101
|
Navas JM, Segner H. Antiestrogenicity of beta-naphthoflavone and PAHs in cultured rainbow trout hepatocytes: evidence for a role of the arylhydrocarbon receptor. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2000; 51:79-92. [PMID: 10998501 DOI: 10.1016/s0166-445x(00)00100-4] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The aims of the present study were to assess, (1) if polyaromatic hydrocarbons (PAHs) are able to inhibit estradiol-regulated vitellogenin synthesis in fish; and (2) if this antiestrogenic activity is mediated through the binding of PAHs to the arylhydrocarbon receptor (AhR). Cultured liver cells of rainbow trout, Oncorhynchus mykiss, were co-exposed to PAHs and 17beta-estradiol (E2), and the resulting effects on induction of AhR-regulated 7-ethoxyresorufin-O-deethylase (EROD) activity and on E2-regulated vitellogenesis were investigated. The following test compounds were compared: the PAH 3-methylcholanthrene (3MC), which is a strong EROD inducer, the PAH anthracene (ANT), which is not an inducer of EROD activity, and the model EROD inducer, beta-naphthoflavone (betaNF). 3MC and betaNF led to significant decreases of E2-triggered hepatocellular VTG synthesis, whereas ANT exerted no antiestrogenic activity. The rank order of the antiestrogenic activity of the test substances agreed with their EROD-inducing potency suggesting that their antiestrogenicity might be mediated through the AhR. Further evidence for this assumption comes from the observation that inhibitors such as alpha-naphthoflavone which interferes with ligand-AhR binding, and 8-methoxypsoralen (8MP), which prevents binding of the occupied AhR to responsive DNA elements, clearly reduced the antiestrogenic effects of the xenobiotics. Furthermore, from the comparison of estradiol concentrations in media of liver cells exposed to the CYP 1A-inducing agents and in media of control cells it is unlikely that the observed antiestrogenic effects were caused by an enhanced E2 catabolism. In conclusion, the results from this study indicate that, (1) AhR-binding PAHs possess an antiestrogenic activity; and (2) that the antiestrogenic activity is mediated through the AhR.
Collapse
Affiliation(s)
- J M Navas
- Umweltforschungszentrum Leipzig-Halle, Sektion Chemische Okotoxikologie, Permoserstrasse 15, D-04318, Leipzig, Germany
| | | |
Collapse
|
102
|
Partridge NC, Fiacco GJ, Walling HW, Barmina OY, Jeffrey JJ, Ruh MF. Effects of dioxin and estrogen on collagenase-3 in UMR 106-01 osteosarcoma cells. Arch Biochem Biophys 2000; 382:182-8. [PMID: 11068867 DOI: 10.1006/abbi.2000.1992] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Since estrogen is important in preventing osteoporosis in postmenopausal women and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) is an estrogen antagonist in reproductive tissues, we investigated the effects of 17beta-estradiol (E2) and TCDD on collagenase-3 secretion using parathyroid hormone (PTH)-stimulated UMR 106-01 cells, a rat osteoblastic osteosarcoma cell line. Whereas E2 or TCDD had no effect on UMR cells in the absence of PTH, cells grown in the presence of 10(-7) M PTH, which induces a dramatic 30-fold increase in collagenase-3 secretion, surprisingly demonstrated a further stimulation of collagenase-3 secretion in the presence of TCDD or E2. However, the potentiating response was biphasic; i.e., at higher concentrations of E2 or TCDD, there was no enhancement of the PTH effect. PTH induces multiple effects on UMR cells, including inducing collagenase-3 mRNA transcription and regulating its extracellular abundance through a specific receptor and endocytosis. Thus, we investigated the ability of TCDD or E2 to stimulate the induction of collagenase-3 mRNA using Northern analysis. As previously reported, PTH dose dependently induced collagenase-3 mRNA after 4 h of treatment. There was little effect of TCDD or E2 on PTH-induced levels of collagenase-3 mRNA. These data could not account for the final effects on secreted collagenase-3. We postulated that low concentrations of E2 and TCDD may downregulate the collagenase-3 endocytotic two-step receptor-mediated process that includes the LDL-receptor-related protein to enhance the effects of PTH. However, this was not the case. Therefore, we conclude that low concentrations of TCDD and estrogen alter translation or secretion of PTH-stimulated collagenase-3.
Collapse
Affiliation(s)
- N C Partridge
- Department of Pharmacological and Physiological Science, Saint Louis University School of Medicine, Missouri 63104, USA.
| | | | | | | | | | | |
Collapse
|
103
|
Amin S, Moore RW, Peterson RE, Schantz SL. Gestational and lactational exposure to TCDD or coplanar PCBs alters adult expression of saccharin preference behavior in female rats. Neurotoxicol Teratol 2000; 22:675-82. [PMID: 11106860 DOI: 10.1016/s0892-0362(00)00094-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Previous studies have shown that maternal doses of 1 microg/kg or less of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) in late gestation can demasculinize and feminize reproductive behavior in male rats. However, it was not known whether coplanar polychlorinated biphenyls (PCBs) had similar effects, or whether non-reproductive sexually dimorphic behaviors such as saccharin preference behavior were also altered. We determined the effects of TCDD or coplanar PCBs on saccharin consumption and saccharin preference in male and female rats. Sprague-Dawley rats were dosed with 3,3',4, 4'-tetrachlorobiphenyl (PCB 77; 2 or 8 mg/kg/day), 3,3',4,4', 5-pentachlorobiphenyl (PCB 126; 0.25 or 1.0 microg/kg/day), TCDD (0. 025 or 0.10 microg/kg/day), or corn oil vehicle on days 10-16 of gestation. Maternal exposure to TCDD or coplanar PCBs did not change saccharin consumption or saccharin preference in male rats. However, TCDD and coplanar PCB-exposed females showed decreased saccharin consumption and saccharin preference. The results indicate that saccharin consumption is masculinized in female rats exposed to TCDD or coplanar PCBs during perinatal development. This effect could be related to the anti-estrogenic actions of these chemicals.
Collapse
Affiliation(s)
- S Amin
- Department of Veterinary Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, 61802, USA
| | | | | | | |
Collapse
|
104
|
Ikeda M, Ishii Y, Kato H, Akazawa D, Hatsumura M, Ishida T, Matsusue K, Yamada H, Oguri K. Suppression of carbonic anhydrase III in rat liver by a dioxin-related toxic compound, coplanar polychlorinated biphenyl, 3, 3',4,4',5-pentachlorobiphenyl. Arch Biochem Biophys 2000; 380:159-64. [PMID: 10900145 DOI: 10.1006/abbi.2000.1911] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A coplanar polychlorinated biphenyl, 3,3',4,4',5-pentachlorobiphenyl (PenCB), significantly suppresses the expression of rat liver carbonic anhydrase III (CAIII), an enzyme which has recently been suggested to prevent from H(2)O(2)-inducible apoptosis. Marked changes in the CAIII levels of liver cytosol were observed in rats following doses of PenCB ranging from 0.5 to 25 mg/kg body weight and maximum suppression was observed at a dose of 10 mg/kg. Northern analysis revealed that the level of CAIII mRNA in rat liver was dramatically reduced by PenCB treatment while only weak suppression was observed in pair-fed controls. Two AU-rich elements, considered as a destabilizing signal of mRNA, were found in the 3'-untranslated region of CAIII sequenced after reverse transcription-PCR and 3'-rapid amplification of the cDNA end. Dramatic decrease of CAIII in rat liver by PenCB could account for the suppression of the defense system for oxidative stress.
Collapse
Affiliation(s)
- M Ikeda
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
105
|
Wormke M, Stoner M, Saville B, Safe S. Crosstalk between estrogen receptor alpha and the aryl hydrocarbon receptor in breast cancer cells involves unidirectional activation of proteasomes. FEBS Lett 2000; 478:109-112. [PMID: 10922479 DOI: 10.1016/s0014-5793(00)01830-5] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is an environmental toxin that activates the aryl hydrocarbon receptor (AhR) and disrupts multiple endocrine signaling pathways. T47D human breast cancer cells express a functional estrogen receptor alpha (ERalpha) and AhR, and treatment of these cells with 17beta-estradiol (E2) or TCDD resulted in a rapid proteasome-dependent decrease in immunoreactive ERalpha and AhR proteins (>60-80%), respectively. E2 did not affect the AhR, whereas TCDD induced proteasome-dependent degradation of both the AhR and ERalpha in T47D and MCF-7 human breast cancer cells, and these responses were specifically blocked by proteasome inhibitors. Thus, TCDD-induced degradation of ERalpha may contribute to the antiestrogenic activity of AhR agonists and this pathway may be involved in AhR-mediated disruption of other endocrine responses.
Collapse
Affiliation(s)
- M Wormke
- Department of Veterinary Physiology and Pharmacology, and Department of Biochemistry and Biophysics, Texas A&M University, 77843-4466, College Station, TX, USA
| | | | | | | |
Collapse
|
106
|
Safe S, Wormke M, Samudio I. Mechanisms of inhibitory aryl hydrocarbon receptor-estrogen receptor crosstalk in human breast cancer cells. J Mammary Gland Biol Neoplasia 2000; 5:295-306. [PMID: 14973392 DOI: 10.1023/a:1009550912337] [Citation(s) in RCA: 128] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor that forms a functional heterodimeric complex with the AhR nuclear translocator (Arnt) protein. The environmental toxin, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), is a high affinity ligand for the AhR and has been extensively used to investigate AhR-mediated biochemical and toxic responses. TCDD modulates several endocrine pathways including inhibition of 17beta-estradiol-induced responses in the immature and ovariectomized rodent uterus and mammary gland and in human breast cancer cell lines. TCDD inhibits formation and growth of mammary tumors in carcinogen-induced rodent models and relatively nontoxic selective AhR modulators (SAhRMs) are being developed for treatment of breast cancer. The mechanisms of inhibitory AhR-estrogen receptor (ER) crosstalk have been investigated in MCF-7 breast cancer cells by analysis of promoter regions of genes induced by E2 and inhibited by TCDD. AhR-mediated inhibition of E2-induced cathepsin D, pS2, c-fos, and heat shock protein 27 gene expression involves direct interaction of the AhR complex with inhibitory pentanucleotide (GCGTG) dioxin responsive elements (iDREs) resulting in disruption of interactions between proteins binding DNA elements required for ER action and the basal transcription machinery. Mechanisms of inhibitory AhR-ER crosstalk indicate that functional iDREs are required for inhibition of some genes; however, results indicate that other interaction pathways are important including AhR-mediated proteasome-dependent degradation of the ER.
