101
|
Sipieter F, Cappe B, Gonzalez Pisfil M, Spriet C, Bodart JF, Cailliau-Maggio K, Vandenabeele P, Héliot L, Riquet FB. Novel Reporter for Faithful Monitoring of ERK2 Dynamics in Living Cells and Model Organisms. PLoS One 2015; 10:e0140924. [PMID: 26517832 PMCID: PMC4627772 DOI: 10.1371/journal.pone.0140924] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Accepted: 10/01/2015] [Indexed: 12/18/2022] Open
Abstract
Uncoupling of ERK1/2 phosphorylation from subcellular localization is essential towards the understanding of molecular mechanisms that control ERK1/2-mediated cell-fate decision. ERK1/2 non-catalytic functions and discoveries of new specific anchors responsible of the subcellular compartmentalization of ERK1/2 signaling pathway have been proposed as regulation mechanisms for which dynamic monitoring of ERK1/2 localization is necessary. However, studying the spatiotemporal features of ERK2, for instance, in different cellular processes in living cells and tissues requires a tool that can faithfully report on its subcellular distribution. We developed a novel molecular tool, ERK2-LOC, based on the T2A-mediated coexpression of strictly equimolar levels of eGFP-ERK2 and MEK1, to faithfully visualize ERK2 localization patterns. MEK1 and eGFP-ERK2 were expressed reliably and functionally both in vitro and in single living cells. We then assessed the subcellular distribution and mobility of ERK2-LOC using fluorescence microscopy in non-stimulated conditions and after activation/inhibition of the MAPK/ERK1/2 signaling pathway. Finally, we used our coexpression system in Xenopus laevis embryos during the early stages of development. This is the first report on MEK1/ERK2 T2A-mediated coexpression in living embryos, and we show that there is a strong correlation between the spatiotemporal subcellular distribution of ERK2-LOC and the phosphorylation patterns of ERK1/2. Our approach can be used to study the spatiotemporal localization of ERK2 and its dynamics in a variety of processes in living cells and embryonic tissues.
Collapse
Affiliation(s)
- François Sipieter
- Molecular Signaling and Cell Death Unit, Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- Molecular Signaling and Cell Death Unit, Inflammation Research Center (IRC), VIB, Ghent, Belgium
- Equipe Biophotonique Cellulaire Fonctionnelle, Laboratoire de Physique des Lasers, Atomes et Molécules (PhLAM), CNRS-UMR 8523, Villeneuve d'Ascq, France
- Regulation of Signal Division Team, Structural and Functional Glycobiology Unit (UGSF), CNRS-UMR 8576, Lille 1 University, Villeneuve d’Ascq, France
- Groupement de Recherche Microscopie Imagerie du Vivant, GDR2588 MIV-CNRS, Villeneuve d'Ascq, France
| | - Benjamin Cappe
- Molecular Signaling and Cell Death Unit, Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- Molecular Signaling and Cell Death Unit, Inflammation Research Center (IRC), VIB, Ghent, Belgium
- Groupement de Recherche Microscopie Imagerie du Vivant, GDR2588 MIV-CNRS, Villeneuve d'Ascq, France
| | - Mariano Gonzalez Pisfil
- Equipe Biophotonique Cellulaire Fonctionnelle, Laboratoire de Physique des Lasers, Atomes et Molécules (PhLAM), CNRS-UMR 8523, Villeneuve d'Ascq, France
- Groupement de Recherche Microscopie Imagerie du Vivant, GDR2588 MIV-CNRS, Villeneuve d'Ascq, France
| | - Corentin Spriet
- TISBio, Structural and Functional Glycobiology Unit (UGSF), CNRS-UMR 8576, FR3688, Lille 1 University, Villeneuve d’Ascq, France
| | - Jean-François Bodart
- Regulation of Signal Division Team, Structural and Functional Glycobiology Unit (UGSF), CNRS-UMR 8576, Lille 1 University, Villeneuve d’Ascq, France
| | - Katia Cailliau-Maggio
- Regulation of Signal Division Team, Structural and Functional Glycobiology Unit (UGSF), CNRS-UMR 8576, Lille 1 University, Villeneuve d’Ascq, France
| | - Peter Vandenabeele
- Molecular Signaling and Cell Death Unit, Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- Molecular Signaling and Cell Death Unit, Inflammation Research Center (IRC), VIB, Ghent, Belgium
- Methusalem Program, Ghent University, Ghent, Belgium
| | - Laurent Héliot
- Equipe Biophotonique Cellulaire Fonctionnelle, Laboratoire de Physique des Lasers, Atomes et Molécules (PhLAM), CNRS-UMR 8523, Villeneuve d'Ascq, France
- Groupement de Recherche Microscopie Imagerie du Vivant, GDR2588 MIV-CNRS, Villeneuve d'Ascq, France
| | - Franck B. Riquet
- Molecular Signaling and Cell Death Unit, Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- Molecular Signaling and Cell Death Unit, Inflammation Research Center (IRC), VIB, Ghent, Belgium
- Structural and Functional Glycobiology Unit (UGSF), CNRS-UMR 8576, Lille 1 University, Villeneuve d’Ascq, France
- Groupement de Recherche Microscopie Imagerie du Vivant, GDR2588 MIV-CNRS, Villeneuve d'Ascq, France
- * E-mail:
| |
Collapse
|
102
|
Erk signaling is indispensable for genomic stability and self-renewal of mouse embryonic stem cells. Proc Natl Acad Sci U S A 2015; 112:E5936-43. [PMID: 26483458 DOI: 10.1073/pnas.1516319112] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Inhibition of Mek/Erk signaling by pharmacological Mek inhibitors promotes self-renewal and pluripotency of mouse embryonic stem cells (ESCs). Intriguingly, Erk signaling is essential for human ESC self-renewal. Here we demonstrate that Erk signaling is critical for mouse ESC self-renewal and genomic stability. Erk-depleted ESCs cannot be maintained. Lack of Erk leads to rapid telomere shortening and genomic instability, in association with misregulated expression of pluripotency genes, reduced cell proliferation, G1 cell-cycle arrest, and increased apoptosis. Erk signaling is also required for the activation of differentiation genes but not for the repression of pluripotency genes during ESC differentiation. Furthermore, we find an Erk-independent function of Mek, which may explain the diverse effects of Mek inhibition and Erk knockout on ESC self-renewal. Together, in contrast to the prevailing view, Erk signaling is required for telomere maintenance, genomic stability, and self-renewal of mouse ESCs.
Collapse
|
103
|
Caunt CJ, Sale MJ, Smith PD, Cook SJ. MEK1 and MEK2 inhibitors and cancer therapy: the long and winding road. Nat Rev Cancer 2015; 15:577-92. [PMID: 26399658 DOI: 10.1038/nrc4000] [Citation(s) in RCA: 436] [Impact Index Per Article: 43.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The role of the ERK signalling pathway in cancer is thought to be most prominent in tumours in which mutations in the receptor tyrosine kinases RAS, BRAF, CRAF, MEK1 or MEK2 drive growth factor-independent ERK1 and ERK2 activation and thence inappropriate cell proliferation and survival. New drugs that inhibit RAF or MEK1 and MEK2 have recently been approved or are currently undergoing late-stage clinical evaluation. In this Review, we consider the ERK pathway, focusing particularly on the role of MEK1 and MEK2, the 'gatekeepers' of ERK1/2 activity. We discuss their validation as drug targets, the merits of targeting MEK1 and MEK2 versus BRAF and the mechanisms of action of different inhibitors of MEK1 and MEK2. We also consider how some of the systems-level properties (intrapathway regulatory loops and wider signalling network connections) of the ERK pathway present a challenge for the success of MEK1 and MEK2 inhibitors, discuss mechanisms of resistance to these inhibitors, and review their clinical progress.
Collapse
Affiliation(s)
- Christopher J Caunt
- Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath BA2 7AY, UK
| | - Matthew J Sale
- Signalling Laboratory, The Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK
| | - Paul D Smith
- AstraZeneca, Oncology iMed, Cancer Biosciences, Cancer Research UK, Li Ka Shing Centre, Cambridge Institute, Robinson Way, Cambridge CB2 0RE, UK
| | - Simon J Cook
- Signalling Laboratory, The Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK
| |
Collapse
|
104
|
Kolch W, Halasz M, Granovskaya M, Kholodenko BN. The dynamic control of signal transduction networks in cancer cells. Nat Rev Cancer 2015; 15:515-27. [PMID: 26289315 DOI: 10.1038/nrc3983] [Citation(s) in RCA: 222] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cancer is often considered a genetic disease. However, much of the enormous plasticity of cancer cells to evolve different phenotypes, to adapt to challenging microenvironments and to withstand therapeutic assaults is encoded by the structure and spatiotemporal dynamics of signal transduction networks. In this Review, we discuss recent concepts concerning how the rich signalling dynamics afforded by these networks are regulated and how they impinge on cancer cell proliferation, survival, invasiveness and drug resistance. Understanding this dynamic circuitry by mathematical modelling could pave the way to new therapeutic approaches and personalized treatments.
Collapse
Affiliation(s)
- Walter Kolch
- Systems Biology Ireland, University College Dublin
- Conway Institute of Biomolecular &Biomedical Research, University College Dublin
- School of Medicine and Medical Science, University College Dublin, Belfield, Dublin 4, Ireland
| | | | - Marina Granovskaya
- Roche Moscow Limited, Business Center Neglinnaya Plaza, Building 2, Trubnaya Square, 107031 Moscow, Russia
| | - Boris N Kholodenko
- Systems Biology Ireland, University College Dublin
- Conway Institute of Biomolecular &Biomedical Research, University College Dublin
- School of Medicine and Medical Science, University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
105
|
Booth A, Trudeau T, Gomez C, Lucia MS, Gutierrez-Hartmann A. Persistent ERK/MAPK activation promotes lactotrope differentiation and diminishes tumorigenic phenotype. Mol Endocrinol 2015; 28:1999-2011. [PMID: 25361391 DOI: 10.1210/me.2014-1168] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The signaling pathways that govern the lactotrope-specific differentiated phenotype, and those that control lactotrope proliferation in both physiological and pathological lactotrope expansion, are poorly understood. Moreover, the specific role of MAPK signaling in lactotrope proliferation vs differentiation, whether activated phosphorylated MAPK is sufficient for prolactinoma tumor formation remain unknown. Given that oncogenic Ras mutations and persistently activated phosphorylated MAPK are found in human tumors, including prolactinomas and other pituitary tumors, a better understanding of the role of MAPK in lactotrope biology is required. Here we directly examined the role of persistent Ras/MAPK signaling in differentiation, proliferation, and tumorigenesis of rat pituitary somatolactotrope GH4 cells. We stimulated Ras/MAPK signaling in a persistent, long-term manner (over 6 d) in GH4 cells using two distinct approaches: 1) a doxycycline-inducible, oncogenic V12Ras expression system; and 2) continuous addition of exogenous epidermal growth factor. We find that long-term activation of the Ras/MAPK pathway over 6 days promotes differentiation of the bihormonal somatolactotrope GH4 precursor cell into a prolactin-secreting, lactotrope cell phenotype in vitro and in vivo with GH4 cell xenograft tumors. Furthermore, we show that persistent activation of the Ras/MAPK pathway not only fails to promote cell proliferation, but also diminishes tumorigenic characteristics in GH4 cells in vitro and in vivo. These data demonstrate that activated MAPK promotes differentiation and is not sufficient to drive tumorigenesis, suggesting that pituitary lactotrope tumor cells have the ability to evade the tumorigenic fate that is often associated with Ras/MAPK activation.
