101
|
Kretsovali A, Spilianakis C, Dimakopoulos A, Makatounakis T, Papamatheakis J. Self-association of class II transactivator correlates with its intracellular localization and transactivation. J Biol Chem 2001; 276:32191-7. [PMID: 11413136 DOI: 10.1074/jbc.m103164200] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Class II transactivator (CIITA) is the master regulator of major histocompatibility complex class II genes that regulates both B lymphocyte-specific and interferon gamma-inducible expression. Here we identify protein regions and examine mechanisms that determine the intracellular distribution of CIITA. We show that two separate regions of CIITA mediate nuclear export: amino acids 1-114 and 408-550. Both regions interact with the export receptor CRM-1. The CIITA region spanning amino acids 408-550 of CIITA also determines its ability for homotypic self-association as well as heterotypic interactions with other regions residing at the amino and carboxyl termini of the protein. These observations are in line with data demonstrating that co-expression of amino- and carboxyl-terminal parts of CIITA promote subcellular relocalization and, remarkably, rescue transcriptional activation by individually inert molecules. CIITA point mutations that impair nuclear import and abolish its activation function show reduced self-association. We propose that the concerted action of homo- and heterotypic interactions of CIITA determine proper protein configuration that in turn controls its nucleocytoplasmic trafficking.
Collapse
Affiliation(s)
- A Kretsovali
- Foundation for Research and Technology, Institute of Molecular Biology and Biotechnology, Heraklion, 711 10 Crete, Greece.
| | | | | | | | | |
Collapse
|
102
|
Abstract
The bare lymphocyte syndrome (BLS) is a hereditary immunodeficiency resulting from the absence of major histocompatibility complex class II (MHCII) expression. Considering the central role of MHCII molecules in the development and activation of CD4(+) T cells, it is not surprising that the immune system of the patients is severely impaired. BLS is the prototype of a "disease of gene regulation." The affected genes encode RFXANK, RFX5, RFXAP, and CIITA, four regulatory factors that are highly specific and essential for MHCII genes. The first three are subunits of RFX, a trimeric complex that binds to all MHCII promoters. CIITA is a non-DNA-binding coactivator that functions as the master control factor for MHCII expression. The study of RFX and CIITA has made major contributions to our comprehension of the molecular mechanisms controlling MHCII genes and has made this system into a textbook model for the regulation of gene expression.
Collapse
Affiliation(s)
- W Reith
- Jeantet Laboratory of Molecular Genetics, Department of Genetics and Microbiology, University of Geneva Medical School, 1 rue Michel-Servet, Geneva 4, 1211 Switzerland.
| | | |
Collapse
|
103
|
Abstract
The major histocompatibility complex (MHC) class II transactivator (CIITA) regulates the expression of genes involved in the immune response, including MHC class II genes and the interleukin-4 gene. Interactions between CIITA and sequence-specific, DNA-binding proteins are required for CIITA to function as an activator of MHC class II genes. CIITA also interacts with the coactivators CBP (also called p300), and this interaction leads to synergistic activation of MHC class II promoters. Here, we report that CIITA forms complexes with itself and that a central region, including the GTP-binding domain is sufficient for self-association. Additionally, this central region interacts with the C-terminal leucine-rich repeat as well as the N-terminal acidic domain. LXXLL motifs residing in the GTP-binding domain are essential for self-association. Finally, distinct differences exist among various CIITA mutant proteins with regard to activation function, subcellular localization, and association with wild-type protein and dominant-negative potential.
Collapse
Affiliation(s)
- T J Sisk
- Department of Microbiology and Immunology, The University of Michigan Medical School, Ann Arbor, Michigan 48109, USA
| | | | | |
Collapse
|
104
|
Xi H, Goodwin B, Shepherd AT, Blanck G. Impaired class II transactivator expression in mice lacking interferon regulatory factor-2. Oncogene 2001; 20:4219-27. [PMID: 11464288 DOI: 10.1038/sj.onc.1204556] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2000] [Revised: 04/12/2001] [Accepted: 04/18/2001] [Indexed: 11/09/2022]
Abstract
Class II transactivator (CIITA) is required for both constitutive and inducible expression of MHC class II genes. IFN-gamma induced expression of CIITA in various cell types is directed by CIITA type IV promoter. The two transactivators, STAT1 and IRF-1, mediate the IFN-gamma activation of the type IV promoter by binding to the GAS and IRF-E of the promoter, respectively. In addition to IRF-1, IRF-2, another member of the IRF family, also activates the human CIITA type IV promoter, and IRF-2 cooperates with IRF-1 to activate the promoter in transient transfection assays. IRF-1 and IRF-2 can co-occupy the IRF-E of the human CIITA type IV promoter. To understand the effect of loss of IRF-2 on the endogenous CIITA expression, we assayed for CIITA expression in IRF-2 knock-out mice. Both basal and IFN-gamma induced CIITA expression were reduced in IRF-2 knock-out mice. At least half of the amount of inducible CIITA mRNA depends on IRF-2. The reduction of IFN-gamma induced CIITA mRNA in IRF-2 knock-out mice was due to the reduction of the type IV CIITA mRNA induction. The reduction of basal CIITA mRNA was apparently due to the reduction of CIITA mRNA originating from other promoters. These data indicate that IRF-2, like IRF-1, plays a critical role in the regulation of the endogenous CIITA gene. The implications in understanding the previously described phenotypes of IRF-2 defective mice are discussed.
Collapse
Affiliation(s)
- H Xi
- Department of Biochemistry and Molecular Biology, College of Medicine, University of South Florida, Tampa, Florida, FL33612, USA
| | | | | | | |
Collapse
|
105
|
Beresford GW, Boss JM. CIITA coordinates multiple histone acetylation modifications at the HLA-DRA promoter. Nat Immunol 2001; 2:652-7. [PMID: 11429551 DOI: 10.1038/89810] [Citation(s) in RCA: 147] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We present here an in vivo view of major histocompatibility complex (MHC) class II promoter assembly, nucleosome modifications and gene expression mediated by the class II transactivator (CIITA). Acetylation and deacetylation of histones H3 and H4 at the HLA-DRA promoter were found to occur during a time-course that depended on CIITA expression and binding. Expression of a CIITA mutant, which lacked the activation domain, induced H4 but not H3 histone acetylation. This suggested that multiple histone acetyltransferase activities are associated with MHC class II expression. H4 acetylation was mapped to Lys8, which implicated several histone acetyltransferases as possible modulators of this activity.