Collapse
MESH Headings
- Animals
- Breast Neoplasms/drug therapy
- Breast Neoplasms/metabolism
- Cell Line, Tumor
- Cysteine Endopeptidases/metabolism
- DNA/chemistry
- Dioxins
- Estrogen Receptor alpha
- Female
- Gene Expression Regulation, Neoplastic
- Humans
- Ligands
- Male
- Mammary Neoplasms, Animal/metabolism
- Models, Biological
- Multienzyme Complexes/metabolism
- Polychlorinated Dibenzodioxins
- Promoter Regions, Genetic
- Proteasome Endopeptidase Complex
- Rats
- Rats, Sprague-Dawley
- Receptors, Aryl Hydrocarbon/chemistry
- Receptors, Aryl Hydrocarbon/metabolism
- Receptors, Estrogen/chemistry
- Receptors, Estrogen/metabolism
- Time Factors
- Transcriptional Activation
Collapse
Affiliation(s)
- S Safe
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station 77843-4466, USA.
| | | | | |
Collapse
|
107
|
Lee C, Riddick DS. Transcriptional suppression of cytochrome P450 2C11 gene expression by 3-methylcholanthrene. Biochem Pharmacol 2000; 59:1417-23. [PMID: 10751551 DOI: 10.1016/s0006-2952(00)00249-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Aromatic hydrocarbon receptor-mediated transcriptional up-regulation of cytochrome P450 (CYP) enzymes of the CYP1A subfamily by polycyclic aromatic hydrocarbons (PAHs) such as 3-methylcholanthrene (MC) is accompanied by down-regulation of rat hepatic CYP2C11 expression at the catalytic activity, protein, and mRNA levels. To gain insight into the molecular mechanism of this CYP2C11 suppression response, we have used a nuclear run-on assay to assess directly the effect of MC on the hepatic transcription rate of the CYP2C11 gene following in vivo administration of MC to adult male rats. A single intraperitoneal dose of MC (40 mg/kg) caused a 179-fold increase in the rate of CYP1A gene transcription at 6 hr, and the rate of CYP2C11 gene transcription was reduced by 51% at this time point, compared with vehicle controls. By 48 hr after MC treatment, the rates of CYP1A and CYP2C11 gene transcription were no longer significantly different from the corresponding vehicle controls. These results indicate for the first time that the suppression of hepatic CYP2C11 caused by in vivo administration of PAHs to adult male rats is at least partially due to a decrease in the rate of transcription of the CYP2C11 gene.
Collapse
Affiliation(s)
- C Lee
- Department of Pharmacology, University of Toronto, Toronto, Ontario, Canada
| | | |
Collapse
|
108
|
Abstract
Members of the nuclear-receptor superfamily mediate crucial physiological functions by regulating the synthesis of their target genes. Nuclear receptors are usually activated by ligand binding. Cytochrome P450 (CYP) isoforms often catalyse both formation and degradation of these ligands. CYPs also metabolize many exogenous compounds, some of which may act as activators of nuclear receptors and disruptors of endocrine and cellular homoeostasis. This review summarizes recent findings that indicate that major classes of CYP genes are selectively regulated by certain ligand-activated nuclear receptors, thus creating tightly controlled networks.
Collapse
Affiliation(s)
- P Honkakoski
- Department of Pharmaceutics, University of Kuopio, P.O. Box 1627, FIN-70211 Kuopio, Finland.
| | | |
Collapse
|
109
|
Okino ST, Whitlock JP. The aromatic hydrocarbon receptor, transcription, and endocrine aspects of dioxin action. VITAMINS AND HORMONES 2000; 59:241-64. [PMID: 10714242 DOI: 10.1016/s0083-6729(00)59009-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The widespread and persistent environmental contaminant 2,3,7,8-tetrachlorodibenzo-p-dioxin elicits adaptive and adverse biological responses by inducing changes in gene transcription. Some of dioxin's effects reflect disruption of endocrine homeostasis. The aromatic hydrocarbon receptor protein, together with its heterodimerization partner, the aromatic hydrocarbon receptor nuclear translocator protein, mediates dioxin action. There are notable similarities between the mechanism of dioxin action and the mechanisms of steroid/retinoid/thyroid hormone action. Studies of dioxin action may provide insights into the regulation of hormone-responsive genes and endocrine physiology.
Collapse
Affiliation(s)
- S T Okino
- Department of Molecular Pharmacology, Stanford University School of Medicine, California 94305, USA
| | | |
Collapse
|
110
|
Timsit YE, Riddick DS. Interference with growth hormone stimulation of hepatic cytochrome P4502C11 expression in hypophysectomized male rats by 3-methylcholanthrene. Toxicol Appl Pharmacol 2000; 163:105-14. [PMID: 10698668 DOI: 10.1006/taap.1999.8862] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cytochrome P450 2C11 (CYP2C11) is a sexually dimorphic liver enzyme whose expression is regulated by the male pulsatile pattern of growth hormone (GH) secretion. Hepatic CYP2C11 expression is down-regulated by polycyclic aromatic hydrocarbons such as 3-methylcholanthrene (MC). An attractive hypothesis as to the mechanism of CYP2C11 down-regulation by aromatic hydrocarbons is the disruption of normal GH signaling by exposure to these compounds. To evaluate the effects of MC on the ability of GH to stimulate hepatic CYP2C11 expression, our approach was to employ GH replacement in male Fischer 344 rats made GH-deficient by hypophysectomy (hypx). Groups of hypx rats received the following treatments: vehicle; GH alone (twice daily, 125 microg/kg sc, days 1-6); MC alone (20 mg/kg gavage, days 1, 3, and 5); and both GH and MC. Rats were euthanized on day 7. As a positive control response, pronounced induction of hepatic CYP1A1 apoprotein was observed in all MC-treated rats. CYP2C11 expression in hypx rats receiving GH alone was increased at the mRNA, apoprotein, and catalytic activity (testosterone 16alpha-hydroxylation) levels, with mRNA and apoprotein levels approaching that of intact male rats. The inability of GH to fully restore CYP2C11 catalytic activity was attributed to the lowered NADPH-cytochrome P450 reductase apoprotein and catalytic activity observed in all hypx rats. CYP2C11 expression in hypx rats receiving both GH and MC was significantly lower at the mRNA, apoprotein, and catalytic activity levels than that observed in hypx rats treated with GH alone, but significantly higher at the mRNA, apoprotein, and catalytic activity levels than that observed in vehicle-treated hypx rats and in hypx rats treated with MC alone. These data suggest that MC interferes with the ability of GH to stimulate CYP2C11 expression. Thus, disruption of GH signaling by aromatic hydrocarbons may represent a mechanism contributing to the suppression of CYP2C11 gene expression.
Collapse
Affiliation(s)
- Y E Timsit
- Department of Pharmacology, University of Toronto, Toronto, Ontario, M5S 1A8, Canada
| | | |
Collapse
|
111
|
Klinge CM, Kaur K, Swanson HI. The aryl hydrocarbon receptor interacts with estrogen receptor alpha and orphan receptors COUP-TFI and ERRalpha1. Arch Biochem Biophys 2000; 373:163-74. [PMID: 10620335 DOI: 10.1006/abbi.1999.1552] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The molecular mechanisms underlying the apparent "cross-talk" between estrogen receptor (ER)- and arylhydrocarbon receptor (AHR)-mediated activities are unknown. To determine how AHR ligand 2, 3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) may inhibit ER action and, conversely, to examine how 17-beta-estradiol (E(2)) affects AHR activity, we examined discrete activities of each receptor, i.e., protein-protein interactions, DNA binding, and transcriptional activation. We report that AHR interacts directly with ERalpha, COUP-TF, and ERRalpha1, in a ligand-specific manner in vitro. Unoccupied or beta-napthoflavone (beta-NF)-occupied AHR showed stronger interaction with ERalpha, COUP-TF, and ERRalpha1 than when AHR was occupied by the partial antagonist alpha-naphthoflavone (alpha-NF), indicating a role for ligand in AHR interaction with these proteins. We also report that AHR interacts with COUP-TF in transfected CV-1 cells. In contrast, the AHR nuclear translocator protein (ARNT) did not interact with COUP-TF, ERRalpha1, or ERalpha. We next examined the interaction of either ERalpha or COUP-TF with a consensus xenobiotic response element (XRE). Purified ERalpha did not bind the consensus XRE, but COUP-TFI bound the consensus XRE, suggesting a role for COUP-TF as a AHR/ARNT competitor for XRE binding. In transiently transfected MCF-7 human breast cancer cells, overexpression of COUP-TFI inhibited TCDD-activated reporter gene activity from the CYP1A1 promoter. TCDD inhibited estradiol (E(2))-activated reporter gene activity from a consensus ERE and from the EREs in the pS2 and Fos genes, and COUP-TFI did not block the antiestrogenic activity of TCDD. The specific interaction of COUP-TF with XREs and AHR together with the inhibition of TCDD-induced gene expression by COUP-TF suggests that COUP-TF may regulate AHR action both by direct DNA binding competition and through protein-protein interactions.
Collapse
Affiliation(s)
- C M Klinge
- Department of Biochemistry, University of Louisville School of Medicine, Louisville, Kentucky, 40292, USA.
| | | | | |
Collapse
|
112
|
Klinge CM, Bowers JL, Kulakosky PC, Kamboj KK, Swanson HI. The aryl hydrocarbon receptor (AHR)/AHR nuclear translocator (ARNT) heterodimer interacts with naturally occurring estrogen response elements. Mol Cell Endocrinol 1999; 157:105-19. [PMID: 10619402 DOI: 10.1016/s0303-7207(99)00165-3] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
To determine the molecular mechanisms underlying the "cross talk" between the activity of 2,3,7,8-tetra-chlorodibenzo-p-dioxin (TCDD), which binds to arylhydrocarbon receptor (AHR) and estradiol (E2)-liganded estrogen receptor (ER), we first examined the initial step of estrogen action, ligand binding to ER. None of the AHR ligands tested, i.e. TCDD, benzo[a]pyrene, 3,3',4,4',5-pentachlorobiphenyl, beta-naphthoflavone, or alpha-naphthoflavone, bound to ER alpha. We report the first examination of TCDD interaction with ER beta: TCDD did not displace E2 from ER beta. We then examined a second possible mechanism, i.e. direct inhibition of ER alpha binding to estrogen response elements (EREs) by the AHR/AHR nuclear translocator (ARNT) complex. The AHR/ARNT heterodimer did not bind either a full or half-site ERE. However, AHR/ARNT bound specifically to oligomers containing naturally occurring EREs derived from the human c-fos, pS2, and progesterone receptor (PR) gene promoters that include xenobiotic response element (XRE)-like sequences. In contrast, neither purified E2-liganded-ER from calf uterus or recombinant human ER alpha bound a consensus XRE. TCDD inhibited E2-activated reporter gene activity from a consensus ERE and from EREs in the pS2, PR, and Fos genes in transiently transfected MCF-7 human breast cancer cells. However, this inhibition was not reciprocal since E2 did not inhibit TCDD-stimulated luciferase activity from the CYP1A1 promoter in transiently transfected MCF-7 or human endometrial carcinoma HEC-1A cells. We propose that at least part of the mechanism by which the AHR/ARNT complex inhibits estrogen action is by competitively inhibiting ER alpha binding to imperfect ERE sites, adjacent to or overlapping XREs.