Collapse
Affiliation(s)
- Allyson Booth
- Program in Reproductive Sciences and Integrated Physiology (A.B., A.G.-H.) and Departments of Medicine and of Biochemistry and Molecular Genetics (T.T., C.G., A.G.-H.) and Pathology (M.S.L.), University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado 80045
| | | | | | | | | |
Collapse
|
106
|
Roth S, Kholodenko BN, Smit MJ, Bruggeman FJ. G Protein-Coupled Receptor Signaling Networks from a Systems Perspective. Mol Pharmacol 2015; 88:604-16. [PMID: 26162865 DOI: 10.1124/mol.115.100057] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 07/10/2015] [Indexed: 12/20/2022] Open
Abstract
The signal-transduction network of a mammalian cell integrates internal and external cues to initiate adaptive responses. Among the cell-surface receptors are the G protein-coupled receptors (GPCRs), which have remarkable signal-integrating capabilities. Binding of extracellular signals stabilizes intracellular-domain conformations that selectively activate intracellular proteins. Hereby, multiple signaling routes are activated simultaneously to degrees that are signal-combination dependent. Systems-biology studies indicate that signaling networks have emergent processing capabilities that go far beyond those of single proteins. Such networks are spatiotemporally organized and capable of gradual, oscillatory, all-or-none, and subpopulation-generating responses. Protein-protein interactions, generating feedback and feedforward circuitry, are generally required for these spatiotemporal phenomena. Understanding of information processing by signaling networks therefore requires network theories in addition to biochemical and biophysical concepts. Here we review some of the key signaling systems behaviors that have been discovered recurrently across signaling networks. We emphasize the role of GPCRs, so far underappreciated receptors in systems-biology research.
Collapse
Affiliation(s)
- S Roth
- Systems Bioinformatics (S.R., F.J.B.) and Amsterdam Institute for Molecules, Medicines & Systems, VU University, Amsterdam, The Netherlands (M.J.S.); and Systems Biology Ireland, University College Dublin, Dublin, Ireland (B.N.K.)
| | - B N Kholodenko
- Systems Bioinformatics (S.R., F.J.B.) and Amsterdam Institute for Molecules, Medicines & Systems, VU University, Amsterdam, The Netherlands (M.J.S.); and Systems Biology Ireland, University College Dublin, Dublin, Ireland (B.N.K.)
| | - M J Smit
- Systems Bioinformatics (S.R., F.J.B.) and Amsterdam Institute for Molecules, Medicines & Systems, VU University, Amsterdam, The Netherlands (M.J.S.); and Systems Biology Ireland, University College Dublin, Dublin, Ireland (B.N.K.)
| | - F J Bruggeman
- Systems Bioinformatics (S.R., F.J.B.) and Amsterdam Institute for Molecules, Medicines & Systems, VU University, Amsterdam, The Netherlands (M.J.S.); and Systems Biology Ireland, University College Dublin, Dublin, Ireland (B.N.K.)
| |
Collapse
|
107
|
Sparta B, Pargett M, Minguet M, Distor K, Bell G, Albeck JG. Receptor Level Mechanisms Are Required for Epidermal Growth Factor (EGF)-stimulated Extracellular Signal-regulated Kinase (ERK) Activity Pulses. J Biol Chem 2015; 290:24784-92. [PMID: 26304118 DOI: 10.1074/jbc.m115.662247] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Indexed: 11/06/2022] Open
Abstract
In both physiological and cell culture systems, EGF-stimulated ERK activity occurs in discrete pulses within individual cells. Many feedback loops are present in the EGF receptor (EGFR)-ERK network, but the mechanisms driving pulsatile ERK kinetics are unknown. Here, we find that in cells that respond to EGF with frequency-modulated pulsatile ERK activity, stimulation through a heterologous TrkA receptor system results in non-pulsatile, amplitude-modulated activation of ERK. We further dissect the kinetics of pulse activity using a combination of FRET- and translocation-based reporters and find that EGFR activity is required to maintain ERK activity throughout the 10-20-minute lifetime of pulses. Together, these data indicate that feedbacks operating within the core Ras-Raf-MEK-ERK cascade are insufficient to drive discrete pulses of ERK activity and instead implicate mechanisms acting at the level of EGFR.
Collapse
Affiliation(s)
- Breanne Sparta
- From the Departments of Molecular and Cellular Biology and
| | | | - Marta Minguet
- From the Departments of Molecular and Cellular Biology and
| | - Kevin Distor
- From the Departments of Molecular and Cellular Biology and
| | - George Bell
- Microbiology and Molecular Genetics, University of California, Davis, California 95616
| | - John G Albeck
- From the Departments of Molecular and Cellular Biology and
| |
Collapse
|
108
|
Abstract
Cell signaling pathways control cells' responses to their environment through an intricate network of proteins and small molecules partitioned by intracellular structures, such as the cytoskeleton and nucleus. Our understanding of these pathways has been revised recently with the advent of more advanced experimental techniques; no longer are signaling pathways viewed as linear cascades of information flowing from membrane-bound receptors to the nucleus. Instead, such pathways must be understood in the context of networks, and studying such networks requires an integration of computational and experimental approaches. This understanding is becoming more important in designing novel therapies for diseases such as cancer. Using the MAPK (mitogen-activated protein kinase) and PI3K (class I phosphoinositide-3' kinase) pathways as case studies of cellular signaling, we give an overview of these pathways and their functions. We then describe, using a number of case studies, how computational modeling has aided in understanding these pathways' deregulation in cancer, and how such understanding can be used to optimally tailor current therapies or help design new therapies against cancer.
Collapse
Affiliation(s)
- Julio Saez-Rodriguez
- Current address: Joint Research Center for Computational Biomedicine, RWTH Aachen University Hospital, D-52074 Aachen, Germany;
- European Bioinformatics Institute, European Molecular Biology Laboratory, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire CB10 1SD, United Kingdom;
| | - Aidan MacNamara
- European Bioinformatics Institute, European Molecular Biology Laboratory, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire CB10 1SD, United Kingdom;
| | - Simon Cook
- Signalling Laboratory, The Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, United Kingdom;
| |
Collapse
|
109
|
Lim B, Dsilva CJ, Levario TJ, Lu H, Schüpbach T, Kevrekidis IG, Shvartsman SY. Dynamics of Inductive ERK Signaling in the Drosophila Embryo. Curr Biol 2015; 25:1784-90. [PMID: 26096970 DOI: 10.1016/j.cub.2015.05.039] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Revised: 05/14/2015] [Accepted: 05/20/2015] [Indexed: 12/11/2022]
Abstract
Transient activation of the highly conserved extracellular-signal-regulated kinase (ERK) establishes precise patterns of cell fates in developing tissues. Quantitative parameters of these transients are essentially unknown, but a growing number of studies suggest that changes in these parameters can lead to a broad spectrum of developmental abnormalities. We provide a detailed quantitative picture of an ERK-dependent inductive signaling event in the early Drosophila embryo, an experimental system that offers unique opportunities for high-throughput studies of developmental signaling. Our analysis reveals a spatiotemporal pulse of ERK activation that is consistent with a model in which transient production of a short-ranged ligand feeds into a simple signal interpretation system. The pulse of ERK signaling acts as a switch in controlling the expression of the ERK target gene. The quantitative approach that led to this model, based on the integration of data from fixed embryos and live imaging, can be extended to other developmental systems patterned by transient inductive signals.
Collapse
Affiliation(s)
- Bomyi Lim
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA; Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Carmeline J Dsilva
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA
| | - Thomas J Levario
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Hang Lu
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Trudi Schüpbach
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Ioannis G Kevrekidis
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA; Program in Applied and Computational Mathematics, Princeton University, Princeton, NJ 08544, USA
| | - Stanislav Y Shvartsman
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA; Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA.
| |
Collapse
|
110
|
Abstract
Over the last two decades, many small-molecule inhibitors that target kinase signalling have been developed. More than 20 of these inhibitors are FDA (U.S. Food and Drug Administration)-approved and are now being used in the clinics to treat tumours; even more have entered clinical trials. However, resistance to these inhibitors, either intrinsic to the tumour or acquired during treatment, remains a major problem in targeted therapeutics. One of the mechanisms by which tumours become resistant is the rewiring of the signalling networks via feedback, by which the tumour cells re-activate signalling or activate alternative signalling pathways. In the present article, we review insights from recent quantitative signalling studies combining mathematical modelling and experiments that revealed how feedback rewires MAPK (mitogen-activated protein kinase)/PI3K (phosphoinositide 3-kinase) signalling upon treatment and how that affects drug sensitivity.
Collapse
|
111
|
Kearns JD, Bukhalid R, Sevecka M, Tan G, Gerami-Moayed N, Werner SL, Kohli N, Burenkova O, Sloss CM, King AM, Fitzgerald JB, Nielsen UB, Wolf BB. Enhanced Targeting of the EGFR Network with MM-151, an Oligoclonal Anti-EGFR Antibody Therapeutic. Mol Cancer Ther 2015; 14:1625-36. [PMID: 25911688 DOI: 10.1158/1535-7163.mct-14-0772] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Accepted: 04/17/2015] [Indexed: 12/16/2022]
Abstract
Although EGFR is a validated therapeutic target across multiple cancer indications, the often modest clinical responses to current anti-EGFR agents suggest the need for improved therapeutics. Here, we demonstrate that signal amplification driven by high-affinity EGFR ligands limits the capacity of monoclonal anti-EGFR antibodies to block pathway signaling and cell proliferation and that these ligands are commonly coexpressed with low-affinity EGFR ligands in epithelial tumors. To develop an improved antibody therapeutic capable of overcoming high-affinity ligand-mediated signal amplification, we used a network biology approach comprised of signaling studies and computational modeling of receptor-antagonist interactions. Model simulations suggested that an oligoclonal antibody combination may overcome signal amplification within the EGFR:ERK pathway driven by all EGFR ligands. Based on this, we designed MM-151, a combination of three fully human IgG1 monoclonal antibodies that can simultaneously engage distinct, nonoverlapping epitopes on EGFR with subnanomolar affinities. In signaling studies, MM-151 antagonized high-affinity EGFR ligands more effectively than cetuximab, leading to an approximately 65-fold greater decrease in signal amplification to ERK. In cell viability studies, MM-151 demonstrated antiproliferative activity against high-affinity EGFR ligands, either singly or in combination, while cetuximab activity was largely abrogated under these conditions. We confirmed this finding both in vitro and in vivo in a cell line model of autocrine high-affinity ligand expression. Together, these preclinical studies provide rationale for the clinical study of MM-151 and suggest that high-affinity EGFR ligand expression may be a predictive response marker that distinguishes MM-151 from other anti-EGFR therapeutics.
Collapse
Affiliation(s)
| | | | - Mark Sevecka
- Merrimack Pharmaceuticals, Cambridge, Massachusetts
| | - Gege Tan
- Merrimack Pharmaceuticals, Cambridge, Massachusetts
| | | | | | - Neeraj Kohli
- Merrimack Pharmaceuticals, Cambridge, Massachusetts
| | | | | | - Anne M King
- Merrimack Pharmaceuticals, Cambridge, Massachusetts
| | | | | | - Beni B Wolf
- Merrimack Pharmaceuticals, Cambridge, Massachusetts
| |
Collapse
|
112
|
Abstract
Immunoblotting (also known as Western blotting) combined with digital image analysis can be a reliable method for analyzing the abundance of proteins and protein modifications, but not every immunoblot-analysis combination produces an accurate result. I illustrate how sample preparation, protocol implementation, detection scheme, and normalization approach profoundly affect the quantitative performance of immunoblotting. This study implemented diagnostic experiments that assess an immunoblot-analysis workflow for accuracy and precision. The results showed that ignoring such diagnostics can lead to pseudoquantitative immunoblot data that markedly overestimate or underestimate true differences in protein abundance.
