06/09/2023] [Indexed: 07/22/2023] Open
Abstract
Immune checkpoint blockade therapy is beneficial and even curative for some cancer patients. However, the majority don't respond to immune therapy. Across different tumor types, pre-existing T cell infiltrates predict response to checkpoint-based immunotherapy. Based on in vitro pharmacological studies, mouse models and analyses of human melanoma patients, we show that the cytokine GDF-15 impairs LFA-1/β2-integrin-mediated adhesion of T cells to activated endothelial cells, which is a pre-requisite of T cell extravasation. In melanoma patients, GDF-15 serum levels strongly correlate with failure of PD-1-based immune checkpoint blockade therapy. Neutralization of GDF-15 improves both T cell trafficking and therapy efficiency in murine tumor models. Thus GDF-15, beside its known role in cancer-related anorexia and cachexia, emerges as a regulator of T cell extravasation into the tumor microenvironment, which provides an even stronger rationale for therapeutic anti-GDF-15 antibody development.
Collapse
Affiliation(s)
- Markus Haake
- Department of Gynecology, University Hospital Würzburg, Würzburg, Germany
- CatalYm GmbH, Am Klopferspitz 19, 82152, Munich, Germany
| | - Beatrice Haack
- Department of Gynecology, University Hospital Würzburg, Würzburg, Germany
| | - Tina Schäfer
- Department of Gynecology, University Hospital Würzburg, Würzburg, Germany
| | - Patrick N Harter
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
- Neurological Institute (Edinger Institute), University Hospital, Goethe University, Frankfurt/Main, Germany
- Frankfurt Cancer Institute (FCI), Frankfurt/Main, Germany
- Center for Neuropathology and Prion Research, Munich, Ludwig-Maximilians-University, Munich, Germany
| | - Greta Mattavelli
- Mildred Scheel Early Career Center, University Hospital of Würzburg, Würzburg, Germany
| | - Patrick Eiring
- Department of Biotechnology and Biophysics, Julius Maximilians University Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Neha Vashist
- Department of Gynecology, University Hospital Würzburg, Würzburg, Germany
- CatalYm GmbH, Am Klopferspitz 19, 82152, Munich, Germany
| | - Florian Wedekink
- Department of Gynecology, University Hospital Würzburg, Würzburg, Germany
| | | | - Birgitt Fischer
- Department of Gynecology, University Hospital Würzburg, Würzburg, Germany
- CatalYm GmbH, Am Klopferspitz 19, 82152, Munich, Germany
| | - Julia Dahlhoff
- Department of Medicine II, University Hospital of Würzburg, Würzburg, Germany
| | - Fatemeh Mokhtari
- Department of Medicine II, University Hospital of Würzburg, Würzburg, Germany
| | - Anastasia Kuzkina
- Department of Gynecology, University Hospital Würzburg, Würzburg, Germany
| | - Marij J P Welters
- Department of Medical Oncology, Oncode Institute, Leiden University Medical Center, Albinusdreef 2, Leiden, 2333 ZA, The Netherlands
| | - Tamara M Benz
- Department of Gynecology, University Hospital Würzburg, Würzburg, Germany
| | - Lena Sorger
- Department of Gynecology, University Hospital Würzburg, Würzburg, Germany
| | - Vincent Thiemann
- Department of Gynecology, University Hospital Würzburg, Würzburg, Germany
| | - Giovanni Almanzar
- Department of Gynecology, University Hospital Würzburg, Würzburg, Germany
- Department of Pediatrics, University Hospital Würzburg, Würzburg, Germany
| | - Martina Selle
- Department of Gynecology, University Hospital Würzburg, Würzburg, Germany
| | - Klara Thein
- Department of Gynecology, University Hospital Würzburg, Würzburg, Germany
| | - Jacob Späth
- Department of Gynecology, University Hospital Würzburg, Würzburg, Germany
| | | | - Carmen Reitinger
- Division of Genetics, Department of Biology, University of Erlangen, 91058, Erlangen, Germany
| | - Andrea Ipsen-Escobedo
- Division of Genetics, Department of Biology, University of Erlangen, 91058, Erlangen, Germany
| | - Kilian Wistuba-Hamprecht
- Department of Dermatology, University Medical Center Tübingen, Tübingen, Germany
- Department of Immunology, University of Tübingen, Tübingen, Germany
- Section for Clinical Bioinformatics, Department of Internal Medicine I, University Medical Center Tübingen, Tübingen, Germany
| | - Kristin Eichler
- Department of Gynecology, University Hospital Würzburg, Würzburg, Germany
- CatalYm GmbH, Am Klopferspitz 19, 82152, Munich, Germany
| | - Katharina Filipski
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
- Neurological Institute (Edinger Institute), University Hospital, Goethe University, Frankfurt/Main, Germany
- Frankfurt Cancer Institute (FCI), Frankfurt/Main, Germany
| | - Pia S Zeiner
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
- Neurological Institute (Edinger Institute), University Hospital, Goethe University, Frankfurt/Main, Germany
- Frankfurt Cancer Institute (FCI), Frankfurt/Main, Germany
- Dr. Senckenberg Institute of Neurooncology, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
| | - Rudi Beschorner
- Department of Neuropathology, University of Tübingen, Tübingen, Germany
| | - Renske Goedemans
- Department of Medical Oncology, Oncode Institute, Leiden University Medical Center, Albinusdreef 2, Leiden, 2333 ZA, The Netherlands
| | - Falk Hagen Gogolla
- Institute of Bioinformatics, Biocenter, Medical University of Innsbruck, Innrain 80, 6020, Innsbruck, Austria
| | - Hubert Hackl
- Institute of Bioinformatics, Biocenter, Medical University of Innsbruck, Innrain 80, 6020, Innsbruck, Austria
| | | | - Alexander Thiem
- Department of Dermatology, Venereology and Allergology, University Hospital Würzburg, Würzburg, Germany
- Clinic for Dermatology and Venereology, Rostock University Medical Center, Rostock, Germany
| | - Paula Romer Roche
- Department of Gynecology, University Hospital Würzburg, Würzburg, Germany
- CatalYm GmbH, Am Klopferspitz 19, 82152, Munich, Germany
| | - Hemant Joshi
- Department of Gynecology, University Hospital Würzburg, Würzburg, Germany
- Division of Infectious Diseases, Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, 63130, USA
| | - Dirk Pühringer
- Department of Gynecology, University Hospital Würzburg, Würzburg, Germany
| | - Achim Wöckel
- Department of Gynecology, University Hospital Würzburg, Würzburg, Germany
| | - Joachim E Diessner
- Department of Gynecology, University Hospital Würzburg, Würzburg, Germany
| | | | - Eugen Leo
- CatalYm GmbH, Am Klopferspitz 19, 82152, Munich, Germany
| | - Phil F Cheng
- Department of Dermatology, University of Zurich, University of Zurich Hospital, Wagistrasse 18, 8952, Zürich, Switzerland
| | - Mitchell P Levesque
- Department of Dermatology, University of Zurich, University of Zurich Hospital, Wagistrasse 18, 8952, Zürich, Switzerland
| | - Matthias Goebeler
- Department of Dermatology, Venereology and Allergology, University Hospital Würzburg, Würzburg, Germany
| | - Markus Sauer
- Department of Biotechnology and Biophysics, Julius Maximilians University Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Falk Nimmerjahn
- Division of Genetics, Department of Biology, University of Erlangen, 91058, Erlangen, Germany
| | | | - Stefanie von Felten
- oikostat GmbH, Statistical Analyses and Consulting, Lucerne, Switzerland
- Department of Biostatistics, Epidemiology, Biostatistics and Prevention Institute, University of Zurich, Hirschengraben 84, 8001, Zürich, Switzerland
| | - Michel Mittelbronn
- Department of Oncology (DONC), Luxembourg Institute of Health (LIH), Luxembourg, Luxembourg
- Luxembourg Centre of Neuropathology (LCNP), Luxembourg, Luxembourg
- National Center of Pathology (NCP), Laboratoire National de Santé (LNS), Dudelange, Luxembourg
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg
- Department of Life Sciences and Medicine (DLSM), University of Luxembourg, Luxembourg, Luxembourg
- Faculty of Science, Technology and Medicine (FSTM), University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Matthias Mehling
- Department of Biomedicine and Neurology Department, University Hospital Basel, 4031, Basel, Switzerland
| | - Andreas Beilhack
- Department of Medicine II, University Hospital of Würzburg, Würzburg, Germany
| | - Sjoerd H van der Burg
- Department of Medical Oncology, Oncode Institute, Leiden University Medical Center, Albinusdreef 2, Leiden, 2333 ZA, The Netherlands
| | - Angela Riedel
- Mildred Scheel Early Career Center, University Hospital of Würzburg, Würzburg, Germany
| | - Benjamin Weide
- Department of Dermatology, University Medical Center Tübingen, Tübingen, Germany
| | | | - Jörg Wischhusen
- Department of Gynecology, University Hospital Würzburg, Würzburg, Germany.
| |
Collapse
|
105
|
Amitay Y, Bussi Y, Feinstein B, Bagon S, Milo I, Keren L. CellSighter: a neural network to classify cells in highly multiplexed images. Nat Commun 2023; 14:4302. [PMID: 37463931 PMCID: PMC10354029 DOI: 10.1038/s41467-023-40066-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 07/07/2023] [Indexed: 07/20/2023] Open
Abstract
Multiplexed imaging enables measurement of multiple proteins in situ, offering an unprecedented opportunity to chart various cell types and states in tissues. However, cell classification, the task of identifying the type of individual cells, remains challenging, labor-intensive, and limiting to throughput. Here, we present CellSighter, a deep-learning based pipeline to accelerate cell classification in multiplexed images. Given a small training set of expert-labeled images, CellSighter outputs the label probabilities for all cells in new images. CellSighter achieves over 80% accuracy for major cell types across imaging platforms, which approaches inter-observer concordance. Ablation studies and simulations show that CellSighter is able to generalize its training data and learn features of protein expression levels, as well as spatial features such as subcellular expression patterns. CellSighter's design reduces overfitting, and it can be trained with only thousands or even hundreds of labeled examples. CellSighter also outputs a prediction confidence, allowing downstream experts control over the results. Altogether, CellSighter drastically reduces hands-on time for cell classification in multiplexed images, while improving accuracy and consistency across datasets.
Collapse
Affiliation(s)
- Yael Amitay
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
- Department of Mathematics and Computer Science, Weizmann Institute of Science, Rehovot, Israel
| | - Yuval Bussi
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
- Department of Mathematics and Computer Science, Weizmann Institute of Science, Rehovot, Israel
| | - Ben Feinstein
- Department of Mathematics and Computer Science, Weizmann Institute of Science, Rehovot, Israel
| | - Shai Bagon
- Department of Mathematics and Computer Science, Weizmann Institute of Science, Rehovot, Israel
| | - Idan Milo
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Leeat Keren
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
106
|
Bai Y, Zhu B, Oliveria JP, Cannon BJ, Feyaerts D, Bosse M, Vijayaragavan K, Greenwald NF, Phillips D, Schürch CM, Naik SM, Ganio EA, Gaudilliere B, Rodig SJ, Miller MB, Angelo M, Bendall SC, Rovira-Clavé X, Nolan GP, Jiang S. Expanded vacuum-stable gels for multiplexed high-resolution spatial histopathology. Nat Commun 2023; 14:4013. [PMID: 37419873 PMCID: PMC10329015 DOI: 10.1038/s41467-023-39616-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 06/16/2023] [Indexed: 07/09/2023] Open
Abstract
Cellular organization and functions encompass multiple scales in vivo. Emerging high-plex imaging technologies are limited in resolving subcellular biomolecular features. Expansion Microscopy (ExM) and related techniques physically expand samples for enhanced spatial resolution, but are challenging to be combined with high-plex imaging technologies to enable integrative multiscaled tissue biology insights. Here, we introduce Expand and comPRESS hydrOgels (ExPRESSO), an ExM framework that allows high-plex protein staining, physical expansion, and removal of water, while retaining the lateral tissue expansion. We demonstrate ExPRESSO imaging of archival clinical tissue samples on Multiplexed Ion Beam Imaging and Imaging Mass Cytometry platforms, with detection capabilities of > 40 markers. Application of ExPRESSO on archival human lymphoid and brain tissues resolved tissue architecture at the subcellular level, particularly that of the blood-brain barrier. ExPRESSO hence provides a platform for extending the analysis compatibility of hydrogel-expanded biospecimens to mass spectrometry, with minimal modifications to protocols and instrumentation.