Collapse
Affiliation(s)
- C M Klinge
- Department of Biochemistry and Molecular Biology, University of Louisville School of Medicine, KY 40292, USA.
| | | | | | | | | |
Collapse
|
113
|
Jeffy BD, Schultz EU, Selmin O, Gudas JM, Bowden GT, Romagnolo D. Inhibition of BRCA-1 expression by benzo[a]pyrene and its diol epoxide. Mol Carcinog 1999; 26:100-18. [PMID: 10506754 DOI: 10.1002/(sici)1098-2744(199910)26:2<100::aid-mc5>3.0.co;2-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The objective of this study was to investigate whether polycyclic aromatic hydrocarbons (PAHs) contribute to the etiology of sporadic breast cancer by altering the expression of BRCA-1. Acute exposure to the PAH benzo[a]pyrene (B[a]P) inhibited in a time- and dose-dependent fashion cell proliferation and levels of BRCA-1 mRNA and protein in estrogen receptor (ER)-positive breast MCF-7 and ovarian BG-1 cancer cells. Moreover, the acute exposure to B[a]P abrogated estrogen induction of BRCA-1 in MCF-7 cells. The loss of BRCA-1 expression was prevented by the aromatic hydrocarbon receptor (AhR) antagonist alpha-naphthoflavone, suggesting participation of the AhR pathway. BRCA-1 exon 1a transcripts were downregulated by B[a]P faster than exon 1b mRNA was. Long-term exposure to B[a]P (40 nM for 15 mo) lowered BRCA-1 mRNA levels in subclones of MCF-7 and BG-1 cells, whereas expression of BRCA-1 in these clones was reverted to normal levels by washing out of B[a]P. The mechanisms of BRCA-1 repression by B[a]P were further investigated by examining the effects of the halogenated aryl hydrocarbon 2,3,7, 8-tetrachlorodibenzo-p-dioxin (TCDD) and the B[a]P metabolite 7r, 8t-dihydroxy-9t,10t-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene (BPDE). While TCDD did not influence basal BRCA-1 mRNA and protein levels at any of the doses (from 10 nM to 1 microM) tested in this study, treatment with 50 nM BPDE drastically reduced BRCA-1 mRNA levels, indicating that metabolism of B[a]P to BPDE may contribute to downregulation of BRCA-1. Conversely, ER-negative breast MDA-MB-231 and HBL-100 cancer cells were refractory to treatment with B[a]P or TCDD and expressed constant levels of BRCA-1 mRNA and protein. We conclude that B[a]P may be a risk factor in the etiology of sporadic breast cancer.
Collapse
MESH Headings
- 7,8-Dihydro-7,8-dihydroxybenzo(a)pyrene 9,10-oxide/pharmacology
- Benzo(a)pyrene/pharmacology
- Blotting, Western
- Breast Neoplasms/etiology
- Breast Neoplasms/genetics
- Breast Neoplasms/metabolism
- Carcinogens/pharmacology
- Dose-Response Relationship, Drug
- Down-Regulation
- Exons
- Female
- Gene Expression Regulation, Neoplastic/drug effects
- Genes, BRCA1/drug effects
- Humans
- Ovarian Neoplasms/genetics
- Ovarian Neoplasms/metabolism
- RNA, Messenger/metabolism
- RNA, Ribosomal/metabolism
- Receptors, Aryl Hydrocarbon/genetics
- Receptors, Aryl Hydrocarbon/metabolism
- Receptors, Estrogen/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Time Factors
- Tumor Cells, Cultured
- Up-Regulation
Collapse
Affiliation(s)
- B D Jeffy
- Laboratory of Mammary Gland Biology, Department of Animal Sciences, The University of Arizona, Tucson, Arizona 85721-0038, USA
| | | | | | | | | | | |
Collapse
|
114
|
Safe S, Qin C, McDougal A. Development of selective aryl hydrocarbon receptor modulators for treatment of breast cancer. Expert Opin Investig Drugs 1999; 8:1385-1396. [PMID: 15992156 DOI: 10.1517/13543784.8.9.1385] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The aryl hydrocarbon receptor (AhR) is a basic helix-loop-helix DNA-binding protein that forms a transcriptionally-active heterodimer with the AhR nuclear translocator (Arnt) protein. The nuclear AhR complex is a ligand-induced transcription factor and the environmental toxicant 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) is a high affinity ligand for the AhR. TCDD induces a diverse spectrum of tissue-, sex- and species-specific biochemical and toxic responses in Ah-responsive cells/tissues including the inhibition of 17beta-oestradiol (E2)-induced gene expression in the rodent uterus and mammary and in human breast cancer cell lines. TCDD also inhibits spontaneous and carcinogen-induced mammary tumour formation and growth in rodent models. Research in this laboratory has utilised the AhR as a target for developing anticancer drugs for treatment of breast cancer and two different structural classes of selective AhR modulators (SAhRMs) have been developed. Alternate-substituted (1,3,6,8- and 2,4,6,8-) alkyl polychlorinated dibenzofurans (PCDFs) and substituted diindolylmethanes (DIMs) bind the AhR and induce a pattern of AhR-oestrogen receptor (ER) inhibitory cross-talk similar to that observed for TCDD including inhibition of mammary tumour growth at doses < 1.0 mg/kg/day. In contrast, effective doses of these compounds do not induce hepatic CYP1A1-dependent activity or other AhR-mediated toxic responses induced by TCDD. These results indicate that SAhRMs may be an important new class of drugs for clinical treatment of breast cancer via AhR-ER inhibitory cross-talk.
Collapse
Affiliation(s)
- S Safe
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX 77843-4466 USA.
| | | | | |
Collapse
|
115
|
Duan R, Porter W, Samudio I, Vyhlidal C, Kladde M, Safe S. Transcriptional activation of c-fos protooncogene by 17beta-estradiol: mechanism of aryl hydrocarbon receptor-mediated inhibition. Mol Endocrinol 1999; 13:1511-1521. [PMID: 10478842 DOI: 10.1210/mend.13.9.0338] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
17Beta-estradiol (E2) induced c-fos protooncogene mRNA levels in MCF-7 human breast cancer cells, and maximal induction was observed within 1 h after treatment. 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) inhibited the E2-induced response within 2 h. The molecular mechanism of this response was further investigated using pFC2-CAT, a construct containing a -1400 to +41 sequence from the human c-fos protooncogene linked to a bacterial chloramphenicol acetyltransferase (CAT) reporter gene. In MCF-7 cells transiently transfected with pFC2-CAT, 10 nM E2 induced an 8.5-fold increase of CAT activity, and cotreatment with 10 nM TCDD decreased this response by more than 45%. Alpha-Naphthoflavone, an aryl hydrocarbon receptor (AhR) antagonist, blocked the inhibitory effects of TCDD; moreover, the inhibitory response was not observed in variant Ah-nonresponsive MCF-7 cells, suggesting that the AhR complex was required for estrogen receptor cross-talk. The E2-responsive sequence (-1220 to -1155) in the c-fos gene promoter contains two putative core pentanucleotide dioxin-responsive elements (DREs) at -1206 to -1202 and -1163 to -1159. In transient transfection assays using wild-type and core DRE mutant constructs, the downstream core DRE (at -1163 to -1159) was identified as a functional inhibitory DRE. The results of photo-induced cross-linking, gel mobility shift, and in vitro DNA footprinting assays showed that the AhR complex interacted with the core DRE that also overlapped the E2-responsive GC-rich site (-1168 to -1161), suggesting that the mechanism for AhR-mediated inhibitory effects may be due to quenching or masking at the Sp1-binding site.
Collapse
Affiliation(s)
- R Duan
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station 77843-4466, USA
| | | | | | | | | | | |
Collapse
|
116
|
Wang W, Dong L, Saville B, Safe S. Transcriptional activation of E2F1 gene expression by 17beta-estradiol in MCF-7 cells is regulated by NF-Y-Sp1/estrogen receptor interactions. Mol Endocrinol 1999; 13:1373-1387. [PMID: 10446910 DOI: 10.1210/mend.13.8.0323] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
17beta-Estradiol (E2) stimulated proliferation and DNA synthesis in MCF-7 human breast cancer cells, and this was accompanied by induction of E2F1 mRNA and protein levels. Analysis of the E2F1 gene promoter showed that the -146 to -54 region was required for E2-responsiveness in transient transfection assays, and subsequent deletion/mutation analysis showed that a single upstream GC-rich and two downstream CCAAT-binding sites were required for transactivation by E2. Gel mobility shift assays with multiple oligonucleotides and protein antibodies (for supershifts) showed that the -146 to -54 region of the E2F1 gene promoter bound Sp1 and NF-Y proteins in MCF-7 cells. The estrogen receptor (ER) protein enhanced Sp1 interactions with upstream GC-rich sites, and interactions of ER, Sp1, and ER/Sp1 with downstream DNA bound-NF-Y was investigated by kinetic analysis for protein-DNA binding (on- and off-rates), coimmunoprecipitation, and pulldown assays using wild-type and truncated glutathione S-transferase (GST)-Sp1 chimeric proteins. The results showed that Sp1 protein enhanced the Bmax of NF-Y-DNA binding by more than 5-fold (on-rate); in addition, the Sp1-enhanced NF-Y-DNA complex was further stabilized by coincubation with ER and the rate of dissociation (t1/2) was decreased by approximately 50%. Sp1 antibodies immunoprecipitated [35S]NF-YA after coincubation with unlabeled Sp1 protein. Thus, transcriptional activation of E2F1 gene expression in MCF-7 cells by E2 is regulated by multiprotein ER/Sp1-NF-Y interactions at GC-rich and two CCAAT elements in the proximal region of the E2F1 gene promoter. This represents a unique trans-acting protein complex in which ligand-dependent transactivation by the ER is independent of direct ER interactions with promoter elements.