Collapse
Affiliation(s)
- G W Beresford
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | |
Collapse
|
106
|
Dong Y, Tang L, Letterio JJ, Benveniste EN. The Smad3 protein is involved in TGF-beta inhibition of class II transactivator and class II MHC expression. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 167:311-9. [PMID: 11418665 DOI: 10.4049/jimmunol.167.1.311] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
TGF-beta is a immunoregulatory cytokine that inhibits class II MHC expression in a variety of cell types. Previous studies have shown that the class II MHC transactivator (CIITA), a master regulator that controls class II MHC expression, is targeted by TGF-beta for repression of IFN-gamma-induced class II MHC expression in astrocytes. The mechanism(s) underlying the TGF-beta inhibitory effect is not understood. In this study, we demonstrate that TGF-beta inhibition of CIITA expression occurs at the transcriptional level, and that both constitutive and IFN-gamma-induced human CIITA type IV promoter activity is inhibited by TGF-beta. TGF-beta does not affect the signaling events that mediate IFN-gamma activation of CIITA expression; i.e, TGF-beta does not inhibit IFN-gamma-induced STAT-1alpha phosphorylation and/or DNA binding ability, nor is IFN-gamma induction of IFN regulatory factor affected. The inhibitory effect of TGF-beta on the type IV CIITA promoter is mediated through a promoter region within 80 bp from the transcription start site. Elimination of TGF-beta inhibition of class II MHC and CIITA expression in Smad3-deficient astrocytes, as well as restoration of the inhibitory effect by overexpression of the Smad3 protein, demonstrates that Smad3 is essential in mediating TGF-beta inhibition of CIITA and class II MHC expression.
Collapse
Affiliation(s)
- Y Dong
- Department of Cell Biology, University of Alabama, Birmingham, AL 35294, USA
| | | | | | | |
Collapse
|
107
|
Kanazawa S, Peterlin BM. Combinations of dominant-negative class II transactivator, p300 or CDK9 proteins block the expression of MHC II genes. Int Immunol 2001; 13:951-8. [PMID: 11431425 DOI: 10.1093/intimm/13.7.951] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The class II transactivator (CIITA) regulates not only the transcription of HLA-DR, -DQ, -DP, but also invariant chain, DMA and DMB genes. A hybrid mutant CIITA protein, which contained residues from positions 302 to 1130 in CIITA fused to the enhanced green fluorescent protein (EdCIITA), inhibited the function of the wild-type protein. EdCIITA extinguished the inducible and constitutive expression of MHC II genes in epithelial cells treated with IFN-gamma and B lymphoblastoid cells respectively. Also, it blocked T cell activation by superantigen. This inhibition correlated with the localization of EdCIITA but not CIITA in the cytoplasm of cells. However, when EdCIITA was co-expressed with a dominant-negative form of the nucleoporin Nup214/CAN, it also accumulated in the nucleus. These data suggest that EdCIITA not only competes with the wild-type protein for the binding to MHC II promoters but sequesters a critical co-factor of CIITA in the cytoplasm. CIITA also recruits the histone acetyltransferase cAMP responsive element binding protein (CREB) binding protein and positive transcription elongation factor b (p-TEFb) for the transcription of MHC II genes. Dominant-negative p300 (DNp300) or CDK9 (DNCDK9) proteins inhibited the function of CIITA and of the DRA promoter. Thus, combinations of EdCIITA and DNp300 and/or DNCDK9 proteins extinguished the transcription of MHC II genes. They might become useful for future genetic therapeutic approaches in organ transplantation and autoimmune diseases.
Collapse
Affiliation(s)
- S Kanazawa
- Department of Medicine, Howard Hughes Medical Institute, University of California, San Francisco, CA 94143-0703, USA
| | | |
Collapse
|
108
|
Li G, Harton JA, Zhu X, Ting JP. Downregulation of CIITA function by protein kinase a (PKA)-mediated phosphorylation: mechanism of prostaglandin E, cyclic AMP, and PKA inhibition of class II major histocompatibility complex expression in monocytic lines. Mol Cell Biol 2001; 21:4626-35. [PMID: 11416140 PMCID: PMC87128 DOI: 10.1128/mcb.21.14.4626-4635.2001] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Prostaglandins, pleiotropic immune modulators that induce protein kinase A (PKA), inhibit gamma interferon induction of class II major histocompatibility complex (MHC) genes. We show that phosphorylation of CIITA by PKA accounts for this inhibition. Treatment with prostaglandin E or 8-bromo-cyclic AMP or transfection with PKA inhibits the activity of CIITA in both mouse and human monocytic cell lines. This inhibition is independent of other transcription factors for the class II MHC promoter. These same treatments also greatly reduced the induction of class II MHC mRNA by CIITA. PKA phosphorylation sites were identified using site-directed mutagenesis and phosphoamino acid analysis. Phosphorylation at CIITA serines 834 and 1050 accounts for the inhibitory effects of PKA on CIITA-driven class II MHC transcription. This is the first demonstration that the posttranslational modification of CIITA mediates inhibition of class II MHC transcription.
Collapse
Affiliation(s)
- G Li
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7295, USA
| | | | | | | |
Collapse
|
109
|
Linhoff MW, Harton JA, Cressman DE, Martin BK, Ting JP. Two distinct domains within CIITA mediate self-association: involvement of the GTP-binding and leucine-rich repeat domains. Mol Cell Biol 2001; 21:3001-11. [PMID: 11287606 PMCID: PMC86929 DOI: 10.1128/mcb.21.9.3001-3011.2001] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
CIITA is the master regulator of class II major histocompatibility complex gene expression. We present evidence that CIITA can self-associate via two domains: the C terminus (amino acids 700 to 1130) and the GTP-binding domain (amino acids 336 to 702). Heterotypic and homotypic interactions are observed between these two regions. Deletions within the GTP-binding domain that reduce GTP-binding and transactivation function also reduce self-association. In addition, two leucine residues in the C-terminal leucine-rich repeat region are critical for self-association as well as function. This study reveals for the first time a complex pattern of CIITA self-association. These interactions are discussed with regard to the apoptosis signaling proteins, Apaf-1 and Nod1, which share domain arrangements similar to those of CIITA.
Collapse
Affiliation(s)
- M W Linhoff
- Lineberger Comprehensive Cancer Center, Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, 27599-7295, USA
| | | | | | | | | |
Collapse
|
110
|
Gourley TS, Chang CH. Cutting edge: the class II transactivator prevents activation-induced cell death by inhibiting Fas ligand gene expression. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 166:2917-21. [PMID: 11207239 DOI: 10.4049/jimmunol.166.5.2917] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The Fas:Fas ligand pathway is critical in regulating immune homeostasis by eliminating activated T cells that proliferated in response to an infection. Here, we show that the MHC class II transactivator (CIITA) can suppress this pathway by inhibiting transcription of the Fas ligand gene. CIITA can effectively repress transcription from the Fas ligand promoter in both T cell lines as well as primary cells. The repression appears to be at least partly due to interference of NFAT-mediated induction of Fas ligand gene transcription. T cells that express CIITA constitutively do not up-regulate Fas ligand on the cell surface after activation via the TCR. Consequently, these cells lack the ability to undergo activation-induced cell death, and to kill Fas-bearing target cells.