Collapse
Affiliation(s)
- Yunhao Bai
- Department of Pathology, Stanford University, Stanford, CA, USA
- Department of Chemistry, Stanford University, Stanford, CA, USA
| | - Bokai Zhu
- Department of Pathology, Stanford University, Stanford, CA, USA
- Department of Microbiology and Immunology, Stanford University, Stanford, CA, USA
| | - John-Paul Oliveria
- Department of Translational Medicine, Genentech, Inc., South San Francisco, CA, USA
- Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Bryan J Cannon
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Dorien Feyaerts
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Stanford, CA, USA
| | - Marc Bosse
- Department of Pathology, Stanford University, Stanford, CA, USA
| | | | | | - Darci Phillips
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Christian M Schürch
- Department of Pathology, Stanford University, Stanford, CA, USA
- Department of Pathology and Neuropathology, University Hospital and Comprehensive Cancer Center Tübingen, Tübingen, Germany
| | - Samuel M Naik
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Edward A Ganio
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Stanford, CA, USA
| | - Brice Gaudilliere
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Stanford, CA, USA
| | - Scott J Rodig
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Michael B Miller
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Division of Genetics and Genomics, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Michael Angelo
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Sean C Bendall
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Xavier Rovira-Clavé
- Department of Pathology, Stanford University, Stanford, CA, USA.
- Department of Microbiology and Immunology, Stanford University, Stanford, CA, USA.
| | - Garry P Nolan
- Department of Pathology, Stanford University, Stanford, CA, USA.
| | - Sizun Jiang
- Department of Pathology, Stanford University, Stanford, CA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA, USA.
- Department of Pathology, Dana Farber Cancer Institute, Boston, MA, USA.
| |
Collapse
|
107
|
Miura Y, Motoshima T, Anami T, Yano H, Mito R, Pan C, Urakami S, Kinowaki K, Tsukamoto H, Kurahashi R, Murakami Y, Yatsuda J, Fujiwara Y, Kamba T, Komohara Y. Predictive value of CXCL10 for the occurrence of immune-related adverse events in patient with renal cell carcinoma. Microbiol Immunol 2023; 67:345-354. [PMID: 36975091 DOI: 10.1111/1348-0421.13067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 03/13/2023] [Accepted: 03/26/2023] [Indexed: 03/29/2023]
Abstract
Immune checkpoint inhibitors (ICIs) have recently improved the prognosis of various cancers. By contrast, some immune-related adverse events (irAEs) caused by ICIs are fatal and have become problematic. The pathogenesis of irAEs remains unknown and must be elucidated to establish biomarkers. This study investigated plasma cytokine, chemokine, and anti-CD74 autoantibody levels in patients with renal cell carcinoma (RCC) and analyzed their association with irAEs. In a discovery cohort of 13 patients, plasma levels of chemokine (C-X-C motif) ligand (CXCL) 1, IL-17A, IL-1β, IL-6, IL-8, CXCL10, MCP-1, and TNFα were measured at baseline and post-dose 1. Only CXCL10, at post-dose 1 but not at baseline, was significantly associated with grade 2 or higher irAEs (P = 0.0413). Plasma CXCL10 levels were then measured at baseline and post-dose 1 in an extended cohort of 43 patients with RCC who received ICI-based treatment. Higher plasma CXCL10 levels both at baseline and post-dose1 were significantly associated with the occurrence of grade 2 or higher irAEs (P = 0.0246 and 0.0137, respectively). Plasma CXCL13 levels, which we measured in a previous study, were significantly higher in patients with grade 2 or higher irAEs at baseline but not at post-dose 1 (P = 0.0037 and 0.052, respectively). No significant association between plasma anti-CD74 autoantibody level and both irAE pneumonitis and any grade 2 or higher irAE was observed. In conclusion, plasma CXCL10 is significantly associated with the occurrence of irAEs in patients with RCC treated with ICIs. CXCL10 is a potential predictive and on-treatment biomarker for irAEs.
Collapse
Affiliation(s)
- Yuji Miura
- Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
- Department of Medical Oncology, Toranomon Hospital, Tokyo, Japan
| | - Takanobu Motoshima
- Department of Urology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Toshiki Anami
- Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
- Department of Urology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Hiromu Yano
- Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Remi Mito
- Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
- Department of Respiratory Medicine, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Cheng Pan
- Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | | | | | - Hirotake Tsukamoto
- Division of Clinical Immunology and Cancer Immunotherapy, Center for Cancer Immunotherapy and Immunobiology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Ryoma Kurahashi
- Department of Urology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Yoji Murakami
- Department of Urology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Junji Yatsuda
- Department of Urology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Yukio Fujiwara
- Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Tomomi Kamba
- Department of Urology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Yoshihiro Komohara
- Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
- Center for Metabolic Regulation of Healthy Aging, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
108
|
Li H, Ding JY, Zhang MJ, Yu HJ, Sun ZJ. Tertiary lymphoid structures and cytokines interconnections: The implication in cancer immunotherapy. Cancer Lett 2023:216293. [PMID: 37392991 DOI: 10.1016/j.canlet.2023.216293] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 06/26/2023] [Accepted: 06/28/2023] [Indexed: 07/03/2023]
Abstract
Tertiary lymphoid structures (TLSs) are organized aggregates of lymphocytes and antigen-presenting cells that develop in non-lymphoid tissues during chronic inflammation, resembling the structure and features of secondary lymphoid organs. Numerous studies have shown that TLSs may be an important source of antitumor immunity within solid tumors, facilitating T cell and B cell differentiation and the subsequent production of antitumor antibodies, which are beneficial for cancer prognosis and responses to immunotherapy. The formation of TLS relies on the cytokine signaling network between heterogeneous cell populations, such as stromal cells, lymphocytes and cancer cells. The coordinated action of various cytokines drives the complex process of TLS development. In this review, we will comprehensively describe the mechanisms by which various cytokines regulate TLS formation and function, and the recent advancements and therapeutic potential of exploiting these mechanisms to induce TLS as an emerging immunotherapeutic approach or to enhance existing immunotherapy.
Collapse
Affiliation(s)
- Hao Li
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine, Ministry of Education, School and Hospital of Stomatology, Wuhan University, 237 Luoyu Road, Wuhan, 430079, China; Department of Oral Maxillofacial-Head Neck Oncology, School and Hospital of Stomatology, Wuhan University, 237 Luoyu Road, Wuhan, 430079, China.
| | - Jia-Yi Ding
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine, Ministry of Education, School and Hospital of Stomatology, Wuhan University, 237 Luoyu Road, Wuhan, 430079, China.
| | - Meng-Jie Zhang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine, Ministry of Education, School and Hospital of Stomatology, Wuhan University, 237 Luoyu Road, Wuhan, 430079, China.
| | - Hai-Jun Yu
- Department of Radiation and Medical Oncology, Hubei Province Cancer Clinical Study Center, Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, 430071, Wuhan, China.
| | - Zhi-Jun Sun
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine, Ministry of Education, School and Hospital of Stomatology, Wuhan University, 237 Luoyu Road, Wuhan, 430079, China; Department of Oral Maxillofacial-Head Neck Oncology, School and Hospital of Stomatology, Wuhan University, 237 Luoyu Road, Wuhan, 430079, China.
| |
Collapse
|
109
|
Chi A, Nguyen NP. Mechanistic rationales for combining immunotherapy with radiotherapy. Front Immunol 2023; 14:1125905. [PMID: 37377970 PMCID: PMC10291094 DOI: 10.3389/fimmu.2023.1125905] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 05/24/2023] [Indexed: 06/29/2023] Open
Abstract
Immunotherapy consisted mainly of immune checkpoint inhibitors (ICIs) has led to significantly improved antitumor response. However, such response has been observed only in tumors possessing an overall responsive tumor immune micro-environment (TIME), in which the presence of functional tumor-infiltrating lymphocytes (TILs) is critical. Various mechanisms of immune escape from immunosurveillance exist, leading to different TIME phenotypes in correlation with primary or acquired resistance to ICIs. Radiotherapy has been shown to induce antitumor immunity not only in the irradiated primary tumor, but also at unirradiated distant sites of metastases. Such antitumor immunity is mainly elicited by radiation's stimulatory effects on antigenicity and adjuvanticity. Furthermore, it may be significantly augmented when irradiation is combined with immunotherapy, such as ICIs. Therefore, radiotherapy represents one potential therapeutic strategy to restore anti-tumor immunity in tumors presenting with an unresponsive TIME. In this review, the generation of anti-tumor immunity, its impairment, radiation's immunogenic properties, and the antitumor effects of combining radiation with immunotherapy will be comprehensively discussed.
Collapse
Affiliation(s)
- Alexander Chi
- Department of Radiation Oncology, Capital Medical University Xuanwu Hospital, Beijing, China
- School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Nam Phong Nguyen
- Department of Radiation Oncology, Howard University, Washington, DC, United States
| |
Collapse
|
110
|
Wang V, Liu Z, Martinek J, Zhou J, Boruchov H, Ray K, Palucka K, Chuang J. Computational immune synapse analysis reveals T-cell interactions in distinct tumor microenvironments. RESEARCH SQUARE 2023:rs.3.rs-2968528. [PMID: 37398220 PMCID: PMC10312981 DOI: 10.21203/rs.3.rs-2968528/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
The tumor microenvironment (TME) and the cellular interactions within it can be critical to tumor progression and treatment response. Although technologies to generate multiplex images of the TME are advancing, the many ways in which TME imaging data can be mined to elucidate cellular interactions are only beginning to be realized. Here, we present a novel approach for multipronged computational immune synapse analysis (CISA) that reveals T-cell synaptic interactions from multiplex images. CISA enables automated discovery and quantification of immune synapse interactions based on the localization of proteins on cell membranes. We first demonstrate the ability of CISA to detect T-cell:APC (antigen presenting cell) synaptic interactions in two independent human melanoma imaging mass cytometry (IMC) tissue microarray datasets. We then generate melanoma histocytometry whole slide images and verify that CISA can detect similar interactions across data modalities. Interestingly, CISA histoctyometry analysis also reveals that T-cell:macrophage synapse formation is associated with T-cell proliferation. We next show the generality of CISA by extending it to breast cancer IMC images, finding that CISA quantifications of T-cell:B-cell synapses are predictive of improved patient survival. Our work demonstrates the biological and clinical significance of spatially resolving cell-cell synaptic interactions in the TME and provides a robust method to do so across imaging modalities and cancer types.
Collapse
Affiliation(s)
| | - Zichao Liu
- 1The Jackson Laboratory for Genomic Medicine
| | | | - Jie Zhou
- The Jackson Laboratory for Genomic Medicine
| | | | - Kelly Ray
- The Jackson Laboratory for Genomic Medicine
| | | | | |
Collapse
|
111
|
Meyer L, Eling N, Bodenmiller B. cytoviewer: an R/Bioconductor package for interactive visualization and exploration of highly multiplexed imaging data. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.24.542115. [PMID: 37292939 PMCID: PMC10245846 DOI: 10.1101/2023.05.24.542115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Highly multiplexed imaging enables single-cell-resolved detection of numerous biological molecules in their spatial tissue context. Interactive data visualization of multiplexed imaging data is necessary for quality control and hypothesis examination. Here, we describe cytoviewer, an R/Bioconductor package for interactive visualization and exploration of multi-channel images and segmentation masks. The cytoviewer package supports flexible generation of image composites, allows side-by-side visualization of single channels, and facilitates the spatial visualization of single-cell data in the form of segmentation masks. The package operates on SingleCellExperiment, SpatialExperiment and CytoImageList objects and therefore integrates with the Bioconductor framework for single-cell and image analysis. Users of cytoviewer need little coding expertise, and the graphical user interface allows user-friendly navigation. We showcase the functionality of cytoviewer by analysis of an imaging mass cytometry dataset of cancer patients.