Collapse
Affiliation(s)
- W Wang
- Department of Veterinary Physiology and Pharmacology, Texas A & M University, College Station 77843-4466, USA
| | | | | | | |
Collapse
|
117
|
Nguyen TA, Hoivik D, Lee JE, Safe S. Interactions of nuclear receptor coactivator/corepressor proteins with the aryl hydrocarbon receptor complex. Arch Biochem Biophys 1999; 367:250-257. [PMID: 10395741 DOI: 10.1006/abbi.1999.1282] [Citation(s) in RCA: 113] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
MCF-7 human breast cancer cells express the aryl hydrocarbon receptor (AhR), and treatment with AhR agonists such as 2,3,7, 8-tetrachlorodibenzo-p-dioxin (TCDD) inhibits estrogen receptor (ER)-mediated responses. This study investigates physical and functional interactions of the AhR complex with a prototypical coactivator (estrogen receptor associating protein 140, ERAP 140) and corepressor (silencing mediator for retinoic acid and thyroid hormone receptor, SMRT) for ER and other members of the nuclear receptor superfamily. The AhR, AhR nuclear translocator (Arnt), and AhR/Arnt proteins were coimmunoprecipitated with 35S-ERAP 140 and 35S-SMRT and, in gel mobility shift assays, AhR/Arnt binding to 32P-dioxin response element (DRE) was enhanced by ERAP-140 and inhibited by SMRT; supershifted bands were not observed. In transactivation assays, coactivator and corepressor proteins enhanced or inhibited AhR-mediated gene expression; however, these responses varied with the amount of coactivator/corepressor expression. These results confirmed functional and physical interactions of AhR/Arnt with ERAP 140 and SMRT in breast cancer cells.
Collapse
Affiliation(s)
- T A Nguyen
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, Texas, 77843-4466, USA
| | | | | | | |
Collapse
|
118
|
Pang S, Cao JQ, Katz BH, Hayes CL, Sutter TR, Spink DC. Inductive and inhibitory effects of non-ortho-substituted polychlorinated biphenyls on estrogen metabolism and human cytochromes P450 1A1 and 1B1. Biochem Pharmacol 1999; 58:29-38. [PMID: 10403516 DOI: 10.1016/s0006-2952(99)00070-2] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The effects of a series of non-ortho-substituted polychlorinated biphenyls (PCBs) on human cytochrome P450 1A1 (CYP1A1), a 17beta-estradiol (E2) 2-hydroxylase, and P450 1B1 (CYP1B1), an E2 4-hydroxylase, were investigated in HepG2 and MCF-7 cells. Elevated rates of 2- and 4-methoxyestradiol (2- and 4-MeOE2) formation in PCB-treated cultures were measured as activities of CYP1A1 and CYP1B1, respectively. Of the congeners investigated, 3,4,4',5-tetrachlorobiphenyl (PCB 81), 3,3',4,4',5-pentachlorobiphenyl (PCB 126), and 3,4',5-trichlorobiphenyl (PCB 39) caused marked stimulation of E2 metabolism in both cell lines. Northern blot analyses confirmed that exposure of MCF-7 cells to PCBs 81, 126, and 39 caused highly elevated levels of the CYP1A1 and CYP1B1 mRNAs. Exposure of MCF-7 cells to 3,3',4,4',5,5'-hexachlorobiphenyl (PCB 169) resulted in elevated levels of the CYP1A1 and CYP1B1 mRNAs, but did not cause elevated rates of E2 metabolism; rather, 4-MeOE2 production was depressed to below control levels in PCB 169-treated cultures. PCB 169 also inhibited the 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)-induced 4-MeOE2 and, to a lesser extent, 2-MeOE2 production in MCF-7 cells, as did PCB 126 and several other congeners. In microsomal assays, inhibition of cDNA-expressed human CYP1B1 by PCBs 169 and 126 was demonstrated. These studies with one subgroup of PCBs, the non-ortho-substituted congeners, underscore the complexity and diversity of effects of PCBs, as individual congeners were found both to induce expression and to inhibit activity of human CYP1B1 and CYP1A1.
Collapse
Affiliation(s)
- S Pang
- Wadsworth Center, New York State Department of Health, Albany 12201-0509, USA
| | | | | | | | | | | |
Collapse
|
119
|
Abnet CC, Tanguay RL, Hahn ME, Heideman W, Peterson RE. Two forms of aryl hydrocarbon receptor type 2 in rainbow trout (Oncorhynchus mykiss). Evidence for differential expression and enhancer specificity. J Biol Chem 1999; 274:15159-66. [PMID: 10329723 PMCID: PMC2186364 DOI: 10.1074/jbc.274.21.15159] [Citation(s) in RCA: 95] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Two aryl hydrocarbon receptors (AhRs), rtAhR2alpha and rtAhR2beta, were cloned from rainbow trout (rt) cDNA libraries. The distribution of sequence differences, genomic Southern blot analysis, and the presence of both transcripts in all individual rainbow trout examined suggest that the two forms of rtAhR2 are derived from separate genes. The two rtAhR2s have significant sequence similarity with AhRs cloned from mammalian species, especially in the basic helix-loop-helix and PAS functional domains located in the amino-terminal 400 amino acids of the protein. In contrast, the Gln-rich transactivation domain found in the carboxyl-terminal half of mammalian AhRs is absent from both rtAhR2s. Both clones were expressed by in vitro transcription/translation and proteins of approximately 125 kDa were produced. These proteins bind 2,3,7, 8-tetrachlorodibenzo-p-dioxin (TCDD) and are able to bind dioxin response elements in gel shift assays. rtAhR2alpha and rtAhR2beta are expressed in a tissue-specific manner with the highest expression of rtAhR2beta in the heart. Expression of rtAhR2alpha and rtAhR2beta mRNAs is positively regulated by TCDD. Both rtAhR2alpha and rtAhR2beta produced TCDD-dependent activation of a reporter gene driven by dioxin response elements. Surprisingly, the two receptors showed distinct preferences for different enhancer sequences. These results suggest that the two receptor forms may regulate different sets of genes, and may play different roles in the toxic responses produced by AhR agonists such as TCDD.
Collapse
Affiliation(s)
- C C Abnet
- Environmental Toxicology Center, University of Wisconsin, Madison, Wisconsin 53706, USA
| | | | | | | | | |
Collapse
|
120
|
Castro-Rivera E, Wormke M, Safe S. Estrogen and aryl hydrocarbon responsiveness of ECC-1 endometrial cancer cells. Mol Cell Endocrinol 1999; 150:11-21. [PMID: 10411295 DOI: 10.1016/s0303-7207(99)00041-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
ECC-1 endometrial cancer cells express estrogen receptor alpha (ER(alpha)), and 17beta-estradiol (E2) induces cell proliferation, cathepsin D mRNA levels, and reporter gene activity in cells transiently transfected with constructs derived from the human cathepsin D and creatine kinase B (pCD and pCKB, respectively) gene promoters. The comparative antiestrogenic activity of aryl hydrocarbon receptor (AhR) agonists and ER(alpha) antagonists were also determined in these endometrial cancer cells. A functional AhR was expressed in ECC-1 cells and AhR agonists including 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) inhibited E2-induced cell proliferation and transactivation. This was comparable to inhibitory AhR-ER crosstalk in breast cancer cell lines. The pure ER antagonist ICI 182,780 also exhibited antiestrogenic activity in ECC-1 cells; however, the results obtained for 4'-hydroxytamoxifen were response-specific. 4'-Hydroxytamoxifen alone did not induce ECC-1 cell proliferation but completely inhibited E2-induced cell proliferation. 4'-Hydroxytamoxifen primarily exhibited ER antagonist activities in transactivation assays and this contrasted to the predominant ER agonist responses observed in other endometrial cancer cell lines. The unique cellular context of ECC-1 cells was confirmed using pCKB and constructs expressing wild-type ER or ER variants expressing activation function 1 (AF1) or AF2 (ER-AF1 and ER-AF2, respectively). 4'-Hydroxytamoxifen did not induce reporter gene activity in cells cotransfected with pCKB and ER-AF1 or ER-AF2; however, in cotreatment studies (4'-hydroxytamoxifen plus E2), 4'-hydroxytamoxifen inhibited E2-induced transcriptional activation by ER-AF1 or ER-AF2. Thus, the primarily antiestrogenic activity observed for 4'-hydroxytamoxifen in ECC-1 cells may be related to the inability to activate gene expression through AF1-dependent pathways.
Collapse
Affiliation(s)
- E Castro-Rivera
- Department of Veterinary Physiology and Pharmacology, Texas A and M University, College Station 77843-4466, USA
| | | | | |
Collapse
|
121
|
Ricci MS, Toscano DG, Toscano WA. ECC-1 human endometrial cells as a model system to study dioxin disruption of steroid hormone function. In Vitro Cell Dev Biol Anim 1999; 35:183-9. [PMID: 10478797 DOI: 10.1007/s11626-999-0025-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
ECC-1, an established epithelial cell line derived from an adenocarcinoma of human endometrial lining, was examined for growth optimization, steroid hormone receptor- and Ah receptor content, and dioxin modulation of estrogen receptor function. Proliferation of ECC-1 cells was accelerated by growth on a lethally irradiated feeder layer of murine 3T3 fibroblasts. Immunoblot analysis demonstrated the presence of Ah receptor an intracellular protein that binds and regulates the toxic action of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). The Ah receptor was functional in these cells as assessed by concentration and kinetic patterns of CYP1A1-mediated 7-ethoxycoumarin O-deethylase (ECOD) induction. The half-maximal effective concentration (EC50) for TCDD was 0.2 nM, and maximal activity appeared after 24-h exposure. A limited structure-activity examination of ECOD activity provided additional evidence for Ah receptor involvement. Competitive binding assays were performed to examine kinetic parameters for estrogen, progesterone, and glucocorticoid receptors. Binding parameters of dissociation constant (Kd) and number of binding sites (Bmax) derived from Scatchard analysis were: estrogen, Kd = 0.67 nM; Bmax = 321 fmol/mg cytosolic protein; progesterone, Kd = 1.31 nM; Bmax = 258 fmol/mg cytosolic protein; dexamethasone, Kd = 1.75 nM, Bmax = 128 fmol/mg cytosolic protein. Exposure of ECC-1 cells to TCDD reduced the estrogen receptor level by 40% without affecting the Kd value, and reduced estrogen receptor-mediated transcription by 50% assessed by transient transfection of an estrogen-responsive reporter plasmid. These data suggest that the ECC-1 cell line is a useful model system for examining the action of dioxin in human endometrial tissue. Both the estrogen receptor and Ah receptor have been implicated in diseases of the endometrium, and examining their interactions may elucidate mechanisms of uterine disease etiology, as well as potential targets for disease prevention.
