101
|
Zhu L, Li C, Liu Q, Xu W, Zhou X. Molecular biomarkers in cardiac hypertrophy. J Cell Mol Med 2019; 23:1671-1677. [PMID: 30648807 PMCID: PMC6378174 DOI: 10.1111/jcmm.14129] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Revised: 11/30/2018] [Accepted: 12/10/2018] [Indexed: 12/21/2022] Open
Abstract
Cardiac hypertrophy is characterized by an increase in myocyte size in the absence of cell division. This condition is thought to be an adaptive response to cardiac wall stress resulting from the enhanced cardiac afterload. The pathogenesis of heart dysfunction, which is one of the primary causes of morbidity and mortality in elderly people, is often associated with myocardial remodelling caused by cardiac hypertrophy. In order to well understand the potential mechanisms, we described the molecules involved in the development and progression of myocardial hypertrophy. Increasing evidence has indicated that micro‐RNAs are involved in the pathogenesis of cardiac hypertrophy. In addition, molecular biomarkers including vascular endothelial growth factor B, NAD‐dependent deacetylase sirtuin‐3, growth/differentiation factor 15 and glycoprotein 130, also play important roles in the development of myocardial hypertrophy. Knowing the regulatory mechanisms of these biomarkers in the heart may help identify new molecular targets for the treatment of cardiac hypertrophy.
Collapse
Affiliation(s)
- Liu Zhu
- Department of Cardiology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Chao Li
- Department of Cardiology, Fuwai Hospital, Chinese Academy of Medical Sciences, Shenzhen, China
| | - Qiang Liu
- Department of Cardiology, Fuwai Hospital, Chinese Academy of Medical Sciences, Shenzhen, China
| | - Weiting Xu
- Department of Cardiology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Xiang Zhou
- Department of Cardiology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
102
|
Song Y, Cui Y, Zhang X, Lin H, Zhang G, Zeng H, Zeng Y. Increased serum levels of MIC1/GDF15 correlated with bone erosion in spondyloarthritis: A pilot study. Medicine (Baltimore) 2018; 97:e13733. [PMID: 30572513 PMCID: PMC6320148 DOI: 10.1097/md.0000000000013733] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
INTRODUCTION To assess the association between growth differentiation factor-15 (GDF15) and radiographic features including bone marrow edema and bone erosion in Spondyloarthritis (SpA). METHODS Patients with SpA (n = 120) receiving treatment in the Guangdong General Hospital, China, between August 2012 and December 2016 were retrospectively included. Serum of patients and healthy controls (n = 30) were collected and GDF15 levels were measured using ELISA. Inflammation was assessed by C-reactive protein (CRP), and magnetic resonance imaging (MRI) of the sacroiliac joint using Spondyloarthritis Research Consortium of Canada score and a method of dichotomy to assess fat metaplasia, bone erosion, and ankylosis. Radiographs of the pelvis were scored using the modified New York (mNY) score. RESULTS Serum GDF15 levels were higher in SpA patients compared to controls (503.52 ± 222.92 vs. 190.86 ± 104.18 pg/mL, P < .0001). Patients who suffered from bone erosion on MRI had higher levels of GDF15 (525.72 [186.33, 801.62]vs. 428.06 [255.15, 670.98] pg/mL, P = .0375). There was a positive correlation between serum GDF15 and CRP (r = 0.5442, P < .0001). Moreover, GDF15 levels were related to CRP levels (r = 0.5658, P < .0001) in those X-ray scores were III, according to 1984mNY criteria. Receiver operating characteristic (ROC) analysis showed that GDF15 levels above 501.98pg/mL could predict presence of bone erosion on MRI. CONCLUSION The present study suggested that serum GDF15 levels are higher in SpA patients than in healthy controls. The GDF15 level was correlated with CRP and may be a surrogate biomarker in bone erosion.
Collapse
Affiliation(s)
| | - Yang Cui
- Department of Rheumatology, Guangdong General Hospital, Guangdong Academy of Medical Sciences
- Southern Medical University
| | - Xiao Zhang
- Department of Rheumatology, Guangdong General Hospital, Guangdong Academy of Medical Sciences
| | - Haobo Lin
- Department of Rheumatology, Guangdong General Hospital, Guangdong Academy of Medical Sciences
| | - Guangfeng Zhang
- Department of Rheumatology, Guangdong General Hospital, Guangdong Academy of Medical Sciences
| | - Hui Zeng
- Medical Imaging Centre, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Yonghan Zeng
- Medical Imaging Centre, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| |
Collapse
|
103
|
Emmerson PJ, Duffin KL, Chintharlapalli S, Wu X. GDF15 and Growth Control. Front Physiol 2018; 9:1712. [PMID: 30542297 PMCID: PMC6277789 DOI: 10.3389/fphys.2018.01712] [Citation(s) in RCA: 131] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Accepted: 11/14/2018] [Indexed: 12/12/2022] Open
Abstract
Growth/differentiation factor-15 (GDF-15) is a distant member of the transforming growth factor β (TGF-β) superfamily and is widely expressed in multiple mammalian tissues. Its expression is highly regulated and is often induced in response to conditions associated with cellular stress. GDF15 serum levels have a strong association with many diseases, including inflammation, cancer, cardiovascular diseases, and obesity, and potentially serve as reliable predictor of disease progression. A functional role for GDF15 has been suggested in cancer, cardiovascular disease, kidney disease and metabolic disease. However, the knowledge of its pathophysiological function at the molecular level is still limited and requires more investigation. Recent identification of the endogenous receptor for GDF15 may provide additional insight in to its' molecular mechanisms and relationship to disease states.
Collapse
Affiliation(s)
- Paul J Emmerson
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, United States
| | - Kevin L Duffin
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, United States
| | | | - Xinle Wu
- Lilly China Innovation and Partnerships, Shanghai, China
| |
Collapse
|
104
|
Becker BV, Majewski M, Abend M, Palnek A, Nestler K, Port M, Ullmann R. Gene expression changes in human iPSC-derived cardiomyocytes after X-ray irradiation. Int J Radiat Biol 2018; 94:1095-1103. [PMID: 30247079 DOI: 10.1080/09553002.2018.1516908] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Purpose: Radiation-induced heart disease caused by cardiac exposure to ionizing radiation comprises a variety of cardiovascular effects. Research in this field has been hampered by limited availability of clinical samples and appropriate test models. In this study, we wanted to elucidate the molecular mechanisms underlying electrophysiological changes, which we have observed in a previous study. Materials and methods: We employed RNA deep-sequencing of human-induced pluripotent stem cell derived cardiomyocytes (hiPSC-CMs) 48 h after 5 Gy X-ray irradiation. By comparison to public data from hiPSC-CMs and human myocardium, we verified the expression of cardiac-specific genes in hiPSC-CMs. Results were validated by qRT-PCR. Results: Differentially gene expression analysis identified 39 and 481 significantly up- and down-regulated genes after irradiation, respectively. Besides, a large fraction of genes associated with cell cycle processes, we identified genes implicated in cardiac calcium homeostasis (PDE3B), oxidative stress response (FDXR and SPATA18) and the etiology of cardiomyopathy (SGCD, BBC3 and GDF15). Conclusions: Notably, observed gene expression characteristics specific to hiPSC-CMs might be relevant regarding further investigations of the response to external stressors like radiation. The genes and biological processes highlighted in our study present promising starting points for functional follow-up studies for which hiPSC-CMs could pose an appropriate cell model when cell type specific peculiarities are taken into account.
Collapse
Affiliation(s)
- Benjamin V Becker
- a Bundeswehr Institute of Radiobiology affiliated to Ulm University , Munich , Germany
| | - Matthäus Majewski
- a Bundeswehr Institute of Radiobiology affiliated to Ulm University , Munich , Germany
| | - Michael Abend
- a Bundeswehr Institute of Radiobiology affiliated to Ulm University , Munich , Germany
| | - Andreas Palnek
- a Bundeswehr Institute of Radiobiology affiliated to Ulm University , Munich , Germany
| | - Kai Nestler
- b Bundeswehr Institute for Preventive Medicine , Koblenz , Germany
| | - Matthias Port
- a Bundeswehr Institute of Radiobiology affiliated to Ulm University , Munich , Germany
| | - Reinhard Ullmann
- a Bundeswehr Institute of Radiobiology affiliated to Ulm University , Munich , Germany
| |
Collapse
|
105
|
The MIC-1/GDF15-GFRAL Pathway in Energy Homeostasis: Implications for Obesity, Cachexia, and Other Associated Diseases. Cell Metab 2018; 28:353-368. [PMID: 30184485 DOI: 10.1016/j.cmet.2018.07.018] [Citation(s) in RCA: 272] [Impact Index Per Article: 38.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
MIC-1/GDF15 is a stress response cytokine and a distant member of the transforming growth factor beta (TGFb) superfamily, with no close relatives. It acts via a recently identified receptor called glial-derived neurotrophic factor (GDNF) receptor alpha-like (GFRAL), which is a distant orphan member of the GDNF receptor family that signals through the tyrosine kinase receptor Ret. MIC-1/GDF15 expression and serum levels rise in response to many stimuli that initiate cell stress and as part of a wide variety of disease processes, most prominently cancer and cardiovascular disease. The best documented actions of MIC-1/GDF15 are on regulation of energy homeostasis. When MIC-1/GDF15 serum levels are substantially elevated in diseases like cancer, it subverts a physiological pathway of appetite regulation to induce an anorexia/cachexia syndrome initiated by its actions on hindbrain neurons. These effects make it a potential target for the treatment of both obesity and anorexia/cachexia syndromes, disorders lacking any highly effective, readily accessible therapies.
Collapse
|
106
|
Vocka M, Langer D, Fryba V, Petrtyl J, Hanus T, Kalousova M, Zima T, Petruzelka L. Growth/differentiation factor 15 (GDF-15) as new potential serum marker in patients with metastatic colorectal cancer. Cancer Biomark 2018; 21:869-874. [PMID: 29400662 DOI: 10.3233/cbm-170792] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
BACKGROUND GDF-15 is a protein belonging to the transforming growth factor beta superfamily that has a role in regulating inflammatory and apoptotic pathways. High level GDF-15 in tumor tissues and plasma correlate with an increased risk of recurrence and reduced overall survival. OBJECTIVE The aim of this study was to screen GDF-15 capacity to detecting metastatic CRC and compare it with standard tumor markers CEA and CA19-9. METHODS We collected serum samples from 97 patients with metastatic colorectal cancer and 79 samples from healthy controls. Serum levels of GDF-15, CEA and CA19-9 were measured by immunochemically. A Kaplan-Meier curve was applied for analysis of survival rates, and a log-rank was used for univariate analysis. RESULTS Serum levels of GDF-15 were significantly higher in patients with colorectal cancer compared to healthy controls (p< 0.001). In addition, serum levels of GDF-15 correlated with extent of liver involvement and patients with higher GDF-15 levels had significantly worse outcome (p< 0.0001). CONCLUSIONS Our results show GDF-15 as an effective biomarker in patients with metastatic colorectal cancer with the same sensitivity as CEA. In addition, GDF-15 levels strongly correlate with extension of liver involvement in contrast with CEA.
Collapse
Affiliation(s)
- Michal Vocka
- Department of Oncology, First Faculty of Medicine, Charles University, and General University Hospital in Prague, Prague 2, 128 08, Czech Republic
| | - Daniel Langer
- Surgery Department, Second Faculty of Medicine, Charles University, and Military University Hospital in Prague, Prague, Czech Republic
| | - Vladimir Fryba
- 1st Department of Surgery - Department of Abdominal, Thoracic Surgery and Traumatology, First Faculty of Medicine, Charles University, and General University Hospital in Prague, Prague 2, 128 08, Czech Republic
| | - Jaromir Petrtyl
- 4th Department of Internal Medicine - Department of Gastroenterology and Hepatology, First Faculty of Medicine, Charles University, and General University Hospital in Prague, Prague 2, 128 08, Czech Republic
| | - Tomas Hanus
- Department of Urology, First Faculty of Medicine, Charles University, and General University Hospital in Prague, Prague 2, 128 08, Czech Republic
| | - Marta Kalousova
- Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University, and General University Hospital in Prague, Prague 2, 128 08, Czech Republic
| | - Tomas Zima
- Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University, and General University Hospital in Prague, Prague 2, 128 08, Czech Republic
| | - Lubos Petruzelka
- Department of Oncology, First Faculty of Medicine, Charles University, and General University Hospital in Prague, Prague 2, 128 08, Czech Republic
| |
Collapse
|
107
|
Hofer M, Hoferová Z, Remšík J, Nováková M, Procházková J, Fedr R, Kohoutek J, Dušek L, Hampl A, Souček K. Hematological findings in non-treated and gamma-irradiated mice deficient for MIC-1/GDF15. Physiol Res 2018; 67:623-636. [PMID: 29750874 DOI: 10.33549/physiolres.933810] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Several members of the TGF-beta family are known to effectively regulate the fate of hematopoietic progenitor cells in a complex and context-dependent manner. Growth differentiation factor-15 (GDF15) is a divergent member of the TGF-beta family. This stress-induced cytokine has been proposed to possess immunomodulatory functions and its high expression is often associated with progression of a variety of pathological conditions. GDF15 is also induced by chemotherapy and irradiation. Very few fundamental studies have been published regarding the effect of GDF15 in hematopoiesis. In this study, we analyzed the hematological status of untreated and gamma-irradiated mice deficient for GDF15 as a result of genetic knock-out (KO), in order to clarify the regulatory role of GDF15 in hematopoiesis. Significant differences between GDF15 KO mice and their pertinent WT controls were found in the parameters of blood monocyte numbers, blood platelet size, and distribution width, as well as in the values of bone marrow granulocyte/macrophage progenitor cells. Different tendencies of some hematological parameters in the GDF15 KO mice in normal conditions and those under exposure of the mice to ionizing radiation were registered. These findings are discussed in the context of the GDF15 gene function and its lack under conditions of radiation-induced damage.