Collapse
Affiliation(s)
- Lasse Meyer
- Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland
- Institute for Molecular Health Sciences, ETH Zurich, Zurich, Switzerland
- Life Science Zurich Graduate School, ETH Zurich and University of Zurich, Zurich, Switzerland
| | - Nils Eling
- Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland
- Institute for Molecular Health Sciences, ETH Zurich, Zurich, Switzerland
| | - Bernd Bodenmiller
- Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland
- Institute for Molecular Health Sciences, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
112
|
Huangfu S, Pan J. Editorial: Novel biomarkers for predicting response to cancer immunotherapy. Front Immunol 2023; 14:1179913. [PMID: 37251395 PMCID: PMC10210151 DOI: 10.3389/fimmu.2023.1179913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 04/03/2023] [Indexed: 05/31/2023] Open
Affiliation(s)
| | - Jinghua Pan
- Department of General Surgery, the First Affiliated Hospital of Jinan University, Guangzhou, China
| |
Collapse
|
113
|
Silina K. B cell-rich niches support stem-like CD8 + T cells in cancer microenvironment. Cancer Cell 2023; 41:824-825. [PMID: 37160101 DOI: 10.1016/j.ccell.2023.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 04/11/2023] [Accepted: 04/11/2023] [Indexed: 05/11/2023]
Abstract
Cytotoxic T cells are indispensable for the body's fight against most cancers. In the current issue of Cancer Cell, Gaglia et al. reveal how changes in the tumor tissue architecture creating niches of T cell-B cell interactions may support anti-tumor T cell responses.
Collapse
Affiliation(s)
- Karina Silina
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zurich), Zurich, Switzerland.
| |
Collapse
|
114
|
Hebert JD, Neal JW, Winslow MM. Dissecting metastasis using preclinical models and methods. Nat Rev Cancer 2023; 23:391-407. [PMID: 37138029 DOI: 10.1038/s41568-023-00568-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/27/2023] [Indexed: 05/05/2023]
Abstract
Metastasis has long been understood to lead to the overwhelming majority of cancer-related deaths. However, our understanding of the metastatic process, and thus our ability to prevent or eliminate metastases, remains frustratingly limited. This is largely due to the complexity of metastasis, which is a multistep process that likely differs across cancer types and is greatly influenced by many aspects of the in vivo microenvironment. In this Review, we discuss the key variables to consider when designing assays to study metastasis: which source of metastatic cancer cells to use and where to introduce them into mice to address different questions of metastasis biology. We also examine methods that are being used to interrogate specific steps of the metastatic cascade in mouse models, as well as emerging techniques that may shed new light on previously inscrutable aspects of metastasis. Finally, we explore approaches for developing and using anti-metastatic therapies, and how mouse models can be used to test them.
Collapse
Affiliation(s)
- Jess D Hebert
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Joel W Neal
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Monte M Winslow
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA.
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA.
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
115
|
Zhu J, Min N, Gong W, Chen Y, Li X. Identification of Hub Genes and Biological Mechanisms Associated with Non-Alcoholic Fatty Liver Disease and Triple-Negative Breast Cancer. Life (Basel) 2023; 13:life13040998. [PMID: 37109526 PMCID: PMC10146727 DOI: 10.3390/life13040998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/20/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023] Open
Abstract
The relationship between non-alcoholic fatty liver disease (NAFLD) and triple-negative breast cancer (TNBC) has been widely recognized, but the underlying mechanisms are still unknown. The objective of this study was to identify the hub genes associated with NAFLD and TNBC, and to explore the potential co-pathogenesis and prognostic linkage of these two diseases. We used GEO, TCGA, STRING, ssGSEA, and Rstudio to investigate the common differentially expressed genes (DEGs), conduct functional and signaling pathway enrichment analyses, and determine prognostic value between TNBC and NAFLD. GO and KEGG enrichment analyses of the common DEGs showed that they were enriched in leukocyte aggregation, migration and adhesion, apoptosis regulation, and the PPAR signaling pathway. Fourteen candidate hub genes most likely to mediate NAFLD and TNBC occurrence were identified and validation results in a new cohort showed that ITGB2, RAC2, ITGAM, and CYBA were upregulated in both diseases. A univariate Cox analysis suggested that high expression levels of ITGB2, RAC2, ITGAM, and CXCL10 were associated with a good prognosis in TNBC. Immune infiltration analysis of TNBC samples showed that NCF2, ICAM1, and CXCL10 were significantly associated with activated CD8 T cells and activated CD4 T cells. NCF2, CXCL10, and CYBB were correlated with regulatory T cells and myeloid-derived suppressor cells. This study demonstrated that the redox reactions regulated by the NADPH oxidase (NOX) subunit genes and the transport and activation of immune cells regulated by integrins may play a central role in the co-occurrence trend of NAFLD and TNBC. Additionally, ITGB2, RAC2, and ITGAM were upregulated in both diseases and were prognostic protective factors of TNBC; they may be potential therapeutic targets for treatment of TNBC patients with NAFLD, but further experimental studies are still needed.
Collapse
Affiliation(s)
- Jingjin Zhu
- School of Medicine, Nankai University, Tianjin 300071, China
- Department of General Surgery, The First Medical Center of Chinese PLA General Hospital, Beijing 100853, China
| | - Ningning Min
- School of Medicine, Nankai University, Tianjin 300071, China
- Department of General Surgery, The First Medical Center of Chinese PLA General Hospital, Beijing 100853, China
| | - Wenye Gong
- Department of General Surgery, The First Medical Center of Chinese PLA General Hospital, Beijing 100853, China
- Medical School of Chinese PLA, Beijing 100853, China
| | - Yizhu Chen
- Department of General Surgery, The First Medical Center of Chinese PLA General Hospital, Beijing 100853, China
- Medical School of Chinese PLA, Beijing 100853, China
| | - Xiru Li
- Department of General Surgery, The First Medical Center of Chinese PLA General Hospital, Beijing 100853, China
| |
Collapse
|
116
|
Chen JH, Nieman LT, Spurrell M, Jorgji V, Richieri P, Xu KH, Madhu R, Parikh M, Zamora I, Mehta A, Nabel CS, Freeman SS, Pirl JD, Lu C, Meador CB, Barth JL, Sakhi M, Tang AL, Sarkizova S, Price C, Fernandez NF, Emanuel G, He J, Raay KV, Reeves JW, Yizhak K, Hofree M, Shih A, Sade-Feldman M, Boland GM, Pelka K, Aryee M, Korsunsky I, Mino-Kenudson M, Gainor JF, Hacohen N. Spatial analysis of human lung cancer reveals organized immune hubs enriched for stem-like CD8 T cells and associated with immunotherapy response. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.04.535379. [PMID: 37066412 PMCID: PMC10104028 DOI: 10.1101/2023.04.04.535379] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
The organization of immune cells in human tumors is not well understood. Immunogenic tumors harbor spatially-localized multicellular 'immunity hubs' defined by expression of the T cell-attracting chemokines CXCL10/CXCL11 and abundant T cells. Here, we examined immunity hubs in human pre-immunotherapy lung cancer specimens, and found that they were associated with beneficial responses to PD-1-blockade. Immunity hubs were enriched for many interferon-stimulated genes, T cells in multiple differentiation states, and CXCL9/10/11 + macrophages that preferentially interact with CD8 T cells. Critically, we discovered the stem-immunity hub, a subtype of immunity hub strongly associated with favorable PD-1-blockade outcomes, distinct from mature tertiary lymphoid structures, and enriched for stem-like TCF7+PD-1+ CD8 T cells and activated CCR7 + LAMP3 + dendritic cells, as well as chemokines that organize these cells. These results elucidate the spatial organization of the human intratumoral immune response and its relevance to patient immunotherapy outcomes.
Collapse
|
117
|
Milosevic V. Different approaches to Imaging Mass Cytometry data analysis. BIOINFORMATICS ADVANCES 2023; 3:vbad046. [PMID: 37092034 PMCID: PMC10115470 DOI: 10.1093/bioadv/vbad046] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 03/18/2023] [Accepted: 03/31/2023] [Indexed: 04/05/2023]
Abstract
Imaging Mass Cytometry (IMC) is a novel, high multiplexing imaging platform capable of simultaneously detecting and visualizing up to 40 different protein targets. It is a strong asset available for in-depth study of histology and pathophysiology of the tissues. Bearing in mind the robustness of this technique and the high spatial context of the data it gives, it is especially valuable in studying the biology of cancer and tumor microenvironment. IMC-derived data are not classical micrographic images, and due to the characteristics of the data obtained using IMC, the image analysis approach, in this case, can diverge to a certain degree from the classical image analysis pipelines. As the number of publications based on the IMC is on the rise, this trend is also followed by an increase in the number of available methodologies designated solely to IMC-derived data analysis. This review has for an aim to give a systematic synopsis of all the available classical image analysis tools and pipelines useful to be employed for IMC data analysis and give an overview of tools intentionally developed solely for this purpose, easing the choice to researchers of selecting the most suitable methodologies for a specific type of analysis desired.
Collapse
Affiliation(s)
- Vladan Milosevic
- Department of Clinical Medicine, Centre for Cancer Biomarkers CCBIO, University of Bergen, Bergen 5020, Norway
| |
Collapse
|
118
|
Yang J, Chen Y, Jing Y, Green MR, Han L. Advancing CAR T cell therapy through the use of multidimensional omics data. Nat Rev Clin Oncol 2023; 20:211-228. [PMID: 36721024 PMCID: PMC11734589 DOI: 10.1038/s41571-023-00729-2] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/09/2023] [Indexed: 02/01/2023]
Abstract
Despite the notable success of chimeric antigen receptor (CAR) T cell therapies in the treatment of certain haematological malignancies, challenges remain in optimizing CAR designs and cell products, improving response rates, extending the durability of remissions, reducing toxicity and broadening the utility of this therapeutic modality to other cancer types. Data from multidimensional omics analyses, including genomics, epigenomics, transcriptomics, T cell receptor-repertoire profiling, proteomics, metabolomics and/or microbiomics, provide unique opportunities to dissect the complex and dynamic multifactorial phenotypes, processes and responses of CAR T cells as well as to discover novel tumour targets and pathways of resistance. In this Review, we summarize the multidimensional cellular and molecular profiling technologies that have been used to advance our mechanistic understanding of CAR T cell therapies. In addition, we discuss current applications and potential strategies leveraging multi-omics data to identify optimal target antigens and other molecular features that could be exploited to enhance the antitumour activity and minimize the toxicity of CAR T cell therapy. Indeed, fully utilizing multi-omics data will provide new insights into the biology of CAR T cell therapy, further accelerate the development of products with improved efficacy and safety profiles, and enable clinicians to better predict and monitor patient responses.
Collapse
Affiliation(s)
- Jingwen Yang
- Center for Epigenetics and Disease Prevention, Institute of Biosciences and Technology, Texas A&M University, Houston, TX, USA
| | - Yamei Chen
- Center for Epigenetics and Disease Prevention, Institute of Biosciences and Technology, Texas A&M University, Houston, TX, USA
| | - Ying Jing
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston McGovern Medical School, Houston, TX, USA
| | - Michael R Green
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Leng Han
- Center for Epigenetics and Disease Prevention, Institute of Biosciences and Technology, Texas A&M University, Houston, TX, USA.
- Department of Translational Medical Sciences, College of Medicine, Texas A&M University, Houston, TX, USA.
| |
Collapse
|
119
|
Elhanani O, Ben-Uri R, Keren L. Spatial profiling technologies illuminate the tumor microenvironment. Cancer Cell 2023; 41:404-420. [PMID: 36800999 DOI: 10.1016/j.ccell.2023.01.010] [Citation(s) in RCA: 154] [Impact Index Per Article: 77.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/01/2022] [Accepted: 01/26/2023] [Indexed: 02/18/2023]
Abstract
The tumor microenvironment (TME) is composed of many different cellular and acellular components that together drive tumor growth, invasion, metastasis, and response to therapies. Increasing realization of the significance of the TME in cancer biology has shifted cancer research from a cancer-centric model to one that considers the TME as a whole. Recent technological advancements in spatial profiling methodologies provide a systematic view and illuminate the physical localization of the components of the TME. In this review, we provide an overview of major spatial profiling technologies. We present the types of information that can be extracted from these data and describe their applications, findings and challenges in cancer research. Finally, we provide a future perspective of how spatial profiling could be integrated into cancer research to improve patient diagnosis, prognosis, stratification to treatment and development of novel therapeutics.