Collapse
Affiliation(s)
- M S Ricci
- Department of Environmental Health Sciences and Center for Bioenvironmental Research, Tulane University School of Public Health and Tropical Medicine, New Orleans, Louisiana 70112-2699, USA
| | | | | |
Collapse
|
122
|
Ricci MS, Toscano DG, Mattingly CJ, Toscano WA. Estrogen receptor reduces CYP1A1 induction in cultured human endometrial cells. J Biol Chem 1999; 274:3430-8. [PMID: 9920887 DOI: 10.1074/jbc.274.6.3430] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) exerts its toxic action via the aryl hydrocarbon (Ah) receptor, which induces a battery of xenobiotic-metabolizing enzymes, including the cytochrome P450 isozyme, CYP1A1. TCDD-induced 7-ethoxycoumarin-O-deethylase activity was reduced 75% in cultured human endometrial ECC-1 cells exposed to various concentrations of 17beta-estradiol for up to 72 h, with a half-maximal effective concentration (EC50) of 0.9 nM. Reduced enzyme activity was correlated with decreased CYP1A1 mRNA levels, and transcription. Exposure to TCDD plus 17beta-estradiol also reduced CYP1A1 activity in MCF-7 breast cancer cells but not in Hep-3B human liver cells or HuE primary human keratinocytes, suggesting that the effect was specific to estrogen-regulated cells. Estrogen receptor antagonists 4-hydroxytamoxifen and 7alpha-[9-(4,4, 5,5,5-pentafluoro-pentylsulfinyl)nonyl]estra-1,3,5(10)-tr iene3, 17beta-diol restored TCDD-induced CYP1A1 transcription, steady-state mRNA levels, and enzymatic activity in ECC-1 cells. Gel mobility shift assay showed that 17beta-estradiol had little effect on Ah receptor binding to its DNA-responsive element. 17beta-Estradiol did not alter the induction of another Ah receptor-regulated gene, CYP1B1, suggesting that altered Ah receptor binding to DNA does not mediate reduced CYP1A1 transcription. Transfecting ECC-1 cells with a general transcription factor involved in CYP1A1 induction, nuclear factor-1, reversed 17beta-estradiol antagonism of dioxin induced-CYP1A1. The data suggest that 17beta-estradiol reduced CYP1A1 expression at the transcriptional level by squelching available nuclear factor-1, a transcription factor that interacts with both Ah and estrogen receptors.
Collapse
Affiliation(s)
- M S Ricci
- Department of Environmental Health Sciences and Center for Bioenvironmental Research, Tulane University School of Public Health and Tropical Medicine, New Orleans, Louisiana 70112-2699, USA
| | | | | | | |
Collapse
|
123
|
Tanguay RL, Abnet CC, Heideman W, Peterson RE. Cloning and characterization of the zebrafish (Danio rerio) aryl hydrocarbon receptor. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1444:35-48. [PMID: 9931422 DOI: 10.1016/s0167-4781(98)00252-8] [Citation(s) in RCA: 133] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The aryl hydrocarbon receptor (AhR) mediates the toxicity of 2,3,7, 8-tetrachlorodibenzo-p-dioxin (TCDD) and related compounds in vertebrates. To further establish zebrafish as a vertebrate model to study the molecular mechanism of TCDD toxicity, we have isolated and characterized the cDNA encoding the zebrafish aryl hydrocarbon receptor (zfAhR2). Analysis of the deduced protein sequence revealed the 1027 amino acid protein is approximately 200 amino acids longer than previously isolated receptors. zfAhR2 is homologous to previously cloned PAS proteins within the basic helix-loop-helix and PAS domains. The C-terminal domain of zfAhR2 diverges from the mammalian AhR at position 420, and does not contain a Q-rich domain. zfAhR2 mRNA is first detected by Northern blot analysis at 24 h post fertilization, and expression increases throughout early development. Treatment of zebrafish embryos and zebrafish liver cells with graded doses of TCDD results in a dose-dependent increase in zfAhR2 mRNA. The time course for zfAhR2 and cytochrome P4501A mRNA induction by TCDD are similar. In vitro produced zfAhR2 protein dimerizes with the rainbow trout aryl hydrocarbon receptor nuclear translocator (rtARNTb) and binds dioxin response elements derived from the rainbow trout CYP1A gene. Finally, transient coexpression of zfAhR2 and rtARNTb in COS-7 cells results in a TCDD dose-related increase in transcription driven by the rainbow trout CYP1A promoter and enhancer.
Collapse
Affiliation(s)
- R L Tanguay
- School of Pharmacy and Environmental Toxicology Center, 425 N. Charter Street, University of Wisconsin, Madison, WI 53706, USA
| | | | | | | |
Collapse
|
124
|
Ramamoorthy K, Gupta MS, Sun G, McDougal A, Safe SH. 3,3'4,4'-Tetrachlorobiphenyl exhibits antiestrogenic and antitumorigenic activity in the rodent uterus and mammary cells and in human breast cancer cells. Carcinogenesis 1999; 20:115-123. [PMID: 9934858 DOI: 10.1093/carcin/20.1.115] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
3,3',4,4'-Tetrachlorobiphenyl (tetraCB) binds to the aryl hydrocarbon receptor (AhR), and several reports have demonstrated that AhR agonists exhibit antiestrogenic and antitumorigenic activities in human breast cancer cells, the rodent uterus and breast. In contrast, a recent study showed that 3,3',4,4'-tetraCB bound the estrogen receptor (ER) and exhibited ER agonist activities, and we therefore have reinvestigated the estrogenic and antiestrogenic activities of 3,3',4,4'-tetraCB. Our results showed that 3,3',4,4'tetraCB and a structurally related analog, 3,3',4,4',5-pentaCB, did not bind the mouse uterine or human ER, did not induce proliferation of MCF-7 or T47D human breast cancer cells or induce reporter gene activity in cells transfected with E2-responsive constructs derived from the creatine kinase B (pCKB) or cathepsin D (pCD) gene promoters. Moreover, 3,3',4,4'-tetraCB and 3,3',4,4',5-pentaCB did not induce an increase in uterine wet weight, peroxidase activity or progesterone receptor binding in the 21-25-day-old female B6C3F1 mouse uterus. In contrast, both compounds inhibited 17beta-estradiol (E2)-induced cell proliferation and transactivation in MCF-7/T47D cells and uterine responses in B6C3F1 mice; surprisingly inhibition of E2-induced reporter gene activity was not observed in T47D cells transfected with pCKB, and this was observed as a cell-specific response with other AhR agonists. Additionally, 3,3',4,4'-tetraCB significantly inhibited mammary tumor growth in female Sprague-Dawley rats initiated with 7,12-dimethylbenzanthracene. Our results indicate that 3,3',4,4'-tetraCB does not exhibit ER agonist activity but exhibits a broad spectrum of antiestrogenic responses consistent with ligand-mediated AhR-ER crosstalk.
Collapse
MESH Headings
- 9,10-Dimethyl-1,2-benzanthracene
- Animals
- Anticarcinogenic Agents/pharmacology
- Anticarcinogenic Agents/therapeutic use
- Antineoplastic Agents, Hormonal/pharmacology
- Antineoplastic Agents, Hormonal/therapeutic use
- Binding, Competitive
- Breast Neoplasms/pathology
- Cell Division
- Estradiol/metabolism
- Estradiol/pharmacology
- Estrogen Antagonists/pharmacology
- Estrogen Antagonists/therapeutic use
- Estrogens
- Female
- Gene Expression Regulation/drug effects
- Genes, Reporter
- Humans
- Mammary Glands, Animal/drug effects
- Mammary Neoplasms, Experimental/prevention & control
- Mice
- Neoplasms, Hormone-Dependent/pathology
- Organ Size/drug effects
- Peroxidases/metabolism
- Polychlorinated Biphenyls/chemistry
- Polychlorinated Biphenyls/pharmacology
- Polychlorinated Biphenyls/therapeutic use
- Promegestone/metabolism
- Rats
- Rats, Sprague-Dawley
- Receptors, Estrogen/drug effects
- Receptors, Progesterone/drug effects
- Structure-Activity Relationship
- Transfection
- Tumor Cells, Cultured/drug effects
- Uterus/anatomy & histology
- Uterus/drug effects
- Uterus/enzymology
Collapse
Affiliation(s)
- K Ramamoorthy
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station 77843-4466, USA
| | | | | | | | | |
Collapse
|
125
|
Arcaro KF, Yi L, Seegal RF, Vakharia DD, Yang Y, Spink DC, Brosch K, Gierthy JF. 2,2',6,6'-tetrachlorobiphenyl is estrogenic in vitro and in vivo. J Cell Biochem 1999. [DOI: 10.1002/(sici)1097-4644(19990101)72:1<94::aid-jcb10>3.0.co;2-y] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
126
|
Toxicity Equivalents and Their Use in Hazard and Risk Assessment. Toxicology 1999. [DOI: 10.1016/b978-012473270-4/50111-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
|
127
|
Safe S, Wang F, Porter W, Duan R, McDougal A. Ah receptor agonists as endocrine disruptors: antiestrogenic activity and mechanisms. Toxicol Lett 1998; 102-103:343-347. [PMID: 10022276 DOI: 10.1016/s0378-4274(98)00331-2] [Citation(s) in RCA: 155] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) and related compounds induce a broad spectrum of biochemical and toxic responses and disrupt multiple endocrine pathways. Research in this laboratory has focused on characterizing aryl hydrocarbon receptor (AhR)-mediated antiestrogenicity in the rodent uterus and mammary and in human breast cancer cells. TCDD inhibits multiple estrogen (E2)-induced responses in these tissues including development or growth of human mammary and endometrial cancer cells, carcinogen-induced mammary cancer in rats, and mammary cancer in mice bearing breast cancer cell xenografts. The mechanisms of AhR-mediated antiestrogenicity are complex; however, studies on the molecular biology of cross-talk between the AhR and estrogen-receptor (ER) signaling pathways have been initiated using several E2-regulated genes as models. The results indicate that the nuclear AhR complex targets specific genomic core inhibitory dioxin responsive elements (iDREs) in promoter regions of some E2-responsive target genes to inhibit hormone-induced transactivation. The pS2, cathepsin and c-fos genes have functional iDREs, whereas the iDRE in the progesterone receptor gene promoter was not functional. Research has also focused on development of AhR-based antiestrogens which inhibit mammary tumor development and growth but do not exhibit prototypical AhR-induced toxic responses.
Collapse
Affiliation(s)
- S Safe
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station 77843-4466, USA.
| | | | | | | | | |
Collapse
|
128
|
Carpenter DO, Arcaro KF, Bush B, Niemi WD, Pang S, Vakharia DD. Human health and chemical mixtures: an overview. ENVIRONMENTAL HEALTH PERSPECTIVES 1998; 106 Suppl 6:1263-70. [PMID: 9860880 PMCID: PMC1533441 DOI: 10.1289/ehp.98106s61263] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Unlike laboratory animals, people are rarely exposed to a single hazardous chemical. However, most of the information documenting adverse human health effects from environmental and occupational contaminants has come from studies focused on exposure to single chemicals, and there is little information available on how two or more contaminants affect humans. Most information on the effects of mixtures comes from animal systems and limited investigations of isolated human cells in culture, even though the study of mixtures in such systems has also been neglected. Two or more compounds may show additive, antagonistic, or synergistic interactions or may act on totally different systems and thus not interact. Furthermore, even a single chemical may have multiple effects and affect more than one organ system. Effects may vary with age, and metabolites may have totally different actions from the parent compound. This paper will review the variety of health effects in humans that may result from environmental contaminants and discuss how such contaminants may interact with each other. We will also present examples on how different contaminants interact from toxicologic studies of polychlorinated biphenyls performed as part of our Albany, New York, Superfund Basic Research Program project.