Collapse
Affiliation(s)
- Kevin A Janes
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA. E-mail:
| |
Collapse
|
113
|
Abstract
INTRODUCTION Selective inhibition of the MAPK pathway with either BRAF or MEK inhibition has emerged as a key component for the treatment of BRAF-mutant metastatic melanoma. New evidence suggests that the combination of BRAF and MEK inhibitors improves tumor response rate and progression-free survival, while potentially attenuating some of the serious adverse events observed with monotherapy. AREAS COVERED This review covers the current data on the efficacy and safety of the selective BRAF (vemurafenib and dabrafenib) and MEK (trametinib) inhibitors as well as the available data on BRAF inhibitor + MEK inhibitor combination therapy (dabrafenib + trametinib and vemurafenib + cobimetinib). The efficacy, safety and toxicity data are discussed from Phase I, Phase II and Phase III trials of these drugs. EXPERT OPINION Combination therapy with the BRAF and MEK inhibitors improves response rates and progression-free survival in patients with BRAF-mutant metastatic melanoma. Some of the serious adverse events, in particular, the incidence of cutaneous squamous cell carcinoma, are attenuated with combination therapy, whereas milder side effects such as pyrexia can be more common with combination therapy. Although dose reductions and dose interruptions are slightly more common with combination therapy, overall data supports the notion that combination therapy is safe and improves the outcomes for patients compared to single agent BRAF inhibitors.
Collapse
Affiliation(s)
- Lesly A Dossett
- Moffitt Cancer Center, Complex General Surgical Oncology , 12902 Magnolia Drive, Tampa, FL 33612 , USA
| | | | | |
Collapse
|
114
|
Selimkhanov J, Taylor B, Yao J, Pilko A, Albeck J, Hoffmann A, Tsimring L, Wollman R. Systems biology. Accurate information transmission through dynamic biochemical signaling networks. Science 2014; 346:1370-3. [PMID: 25504722 DOI: 10.1126/science.1254933] [Citation(s) in RCA: 240] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Stochasticity inherent to biochemical reactions (intrinsic noise) and variability in cellular states (extrinsic noise) degrade information transmitted through signaling networks. We analyzed the ability of temporal signal modulation--that is, dynamics--to reduce noise-induced information loss. In the extracellular signal-regulated kinase (ERK), calcium (Ca(2+)), and nuclear factor kappa-B (NF-κB) pathways, response dynamics resulted in significantly greater information transmission capacities compared to nondynamic responses. Theoretical analysis demonstrated that signaling dynamics has a key role in overcoming extrinsic noise. Experimental measurements of information transmission in the ERK network under varying signal-to-noise levels confirmed our predictions and showed that signaling dynamics mitigate, and can potentially eliminate, extrinsic noise-induced information loss. By curbing the information-degrading effects of cell-to-cell variability, dynamic responses substantially increase the accuracy of biochemical signaling networks.
Collapse
Affiliation(s)
- Jangir Selimkhanov
- Department of Bioengineering, University of California-San Diego, La Jolla, CA 92093, USA
| | - Brooks Taylor
- Department of Bioengineering, University of California-San Diego, La Jolla, CA 92093, USA
| | - Jason Yao
- Department of Chemistry and Biochemistry, University of California-San Diego, La Jolla, CA 92093, USA
| | - Anna Pilko
- Department of Chemistry and Biochemistry, University of California-San Diego, La Jolla, CA 92093, USA
| | - John Albeck
- Department of Molecular and Cellular Biology, University of California-Davis, Davis 95616, USA
| | - Alexander Hoffmann
- San Diego Center for Systems Biology, La Jolla, CA 92093, USA. Institute for Quantitative and Computational Biosciences and Department of Microbiology, Immunology, and Molecular Genetics, University of California-Los Angeles, Los Angeles, CA 90025, USA
| | - Lev Tsimring
- San Diego Center for Systems Biology, La Jolla, CA 92093, USA. BioCircuits Institute, University of California-San Diego, La Jolla, CA 92093, USA
| | - Roy Wollman
- Department of Chemistry and Biochemistry, University of California-San Diego, La Jolla, CA 92093, USA. San Diego Center for Systems Biology, La Jolla, CA 92093, USA. Cell and Developmental Biology Section, Division of Biological Sciences, University of California-San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
115
|
Knievel J, Schulz WA, Greife A, Hader C, Lübke T, Schmitz I, Albers P, Niegisch G. Multiple mechanisms mediate resistance to sorafenib in urothelial cancer. Int J Mol Sci 2014; 15:20500-17. [PMID: 25387078 PMCID: PMC4264180 DOI: 10.3390/ijms151120500] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Revised: 10/30/2014] [Accepted: 10/30/2014] [Indexed: 12/24/2022] Open
Abstract
Genetic and epigenetic changes in the mitogen activated protein kinase (MAPK) signaling render urothelial cancer a potential target for tyrosine kinase inhibitor (TKI) treatment. However, clinical trials of several TKIs failed to prove efficacy. In this context, we investigated changes in MAPK signaling activity, downstream apoptotic regulators and changes in cell cycle distribution in different urothelial cancer cell lines (UCCs) upon treatment with the multikinase inhibitor sorafenib. None of the classical sorafenib targets (vascular endothelial growth factor receptor 1/-receptor 2, VEGFR1/-R2; platelet-derived growth factor receptor α/-receptor β, PDGFR-α/-β; c-KIT) was expressed at significant levels leaving RAF proteins as its likely molecular target. Low sorafenib concentrations paradoxically increased cell viability, whereas higher concentrations induced G1 arrest and eventually apoptosis. MAPK signaling remained partly active after sorafenib treatment, especially in T24 cells with an oncogenic HRAS mutation. AKT phosphorylation was increased, suggesting compensatory activation of the phosphatidylinositol-3-kinase (PI3K) pathway. Sorafenib regularly down regulated the anti-apoptotic myeloid cell leukemia 1 (Mcl-1) protein, but combinatorial treatment with ABT-737 targeting other B-cell lymphoma 2 (Bcl-2) family proteins did not result in synergistic effects. In summary, efficacy of sorafenib in urothelial cancer cell lines appears hampered by limited effects on MAPK signaling, crosstalk with further cancer pathways and an anti-apoptotic state of UCCs. These observations may account for the lack of efficacy of sorafenib in clinical trials and should be considered more broadly in the development of signaling pathway inhibitors for drug therapy in urothelial carcinoma.
Collapse
Affiliation(s)
- Judith Knievel
- Department of Urology, Heinrich-Heine-University, Moorenstr. 5, Düsseldorf D-40225, Germany.
| | - Wolfgang A Schulz
- Department of Urology, Heinrich-Heine-University, Moorenstr. 5, Düsseldorf D-40225, Germany.
| | - Annemarie Greife
- Department of Urology, Heinrich-Heine-University, Moorenstr. 5, Düsseldorf D-40225, Germany.
| | - Christiane Hader
- Department of Urology, Heinrich-Heine-University, Moorenstr. 5, Düsseldorf D-40225, Germany.
| | - Tobias Lübke
- Helmholtz-Zentrum für Infektionsforschung, Inhoffenstr. 7, Braunschweig D-38124, Germany.
| | - Ingo Schmitz
- Helmholtz-Zentrum für Infektionsforschung, Inhoffenstr. 7, Braunschweig D-38124, Germany.
| | - Peter Albers
- Department of Urology, Heinrich-Heine-University, Moorenstr. 5, Düsseldorf D-40225, Germany.
| | - Günter Niegisch
- Department of Urology, Heinrich-Heine-University, Moorenstr. 5, Düsseldorf D-40225, Germany.
| |
Collapse
|
116
|
Affiliation(s)
- H Steven Wiley
- Pacific Northwest National Laboratory, 902 Battelle Boulevard, K8-96, Richland 99352, WA, USA.
| |
Collapse
|
117
|
Wong DJL, Robert L, Atefi MS, Lassen A, Avarappatt G, Cerniglia M, Avramis E, Tsoi J, Foulad D, Graeber TG, Comin-Anduix B, Samatar A, Lo RS, Ribas A. Antitumor activity of the ERK inhibitor SCH772984 [corrected] against BRAF mutant, NRAS mutant and wild-type melanoma. Mol Cancer 2014; 13:194. [PMID: 25142146 PMCID: PMC4155088 DOI: 10.1186/1476-4598-13-194] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Accepted: 08/04/2014] [Indexed: 01/05/2023] Open
Abstract
Background In melanoma, dysregulation of the MAPK pathway, usually via BRAFV600 or NRASQ61 somatic mutations, leads to constitutive ERK signaling. While BRAF inhibitors are initially effective for BRAF-mutant melanoma, no FDA-approved targeted therapies exist for BRAF-inhibitor-resistant BRAFV600, NRAS mutant, or wild-type melanoma. Methods The 50% inhibitory concentration (IC50) of SCH772984, a novel inhibitor of ERK1/2, was determined in a panel of 50 melanoma cell lines. Effects on MAPK and AKT signaling by western blotting and cell cycle by flow cytometry were determined. Results Sensitivity fell into three groups: sensitive, 50% inhibitory concentration (IC50) < 1 μM; intermediately sensitive, IC50 1-2 μM; and resistant, >2 μM. Fifteen of 21 (71%) BRAF mutants, including 4 with innate vemurafenib resistance, were sensitive to SCH772984. All three (100%) BRAF/NRAS double mutants, 11 of 14 (78%) NRAS mutants and 5 of 7 (71%) wild-type melanomas were sensitive. Among BRAFV600 mutants with in vitro acquired resistance to vemurafenib, those with MAPK pathway reactivation as the mechanism of resistance were sensitive to SCH772984. SCH772984 caused G1 arrest and induced apoptosis. Conclusions Combining vemurafenib and SCH722984 in BRAF mutant melanoma was synergistic in a majority of cell lines and significantly delayed the onset of acquired resistance in long term in vitro assays. Therefore, SCH772984 may be clinically applicable as a treatment for non-BRAF mutant melanoma or in BRAF-mutant melanoma with innate or acquired resistance, alone or in combination with BRAF inhibitors. Electronic supplementary material The online version of this article (doi:10.1186/1476-4598-13-194) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | - Antoni Ribas
- Department of Medicine, Division of Hematology-Oncology, University of California Los Angeles (UCLA), 11-934 Factor Building, Los Angeles, CA, USA.
| |
Collapse
|
118
|
Rebecca VW, Smalley KSM. Change or die: targeting adaptive signaling to kinase inhibition in cancer cells. Biochem Pharmacol 2014; 91:417-25. [PMID: 25107706 DOI: 10.1016/j.bcp.2014.07.031] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Revised: 07/29/2014] [Accepted: 07/29/2014] [Indexed: 12/11/2022]
Abstract
Small molecule kinase inhibitors have proven enormously successful at delivering impressive responses in patients with cancers as diverse as chronic myeloid-leukemia, melanoma, breast cancer and small cell lung cancer. Despite this, resistance is commonplace and most patients ultimately fail therapy. One emerging observation is the rapid rewiring of signaling that occurs across multiple cancer types when driver oncogene function is inhibited. These adaptive signaling changes seem critical in delivering some of the earliest survival signals that allow small numbers of cells to evade therapy. In this commentary we review the mechanisms that contribute to the robustness of signaling networks within cancer cells and suggest new therapeutic strategies to limit treatment failure.