Collapse
Affiliation(s)
- Ofer Elhanani
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Raz Ben-Uri
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Leeat Keren
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
120
|
Spencer J, Bemark M. Human intestinal B cells in inflammatory diseases. Nat Rev Gastroenterol Hepatol 2023; 20:254-265. [PMID: 36849542 DOI: 10.1038/s41575-023-00755-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/07/2023] [Indexed: 03/01/2023]
Abstract
The intestinal lumen contains an abundance of bacteria, viruses and fungi alongside ingested material that shape the chronically active intestinal immune system from early life to maintain the integrity of the gut epithelial barrier. In health, the response is intricately balanced to provide active protection against pathogen invasion whilst tolerating food and avoiding inflammation. B cells are central to achieving this protection. Their activation and maturation generates the body's largest plasma cell population that secretes IgA, and the niches they provide support systemic immune cell specialization. For example, the gut supports the development and maturation of a splenic B cell subset - the marginal zone B cells. In addition, cells such as the T follicular helper cells, which are enriched in many autoinflammatory diseases, are intrinsically associated with the germinal centre microenvironment that is more abundant in the gut than in any other tissue in health. In this Review, we discuss intestinal B cells and their role when a loss of homeostasis results in intestinal and systemic inflammatory diseases.
Collapse
Affiliation(s)
- Jo Spencer
- School of Immunology and Microbial Sciences, King's College London, Guy's Campus, London, UK.
| | - Mats Bemark
- Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
121
|
Revisiting the Role of the CXCL13/CXCR5-Associated Immune Axis in Melanoma: Potential Implications for Anti-PD-1-Related Biomarker Research. Life (Basel) 2023; 13:life13020553. [PMID: 36836910 PMCID: PMC9958642 DOI: 10.3390/life13020553] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/13/2023] [Accepted: 02/14/2023] [Indexed: 02/18/2023] Open
Abstract
CXCL13 is a potent chemoattractant cytokine that promotes the migration of cells expressing its cognate receptor, CXCR5. Accordingly, T follicular helper cells and B cells migrate towards B cell follicles in lymph nodes, where the resulting spatial proximity promotes B cell/T cell interaction and antibody formation. Moreover, effector cells of the CXCL13/CXCR5-associated immune axis express PD-1, with corresponding circulating cells occurring in the blood. The formation of so-called ectopic or tertiary lymphoid structures, recently detected in different cancer types, represents an integral part of this axis, particularly in the context of its emerging role in anti-tumor defense. These aspects of the CXCL13/CXCR5-associated immune axis are highlighted in this review, which focuses on cutaneous malignant melanoma. Specifically, we elaborate on the role of this important immune axis as a possible ancillary target of immune checkpoint inhibition with anti-PD-1 antibodies in different therapeutic settings and as a potential source of predictive biomarkers regarding treatment efficacy.
Collapse
|
122
|
Targeting tumor-associated macrophages in hepatocellular carcinoma: biology, strategy, and immunotherapy. Cell Death Discov 2023; 9:65. [PMID: 36792608 PMCID: PMC9931715 DOI: 10.1038/s41420-023-01356-7] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 01/27/2023] [Accepted: 02/01/2023] [Indexed: 02/17/2023] Open
Abstract
Hepatocellular carcinoma (HCC), one of the most malignant tumors, is characterized by its stubborn immunosuppressive microenvironment. As one of the main members of the tumor microenvironment (TME) of HCC, tumor-associated macrophages (TAMs) play a critical role in its occurrence and development, including stimulating angiogenesis, enhancing immunosuppression, and promoting the drug resistance and cancer metastasis. This review describes the origin as well as phenotypic heterogeneity of TAMs and their potential effects on the occurrence and development of HCC and also discusses about various adjuvant therapy based strategies that can be used for targeting TAMs. In addition, we have highlighted different treatment modalities for TAMs based on immunotherapy, including small molecular inhibitors, immune checkpoint inhibitors, antibodies, tumor vaccines, adoptive cellular immunotherapy, and nanocarriers for drug delivery, to explore novel combination therapies and provide feasible therapeutic options for clinically improving the prognosis and quality of life of HCC patients.
Collapse
|
123
|
Kohlhepp MS, Liu H, Tacke F, Guillot A. The contradictory roles of macrophages in non-alcoholic fatty liver disease and primary liver cancer-Challenges and opportunities. Front Mol Biosci 2023; 10:1129831. [PMID: 36845555 PMCID: PMC9950415 DOI: 10.3389/fmolb.2023.1129831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 01/31/2023] [Indexed: 02/12/2023] Open
Abstract
Chronic liver diseases from varying etiologies generally lead to liver fibrosis and cirrhosis. Among them, non-alcoholic fatty liver disease (NAFLD) affects roughly one-quarter of the world population, thus representing a major and increasing public health burden. Chronic hepatocyte injury, inflammation (non-alcoholic steatohepatitis, NASH) and liver fibrosis are recognized soils for primary liver cancer, particularly hepatocellular carcinoma (HCC), being the third most common cause for cancer-related deaths worldwide. Despite recent advances in liver disease understanding, therapeutic options on pre-malignant and malignant stages remain limited. Thus, there is an urgent need to identify targetable liver disease-driving mechanisms for the development of novel therapeutics. Monocytes and macrophages comprise a central, yet versatile component of the inflammatory response, fueling chronic liver disease initiation and progression. Recent proteomic and transcriptomic studies performed at singular cell levels revealed a previously overlooked diversity of macrophage subpopulations and functions. Indeed, liver macrophages that encompass liver resident macrophages (also named Kupffer cells) and monocyte-derived macrophages, can acquire a variety of phenotypes depending on microenvironmental cues, and thus exert manifold and sometimes contradictory functions. Those functions range from modulating and exacerbating tissue inflammation to promoting and exaggerating tissue repair mechanisms (i.e., parenchymal regeneration, cancer cell proliferation, angiogenesis, fibrosis). Due to these central functions, liver macrophages represent an attractive target for the treatment of liver diseases. In this review, we discuss the multifaceted and contrary roles of macrophages in chronic liver diseases, with a particular focus on NAFLD/NASH and HCC. Moreover, we discuss potential therapeutic approaches targeting liver macrophages.
Collapse
|
124
|
Einhaus J, Rochwarger A, Mattern S, Gaudillière B, Schürch CM. High-multiplex tissue imaging in routine pathology-are we there yet? Virchows Arch 2023; 482:801-812. [PMID: 36757500 PMCID: PMC10156760 DOI: 10.1007/s00428-023-03509-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 01/22/2023] [Accepted: 01/31/2023] [Indexed: 02/10/2023]
Abstract
High-multiplex tissue imaging (HMTI) approaches comprise several novel immunohistological methods that enable in-depth, spatial single-cell analysis. Over recent years, studies in tumor biology, infectious diseases, and autoimmune conditions have demonstrated the information gain accessible when mapping complex tissues with HMTI. Tumor biology has been a focus of innovative multiparametric approaches, as the tumor microenvironment (TME) contains great informative value for accurate diagnosis and targeted therapeutic approaches: unraveling the cellular composition and structural organization of the TME using sophisticated computational tools for spatial analysis has produced histopathologic biomarkers for outcomes in breast cancer, predictors of positive immunotherapy response in melanoma, and histological subgroups of colorectal carcinoma. Integration of HMTI technologies into existing clinical workflows such as molecular tumor boards will contribute to improve patient outcomes through personalized treatments tailored to the specific heterogeneous pathological fingerprint of cancer, autoimmunity, or infection. Here, we review the advantages and limitations of existing HMTI technologies and outline how spatial single-cell data can improve our understanding of pathological disease mechanisms and determinants of treatment success. We provide an overview of the analytic processing and interpretation and discuss how HMTI can improve future routine clinical diagnostic and therapeutic processes.
Collapse
Affiliation(s)
- Jakob Einhaus
- Department of Anaesthesiology, Perioperative & Pain Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Department of Pathology and Neuropathology, University Hospital and Comprehensive Cancer Center Tübingen, Tübingen, Germany
| | - Alexander Rochwarger
- Department of Pathology and Neuropathology, University Hospital and Comprehensive Cancer Center Tübingen, Tübingen, Germany
| | - Sven Mattern
- Department of Pathology and Neuropathology, University Hospital and Comprehensive Cancer Center Tübingen, Tübingen, Germany
| | - Brice Gaudillière
- Department of Anaesthesiology, Perioperative & Pain Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Christian M Schürch
- Department of Pathology and Neuropathology, University Hospital and Comprehensive Cancer Center Tübingen, Tübingen, Germany.
| |
Collapse
|
125
|
Kolbinger A, Schäufele TJ, Steigerwald H, Friedel J, Pierre S, Geisslinger G, Scholich K. Eosinophil-derived IL-4 is necessary to establish the inflammatory structure in innate inflammation. EMBO Mol Med 2023; 15:e16796. [PMID: 36541656 PMCID: PMC9906331 DOI: 10.15252/emmm.202216796] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 12/06/2022] [Accepted: 12/08/2022] [Indexed: 12/24/2022] Open
Abstract
Pathogen-induced inflammation comprises pro- and anti-inflammatory processes, which ensure pathogen removal and containment of the proinflammatory activities. Here, we aimed to identify the development of inflammatory microenvironments and their maintenance throughout the course of a toll-like receptor 2-mediated paw inflammation. Within 24 h after pathogen-injection, the immune cells were organized in three zones, which comprised a pathogen-containing "core-region", a bordering proinflammatory (PI)-region and an outer anti-inflammatory (AI)-region. Eosinophils were present in all three inflammatory regions and adapted their cytokine profile according to their localization. Eosinophil depletion reduced IL-4 levels and increased edema formation as well as mechanical and thermal hypersensitivities during resolution of inflammation. Also, in the absence of eosinophils PI- and AI-regions could not be determined anymore, neutrophil numbers increased, and efferocytosis as well as M2-macrophage polarization were reduced. IL-4 administration restored in eosinophil-depleted mice PI- and AI-regions, normalized neutrophil numbers, efferocytosis, M2-macrophage polarization as well as resolution of zymosan-induced hypersensitivity. In conclusion, IL-4-expressing eosinophils support the resolution of inflammation by enabling the development of an anti-inflammatory framework, which encloses proinflammatory regions.
Collapse
Affiliation(s)
- Anja Kolbinger
- Institute of Clinical Pharmacology, Goethe-University Frankfurt, Frankfurt, Germany
| | - Tim J Schäufele
- Institute of Clinical Pharmacology, Goethe-University Frankfurt, Frankfurt, Germany
| | - Hanna Steigerwald
- Institute of Clinical Pharmacology, Goethe-University Frankfurt, Frankfurt, Germany
| | - Joschua Friedel
- Institute of Clinical Pharmacology, Goethe-University Frankfurt, Frankfurt, Germany
| | - Sandra Pierre
- Institute of Clinical Pharmacology, Goethe-University Frankfurt, Frankfurt, Germany
| | - Gerd Geisslinger
- Institute of Clinical Pharmacology, Goethe-University Frankfurt, Frankfurt, Germany.,Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Frankfurt, Germany.,Fraunhofer Cluster of Excellence for Immune-Mediated Diseases CIMD, Frankfurt, Germany
| | - Klaus Scholich
- Institute of Clinical Pharmacology, Goethe-University Frankfurt, Frankfurt, Germany.,Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Frankfurt, Germany.,Fraunhofer Cluster of Excellence for Immune-Mediated Diseases CIMD, Frankfurt, Germany
| |
Collapse
|
126
|
Xue S, Su XM, Ke LN, Huang YG. CXCL9 correlates with antitumor immunity and is predictive of a favorable prognosis in uterine corpus endometrial carcinoma. Front Oncol 2023; 13:1077780. [PMID: 36845675 PMCID: PMC9945585 DOI: 10.3389/fonc.2023.1077780] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 01/17/2023] [Indexed: 02/11/2023] Open
Abstract
Background The C-X-C motif chemokine ligand-9 (CXCL9) is related to the progression of multiple neoplasms. Yet, its biological functions in uterine corpus endometrioid carcinoma (UCEC) remain shrouded in confusion. Here, we assessed the prognostic significance and potential mechanism of CXCL9 in UCEC. Methods Firstly, bioinformatics analysis of the public cancer database, including the Cancer Genome Atlas / the Genotype-Tissue Expression project (TCGA+ GTEx, n=552) and Gene Expression Omnibus (GEO): GSE63678 (n=7), were utilized for the CXCL9 expression-related analysis in UCEC. Then, the survival analysis of TCGA-UCEC was performed. Futher, the gene set enrichment analysis (GSEA) was carried out to reveal the potential molecular signaling pathway in UCEC associated with CXCL9 expression. Moreover, the immunohistochemistry (IHC) assay of our validation cohort (n=124) from human specimens were used to demonstrate the latent significance of CXCL9 in UCEC. Results The bioinformatics analysis suggested that CXCL9 expression was significantly upregulated in UCEC patients; and hyper-expression of CXCL9 was related to prolonged survival. the GSEA enrichment analysis showed various immune response-related pathways, including T/NK cell, lymphocyte activation, cytokine-cytokine receptor interaction network, and chemokine signaling pathway, mediated by CXCL9. In addition, the cytotoxic molecules (IFNG, SLAMF7, JCHAIN, NKG7, GBP5, LYZ, GZMA, GZMB, and TNF3F9) and the immunosuppressive genes (including PD-L1) were positively related to the expression of CXCL9. Further, the IHC assay indicated that the CXCL9 protein expression was mainly located in intertumoral and significantly upregulated in the UCEC patients; UCEC with high intertumoral CXCL9 cell abundance harbored an improved prognosis; a higher ratio of anti-tumor immune cells (CD4+, CD8+, and CD56+ cell) and PD-L1 was found in UCEC with CXCL9 high expression. Conclusion Overexpressed CXCL9 correlates with antitumor immunity and is predictive of a favorable prognosis in UCEC. It hinted that CXCL9 may serve as an independent prognostic biomarker or therapeutic target in UCEC patients, which augmented anti-tumor immune effects to furnish survival benefits.