Collapse
Affiliation(s)
- M Hofer
- Department of Molecular Cytology and Cytometry, Institute of Biophysics of the Czech Academy of Sciences, Brno, Czech Republic. and Department of Cytokinetics, Institute of Biophysics of the Czech Academy of Sciences, Brno, Czech Republic.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
108
|
Pons M, Koniaris LG, Moe SM, Gutierrez JC, Esquela-Kerscher A, Zimmers TA. GDF11 induces kidney fibrosis, renal cell epithelial-to-mesenchymal transition, and kidney dysfunction and failure. Surgery 2018; 164:262-273. [PMID: 29731246 DOI: 10.1016/j.surg.2018.03.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Revised: 03/04/2018] [Accepted: 03/05/2018] [Indexed: 12/29/2022]
Abstract
BACKGROUND GDF11 modulates embryonic patterning and kidney organogenesis. Herein, we sought to define GDF11 function in the adult kidney and in renal diseases. METHODS In vitro renal cell lines, genetic, and murine in vivo renal injury models were examined. RESULTS Among tissues tested, Gdf11 was highest in normal adult mouse kidney. Expression was increased acutely after 5/6 nephrectomy, ischemia-reperfusion injury, kanamycin toxicity, or unilateral ureteric obstruction. Systemic, high-dose GDF11 administration in adult mice led to renal failure, with accompanying kidney atrophy, interstitial fibrosis, epithelial-to-mesenchymal transition of renal tubular cells, and eventually death. These effects were associated with phosphorylation of SMAD2 and could be blocked by follistatin. In contrast, Gdf11 heterozygous mice showed reduced renal Gdf11 expression, renal fibrosis, and expression of fibrosis-associated genes both at baseline and after unilateral ureteric obstruction compared with wild-type littermates. The kidney-specific consequences of GDF11 dose modulation are direct effects on kidney cells. GDF11 induced proliferation and activation of NRK49f renal fibroblasts and also promoted epithelial-to-mesenchymal transition of IMCD-3 tubular epithelial cells in a SMAD3-dependent manner. CONCLUSION Taken together, these data suggest that GDF11 and its downstream signals are critical in vivo mediators of renal injury. These effects are through direct actions of GDF11 on renal tubular cells and fibroblasts. Thus, regulation of GDF11 presents a therapeutic target for diseases involving renal fibrosis and impaired tubular function.
Collapse
Affiliation(s)
- Marianne Pons
- Department of Surgery, Indiana University School of Medicine, Indianapolis
| | | | - Sharon M Moe
- Department of Medicine, Indiana University School of Medicine, Indianapolis; Roudebush Veterans Administration Medical Center, Indianapolis, IN
| | | | - Aurora Esquela-Kerscher
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk
| | - Teresa A Zimmers
- Department of Surgery, Indiana University School of Medicine, Indianapolis; Departments of Anatomy and Cell Biology, Biochemistry and Molecular Biology and Otolaryngology-Head & Neck Surgery, Indiana University School of Medicine, Indianapolis; IU Simon Cancer Center, Indianapolis, IN
| |
Collapse
|
109
|
Kim KH, Kim SH, Han DH, Jo YS, Lee YH, Lee MS. Growth differentiation factor 15 ameliorates nonalcoholic steatohepatitis and related metabolic disorders in mice. Sci Rep 2018; 8:6789. [PMID: 29717162 PMCID: PMC5931608 DOI: 10.1038/s41598-018-25098-0] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 04/04/2018] [Indexed: 02/08/2023] Open
Abstract
Growth differentiation factor 15 (GDF15) is an endocrine hormone belonging to the TGFβ superfamily member. GDF15 administration or GDF15 overexpression has been reported to have anti-obesity and anti-diabetic effects. Although non-alcoholic fatty liver disease (NAFLD)/non-alcoholic steatohepatitis (NASH) is frequently associated with obesity and insulin resistance, the functional role of endogenous GDF15 and therapeutic effect of GDF15 overexpression in NASH and related metabolic deterioration have not been evaluated. Here, we found that GDF15 expression was increased in the livers of NASH animal models and human subjects with NASH. Elevated expression of GDF15 was due to diet-induced hepatic endoplasmic reticulum (ER) stress. Gdf15-knockout mice exhibited aggravated NASH phenotypes such as increased steatosis, hepatic inflammation, fibrosis, liver injury, and metabolic deterioration. Furthermore, GDF15 directly suppressed expression of fibrosis-related genes and osteopontin (OPN), contributing factors for NASH-related fibrosis, in hepatic stellate cells in vitro and in the liver of mice in vivo. Finally, we found that GDF15-transgenic mice showed attenuation of NASH phenotypes and metabolic deterioration. Therefore, our results suggest that induction of endogenous GDF15 is a compensatory mechanism to protect against the progression of NASH and that GDF15 could be an attractive therapeutic candidate for treatment of NASH and NASH-related metabolic deterioration.
Collapse
Affiliation(s)
- Kook Hwan Kim
- Severance Biomedical Research Institute, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea.
| | - Seong Hun Kim
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, South Korea
| | - Dai Hoon Han
- Department of Surgery, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea
| | - Young Suk Jo
- Department of Internal Medicine, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea
| | - Yong-Ho Lee
- Department of Internal Medicine, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea
| | - Myung-Shik Lee
- Severance Biomedical Research Institute, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea. .,Department of Internal Medicine, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea.
| |
Collapse
|
110
|
Jung SB, Choi MJ, Ryu D, Yi HS, Lee SE, Chang JY, Chung HK, Kim YK, Kang SG, Lee JH, Kim KS, Kim HJ, Kim CS, Lee CH, Williams RW, Kim H, Lee HK, Auwerx J, Shong M. Reduced oxidative capacity in macrophages results in systemic insulin resistance. Nat Commun 2018; 9:1551. [PMID: 29674655 PMCID: PMC5908799 DOI: 10.1038/s41467-018-03998-z] [Citation(s) in RCA: 124] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Accepted: 03/27/2018] [Indexed: 01/10/2023] Open
Abstract
Oxidative functions of adipose tissue macrophages control the polarization of M1-like and M2-like phenotypes, but whether reduced macrophage oxidative function causes systemic insulin resistance in vivo is not clear. Here, we show that mice with reduced mitochondrial oxidative phosphorylation (OxPhos) due to myeloid-specific deletion of CR6-interacting factor 1 (Crif1), an essential mitoribosomal factor involved in biogenesis of OxPhos subunits, have M1-like polarization of macrophages and systemic insulin resistance with adipose inflammation. Macrophage GDF15 expression is reduced in mice with impaired oxidative function, but induced upon stimulation with rosiglitazone and IL-4. GDF15 upregulates the oxidative function of macrophages, leading to M2-like polarization, and reverses insulin resistance in ob/ob mice and HFD-fed mice with myeloid-specific deletion of Crif1. Thus, reduced macrophage oxidative function controls systemic insulin resistance and adipose inflammation, which can be reversed with GDF15 and leads to improved oxidative function of macrophages. M1-like polarization of macrophages is thought to control adipose inflammation and associated insulin resistance and metabolic syndrome. Here the authors show that macrophage-specific deletion of the OxPhos-related gene Crif1 results in an M1-like phenotype in mice, and that the effects can be reversed by recombinant GDF15.
Collapse
Affiliation(s)
- Saet-Byel Jung
- Research Center for Endocrine and Metabolic Diseases, Department of Medical Science, School of Medicine, Chungnam National University, Daejeon, 35015, Korea
| | - Min Jeong Choi
- Research Center for Endocrine and Metabolic Diseases, Department of Medical Science, School of Medicine, Chungnam National University, Daejeon, 35015, Korea
| | - Dongryeol Ryu
- Laboratory for Integrative and Systems Physiology, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, 1015, Lausanne, Switzerland.,Laboratory of Molecular and Integrative Biology, Department of Korean Medical Science, School of Korean Medicine, Pusan National University, Yangsan, 50612, Korea
| | - Hyon-Seung Yi
- Department of Internal Medicine, Chungnam National University Hospital, Daejeon, 35015, Korea
| | - Seong Eun Lee
- Research Center for Endocrine and Metabolic Diseases, Department of Medical Science, School of Medicine, Chungnam National University, Daejeon, 35015, Korea
| | - Joon Young Chang
- Research Center for Endocrine and Metabolic Diseases, Department of Medical Science, School of Medicine, Chungnam National University, Daejeon, 35015, Korea
| | - Hyo Kyun Chung
- Research Center for Endocrine and Metabolic Diseases, Department of Medical Science, School of Medicine, Chungnam National University, Daejeon, 35015, Korea
| | - Yong Kyung Kim
- Research Center for Endocrine and Metabolic Diseases, Department of Medical Science, School of Medicine, Chungnam National University, Daejeon, 35015, Korea
| | - Seul Gi Kang
- Research Center for Endocrine and Metabolic Diseases, Department of Medical Science, School of Medicine, Chungnam National University, Daejeon, 35015, Korea
| | - Ju Hee Lee
- Department of Internal Medicine, Chungnam National University Hospital, Daejeon, 35015, Korea
| | - Koon Soon Kim
- Research Center for Endocrine and Metabolic Diseases, Department of Medical Science, School of Medicine, Chungnam National University, Daejeon, 35015, Korea.,Department of Internal Medicine, Chungnam National University Hospital, Daejeon, 35015, Korea
| | - Hyun Jin Kim
- Department of Internal Medicine, Chungnam National University Hospital, Daejeon, 35015, Korea
| | - Cuk-Seong Kim
- Department of Physiology, Department of Medical Science, School of Medicine, Chungnam National University, Daejeon, 35015, Korea
| | - Chul-Ho Lee
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Korea
| | - Robert W Williams
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Hail Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, 34051, Korea
| | - Heung Kyu Lee
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, 34051, Korea
| | - Johan Auwerx
- Laboratory for Integrative and Systems Physiology, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, 1015, Lausanne, Switzerland
| | - Minho Shong
- Research Center for Endocrine and Metabolic Diseases, Department of Medical Science, School of Medicine, Chungnam National University, Daejeon, 35015, Korea. .,Department of Internal Medicine, Chungnam National University Hospital, Daejeon, 35015, Korea.
| |
Collapse
|
111
|
Koo BK, Um SH, Seo DS, Joo SK, Bae JM, Park JH, Chang MS, Kim JH, Lee J, Jeong WI, Kim W. Growth differentiation factor 15 predicts advanced fibrosis in biopsy-proven non-alcoholic fatty liver disease. Liver Int 2018; 38:695-705. [PMID: 28898507 DOI: 10.1111/liv.13587] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 09/05/2017] [Indexed: 12/16/2022]
Abstract
BACKGROUND & AIMS We explored whether growth differentiation factor 15 (GDF15) affects the histological severity of non-alcoholic fatty liver disease (NAFLD) independent of insulin resistance. METHODS In a biopsy-proven NAFLD cohort, we measured serum GDF15 levels using enzyme-linked immunosorbent assays. RESULTS Among 190 subjects (mean age, 53 ± 14 years; men, 52.1%), 72 (men, 65.3%) and 78 (men, 44.9%) were diagnosed with biopsy-proven non-alcoholic fatty liver (NAFL) and non-alcoholic steatohepatitis (NASH) respectively. GDF15 levels were significantly higher in NASH patients than in controls (P = .010) or NAFL patients (P = .001). Subjects with advanced fibrosis (≥F3) also showed higher GDF15 levels compared to the others (F0-2; P < .001). Among NAFLD patients, the highest quartile of GDF15 levels was significantly associated with a risk of advanced fibrosis even after adjustment for age, gender, body mass index, smoking status, hypertension, diabetes, aspartate aminotransferase, platelet, albumin, insulin resistance and low skeletal muscle mass (odds ratio, 4.27; 95% confidence interval, 1.04-17.63), but not with NASH risk. GDF15 levels showed a significant positive correlation with liver stiffness (Spearman's ρ, .525; P < .001). Palmitate treatment increased the GDF15 mRNA expression level significantly in Kupffer cells, but not in hepatocytes. In LX-2 cells, GDF15 treatment resulted in enhanced expression of α-smooth muscle actin and collagen I, as well as phosphorylation of SMAD2 and SMAD3. CONCLUSIONS Our findings suggest that GDF15 may serve as a novel biomarker of advanced fibrosis in NAFLD, thereby indicating the need for urgent anti-fibrotic pharmacotherapy.