Collapse
Affiliation(s)
- D O Carpenter
- Department of Environmental Health and Toxicology, School of Public Health, University at Albany, Rensselaer, New York, USA.
| | | | | | | | | | | |
Collapse
|
129
|
Hahn ME. The aryl hydrocarbon receptor: a comparative perspective. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART C, PHARMACOLOGY, TOXICOLOGY & ENDOCRINOLOGY 1998; 121:23-53. [PMID: 9972449 DOI: 10.1016/s0742-8413(98)10028-2] [Citation(s) in RCA: 114] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The aryl hydrocarbon receptor (Ah receptor or AHR) is a ligand-activated transcription factor involved in the regulation of several genes, including those for xenobiotic-metabolizing enzymes such as cytochrome P450 1A and 1B forms. Ligands for the AHR include a variety of aromatic hydrocarbons, including the chlorinated dioxins and related halogenated aromatic hydrocarbons whose toxicity occurs through activation of the AHR. The AHR and its dimerization partner ARNT are members of the emerging bHLH-PAS family of transcriptional regulatory proteins. In this review, our current understanding of the AHR signal transduction pathway in non-mammalian and other non-traditional species is summarized, with an emphasis on similarities and differences in comparison to the AHR pathway in rodents and humans. Evidence and prospects for the presence of a functional AHR in early vertebrates and invertebrates are also examined. An overview of the bHLH-PAS family is presented in relation to the diversity of bHLH-PAS proteins and the functional and evolutionary relationships of the AHR and ARNT to the other members of this family. Finally, some of the most promising directions for future research on the comparative biochemistry and molecular biology of the AHR and ARNT are discussed.
Collapse
Affiliation(s)
- M E Hahn
- Biology Department, Woods Hole Oceanographic Institution, MA 02543-1049, USA.
| |
Collapse
|
130
|
Abstract
Women are exposed to xenobiotic estrogens at least to the same extent as men. These estrogenic chemicals are either from plant material in the diet (phytoestrogens) or from industrial sources. Mainly industrially derived environmental estrogens may accumulate within the food chain and persist in human adipose tissue. In contrast, phytoestrogens do not bioaccumulate and are rapidly excreted in urine. The phytoestrogens probably represent the source of most extensive exposure for humans. Epidemiological evidence suggests that diets rich in phytoestrogens are associated with reduced incidences of cardiovascular disease, breast cancer, prostate cancer and osteoporosis. The numerous bioactivities (other than just estrogenicity) of phytoestrogens and related dietary compounds make it difficult to single out the mechanisms mediating such protective effects. The possibility that the newly discovered estrogen receptor beta may be an important modulator of phytoestrogen action is opening up new lines of research. While the evidence suggests that phytoestrogens may be of positive relevance to postmenopausal women, indications that exposure of women to industrially derived xenobiotic estrogens provides risks to health remain unproven. Further work is necessary to clarify the relative importance of 'xenobiotic' estrogens to human health, but it must be emphasized that the estrogenic potency of all the xenobiotic estrogens is very low compared with that of endogenous estrogens.
Collapse
Affiliation(s)
- A Cassidy
- Centre for Nutrition and Food Safety, School of Biological Sciences, University of Surrey, London, UK
| | | |
Collapse
|
131
|
Wang W, Smith R, Safe S. Aryl hydrocarbon receptor-mediated antiestrogenicity in MCF-7 cells: modulation of hormone-induced cell cycle enzymes. Arch Biochem Biophys 1998; 356:239-248. [PMID: 9705214 DOI: 10.1006/abbi.1998.0782] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) inhibits 17beta-estradiol (E2) mammary tumor growth in rodents and in MCF-7 human breast cancer cells; however, the cell cycle genes/proteins which are inhibited have not been determined. Initial studies showed that treatment of MCF-7 cells with 10 nM E2 significantly increased cyclin D1 (protein and mRNA), cdk2- and cdk4-dependent kinase activities, and hyperphosphorylation of retinoblastoma (RB) protein. In contrast to results of recent studies (M. D. Planas-Silva and R. A. Weinberg, 1997, Mol. Cell. Biol. 17, 4059-4069), E2 induced dissociation of both cdk2 and cdk4 proteins from the p21 protein complex and significantly increased cdk7-dependent kinase activity. Treatment of MCF-7 cells with E2 also induced cdc25A phosphatase protein, which was accompanied by increased cdk2 and cdk4 proteins containing unphosphorylated tyrosine residues. Although TCDD alone has minimal effects on cell cycle proteins/enzymes, several E2-induced responses were significantly inhibited in MCF-7 cells cotreated with E2 plus TCDD. For example, TCDD significantly inhibited E2-induced hyperphosphorylation of RB, cyclin D1 protein, and cdk2-, cdk4-, and cdk7-dependent kinase activities. Inhibition of E2-induced cdk4-dependent kinase activity by TCDD may be related to the parallel decrease of E2-induced cyclin D1 protein, and inhibition of induced cdk2- and cdk4-dependent kinase activities may be due to significantly increased p21 levels in cells cotreated with TCDD plus E2. These results demonstrate that the antiestrogenic activity of TCDD is due to downregulation of several E2-induced cell cycle proteins/activities and this illustrates the complex cross talk between the aryl hydrocarbon and the E2 receptor signaling pathways.
Collapse
Affiliation(s)
- W Wang
- Department of Veterinary Pathobiology, Texas A&M University, College Station, Texas, 77843-4466, USA
| | | | | |
Collapse
|
132
|
Gao L, Dong L, Whitlock JP. A novel response to dioxin. Induction of ecto-ATPase gene expression. J Biol Chem 1998; 273:15358-65. [PMID: 9624117 DOI: 10.1074/jbc.273.25.15358] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We used differential display to discover a new gene that the environmental contaminant 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) regulates in mouse hepatoma cells. Its predicted amino acid sequence suggests that the gene encodes an ecto-ATPase that contains multiple glycosylation sites, conserved cysteine residues, and apyrase conserved regions. cDNA expression experiments in mouse hepatoma cells confirm that the new gene encodes an ecto-ATPase. Wild-type mouse hepatoma cells contain both constitutive and TCDD-inducible ecto-ATPase activity. Induction of ecto-ATPase gene expression by TCDD is direct and occurs at the transcriptional level. Studies in mutant hepatoma cells indicate that induction requires both the aromatic hydrocarbon receptor (AhR) and the AhR nuclear translocator (Arnt). Furthermore, induction requires AhR's transactivation domain, but not that of Arnt. Our findings reveal new aspects of dioxin's biological effects and TCDD-dependent gene regulation.
Collapse
Affiliation(s)
- L Gao
- Department of Molecular Pharmacology, Stanford University School of Medicine, Stanford, California 94305-5332, USA
| | | | | |
Collapse
|
133
|
Wang F, Hoivik D, Pollenz R, Safe S. Functional and physical interactions between the estrogen receptor Sp1 and nuclear aryl hydrocarbon receptor complexes. Nucleic Acids Res 1998; 26:3044-3052. [PMID: 9611253 PMCID: PMC147653 DOI: 10.1093/nar/26.12.3044] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
17beta-Estradiol (E2) induces cathepsin D gene expression in MCF-7 human breast cancer cells and previous analyses of the proximal promoter region of this gene identified two functional enhancer sequences; namely an Sp1(N)23estrogen-responsive element (ERE) half-site (-199 to -165) and an imperfect palindromic ERE (-119 to -107). A third region of the cathepsin D gene promoter (CD/L, -145 to -119) was also E2 responsive in transient transfection assays. A GC-rich sequence which contains two overlapping Sp1 binding sites (-145 to -135) was responsible for ER-mediated transactivation and required formation of an ER/Sp1 complex in which only the Sp1 protein bound DNA. E2 responsiveness of the CD/L sequence was also dependent on an adjacent overlapping GCGTG motif corresponding to the dioxin-responsive element (DRE) core binding sequence, which is the cognate response element for the heterodimeric aryl hydrocarbon receptor (AhR)/AhR nuclear translocator (ARNT) transcription factor complex. The results show that ER-mediated transactivation of CD/L was associated with the Sp1(N)2-4DRE (core) motif and involved formation of a multiprotein ER/Sp1-AhR/ARNT complex. These results illustrate a unique example of an endogenous role for AhR/ARNT in the absence of added AhR agonist and indicate that the cathepsin D gene proximal promoter region contains at least three different functional motifs associated with ER-mediated transactivation.
Collapse
MESH Headings
- Aryl Hydrocarbon Receptor Nuclear Translocator
- Benzoflavones/pharmacology
- Binding, Competitive
- Breast Neoplasms
- Cathepsin D/genetics
- Cell Extracts
- DNA/metabolism
- DNA, Antisense
- DNA-Binding Proteins
- Enhancer Elements, Genetic/genetics
- Estradiol/pharmacology
- Gene Expression Regulation, Neoplastic
- Humans
- Promoter Regions, Genetic/genetics
- Protein Binding
- Receptors, Aryl Hydrocarbon/antagonists & inhibitors
- Receptors, Aryl Hydrocarbon/genetics
- Receptors, Aryl Hydrocarbon/metabolism
- Receptors, Estrogen/genetics
- Receptors, Estrogen/metabolism
- Recombinant Fusion Proteins
- Sp1 Transcription Factor/metabolism
- Transcription Factors/genetics
- Transcription Factors/metabolism
- Transcriptional Activation/physiology
- Transfection
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- F Wang
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX 77843-4466, USA
| | | | | | | |
Collapse
|
134
|
Duan R, Porter W, Safe S. Estrogen-induced c-fos protooncogene expression in MCF-7 human breast cancer cells: role of estrogen receptor Sp1 complex formation. Endocrinology 1998; 139:1981-1990. [PMID: 9528985 DOI: 10.1210/endo.139.4.5870] [Citation(s) in RCA: 115] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
17Beta-estradiol (E2) induces c-fos protooncogene expression in MCF-7 human breast cancer cells, and previous studies in HeLa cells identified an imperfect palindromic estrogen-responsive element (-1212 to -1200) that was required for trans-activation. In contrast, the estrogen-responsive element was not required for E2 responsiveness in MCF-7 cells, and using a series of constructs containing wild-type (pF1) and mutant 5'-flanking sequences (-1220 to -1155) from the c-fos protooncogene promoter in transient transfection assays, it was shown that a GC-rich motif (5'-GGGGCGTGG) containing an imperfect Sp1-binding site was required for hormone-induced activity. This sequence also bound Sp1 protein in gel mobility shift assays, and coincubation with the estrogen receptor (ER) enhanced Sp1-DNA binding. E2 and 4'-hydroxytamoxifen, but not ICI 164,384, induced reporter gene activity in cells transiently transfected with pF1. E2 induced reporter gene activity in MDA-MB-231 breast cancer cells transiently cotransfected with pF1 and wild-type ER or variant ER in which the DNA-binding domain was deleted (HE11); plasmids expressing N-terminal or C-terminal domains of the ER containing activator function-1 or -2, respectively, were inactive in these assays. In contrast, only wild-type ER mediated 4'-hydroxytamoxifen-induced activity. Induction of c-fos protooncogene expression by E2 in MCF-7 cells is dependent on the formation of a transcriptionally active ER/Sp1 complex that binds to a GC-rich enhancer element.