Collapse
Affiliation(s)
- Shen Xue
- Department of obstetrics and gynecology, Sinopharm Dongfeng General Hospital, Hubei University of Medicine, Shiyan, China
| | - Xiao-min Su
- Department of Immunology, Nankai University School of Medicine, Tianjin, China
| | - Li-na Ke
- Department of obstetrics and gynecology, Sinopharm Dongfeng General Hospital, Hubei University of Medicine, Shiyan, China,*Correspondence: Yu-gang Huang, ; Li-na Ke,
| | - Yu-gang Huang
- Department of Pathology, Taihe Hospital, Hubei University of Medicine, Shiyan, China,*Correspondence: Yu-gang Huang, ; Li-na Ke,
| |
Collapse
|
127
|
Sheng W, Zhang C, Mohiuddin TM, Al-Rawe M, Zeppernick F, Falcone FH, Meinhold-Heerlein I, Hussain AF. Multiplex Immunofluorescence: A Powerful Tool in Cancer Immunotherapy. Int J Mol Sci 2023; 24:ijms24043086. [PMID: 36834500 PMCID: PMC9959383 DOI: 10.3390/ijms24043086] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/26/2023] [Accepted: 01/31/2023] [Indexed: 02/08/2023] Open
Abstract
Traditional immunohistochemistry (IHC) has already become an essential method of diagnosis and therapy in cancer management. However, this antibody-based technique is limited to detecting a single marker per tissue section. Since immunotherapy has revolutionized the antineoplastic therapy, developing new immunohistochemistry strategies to detect multiple markers simultaneously to better understand tumor environment and predict or assess response to immunotherapy is necessary and urgent. Multiplex immunohistochemistry (mIHC)/multiplex immunofluorescence (mIF), such as multiplex chromogenic IHC and multiplex fluorescent immunohistochemistry (mfIHC), is a new and emerging technology to label multiple biomarkers in a single pathological section. The mfIHC shows a higher performance in cancer immunotherapy. This review summarizes the technologies, which are applied for mfIHC, and discusses how they are employed for immunotherapy research.
Collapse
Affiliation(s)
- Wenjie Sheng
- Department of Gynecology and Obstetrics, Medical Faculty, Justus-Liebig-University Giessen, Klinikstr. 33, 35392 Giessen, Germany
| | - Chaoyu Zhang
- Department of Gynecology and Obstetrics, Medical Faculty, Justus-Liebig-University Giessen, Klinikstr. 33, 35392 Giessen, Germany
| | - T. M. Mohiuddin
- Department of Gynecology and Obstetrics, Medical Faculty, Justus-Liebig-University Giessen, Klinikstr. 33, 35392 Giessen, Germany
| | - Marwah Al-Rawe
- Department of Gynecology and Obstetrics, Medical Faculty, Justus-Liebig-University Giessen, Klinikstr. 33, 35392 Giessen, Germany
| | - Felix Zeppernick
- Department of Gynecology and Obstetrics, Medical Faculty, Justus-Liebig-University Giessen, Klinikstr. 33, 35392 Giessen, Germany
| | - Franco H. Falcone
- Institute for Parasitology, Faculty of Veterinary Medicine, Justus Liebig University Giessen, 35392 Giessen, Germany
| | - Ivo Meinhold-Heerlein
- Department of Gynecology and Obstetrics, Medical Faculty, Justus-Liebig-University Giessen, Klinikstr. 33, 35392 Giessen, Germany
| | - Ahmad Fawzi Hussain
- Department of Gynecology and Obstetrics, Medical Faculty, Justus-Liebig-University Giessen, Klinikstr. 33, 35392 Giessen, Germany
- Correspondence:
| |
Collapse
|
128
|
Tietscher S, Wagner J, Anzeneder T, Langwieder C, Rees M, Sobottka B, de Souza N, Bodenmiller B. A comprehensive single-cell map of T cell exhaustion-associated immune environments in human breast cancer. Nat Commun 2023; 14:98. [PMID: 36609566 PMCID: PMC9822999 DOI: 10.1038/s41467-022-35238-w] [Citation(s) in RCA: 97] [Impact Index Per Article: 48.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 11/24/2022] [Indexed: 01/09/2023] Open
Abstract
Immune checkpoint therapy in breast cancer remains restricted to triple negative patients, and long-term clinical benefit is rare. The primary aim of immune checkpoint blockade is to prevent or reverse exhausted T cell states, but T cell exhaustion in breast tumors is not well understood. Here, we use single-cell transcriptomics combined with imaging mass cytometry to systematically study immune environments of human breast tumors that either do or do not contain exhausted T cells, with a focus on luminal subtypes. We find that the presence of a PD-1high exhaustion-like T cell phenotype is associated with an inflammatory immune environment with a characteristic cytotoxic profile, increased myeloid cell activation, evidence for elevated immunomodulatory, chemotactic, and cytokine signaling, and accumulation of natural killer T cells. Tumors harboring exhausted-like T cells show increased expression of MHC-I on tumor cells and of CXCL13 on T cells, as well as altered spatial organization with more immature rather than mature tertiary lymphoid structures. Our data reveal fundamental differences between immune environments with and without exhausted T cells within luminal breast cancer, and show that expression of PD-1 and CXCL13 on T cells, and MHC-I - but not PD-L1 - on tumor cells are strong distinguishing features between these environments.
Collapse
Affiliation(s)
- Sandra Tietscher
- Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland.,Institute for Molecular Health Sciences, ETH Zurich, Zurich, Switzerland.,Life Science Zurich Graduate School, ETH Zurich and University of Zurich, Zurich, Switzerland
| | - Johanna Wagner
- Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland.,Division of Translational Medical Oncology, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT) Heidelberg, Heidelberg, Germany
| | | | | | | | - Bettina Sobottka
- Department of Pathology and Molecular Pathology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Natalie de Souza
- Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland.,Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
| | - Bernd Bodenmiller
- Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland. .,Institute for Molecular Health Sciences, ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
129
|
Franciosa G, Kverneland AH, Jensen AWP, Donia M, Olsen JV. Proteomics to study cancer immunity and improve treatment. Semin Immunopathol 2023; 45:241-251. [PMID: 36598558 PMCID: PMC10121539 DOI: 10.1007/s00281-022-00980-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 12/12/2022] [Indexed: 01/05/2023]
Abstract
Cancer survival and progression depend on the ability of tumor cells to avoid immune recognition. Advances in the understanding of cancer immunity and tumor immune escape mechanisms enabled the development of immunotherapeutic approaches. In patients with otherwise incurable metastatic cancers, immunotherapy resulted in unprecedented response rates with the potential for durable complete responses. However, primary and acquired resistance mechanisms limit the efficacy of immunotherapy. Further therapeutic advances require a deeper understanding of the interplay between immune cells and tumors. Most high-throughput studies within the past decade focused on an omics characterization at DNA and RNA level. However, proteins are the molecular effectors of genomic information; therefore, the study of proteins provides deeper understanding of cellular functions. Recent advances in mass spectrometry (MS)-based proteomics at a system-wide scale may allow translational and clinical discoveries by enabling the analysis of understudied post-translational modifications, subcellular protein localization, cell signaling, and protein-protein interactions. In this review, we discuss the potential contribution of MS-based proteomics to preclinical and clinical research findings in the context of tumor immunity and cancer immunotherapies.
Collapse
Affiliation(s)
- Giulia Franciosa
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark.
| | - Anders H Kverneland
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark.,National Center of Cancer Immune Therapy, Department of Oncology, Copenhagen University Hospital - Herlev and Gentofte, Herlev, Denmark
| | - Agnete W P Jensen
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
| | - Marco Donia
- National Center of Cancer Immune Therapy, Department of Oncology, Copenhagen University Hospital - Herlev and Gentofte, Herlev, Denmark
| | - Jesper V Olsen
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
130
|
Glasson Y, Chépeaux LA, Dumé AS, Lafont V, Faget J, Bonnefoy N, Michaud HA. Single-cell high-dimensional imaging mass cytometry: one step beyond in oncology. Semin Immunopathol 2023; 45:17-28. [PMID: 36598557 PMCID: PMC9812013 DOI: 10.1007/s00281-022-00978-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 12/11/2022] [Indexed: 01/05/2023]
Abstract
Solid tumors have a dynamic ecosystem in which malignant and non-malignant (endothelial, stromal, and immune) cell types constantly interact. Importantly, the abundance, localization, and functional orientation of each cell component within the tumor microenvironment vary significantly over time and in response to treatment. Such intratumoral heterogeneity influences the tumor course and its sensitivity to treatments. Recently, high-dimensional imaging mass cytometry (IMC) has been developed to explore the tumor ecosystem at the single-cell level. In the last years, several studies demonstrated that IMC is a powerful tool to decipher the tumor complexity. In this review, we summarize the potential of this technology and how it may be useful for cancer research (from preclinical to clinical studies).
Collapse
Affiliation(s)
- Yaël Glasson
- IRCM, Univ Montpellier, ICM, Plateforme de Cytométrie Et d’Imagerie de Masse, Inserm Montpellier, France
| | - Laure-Agnès Chépeaux
- IRCM, Univ Montpellier, ICM, Plateforme de Cytométrie Et d’Imagerie de Masse, Inserm Montpellier, France
| | - Anne-Sophie Dumé
- IRCM, Univ Montpellier, ICM, Plateforme de Cytométrie Et d’Imagerie de Masse, Inserm Montpellier, France
| | | | - Julien Faget
- IRCM, Univ Montpellier, ICM, Inserm Montpellier, France
| | - Nathalie Bonnefoy
- IRCM, Univ Montpellier, ICM, Plateforme de Cytométrie Et d’Imagerie de Masse, Inserm Montpellier, France
| | - Henri-Alexandre Michaud
- IRCM, Univ Montpellier, ICM, Plateforme de Cytométrie Et d'Imagerie de Masse, Inserm Montpellier, France.
| |
Collapse
|
131
|
Einhaus J, Han X, Feyaerts D, Sunwoo J, Gaudilliere B, Ahmad SH, Aghaeepour N, Bruckman K, Ojcius D, Schürch CM, Gaudilliere DK. Towards multiomic analysis of oral mucosal pathologies. Semin Immunopathol 2023; 45:111-123. [PMID: 36790488 PMCID: PMC9974703 DOI: 10.1007/s00281-022-00982-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 12/23/2022] [Indexed: 02/16/2023]
Abstract
Oral mucosal pathologies comprise an array of diseases with worldwide prevalence and medical relevance. Affecting a confined space with crucial physiological and social functions, oral pathologies can be mutilating and drastically reduce quality of life. Despite their relevance, treatment for these diseases is often far from curative and remains vastly understudied. While multiple factors are involved in the pathogenesis of oral mucosal pathologies, the host's immune system plays a major role in the development, maintenance, and resolution of these diseases. Consequently, a precise understanding of immunological mechanisms implicated in oral mucosal pathologies is critical (1) to identify accurate, mechanistic biomarkers of clinical outcomes; (2) to develop targeted immunotherapeutic strategies; and (3) to individualize prevention and treatment approaches. Here, we review key elements of the immune system's role in oral mucosal pathologies that hold promise to overcome limitations in current diagnostic and therapeutic approaches. We emphasize recent and ongoing multiomic and single-cell approaches that enable an integrative view of these pathophysiological processes and thereby provide unifying and clinically relevant biological signatures.