Collapse
Affiliation(s)
- Bo Kyung Koo
- Division of Endocrinology, Department of Internal Medicine, Seoul Metropolitan Government Boramae Medical Center, Seoul National University College of Medicine, Seoul, Korea
| | - Sung Hee Um
- Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Gyeonggi-do, Korea.,Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Samsung Medical Center, Sungkyunkwan University, Seoul, Korea
| | - Dong Soo Seo
- Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Gyeonggi-do, Korea
| | - Sae Kyung Joo
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Seoul Metropolitan Government Boramae Medical Center, Seoul National University College of Medicine, Seoul, Korea
| | - Jeong Mo Bae
- Department of Pathology, Seoul Metropolitan Government Boramae Medical Center, Seoul National University College of Medicine, Seoul, Korea
| | - Jeong Hwan Park
- Department of Pathology, Seoul Metropolitan Government Boramae Medical Center, Seoul National University College of Medicine, Seoul, Korea
| | - Mee Soo Chang
- Department of Pathology, Seoul Metropolitan Government Boramae Medical Center, Seoul National University College of Medicine, Seoul, Korea
| | - Jung Ho Kim
- Department of Pathology, Seoul Metropolitan Government Boramae Medical Center, Seoul National University College of Medicine, Seoul, Korea
| | - Jieun Lee
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Seoul Metropolitan Government Boramae Medical Center, Seoul National University College of Medicine, Seoul, Korea
| | - Won-Il Jeong
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Korea
| | - Won Kim
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Seoul Metropolitan Government Boramae Medical Center, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
112
|
Wu J, Jackson-Weaver O, Xu J. The TGFβ superfamily in cardiac dysfunction. Acta Biochim Biophys Sin (Shanghai) 2018; 50:323-335. [PMID: 29462261 DOI: 10.1093/abbs/gmy007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Indexed: 12/23/2022] Open
Abstract
TGFβ superfamily includes the transforming growth factor βs (TGFβs), bone morphogenetic proteins (BMPs), growth and differentiation factors (GDFs) and Activin/Inhibin families of ligands. Among the 33 members of TGFβ superfamily ligands, many act on multiple types of cells within the heart, including cardiomyocytes, cardiac fibroblasts/myofibroblasts, coronary endothelial cells, smooth muscle cells, and immune cells (e.g. monocytes/macrophages and neutrophils). In this review, we highlight recent discoveries on TGFβs, BMPs, and GDFs in different cardiac residential cellular components, in association with functional impacts in heart development, injury repair, and dysfunction. Specifically, we will review the roles of TGFβs, BMPs, and GDFs in cardiac hypertrophy, fibrosis, contractility, metabolism, angiogenesis, and regeneration.
Collapse
Affiliation(s)
- Jian Wu
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA 90033, USA
| | - Olan Jackson-Weaver
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA 90033, USA
| | - Jian Xu
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA 90033, USA
| |
Collapse
|
113
|
Jacobs R, Malherbe S, Loxton AG, Stanley K, van der Spuy G, Walzl G, Chegou NN. Identification of novel host biomarkers in plasma as candidates for the immunodiagnosis of tuberculosis disease and monitoring of tuberculosis treatment response. Oncotarget 2018; 7:57581-57592. [PMID: 27557501 PMCID: PMC5295374 DOI: 10.18632/oncotarget.11420] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 08/13/2016] [Indexed: 12/02/2022] Open
Abstract
There is an urgent need for new tools for the rapid diagnosis of tuberculosis disease. We evaluated the potentials of 74 host markers as biomarkers for the immunological diagnosis of tuberculosis and monitoring of treatment response. Fifty-five individuals that presented with signs and symptoms requiring investigation for tuberculosis disease were prospectively recruited prior to clinical diagnosis, at a health centre in Cape Town, South Africa. Patients were later classified as having tuberculosis disease or other respiratory diseases (ORD) using a combination of clinical, radiological and laboratory findings. Out of 74 host markers that were evaluated in plasma samples from study participants using a multiplex platform, 18 showed potential as tuberculosis diagnostic candidates with the most promising being NCAM, CRP, SAP, IP-10, ferritin, TPA, I-309, and MIG, which diagnosed tuberculosis disease individually, with area under the ROC curve ≥0.80. Six-marker biosignatures containing NCAM diagnosed tuberculosis disease with a sensitivity of 100% (95%CI, 86.3-100%) and specificity of 89.3% (95%CI, 67.6-97.3%) irrespective of HIV status, and 100% accuracy in the absence of HIV infection. Furthermore, the concentrations of 11 of these proteins changed with treatment, thereby indicating that they may be useful in monitoring of the response to tuberculosis treatment. Our findings have potential to be translated into a point-of-care screening test for tuberculosis, after future validation studies.
Collapse
Affiliation(s)
- Ruschca Jacobs
- Department of Biomedical Sciences, DST/NRF Centre of Excellence for Biomedical Tuberculosis Research and SAMRC Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Stephanus Malherbe
- Department of Biomedical Sciences, DST/NRF Centre of Excellence for Biomedical Tuberculosis Research and SAMRC Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Andre G Loxton
- Department of Biomedical Sciences, DST/NRF Centre of Excellence for Biomedical Tuberculosis Research and SAMRC Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Kim Stanley
- Department of Biomedical Sciences, DST/NRF Centre of Excellence for Biomedical Tuberculosis Research and SAMRC Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Gian van der Spuy
- Department of Biomedical Sciences, DST/NRF Centre of Excellence for Biomedical Tuberculosis Research and SAMRC Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Gerhard Walzl
- Department of Biomedical Sciences, DST/NRF Centre of Excellence for Biomedical Tuberculosis Research and SAMRC Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Novel N Chegou
- Department of Biomedical Sciences, DST/NRF Centre of Excellence for Biomedical Tuberculosis Research and SAMRC Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| |
Collapse
|
114
|
Hu XF, Zhan R, Xu S, Wang J, Wu J, Liu X, Li Y, Chen L. Growth differentiation factor 15 is associated with left atrial/left atrial appendage thrombus in patients with nonvalvular atrial fibrillation. Clin Cardiol 2018; 41:34-38. [PMID: 29363835 DOI: 10.1002/clc.22844] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2017] [Accepted: 10/20/2017] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND There is evidence suggesting that growth differentiation factor 15 (GDF-15) appears to be associated with stroke in patients with atrial fibrillation (AF). AF-related thromboembolic stroke is predominantly attributed to the thrombus from the left atrium (LA) or left atrial appendage (LAA). HYPOTHESIS GDF-15 is related to LA/LAA thrombus in nonvalvular AF (NVAF) patients. METHODS A total of 894 patients with NVAF without anticoagulation therapy were included in this study. All patients routinely underwent transesophageal echocardiography for detection of LA/LAA thrombus. GDF-15 was measured by enzyme-linked immunosorbent assay. Logistic regression models were used to test for association. RESULTS LA/LAA thrombus was detected by transesophageal echocardiography in 69 (7.72%) patients with AF. The GDF-15 levels in the patients with LA/LAA thrombus were significantly higher than those without LA/LAA thrombus (log10 GDF-15: 2.989 ± 0.023 ng/L vs 2.831 ± 0.007 ng/L; P < 0.001). Logistic regression analysis showed that GDF-15 was an independent risk factor for LA/LAA thrombus (odds ratio [per quarter]: 1.799, 95% confidence interval: 1.381-2.344, P < 0.001) after adjusting for potential clinical risk factors. The optimal cutoff point for GDF-15 predicting LA/LAA thrombus was 809.9 ng/L (sensitivity, 75.3%; specificity, 61.5%), determined by ROC curve. The area under the curve was 0.709 (95% confidence interval: 0.644-0.770, P < 0.001). CONCLUSIONS Elevated GDF-15 indicated a significantly increased risk for LA/LAA thrombus in NVAF patients. Thus, GDF-15 might be a potentially useful adjunct in discriminating LA/LAA thrombus in NVAF patients.
Collapse
Affiliation(s)
- Xiao Feng Hu
- Department of Cardiology, Zhejiang Hospital, Hangzhou, Zhejiang Province, China
| | - Rui Zhan
- Department of Cardiology, Jiangxi Provincial People's Hospital, Nanchang, Jiangxi Province, China
| | - Shanhu Xu
- Department of Neurology, Zhejiang Hospital, Hangzhou, Zhejiang Province, China
| | - Junjun Wang
- Department of Neurology, Zhejiang Hospital, Hangzhou, Zhejiang Province, China
| | - Jiong Wu
- Department of Neurology, Zhejiang Hospital, Hangzhou, Zhejiang Province, China
| | - Xiaoli Liu
- Department of Neurology, Zhejiang Hospital, Hangzhou, Zhejiang Province, China
| | - Yaguo Li
- Department of Neurology, Zhejiang Hospital, Hangzhou, Zhejiang Province, China
| | - Linhui Chen
- Department of Neurology, Zhejiang Hospital, Hangzhou, Zhejiang Province, China
| |
Collapse
|
115
|
Kim KH, Lee MS. Pathogenesis of Nonalcoholic Steatohepatitis and Hormone-Based Therapeutic Approaches. Front Endocrinol (Lausanne) 2018; 9:485. [PMID: 30197624 PMCID: PMC6117414 DOI: 10.3389/fendo.2018.00485] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 08/06/2018] [Indexed: 12/12/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is an emerging global health problem and a potential risk factor for type 2 diabetes, cardiovascular disease, and chronic kidney disease. Nonalcoholic steatohepatitis (NASH), an advanced form of NAFLD, is a predisposing factor for development of cirrhosis and hepatocellular carcinoma. The increasing prevalence of NASH emphasizes the need for novel therapeutic approaches. Although therapeutic drugs against NASH are not yet available, fundamental insights into the pathogenesis of NASH have been made during the past few decades. Multiple therapeutic strategies have been developed and are currently being explored in clinical trials or preclinical testing. The pathogenesis of NASH involves multiple intracellular/extracellular events in various cell types in the liver or crosstalk events between the liver and other organs. Here, we review current findings and knowledge regarding the pathogenesis of NASH, focusing on the most recent advances. We also highlight hormone-based therapeutic approaches for treatment of NASH.
Collapse
Affiliation(s)
- Kook Hwan Kim
- Severance Biomedical Research Institute, Yonsei University College of Medicine, Seoul, South Korea
- *Correspondence: Kook Hwan Kim ;
| | - Myung-Shik Lee
- Severance Biomedical Research Institute, Yonsei University College of Medicine, Seoul, South Korea
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, South Korea
- Myung-Shik Lee
| |
Collapse
|
116
|
Chung HK, Kim JT, Kim HW, Kwon M, Kim SY, Shong M, Kim KS, Yi HS. GDF15 deficiency exacerbates chronic alcohol- and carbon tetrachloride-induced liver injury. Sci Rep 2017; 7:17238. [PMID: 29222479 PMCID: PMC5722931 DOI: 10.1038/s41598-017-17574-w] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 11/28/2017] [Indexed: 12/13/2022] Open
Abstract
Growth differentiation factor 15 (GDF15) has recently been shown to have an important role in the regulation of mitochondrial function and in the pathogenesis of complex human diseases. Nevertheless, the role of GDF15 in alcohol-induced or fibrotic liver diseases has yet to be determined. In this study, we demonstrate that alcohol- or carbon tetrachloride (CCl4)-mediated hepatic GDF15 production ameliorates liver inflammation and fibrosis. Alcohol directly enhanced GDF15 expression in primary hepatocytes, which led to increased oxygen consumption. Moreover, GDF15 reduced the expression of pro-inflammatory cytokines in liver-resident macrophages, leading to an improvement in inflammation and fibrosis in the liver. GDF15 knockout (KO) mice had more TNF-α-producing T cells and more activated CD4+ and CD8+ T cells in the liver than wild-type mice. Liver-infiltrating monocytes and neutrophils were also increased in the GDF15 KO mice during liver fibrogenesis. These changes in hepatic immune cells were associated with increased tissue inflammation and fibrosis. Finally, recombinant GDF15 decreased the expression of pro-inflammatory cytokines and fibrotic mediators and prevented the activation of T cells in the livers of mice with CCl4-induced liver fibrosis. These results suggest that GDF15 could be a potential therapeutic target for the treatment of alcohol-induced and fibrotic liver diseases.
Collapse
Affiliation(s)
- Hyo Kyun Chung
- Research Center for Endocrine and Metabolic Diseases, Chungnam National University School of Medicine, 282 Munhwaro, Daejeon, 35015, Republic of Korea.,Research Institute for Medical Sciences, Chungnam National University School of Medicine, 266 Munhwaro, Daejeon, 35015, Republic of Korea
| | - Jung Tae Kim
- Research Center for Endocrine and Metabolic Diseases, Chungnam National University School of Medicine, 282 Munhwaro, Daejeon, 35015, Republic of Korea.,Department of Medical Science, Chungnam National University School of Medicine, 266 Munhwaro, Daejeon, 35015, Republic of Korea
| | - Hyeon-Woo Kim
- Research Center for Endocrine and Metabolic Diseases, Chungnam National University School of Medicine, 282 Munhwaro, Daejeon, 35015, Republic of Korea.,Department of Medical Science, Chungnam National University School of Medicine, 266 Munhwaro, Daejeon, 35015, Republic of Korea
| | - Minjoo Kwon
- Research Center for Endocrine and Metabolic Diseases, Chungnam National University School of Medicine, 282 Munhwaro, Daejeon, 35015, Republic of Korea
| | - So Yeon Kim
- Laboratory of Liver Research, Biomedical Science and Engineering Interdisciplinary program, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Minho Shong
- Research Center for Endocrine and Metabolic Diseases, Chungnam National University School of Medicine, 282 Munhwaro, Daejeon, 35015, Republic of Korea.,Department of Internal Medicine, Chungnam National University Hospital, 282 Munhwaro, Daejeon, 35015, Republic of Korea
| | - Koon Soon Kim
- Research Center for Endocrine and Metabolic Diseases, Chungnam National University School of Medicine, 282 Munhwaro, Daejeon, 35015, Republic of Korea. .,Department of Medical Science, Chungnam National University School of Medicine, 266 Munhwaro, Daejeon, 35015, Republic of Korea.
| | - Hyon-Seung Yi
- Research Center for Endocrine and Metabolic Diseases, Chungnam National University School of Medicine, 282 Munhwaro, Daejeon, 35015, Republic of Korea. .,Department of Internal Medicine, Chungnam National University Hospital, 282 Munhwaro, Daejeon, 35015, Republic of Korea.