Collapse
Affiliation(s)
- Vito W Rebecca
- The Department of Molecular Oncology, The Moffitt Cancer Center & Research Institute, 12902 Magnolia Drive, Tampa, FL 33612, United States
| | - Keiran S M Smalley
- The Department of Molecular Oncology, The Moffitt Cancer Center & Research Institute, 12902 Magnolia Drive, Tampa, FL 33612, United States; Department of Cutaneous Oncology, The Moffitt Cancer Center & Research Institute, 12902 Magnolia Drive, Tampa, FL 33612, United States.
| |
Collapse
|
119
|
Romano D, Nguyen LK, Matallanas D, Halasz M, Doherty C, Kholodenko BN, Kolch W. Protein interaction switches coordinate Raf-1 and MST2/Hippo signalling. Nat Cell Biol 2014; 16:673-84. [DOI: 10.1038/ncb2986] [Citation(s) in RCA: 114] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Accepted: 05/08/2014] [Indexed: 12/19/2022]
|
120
|
"RAF" neighborhood: protein-protein interaction in the Raf/Mek/Erk pathway. FEBS Lett 2014; 588:2398-406. [PMID: 24937142 PMCID: PMC4099524 DOI: 10.1016/j.febslet.2014.06.025] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Revised: 06/05/2014] [Accepted: 06/06/2014] [Indexed: 12/19/2022]
Abstract
The Raf/Mek/Erk signaling pathway, activated downstream of Ras primarily to promote proliferation, represents the best studied of the evolutionary conserved MAPK cascades. The investigation of the pathway has continued unabated since its discovery roughly 30 years ago. In the last decade, however, the identification of unexpected in vivo functions of pathway components, as well as the discovery of Raf mutations in human cancer, the ensuing quest for inhibitors, and the efforts to understand their mechanism of action, have boosted interest tremendously. From this large body of work, protein-protein interaction has emerged as a recurrent, crucial theme. This review focuses on the role of protein complexes in the regulation of the Raf/Mek/Erk pathway and in its cross-talk with other signaling cascades. Mapping these interactions and finding a way of exploiting them for therapeutic purposes is one of the challenges of future molecule-targeted therapy.
Collapse
|
121
|
Kim KH, Qian H, Sauro HM. Nonlinear biochemical signal processing via noise propagation. J Chem Phys 2014; 139:144108. [PMID: 24116604 DOI: 10.1063/1.4822103] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Single-cell studies often show significant phenotypic variability due to the stochastic nature of intra-cellular biochemical reactions. When the numbers of molecules, e.g., transcription factors and regulatory enzymes, are in low abundance, fluctuations in biochemical activities become significant and such "noise" can propagate through regulatory cascades in terms of biochemical reaction networks. Here we develop an intuitive, yet fully quantitative method for analyzing how noise affects cellular phenotypes based on identifying a system's nonlinearities and noise propagations. We observe that such noise can simultaneously enhance sensitivities in one behavioral region while reducing sensitivities in another. Employing this novel phenomenon we designed three biochemical signal processing modules: (a) A gene regulatory network that acts as a concentration detector with both enhanced amplitude and sensitivity. (b) A non-cooperative positive feedback system, with a graded dose-response in the deterministic case, that serves as a bistable switch due to noise-induced ultra-sensitivity. (c) A noise-induced linear amplifier for gene regulation that requires no feedback. The methods developed in the present work allow one to understand and engineer nonlinear biochemical signal processors based on fluctuation-induced phenotypes.
Collapse
Affiliation(s)
- Kyung Hyuk Kim
- Department of Bioengineering, University of Washington, William H. Foege Building, Box 355061, Seattle, Washington 98195, USA
| | | | | |
Collapse
|
122
|
Nikonova E, Tsyganov MA, Kolch W, Fey D, Kholodenko BN. Control of the G-protein cascade dynamics by GDP dissociation inhibitors. MOLECULAR BIOSYSTEMS 2014; 9:2454-62. [PMID: 23872884 DOI: 10.1039/c3mb70152b] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
A network of the Rho family GTPases, which cycle between inactive GDP-bound and active GTP-bound states, controls key cellular processes, including proliferation and migration. Activating and deactivating GTPase transitions are controlled by guanine nucleotide exchange factors (GEFs), GTPase activating proteins (GAPs) and GDP dissociation inhibitors (GDIs) that sequester GTPases from the membrane to the cytoplasm. Here we show that a cascade of two Rho family GTPases, RhoA and Rac1, regulated by RhoGDI1, exhibits distinct modes of the dynamic behavior, including abrupt, bistable switches, excitable overshoot transitions and oscillations. The RhoGDI1 abundance and signal-induced changes in the RhoGDI1 affinity for GTPases control these different dynamics, enabling transitions from a single stable steady state to bistability, to excitable pulses and to sustained oscillations of GTPase activities. These RhoGDI1-controlled dynamic modes of RhoA and Rac1 activities form the basis of cell migration behaviors, including protrusion-retraction cycles at the leading edge of migrating cells.
Collapse
Affiliation(s)
- Elena Nikonova
- Systems Biology Ireland, University College Dublin, Belfield, Dublin 4, Ireland.
| | | | | | | | | |
Collapse
|
123
|
Santra T, Kolch W, Kholodenko BN. Navigating the multilayered organization of eukaryotic signaling: a new trend in data integration. PLoS Comput Biol 2014; 10:e1003385. [PMID: 24550716 PMCID: PMC3923657 DOI: 10.1371/journal.pcbi.1003385] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The ever-increasing capacity of biological molecular data acquisition outpaces our ability to understand the meaningful relationships between molecules in a cell. Multiple databases were developed to store and organize these molecular data. However, emerging fundamental questions about concerted functions of these molecules in hierarchical cellular networks are poorly addressed. Here we review recent advances in the development of publically available databases that help us analyze the signal integration and processing by multilayered networks that specify biological responses in model organisms and human cells
Collapse
Affiliation(s)
- Tapesh Santra
- Systems Biology Ireland, University College Dublin, Belfield, Dublin, Ireland
| | - Walter Kolch
- Systems Biology Ireland, University College Dublin, Belfield, Dublin, Ireland
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin, Ireland
- School of Medicine and Medical Science, University College Dublin, Belfield, Dublin, Ireland
| | - Boris N. Kholodenko
- Systems Biology Ireland, University College Dublin, Belfield, Dublin, Ireland
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin, Ireland
- School of Medicine and Medical Science, University College Dublin, Belfield, Dublin, Ireland
- * E-mail:
| |
Collapse
|
124
|
Schulz EG, Meisig J, Nakamura T, Okamoto I, Sieber A, Picard C, Borensztein M, Saitou M, Blüthgen N, Heard E. The two active X chromosomes in female ESCs block exit from the pluripotent state by modulating the ESC signaling network. Cell Stem Cell 2014; 14:203-16. [PMID: 24506884 DOI: 10.1016/j.stem.2013.11.022] [Citation(s) in RCA: 130] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2013] [Revised: 10/18/2013] [Accepted: 11/26/2013] [Indexed: 01/18/2023]
Abstract
During early development of female mouse embryos, both X chromosomes are transiently active. X gene dosage is then equalized between the sexes through the process of X chromosome inactivation (XCI). Whether the double dose of X-linked genes in females compared with males leads to sex-specific developmental differences has remained unclear. Using embryonic stem cells with distinct sex chromosome compositions as a model system, we show that two X chromosomes stabilize the naive pluripotent state by inhibiting MAPK and Gsk3 signaling and stimulating the Akt pathway. Since MAPK signaling is required to exit the pluripotent state, differentiation is paused in female cells as long as both X chromosomes are active. By preventing XCI or triggering it precociously, we demonstrate that this differentiation block is released once XX cells have undergone X inactivation. We propose that double X dosage interferes with differentiation, thus ensuring a tight coupling between X chromosome dosage compensation and development.
Collapse
Affiliation(s)
- Edda G Schulz
- Mammalian Developmental Epigenetics Group, Institut Curie, CNRS UMR 3215, INSERM U934, Paris 75248, France.
| | - Johannes Meisig
- Institute of Pathology, Charité-Universitätsmedizin, 10117 Berlin, Germany; Integrative Research Institute for the Life Sciences and Institute for Theoretical Biology, Humboldt Universität, 10115 Berlin, Germany
| | - Tomonori Nakamura
- Department of Anatomy and Cell Biology, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan; JST, ERATO, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Ikuhiro Okamoto
- Department of Anatomy and Cell Biology, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan; JST, ERATO, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Anja Sieber
- Institute of Pathology, Charité-Universitätsmedizin, 10117 Berlin, Germany; Integrative Research Institute for the Life Sciences and Institute for Theoretical Biology, Humboldt Universität, 10115 Berlin, Germany
| | - Christel Picard
- Mammalian Developmental Epigenetics Group, Institut Curie, CNRS UMR 3215, INSERM U934, Paris 75248, France
| | - Maud Borensztein
- Mammalian Developmental Epigenetics Group, Institut Curie, CNRS UMR 3215, INSERM U934, Paris 75248, France
| | - Mitinori Saitou
- Department of Anatomy and Cell Biology, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan; JST, ERATO, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan; Center for iPS Cell Research and Application, Kyoto University, 53 Kawahara-cho, Shogoin Yoshida, Sakyo-ku, Kyoto 606-8507, Japan; Institute for Integrated Cell-Material Sciences, Kyoto University, Yoshida-Ushinomiya-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Nils Blüthgen
- Institute of Pathology, Charité-Universitätsmedizin, 10117 Berlin, Germany; Integrative Research Institute for the Life Sciences and Institute for Theoretical Biology, Humboldt Universität, 10115 Berlin, Germany
| | - Edith Heard
- Mammalian Developmental Epigenetics Group, Institut Curie, CNRS UMR 3215, INSERM U934, Paris 75248, France.
| |
Collapse
|
125
|
Goltsov A, Langdon SP, Goltsov G, Harrison DJ, Bown J. Customizing the therapeutic response of signaling networks to promote antitumor responses by drug combinations. Front Oncol 2014; 4:13. [PMID: 24551596 PMCID: PMC3914444 DOI: 10.3389/fonc.2014.00013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2013] [Accepted: 01/20/2014] [Indexed: 01/26/2023] Open
Abstract
Drug resistance, de novo and acquired, pervades cellular signaling networks (SNs) from one signaling motif to another as a result of cancer progression and/or drug intervention. This resistance is one of the key determinants of efficacy in targeted anti-cancer drug therapy. Although poorly understood, drug resistance is already being addressed in combination therapy by selecting drug targets where SN sensitivity increases due to combination components or as a result of de novo or acquired mutations. Additionally, successive drug combinations have shown low resistance potential. To promote a rational, systematic development of combination therapies, it is necessary to establish the underlying mechanisms that drive the advantages of combination therapies, and design methods to determine drug targets for combination regimens. Based on a joint systems analysis of cellular SN response and its sensitivity to drug action and oncogenic mutations, we describe an in silico method to analyze the targets of drug combinations. Our method explores mechanisms of sensitizing the SN through a combination of two drugs targeting vertical signaling pathways. We propose a paradigm of SN response customization by one drug to both maximize the effect of another drug in combination and promote a robust therapeutic response against oncogenic mutations. The method was applied to customize the response of the ErbB/PI3K/PTEN/AKT pathway by combination of drugs targeting HER2 receptors and proteins in the down-stream pathway. The results of a computational experiment showed that the modification of the SN response from hyperbolic to smooth sigmoid response by manipulation of two drugs in combination leads to greater robustness in therapeutic response against oncogenic mutations determining cancer heterogeneity. The application of this method in drug combination co-development suggests a combined evaluation of inhibition effects together with the capability of drug combinations to suppress resistance mechanisms before they become clinically manifest.