Collapse
Affiliation(s)
- Jakob Einhaus
- Department of Anesthesiology, Perioperative & Pain Medicine, School of Medicine, Stanford University, Stanford, CA, USA
- Department of Pathology and Neuropathology, University Hospital and Comprehensive Cancer Center Tübingen, Tübingen, Germany
| | - Xiaoyuan Han
- Arthur A. Dugoni School of Dentistry, University of the Pacific, San Francisco, CA, USA
| | - Dorien Feyaerts
- Department of Anesthesiology, Perioperative & Pain Medicine, School of Medicine, Stanford University, Stanford, CA, USA
| | - John Sunwoo
- Division of Head and Neck Surgery, Department of Otolaryngology, School of Medicine, Stanford University, Stanford, CA, USA
| | - Brice Gaudilliere
- Department of Anesthesiology, Perioperative & Pain Medicine, School of Medicine, Stanford University, Stanford, CA, USA
| | - Somayeh H Ahmad
- Division of Plastic and Reconstructive Surgery, Department of Surgery, School of Medicine, Stanford University, 770 Welch Road, Palo Alto, CA, 94304, USA
| | - Nima Aghaeepour
- Department of Anesthesiology, Perioperative & Pain Medicine, School of Medicine, Stanford University, Stanford, CA, USA
| | - Karl Bruckman
- Division of Plastic and Reconstructive Surgery, Department of Surgery, School of Medicine, Stanford University, 770 Welch Road, Palo Alto, CA, 94304, USA
| | - David Ojcius
- Arthur A. Dugoni School of Dentistry, University of the Pacific, San Francisco, CA, USA
| | - Christian M Schürch
- Department of Pathology and Neuropathology, University Hospital and Comprehensive Cancer Center Tübingen, Tübingen, Germany
| | - Dyani K Gaudilliere
- Division of Plastic and Reconstructive Surgery, Department of Surgery, School of Medicine, Stanford University, 770 Welch Road, Palo Alto, CA, 94304, USA.
| |
Collapse
|
132
|
Zhang J, Jin H, Pan S, Han C, Sun Q, Han X. Immune checkpoints expression patterns in early-stage triple-negative breast cancer predict prognosis and remodel the tumor immune microenvironment. Front Immunol 2023; 14:1073550. [PMID: 36814908 PMCID: PMC9939840 DOI: 10.3389/fimmu.2023.1073550] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 01/16/2023] [Indexed: 02/08/2023] Open
Abstract
Background Currently, targeting immune checkpoint molecules holds great promise for triple-negative breast cancer (TNBC). However, the expression landscape of immune checkpoint genes (ICGs) in TNBC remains largely unknown. Method Herein, we systematically investigated the ICGs expression patterns in 422 TNBC samples. We evaluated the ICGs molecular typing based on the ICGs expression profile and explored the associations between ICGs molecular subtypes and tumor immune characteristics, clinical significance, and response to immune checkpoint inhibitors (ICIs). Results Two ICGs clusters and two ICGs-related gene clusters were determined, which were involved in different survival outcomes, biological roles and infiltration levels of immune cells. We established a quantification system ICGs riskscore (named IRS) to assess the ICGs expression patterns for individuals. TNBC patients with lower IRS were characterized by increased immune cell infiltration, favorable clinical outcomes and high sensitivity to ICIs therapy. We also developed a nomogram model combining clinicopathological variables to predict overall survival in TNBC. Genomic feature analysis revealed that high IRS group presented an increased tumor mutation burden compared with the low IRS group. Conclusion Collectively, dissecting the ICGs expression patterns not only provides a new insight into TNBC subtypes but also deepens the understanding of ICGs in the tumor immune microenvironment.
Collapse
Affiliation(s)
- Jinguo Zhang
- Department of Medical Oncology, Anhui Provincial Hospital Affiliated to Anhui Medical University, Hefei, China.,Department of Medical Oncology, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
| | - Hongwei Jin
- Department of Medical Oncology, Anhui Provincial Hospital Affiliated to Anhui Medical University, Hefei, China.,Department of Medical Oncology, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China.,School of Medical Oncology, Anhui Medical University, Hefei, China
| | - Shuaikang Pan
- Department of Medical Oncology, Anhui Provincial Hospital Affiliated to Anhui Medical University, Hefei, China.,School of Medical Oncology, Wan Nan Medical College, Wuhu, China
| | - Chaoqiang Han
- Department of Medical Oncology, Anhui Provincial Hospital Affiliated to Anhui Medical University, Hefei, China
| | - Qingqing Sun
- Department of Medical Oncology, Anhui Provincial Hospital Affiliated to Anhui Medical University, Hefei, China.,Department of Medical Oncology, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China.,School of Medical Oncology, Anhui Medical University, Hefei, China
| | - Xinghua Han
- Department of Medical Oncology, Anhui Provincial Hospital Affiliated to Anhui Medical University, Hefei, China.,Department of Medical Oncology, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China.,School of Medical Oncology, Anhui Medical University, Hefei, China
| |
Collapse
|
133
|
Chopp L, Redmond C, O'Shea JJ, Schwartz DM. From thymus to tissues and tumors: A review of T-cell biology. J Allergy Clin Immunol 2023; 151:81-97. [PMID: 36272581 PMCID: PMC9825672 DOI: 10.1016/j.jaci.2022.10.011] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 10/10/2022] [Accepted: 10/13/2022] [Indexed: 11/05/2022]
Abstract
T cells are critical orchestrators of the adaptive immune response that optimally eliminate a specific pathogen. Aberrant T-cell development and function are implicated in a broad range of human disease including immunodeficiencies, autoimmune diseases, and allergic diseases. Accordingly, therapies targeting T cells and their effector cytokines have markedly improved the care of patients with immune dysregulatory diseases. Newer discoveries concerning T-cell-mediated antitumor immunity and T-cell exhaustion have further prompted development of highly effective and novel treatment modalities for malignancies, including checkpoint inhibitors and antigen-reactive T cells. Recent discoveries are also uncovering the depth and variability of T-cell phenotypes: while T cells have long been described using a subset-based classification system, next-generation sequencing technologies suggest an astounding degree of complexity and heterogeneity at the single-cell level.
Collapse
Affiliation(s)
- Laura Chopp
- Laboratory of Immune Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda
| | - Christopher Redmond
- Clinical Fellowship Program, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda
| | - John J O'Shea
- Molecular Immunology and Inflammation Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda
| | - Daniella M Schwartz
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda; Division of Rheumatology and Clinical Immunology, University of Pittsburgh, Pittsburgh.
| |
Collapse
|
134
|
Lv M, He F, Guo J, Zheng Z, Wang W, Xie J. Identification of hub genes correlated with tumor-associated M1-like macrophage infiltration in soft tissue sarcomas. Front Genet 2022; 13:999966. [PMID: 36561315 PMCID: PMC9763622 DOI: 10.3389/fgene.2022.999966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 11/17/2022] [Indexed: 12/12/2022] Open
Abstract
Soft tissue sarcomas (STS) are a heterogeneous series of tumors that might result in severe disability and death. Tumor-associated M1-like macrophage infiltration plays a critical role in tumor development and progression. This study aimed at identifying the hub genes associated with M1-like macrophage infiltration in STS cells. First, the expression profiles from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases were imported to calculate the level of M1-like macrophage infiltration by CIBERSORTx. Afterward, the Kaplan-Meier survival analysis was performed to evaluate the correlation between macrophage infiltration and prognosis. Then, weighted gene co-expression network analysis (WGCNA) and protein-protein interaction analysis of GEO data were applied to identify the key gene related to M1-like macrophage infiltration, followed by the functional analysis using TCGA cohort to validate downstream signaling associated with the gene. Finally, pan-cancer analysis was conducted to investigate the gene function in other types of tumors. We found LCK expression positively related to the M1-like macrophage infiltration level, and it positively regulated the expression level of genes regulated to macrophage polarization, and chemotaxis, including interferon-γ (INF-γ), interleukin-12 (IL12), tumor necrosis factor (TNF), PI3K, NF-κB, and CXCL9, 10, and 11. In summary, an 'LCK-INF-γ/IL-12-TNF/PI3K-NF-κB' axis might exist in STS cells that regulate M1-like macrophage infiltration.
Collapse
|
135
|
Hsieh WC, Budiarto BR, Wang YF, Lin CY, Gwo MC, So DK, Tzeng YS, Chen SY. Spatial multi-omics analyses of the tumor immune microenvironment. J Biomed Sci 2022; 29:96. [PMID: 36376874 PMCID: PMC9661775 DOI: 10.1186/s12929-022-00879-y] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 11/02/2022] [Indexed: 11/16/2022] Open
Abstract
In the past decade, single-cell technologies have revealed the heterogeneity of the tumor-immune microenvironment at the genomic, transcriptomic, and proteomic levels and have furthered our understanding of the mechanisms of tumor development. Single-cell technologies have also been used to identify potential biomarkers. However, spatial information about the tumor-immune microenvironment such as cell locations and cell-cell interactomes is lost in these approaches. Recently, spatial multi-omics technologies have been used to study transcriptomes, proteomes, and metabolomes of tumor-immune microenvironments in several types of cancer, and the data obtained from these methods has been combined with immunohistochemistry and multiparameter analysis to yield markers of cancer progression. Here, we review numerous cutting-edge spatial 'omics techniques, their application to study of the tumor-immune microenvironment, and remaining technical challenges.
Collapse
Affiliation(s)
- Wan-Chen Hsieh
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
- Genome and Systems Biology Degree Program, Academia Sinica and National Taiwan University, Taipei, Taiwan
| | - Bugi Ratno Budiarto
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
- Taiwan International Graduate Program in Molecular Medicine, National Yang Ming Chiao Tung University and Academia Sinica, Taipei, Taiwan
| | - Yi-Fu Wang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Chih-Yu Lin
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Mao-Chun Gwo
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Dorothy Kazuno So
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
- Institute of Biotechnology, College of Bio-Resources and Agriculture, National Taiwan University, Taipei, Taiwan
| | - Yi-Shiuan Tzeng
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.
| | - Shih-Yu Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.
- Genome and Systems Biology Degree Program, Academia Sinica and National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
136
|
Massa D, Tosi A, Rosato A, Guarneri V, Dieci MV. Multiplexed In Situ Spatial Protein Profiling in the Pursuit of Precision Immuno-Oncology for Patients with Breast Cancer. Cancers (Basel) 2022; 14:4885. [PMID: 36230808 PMCID: PMC9562913 DOI: 10.3390/cancers14194885] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 09/29/2022] [Accepted: 10/04/2022] [Indexed: 11/16/2022] Open
Abstract
Immune checkpoint inhibitors (ICIs) have revolutionized the treatment of many solid tumors. In breast cancer (BC), immunotherapy is currently approved in combination with chemotherapy, albeit only in triple-negative breast cancer. Unfortunately, most patients only derive limited benefit from ICIs, progressing either upfront or after an initial response. Therapeutics must engage with a heterogeneous network of complex stromal-cancer interactions that can fail at imposing cancer immune control in multiple domains, such as in the genomic, epigenomic, transcriptomic, proteomic, and metabolomic domains. To overcome these types of heterogeneous resistance phenotypes, several combinatorial strategies are underway. Still, they can be predicted to be effective only in the subgroups of patients in which those specific resistance mechanisms are effectively in place. As single biomarker predictive performances are necessarily suboptimal at capturing the complexity of this articulate network, precision immune-oncology calls for multi-omics tumor microenvironment profiling in order to identify unique predictive patterns and to proactively tailor combinatorial treatments. Multiplexed single-cell spatially resolved tissue analysis, through precise epitope colocalization, allows one to infer cellular functional states in view of their spatial organization. In this review, we discuss-through the lens of the cancer-immunity cycle-selected, established, and emerging markers that may be evaluated in multiplexed spatial protein panels to help identify prognostic and predictive patterns in BC.