| |
Collapse
|
117
|
Van Aken H, Meersch M, Zarbock A, Herter J, Kraft F, Rossaint J. GDF-15 prevents ventilator-induced lung injury by inhibiting the formation of platelet-neutro-phil aggregates. Thromb Haemost 2017; 114:434-7. [DOI: 10.1160/th14-12-1060] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 02/28/2015] [Indexed: 12/26/2022]
|
118
|
Falk M, Huhn R, Behmenburg F, Ritz-Timme S, Mayer F. Biomechanical stress in myocardial infarctions: can endothelin-1 and growth differentiation factor 15 serve as immunohistochemical markers? Int J Legal Med 2017; 132:509-518. [DOI: 10.1007/s00414-017-1726-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 10/25/2017] [Indexed: 01/08/2023]
|
119
|
Elevated GDF-15 contributes to pulmonary inflammation upon cigarette smoke exposure. Mucosal Immunol 2017; 10:1400-1411. [PMID: 28145442 DOI: 10.1038/mi.2017.3] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2016] [Accepted: 01/03/2017] [Indexed: 02/04/2023]
Abstract
The molecular mechanisms underlying the pathogenesis of chronic obstructive pulmonary disease (COPD) are still unclear, however signaling pathways associated with lung development, such as the transforming growth factor (TGF)-β superfamily, could be implicated in COPD. Growth differentiation factor (GDF)-15, a member of the TGF-β superfamily, is involved in inflammation, mucus secretion, and cachexia. We analyzed the pulmonary expression of GDF-15 in smokers and patients with COPD, in cigarette smoke (CS)-exposed cultures of primary human bronchial epithelial cells (pHBECs), and in CS-exposed mice. Next, we exposed GDF-15 KO and control mice to air or CS and evaluated pulmonary inflammation. GDF-15 levels were higher in sputum supernatant and lung tissue of patients with COPD and smokers without COPD compared with never smokers. Immunohistochemistry revealed GDF-15 staining in the airway epithelium. Increased expression and secretion of GDF-15 was confirmed in vitro in CS-exposed pHBECs compared with air-exposed pHBECs. Similarly, GDF-15 levels were increased in lungs of CS-exposed mice. Importantly, GDF-15 deficiency attenuated the CS-induced pulmonary inflammation. These results suggest that increased GDF-15-as observed in lungs of smokers and patients with COPD-contributes to CS-induced pulmonary inflammation.
Collapse
|
120
|
Growth Differentiation Factor-15 Is a Predictor of Mortality in Critically Ill Patients with Sepsis. DISEASE MARKERS 2017; 2017:5271203. [PMID: 29180833 PMCID: PMC5664246 DOI: 10.1155/2017/5271203] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 07/31/2017] [Indexed: 11/17/2022]
Abstract
Growth differentiation factor-15 (GDF-15) is a member of the transforming growth factor-β superfamily related to inflammation and macrophage activation. Serum concentrations of GDF-15 can predict poor survival in chronic diseases, but its role in sepsis is obscure. Therefore, we investigated GDF-15 as a prognostic biomarker in critically ill patients. We measured GDF-15 levels in 219 critically ill patients (146 with sepsis, 73 without sepsis) upon admission to the intensive care unit (ICU), in comparison to 66 healthy controls. GDF-15 levels were significantly increased in ICU patients compared to controls. GDF-15 was further increased in sepsis and showed a strong association with organ dysfunction (kidney, liver and lactate) and disease severity (APACHE II and SOFA score). High GDF-15 concentrations at admission independently predicted ICU (HR 3.42; 95% CI 1.33–8.78) and overall mortality (HR 2.02, 95% CI 1.02–3.88) in all ICU critically ill patients as well as in a large subgroup of sepsis patients (ICU mortality: HR 3.16; 95% CI 1.10–9.07; overall mortality: HR 2.62; 95% CI 1.14–6.02). Collectively, serum GDF-15 levels are significantly increased in critically ill patients, associated with sepsis, organ failure, and disease severity. High GDF-15 levels at ICU admission predict short- and long-term mortality risk.
Collapse
|
121
|
Jusof FF, Bakmiwewa SM, Weiser S, Too LK, Metz R, Prendergast GC, Fraser ST, Hunt NH, Ball HJ. Investigation of the Tissue Distribution and Physiological Roles of Indoleamine 2,3-Dioxygenase-2. Int J Tryptophan Res 2017; 10:1178646917735098. [PMID: 29051706 PMCID: PMC5638149 DOI: 10.1177/1178646917735098] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 08/30/2017] [Indexed: 01/11/2023] Open
Abstract
Indoleamine 2,3-dioxygenase-2 (IDO2) is 1 of the 3 enzymes that can catalyze the first step in the kynurenine pathway of tryptophan metabolism. Of the 2 other enzymes, tryptophan 2,3-dioxygenase is highly expressed in the liver and has a role in tryptophan homeostasis, whereas indoleamine 2,3-dioxygenase-1 (IDO1) expression is induced by inflammatory stimuli. Indoleamine 2,3-dioxygenase-2 is reportedly expressed comparatively narrow, including in liver, kidney, brain, and in certain immune cell types, and it does not appear to contribute significantly to systemic tryptophan catabolism under normal physiological conditions. Here, we report the identification of an alternative splicing pattern, including the use of an alternative first exon, that is conserved in the mouse Ido1 and Ido2 genes. These findings prompted us to assess IDO2 protein expression and enzymatic activity in tissues. Our analysis, undertaken in Ido2 +/+ and Ido2−/− mice using immunohistochemistry and measurement of tryptophan and kynurenine levels, suggested an even more restricted pattern of tissue expression than previously reported. We found IDO2 protein to be expressed in the liver with a perinuclear/nuclear, rather than cytoplasmic, distribution. Consistent with earlier reports, we found Ido2 −/− mice to be phenotypically similar to their Ido2+/+ counterparts regarding levels of tryptophan and kynurenine in the plasma and liver. Our findings suggest a specialized function or regulatory role for IDO2 associated with its particular subcellular localization.
Collapse
Affiliation(s)
- Felicita F Jusof
- Molecular Immunopathology Unit, Bosch Institute and School of Medical Sciences, The University of Sydney, Camperdown, NSW, Australia.,Department of Physiology, Faculty of Medicine, The University of Malaya, Kuala Lumpur, Malaysia
| | - Supun M Bakmiwewa
- Molecular Immunopathology Unit, Bosch Institute and School of Medical Sciences, The University of Sydney, Camperdown, NSW, Australia
| | - Silvia Weiser
- Molecular Immunopathology Unit, Bosch Institute and School of Medical Sciences, The University of Sydney, Camperdown, NSW, Australia
| | - Lay Khoon Too
- Molecular Immunopathology Unit, Bosch Institute and School of Medical Sciences, The University of Sydney, Camperdown, NSW, Australia
| | | | | | - Stuart T Fraser
- Discipline of Physiology, Bosch Institute and School of Medical Sciences, The University of Sydney, Camperdown, NSW, Australia
| | - Nicholas H Hunt
- Molecular Immunopathology Unit, Bosch Institute and School of Medical Sciences, The University of Sydney, Camperdown, NSW, Australia
| | - Helen J Ball
- Molecular Immunopathology Unit, Bosch Institute and School of Medical Sciences, The University of Sydney, Camperdown, NSW, Australia
| |
Collapse
|
122
|
Non-homeostatic body weight regulation through a brainstem-restricted receptor for GDF15. Nature 2017; 550:255-259. [PMID: 28953886 DOI: 10.1038/nature24042] [Citation(s) in RCA: 415] [Impact Index Per Article: 51.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2017] [Accepted: 08/31/2017] [Indexed: 12/31/2022]
Abstract
Under homeostatic conditions, animals use well-defined hypothalamic neural circuits to help maintain stable body weight, by integrating metabolic and hormonal signals from the periphery to balance food consumption and energy expenditure. In stressed or disease conditions, however, animals use alternative neuronal pathways to adapt to the metabolic challenges of altered energy demand. Recent studies have identified brain areas outside the hypothalamus that are activated under these 'non-homeostatic' conditions, but the molecular nature of the peripheral signals and brain-localized receptors that activate these circuits remains elusive. Here we identify glial cell-derived neurotrophic factor (GDNF) receptor alpha-like (GFRAL) as a brainstem-restricted receptor for growth and differentiation factor 15 (GDF15). GDF15 regulates food intake, energy expenditure and body weight in response to metabolic and toxin-induced stresses; we show that Gfral knockout mice are hyperphagic under stressed conditions and are resistant to chemotherapy-induced anorexia and body weight loss. GDF15 activates GFRAL-expressing neurons localized exclusively in the area postrema and nucleus tractus solitarius of the mouse brainstem. It then triggers the activation of neurons localized within the parabrachial nucleus and central amygdala, which constitute part of the 'emergency circuit' that shapes feeding responses to stressful conditions. GDF15 levels increase in response to tissue stress and injury, and elevated levels are associated with body weight loss in numerous chronic human diseases. By isolating GFRAL as the receptor for GDF15-induced anorexia and weight loss, we identify a mechanistic basis for the non-homeostatic regulation of neural circuitry by a peripheral signal associated with tissue damage and stress. These findings provide opportunities to develop therapeutic agents for the treatment of disorders with altered energy demand.
Collapse
|
123
|
Wang S, Li M, Zhang W, Hua H, Wang N, Zhao J, Ge J, Jiang X, Zhang Z, Ye D, Yang C. Growth differentiation factor 15 promotes blood vessel growth by stimulating cell cycle progression in repair of critical-sized calvarial defect. Sci Rep 2017; 7:9027. [PMID: 28831101 PMCID: PMC5567281 DOI: 10.1038/s41598-017-09210-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 07/21/2017] [Indexed: 11/24/2022] Open
Abstract
Repair of large bone defects remains a challenge for surgeons, tissue engineering represents a promising approach. However, the use of this technique is limited by delayed vascularization in central regions of the scaffold. Growth differentiation factor 15(GDF15) has recently been reported to be a potential angiogenic cytokine and has an ability to promote the proliferation of human umbilical vein endothelial cells(HUVECs). Whether it can be applied for promoting vascularized bone regeneration is still unknown. In this study, we demonstrated that GDF15 augmented the expression of cyclins D1 and E, induced Rb phosphorylation and E2F-1 nuclear translocation, as well as increased HUVECs proliferation. Furthermore, we also observed that GDF15 promoted the formation of functional vessels at an artificially-induced angiogenic site, and remarkably improved the healing in the repair of critical-sized calvarial defects. Our results confirm the essential role of GDF15 in angiogenesis and suggest its potential beneficial use in regenerative medicine.
Collapse
Affiliation(s)
- Shaoyi Wang
- Department of Oral Surgery, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, National Clinical Research Center of Stomatology, Shanghai, China
| | - Mengyu Li
- Department of Oral Surgery, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, National Clinical Research Center of Stomatology, Shanghai, China
| | - Wenjie Zhang
- Department of Prosthodontics, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, National Clinical Research Center of Stomatology, Shanghai, China.,Oral Bioengineering Lab/Regenerative Medicine Lab, Shanghai Research Institute of Stomatology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, National Clinical Research Center of Stomatology, Shanghai, China
| | - Hongfei Hua
- Department of Oral Surgery, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, National Clinical Research Center of Stomatology, Shanghai, China
| | - Ningtao Wang
- Department of Oral Surgery, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, National Clinical Research Center of Stomatology, Shanghai, China
| | - Jun Zhao
- Department of Orthodontics, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, National Clinical Research Center of Stomatology, Shanghai, China
| | - Jing Ge
- Department of Oral Surgery, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, National Clinical Research Center of Stomatology, Shanghai, China
| | - Xinquan Jiang
- Department of Prosthodontics, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, National Clinical Research Center of Stomatology, Shanghai, China.,Oral Bioengineering Lab/Regenerative Medicine Lab, Shanghai Research Institute of Stomatology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, National Clinical Research Center of Stomatology, Shanghai, China
| | - Zhiyuan Zhang
- Department of Oral Surgery, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, National Clinical Research Center of Stomatology, Shanghai, China.
| | - Dongxia Ye
- Shanghai Research Institute of Stomatology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, National Clinical Research Center of Stomatology, Shanghai, China.
| | - Chi Yang
- Department of Oral Surgery, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, National Clinical Research Center of Stomatology, Shanghai, China.
| |
Collapse
|
124
|
Kumar P, Millischer V, Villaescusa JC, Nilsson IAK, Östenson CG, Schalling M, Ösby U, Lavebratt C. Plasma GDF15 level is elevated in psychosis and inversely correlated with severity. Sci Rep 2017; 7:7906. [PMID: 28801589 PMCID: PMC5554200 DOI: 10.1038/s41598-017-07503-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 06/27/2017] [Indexed: 12/20/2022] Open
Abstract
Accumulating evidence suggests that GDF15 is a biomarker for ageing and morbidity of many somatic disorders such as cancer and inflammatory disorders. Recently, elevated serum GDF15 level was proposed as a marker for mood disorder. However, psychosis severity was not investigated in relation to plasma GDF15 levels. In the present study we measured GDF15 levels in plasma of 120 psychosis patients compared to 120 age and gender matched healthy controls. Within the patient cohort GDF15 levels were evaluated for association with age, gender, lifestyle factors, C-reactive protein levels, psychosis severity and metabolic disorder. Psychosis patients had elevated GDF15 levels compared to controls (medianPsychosis = 744 ng/mL, mediancontrols = 516 ng/mL, p < 0.001). Within the psychosis cohort, GDF15 levels, when corrected for age, metabolic health and lifestyle factors, were negatively correlated with psychosis severity (β = −0.218, p = 0.012). While GDF15 levels were elevated in patients versus healthy controls, the negative correlation between psychosis severity and GDF15 suggests a loss of anti-inflammatory GDF15 mediated functionality in severe psychosis. Study replication in larger cohorts will be necessary to assess the potential of GDF15 as a prognostic biomarker in psychosis.