Collapse
Affiliation(s)
- T S Gourley
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | | |
Collapse
|
111
|
Raval A, Howcroft TK, Weissman JD, Kirshner S, Zhu XS, Yokoyama K, Ting J, Singer DS. Transcriptional coactivator, CIITA, is an acetyltransferase that bypasses a promoter requirement for TAF(II)250. Mol Cell 2001; 7:105-15. [PMID: 11172716 DOI: 10.1016/s1097-2765(01)00159-9] [Citation(s) in RCA: 94] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The CIITA coactivator is essential for transcriptional activation of MHC class II genes and mediates enhanced MHC class I transcription. We now report that CIITA contains an intrinsic acetyltransferase (AT) activity that maps to a region within the N-terminal segment of CIITA, between amino acids 94 and 132. The AT activity is regulated by the C-terminal GTP-binding domain and is stimulated by GTP. CIITA-mediated transactivation depends on the AT activity. Further, we report that, although constitutive MHC class I transcription depends on TAF(II)250, CIITA activates the promoter in the absence of functional TAF(II)250.
Collapse
Affiliation(s)
- A Raval
- Experimental Immunology Branch, National Cancer Institute, Building 10, Room 4B-36, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | |
Collapse
|
112
|
Magner WJ, Kazim AL, Stewart C, Romano MA, Catalano G, Grande C, Keiser N, Santaniello F, Tomasi TB. Activation of MHC class I, II, and CD40 gene expression by histone deacetylase inhibitors. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2000; 165:7017-24. [PMID: 11120829 DOI: 10.4049/jimmunol.165.12.7017] [Citation(s) in RCA: 239] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Epigenetic mechanisms are involved in regulating chromatin structure and gene expression through repression. In this study, we show that histone deacetylase inhibitors (DAIs) that alter the acetylation of histones in chromatin enhance the expression of several genes on tumor cells including: MHC class I, II, and the costimulatory molecule CD40. Enhanced transcription results in a significant increase in protein expression on the tumor cell surface, and expression can be elicited on some tumors that are unresponsive to IFN-gamma. The magnitude of induction of these genes cannot be explained by the effect of DAIs on the cell cycle or enhanced apoptosis. Induction of class II genes by DAIs was accompanied by activation of a repressed class II transactivator gene in a plasma cell tumor but, in several other tumor cell lines, class II was induced in the apparent absence of class II transactivator transcripts. These findings also suggest that the abnormalities observed in some tumors in the expression of genes critical to tumor immunity may result from epigenetic alterations in chromatin and gene regulation in addition to well-established mutational mechanisms.
Collapse
Affiliation(s)
- W J Magner
- Departments of. Immunology, Biophysics, and Pathology, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
113
|
Spilianakis C, Papamatheakis J, Kretsovali A. Acetylation by PCAF enhances CIITA nuclear accumulation and transactivation of major histocompatibility complex class II genes. Mol Cell Biol 2000; 20:8489-98. [PMID: 11046145 PMCID: PMC102155 DOI: 10.1128/mcb.20.22.8489-8498.2000] [Citation(s) in RCA: 131] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2000] [Accepted: 08/21/2000] [Indexed: 11/20/2022] Open
Abstract
The class II transactivator (CIITA), the master regulator of the tissue-specific and interferon gamma-inducible expression of major histocompatibility complex class II genes, synergizes with the histone acetylase coactivator CBP to activate gene transcription. Here we demonstrate that in addition to CBP, PCAF binds to CIITA both in vivo and in vitro and enhances CIITA-dependent transcriptional activation of class II promoters. Accordingly, E1A mutants defective for PCAF or CBP interaction show reduced ability in suppressing CIITA activity. Interestingly, CBP and PCAF acetylate CIITA at lysine residues within a nuclear localization signal. We show that CIITA is shuttling between the nucleus and cytoplasm. The shuttling behavior and activity of the protein are regulated by acetylation: overexpression of PCAF or inhibition of cellular deacetylases by trichostatin A increases the nuclear accumulation of CIITA in a manner determined by the presence of the acetylation target lysines. Furthermore, mutagenesis of the acetylated residues reduces the transactivation ability of CIITA. These results support a novel function for acetylation, i.e., to regulate gene expression by stimulating the nuclear accumulation of an activator.
Collapse
Affiliation(s)
- C Spilianakis
- Foundation for Research and Technology, Institute of Molecular Biology and Biotechnology, Heraklion, Crete, Greece
| | | | | |
Collapse
|
114
|
Hake SB, Masternak K, Kammerbauer C, Janzen C, Reith W, Steimle V. CIITA leucine-rich repeats control nuclear localization, in vivo recruitment to the major histocompatibility complex (MHC) class II enhanceosome, and MHC class II gene transactivation. Mol Cell Biol 2000; 20:7716-25. [PMID: 11003667 PMCID: PMC86349 DOI: 10.1128/mcb.20.20.7716-7725.2000] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The major histocompatibility complex (MHC) class II transactivator CIITA plays a pivotal role in the control of the cellular immune response through the quantitative regulation of MHC class II expression. We have analyzed a region of CIITA with similarity to leucine-rich repeats (LRRs). CIITA LRR alanine mutations abolish both the transactivation capacity of full-length CIITA and the dominant-negative phenotype of CIITA mutants with N-terminal deletions. We demonstrate direct interaction of CIITA with the MHC class II promoter binding protein RFX5 and could also detect novel interactions with RFXANK, NF-YB, and -YC. However, none of these interactions is influenced by CIITA LRR mutagenesis. On the other hand, chromatin immunoprecipitation shows that in vivo binding of CIITA to the MHC class II promoter is dependent on LRR integrity. LRR mutations lead to an impaired nuclear localization of CIITA, indicating that a major function of the CIITA LRRs is in nucleocytoplasmic translocation. There is, however, evidence that the CIITA LRRs are also involved more directly in MHC class II gene transactivation. CIITA interacts with a novel protein of 33 kDa in a manner sensitive to LRR mutagenesis. CIITA is therefore imported into the nucleus by an LRR-dependent mechanism, where it activates transcription through multiple protein-protein interactions with the MHC class II promoter binding complex.