Collapse
Affiliation(s)
- Alexey Goltsov
- Centre for Research in Informatics and Systems Pathology (CRISP), University of Abertay Dundee , Dundee , UK
| | - Simon P Langdon
- Division of Pathology, Institute of Genetics and Molecular Medicine, Western General Hospital, University of Edinburgh , Edinburgh , UK
| | | | | | - James Bown
- Centre for Research in Informatics and Systems Pathology (CRISP), University of Abertay Dundee , Dundee , UK
| |
Collapse
|
126
|
Ahmed S, Grant KG, Edwards LE, Rahman A, Cirit M, Goshe MB, Haugh JM. Data-driven modeling reconciles kinetics of ERK phosphorylation, localization, and activity states. Mol Syst Biol 2014; 10:718. [PMID: 24489118 PMCID: PMC4023404 DOI: 10.1002/msb.134708] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The extracellular signal‐regulated kinase (ERK) signaling pathway controls cell proliferation and differentiation in metazoans. Two hallmarks of its dynamics are adaptation of ERK phosphorylation, which has been linked to negative feedback, and nucleocytoplasmic shuttling, which allows active ERK to phosphorylate protein substrates in the nucleus and cytosol. To integrate these complex features, we acquired quantitative biochemical and live‐cell microscopy data to reconcile phosphorylation, localization, and activity states of ERK. While maximal growth factor stimulation elicits transient ERK phosphorylation and nuclear translocation responses, ERK activities available to phosphorylate substrates in the cytosol and nuclei show relatively little or no adaptation. Free ERK activity in the nucleus temporally lags the peak in nuclear translocation, indicating a slow process. Additional experiments, guided by kinetic modeling, show that this process is consistent with ERK's modification of and release from nuclear substrate anchors. Thus, adaptation of whole‐cell ERK phosphorylation is a by‐product of transient protection from phosphatases. Consistent with this interpretation, predictions concerning the dose‐dependence of the pathway response and its interruption by inhibition of MEK were experimentally confirmed.
Collapse
Affiliation(s)
- Shoeb Ahmed
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, USA
| | | | | | | | | | | | | |
Collapse
|
127
|
Benson N, Matsuura T, Smirnov S, Demin O, Jones HM, Dua P, van der Graaf PH. Systems pharmacology of the nerve growth factor pathway: use of a systems biology model for the identification of key drug targets using sensitivity analysis and the integration of physiology and pharmacology. Interface Focus 2014; 3:20120071. [PMID: 24427523 DOI: 10.1098/rsfs.2012.0071] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The nerve growth factor (NGF) pathway is of great interest as a potential source of drug targets, for example in the management of certain types of pain. However, selecting targets from this pathway either by intuition or by non-contextual measures is likely to be challenging. An alternative approach is to construct a mathematical model of the system and via sensitivity analysis rank order the targets in the known pathway, with respect to an endpoint such as the diphosphorylated extracellular signal-regulated kinase concentration in the nucleus. Using the published literature, a model was created and, via sensitivity analysis, it was concluded that, after NGF itself, tropomyosin receptor kinase A (TrkA) was one of the most sensitive druggable targets. This initial model was subsequently used to develop a further model incorporating physiological and pharmacological parameters. This allowed the exploration of the characteristics required for a successful hypothetical TrkA inhibitor. Using these systems models, we were able to identify candidates for the optimal drug targets in the known pathway. These conclusions were consistent with clinical and human genetic data. We also found that incorporating appropriate physiological context was essential to drawing accurate conclusions about important parameters such as the drug dose required to give pathway inhibition. Furthermore, the importance of the concentration of key reactants such as TrkA kinase means that appropriate contextual data are required before clear conclusions can be drawn. Such models could be of great utility in selecting optimal targets and in the clinical evaluation of novel drugs.
Collapse
Affiliation(s)
- Neil Benson
- Xenologiq Ltd, Unit 7 , Denne Hill Business Park, Canterbury CT4 6HD , UK ; Department of Pharmacokinetics, Dynamics and Metabolism , Pfizer Worldwide R&D , Boston, MA , USA
| | - Tomomi Matsuura
- Department of Pharmacokinetics, Dynamics and Metabolism , Pfizer Worldwide R&D , Boston, MA , USA ; Astellas , 21 Miyukigaoka, Tsukuba, Ibaraki 305-8585 , Japan
| | - Sergey Smirnov
- Institute for Systems Biology SPb, Leninskie Gory 1/75G, Moscow 119992 , Russia
| | - Oleg Demin
- Institute for Systems Biology SPb, Leninskie Gory 1/75G, Moscow 119992 , Russia
| | - Hannah M Jones
- Department of Pharmacokinetics, Dynamics and Metabolism , Pfizer Worldwide R&D , Boston, MA , USA
| | - Pinky Dua
- Pharmatherapeutics Clinical Pharmacology, Pfizer Neusentis , The Portway Building, Granta Park, Cambridge CB21 6GS , UK ; Neusentis, Pfizer Global Clinical Pharmacology , The Portway Building, Granta Park, Cambridge CB21 6GS , UK
| | - Piet H van der Graaf
- Department of Pharmacokinetics, Dynamics and Metabolism , Pfizer Worldwide R&D , Boston, MA , USA ; Neusentis, Pfizer Global Clinical Pharmacology , The Portway Building, Granta Park, Cambridge CB21 6GS , UK ; Leiden Academic Centre for Drug Research (LACDR) , Leiden RA 2300 , The Netherlands
| |
Collapse
|
128
|
Zhang XY, Birtwistle MR, Gallo JM. A General Network Pharmacodynamic Model-Based Design Pipeline for Customized Cancer Therapy Applied to the VEGFR Pathway. CPT-PHARMACOMETRICS & SYSTEMS PHARMACOLOGY 2014; 3:e92. [PMID: 24429593 PMCID: PMC3910016 DOI: 10.1038/psp.2013.65] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Accepted: 10/21/2013] [Indexed: 01/02/2023]
Abstract
A unified approach to optimize multidrug chemotherapy using a pharmacokinetic (PK)/enhanced pharmacodynamic model was developed using the vascular endothelial growth factor receptor (VEGFR) signaling system. The base VEGFR network model, characterized by ligand–receptor interactions, enzyme recruitment (Grb2-Sos, phospholipase C γ (PLCγ), and phosphoinositide-3 kinase (PI3K)), and downstream mitogen-activated protein kinase and Akt cascade activation, was linked to a sunitinib (VEGFR inhibitor) PK model and underwent Sobol sensitivity analysis that revealed potential sunitinib-enhancing mechanisms. Drugs targeting these mechanisms (a VEGF inhibitor, a PI3K inhibitor, a PLCγ inhibitor, and a mitogen-activated protein kinase inhibitor) and sunitinib were input to optimization-based control analyses to design multidrug regimens that maintained 80% pERK and pAkt inhibition for 28 days while minimizing drug dose. The resultant combination regimens contained both continuous and discontinuous schedules, mostly at low doses, and were altered by oncogenic mutations. This pipeline of computational analyses demonstrates how model-based methods can capture the complexities of drug action, tailor cancer chemotherapy, and empower personalized medicine.
Collapse
Affiliation(s)
- X-Y Zhang
- Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - M R Birtwistle
- Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - J M Gallo
- Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
129
|
Information transfer by leaky, heterogeneous, protein kinase signaling systems. Proc Natl Acad Sci U S A 2014; 111:E326-33. [PMID: 24395805 DOI: 10.1073/pnas.1314446111] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cells must sense extracellular signals and transfer the information contained about their environment reliably to make appropriate decisions. To perform these tasks, cells use signal transduction networks that are subject to various sources of noise. Here, we study the effects on information transfer of two particular types of noise: basal (leaky) network activity and cell-to-cell variability in the componentry of the network. Basal activity is the propensity for activation of the network output in the absence of the signal of interest. We show, using theoretical models of protein kinase signaling, that the combined effect of the two types of noise makes information transfer by such networks highly vulnerable to the loss of negative feedback. In an experimental study of ERK signaling by single cells with heterogeneous ERK expression levels, we verify our theoretical prediction: In the presence of basal network activity, negative feedback substantially increases information transfer to the nucleus by both preventing a near-flat average response curve and reducing sensitivity to variation in substrate expression levels. The interplay between basal network activity, heterogeneity in network componentry, and feedback is thus critical for the effectiveness of protein kinase signaling. Basal activity is widespread in signaling systems under physiological conditions, has phenotypic consequences, and is often raised in disease. Our results reveal an important role for negative feedback mechanisms in protecting the information transfer function of saturable, heterogeneous cell signaling systems from basal activity.
Collapse
|
130
|
A multi-scale model of hepcidin promoter regulation reveals factors controlling systemic iron homeostasis. PLoS Comput Biol 2014; 10:e1003421. [PMID: 24391488 PMCID: PMC3879105 DOI: 10.1371/journal.pcbi.1003421] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Accepted: 11/08/2013] [Indexed: 01/24/2023] Open
Abstract
Systemic iron homeostasis involves a negative feedback circuit in which the expression level of the peptide hormone hepcidin depends on and controls the iron blood levels. Hepcidin expression is regulated by the BMP6/SMAD and IL6/STAT signaling cascades. Deregulation of either pathway causes iron-related diseases such as hemochromatosis or anemia of inflammation. We quantitatively analyzed how BMP6 and IL6 control hepcidin expression. Transcription factor (TF) phosphorylation and reporter gene expression were measured under co-stimulation conditions, and the promoter was perturbed by mutagenesis. Using mathematical modeling, we systematically analyzed potential mechanisms of cooperative and competitive promoter regulation by the transcription factors, and experimentally validated the model predictions. Our results reveal that hepcidin cross-regulation primarily occurs by combinatorial transcription factor binding to the promoter, whereas signaling crosstalk is insignificant. We find that the presence of two BMP-responsive elements enhances the steepness of the promoter response towards the iron-sensing BMP signaling axis, which promotes iron homeostasis in vivo. IL6 co-stimulation reduces the promoter sensitivity towards the BMP signal, because the SMAD and STAT transcription factors compete for recruiting RNA polymerase to the transcription start site. This may explain why inflammatory signals disturb iron homeostasis in anemia of inflammation. Taken together, our results reveal why the iron homeostasis circuit is sensitive to perturbations implicated in disease. The nutritional iron uptake is tightly regulated because the body has limited capacity of iron excretion. Mammals maintain iron homeostasis by a negative feedback loop, in which the peptide hepcidin senses the iron blood level and controls iron resorption. Molecular perturbations in the homeostasis loop lead to iron-related diseases such as hemochromatosis or anemia of inflammation. Quantitative studies are required to understand the dynamics of the iron homeostasis circuitry in health and disease. We investigated how the biological activity of hepcidin is regulated by combining experiments with mathematical modeling. We present a multi-scale model that describes the signaling network and the gene promoter controlling hepcidin expression. Possible scenarios of hepcidin regulation were systematically tested against experimental data, and interpreted using a network model of iron metabolism in vivo. The analysis showed that the presence of multiple redundant regulatory elements in the hepcidin gene promoter facilitates homeostasis, because changes in iron blood levels are sensed with high sensitivity. We further suggest that inflammatory signals establish molecular competition at the hepcidin promoter, thereby reducing its iron sensitivity and leading to a loss of homeostasis in anemia of inflammation. We conclude that quantitative insights into hepcidin expression regulation explain features of systemic iron homeostasis.
Collapse
|
131
|
Mazalouskas MD, Godoy-Ruiz R, Weber DJ, Zimmer DB, Honkanen RE, Wadzinski BE. Small G proteins Rac1 and Ras regulate serine/threonine protein phosphatase 5 (PP5)·extracellular signal-regulated kinase (ERK) complexes involved in the feedback regulation of Raf1. J Biol Chem 2013; 289:4219-32. [PMID: 24371145 DOI: 10.1074/jbc.m113.518514] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Serine/threonine protein phosphatase 5 (PP5, PPP5C) is known to interact with the chaperonin heat shock protein 90 (HSP90) and is involved in the regulation of multiple cellular signaling cascades that control diverse cellular processes, such as cell growth, differentiation, proliferation, motility, and apoptosis. Here, we identify PP5 in stable complexes with extracellular signal-regulated kinases (ERKs). Studies using mutant proteins reveal that the formation of PP5·ERK1 and PP5·ERK2 complexes partially depends on HSP90 binding to PP5 but does not require PP5 or ERK1/2 activity. However, PP5 and ERK activity regulates the phosphorylation state of Raf1 kinase, an upstream activator of ERK signaling. Whereas expression of constitutively active Rac1 promotes the assembly of PP5·ERK1/2 complexes, acute activation of ERK1/2 fails to influence the phosphatase-kinase interaction. Introduction of oncogenic HRas (HRas(V12)) has no effect on PP5-ERK1 binding but selectively decreases the interaction of PP5 with ERK2, in a manner that is independent of PP5 and MAPK/ERK kinase (MEK) activity, yet paradoxically requires ERK2 activity. Additional studies conducted with oncogenic variants of KRas4B reveal that KRas(L61), but not KRas(V12), also decreases the PP5-ERK2 interaction. The expression of wild type HRas or KRas proteins fails to reduce PP5-ERK2 binding, indicating that the effect is specific to HRas(V12) and KRas(L61) gain-of-function mutations. These findings reveal a novel, differential responsiveness of PP5-ERK1 and PP5-ERK2 interactions to select oncogenic Ras variants and also support a role for PP5·ERK complexes in regulating the feedback phosphorylation of PP5-associated Raf1.