Collapse
Affiliation(s)
- Parvin Kumar
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden. .,Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden.
| | - Vincent Millischer
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.,Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - J Carlos Villaescusa
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.,Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Ida A K Nilsson
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.,Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Claes-Göran Östenson
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Martin Schalling
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.,Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Urban Ösby
- Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden.,Department of Adult Psychiatry, PRIMA Barn och Vuxenpsykiatri AB, Stockholm, Sweden.,Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Catharina Lavebratt
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden. .,Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
125
|
Tzikas S, Palapies L, Bakogiannis C, Zeller T, Sinning C, Baldus S, Bickel C, Vassilikos V, Lackner KJ, Zeiher A, Münzel T, Blankenberg S, Keller T. GDF-15 predicts cardiovascular events in acute chest pain patients. PLoS One 2017; 12:e0182314. [PMID: 28771550 PMCID: PMC5542604 DOI: 10.1371/journal.pone.0182314] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 07/17/2017] [Indexed: 01/27/2023] Open
Abstract
Background Treatment of patients presenting with possible acute myocardial infarction (AMI) is based on timely diagnosis and proper risk stratification aided by biomarkers. We aimed at evaluating the predictive value of GDF-15 in patients presenting with symptoms suggestive of AMI. Methods Consecutive patients presenting with suspected AMI were enrolled in three study centers. Cardiovascular events were assessed during a follow-up period of 6 months with a combined endpoint of death or MI. Results From the 1818 enrolled patients (m/f = 1208/610), 413 (22.7%) had an acute MI and 63 patients reached the combined endpoint. Patients with MI and patients with adverse outcome had higher GDF-15 levels compared with non-MI patients (967.1pg/mL vs. 692.2 pg/L, p<0.001) and with event-free patients (1660 pg/mL vs. 756.6 pg/L, p<0.001). GDF-15 levels were lower in patients with SYNTAX score ≤ 22 (797.3 pg/mL vs. 947.2 pg/L, p = 0.036). Increased GDF-15 levels on admission were associated with a hazard ratio of 2.1 for death or MI (95%CI: 1.67–2.65, p<0.001) in a model adjusted for age and sex and of 1.57 (1.13–2.19, p = 0.008) adjusted for the GRACE score variables. GDF-15 showed a relevant reclassification with regards to the GRACE score with an overall net reclassification index (NRI) of 12.5% and an integrated discrimination improvement (IDI) of 14.56% (p = 0.006). Conclusion GDF-15 is an independent predictor of future cardiovascular events in patients presenting with suspected MI. GDF-15 levels correlate with the severity of CAD and can identify and risk-stratify patients who need coronary revascularization.
Collapse
Affiliation(s)
- Stergios Tzikas
- 3rd Department of Cardiology, Ippokrateio Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
- Department of Internal Medicine II, University Medical Center, Johannes Gutenberg University, Mainz, Germany
- * E-mail:
| | - Lars Palapies
- Division of Cardiology, Department of Medicine III, Goethe University Frankfurt, Frankfurt, Germany
| | - Constantinos Bakogiannis
- 3rd Department of Cardiology, Ippokrateio Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Tanja Zeller
- Clinic for General and Interventional Cardiology, University Heart Center Hamburg, Hamburg, Germany
- German Center for Cardiovascular Research (DZHK), Berlin, Germany
| | - Christoph Sinning
- Clinic for General and Interventional Cardiology, University Heart Center Hamburg, Hamburg, Germany
| | - Stephan Baldus
- Department of Internal Medicine III, University of Cologne, Cologne, Germany
| | - Christoph Bickel
- Department of Internal Medicine, Federal Armed Forces Hospital, Koblenz, Germany
| | - Vassilios Vassilikos
- 3rd Department of Cardiology, Ippokrateio Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Karl J. Lackner
- Institute for Clinical Chemistry and Laboratory Medicine, University Medical Center Mainz, Mainz, Germany
| | - Andreas Zeiher
- Division of Cardiology, Department of Medicine III, Goethe University Frankfurt, Frankfurt, Germany
- German Center for Cardiovascular Research (DZHK), Berlin, Germany
| | - Thomas Münzel
- Department of Internal Medicine II, University Medical Center, Johannes Gutenberg University, Mainz, Germany
- German Center for Cardiovascular Research (DZHK), Berlin, Germany
| | - Stefan Blankenberg
- Clinic for General and Interventional Cardiology, University Heart Center Hamburg, Hamburg, Germany
- German Center for Cardiovascular Research (DZHK), Berlin, Germany
| | - Till Keller
- Division of Cardiology, Department of Medicine III, Goethe University Frankfurt, Frankfurt, Germany
- German Center for Cardiovascular Research (DZHK), Berlin, Germany
| |
Collapse
|
126
|
Muralidharan AR, Maddala R, Skiba NP, Rao PV. Growth Differentiation Factor-15-Induced Contractile Activity and Extracellular Matrix Production in Human Trabecular Meshwork Cells. Invest Ophthalmol Vis Sci 2017; 57:6482-6495. [PMID: 27918822 PMCID: PMC5152563 DOI: 10.1167/iovs.16-20671] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Purpose To determine the role and regulation of growth differentiation factor-15 (GDF-15), a TGF-β-related cytokine in human trabecular meshwork (TM) cells in the context of aqueous humor (AH) outflow and IOP. Methods Regulation of expression by external cues, and the distribution and secretion of GDF-15 by human TM primary cell cultures, and the effects of recombinant (r) GDF-15 on TM cell contractile characteristics, actin cytoskeleton, cell adhesion, extracellular matrix (ECM), α-smooth muscle actin (αSMA), SMAD signaling, and gene expression were determined by immunoblot, immunofluorescence, mass spectrometry, cDNA microarray, and real-time quantitative PCR (RT-qPCR) analyses. Results Growth differentiation factor-15, a common constituent of ECM derived from the human TM cells, was confirmed to be distributed throughout the conventional aqueous humor outflow pathway of the human eye. Growth differentiation factor-15 protein levels were significantly increased in human TM cells in response to TGF-β2, dexamethasone, endothelin-1, lysophosphatidic acid, TNF-α, IL-1β treatment, and by cyclic mechanical stretch. Stimulation of human TM cells with rGDF-15 caused a significant increase in the formation of actin stress fibers and focal adhesions, myosin light chain phosphorylation, SMAD signaling, gene expression, and the levels of αSMA and ECM proteins. Conclusions The results of this study, including a robust induction of GDF-15 expression by several external factors known to elevate IOP, and rGDF-15-induced increase in contractility, cell adhesion, and the levels of ECM proteins and αSMA in TM cells, collectively suggest a potential role for GDF-15 in homeostasis and dysregulation of AH outflow and IOP in normal and glaucomatous eyes, respectively.
Collapse
Affiliation(s)
| | - Rupalatha Maddala
- Department of Ophthalmology, Duke University School of Medicine, Durham, North Carolina, United States
| | - Nikolai P Skiba
- Department of Ophthalmology, Duke University School of Medicine, Durham, North Carolina, United States
| | - Ponugoti Vasantha Rao
- Department of Ophthalmology, Duke University School of Medicine, Durham, North Carolina, United States 2Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, North Carolina, United States
| |
Collapse
|
127
|
Barman-Aksoezen J, Girelli D, Aurizi C, Schneider-Yin X, Campostrini N, Barbieri L, Minder EI, Biolcati G. Disturbed iron metabolism in erythropoietic protoporphyria and association of GDF15 and gender with disease severity. J Inherit Metab Dis 2017; 40:433-441. [PMID: 28185024 DOI: 10.1007/s10545-017-0017-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 12/31/2016] [Accepted: 01/16/2017] [Indexed: 01/01/2023]
Abstract
Patients with erythropoietic protoporphyria (EPP) have reduced activity of the enzyme ferrochelatase that catalyzes the insertion of iron into protoporphyrin IX (PPIX) to form heme. As the result of ferrochelatase deficiency, PPIX accumulates and causes severe photosensitivity. Among different patients, the concentration of PPIX varies considerably. In addition to photosensitivity, patients frequently exhibit low serum iron and a microcytic hypochromic anemia. The aims of this study were to (1) search for factors related to PPIX concentration in EPP, and (2) characterize anemia in EPP, i.e., whether it is the result of an absolute iron deficiency or the anemia of chronic disease (ACD). Blood samples from 67 EPP patients (51 Italian and 16 Swiss) and 21 healthy volunteers were analyzed. EPP patients had lower ferritin (p = 0.021) and hepcidin (p = 0.031) concentrations and higher zinc-protoporphyrin (p < 0.0001) and soluble-transferrin-receptor (p = 0.0007) concentrations compared with controls. This indicated that anemia in EPP resulted from an absolute iron deficiency. Among EPP patients, PPIX concentrations correlated with both growth differentiation factor (GDF) 15 (p = 0.012) and male gender (p = 0.015). Among a subgroup of patients who were iron replete, hemoglobin levels were normal, which suggested that iron but not ferrochelatase is the limiting factor in heme synthesis of individuals with EPP.
Collapse
Affiliation(s)
| | - Domenico Girelli
- Department of Medicine, Section of Internal Medicine, University of Verona, Verona, Italy
| | - Caterina Aurizi
- Porphyria Centre San Gallicano Dermatological Institute IRCCS, Rome, Italy
| | | | - Natascia Campostrini
- Department of Medicine, Section of Internal Medicine, University of Verona, Verona, Italy
| | - Luca Barbieri
- Porphyria Centre San Gallicano Dermatological Institute IRCCS, Rome, Italy
| | - Elisabeth I Minder
- Institute for Laboratory Medicine, Stadtspital Triemli, Zürich, Switzerland.
| | | |
Collapse
|
128
|
Growth Differentiation Factor-15 Deficiency Augments Inflammatory Response and Exacerbates Septic Heart and Renal Injury Induced by Lipopolysaccharide. Sci Rep 2017; 7:1037. [PMID: 28432312 PMCID: PMC5430818 DOI: 10.1038/s41598-017-00902-5] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 03/16/2017] [Indexed: 12/20/2022] Open
Abstract
Septic acute kidney injury (AKI) and myocardial dysfunction are leading causes of mortality with no accepted method of therapy. In this study we demonstrate the role of growth differentiating factor 15 (GDF15) in septic AKI and myocardial dysfunction using a murine lipopolysaccharide (LPS)-induced sepsis model and an in vitro cell culture system. Data show that GDF15 deficiency augments inflammatory response and exacerbates renal and cardiac injury induced by LPS, while over-expression of GDF15 protects the kidney and heart from LPS-induced organ dysfunction. Therefore, this study highlights the therapeutic potential of GDF15 in the treatment of endotoxin-induced sepsis.
Collapse
|
129
|
Panel of three novel serum markers predicts liver stiffness and fibrosis stages in patients with chronic liver disease. PLoS One 2017; 12:e0173506. [PMID: 28301573 PMCID: PMC5354278 DOI: 10.1371/journal.pone.0173506] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 02/21/2017] [Indexed: 02/06/2023] Open
Abstract
Latest data suggest that placental growth factor (PLGF), growth differentiation factor-15 (GDF-15) and hepatic growth factor (HGF) are involved in hepatic fibrogenesis. Diagnostic performance of these markers for non-invasive liver fibrosis prediction was evaluated based on liver histology and stiffness. In total 834 patients were recruited. Receiver-operating-characteristics were used to define cut-offs for markers correlating to fibrosis stages. Odds-ratios were calculated for the presence/absence of fibrosis/cirrhosis and confirmed in the sub-group of patients phenotyped by elastography only. Logistic and uni- and multivariate regression analyses were used to test for association of markers with liver fibrosis stages and for independent prediction of liver histology and stiffness. Marker concentrations correlated significantly (P<0.001) with histology and stiffness. Cut-offs for liver fibrosis (≥F2) were PLGF = 20.20 pg/ml, GDF15 = 1582.76 pg/ml and HGF = 2598.00 pg/ml. Logistic regression confirmed an increase of ORs from 3.6 over 33.0 to 108.4 with incremental (1–3) markers positive for increased liver stiffness (≥12.8kPa; all P<0.05). Subgroup analysis revealed associations with advanced fibrosis for HCV (three markers positive: OR = 59.9, CI 23.4–153.4, P<0.001) and non-HCV patients (three markers positive: OR = 144, CI 59–3383, P<0.001). Overall, serum markers identified additional 50% of patients at risk for advanced fibrosis presenting with low elastography results. In conclusion, this novel combination of markers reflects the presence of significant liver fibrosis detected by elastography and histology and may also identify patients at risk presenting with low elastography values.
Collapse
|
130
|
Schernthaner-Reiter MH, Kasses D, Tugendsam C, Riedl M, Peric S, Prager G, Krebs M, Promintzer-Schifferl M, Clodi M, Luger A, Vila G. Growth differentiation factor 15 increases following oral glucose ingestion: effect of meal composition and obesity. Eur J Endocrinol 2016; 175:623-631. [PMID: 27926473 DOI: 10.1530/eje-16-0550] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2016] [Revised: 08/31/2016] [Accepted: 09/19/2016] [Indexed: 01/23/2023]
Abstract
OBJECTIVE Growth differentiation factor 15 (GDF15) is a cardiovascular biomarker belonging to the transforming growth factor-β superfamily. Increased GDF15 concentrations are associated with insulin resistance, diabetes and obesity. We investigated the physiological effects of meal composition and obesity on the regulation of systemic GDF15 levels. DESIGN Lean (n = 8) and obese (n = 8) individuals received a carbohydrate- or fat-rich meal, a 75 g oral glucose load (OGTT) or short-term fasting. OGTTs were performed in severely obese patients (n = 6) pre- and post-bariatric surgery. METHODS Circulating serum GDF15 concentrations were studied in lean and obese individuals in response to different meals, OGTT or short-term fasting, and in severely obese patients pre- and post-bariatric surgery. Regulation of GDF15 mRNA levels and protein release were evaluated in the human hepatic cell line HepG2. RESULTS GDF15 concentrations steadily decrease during short-term fasting in lean and obese individuals. Carbohydrate- and fat-rich meals do not influence GDF15, whereas an OGTT leads to a late increase in GDF15 levels. The positive effect of OGTT on GDF15 levels is also preserved in severely obese patients, pre- and post-bariatric surgery. We further studied the regulation of GDF15 mRNA levels and protein release in HepG2, finding that glucose and insulin independently stimulate both GDF15 transcription and secretion. CONCLUSION In summary, high glucose and insulin peaks upregulate GDF15 transcription and release. The nutrient-induced increase in GDF15 levels depends on rapid glucose and insulin excursions following fast-digesting carbohydrates, but not on the amount of calories taken in.