Collapse
Affiliation(s)
- S B Hake
- Hans-Spemann-Laboratories, Max-Planck-Institute of Immunology, D79108 Freiburg, D79008 Freiburg, Germany
| | | | | | | | | | | |
Collapse
|
115
|
Caretti G, Cocchiarella F, Sidoli C, Villard J, Peretti M, Reith W, Mantovani R. Dissection of functional NF-Y-RFX cooperative interactions on the MHC class II Ea promoter. J Mol Biol 2000; 302:539-52. [PMID: 10986117 DOI: 10.1006/jmbi.2000.4028] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Transcription of major histocompatibility complex (MHC) class II genes depends upon the trimeric complexes RFX and NF-Y binding to the conserved X-Y promoter elements. We produced and purified the RFX subunits from Escherichia coli, reconstituted DNA-binding to the mouse Ea X box and dissected the interactions with NF-Y. RFX and NF-Y do not interact in solution, but make cooperative interactions in EMSA: a minimal NF-Y, composed of the evolutionary conserved domains, is sufficient and the RFXAP N-terminal half is expendable. Altering the X-Y distance abolishes cooperativity, indicating that DNA imposes severe spatial constraints. When tested on a highly positioned nucleosome, RFX binds DNA well and NF-Y does not increase its affinity further. Transfections of NF-Y subunits, but not RFX, in class II negative cells improves basal transcription and coexpression of the two activators has a synergistic effect, while modestly increasing CIITA-mediated activation. These results show that interactions between the two trimers on DNA are key to MHC class II expression.
Collapse
Affiliation(s)
- G Caretti
- Dipartimento di Genetica e Biologia dei Microrganismi, Università di Milano, Via Celoria 26, Milano, 20133, Italy
| | | | | | | | | | | | | |
Collapse
|
116
|
Harton JA, Ting JP. Class II transactivator: mastering the art of major histocompatibility complex expression. Mol Cell Biol 2000; 20:6185-94. [PMID: 10938095 PMCID: PMC86093 DOI: 10.1128/mcb.20.17.6185-6194.2000] [Citation(s) in RCA: 170] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2000] [Accepted: 05/18/2000] [Indexed: 11/20/2022] Open
Affiliation(s)
- J A Harton
- Department of Microbiology and Immunology and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | | |
Collapse
|
117
|
Sisk TJ, Gourley T, Roys S, Chang CH. MHC class II transactivator inhibits IL-4 gene transcription by competing with NF-AT to bind the coactivator CREB binding protein (CBP)/p300. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2000; 165:2511-7. [PMID: 10946277 DOI: 10.4049/jimmunol.165.5.2511] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The MHC class II transactivator (CIITA) activates the expression of multiple genes involved in Ag presentation, but inhibits Th2-type cytokine production, including IL-4, during Th1 cell differentiation. Th1 cells derived from CIITA-deficient mice produce both Th1- and Th2-type cytokines, and the introduction of CIITA to Th2 cells down-regulates Th2-type cytokine gene transcription. Here we show that the IL-4 promoter is regulated by multiple protein-protein interactions among CIITA, NF-AT, and coactivator CBP/p300. The introduction of CBP/p300 and NF-AT enhances the IL-4 promoter activity, and this activation was repressed by CIITA. Furthermore, our data show that CIITA competes with NF-AT to bind CBP/p300 and that this competition dramatically influences transcriptional activation of the IL-4 promoter. We identified two domains of CIITA that interact with two distinct domains of CBP/p300 that are also recognized by NF-AT. CIITA mutants that retain the ability to interact with CBP/p300 are sufficient to inhibit NF-AT-mediated IL-4 gene expression.
Collapse
Affiliation(s)
- T J Sisk
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | | | | | | |
Collapse
|
118
|
Taxman DJ, Cressman DE, Ting JP. Identification of class II transcriptional activator-induced genes by representational difference analysis: discoordinate regulation of the DN alpha/DO beta heterodimer. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2000; 165:1410-6. [PMID: 10903745 DOI: 10.4049/jimmunol.165.3.1410] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Class II transcriptional activator (CIITA) is a master regulator of MHC class II genes, including DR, DP, and DQ, and MHC class II-associated genes DM and invariant chain. To determine the repertoire of genes that is regulated by CIITA and to identify uncharacterized CIITA-inducible genes, we used representational difference analysis. Representational difference analysis screens for differentially expressed transcripts. All CIITA-induced genes were MHC class II related. We have identified the alpha subunit, DN alpha, of the class II processing factor DO as an additional CIITA-inducible gene. Northern analysis confirmed that DN alpha is induced by IFN-gamma in 2fTGH fibrosarcoma cells, and CIITA is necessary for high-level expression in B cells. The beta subunit, DO beta, is not inducible in fibrosarcoma cells by IFN-gamma or exogenous CIITA expression. Moreover, in contrast to other class II genes, DO beta expression remains high in the absence of CIITA in B cells. The promoters for DN alpha and DO beta contain the highly conserved WXY motifs, and, like other class II genes, expression of both DN alpha and DO beta requires RFX. These findings demonstrate that both DN alpha and DO beta are regulated by RFX. However, DN alpha is defined for the first time as a CIITA-inducible gene, and DO beta as a MHC class II gene whose expression is independent of CIITA.
Collapse
Affiliation(s)
- D J Taxman
- Department of Microbiology and Immunology, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | | | | |
Collapse
|
119
|
Zhu XS, Linhoff MW, Li G, Chin KC, Maity SN, Ting JP. Transcriptional scaffold: CIITA interacts with NF-Y, RFX, and CREB to cause stereospecific regulation of the class II major histocompatibility complex promoter. Mol Cell Biol 2000; 20:6051-61. [PMID: 10913187 PMCID: PMC86081 DOI: 10.1128/mcb.20.16.6051-6061.2000] [Citation(s) in RCA: 164] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Scaffold molecules interact with multiple effectors to elicit specific signal transduction pathways. CIITA, a non-DNA-binding regulator of class II major histocompatibility complex (MHC) gene transcription, may serve as a transcriptional scaffold. Regulation of the class II MHC promoter by CIITA requires strict spatial-helical arrangements of the X and Y promoter elements. The X element binds RFX (RFX5/RFXANK-RFXB/RFXAP) and CREB, while Y binds NF-Y/CBF (NF-YA, NF-YB, and NF-YC). CIITA interacts with all three. In vivo analysis using both N-terminal and C-terminal deletion constructs identified critical domains of CIITA that are required for interaction with NF-YB, NF-YC, RFX5, RFXANK/RFXB, and CREB. We propose that binding of NF-Y/CBF, RFX, and CREB by CIITA results in a macromolecular complex which allows transcription factors to interact with the class II MHC promoter in a spatially and helically constrained fashion.