Collapse
Affiliation(s)
- Matthew D Mazalouskas
- From the Department of Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee 37232-6600
| | | | | | | | | | | |
Collapse
|
132
|
Das Thakur M, Stuart DD. Molecular pathways: response and resistance to BRAF and MEK inhibitors in BRAF(V600E) tumors. Clin Cancer Res 2013; 20:1074-80. [PMID: 24352648 DOI: 10.1158/1078-0432.ccr-13-0103] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The RAS-RAF-MEK (MAP-ERK kinase)-ERK (extracellular signal-regulated kinase) pathway plays a central role in driving proliferation, survival, and metastasis signals in tumor cells, and the prevalence of oncogenic mutations in RAS and BRAF and upstream nodes makes this pathway the focus of significant oncology drug development efforts. This focus has been justified by the recent success of BRAF and MEK inhibitors in prolonging the lives of patients with BRAF(V600E/K)-mutant melanoma. Although it is disappointing that cures are relatively rare, this should not detract from the value of these agents to patients with cancer and the opportunity they provide in allowing us to gain a deeper understanding of drug response and resistance. These insights have already provided the basis for the evaluation of alternative dosing regimens and combination therapies in patients with melanoma.
Collapse
Affiliation(s)
- Meghna Das Thakur
- Authors' Affiliation: Novartis Institutes for Biomedical Research, Emeryville, California
| | | |
Collapse
|
133
|
Capovilla M. [Cellular and molecular mechanisms of carcinogenic side effects and resistance to BRAF inhibitors in metastatic melanoma with BRAFV600 mutation: state of the knowledge]. Ann Pathol 2013; 33:375-85. [PMID: 24331719 DOI: 10.1016/j.annpat.2013.09.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Accepted: 09/04/2013] [Indexed: 01/07/2023]
Abstract
Cutaneous melanoma is a malignant tumor with a high metastatic potential. If an early treatment is associated with a favorable outcome, the prognosis of metastatic melanoma remains poor. Advances in molecular characterization of cancers, notably the discovery of BRAF gene mutations in metastatic melanoma, allowed to the recent development of targeted therapies against mutated BRAF protein. Despite high tumor response rates observed in clinical trials, these new drugs are associated with frequent secondary tumor resistance occurrence and paradoxical carcinogenic side effects. The cellular and molecular mechanisms of these carcinogenic side effects and secondary resistance are not yet fully elucidated and are actually intensely studied. This review of the literature focus on the mechanisms of these carcinogenic side effects and on the tumor resistance associated with anti-BRAF targeted therapies.
Collapse
MESH Headings
- Antineoplastic Agents/adverse effects
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/therapeutic use
- Carcinoma, Squamous Cell/chemically induced
- Cell Transformation, Neoplastic/drug effects
- Drug Resistance, Neoplasm/genetics
- Enzyme Activation/drug effects
- Epigenesis, Genetic
- Gene Expression Regulation, Neoplastic
- Genes, ras
- Humans
- Indoles/adverse effects
- Indoles/pharmacology
- Indoles/therapeutic use
- Intercellular Signaling Peptides and Proteins/metabolism
- Keratoacanthoma/chemically induced
- Leukemia/chemically induced
- MAP Kinase Signaling System/drug effects
- Melanoma/chemically induced
- Melanoma/drug therapy
- Melanoma/genetics
- Melanoma/immunology
- Melanoma/secondary
- Models, Biological
- Molecular Targeted Therapy
- Mutation, Missense
- Neoplasm Proteins/antagonists & inhibitors
- Neoplasm Proteins/genetics
- Neoplasm Proteins/physiology
- Neoplasms, Second Primary/chemically induced
- Neoplastic Stem Cells/enzymology
- Nevus, Pigmented/enzymology
- Nevus, Pigmented/pathology
- Point Mutation
- Protein Kinase Inhibitors/adverse effects
- Protein Kinase Inhibitors/pharmacology
- Protein Kinase Inhibitors/therapeutic use
- Proto-Oncogene Proteins B-raf/antagonists & inhibitors
- Proto-Oncogene Proteins B-raf/genetics
- Proto-Oncogene Proteins B-raf/physiology
- Proto-Oncogene Proteins c-raf/biosynthesis
- Proto-Oncogene Proteins c-raf/physiology
- Skin Neoplasms/chemically induced
- Sulfonamides/adverse effects
- Sulfonamides/pharmacology
- Sulfonamides/therapeutic use
- Tumor Microenvironment
- Vemurafenib
Collapse
Affiliation(s)
- Mathieu Capovilla
- Service de pathologie, centre François-Baclesse, 3, avenue Général-Harris, BP 5026, 14076 Caen cedex 05, France.
| |
Collapse
|
134
|
Schaber J, Lapytsko A, Flockerzi D. Nested autoinhibitory feedbacks alter the resistance of homeostatic adaptive biochemical networks. J R Soc Interface 2013; 11:20130971. [PMID: 24307567 PMCID: PMC3869172 DOI: 10.1098/rsif.2013.0971] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Negative feedback control is a ubiquitous feature of biochemical systems, as is time delay between a signal and its response. Negative feedback in conjunction with time delay can lead to oscillations. In a cellular context, it might be beneficial to mitigate oscillatory behaviour to avoid recurring stress situations. This can be achieved by increasing the distance between the parameters of the system and certain thresholds, beyond which oscillations occur. This distance has been termed resistance. Here, we prove that in a generic three-dimensional negative feedback system the resistance of the system is modified by nested autoinhibitory feedbacks. Our system features negative feedbacks through both input-inhibition as well as output-activation, a signalling component with mass conservation and perfect adaptation. We show that these features render the system applicable to biological data, exemplified by the high osmolarity glycerol system in yeast and the mammalian p53 system. Output-activation is better supported by data than input-inhibition and also shows distinguished properties with respect to the system's stimulus. Our general approach might be useful in designing synthetic systems in which oscillations can be tuned by synthetic autoinhibitory feedbacks.
Collapse
Affiliation(s)
- Jörg Schaber
- Institute for Experimental Internal Medicine, Medical Faculty, Otto von Guericke University, , Magdeburg, Germany
| | | | | |
Collapse
|
135
|
Vandamme D, Minke BA, Fitzmaurice W, Kholodenko BN, Kolch W. Systems biology-embedded target validation: improving efficacy in drug discovery. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2013; 6:1-11. [PMID: 24214316 DOI: 10.1002/wsbm.1253] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Revised: 09/24/2013] [Accepted: 10/11/2013] [Indexed: 12/31/2022]
Abstract
The pharmaceutical industry is faced with a range of challenges with the ever-escalating costs of drug development and a drying out of drug pipelines. By harnessing advances in -omics technologies and moving away from the standard, reductionist model of drug discovery, there is significant potential to reduce costs and improve efficacy. Embedding systems biology approaches in drug discovery, which seek to investigate underlying molecular mechanisms of potential drug targets in a network context, will reduce attrition rates by earlier target validation and the introduction of novel targets into the currently stagnant market. Systems biology approaches also have the potential to assist in the design of multidrug treatments and repositioning of existing drugs, while stratifying patients to give a greater personalization of medical treatment.
Collapse
Affiliation(s)
- Drieke Vandamme
- Systems Biology Ireland, University College Dublin, Dublin, Ireland
| | | | | | | | | |
Collapse
|
136
|
Serrano MÁ, Jurado M, Reigada R. Negative feedback self-regulation contributes to robust and high-fidelity transmembrane signal transduction. J R Soc Interface 2013; 10:20130581. [PMID: 23966618 PMCID: PMC3785823 DOI: 10.1098/rsif.2013.0581] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Accepted: 07/31/2013] [Indexed: 11/12/2022] Open
Abstract
We present a minimal motif model for transmembrane cell signalling. The model assumes signalling events taking place in spatially distributed nanoclusters regulated by a birth/death dynamics. The combination of these spatio-temporal aspects can be modulated to provide a robust and high-fidelity response behaviour without invoking sophisticated modelling of the signalling process as a sequence of cascade reactions and fine-tuned parameters. Our results show that the fact that the distributed signalling events take place in nanoclusters with a finite lifetime regulated by local production is sufficient to obtain a robust and high-fidelity response.
Collapse
Affiliation(s)
- M Ángeles Serrano
- Departament de Física Fonamental, Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain
| | - Manuel Jurado
- Departament de Química Física and Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain
| | - Ramon Reigada
- Departament de Química Física and Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain
| |
Collapse
|
137
|
Grieco L, Calzone L, Bernard-Pierrot I, Radvanyi F, Kahn-Perlès B, Thieffry D. Integrative modelling of the influence of MAPK network on cancer cell fate decision. PLoS Comput Biol 2013; 9:e1003286. [PMID: 24250280 PMCID: PMC3821540 DOI: 10.1371/journal.pcbi.1003286] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Accepted: 09/02/2013] [Indexed: 02/04/2023] Open
Abstract
The Mitogen-Activated Protein Kinase (MAPK) network consists of tightly interconnected signalling pathways involved in diverse cellular processes, such as cell cycle, survival, apoptosis and differentiation. Although several studies reported the involvement of these signalling cascades in cancer deregulations, the precise mechanisms underlying their influence on the balance between cell proliferation and cell death (cell fate decision) in pathological circumstances remain elusive. Based on an extensive analysis of published data, we have built a comprehensive and generic reaction map for the MAPK signalling network, using CellDesigner software. In order to explore the MAPK responses to different stimuli and better understand their contributions to cell fate decision, we have considered the most crucial components and interactions and encoded them into a logical model, using the software GINsim. Our logical model analysis particularly focuses on urinary bladder cancer, where MAPK network deregulations have often been associated with specific phenotypes. To cope with the combinatorial explosion of the number of states, we have applied novel algorithms for model reduction and for the compression of state transition graphs, both implemented into the software GINsim. The results of systematic simulations for different signal combinations and network perturbations were found globally coherent with published data. In silico experiments further enabled us to delineate the roles of specific components, cross-talks and regulatory feedbacks in cell fate decision. Finally, tentative proliferative or anti-proliferative mechanisms can be connected with established bladder cancer deregulations, namely Epidermal Growth Factor Receptor (EGFR) over-expression and Fibroblast Growth Factor Receptor 3 (FGFR3) activating mutations. Depending on environmental conditions, strongly intertwined cellular signalling pathways are activated, involving activation/inactivation of proteins and genes in response to external and/or internal stimuli. Alterations of some components of these pathways can lead to wrong cell behaviours. For instance, cancer-related deregulations lead to high proliferation of malignant cells enabling sustained tumour growth. Understanding the precise mechanisms underlying these pathways is necessary to delineate efficient therapeutical approaches for each specific tumour type. We particularly focused on the Mitogen-Activated Protein Kinase (MAPK) signalling network, whose involvement in cancer is well established, although the precise conditions leading to its positive or negative influence on cell proliferation are still poorly understood. We tackled this problem by first collecting sparse published biological information into a comprehensive map describing the MAPK network in terms of stylised chemical reactions. This information source was then used to build a dynamical Boolean model recapitulating network responses to characteristic stimuli observed in selected bladder cancers. Systematic model simulations further allowed us to link specific network components and interactions with proliferative/anti-proliferative cell responses.