Collapse
Affiliation(s)
- Davide Massa
- Department of Surgery, Oncology and Gastroenterology, University of Padova, 35128 Padova, Italy
- Division of Oncology 2, Istituto Oncologico Veneto IRCCS, 35128 Padova, Italy
| | - Anna Tosi
- Immunology and Molecular Oncology Diagnostics, Istituto Oncologico Veneto IRCCS, 35128 Padova, Italy
| | - Antonio Rosato
- Department of Surgery, Oncology and Gastroenterology, University of Padova, 35128 Padova, Italy
- Immunology and Molecular Oncology Diagnostics, Istituto Oncologico Veneto IRCCS, 35128 Padova, Italy
| | - Valentina Guarneri
- Department of Surgery, Oncology and Gastroenterology, University of Padova, 35128 Padova, Italy
- Division of Oncology 2, Istituto Oncologico Veneto IRCCS, 35128 Padova, Italy
| | - Maria Vittoria Dieci
- Department of Surgery, Oncology and Gastroenterology, University of Padova, 35128 Padova, Italy
- Division of Oncology 2, Istituto Oncologico Veneto IRCCS, 35128 Padova, Italy
| |
Collapse
|
137
|
Gurke R, Bendes A, Bowes J, Koehm M, Twyman RM, Barton A, Elewaut D, Goodyear C, Hahnefeld L, Hillenbrand R, Hunter E, Ibberson M, Ioannidis V, Kugler S, Lories RJ, Resch E, Rüping S, Scholich K, Schwenk JM, Waddington JC, Whitfield P, Geisslinger G, FitzGerald O, Behrens F, Pennington SR. Omics and Multi-Omics Analysis for the Early Identification and Improved Outcome of Patients with Psoriatic Arthritis. Biomedicines 2022; 10:2387. [PMID: 36289648 PMCID: PMC9598654 DOI: 10.3390/biomedicines10102387] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/15/2022] [Accepted: 09/17/2022] [Indexed: 11/17/2022] Open
Abstract
The definitive diagnosis and early treatment of many immune-mediated inflammatory diseases (IMIDs) is hindered by variable and overlapping clinical manifestations. Psoriatic arthritis (PsA), which develops in ~30% of people with psoriasis, is a key example. This mixed-pattern IMID is apparent in entheseal and synovial musculoskeletal structures, but a definitive diagnosis often can only be made by clinical experts or when an extensive progressive disease state is apparent. As with other IMIDs, the detection of multimodal molecular biomarkers offers some hope for the early diagnosis of PsA and the initiation of effective management and treatment strategies. However, specific biomarkers are not yet available for PsA. The assessment of new markers by genomic and epigenomic profiling, or the analysis of blood and synovial fluid/tissue samples using proteomics, metabolomics and lipidomics, provides hope that complex molecular biomarker profiles could be developed to diagnose PsA. Importantly, the integration of these markers with high-throughput histology, imaging and standardized clinical assessment data provides an important opportunity to develop molecular profiles that could improve the diagnosis of PsA, predict its occurrence in cohorts of individuals with psoriasis, differentiate PsA from other IMIDs, and improve therapeutic responses. In this review, we consider the technologies that are currently deployed in the EU IMI2 project HIPPOCRATES to define biomarker profiles specific for PsA and discuss the advantages of combining multi-omics data to improve the outcome of PsA patients.
Collapse
Affiliation(s)
- Robert Gurke
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany
- Fraunhofer Cluster of Excellence Immune-Mediated Diseases CIMD, Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany
- Pharmazentrum Frankfurt/ZAFES, Institute of Clinical Pharmacology, Goethe University, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Annika Bendes
- Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, 171 65 Solna, Sweden
| | - John Bowes
- NIHR Manchester Biomedical Research Centre, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester M13 9WU, UK
- Centre for Genetics and Genomics Versus Arthritis, Centre for Musculoskeletal Research, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester M13 9PT, UK
| | - Michaela Koehm
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany
- Fraunhofer Cluster of Excellence Immune-Mediated Diseases CIMD, Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany
- Division of Rheumatology, University Hospital Frankfurt, Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany
| | | | - Anne Barton
- NIHR Manchester Biomedical Research Centre, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester M13 9WU, UK
- Centre for Genetics and Genomics Versus Arthritis, Centre for Musculoskeletal Research, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester M13 9PT, UK
| | - Dirk Elewaut
- VIB-UGent Center for Inflammation Research, Ghent University, 9052 Ghent, Belgium
| | - Carl Goodyear
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow G12 8QQ, UK
| | - Lisa Hahnefeld
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany
- Fraunhofer Cluster of Excellence Immune-Mediated Diseases CIMD, Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany
- Pharmazentrum Frankfurt/ZAFES, Institute of Clinical Pharmacology, Goethe University, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | | | - Ewan Hunter
- Oxford BioDynamics Limited, Oxford OX4 2JZ, UK
| | - Mark Ibberson
- Vital-IT Group, SIB Swiss Institute of Bioinformatics, CH-1015 Lausanne, Switzerland
| | - Vassilios Ioannidis
- Vital-IT Group, SIB Swiss Institute of Bioinformatics, CH-1015 Lausanne, Switzerland
| | - Sabine Kugler
- Fraunhofer Cluster of Excellence Immune-Mediated Diseases CIMD, Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany
- Fraunhofer IAIS, Institute for Intelligent Analysis and Information Systems, Schloss Birlinghoven 1, 53757 Sankt Augustin, Germany
| | - Rik J. Lories
- Department of Development and Regeneration, KU Leuven, Skeletal Biology and Engineering Research Centre, P.O. Box 813 O&N, Herestraat 49, 3000 Leuven, Belgium
| | - Eduard Resch
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany
- Fraunhofer Cluster of Excellence Immune-Mediated Diseases CIMD, Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany
| | - Stefan Rüping
- Fraunhofer Cluster of Excellence Immune-Mediated Diseases CIMD, Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany
- Fraunhofer IAIS, Institute for Intelligent Analysis and Information Systems, Schloss Birlinghoven 1, 53757 Sankt Augustin, Germany
| | - Klaus Scholich
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany
- Fraunhofer Cluster of Excellence Immune-Mediated Diseases CIMD, Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany
- Pharmazentrum Frankfurt/ZAFES, Institute of Clinical Pharmacology, Goethe University, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Jochen M. Schwenk
- Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, 171 65 Solna, Sweden
| | - James C. Waddington
- Atturos Ltd., c/o UCD Conway Institute, University College Dublin, D04 V1W8 Dublin, Ireland
| | - Phil Whitfield
- Glasgow Polyomics, College of Medical, Veterinary and Life Sciences, Garscube Campus, University of Glasgow, Glasgow G61 1QH, UK
| | - Gerd Geisslinger
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany
- Fraunhofer Cluster of Excellence Immune-Mediated Diseases CIMD, Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany
- Pharmazentrum Frankfurt/ZAFES, Institute of Clinical Pharmacology, Goethe University, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Oliver FitzGerald
- UCD Conway Institute, School of Medicine, University College Dublin, Belfield, D04 V1W8 Dublin, Ireland
| | - Frank Behrens
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany
- Fraunhofer Cluster of Excellence Immune-Mediated Diseases CIMD, Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany
- Division of Rheumatology, University Hospital Frankfurt, Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany
| | - Stephen R. Pennington
- Atturos Ltd., c/o UCD Conway Institute, University College Dublin, D04 V1W8 Dublin, Ireland
- UCD Conway Institute, School of Medicine, University College Dublin, Belfield, D04 V1W8 Dublin, Ireland
| | | |
Collapse
|
138
|
Bosisio FM, Van Herck Y, Messiaen J, Bolognesi MM, Marcelis L, Van Haele M, Cattoretti G, Antoranz A, De Smet F. Next-Generation Pathology Using Multiplexed Immunohistochemistry: Mapping Tissue Architecture at Single-Cell Level. Front Oncol 2022; 12:918900. [PMID: 35992810 PMCID: PMC9389457 DOI: 10.3389/fonc.2022.918900] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 06/20/2022] [Indexed: 01/23/2023] Open
Abstract
Single-cell omics aim at charting the different types and properties of all cells in the human body in health and disease. Over the past years, myriads of cellular phenotypes have been defined by methods that mostly required cells to be dissociated and removed from their original microenvironment, thus destroying valuable information about their location and interactions. Growing insights, however, are showing that such information is crucial to understand complex disease states. For decades, pathologists have interpreted cells in the context of their tissue using low-plex antibody- and morphology-based methods. Novel technologies for multiplexed immunohistochemistry are now rendering it possible to perform extended single-cell expression profiling using dozens of protein markers in the spatial context of a single tissue section. The combination of these novel technologies with extended data analysis tools allows us now to study cell-cell interactions, define cellular sociology, and describe detailed aberrations in tissue architecture, as such gaining much deeper insights in disease states. In this review, we provide a comprehensive overview of the available technologies for multiplexed immunohistochemistry, their advantages and challenges. We also provide the principles on how to interpret high-dimensional data in a spatial context. Similar to the fact that no one can just “read” a genome, pathological assessments are in dire need of extended digital data repositories to bring diagnostics and tissue interpretation to the next level.
Collapse
Affiliation(s)
- Francesca Maria Bosisio
- Translational Cell and Tissue Research Unit, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
- *Correspondence: Frederik De Smet, ; Francesca Maria Bosisio,
| | | | - Julie Messiaen
- Translational Cell and Tissue Research Unit, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
- The Laboratory for Precision Cancer Medicine, Translational Cell and Tissue Research Unit, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
- Department of Pediatrics, University Hospitals Leuven, Leuven, Belgium
| | - Maddalena Maria Bolognesi
- Pathology, Department of Medicine and Surgery, Università di Milano-Bicocca, Monza, Italy
- Department of Pathology, Azienda Socio Sanitaria Territoriale (ASST) Monza, Ospedale San Gerardo, Monza, Italy
| | - Lukas Marcelis
- Translational Cell and Tissue Research Unit, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | - Matthias Van Haele
- Translational Cell and Tissue Research Unit, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | - Giorgio Cattoretti
- Pathology, Department of Medicine and Surgery, Università di Milano-Bicocca, Monza, Italy
- Department of Pathology, Azienda Socio Sanitaria Territoriale (ASST) Monza, Ospedale San Gerardo, Monza, Italy
| | - Asier Antoranz
- Translational Cell and Tissue Research Unit, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
- The Laboratory for Precision Cancer Medicine, Translational Cell and Tissue Research Unit, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | - Frederik De Smet
- Translational Cell and Tissue Research Unit, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
- The Laboratory for Precision Cancer Medicine, Translational Cell and Tissue Research Unit, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
- *Correspondence: Frederik De Smet, ; Francesca Maria Bosisio,
| |
Collapse
|
139
|
Abstract
CXCL9 and CXCL10 can be produced by antigen-presenting cells (dendritic cells or macrophages) and by tumor cells. Hoch et al. demonstrated that CXCL9 and CXCL10 co-localize with LAG3+ T cells expressing CCL4 or CXCL13 and contribute to the generation of a "hot" tumor microenvironment.