Collapse
Affiliation(s)
- X S Zhu
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7295, USA
| | | | | | | | | | | |
Collapse
|
120
|
Peng YC, Breiding DE, Sverdrup F, Richard J, Androphy EJ. AMF-1/Gps2 binds p300 and enhances its interaction with papillomavirus E2 proteins. J Virol 2000; 74:5872-9. [PMID: 10846067 PMCID: PMC112082 DOI: 10.1128/jvi.74.13.5872-5879.2000] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2000] [Accepted: 04/04/2000] [Indexed: 01/12/2023] Open
Abstract
The cellular protein AMF-1 (Gps2) positively modulates gene expression by the papillomavirus E2 protein (D. E. Breiding et al., Mol. Cell. Biol. 17:7208-7219, 1997). We show here that AMF-1 also binds the transcriptional coactivator p300 in vitro and in vivo. E2 interacted weakly with p300. These observations led to a model in which AMF-1 recruits p300 into a complex with E2. Cotransfection of AMF-1 or p300 stimulated levels of E2-dependent transcription, while cotransfection of both AMF-1 and p300 showed an additive effect. The functional significance of p300 recruitment for E2 transactivation was evidenced by repression of E2-activated transcription by adenovirus E1A, which inhibits both coactivator and acetylase activities of p300. Antibodies to AMF-1 or E2 immunoprecipitated histone acetylase activity from cell lysates. Western blotting using antibody against acetyl-lysine failed to detect acetylation of AMF-1 or E2 in complex with p300. These results suggest that AMF-1 facilitates the recruitment of p300 and its histone acetylase activity into complexes with E2 and represents a novel mechanism of transcriptional activation.
Collapse
Affiliation(s)
- Y C Peng
- Department of Dermatology, New England Medical Center, Tufts University School of Medicine, Boston, MA 02111, USA
| | | | | | | | | |
Collapse
|
121
|
Kadota Y, Okumura M, Miyoshi S, Kitagawa-Sakakida S, Inoue M, Shiono H, Maeda Y, Kinoshita T, Shirakura R, Matsuda H. Altered T cell development in human thymoma is related to impairment of MHC class II transactivator expression induced by interferon-gamma (IFN-gamma). Clin Exp Immunol 2000; 121:59-68. [PMID: 10886240 PMCID: PMC1905672 DOI: 10.1046/j.1365-2249.2000.01256.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Thymoma is known to contain CD4+CD8+ T cells, indicating that neoplastic epithelial cells of thymoma have a function as thymic cortical epithelium. However, it has been shown that there is an impairment of CD4+ T cell development in thymoma and that IFN-gamma-induced HLA-DR expression on cultured thymic epithelial cells (TEC) derived from thymoma is decreased when compared with the normal thymus. MHC class II transactivator (CIITA) is known to play a critical role in IFN-gamma-induced MHC II expression. In this study, we attempted to elucidate whether CIITA is responsible for the impaired up-regulation of MHC II molecules in response to IFN-gamma in thymoma TEC. A quantitative reverse transriptase-polymerase chain reaction examination revealed that the induced level of CIITA was significantly lower in thymoma TEC than in normal TEC. The induced levels of invariant chain (Ii) and HLA-DR in thymoma TEC were correlated with CIITA expression. The proportion of CD3+ cells in the CD4+CD8- subset in thymoma was also correlated with CIITA expression. A gel mobility shift assay however, revealed translocation of STAT1 to the nucleus in thymoma as well as normal TEC. Intercellular adhesion molecule-1 was up-regulated in the thymoma TEC to a level similar to normal TEC in response to IFN-gamma. These results indicate that impaired up-regulation of HLA-DR in response to IFN-gamma results from insufficient induction of CIITA, but not from the signal from IFN-gamma receptor to the nucleus. The abnormal regulation of HLA-DR expression caused by impaired induction of CIITA may affect CD4+ T cell development in thymoma.
Collapse
Affiliation(s)
- Y Kadota
- Division of Organ Transplantation, Biomedical Research Center, Osaka, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
122
|
Abstract
Abstract
The major histocompatibility complex (MHC) class I genes are induced synergistically by interferons (IFN) and tumor necrosis factor (TNF) , a response thought to involve the cooperative action of Rel/NF-kB and interferon regulatory factor (IRF) transcription factors. The IFN-γ–inducible class II transcriptional activator (CIITA) has recently been shown to transactivate MHC class I as well as class II genes, and this investigation shows that CIITA synergizes strongly with RelA to stimulate HLA class I expression. The functional interaction of CIITA and RelA requires both promoter elements and the upstream Rel binding site and is not seen with a class II reporter. The promoter elements necessary for CIITA action are also required for induction by IFN-. HLA-A and HLA-B loci respond differentially to IFNs, and we identify locus-specific differences in critical promoter elements in addition to known polymorphisms in the Rel and IRF binding sites. The HLA-A promoter is transactivated relatively poorly by CIITA and does not interact detectably with CREB proteins implicated in CIITA recruitment, but the synergism with RelA can compensate for this weakness. The present findings illustrate that multiple transcription factors cooperate to regulate class I expression and that their relative importance differs according to the locus and cell type examined.
Collapse
|
123
|
Abstract
The major histocompatibility complex (MHC) class I genes are induced synergistically by interferons (IFN) and tumor necrosis factor (TNF) , a response thought to involve the cooperative action of Rel/NF-kB and interferon regulatory factor (IRF) transcription factors. The IFN-γ–inducible class II transcriptional activator (CIITA) has recently been shown to transactivate MHC class I as well as class II genes, and this investigation shows that CIITA synergizes strongly with RelA to stimulate HLA class I expression. The functional interaction of CIITA and RelA requires both promoter elements and the upstream Rel binding site and is not seen with a class II reporter. The promoter elements necessary for CIITA action are also required for induction by IFN-. HLA-A and HLA-B loci respond differentially to IFNs, and we identify locus-specific differences in critical promoter elements in addition to known polymorphisms in the Rel and IRF binding sites. The HLA-A promoter is transactivated relatively poorly by CIITA and does not interact detectably with CREB proteins implicated in CIITA recruitment, but the synergism with RelA can compensate for this weakness. The present findings illustrate that multiple transcription factors cooperate to regulate class I expression and that their relative importance differs according to the locus and cell type examined.
Collapse
|
124
|
Volpi EV, Chevret E, Jones T, Vatcheva R, Williamson J, Beck S, Campbell RD, Goldsworthy M, Powis SH, Ragoussis J, Trowsdale J, Sheer D. Large-scale chromatin organization of the major histocompatibility complex and other regions of human chromosome 6 and its response to interferon in interphase nuclei. J Cell Sci 2000; 113 ( Pt 9):1565-76. [PMID: 10751148 DOI: 10.1242/jcs.113.9.1565] [Citation(s) in RCA: 320] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The large-scale chromatin organization of the major histocompatibility complex and other regions of chromosome 6 was studied by three-dimensional image analysis in human cell types with major differences in transcriptional activity. Entire gene clusters were visualized by fluorescence in situ hybridization with multiple locus-specific probes. Individual genomic regions showed distinct configurations in relation to the chromosome 6 terrritory. Large chromatin loops containing several megabases of DNA were observed extending outwards from the surface of the domain defined by the specific chromosome 6 paint. The frequency with which a genomic region was observed on an external chromatin loop was cell type dependent and appeared to be related to the number of active genes in that region. Transcriptional up-regulation of genes in the major histocompatibility complex by interferon-gamma led to an increase in the frequency with which this large gene cluster was found on an external chromatin loop. Our data are consistent with an association between large-scale chromatin organization of specific genomic regions and their transcriptional status.