Collapse
Affiliation(s)
- Marie Helene Schernthaner-Reiter
- Clinical Division of Endocrinology and MetabolismDepartment of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Dominik Kasses
- Clinical Division of Endocrinology and MetabolismDepartment of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Christina Tugendsam
- Clinical Division of Endocrinology and MetabolismDepartment of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Michaela Riedl
- Clinical Division of Endocrinology and MetabolismDepartment of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Slobodan Peric
- Clinical Division of Endocrinology and MetabolismDepartment of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Gerhard Prager
- Division of General SurgeryDepartment of Surgery, Medical University of Vienna, Vienna, Austria
| | - Michael Krebs
- Clinical Division of Endocrinology and MetabolismDepartment of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Miriam Promintzer-Schifferl
- Clinical Division of Endocrinology and MetabolismDepartment of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Martin Clodi
- Clinical Division of Endocrinology and MetabolismDepartment of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Anton Luger
- Clinical Division of Endocrinology and MetabolismDepartment of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Greisa Vila
- Clinical Division of Endocrinology and MetabolismDepartment of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
131
|
Seno A, Kasai T, Ikeda M, Vaidyanath A, Masuda J, Mizutani A, Murakami H, Ishikawa T, Seno M. Characterization of Gene Expression Patterns among Artificially Developed Cancer Stem Cells Using Spherical Self-Organizing Map. Cancer Inform 2016; 15:163-78. [PMID: 27559294 PMCID: PMC4988459 DOI: 10.4137/cin.s39839] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 05/15/2016] [Accepted: 05/30/2016] [Indexed: 12/20/2022] Open
Abstract
We performed gene expression microarray analysis coupled with spherical self-organizing map (sSOM) for artificially developed cancer stem cells (CSCs). The CSCs were developed from human induced pluripotent stem cells (hiPSCs) with the conditioned media of cancer cell lines, whereas the CSCs were induced from primary cell culture of human cancer tissues with defined factors (OCT3/4, SOX2, and KLF4). These cells commonly expressed human embryonic stem cell (hESC)/hiPSC-specific genes (POU5F1, SOX2, NANOG, LIN28, and SALL4) at a level equivalent to those of control hiPSC 201B7. The sSOM with unsupervised method demonstrated that the CSCs could be divided into three groups based on their culture conditions and original cancer tissues. Furthermore, with supervised method, sSOM nominated TMED9, RNASE1, NGFR, ST3GAL1, TNS4, BTG2, SLC16A3, CD177, CES1, GDF15, STMN2, FAM20A, NPPB, CD99, MYL7, PRSS23, AHNAK, and LOC152573 genes commonly upregulating among the CSCs compared to hiPSC, suggesting the gene signature of the CSCs.
Collapse
Affiliation(s)
- Akimasa Seno
- Laboratory of Nano-Biotechnology, Department of Medical Bioengineering Science, Graduate School of Natural Science and Technology, Okayama University, Kita-ku, Okayama, Japan
| | - Tomonari Kasai
- Laboratory of Nano-Biotechnology, Department of Medical Bioengineering Science, Graduate School of Natural Science and Technology, Okayama University, Kita-ku, Okayama, Japan
| | - Masashi Ikeda
- Laboratory of Nano-Biotechnology, Department of Medical Bioengineering Science, Graduate School of Natural Science and Technology, Okayama University, Kita-ku, Okayama, Japan
| | - Arun Vaidyanath
- Laboratory of Nano-Biotechnology, Department of Medical Bioengineering Science, Graduate School of Natural Science and Technology, Okayama University, Kita-ku, Okayama, Japan
| | - Junko Masuda
- Laboratory of Nano-Biotechnology, Department of Medical Bioengineering Science, Graduate School of Natural Science and Technology, Okayama University, Kita-ku, Okayama, Japan
| | - Akifumi Mizutani
- Laboratory of Nano-Biotechnology, Department of Medical Bioengineering Science, Graduate School of Natural Science and Technology, Okayama University, Kita-ku, Okayama, Japan
| | - Hiroshi Murakami
- Laboratory of Nano-Biotechnology, Department of Medical Bioengineering Science, Graduate School of Natural Science and Technology, Okayama University, Kita-ku, Okayama, Japan
| | - Tetsuya Ishikawa
- Cell Biology, Core Facilities for Research and Innovative Medicine, National Cancer Center Research Institute, Chuo-ku, Tokyo, Japan.; Central Animal Division, Fundamental Innovative Oncology Core Center, National Cancer Center Research Institute, Chuo-ku, Tokyo, Japan
| | - Masaharu Seno
- Laboratory of Nano-Biotechnology, Department of Medical Bioengineering Science, Graduate School of Natural Science and Technology, Okayama University, Kita-ku, Okayama, Japan
| |
Collapse
|
132
|
Chai YL, Hilal S, Chong JP, Ng YX, Liew OW, Xu X, Ikram MK, Venketasubramanian N, Richards AM, Lai MK, Chen CP. Growth differentiation factor-15 and white matter hyperintensities in cognitive impairment and dementia. Medicine (Baltimore) 2016; 95:e4566. [PMID: 27537582 PMCID: PMC5370808 DOI: 10.1097/md.0000000000004566] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Vascular pathology plays an important role in the development of cognitive decline and dementia. In this context, growth differentiation factor-15 (GDF-15) has been suggested to be a biomarker due to its regulatory roles in inflammatory and trophic responses during tissue injury. However, limited data exist on the associations of GDF-15 with either cerebrovascular disease (CeVD) burden or the spectrum of cognitive impairment. Therefore, we aimed to study peripheral levels of GDF-15 incognitive impairment no dementia (CIND) or Alzheimer disease (AD) subjects assessed for CeVD using a case-control cohort design, with cases recruited from memory clinics and controls from memory clinics and the community. All subjects underwent detailed neuropsychological assessment, 3-Tesla magnetic resonance imaging, and venous blood draw. Subjects were classified as CIND or AD based on clinical criteria, while significant CeVD was defined as the presence of cortical infarcts and/or 2 lacunes or more, and/or confluent white matter hyperintensities (WMHs) in 2 or more brain regions. A total of 324 subjects were included in the study, of whom 80 had no cognitive impairment, 144 CIND and 100with AD. Higher GDF-15 levels were significantly associated with disease groups, especially in the presence of CeVD, namely, CIND with CeVD (odds ratios [OR]: 7.21; 95% confidence interval [CI]: 2.14-24.27) and AD with CeVD (OR: 21.87; 95% CI: 2.01-237.43). Among the different CeVD markers, only WMH was associated with higher GDF-15 levels (OR: 3.97; 95% CI: 1.79-8.83). The associations between GDF-15 and cognitive impairment as well as with WMH remained significant after excluding subjects with cardiovascular diseases. In conclusion, we showed that increased GDF-15 may be a biomarker for CIND and AD in subjects with WMH.
Collapse
Affiliation(s)
- Yuek Ling Chai
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore
- Memory Aging and Cognition Centre, National University Health System
| | - Saima Hilal
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore
- Memory Aging and Cognition Centre, National University Health System
| | - Jenny P.C. Chong
- Cardiovascular Research Institute, National University Heart Centre, Singapore
| | - Yan Xia Ng
- Cardiovascular Research Institute, National University Heart Centre, Singapore
| | - Oi Wah Liew
- Cardiovascular Research Institute, National University Heart Centre, Singapore
| | - Xin Xu
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore
- Memory Aging and Cognition Centre, National University Health System
| | - Mohammad Kamran Ikram
- Memory Aging and Cognition Centre, National University Health System
- Departments of Neurology and Epidemiology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | | | - A. Mark Richards
- Cardiovascular Research Institute, National University Heart Centre, Singapore
| | - Mitchell K.P. Lai
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore
- Memory Aging and Cognition Centre, National University Health System
- Correspondence: Mitchell K.P. Lai, Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Unit 09–01, 14 Medical Drive, 117599 Singapore (e-mail: )
| | - Christopher P. Chen
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore
- Memory Aging and Cognition Centre, National University Health System
| |
Collapse
|
133
|
Ham JR, Lee HI, Choi RY, Sim MO, Choi MS, Kwon EY, Yun KW, Kim MJ, Lee MK. Anti-obesity and anti-hepatosteatosis effects of dietary scopoletin in high-fat diet fed mice. J Funct Foods 2016; 25:433-446. [DOI: 10.1016/j.jff.2016.06.026] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
|
134
|
Lee J, Choi J, Scafidi S, Wolfgang MJ. Hepatic Fatty Acid Oxidation Restrains Systemic Catabolism during Starvation. Cell Rep 2016; 16:201-212. [PMID: 27320917 DOI: 10.1016/j.celrep.2016.05.062] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 04/14/2016] [Accepted: 05/16/2016] [Indexed: 12/30/2022] Open
Abstract
The liver is critical for maintaining systemic energy balance during starvation. To understand the role of hepatic fatty acid β-oxidation on this process, we generated mice with a liver-specific knockout of carnitine palmitoyltransferase 2 (Cpt2(L-/-)), an obligate step in mitochondrial long-chain fatty acid β-oxidation. Fasting induced hepatic steatosis and serum dyslipidemia with an absence of circulating ketones, while blood glucose remained normal. Systemic energy homeostasis was largely maintained in fasting Cpt2(L-/-) mice by adaptations in hepatic and systemic oxidative gene expression mediated in part by Pparα target genes including procatabolic hepatokines Fgf21, Gdf15, and Igfbp1. Feeding a ketogenic diet to Cpt2(L-/-) mice resulted in severe hepatomegaly, liver damage, and death with a complete absence of adipose triglyceride stores. These data show that hepatic fatty acid oxidation is not required for survival during acute food deprivation but essential for constraining adipocyte lipolysis and regulating systemic catabolism when glucose is limiting.
Collapse
Affiliation(s)
- Jieun Lee
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Center for Metabolism and Obesity Research, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Joseph Choi
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Center for Metabolism and Obesity Research, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Susanna Scafidi
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Michael J Wolfgang
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Center for Metabolism and Obesity Research, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
135
|
Cao RY, Zheng H, Guo J, Redfearn DP. Prognostic value of plasma biomarkers in patients with acute coronary syndrome: a review of advances in the past decade. Biomark Med 2016; 10:525-35. [PMID: 27089223 DOI: 10.2217/bmm-2015-0029] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Acute coronary syndrome (ACS), especially myocardial infarction, commonly known as a heart attack, is a serious life-threatening cardiovascular disease. Despite dramatic therapeutic advances, there have still been more than 20% patients with ACS suffering recurrent adverse cardiovascular events 3 years after disease onset. Therefore, the aim to prevent cardiac death caused by the heart attack remains challenging. Plasma biomarkers, originally developed to complement clinical assessment and electrocardiographic examination for the diagnosis of ACS, have been reported to play important prognostic roles in predicting adverse outcomes. These biomarkers mirror different pathophysiological mechanisms in association with ACS. In this review, we focus on advances of prognostic biomarkers in the past decade for short- and long-term risk assessment and management of patients with ACS.
Collapse
Affiliation(s)
- Richard Y Cao
- Department of Cardiology, Shanghai Xuhui Central Hospital/Shanghai Clinical Research Center, Chinese Academy of Sciences, Shanghai, China
| | - Hongchao Zheng
- Department of Cardiology, Shanghai Xuhui Central Hospital/Shanghai Clinical Research Center, Chinese Academy of Sciences, Shanghai, China
| | - Junjun Guo
- Department of Cardiology, Shanghai Xuhui Central Hospital/Shanghai Clinical Research Center, Chinese Academy of Sciences, Shanghai, China
| | - Damian P Redfearn
- Department of Biomedical & Molecular Sciences, Queen's University, Kingston, Ontario, Canada.,Department of Medicine, Kingston General Hospital, Kingston, Ontario, Canada
| |
Collapse
|
136
|
Kuttippurathu L, Juskeviciute E, Dippold RP, Hoek JB, Vadigepalli R. A novel comparative pattern analysis approach identifies chronic alcohol mediated dysregulation of transcriptomic dynamics during liver regeneration. BMC Genomics 2016; 17:260. [PMID: 27012785 PMCID: PMC4807561 DOI: 10.1186/s12864-016-2492-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 02/17/2016] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Liver regeneration is inhibited by chronic ethanol consumption and this impaired repair response may contribute to the risk for alcoholic liver disease. We developed and applied a novel data analysis approach to assess the effect of chronic ethanol intake in the mechanisms responsible for liver regeneration. We performed a time series transcriptomic profiling study of the regeneration response after 2/3rd partial hepatectomy (PHx) in ethanol-fed and isocaloric control rats. RESULTS We developed a novel data analysis approach focusing on comparative pattern counts (COMPACT) to exhaustively identify the dominant and subtle differential expression patterns. Approximately 6500 genes were differentially regulated in Ethanol or Control groups within 24 h after PHx. Adaptation to chronic ethanol intake significantly altered the immediate early gene expression patterns and nearly completely abrogated the cell cycle induction in hepatocytes post PHx. The patterns highlighted by COMPACT analysis contained several non-parenchymal cell specific markers indicating their aberrant transcriptional response as a novel mechanism through which chronic ethanol intake deregulates the integrated liver tissue response. CONCLUSIONS Our novel comparative pattern analysis revealed new insights into ethanol-mediated molecular changes in non-parenchymal liver cells as a possible contribution to the defective liver regeneration phenotype. The results revealed for the first time an ethanol-induced shift of hepatic stellate cells from a pro-regenerative phenotype to that of an anti-regenerative state after PHx. Our results can form the basis for novel interventions targeting the non-parenchymal cells in normalizing the dysfunctional repair response process in alcoholic liver disease. Our approach is illustrated online at http://compact.jefferson.edu .