Collapse
Affiliation(s)
- Luca Grieco
- Aix-Marseille Université, Marseille, France
- TAGC – Inserm U1090, Marseille, France
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Paris, France
- UMR 8197 Centre National de la Recherche Scientifique (CNRS), Paris, France
- Inserm 1024, Paris, France
- Institut Curie, Paris, France
- * E-mail: (LG); (DT)
| | - Laurence Calzone
- Institut Curie, Paris, France
- Inserm U900, Paris, France
- Ecole des Mines ParisTech, Paris, France
| | - Isabelle Bernard-Pierrot
- Institut Curie, Paris, France
- UMR 144 Centre National de la Recherche Scientifique (CNRS), Paris, France
| | - François Radvanyi
- Institut Curie, Paris, France
- UMR 144 Centre National de la Recherche Scientifique (CNRS), Paris, France
| | | | - Denis Thieffry
- TAGC – Inserm U1090, Marseille, France
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Paris, France
- UMR 8197 Centre National de la Recherche Scientifique (CNRS), Paris, France
- Inserm 1024, Paris, France
- INRIA Paris-Rocquencourt, Rocquencourt, France
- * E-mail: (LG); (DT)
| |
Collapse
|
138
|
Chen X, Wu Q, Tan L, Porter D, Jager MJ, Emery C, Bastian BC. Combined PKC and MEK inhibition in uveal melanoma with GNAQ and GNA11 mutations. Oncogene 2013; 33:4724-34. [PMID: 24141786 DOI: 10.1038/onc.2013.418] [Citation(s) in RCA: 154] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Revised: 08/14/2013] [Accepted: 08/15/2013] [Indexed: 12/14/2022]
Abstract
Uveal melanoma (UM) is a genetically and biologically distinct type of melanoma, and once metastatic there is no effective treatment currently available. Eighty percent of UMs harbor mutations in the Gαq family members GNAQ and GNA11. Understanding the effector pathways downstream of these oncoproteins is important to identify opportunities for targeted therapy. We report consistent activation of the protein kinase C (PKC) and MAPK pathways as a consequence of GNAQ or GNA11 mutation. PKC inhibition with AEB071 or AHT956 suppressed PKC and MAPK signalling and induced G1 arrest selectively in melanoma cell lines carrying GNAQ or GNA11 mutations. In contrast, treatment with two different MEK inhibitors, PD0325901 and MEK162, inhibited the proliferation of melanoma cell lines irrespective of their mutation status, indicating that in the context of GNAQ or GNA11 mutation MAPK activation can be attributed to activated PKC. AEB071 significantly slowed the growth of tumors in an allograft model of GNAQ(Q209L)-transduced melanocytes, but did not induce tumor shrinkage. In vivo and in vitro studies showed that PKC inhibitors alone were unable to induce sustained suppression of MAP-kinase signaling. However, combinations of PKC and MEK inhibition, using either PD0325901or MEK162, led to sustained MAP-kinase pathway inhibition and showed a strong synergistic effect in halting proliferation and in inducing apoptosis in vitro. Furthermore, combining PKC and MEK inhibition was efficacious in vivo, causing marked tumor regression in a UM xenograft model. Our data identify PKC as a rational therapeutic target for melanoma patients with GNAQ or GNA11 mutations and demonstrate that combined MEK and PKC inhibition is synergistic, with superior efficacy compared to treatment with either approach alone.
Collapse
Affiliation(s)
- X Chen
- 1] Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA [2] Departments of Dermatology and Pathology, and Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA
| | - Q Wu
- Departments of Dermatology and Pathology, and Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA
| | - L Tan
- Novartis Institutes for BioMedical Research, Novartis, Cambridge, MA, USA
| | - D Porter
- Novartis Institutes for BioMedical Research, Novartis, Cambridge, MA, USA
| | - M J Jager
- Department of Ophthalmology, Leiden University Medical Center, Leiden, The Netherlands
| | - C Emery
- Novartis Institutes for BioMedical Research, Novartis, Cambridge, MA, USA
| | - B C Bastian
- 1] Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA [2] Departments of Dermatology and Pathology, and Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA
| |
Collapse
|
139
|
Vandamme D, Fitzmaurice W, Kholodenko B, Kolch W. Systems medicine: helping us understand the complexity of disease. QJM 2013; 106:891-5. [PMID: 23904523 DOI: 10.1093/qjmed/hct163] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Advances in genomics and other -omic fields in the last decade have resulted in unprecedented volumes of complex data now being available. These data can enable physicians to provide their patients with care that is more personalized, predictive, preventive and participatory. The expertise required to manage and understand this data is to be found in fields outside of medical science, thus multidisciplinary collaboration coupled to a systems approach is key to unlocking its potential, with concomitant new ways of working. Systems medicine can build on the successes in the field of systems biology, recognizing the human body as the multidimensional network of networks that it is. While systems medicine can provide a conceptual and theoretical framework, its practical goal is to provide physicians the tools necessary for harnessing the rapid advances in basic biomedical science into their routine clinical arsenal.
Collapse
Affiliation(s)
- D Vandamme
- Systems Biology Ireland, University College Dublin, Belfield, Dublin 4, Ireland.
| | | | | | | |
Collapse
|
140
|
Lieu CH, Tan AC, Leong S, Diamond JR, Eckhardt SG. From bench to bedside: lessons learned in translating preclinical studies in cancer drug development. J Natl Cancer Inst 2013; 105:1441-56. [PMID: 24052618 PMCID: PMC3787906 DOI: 10.1093/jnci/djt209] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The development of targeted agents in oncology has rapidly expanded over the past 2 decades and has led to clinically significant improvements in the treatment of numerous cancers. Unfortunately, not all success at the bench in preclinical experiments has translated to success at the bedside. As preclinical studies shift toward defining proof of mechanism, patient selection, and rational drug combinations, it is critical to understand the lessons learned from prior translational studies to gain an understanding of prior drug development successes and failures. By learning from prior drug development, future translational studies will provide more clinically relevant data, and the underlying hope is that the clinical success rate will improve and the treatment of patients with ineffective targeted therapy will be limited.
Collapse
Affiliation(s)
- Christopher H Lieu
- Affiliation of authors: Division of Medical Oncology, University of Colorado, Aurora, CO (CHL, A-CT, SL, JRD, SGE)
| | | | | | | | | |
Collapse
|
141
|
Klinger B, Sieber A, Fritsche-Guenther R, Witzel F, Berry L, Schumacher D, Yan Y, Durek P, Merchant M, Schäfer R, Sers C, Blüthgen N. Network quantification of EGFR signaling unveils potential for targeted combination therapy. Mol Syst Biol 2013; 9:673. [PMID: 23752269 PMCID: PMC3964313 DOI: 10.1038/msb.2013.29] [Citation(s) in RCA: 112] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2012] [Accepted: 05/08/2013] [Indexed: 12/13/2022] Open
Abstract
The epidermal growth factor receptor (EGFR) signaling network is activated in most solid tumors, and small-molecule drugs targeting this network are increasingly available. However, often only specific combinations of inhibitors are effective. Therefore, the prediction of potent combinatorial treatments is a major challenge in targeted cancer therapy. In this study, we demonstrate how a model-based evaluation of signaling data can assist in finding the most suitable treatment combination. We generated a perturbation data set by monitoring the response of RAS/PI3K signaling to combined stimulations and inhibitions in a panel of colorectal cancer cell lines, which we analyzed using mathematical models. We detected that a negative feedback involving EGFR mediates strong cross talk from ERK to AKT. Consequently, when inhibiting MAPK, AKT activity is increased in an EGFR-dependent manner. Using the model, we predict that in contrast to single inhibition, combined inactivation of MEK and EGFR could inactivate both endpoints of RAS, ERK and AKT. We further could demonstrate that this combination blocked cell growth in BRAF- as well as KRAS-mutated tumor cells, which we confirmed using a xenograft model.
Collapse
Affiliation(s)
- Bertram Klinger
- Laboratory of Molecular Tumour Pathology, Institute of Pathology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
142
|
Baljuls A, Kholodenko BN, Kolch W. It takes two to tango--signalling by dimeric Raf kinases. MOLECULAR BIOSYSTEMS 2013; 9:551-8. [PMID: 23212737 DOI: 10.1039/c2mb25393c] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Raf kinases function downstream of Ras proteins to activate the MEK-ERK pathway which is deregulated in a large number of human cancers. Raf inhibitors are clinically highly effective for the treatment of cancer and melanoma in particular, but have unexpected side effects that include a paradoxical activation of the ERK pathway. These effects seem to be related to the heterodimerization of Raf-1 and B-Raf kinases. Here, we discuss the role of Raf dimerization as part of the physiological activation mechanism of Raf kinases, the mechanism of Raf dimerization induced by drugs, and the implications of dimerization for drug therapies targeting Raf kinases.
Collapse
Affiliation(s)
- Angela Baljuls
- Systems Biology Ireland, University College Dublin, Dublin 4, Ireland.
| | | | | |
Collapse
|
143
|
Volinsky N, Kholodenko BN. Complexity of receptor tyrosine kinase signal processing. Cold Spring Harb Perspect Biol 2013; 5:a009043. [PMID: 23906711 DOI: 10.1101/cshperspect.a009043] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Our knowledge of molecular mechanisms of receptor tyrosine kinase (RTK) signaling advances with ever-increasing pace. Yet our understanding of how the spatiotemporal dynamics of RTK signaling control specific cellular outcomes has lagged behind. Systems-centered experimental and computational approaches can help reveal how overlapping networks of signal transducers downstream of RTKs orchestrate specific cell-fate decisions. We discuss how RTK network regulatory structures, which involve the immediate posttranslational and delayed transcriptional controls by multiple feed forward and feedback loops together with pathway cross talk, adapt cells to the combinatorial variety of external cues and conditions. This intricate network circuitry endows cells with emerging capabilities for RTK signal processing and decoding. We illustrate how mathematical modeling facilitates our understanding of RTK network behaviors by unraveling specific systems properties, including bistability, oscillations, excitable responses, and generation of intricate landscapes of signaling activities.
Collapse
Affiliation(s)
- Natalia Volinsky
- Systems Biology Ireland, University College Dublin, Belfield, Dublin 4, Ireland
| | | |
Collapse
|
144
|
Suda K, Mitsudomi T. Unintentional weakness of cancers: the MEK-ERK pathway as a double-edged sword. Mol Cancer Res 2013; 11:1125-8. [PMID: 23900694 DOI: 10.1158/1541-7786.mcr-13-0228] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Recent advances in molecular targeted therapies have greatly improved treatment outcomes for cancers driven by oncogenic mutations. Despite initial and dramatic clinical responses, tumors eventually acquire resistance to these targeted therapies, showing flexible and diverse responses. Interestingly, cancer cells sometimes overadapt to the drug treatment environment, leading to a state in which cancer cells cannot survive without the drug. This interesting phenomenon (often called "drug dependency" or "drug addiction") is exemplified in preclinical acquired resistance models of BRAF-mutated melanoma treated with vemurafenib and EGFR-mutated lung cancer treated with EGFR tyrosine kinase inhibitors. A number of intriguing parallels in drug-addicted cancers became apparent in a comparison of the two models: (i) overexpression of driver oncogenes as causes of acquired resistance; (ii) overexpression of driver oncogenes causing MEK-ERK hyperactivation under drug-free conditions; (iii) hyperactivation of the MEK-ERK pathway as critical to this drug addiction phenomenon; (iv) ongoing dependence on the oncogenic driver; and (v) morphologic changes in resistant cells under drug-free conditions. This Perspective article not only focuses on this interesting and peculiar phenomenon but also discusses weapon strategies to exploit this unintentional weakness of cancers.