Collapse
Affiliation(s)
- Robin Reschke
- Department of Pathology, University of Chicago, Chicago, IL, USA
| | - Thomas F Gajewski
- Department of Pathology, University of Chicago, Chicago, IL, USA
- Section of Hematology/Oncology, Department of Medicine, University of Chicago, Chicago, IL, USA
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL, USA
| |
Collapse
|
140
|
Hu W, Li YJ, Zhen C, Wang YY, Huang HH, Zou J, Zheng YQ, Huang GC, Meng SR, Jin JH, Li J, Zhou MJ, Fu YL, Zhang P, Li XY, Yang T, Wang XW, Yang XH, Song JW, Fan X, Jiao YM, Xu RN, Zhang JY, Zhou CB, Yuan JH, Huang L, Qin YQ, Wu FY, Shi M, Wang FS, Zhang C. CCL5-Secreting Virtual Memory CD8+ T Cells Inversely Associate With Viral Reservoir Size in HIV-1-Infected Individuals on Antiretroviral Therapy. Front Immunol 2022; 13:897569. [PMID: 35720272 PMCID: PMC9204588 DOI: 10.3389/fimmu.2022.897569] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 04/21/2022] [Indexed: 12/25/2022] Open
Abstract
Recent studies highlighted that CD8+ T cells are necessary for restraining reservoir in HIV-1-infected individuals who undergo antiretroviral therapy (ART), whereas the underlying cellular and molecular mechanisms remain largely unknown. Here, we enrolled 60 virologically suppressed HIV-1-infected individuals, to assess the correlations of the effector molecules and phenotypic subsets of CD8+ T cells with HIV-1 DNA and cell-associated unspliced RNA (CA usRNA). We found that the levels of HIV-1 DNA and usRNA correlated positively with the percentage of CCL4+CCL5- CD8+ central memory cells (TCM) while negatively with CCL4-CCL5+ CD8+ terminally differentiated effector memory cells (TEMRA). Moreover, a virtual memory CD8+ T cell (TVM) subset was enriched in CCL4-CCL5+ TEMRA cells and phenotypically distinctive from CCL4+ TCM subset, supported by single-cell RNA-Seq data. Specifically, TVM cells showed superior cytotoxicity potentially driven by T-bet and RUNX3, while CCL4+ TCM subset displayed a suppressive phenotype dominated by JUNB and CREM. In viral inhibition assays, TVM cells inhibited HIV-1 reactivation more effectively than non-TVM CD8+ T cells, which was dependent on CCL5 secretion. Our study highlights CCL5-secreting TVM cells subset as a potential determinant of HIV-1 reservoir size. This might be helpful to design CD8+ T cell-based therapeutic strategies for cure of the disease.
Collapse
Affiliation(s)
- Wei Hu
- Medical School of Chinese People's Liberation Army (PLA), Beijing, China.,Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Yan-Jun Li
- Guangxi Acquired Immune Deficiency Syndrome (AIDS) Clinical Treatment Centre, The Fourth People's Hospital of Nanning, Nanning, China
| | - Cheng Zhen
- Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - You-Yuan Wang
- Medical School of Chinese People's Liberation Army (PLA), Beijing, China.,Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Hui-Huang Huang
- Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Jun Zou
- Guangxi Acquired Immune Deficiency Syndrome (AIDS) Clinical Treatment Centre, The Fourth People's Hospital of Nanning, Nanning, China
| | - Yan-Qing Zheng
- Guangxi Acquired Immune Deficiency Syndrome (AIDS) Clinical Treatment Centre, The Fourth People's Hospital of Nanning, Nanning, China
| | - Gui-Chan Huang
- Guangxi Acquired Immune Deficiency Syndrome (AIDS) Clinical Treatment Centre, The Fourth People's Hospital of Nanning, Nanning, China
| | - Si-Run Meng
- Guangxi Acquired Immune Deficiency Syndrome (AIDS) Clinical Treatment Centre, The Fourth People's Hospital of Nanning, Nanning, China
| | - Jie-Hua Jin
- Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Jing Li
- Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Ming-Ju Zhou
- Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Yu-Long Fu
- Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Peng Zhang
- Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Xiao-Yu Li
- Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Tao Yang
- Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Xiu-Wen Wang
- Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Xiu-Han Yang
- Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Jin-Wen Song
- Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Xing Fan
- Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Yan-Mei Jiao
- Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Ruo-Nan Xu
- Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Ji-Yuan Zhang
- Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Chun-Bao Zhou
- Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Jin-Hong Yuan
- Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Lei Huang
- Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Ya-Qin Qin
- Guangxi Acquired Immune Deficiency Syndrome (AIDS) Clinical Treatment Centre, The Fourth People's Hospital of Nanning, Nanning, China
| | - Feng-Yao Wu
- Guangxi Acquired Immune Deficiency Syndrome (AIDS) Clinical Treatment Centre, The Fourth People's Hospital of Nanning, Nanning, China
| | - Ming Shi
- Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Fu-Sheng Wang
- Medical School of Chinese People's Liberation Army (PLA), Beijing, China.,Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China.,Guangxi Acquired Immune Deficiency Syndrome (AIDS) Clinical Treatment Centre, The Fourth People's Hospital of Nanning, Nanning, China
| | - Chao Zhang
- Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China.,Guangxi Acquired Immune Deficiency Syndrome (AIDS) Clinical Treatment Centre, The Fourth People's Hospital of Nanning, Nanning, China
| |
Collapse
|
141
|
He M, Soni B, Schwalie PC, Hüsser T, Waltzinger C, De Silva D, Prinz Y, Krümpelmann L, Calabro S, Matos I, Trumpfheller C, Bacac M, Umaña P, Levesque MP, Dummer R, van den Broek M, Gasser S. Combinations of Toll-like receptor 8 agonist TL8-506 activate human tumor-derived dendritic cells. J Immunother Cancer 2022; 10:jitc-2021-004268. [PMID: 35688559 PMCID: PMC9189853 DOI: 10.1136/jitc-2021-004268] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/27/2022] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Dendritic cells (DCs) are professional antigen presenting cells that initiate immune defense to pathogens and tumor cells. Human tumors contain only few DCs that mostly display a non-activated phenotype. Hence, activation of tumor-associated DCs may improve efficacy of cancer immunotherapies. Toll-like receptor (TLR) agonists and interferons are known to promote DC maturation. However, it is unclear if DCs in human tumors respond to activation signals and which stimuli induce the optimal activation of human tumor DCs. METHODS We first screened combinations of TLR agonists, a STING agonist and interferons (IFNs) for their ability to activate human conventional DCs (cDCs). Two combinations: TL8-506 (a TLR8 agonist)+IFN-γ and TL8-506+Poly(I:C) (a TLR3 agonist) were studied in more detail. cDC1s and cDC2s derived from cord blood stem cells, blood or patient tumor samples were stimulated with either TL8-506+IFN-γ or TL8-506+Poly(I:C). Different activation markers were analyzed by ELISA, flow cytometry, NanoString nCounter Technology or single-cell RNA-sequencing. T cell activation and migration assays were performed to assess functional consequences of cDC activation. RESULTS We show that TL8-506 synergized with IFN-γ or Poly(I:C) to induce high expression of different chemokines and cytokines including interleukin (IL)-12p70 in human cord blood and blood cDC subsets in a combination-specific manner. Importantly, both combinations induced the activation of cDC subsets in patient tumor samples ex vivo. The expression of immunostimulatory genes important for anticancer responses including CD40, IFNB1, IFNL1, IL12A and IL12B were upregulated on stimulation. Furthermore, chemokines associated with CD8+ T cell recruitment were induced in tumor-derived cDCs in response to TL8-506 combinations. In vitro activation and migration assays confirmed that stimulated cDCs induce T cell activation and migration. CONCLUSIONS Our data suggest that cord blood-derived and blood-derived cDCs are a good surrogate to study treatment responses in human tumor cDCs. While most cDCs in human tumors display a non-activated phenotype, TL8-506 combinations drive human tumor cDCs towards an immunostimulatory phenotype associated with Th1 responses on stimulation. Hence, TL8-506-based combinations may be promising candidates to initiate or boost antitumor responses in patients with cancer.
Collapse
Affiliation(s)
- Mi He
- Roche Pharma Research and Early Development, Roche Innovation Center Zurich, Schlieren, Switzerland
| | - Bhavesh Soni
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland
| | - Petra C Schwalie
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland
| | - Tamara Hüsser
- Roche Pharma Research and Early Development, Roche Innovation Center Zurich, Schlieren, Switzerland
| | - Caroline Waltzinger
- Roche Pharma Research and Early Development, Roche Innovation Center Zurich, Schlieren, Switzerland
| | - Duvini De Silva
- Roche Pharma Research and Early Development, Roche Innovation Center Zurich, Schlieren, Switzerland
| | - Ylva Prinz
- Roche Pharma Research and Early Development, Roche Innovation Center Zurich, Schlieren, Switzerland
| | - Laura Krümpelmann
- Roche Pharma Research and Early Development, Roche Innovation Center Munich, Penzberg, Germany
| | - Samuele Calabro
- Roche Pharma Research and Early Development, Roche Innovation Center Zurich, Schlieren, Switzerland
| | - Ines Matos
- Roche Pharma Research and Early Development, Roche Innovation Center Zurich, Schlieren, Switzerland
| | - Christine Trumpfheller
- Roche Pharma Research and Early Development, Roche Innovation Center Zurich, Schlieren, Switzerland
| | - Marina Bacac
- Roche Pharma Research and Early Development, Roche Innovation Center Zurich, Schlieren, Switzerland
| | - Pablo Umaña
- Roche Pharma Research and Early Development, Roche Innovation Center Zurich, Schlieren, Switzerland
| | | | - Reinhard Dummer
- Department of Dermatology, University Hospital Zurich, Zurich, Switzerland
| | | | - Stephan Gasser
- Roche Pharma Research and Early Development, Roche Innovation Center Zurich, Schlieren, Switzerland
| |
Collapse
|
142
|
Tuck M, Grélard F, Blanc L, Desbenoit N. MALDI-MSI Towards Multimodal Imaging: Challenges and Perspectives. Front Chem 2022; 10:904688. [PMID: 35615316 PMCID: PMC9124797 DOI: 10.3389/fchem.2022.904688] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 04/14/2022] [Indexed: 01/22/2023] Open
Abstract
Multimodal imaging is a powerful strategy for combining information from multiple images. It involves several fields in the acquisition, processing and interpretation of images. As multimodal imaging is a vast subject area with various combinations of imaging techniques, it has been extensively reviewed. Here we focus on Matrix-assisted Laser Desorption Ionization Mass Spectrometry Imaging (MALDI-MSI) coupling other imaging modalities in multimodal approaches. While MALDI-MS images convey a substantial amount of chemical information, they are not readily informative about the morphological nature of the tissue. By providing a supplementary modality, MALDI-MS images can be more informative and better reflect the nature of the tissue. In this mini review, we emphasize the analytical and computational strategies to address multimodal MALDI-MSI.
Collapse
|
143
|
Le Rochais M, Hemon P, Pers JO, Uguen A. Application of High-Throughput Imaging Mass Cytometry Hyperion in Cancer Research. Front Immunol 2022; 13:859414. [PMID: 35432353 PMCID: PMC9009368 DOI: 10.3389/fimmu.2022.859414] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 03/10/2022] [Indexed: 12/21/2022] Open
Abstract
Imaging mass cytometry (IMC) enables the in situ analysis of in-depth-phenotyped cells in their native microenvironment within the preserved architecture of a single tissue section. To date, it permits the simultaneous analysis of up to 50 different protein- markers targeted by metal-conjugated antibodies. The application of IMC in the field of cancer research may notably help 1) to define biomarkers of prognostic and theragnostic significance for current and future treatments against well-established and novel therapeutic targets and 2) to improve our understanding of cancer progression and its resistance mechanisms to immune system and how to overcome them. In the present article, we not only provide a literature review on the use of the IMC in cancer-dedicated studies but we also present the IMC method and discuss its advantages and limitations among methods dedicated to deciphering the complexity of cancer tissue.
Collapse
Affiliation(s)
- Marion Le Rochais
- B Lymphocytes, Autoimmunity and Immunotherapies, UMR1227, Immunology Department, Augustin Morvan Hospital, Brest, France
- Pathology Department, Augustin Morvan Hospital, Brest, France
| | - Patrice Hemon
- B Lymphocytes, Autoimmunity and Immunotherapies, UMR1227, Immunology Department, Augustin Morvan Hospital, Brest, France
| | - Jacques-Olivier Pers
- B Lymphocytes, Autoimmunity and Immunotherapies, UMR1227, Immunology Department, Augustin Morvan Hospital, Brest, France
| | - Arnaud Uguen
- B Lymphocytes, Autoimmunity and Immunotherapies, UMR1227, Immunology Department, Augustin Morvan Hospital, Brest, France
- Pathology Department, Augustin Morvan Hospital, Brest, France
| |
Collapse
|