Collapse
Affiliation(s)
- R Duan
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station 77843-4466, USA
| | | | | |
Collapse
|
135
|
Castro-Rivera E, Safe S. Estrogen- and antiestrogen-responsiveness of HEC1A endometrial adenocarcinoma cells in culture. J Steroid Biochem Mol Biol 1998; 64:287-295. [PMID: 9618030 DOI: 10.1016/s0960-0760(97)00202-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
HEC1A endometrial cancer cells express the wild-type form of the estrogen receptor (ER) and 17beta-estradiol (E2) induces proliferation of these cells. In contrast, tamoxifen only causes a minimal increase (<20%) in cell proliferation. In HEC1A cells transiently transfected with the C3-Luc plasmid derived from the complement C3 gene, both E2 and tamoxifen exhibited ER agonist activity and tamoxifen was also a partial antagonist for this response. The relative ER agonist/antagonist activities of E2, tamoxifen and ICI 182,780 were also investigated in HEC1A1 cells transiently transfected with two E2-responsive plasmids, pCATHD-CAT and pCKB-CAT which contain 5'-promoter inserts from the cathepsin D and creatine kinase B genes, respectively. The results showed that E2 and tamoxifen induced reporter gene activity in cells transiently transfected with both constructs. ICI 182,780 exhibited partial ER agonist activity only in cells transiently transfected with pCKB-CAT and antagonized E2-induced reporter gene activity using both the CKB- and CATHD-derived constructs. These results demonstrate that HEC1A endometrial cancer cells are E2-responsive and represent a useful cell culture model for understanding hormone/antihormone-induced endometrial cell responses.
Collapse
Affiliation(s)
- E Castro-Rivera
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station 77843-4466, USA.
| | | |
Collapse
|
136
|
Abstract
Development of breast cancer in women is dependent on diverse factors, including genetic predisposition, exposure to both exogenous and endogenous chemicals, which can modulate initiation, promotion and progression of this disease, and the timing of exposure to these agents. Several compounds--including 16 alpha-hydroxyestrone (16 alpha-OHE1), catecholestrogens, and aromatic amines--have been proposed as initiators of mammary carcinogenesis in humans; however, their role as genotoxins is unconfirmed. Lifetime exposure to estrogens has been established as an important risk factor for breast cancer, and it has been suggested that xenoestrogens may directly add to the hormonal risk or indirectly increase risk by decreasing 2-hydroxyestrone (2-OHE1)/16 alpha-OHE1 metabolite ratios. Results of recent studies suggest that chemical-induced modulation of 2-OHE1/16 alpha-OHE1 metabolite ratios is not predictive of xenoestrogens or mammary carcinogens. Moreover, based on current known dietary intakes of natural and xenoestrogenic/antiestrogenic chemicals, it is unlikely that xenoestrogens contribute significantly to a woman's overall lifetime exposure to estrogens. More information is required on the identities and serum levels of both natural and xenoendocrine active compounds, their concentrations in serum, and the mammary gland and levels of these compounds at critical periods of exposure.
Collapse
Affiliation(s)
- S H Safe
- Veterinary Physiology and Pharmacology, Texas A&M University, College Station 77843-4466, USA.
| |
Collapse
|
137
|
McDougal A, Wilson C, Safe S. Inhibition of 7,12-dimethylbenz[a]anthracene-induced rat mammary tumor growth by aryl hydrocarbon receptor agonists. Cancer Lett 1997; 120:53-63. [PMID: 9570386 DOI: 10.1016/s0304-3835(97)00299-1] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The antitumorigenic activities of 6-methyl-1,3,8-trichlorodibenzofuran (6-MCDF), 8-methyl-1,3,6-trichlorodibenzofuran (8-MCDF) and 6-cyclohexyl-1,3,8-trichlorodibenzofuran (6-CHDF) were investigated in the 7,12-dimethylbenz[a]anthracene (DMBA) rat mammary tumor model. At doses of 5, 10 or 25 mg/kg/week, both 6-MCDF and 8-MCDF significantly inhibited mammary tumor growth and at the 5 mg/kg/week dose >50% growth inhibition was observed. In contrast, 6-CHDF was inactive at the 5 mg/kg/week dose and the structure-antitumorigenicity relationships (6-MCDF/8-MCDF > 6-CHDF) correlated with structure-antiestrogenicity (rat uterus) studies and the relative binding affinities of these compounds for the aryl hydrocarbon receptor (AhR). The antitumorigenic activity of 6-MCDF or 8-MCDF in the mammary was not accompanied by any significant changes in liver/body weight ratios, liver morphology or induction of hepatic CYP1A1-dependent activity which is one of the most sensitive indicators of exposure to AhR agonists. RT-PCR and Western blot analysis of mammary tumor mRNA and protein extracts, respectively, confirmed the presence of AhR suggesting that AhR-mediated signaling pathways are functional in rat mammary tumors. These results define a relatively non-toxic group of AhR agonists which exhibit potent antitumorigenic activity in the DMBA-induced rat mammary tumor model (<1 mg/kg/day), and therefore represent a new class of indirect-acting antiestrogens which have potential for clinical treatment of mammary cancer.
Collapse
Affiliation(s)
- A McDougal
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station 77843-4466, USA
| | | | | |
Collapse
|
138
|
Dong L, Ma Q, Whitlock JP. Down-regulation of major histocompatibility complex Q1b gene expression by 2,3,7,8-tetrachlorodibenzo-p-dioxin. J Biol Chem 1997; 272:29614-9. [PMID: 9368027 DOI: 10.1074/jbc.272.47.29614] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
We analyzed mouse hepatoma cells using differential display to discover new genes that respond to the environmental contaminant 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). We identified a class I major histocompatibility complex (MHC) gene, which we designated as MHC Q1b, whose expression decreases in the presence of TCDD. TCDD-induced down-regulation of MHC Q1b requires both the aromatic hydrocarbon receptor and the aromatic hydrocarbon receptor nuclear translocator, transcription factors that up-regulate other genes in response to TCDD. Down-regulation of MHC Q1b by TCDD appears to involve both transcriptional and post-transcriptional regulatory events; the post-transcriptional destabilization of MHC Q1b mRNA is probably a secondary response to TCDD. Our findings reveal new mechanistic aspects of gene regulation by TCDD. In addition, our observations suggest a mechanism that might account for some of TCDD's immunotoxic effects.
Collapse
Affiliation(s)
- L Dong
- Department of Molecular Pharmacology, Stanford University School of Medicine, Stanford, California 94305-5332, USA
| | | | | |
Collapse
|
139
|
Hori M, Kondo H, Ariyoshi N, Yamada H, Oguri K. Species-specific alteration of hepatic glucose 6-phosphate dehydrogenase activity with coplanar polychlorinated biphenyl: evidence for an Ah-receptor-linked mechanism. CHEMOSPHERE 1997; 35:951-958. [PMID: 9297786 DOI: 10.1016/s0045-6535(97)00181-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
We examined the in vivo effect of a highly toxic coplanar polychlorinated biphenyl (PCB) on the hepatic activity of glucose 6-phosphate dehydrogenase (G6PDH) in aryl hydrocarbon (Ah)-responsive (C57/BL) and -less-responsive (DBA) strains of mice. The activity in the C57BL strain was moderately increased by 3,3',4,4',5-pentachlorobiphenyl (PCB 126) in a dose dependent manner. However, this was not observed in DBA mice although greater doses were injected. 2,2',5,5'-Tetrachlorobiphenyl (PCB 52) with a non-planar structure did not increase G6PDH activity. The increase in G6PDH activity with PCB 126 was also seen in rats, but not in guinea pigs. The activity in the latter species was decreased rather than increased. These results suggest that the induction of hepatic G6PDH by coplanar PCB is mediated by a mechanism involving the Ah receptor, and the response was highly species-specific.
Collapse
Affiliation(s)
- M Hori
- Faculty of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | | | | | | | | |
Collapse
|
140
|
Hori M, Kondo H, Ariyoshi N, Yamada H, Hiratsuka A, Watabe T, Oguri K. Changes in the hepatic glutathione peroxidase redox system produced by coplanar polychlorinated biphenyls in Ah-responsive and -less-responsive strains of mice: mechanism and implications for toxicity. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 1997; 3:267-275. [PMID: 21781787 DOI: 10.1016/s1382-6689(97)00025-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/1997] [Revised: 06/16/1997] [Accepted: 06/17/1997] [Indexed: 05/31/2023]
Abstract
The alteration in hepatic glutathione peroxidase (GPx) produced by polychlorinated biphenyls (PCBs) was studied in vivo in aryl hydrocarbon (Ah)-responsive C57BL and -less-responsive DBA strains of mice. 3,3',4,4',5-Pentachlorobiphenyl (PCB 126), one of the high-affinity ligands for the Ah receptor, significantly reduced Se-dependent GPx activity in C57BL mice, but not in DBA mice. A reduction in activity in C57BL mice was also observed following treatment with a high dose of 3,3',4,4'-tetrachlorobiphenyl with lesser affinity for the Ah receptor than PCB 126, but not by 2,2',5,5'-tetrachlorobiphenyl, a low-affinity ligand. To assess the effects on GPx in the liver, the content of reduced glutathione (GSH), an obligate co-factor for GPx, and the activity of two enzymes, γ-glutamyl transpeptidase (γ-GTP) and glutathione reductase (GR), which play a role in supplying GSH were determined after PCB treatment. The results showed that although the hepatic activity of γ-GTP and GR was affected differently by PCB 126, the content of GSH was slightly increased rather than reduced in both strains of mice. The activity of non-Se-dependent GPx, which is due to the catalysis by some isozymes of glutathione S-transferase (GST), was significantly increased only in C57BL mice by PCB 126 treatment. Immunoblot analysis demonstrated that the induction of the class θ GST, which is a potent reducer of peroxides (Hiratsuka et al., 1995. Biochem. Biophys. Res. Commun. 212, 743) reflects the enhancement of the above activity. These results suggest that (i) the PCB-induced reduction in Se-dependent GPx activity is mediated by a mechanism involving the Ah receptor; and (ii) a concomitant increase in the class θ GST partially rescues the Ah-responsive mice from coplanar PCB-induced oxidative stress.