Collapse
Affiliation(s)
- Kenichi Suda
- Division of Thoracic Surgery, Department of Surgery, Kinki University Faculty of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama 589-8511, Japan.
| | | |
Collapse
|
145
|
Wagner JP, Wolf-Yadlin A, Sevecka M, Grenier JK, Root DE, Lauffenburger DA, MacBeath G. Receptor tyrosine kinases fall into distinct classes based on their inferred signaling networks. Sci Signal 2013; 6:ra58. [PMID: 23861540 DOI: 10.1126/scisignal.2003994] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Although many anticancer drugs that target receptor tyrosine kinases (RTKs) provide clinical benefit, their long-term use is limited by resistance that is often attributed to increased abundance or activation of another RTK that compensates for the inhibited receptor. To uncover common and unique features in the signaling networks of RTKs, we measured time-dependent signaling in six isogenic cell lines, each expressing a different RTK as downstream proteins were systematically perturbed by RNA interference. Network models inferred from the data revealed a conserved set of signaling pathways and RTK-specific features that grouped the RTKs into three distinct classes: (i) an EGFR/FGFR1/c-Met class constituting epidermal growth factor receptor, fibroblast growth factor receptor 1, and the hepatocyte growth factor receptor c-Met; (ii) an IGF-1R/NTRK2 class constituting insulin-like growth factor 1 receptor and neurotrophic tyrosine receptor kinase 2; and (iii) a PDGFRβ class constituting platelet-derived growth factor receptor β. Analysis of cancer cell line data showed that many RTKs of the same class were coexpressed and that increased abundance of an RTK or its cognate ligand frequently correlated with resistance to a drug targeting another RTK of the same class. In contrast, abundance of an RTK or ligand of one class generally did not affect sensitivity to a drug targeting an RTK of a different class. Thus, classifying RTKs by their inferred networks and then therapeutically targeting multiple receptors within a class may delay or prevent the onset of resistance.
Collapse
Affiliation(s)
- Joel P Wagner
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Alejandro Wolf-Yadlin
- Department of Chemistry & Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA 02138, USA
| | - Mark Sevecka
- Department of Chemistry & Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA 02138, USA
| | - Jennifer K Grenier
- Broad Institute of MIT and Harvard, 7 Cambridge Center, Cambridge, MA 02142, USA
| | - David E Root
- Broad Institute of MIT and Harvard, 7 Cambridge Center, Cambridge, MA 02142, USA
| | - Douglas A Lauffenburger
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Gavin MacBeath
- Department of Chemistry & Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA 02138, USA.,Department of Systems Biology, Harvard Medical School, 200 Longwood Avenue, Boston, MA 02115, USA
| |
Collapse
|
146
|
Blüthgen N, Legewie S. Robustness of signal transduction pathways. Cell Mol Life Sci 2013; 70:2259-69. [PMID: 23007845 PMCID: PMC11113274 DOI: 10.1007/s00018-012-1162-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Revised: 09/05/2012] [Accepted: 09/06/2012] [Indexed: 10/27/2022]
Abstract
Signal transduction pathways transduce information about the outside of the cell to the nucleus, regulating gene expression and cell fate. To reliably inform the cell about its surroundings, information transfer has to be robust against typical perturbation that a cell experiences. Robustness of several mammalian signaling pathways has been studied recently by quantitative experimentation and using mathematical modeling. Here, we review these studies, and describe the emerging concepts of robustness and the underlying mechanisms.
Collapse
Affiliation(s)
- Nils Blüthgen
- Institute of Pathology, Charité Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany.
| | | |
Collapse
|
147
|
Perrett RM, Fowkes RC, Caunt CJ, Tsaneva-Atanasova K, Bowsher CG, McArdle CA. Signaling to extracellular signal-regulated kinase from ErbB1 kinase and protein kinase C: feedback, heterogeneity, and gating. J Biol Chem 2013; 288:21001-21014. [PMID: 23754287 PMCID: PMC3774369 DOI: 10.1074/jbc.m113.455345] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Many extracellular signals act via the Raf/MEK/ERK cascade in which kinetics, cell-cell variability, and sensitivity of the ERK response can all influence cell fate. Here we used automated microscopy to explore the effects of ERK-mediated negative feedback on these attributes in cells expressing endogenous ERK or ERK2-GFP reporters. We studied acute rather than chronic stimulation with either epidermal growth factor (ErbB1 activation) or phorbol 12,13-dibutyrate (PKC activation). In unstimulated cells, ERK-mediated negative feedback reduced the population-average and cell-cell variability of the level of activated ppERK and increased its robustness to changes in ERK expression. In stimulated cells, negative feedback (evident between 5 min and 4 h) also reduced average levels and variability of phosphorylated ERK (ppERK) without altering the “gradedness” or sensitivity of the response. Binning cells according to total ERK expression revealed, strikingly, that maximal ppERK responses initially occur at submaximal ERK levels and that this non-monotonic relationship changes to an increasing, monotonic one within 15 min. These phenomena occur in HeLa cells and MCF7 breast cancer cells and in the presence and absence of ERK-mediated negative feedback. They were best modeled assuming distributive (rather than processive) activation. Thus, we have uncovered a novel, time-dependent change in the relationship between total ERK and ppERK levels that persists without negative feedback. This change makes acute response kinetics dependent on ERK level and provides a “gating” or control mechanism in which the interplay between stimulus duration and the distribution of ERK expression across cells could modulate the proportion of cells that respond to stimulation.
Collapse
Affiliation(s)
- Rebecca M Perrett
- From the Laboratories for Integrative Neuroscience and Endocrinology, School of Clinical Sciences, University of Bristol, Whitson Street, Bristol BS13NY, United Kingdom
| | - Robert C Fowkes
- Endocrine Signaling Group, Royal Veterinary College, Royal College St., London NW10TU, United Kingdom
| | - Christopher J Caunt
- Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath BA27AY, United Kingdom
| | - Krasimira Tsaneva-Atanasova
- Bristol Centre for Applied Nonlinear Mathematics, Department of Engineering Mathematics, University of Bristol, Bristol BS81TR, United Kingdom, and
| | - Clive G Bowsher
- School of Mathematics, University of Bristol, Bristol BS81TW, United Kingdom
| | - Craig A McArdle
- From the Laboratories for Integrative Neuroscience and Endocrinology, School of Clinical Sciences, University of Bristol, Whitson Street, Bristol BS13NY, United Kingdom,.
| |
Collapse
|
148
|
Kocieniewski P, Lipniacki T. MEK1 and MEK2 differentially control the duration and amplitude of the ERK cascade response. Phys Biol 2013; 10:035006. [PMID: 23735655 DOI: 10.1088/1478-3975/10/3/035006] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The Raf/MEK/ERK cascade is one of the most studied and important signal transduction pathways. However, existing models largely ignore the existence of isoforms of the constituent kinases and their interactions. Here, we propose a model of the ERK cascade that includes heretofore neglected differences between isoforms of MEK. In particular, MEK1 is subject to a negative feedback from activated ERK, which is further conferred to MEK2 via hetero-dimerization. Specifically, ERK phosphorylates MEK1 at the residue Thr292, hypothetically creating an additional phosphatase binding site, accelerating MEK1 and MEK2 dephosphorylation. We incorporated these recently discovered interactions into a mathematical model of the ERK cascade that reproduces the experimental results of Catalanotti et al (2009 Nature Struct. Mol. Biol. 16 294-303) and Kamioka et al (2010 J. Biol. Chem. 285 33540-8). Furthermore, the model allows for predictions regarding the differences in the catalytic activity and function of the MEK isoforms. We propose that the MEK1/MEK2 ratio regulates the duration of the response, which increases with the level of MEK2 and decreases with the level of MEK1. In turn, the amplitude of the response is controlled by the total amount of the two isoforms. We confirm the proposed model structure performing a random parameter sampling, which led us to the conclusion that the sampled parameters, selected to properly reproduce wild-type (WT) cell behavior, to allow for qualitative reproduction of differences in behavior WT cells and cell mutants studied experimentally.
Collapse
Affiliation(s)
- Pawel Kocieniewski
- Institute of Fundamental Technological Research, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | | |
Collapse
|
149
|
Scafoglio C, Smolka M, Zhou H, Perissi V, Rosenfeld MG. The co-repressor SMRT delays DNA damage-induced caspase activation by repressing pro-apoptotic genes and modulating the dynamics of checkpoint kinase 2 activation. PLoS One 2013; 8:e59986. [PMID: 23690919 PMCID: PMC3656868 DOI: 10.1371/journal.pone.0059986] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Accepted: 02/23/2013] [Indexed: 12/31/2022] Open
Abstract
Checkpoint kinase 2 (Chk2) is a major regulator of DNA damage response and can induce alternative cellular responses: cell cycle arrest and DNA repair or programmed cell death. Here, we report the identification of a new role of Chk2 in transcriptional regulation that also contributes to modulating the balance between survival and apoptosis following DNA damage. We found that Chk2 interacts with members of the NCoR/SMRT transcriptional co-regulator complexes and serves as a functional component of the repressor complex, being required for recruitment of SMRT on the promoter of pro-apoptotic genes upon DNA damage. Thus, the co-repressor SMRT exerts a critical protective action against genotoxic stress-induced caspase activation, repressing a functionally important cohort of pro-apoptotic genes. Amongst them, SMRT is responsible for basal repression of Wip1, a phosphatase that de-phosphorylates and inactivates Chk2, thus affecting a feedback loop responsible for licensing the correct timing of Chk2 activation and the proper execution of the DNA repair process.
Collapse
Affiliation(s)
- Claudio Scafoglio
- Howard Hughes Medical Institute and School of Medicine, University of California San Diego, La Jolla, California, United States of America
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
- * E-mail: (CS); (MGR)
| | - Marcus Smolka
- Ludwig Institute for Cancer Research and Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, California, United States of America
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, New York, United States of America
| | - Huilin Zhou
- Ludwig Institute for Cancer Research and Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, California, United States of America
| | - Valentina Perissi
- Howard Hughes Medical Institute and School of Medicine, University of California San Diego, La Jolla, California, United States of America
- School of Medicine, Boston University, Boston, Massachusetts, United States of America
| | - Michael G. Rosenfeld
- Howard Hughes Medical Institute and School of Medicine, University of California San Diego, La Jolla, California, United States of America
- Ludwig Institute for Cancer Research and Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, California, United States of America
- * E-mail: (CS); (MGR)
| |
Collapse
|
150
|
Zhang Q, Bhattacharya S, Andersen ME. Ultrasensitive response motifs: basic amplifiers in molecular signalling networks. Open Biol 2013; 3:130031. [PMID: 23615029 PMCID: PMC3718334 DOI: 10.1098/rsob.130031] [Citation(s) in RCA: 139] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Multi-component signal transduction pathways and gene regulatory circuits underpin integrated cellular responses to perturbations. A recurring set of network motifs serve as the basic building blocks of these molecular signalling networks. This review focuses on ultrasensitive response motifs (URMs) that amplify small percentage changes in the input signal into larger percentage changes in the output response. URMs generally possess a sigmoid input–output relationship that is steeper than the Michaelis–Menten type of response and is often approximated by the Hill function. Six types of URMs can be commonly found in intracellular molecular networks and each has a distinct kinetic mechanism for signal amplification. These URMs are: (i) positive cooperative binding, (ii) homo-multimerization, (iii) multistep signalling, (iv) molecular titration, (v) zero-order covalent modification cycle and (vi) positive feedback. Multiple URMs can be combined to generate highly switch-like responses. Serving as basic signal amplifiers, these URMs are essential for molecular circuits to produce complex nonlinear dynamics, including multistability, robust adaptation and oscillation. These dynamic properties are in turn responsible for higher-level cellular behaviours, such as cell fate determination, homeostasis and biological rhythm.
Collapse
Affiliation(s)
- Qiang Zhang
- Center for Dose Response Modeling, Institute for Chemical Safety Sciences, The Hamner Institutes for Health Sciences, Research Triangle Park, NC 27709, USA.
| | | | | |
Collapse
|