Collapse
Affiliation(s)
- E V Volpi
- Human Cytogenetics Laboratory, Imperial Cancer Research Fund, London WC2A 3PX, UK
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
125
|
Masternak K, Muhlethaler-Mottet A, Villard J, Zufferey M, Steimle V, Reith W. CIITA is a transcriptional coactivator that is recruited to MHC class II promoters by multiple synergistic interactions with an enhanceosome complex. Genes Dev 2000; 14:1156-66. [PMID: 10809673 PMCID: PMC316580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
By virtue of its control over major histocompatibility complex class II (MHC-II) gene expression, CIITA represents a key molecule in the regulation of adaptive immune responses. It was first identified as a factor that is defective in MHC-II deficiency, a hereditary disease characterized by the absence of MHC-II expression. CIITA is a highly regulated transactivator that governs all spatial, temporal, and quantitative aspects of MHC-II expression. It has been proposed to act as a non-DNA-binding transcriptional coactivator, but evidence that it actually functions at the level of MHC-II promoters was lacking. By means of chromatin immunoprecipitation assays, we show here for the first time that CIITA is physically associated with MHC-II, as well as HLA-DM, Ii, MHC-I, and beta(2)m promoters in vivo. To dissect the mechanism by which CIITA is recruited to the promoter, we have developed a DNA-dependent coimmunoprecipitation assay and a pull-down assay using immobilized promoter templates. We demonstrate that CIITA recruitment depends on multiple, synergistic protein-protein interactions with DNA-bound factors constituting the MHC-II enhanceosome. CIITA therefore represents a paradigm for a novel type of regulatory and gene-specific transcriptional cofactor.
Collapse
Affiliation(s)
- K Masternak
- Department of Genetics and Microbiology, University of Geneva Medical School, 1211 Geneva, Switzerland
| | | | | | | | | | | |
Collapse
|
126
|
Masternak K, Muhlethaler-Mottet A, Villard J, Zufferey M, Steimle V, Reith W. CIITA is a transcriptional coactivator that is recruited to MHC class II promoters by multiple synergistic interactions with an enhanceosome complex. Genes Dev 2000. [DOI: 10.1101/gad.14.9.1156] [Citation(s) in RCA: 176] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
By virtue of its control over major histocompatibility complex class II (MHC-II) gene expression, CIITA represents a key molecule in the regulation of adaptive immune responses. It was first identified as a factor that is defective in MHC-II deficiency, a hereditary disease characterized by the absence of MHC-II expression. CIITA is a highly regulated transactivator that governs all spatial, temporal, and quantitative aspects of MHC-II expression. It has been proposed to act as a non-DNA-binding transcriptional coactivator, but evidence that it actually functions at the level of MHC-II promoters was lacking. By means of chromatin immunoprecipitation assays, we show here for the first time that CIITA is physically associated with MHC-II, as well asHLA–DM, Ii, MHC-I, and β2mpromoters in vivo. To dissect the mechanism by which CIITA is recruited to the promoter, we have developed a DNA-dependent coimmunoprecipitation assay and a pull-down assay using immobilized promoter templates. We demonstrate that CIITA recruitment depends on multiple, synergistic protein–protein interactions with DNA-bound factors constituting the MHC-II enhanceosome. CIITA therefore represents a paradigm for a novel type of regulatory and gene-specific transcriptional cofactor.
Collapse
|
127
|
Saifuddin M, Roebuck KA, Chang C, Ting JP, Spear GT. Cutting edge: activation of HIV-1 transcription by the MHC class II transactivator. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2000; 164:3941-5. [PMID: 10754282 DOI: 10.4049/jimmunol.164.8.3941] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Both macrophages and activated CD4+ T cells can be productively infected by HIV-1, and both cell types express MHC class II molecules. Expression of MHC class II proteins in these cells is regulated by a specific transcriptional coactivator, the class II transactivator (CIITA). In this study, we report for the first time that CIITA expression profoundly influences HIV-1 replication. Stable expression of CIITA in Jurkat cells markedly increased 1) HIV-1 replication as assessed by the p24 Ag production and 2) luciferase expression after transfection with full-length provirus or long terminal repeat constructs. Similarly, transient expression of CIITA increased provirus expression as well as long terminal repeat promoter activity in 293 and HeLa-T4 cells. In contrast, mutant forms of CIITA did not increase HIV-1 expression. This study shows that expression of CIITA increases HIV-1 replication through a transcriptional mechanism.
Collapse
Affiliation(s)
- M Saifuddin
- Department of Immunology/Microbiology, Rush University, Chicago, IL 60612, USA.
| | | | | | | | | |
Collapse
|
128
|
Boisvert FM, Hendzel MJ, Bazett-Jones DP. Promyelocytic leukemia (PML) nuclear bodies are protein structures that do not accumulate RNA. J Cell Biol 2000; 148:283-92. [PMID: 10648561 PMCID: PMC2174275 DOI: 10.1083/jcb.148.2.283] [Citation(s) in RCA: 214] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The promyelocytic leukemia (PML) nuclear body (also referred to as ND10, POD, and Kr body) is involved in oncogenesis and viral infection. This subnuclear domain has been reported to be rich in RNA and a site of nascent RNA synthesis, implicating its direct involvement in the regulation of gene expression. We used an analytical transmission electron microscopic method to determine the structure and composition of PML nuclear bodies and the surrounding nucleoplasm. Electron spectroscopic imaging (ESI) demonstrates that the core of the PML nuclear body is a dense, protein-based structure, 250 nm in diameter, which does not contain detectable nucleic acid. Although PML nuclear bodies contain neither chromatin nor nascent RNA, newly synthesized RNA is associated with the periphery of the PML nuclear body, and is found within the chromatin-depleted region of the nucleoplasm immediately surrounding the core of the PML nuclear body. We further show that the RNA does not accumulate in the protein core of the structure. Our results dismiss the hypothesis that the PML nuclear body is a site of transcription, but support the model in which the PML nuclear body may contribute to the formation of a favorable nuclear environment for the expression of specific genes.