Collapse
Affiliation(s)
- Lakshmi Kuttippurathu
- Daniel Baugh Institute for Functional Genomics and Computational Biology, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Egle Juskeviciute
- MitoCare Center for Mitochondrial Research, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Rachael P Dippold
- MitoCare Center for Mitochondrial Research, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Jan B Hoek
- Daniel Baugh Institute for Functional Genomics and Computational Biology, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, 19107, USA.,MitoCare Center for Mitochondrial Research, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Rajanikanth Vadigepalli
- Daniel Baugh Institute for Functional Genomics and Computational Biology, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, 19107, USA. .,MitoCare Center for Mitochondrial Research, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, 19107, USA.
| |
Collapse
|
137
|
Zhang M, Pan K, Liu Q, Zhou X, Jiang T, Li Y. Growth differentiation factor 15 may protect the myocardium from no‑reflow by inhibiting the inflammatory‑like response that predominantly involves neutrophil infiltration. Mol Med Rep 2015; 13:623-32. [PMID: 26647773 PMCID: PMC4686086 DOI: 10.3892/mmr.2015.4573] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 08/17/2015] [Indexed: 01/13/2023] Open
Abstract
The aim of the current study was to investigate the time course of the expression of growth differentiation factor‑15 (GDF‑15) in rat ischemic myocardium with increasing durations of reperfusion, and to elucidate its physiopathological role in the no‑reflow phenomenon. Wistar rats were randomly divided into ischemia reperfusion (I/R) and sham groups, and myocardial I/R was established by ligation of the left anterior descending coronary artery for 1 h followed by reperfusion for 2, 4, 6, 12, 24 h and 7 days whilst rats in the sham group were subjected to a sham operation. The expression levels of GDF‑15 and ICAM‑1 were measured, in addition to myeloperoxidase (MPO) activity. The myocardial anatomical no‑reflow and infarction areas were assessed. The area at risk was not significantly different following various periods of reperfusion, while the infarct area and no‑reflow area were significantly greater following 6 h of reperfusion (P<0.05). The mRNA and protein expression levels of GDF‑15 were increased during the onset and development of no‑reflow, and peaked following 24 h of reperfusion. MPO activity was reduced with increasing reperfusion duration, while ICAM‑1 levels were increased. Hematoxylin and eosin staining demonstrated that myocardial neutrophil infiltration was significantly increased by I/R injury, in particular following 2, 4 and 6 h of reperfusion. GDF‑15 expression levels were negatively correlated with MPO activity (r=‑0.55, P<0.001), and the MPO activity was negatively correlated with the area of no‑reflow (r=‑0.46, P<0.01). By contrast, GDF‑15 was significantly positively correlated with ICAM‑1 levels (r=0.52, P<0.01), which additionally were demonstrated to be significantly positively associated with the size of the no‑reflow area (r=0.39, P<0.05). The current study demonstrated the time course effect of reperfusion on the expression of GDF‑15 in the myocardial I/R rat model, with the shorter reperfusion times (6 h) resulting in significant no‑reflow in ischemic myocardium. GDF‑15 may protect the I/R myocardium from no‑reflow by inhibiting the inflammatory‑like response, which involves neutrophil infiltration and transendothelial migration.
Collapse
Affiliation(s)
- Mei Zhang
- Department of Cardiology, The Affiliated Hospital of Logistics University of Chinese People's Armed Police Force, Tianjin 300162, P.R. China
| | - Kunying Pan
- Department of Cardiology, The Affiliated Hospital of Logistics University of Chinese People's Armed Police Force, Tianjin 300162, P.R. China
| | - Qianping Liu
- Department of Cardiology, The Affiliated Hospital of Logistics University of Chinese People's Armed Police Force, Tianjin 300162, P.R. China
| | - Xin Zhou
- Tianjin Key Laboratory of Cardiovascular Remodeling and Target Organ Injury, Institute of Cardiovascular Disease and Heart Center, Logistics University of Chinese People's Armed Police Force, Tianjin 300162, P.R. China
| | - Tiemin Jiang
- Department of Cardiology, The Affiliated Hospital of Logistics University of Chinese People's Armed Police Force, Tianjin 300162, P.R. China
| | - Yuming Li
- Department of Cardiology, The Affiliated Hospital of Logistics University of Chinese People's Armed Police Force, Tianjin 300162, P.R. China
| |
Collapse
|
138
|
Chaudhari U, Nemade H, Wagh V, Gaspar JA, Ellis JK, Srinivasan SP, Spitkovski D, Nguemo F, Louisse J, Bremer S, Hescheler J, Keun HC, Hengstler JG, Sachinidis A. Identification of genomic biomarkers for anthracycline-induced cardiotoxicity in human iPSC-derived cardiomyocytes: an in vitro repeated exposure toxicity approach for safety assessment. Arch Toxicol 2015; 90:2763-2777. [PMID: 26537877 PMCID: PMC5065579 DOI: 10.1007/s00204-015-1623-5] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2015] [Accepted: 10/20/2015] [Indexed: 11/25/2022]
Abstract
The currently available techniques for the safety evaluation of candidate drugs are usually cost-intensive and time-consuming and are often insufficient to predict human relevant cardiotoxicity. The purpose of this study was to develop an in vitro repeated exposure toxicity methodology allowing the identification of predictive genomics biomarkers of functional relevance for drug-induced cardiotoxicity in human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs). The hiPSC-CMs were incubated with 156 nM doxorubicin, which is a well-characterized cardiotoxicant, for 2 or 6 days followed by washout of the test compound and further incubation in compound-free culture medium until day 14 after the onset of exposure. An xCELLigence Real-Time Cell Analyser was used to monitor doxorubicin-induced cytotoxicity while also monitoring functional alterations of cardiomyocytes by counting of the beating frequency of cardiomyocytes. Unlike single exposure, repeated doxorubicin exposure resulted in long-term arrhythmic beating in hiPSC-CMs accompanied by significant cytotoxicity. Global gene expression changes were studied using microarrays and bioinformatics tools. Analysis of the transcriptomic data revealed early expression signatures of genes involved in formation of sarcomeric structures, regulation of ion homeostasis and induction of apoptosis. Eighty-four significantly deregulated genes related to cardiac functions, stress and apoptosis were validated using real-time PCR. The expression of the 84 genes was further studied by real-time PCR in hiPSC-CMs incubated with daunorubicin and mitoxantrone, further anthracycline family members that are also known to induce cardiotoxicity. A panel of 35 genes was deregulated by all three anthracycline family members and can therefore be expected to predict the cardiotoxicity of compounds acting by similar mechanisms as doxorubicin, daunorubicin or mitoxantrone. The identified gene panel can be applied in the safety assessment of novel drug candidates as well as available therapeutics to identify compounds that may cause cardiotoxicity.
Collapse
Affiliation(s)
- Umesh Chaudhari
- Institute of Neurophysiology and Center for Molecular Medicine Cologne (CMMC), University of Cologne, Robert-Koch-Str. 39, 50931, Cologne, NRW, Germany
| | - Harshal Nemade
- Institute of Neurophysiology and Center for Molecular Medicine Cologne (CMMC), University of Cologne, Robert-Koch-Str. 39, 50931, Cologne, NRW, Germany
| | - Vilas Wagh
- Institute of Neurophysiology and Center for Molecular Medicine Cologne (CMMC), University of Cologne, Robert-Koch-Str. 39, 50931, Cologne, NRW, Germany
| | - John Antonydas Gaspar
- Institute of Neurophysiology and Center for Molecular Medicine Cologne (CMMC), University of Cologne, Robert-Koch-Str. 39, 50931, Cologne, NRW, Germany
| | - James K Ellis
- Biomolecular Medicine, Department of Surgery and Cancer, Imperial College London, London, UK
| | - Sureshkumar Perumal Srinivasan
- Institute of Neurophysiology and Center for Molecular Medicine Cologne (CMMC), University of Cologne, Robert-Koch-Str. 39, 50931, Cologne, NRW, Germany
| | - Dimitry Spitkovski
- Institute of Neurophysiology and Center for Molecular Medicine Cologne (CMMC), University of Cologne, Robert-Koch-Str. 39, 50931, Cologne, NRW, Germany
| | - Filomain Nguemo
- Institute of Neurophysiology and Center for Molecular Medicine Cologne (CMMC), University of Cologne, Robert-Koch-Str. 39, 50931, Cologne, NRW, Germany
| | - Jochem Louisse
- Institute for Health and Consumer Protection, Joint Research Centre, European Commission, Ispra, Italy
| | - Susanne Bremer
- Institute for Health and Consumer Protection, Joint Research Centre, European Commission, Ispra, Italy
| | - Jürgen Hescheler
- Institute of Neurophysiology and Center for Molecular Medicine Cologne (CMMC), University of Cologne, Robert-Koch-Str. 39, 50931, Cologne, NRW, Germany
| | - Hector C Keun
- Biomolecular Medicine, Department of Surgery and Cancer, Imperial College London, London, UK
| | - Jan G Hengstler
- Leibniz Research Centre for Working Environment and Human Factors at the Technical University of Dortmund (IfADo), 44139, Dortmund, Germany
| | - Agapios Sachinidis
- Institute of Neurophysiology and Center for Molecular Medicine Cologne (CMMC), University of Cologne, Robert-Koch-Str. 39, 50931, Cologne, NRW, Germany.
| |
Collapse
|
139
|
Ilhan HD, Bilgin AB, Toylu A, Dogan ME, Apaydin KC. The Expression of GDF-15 in the Human Vitreous in the Presence of Retinal Pathologies with an Inflammatory Component. Ocul Immunol Inflamm 2015; 24:178-83. [PMID: 26177355 DOI: 10.3109/09273948.2014.981549] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
PURPOSE The presence of growth differentiation factor-15 (GDF-15), a protein implicated in the regulation of the inflammatory response, was investigated in the vitreous of patients with vitreoretinal disorders. METHODS Vitreous and plasma samples were collected from patients with idiopathic epiretinal membrane (IERM), macular hole (MH), rhegmatogenous retinal detachment (RRD), nucleus drop (ND), or proliferative diabetic retinopathy (PDR). GDF-15 concentrations were measured using ELISA. RESULTS The vitreous levels of GDF-15 were higher in ND (5) and PDR (14) patients (1494 ± 243 and 904 ± 138 pg/mL, respectively) than RRD (3), MH (3), and IERM (8) patients (302 ± 160, 288 ± 24, and 254 ± 91 pg/mL, respectively). The vitreous levels of GDF-15 were significantly higher in patients with inflammatory vitreoretinal disorders (p < 0.0001). CONCLUSIONS This is the first report showing that GDF-15 appears to be expressed in the vitreous, and that its expression is significantly higher in the presence of a vitreoretinal disorder in which there is an inflammatory component.
Collapse
Affiliation(s)
| | | | - Asli Toylu
- b Akdeniz University , Department of Medical Genetics , Antalya , Turkey , and
| | | | | |
Collapse
|
140
|
Choi HJ, Kim HG, Kim J, Park SH, Park J, Oh CG, Do KH, Lee SJ, Park YC, Ahn SC, Kim YS, Moon Y. Pro-apoptotic action of macrophage inhibitory cytokine 1 and counteraction of activating transcription factor 3 in carrageenan-exposed enterocytes. Toxicol Lett 2014; 231:1-8. [PMID: 25180886 DOI: 10.1016/j.toxlet.2014.08.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Revised: 08/28/2014] [Accepted: 08/29/2014] [Indexed: 12/15/2022]
Abstract
Carrageenan (CGN), a widely used food additive, has been shown to injure the epithelial barrier in animal models. This type of damage is a clinical feature of inflammatory bowel disease (IBD) in humans. In the present study, the effects of CGN on pro-apoptotic responses associated with macrophage inhibitory cytokine 1 (MIC-1) regulation in human enterocytes were evaluated. CGN up-regulated the expression of MIC-1 that promoted epithelial cell apoptosis. Although MIC-1 induction was dependent on pro-apoptotic p53 protein, the pro-survival protein activating transcription factor 3 (ATF3) was negatively regulated by p53 expression. However, MIC-1 enhanced the expression of the pro-survival protein ATF3 in enterocytes exposed to CGN. Functionally, MIC-1-mediated epithelial cell apoptosis was counteracted by the pro-survival action of ATF3 in response to CGN exposure. These findings demonstrated that the counterbalance between MIC-1 and ATF3 is critical for deciding the fate of enterocytes under the food chemical stress.