Collapse
Affiliation(s)
- M Hori
- Faculty of Pharmaceutical Sciences, Kyushu University 62, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-82, Japan
| | | | | | | | | | | | | |
Collapse
|
141
|
Nesaretnam K, Darbre P. 3,5,3',5'-tetrachlorobiphenyl is a weak oestrogen agonist in vitro and in vivo. J Steroid Biochem Mol Biol 1997; 62:409-18. [PMID: 9449244 DOI: 10.1016/s0960-0760(97)00062-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Polychlorinated biphenyls (PCBs) are widespread, persistent environmental contaminants of which some congeners can act as endocrine disrupters. Previous work has shown that 3,4,3',4'-tetrachlorobiphenyl (PCB77) can act as an oestrogen with actions mediated through the oestrogen receptor. Here, oestrogenic actions have been assessed for two further tetrachlorobiphenyl isomers. Assays of oestrogenic action have involved (1) ligand regulation of oestrogen-sensitive gene expression; (2) ligand regulation of cell growth in oestrogen-dependent human breast cancer cell lines MCF7 McGrath and ZR-75-1; and (3) ligand activity in the immature mouse uterine weight bioassay in vivo. These results demonstrate that 3,5,3',5'-tetrachlorobiphenyl (PCB 80) can be considered to be a weak oestrogen agonist, but the 2,5,2',5'-congener (PCB 52) revealed no oestrogenic properties in any of these assays. Implications of these results are discussed in relation to structure-activity predictions for environmental oestrogens.
Collapse
MESH Headings
- Animals
- Breast Neoplasms/genetics
- Breast Neoplasms/metabolism
- Breast Neoplasms/pathology
- Cell Division/drug effects
- Environmental Pollutants/metabolism
- Environmental Pollutants/toxicity
- Estrogens, Non-Steroidal/chemistry
- Estrogens, Non-Steroidal/metabolism
- Estrogens, Non-Steroidal/toxicity
- Female
- Gene Expression Regulation, Neoplastic/drug effects
- Humans
- In Vitro Techniques
- Ligands
- Mice
- Neoplasms, Hormone-Dependent/genetics
- Neoplasms, Hormone-Dependent/metabolism
- Neoplasms, Hormone-Dependent/pathology
- Organ Size/drug effects
- Polychlorinated Biphenyls/chemistry
- Polychlorinated Biphenyls/metabolism
- Polychlorinated Biphenyls/toxicity
- Receptors, Estrogen/genetics
- Receptors, Estrogen/metabolism
- Structure-Activity Relationship
- Transfection
- Tumor Cells, Cultured
- Uterus/drug effects
- Uterus/metabolism
- Uterus/pathology
Collapse
Affiliation(s)
- K Nesaretnam
- School of Animal and Microbial Sciences, The University of Reading, Whiteknights, UK
| | | |
Collapse
|
142
|
Wang F, Porter W, Xing W, Archer TK, Safe S. Identification of a functional imperfect estrogen-responsive element in the 5'-promoter region of the human cathepsin D gene. Biochemistry 1997; 36:7793-7801. [PMID: 9201922 DOI: 10.1021/bi963100j] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
17beta-Estradiol (E2) induces cathepsin D gene expression in MCF-7 human breast cancer cells. Previous studies have identified an Sp1-imperfect estrogen-responsive element (ERE) half-site [GGGCGG(N)23ACGGG] (-199 to -165) in the promoter region which forms an Sp1-estrogen receptor (ER) complex and confers E2 responsiveness on the corresponding Sp1-ERE-chloramphenicol acetyl transferase (CAT) construct. Further analysis of downstream regions of the promoter identified a CGCCC(N)3TGACC sequence (-119 to -107) which is homologous to the adenovirus major late promoter element (MLPE) and binds the ER to form a retarded band in a gel electrophoretic mobility shift assay. The corresponding promoter-CAT construct is also E2-inducible. The MLPE resembles an imperfect palindromic ERE containing imperfect (5') and perfect (3') ERE half-sites; analysis of oligonucleotides with mutations in these half-sites shows that only the perfect ERE half-site is required for binding the ER, whereas both sites are required for transactivation. In vivo exonuclease III footprinting showed that treatment with E2 also enhanced binding at the MLPE site. Identification of this second functional enhancer sequence in the 5'-promoter region of cathepsin D is consistent with the increasingly complex cell-specific regulation of hormone-responsive genes.
Collapse
Affiliation(s)
- F Wang
- Veterinary Physiology and Pharmacology, Texas A&M University, College Station 77843-4466, USA
| | | | | | | | | |
Collapse
|
143
|
Abstract
The aryl hydrocarbon (or dioxin) receptor (AhR) is a ligand-activated basic helix-loop-helix (bHLH) protein that heterodimerizes with the bHLH protein ARNT (aryl hydrocarbon nuclear translocator) forming a complex that binds to xenobiotic regulatory elements in target gene enhancers. Genetic, biochemical, and molecular biology studies have revealed that the AhR mediates the toxic and biological effects of environmentally persistent dioxins and related compounds. Cloning of the receptor and its DNA-binding partner, ARNT, has facilitated detailed efforts to understand the mechanisms of AhR-mediated signal transduction. These studies have determined that this unique receptor consists of several functional domains and belongs to a subfamily of bHLH proteins that share a conserved motif termed the PAS domain. In addition, recent genetic studies have revealed that expression of the AhR is a requirement for proper embryonal development, which appears to be a common function shared by many other bHLH proteins. This review is a summary of recent molecular studies of AhR-mediated gene regulation.
Collapse
Affiliation(s)
- J C Rowlands
- Department of Bioscience, Karolinska Institute, NOVUM, Huddinge, Sweden
| | | |
Collapse
|
144
|
Nodland KI, Wormke M, Safe S. Inhibition of estrogen-induced activity by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) in the MCF-7 human breast cancer and other cell lines transfected with vitellogenin A2 gene promoter constructs. Arch Biochem Biophys 1997; 338:67-72. [PMID: 9015389 DOI: 10.1006/abbi.1996.9806] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The antiestrogenic activity of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) was investigated in several cell lines using transient transfection assays and constructs containing 5'-regulatory sequences from the estrogen (E2)-responsive vitellogenin (Vit) A2 gene linked to the bacterial chloramphenicol acetyltransferase (CAT) reporter gene. TCDD significantly inhibited CAT activity induced by E2 in MCF-7 human breast cancer cells transiently transfected with 5'-deletion plasmids containing the homologous promoter [(-821/+14)- and (-482/+14)-CAT] or the heterologous thymidine kinase (tk) promoter [(-821/-87)tk-, (-482/-87)tk-, (-397/-87)tk-, and (-331/-87)tk-CAT]. In parallel experiments using wild-type mouse Hepa 1c1c7 and human HeLa cells cotransfected with a human estrogen receptor expression plasmid, TCDD also inhibited E2-induced CAT activity. The role of the nuclear Ah receptor complex was confirmed by results of the following studies using MCF-7 or mouse Hepa 1c1c7 cells transiently transfected with E2-responsive Vit A2 gene 5'-promoter constructs: (i) for a series of Ah receptor ligands, there was a correlation between their antiestrogenic activity in MCF-7 cells and their rank order binding affinity for the Ah receptor; (ii) alpha-naphthoflavone, an Ah receptor antagonist, inhibited the antiestrogenic activity of TCDD in MCF-7 cells; and (iii) TCDD inhibited E2-induced CAT activity in Ah-responsive wild-type but not in Ah-nonresponsive class 2 mutant Hepa 1c1c7 cells. The antiestrogenic activity of TCDD was also observed in cells which transiently overexpressed the human estrogen receptor (ER), suggesting that the mechanism does not involve downregulation of the ER by TCDD.
Collapse
Affiliation(s)
- K I Nodland
- Veterinary Physiology and Pharmacology, Texas A&M University, College Station 77843-4466, USA
| | | | | |
Collapse
|
145
|
Vaziri C, Schneider A, Sherr DH, Faller DV. Expression of the aryl hydrocarbon receptor is regulated by serum and mitogenic growth factors in murine 3T3 fibroblasts. J Biol Chem 1996; 271:25921-7. [PMID: 8824226 DOI: 10.1074/jbc.271.42.25921] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The aryl-hydrocarbon receptor (AhR) is a ligand-activated transcription factor that mediates biological responses to planar aromatic hydrocarbons such as benzo[alpha]pyrene. However, no endogenous physiological ligand for the AhR has been identified. Since the AhR regulates bioactivity to common environmental pollutants, and since it is predicted to play an important physiological function, we have investigated the expression of the AhR during the cell cycle of murine 3T3 fibroblasts. We show here that stimulation of growth-arrested 3T3 cells with serum results in increased expression of AhR protein. Serum-induced expression of AhR in synchronized, serum-stimulated cells occurs at the onset of DNA synthesis (S phase) and is maximal at time points corresponding to late S phase. Transient transfections with an AhR-promoter-luciferase construct demonstrate that reporter gene transcription from the AhR promoter is regulated in a serum-dependent manner. Serum-dependent induction of AhR expression is prevented by an inhibitor of tyrosine kinase activity. Ligand-activated growth factor receptors (platelet-derived growth factor receptor basic fibroblast growth factor receptor) as well as an ectopically expressed tyrosine kinase (the v-Src oncoprotein) induce AhR expression in the absence of serum. Therefore, tyrosine kinase signaling is both necessary and sufficient for induction of AhR expression. Studies with the G1 blocker sodium butyrate show that the signal transduction pathways mediating serum-stimulated progression through the cell cycle are distinct from those that induce AhR expression. These data suggest that transcriptional regulation of the AhR is important in determining cellular sensitivity to the actions of AhR ligand(s) and that the AhR may play a role during the cellular proliferative response.
Collapse
Affiliation(s)
- C Vaziri
- Cancer Research Center, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | | | | | | |
Collapse
|
146
|
Abstract
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) and related compounds bind to the intracellular aryl hydrocarbon (Ah) receptor and induce a diverse spectrum of biochemical and toxic responses. Ah receptor agonists also modulate several endocrine pathways, and research in several laboratories has shown that TCDD and related compounds inhibit estrogen (E2)-induced responses in the rodent mammary and uterus and in human breast cancer cell lines. The mechanisms of interaction between the TCDD- and E2-induced signaling pathways are complex and some of the inhibitory effects may be related to 5'-flanking inhibitory-dioxin responsive elements (i-DREs) in target genes. The antiestrogenic and antitumorigenic activity of Ah receptor agonists has been used to prepare a series of relatively non-toxic alkyl polychlorinated dibenzofurans which have clinical potential for treatment of mammary cancer.
Collapse
Affiliation(s)
- S Safe
- Texas A&M University, College Station 77843-4466, USA
| | | |
Collapse
|