Collapse
Affiliation(s)
| | - Michael J. Hendzel
- Department of Cell Biology and Anatomy, Calgary, Alberta, Canada T2N 4N1
| | | |
Collapse
|
129
|
Kanazawa S, Okamoto T, Peterlin BM. Tat competes with CIITA for the binding to P-TEFb and blocks the expression of MHC class II genes in HIV infection. Immunity 2000; 12:61-70. [PMID: 10661406 DOI: 10.1016/s1074-7613(00)80159-4] [Citation(s) in RCA: 216] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
AIDS and the bare lymphocyte syndrome (BLS) are severe combined immunodeficiencies. BLS results from mutations in genes that regulate the expression of class II major histocompatibility (MHC II) determinants. One of these is the class II transactivator (CIITA). HIV and its transcriptional transactivator (Tat) also block the expression of MHC II genes. By binding to the same surface in the cyclin T1, which together with CDK9 forms the positive transcription elongation factor b (P-TEFb) complex, Tat inhibits CIITA. CIITA can also activate transcription when tethered artificially to RNA. Moreover, a dominant-negative CDK9 protein inhibits the activity of MHC II promoters. Thus, CIITA is a novel cellular coactivator that binds to P-TEFb for the expression of its target genes.
Collapse
Affiliation(s)
- S Kanazawa
- Howard Hughes Medical Institute, Department of Medicine, University of California, San Francisco 94143, USA
| | | | | |
Collapse
|
130
|
Eklund EA, Kakar R. Recruitment of CREB-Binding Protein by PU.1, IFN-Regulatory Factor-1, and the IFN Consensus Sequence-Binding Protein Is Necessary for IFN-γ-Induced p67 phox and gp91 phox Expression. THE JOURNAL OF IMMUNOLOGY 1999. [DOI: 10.4049/jimmunol.163.11.6095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Abstract
Activation of the phagocyte respiratory burst oxidase requires interaction between the oxidase components p47phox, p67phox, p22phox, and gp91phox. IFN-γ induces transcription of the genes encoding p67phox (the NCF2 gene) and gp91phox (the CYBB gene) during monocyte differentiation, and also in mature monocytes. In these studies, we identify an NCF2 cis element, necessary for IFN-γ-induced p67phox expression, and determine that this element is activated by cooperation between the transcription factors PU.1, IFN regulatory factor 1 (IRF1), and the IFN consensus-binding protein (ICSBP). Previously, we identified a CYBB cis element, necessary for IFN-γ-induced gp91phox expression, and also activated by this transcription factor combination. In these investigations, we determine that recruitment of a coactivator protein, CBP (the CREBbinding protein), to the CYBB or NCF2 promoter is the molecular mechanism of transcriptional activation by PU.1, IRF1, and ICSBP. Also, we determine that the multiprotein interaction of CBP with PU.1, IRF1, and ICSBP requires either the CYBB- or NCF2--binding site. Because IFN-γ induces simultaneous expression of p67phox and gp91phox, these investigations identify a molecular event that coordinates oxidase gene transcription during the inflammatory response. Also, these investigations identify CBP recruitment by cooperation between PU.1, IRF1, and ICSBP as a novel molecular mechanism for IFN-γ-induced activation of myeloid genes that are involved in the system of host defense.
Collapse
Affiliation(s)
- Elizabeth A. Eklund
- flurleen B. Wallace Tumor Institute, Department of Hematology and Oncology and the Comprehensive Cancer Center, University of Alabama, Birmingham, and The Birmingham Veterans Administration Hospital, Birmingham, AL 35294
| | - Renu Kakar
- flurleen B. Wallace Tumor Institute, Department of Hematology and Oncology and the Comprehensive Cancer Center, University of Alabama, Birmingham, and The Birmingham Veterans Administration Hospital, Birmingham, AL 35294
| |
Collapse
|
131
|
Nikcevich KM, Piskurich JF, Hellendall RP, Wang Y, Ting JP. Differential selectivity of CIITA promoter activation by IFN-gamma and IRF-1 in astrocytes and macrophages: CIITA promoter activation is not affected by TNF-alpha. J Neuroimmunol 1999; 99:195-204. [PMID: 10505975 DOI: 10.1016/s0165-5728(99)00117-4] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
During demyelinating disease of the central nervous system (CNS), locally elevated cytokine levels may induce upregulation of MHC class II molecules on otherwise low expressing or negative cell types such as microglia and astrocytes, since IFN-gamma has been shown to induce MHC class II expression on these cell types in vitro. While many transcription factors are involved with MHC class II expression, only the class II transactivator (CIITA) is tightly coordinated with IFN-gamma-inducibility. Control of CIITA gene expression is complex, involving four distinct promoters, two of which (promoters III and IV) are IFN-gamma-inducible in certain cell types. Here we demonstrate that IFN-gamma treatment of rat astrocytes induces only CIITA promoter IV activity in contrast to the murine macrophage cell line RAW 264.7 that uses both IFN-gamma-inducible promoters. In contrast to previously published reports, promoter IV activation is completely dependent upon an intact interferon regulatory factor-1 (IRF-1) but not STAT binding site using promoter constructs specifically mutated at these positions. Importantly, while TNF-alpha is able to synergize with IFN-gamma to increase astrocyte MHC class II expression in vitro, we show that treatment of rat astrocytes with TNF-alpha has no effect on CIITA promoter activity. These data demonstrate that TNF-alpha augments MHC class II expression through a mechanism downstream or independent of CIITA induction.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Astrocytes/cytology
- Astrocytes/immunology
- Brain/cytology
- Brain/immunology
- Cells, Cultured
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/immunology
- DNA-Binding Proteins/metabolism
- Encephalomyelitis, Autoimmune, Experimental/genetics
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Female
- Gene Expression Regulation/drug effects
- Gene Expression Regulation/immunology
- Genes, MHC Class II/genetics
- Genes, MHC Class II/immunology
- Genes, Reporter
- Interferon Regulatory Factor-1
- Interferon-gamma/pharmacology
- Luciferases/genetics
- Macrophages/cytology
- Macrophages/immunology
- Nuclear Proteins
- Phosphoproteins/genetics
- Phosphoproteins/immunology
- Phosphoproteins/metabolism
- Pregnancy
- Promoter Regions, Genetic/immunology
- Protein Binding/genetics
- Protein Binding/immunology
- Rats
- Rats, Sprague-Dawley
- STAT1 Transcription Factor
- Trans-Activators/genetics
- Trans-Activators/immunology
- Trans-Activators/metabolism
- Transfection
- Tumor Necrosis Factor-alpha/genetics
- Tumor Necrosis Factor-alpha/immunology
- Tumor Necrosis Factor-alpha/pharmacology
Collapse
Affiliation(s)
- K M Nikcevich
- Department of Microbiology-Immunology, University of North Carolina Lineberger Comprehensive Cancer Center, University of North Carolina-Chapel Hill, 27599-7295, USA
| | | | | | | | | |
Collapse
|
132
|
Zhu X, Pattenden S, Bremner R. pRB is required for interferon-gamma-induction of the MHC class II abeta gene. Oncogene 1999; 18:4940-7. [PMID: 10490828 DOI: 10.1038/sj.onc.1202876] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
pRB is required for IFN-gamma-induction of MHC class II in human tumor cell lines, providing a potential link between tumor suppressors and the immune system. However, other genes, such as cyclin D1, show pRB-dependency only in tumor cells, so by analogy, pRB may not be necessary for cII-regulation in normal cells. Here, we demonstrate that induction of the mouse MHC class II I-A heterodimer is normal in RB+/+ mouse embryonic fibroblasts (MEFs), but deficient in RB-/- MEFs. Inducibility is restored in RB-/- MEFs stably transfected with wild type RB cDNA or infected with an adenovirus expressing pRB. Thus, involvement of pRB in MHC class II expression is conserved in the mouse and is not an aberrant feature of tumorigenic, aneuploid, human tumor cells. Although cII genes are generally induced in a coordinate fashion, suggesting a common mechanism, we found that pRB was specifically required for induction of the Abeta, but not Aalpha or other MHC cII genes including Ebeta, Ii and H2-Malpha. Finally, IFN-gamma-induction of class II transactivator (CIITA), was pRB-independent, suggesting that pRB works downstream of this master-regulator of MHC class II expression.
Collapse
Affiliation(s)
- X Zhu
- Eye Research Institute for Canada, 399 Bathurst Street, Toronto, Ontario, Canada, M5T 2S8
| | | | | |
Collapse
|
133
|
Boss JM. A common set of factors control the expression of the MHC class II, invariant chain, and HLA-DM genes. Microbes Infect 1999; 1:847-53. [PMID: 10614001 DOI: 10.1016/s1286-4579(99)00234-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- J M Boss
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
134
|
Alcaïde-Loridan C, Lennon AM, Bono MR, Barbouche R, Dellagi K, Fellous M. Differential expression of MHC class II isotype chains. Microbes Infect 1999; 1:929-34. [PMID: 10614011 DOI: 10.1016/s1286-4579(99)00224-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- C Alcaïde-Loridan
- Unité d'immunogénétique humaine, Inserm U396, Institut Biomédical des Cordeliers, 15 rue de l'Ecole de Médecine, 75006 Paris, France
| | | | | | | | | | | |
Collapse
|
135
|
Fontes JD, Kanazawa S, Nekrep N, Peterlin BM. The class II transactivator CIITA is a transcriptional integrator. Microbes Infect 1999; 1:863-9. [PMID: 10614003 DOI: 10.1016/s1286-4579(99)00232-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- J D Fontes
- Department of Medicine, Microbiology and Immunology, Howard Hughes Medical Institute, University of California, San Francisco, CA 94143-0703, USA
| | | | | | | |
Collapse
|
136
|
Pan-Yun Ting J, Zhu XS. Class II MHC genes: a model gene regulatory system with great biologic consequences. Microbes Infect 1999. [DOI: 10.1016/s1286-4579(99)00233-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
137
|
Reith W, Muhlethaler-Mottet A, Masternak K, Villard J, Mach B. The molecular basis of MHC class II deficiency and transcriptional control of MHC class II gene expression. Microbes Infect 1999; 1:839-46. [PMID: 10614000 DOI: 10.1016/s1286-4579(99)00235-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- W Reith
- Department of Genetics and Microbiology, University of Geneva Medical School, 1, rue Michel-Servet, 1211 Geneva 4, Switzerland
| | | | | | | | | |
Collapse
|
138
|
Chang CH, Roys S, Gourley T. Class II transactivator: is it a master switch for MHC class II gene expression? Microbes Infect 1999; 1:879-85. [PMID: 10614005 DOI: 10.1016/s1286-4579(99)00230-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- C H Chang
- Department of Microbiology and Immunology, The University of Michigan Medical School, Ann Arbor, MI 48109-0620, USA
| | | | | |
Collapse
|
139
|
Harton JA, Cressman DE, Chin KC, Der CJ, Ting JP. GTP binding by class II transactivator: role in nuclear import. Science 1999; 285:1402-5. [PMID: 10464099 DOI: 10.1126/science.285.5432.1402] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Class II transactivator (CIITA) is a global transcriptional coactivator of human leukocyte antigen-D (HLA-D) genes. CIITA contains motifs similar to guanosine triphosphate (GTP)-binding proteins. This report shows that CIITA binds GTP, and mutations in these motifs decrease its GTP-binding and transactivation activity. Substitution of these motifs with analogous sequences from Ras restores CIITA function. CIITA exhibits little GTPase activity, yet mutations in CIITA that confer GTPase activity reduce transcriptional activity. GTP binding by CIITA correlates with nuclear import. Thus, unlike other GTP-binding proteins, CIITA is involved in transcriptional activation that uses GTP binding to facilitate its own nuclear import.
Collapse
Affiliation(s)
- J A Harton
- Lineberger Comprehensive Cancer Center, University of North Carolina-Chapel Hill, Chapel Hill, NC 27599, USA
| | | | | | | | | |
Collapse
|
140
|
DeSandro A, Nagarajan UM, Boss JM. The bare lymphocyte syndrome: molecular clues to the transcriptional regulation of major histocompatibility complex class II genes. Am J Hum Genet 1999; 65:279-86. [PMID: 10417269 PMCID: PMC1377925 DOI: 10.1086/302519] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Affiliation(s)
- A DeSandro
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | | |
Collapse
|
141
|
Moreno CS, Beresford GW, Louis-Plence P, Morris AC, Boss JM. CREB regulates MHC class II expression in a CIITA-dependent manner. Immunity 1999; 10:143-51. [PMID: 10072067 DOI: 10.1016/s1074-7613(00)80015-1] [Citation(s) in RCA: 155] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The X2 box of MHC class II promoters is homologous to TRE/CRE elements and is required for expression of MHC class II genes. The X2 box-specific DNA binding activity, X2BP, was purified to homogeneity, sequenced, and identified as CREB. Transient transactivation experiments showed that CREB can cooperate with CIITA to enhance activation of transcription from MHC class II promoters in a dose-dependent manner. Binding of CREB to the class II promoter in vivo was demonstrated by a chromatin immunoprecipitation assay. Additionally, ICER, a dominant inhibitor of CREB function, was found to repress class II expression. These results demonstrate that CREB binds to the X2 box in vivo and cooperates with CIITA to direct MHC class II expression.
Collapse
Affiliation(s)
- C S Moreno
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | | | | | | | | |
Collapse
|