Collapse
Affiliation(s)
- Hye Jin Choi
- Laboratory of Mucosal Exposome and Biomodulation, Department of Biomedical Sciences, Pusan National University School of Medicine, Yangsan, South Korea
| | - Hwi-Gon Kim
- Department of Obstetrics and Gynecology, Medical Research Institute, Pusan National University, Pusan, South Korea
| | - Juil Kim
- Laboratory of Mucosal Exposome and Biomodulation, Department of Biomedical Sciences, Pusan National University School of Medicine, Yangsan, South Korea
| | - Seong-Hwan Park
- Laboratory of Mucosal Exposome and Biomodulation, Department of Biomedical Sciences, Pusan National University School of Medicine, Yangsan, South Korea
| | - Jiyeon Park
- Laboratory of Mucosal Exposome and Biomodulation, Department of Biomedical Sciences, Pusan National University School of Medicine, Yangsan, South Korea
| | - Chang Gyu Oh
- Laboratory of Mucosal Exposome and Biomodulation, Department of Biomedical Sciences, Pusan National University School of Medicine, Yangsan, South Korea
| | - Kee Hun Do
- Laboratory of Mucosal Exposome and Biomodulation, Department of Biomedical Sciences, Pusan National University School of Medicine, Yangsan, South Korea
| | - Seung Joon Lee
- Laboratory of Mucosal Exposome and Biomodulation, Department of Biomedical Sciences, Pusan National University School of Medicine, Yangsan, South Korea
| | - Young Chul Park
- Department of Microbiology and Immunology and Medical Research Institute, Pusan National University, Pusan, South Korea
| | - Soon Cheol Ahn
- Department of Microbiology and Immunology and Medical Research Institute, Pusan National University, Pusan, South Korea
| | - Yong Sik Kim
- Department of Pharmacology, Seoul National University College of Medicine, Seoul, South Korea
| | - Yuseok Moon
- Laboratory of Mucosal Exposome and Biomodulation, Department of Biomedical Sciences, Pusan National University School of Medicine, Yangsan, South Korea; Department of Microbiology and Immunology and Medical Research Institute, Pusan National University, Pusan, South Korea; Immunoregulatory Therapeutics Group in Brain Busan 21 Project, Busan, South Korea.
| |
Collapse
|
141
|
Wang X, Li Y, Tian H, Qi J, Li M, Fu C, Wu F, Wang Y, Cheng D, Zhao W, Zhang C, Wang T, Rao J, Zhang W. Macrophage inhibitory cytokine 1 (MIC-1/GDF15) as a novel diagnostic serum biomarker in pancreatic ductal adenocarcinoma. BMC Cancer 2014; 14:578. [PMID: 25106741 PMCID: PMC4133074 DOI: 10.1186/1471-2407-14-578] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Accepted: 08/05/2014] [Indexed: 12/16/2022] Open
Abstract
Background Macrophage inhibitory cytokine 1 (MIC-1/GDF15) has been identified as a potential novel biomarker for detection of pancreatic cancer (PCa). However, the diagnostic value of serum MIC-1 for pancreatic ductal adenocarcinoma (PDAC), particularly for those at the early stage, and the value for treatment response monitoring have not yet been investigated. Methods MIC-1 expression in tumor tissue was analyzed by RT-PCR from 64 patients with PDAC. Serum MIC-1 levels were detected by ELISA in 1472 participants including PDAC, benign pancreas tumor, chronic pancreatitis and normal controls. The diagnostic performance of MIC-1 was assessed and compared with CA19.9, CEA and CA242, and the value of it as a predictive indicator for therapeutic response and tumor recurrence was also evaluated. Results MIC-1 levels were significantly elevated in PDAC tissues as well as serum samples. The sensitivity of serum MIC-1 for PDAC diagnosis was much higher than that of CA19.9 (65.8% vs. 53.3%) with similar specificities. Furthermore, serum MIC-1 detected 238 out of 377 (63.1%) CA19.9-negative PDAC. Moreover, receiver operating characteristic (ROC) curve analysis also showed that serum MIC-1 had a better performance compared with CA19.9 in distinguishing early-stage PDAC from normal serum with a higher sensitivity (62.5% vs. 25.0% respectively). Notably, serum MIC-1 level was significantly decreased in patients with PDAC after curative resection and returned to elevated levels when tumor relapse occurred. Conclusions Serum MIC-1 is significantly elevated in most PDAC, including those with negative CA19.9 and early stage disease, and thus may serve as a novel diagnostic marker in early diagnosis and postoperative monitoring of PDAC.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | - Wei Zhang
- Medical Center for Tumor Detection, Cancer Institute and Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, PR China.
| |
Collapse
|
142
|
Zhang JD, Berntenis N, Roth A, Ebeling M. Data mining reveals a network of early-response genes as a consensus signature of drug-induced in vitro and in vivo toxicity. THE PHARMACOGENOMICS JOURNAL 2014; 14:208-16. [PMID: 24217556 PMCID: PMC4034126 DOI: 10.1038/tpj.2013.39] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Revised: 09/20/2013] [Accepted: 09/26/2013] [Indexed: 01/29/2023]
Abstract
Gene signatures of drug-induced toxicity are of broad interest, but they are often identified from small-scale, single-time point experiments, and are therefore of limited applicability. To address this issue, we performed multivariate analysis of gene expression, cell-based assays, and histopathological data in the TG-GATEs (Toxicogenomics Project-Genomics Assisted Toxicity Evaluation system) database. Data mining highlights four genes-EGR1, ATF3, GDF15 and FGF21-that are induced 2 h after drug administration in human and rat primary hepatocytes poised to eventually undergo cytotoxicity-induced cell death. Modelling and simulation reveals that these early stress-response genes form a functional network with evolutionarily conserved structure and intrinsic dynamics. This is underlined by the fact that early induction of this network in vivo predicts drug-induced liver and kidney pathology with high accuracy. Our findings demonstrate the value of early gene-expression signatures in predicting and understanding compound-induced toxicity. The identified network can empower first-line tests that reduce animal use and costs of safety evaluation.
Collapse
Affiliation(s)
- J D Zhang
- pRED Pharma Research and Development, F. Hoffmann-La Roche AG, Grenzacherstrasse 124, Basel, Switzerland
| | - N Berntenis
- pRED Pharma Research and Development, F. Hoffmann-La Roche AG, Grenzacherstrasse 124, Basel, Switzerland
| | - A Roth
- pRED Pharma Research and Development, F. Hoffmann-La Roche AG, Grenzacherstrasse 124, Basel, Switzerland
| | - M Ebeling
- pRED Pharma Research and Development, F. Hoffmann-La Roche AG, Grenzacherstrasse 124, Basel, Switzerland
| |
Collapse
|
143
|
Galliera E, Lombardi G, Marazzi MG, Grasso D, Vianello E, Pozzoni R, Banfi G, Corsi Romanelli MM. Acute exercise in elite rugby players increases the circulating level of the cardiovascular biomarker GDF-15. Scandinavian Journal of Clinical and Laboratory Investigation 2014; 74:492-9. [DOI: 10.3109/00365513.2014.905697] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
144
|
Bhan A, Mandal SS. Long noncoding RNAs: emerging stars in gene regulation, epigenetics and human disease. ChemMedChem 2014; 9:1932-56. [PMID: 24677606 DOI: 10.1002/cmdc.201300534] [Citation(s) in RCA: 212] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Indexed: 12/19/2022]
Abstract
Noncoding RNAs (ncRNAs) are classes of transcripts that are encoded by the genome and transcribed but never get translated into proteins. Though not translated into proteins, ncRNAs play pivotal roles in a variety of cellular functions. Here, we review the functions of long noncoding RNAs (lncRNAs) and their implications in various human diseases. Increasing numbers of studies demonstrate that lncRNAs play critical roles in regulation of protein-coding genes, maintenance of genomic integrity, dosage compensation, genomic imprinting, mRNA processing, cell differentiation, and development. Misregulation of lncRNAs is associated with a variety of human diseases, including cancer, immune and neurological disorders. Different classes of lncRNAs, their functions, mechanisms of action, and associations with different human diseases are summarized in detail, highlighting their as yet untapped potential in therapy.
Collapse
Affiliation(s)
- Arunoday Bhan
- Epigenetics Research Laboratory, Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas 76019 (USA)
| | | |
Collapse
|
145
|
Growth Differentiation Factor 15, a Marker of Lung Involvement in Systemic Sclerosis, Is Involved in Fibrosis Development but Is not Indispensable for Fibrosis Development. Arthritis Rheumatol 2014; 66:418-27. [DOI: 10.1002/art.38241] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Accepted: 10/15/2013] [Indexed: 01/22/2023]
|
146
|
Wang XB, Jiang XR, Yu XY, Wang L, He S, Feng FY, Guo LP, Jiang W, Lu SH. Macrophage inhibitory factor 1 acts as a potential biomarker in patients with esophageal squamous cell carcinoma and is a target for antibody-based therapy. Cancer Sci 2014; 105:176-85. [PMID: 24383865 PMCID: PMC4317821 DOI: 10.1111/cas.12331] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Revised: 11/26/2013] [Accepted: 11/27/2013] [Indexed: 12/13/2022] Open
Abstract
Macrophage inhibitory factor 1 (MIC1) is frequently altered in various cancers. The aim of this study was to investigate the clinical significance of MIC1 for esophageal squamous cell carcinoma (ESCC). Serum MIC1 of 286 ESCC and 250 healthy subjects was detected, the diagnostic performance was assessed and compared with SCC, CEA, CA199 and CA724, and the value as a prognostic indicator was also evaluated. The expression of MIC1 in ESCC cell lines, tissues were detected, and the inhibition of MIC1 antibody on ESCC was carried out in vitro and in vivo. The results showed that the serum MIC1 of ESCC was significantly higher than normal groups (P < 0.001), and was positively associated with tumor invasion (P = 0.030) as well as lymph node metastasis (P = 0.007). The sensitivity of MIC1 was significantly better than SCC, CEA, CA199 and CA724, especially for stage I ESCC. Patients with higher serum MIC1 also had a poorer prognosis in relapse-free (P = 0.050) and tumor-specific survival (P = 0.005). In vitro studies showed that the expression of MIC1 was upregulated in 37.5% (3/8) ESCC cell lines and 45% (18/40) tissues, and the transcription of MIC1 in tumor tissues was significantly higher than paired adjacent normal tissues (P = 0.001). The antibody of MIC1 inhibited the tumor growth (P < 0.001), and showing preference for tumor tissues in xenograft model. The decreased formation of neovascularization lumen may be involved in the mechanism. We conclude that MIC1 plays an important role in the progression of ESCC and can serve as a potential biomarker and therapeutic target for ESCC.
Collapse
Affiliation(s)
- Xiao-Bing Wang
- State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, Cancer Institute and Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | | | | | | | | | | | | | | | | |
Collapse
|
147
|
Growth differentiating factor 15 enhances the tumor-initiating and self-renewal potential of multiple myeloma cells. Blood 2013; 123:725-33. [PMID: 24345755 DOI: 10.1182/blood-2013-08-524025] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Disease relapse remains a major factor limiting the survival of cancer patients. In the plasma cell malignancy multiple myeloma (MM), nearly all patients ultimately succumb to disease relapse and progression despite new therapies that have improved remission rates. Tumor regrowth indicates that clonogenic growth potential is continually maintained, but the determinants of self-renewal in MM are not well understood. Normal stem cells are regulated by extrinsic niche factors, and the tumor microenvironment (TME) may similarly influence tumor cell clonogenic growth and self-renewal. Growth differentiation factor 15 (GDF15) is aberrantly secreted by bone marrow stromal cells (BMSCs) in MM. We found that GDF15 is produced by BMSCs after direct contact with plasma cells and enhances the tumor-initiating potential and self-renewal of MM cells in a protein kinase B- and SRY (sex-determining region Y)-box-dependent manner. Moreover, GDF15 induces the expansion of MM tumor-initiating cells (TICs), and changes in the serum levels of GDF15 were associated with changes in the frequency of clonogenic MM cells and the progression-free survival of MM patients. These findings demonstrate that GDF15 plays a critical role in mediating the interaction among mature tumor cells, the TME, and TICs, and strategies targeting GDF15 may affect long-term clinical outcomes in MM.
Collapse
|
148
|
Corre J, Hébraud B, Bourin P. Concise review: growth differentiation factor 15 in pathology: a clinical role? Stem Cells Transl Med 2013; 2:946-52. [PMID: 24191265 DOI: 10.5966/sctm.2013-0055] [Citation(s) in RCA: 141] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Growth differentiation factor 15 (GDF15) is a divergent member of the transforming growth factor β family discovered in a broad range of cells, as indicated by the diversity of its nomenclature. However, the only tissue that expresses a high amount of GDF15 in the physiologic state is placenta. GDF15 is easily detected in blood, and its concentration varies with age. In fact, increased blood concentration of GDF15 is associated with numerous pathological conditions. However, the biological significance underlying these observations is far from clear. GDF15 could have a positive or negative role depending on the state of cells or their environment. Furthermore, study of its biology is hampered by lack of knowledge of its receptor and thus the signaling pathways that drive its action. GDF15 seems to be an integrative signal in pathologic conditions, giving information on severity of disease. Its effectiveness in classifying patients to modulate treatment remains to be shown. Development of therapeutic interventions with GDF15 or anti-GDF15 agents remains difficult until we uncover the mechanism that drives its activity.
Collapse
Affiliation(s)
- Jill Corre
- Intergroupe Francophone du Myélome, France
| | | | | |
Collapse
|
149
|
Sanchis-Gomar F, Bonaguri C, Aloe R, Pareja-Galeano H, Martinez-Bello V, Gomez-Cabrera MC, Candel J, Viña J, Lippi G. Effects of acute exercise and xanthine oxidase inhibition on novel cardiovascular biomarkers. Transl Res 2013; 162:102-9. [PMID: 23507375 DOI: 10.1016/j.trsl.2013.02.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Revised: 01/31/2013] [Accepted: 02/21/2013] [Indexed: 01/12/2023]
Abstract
Several sports have been associated with a postexercise increase of cardiac, liver, and skeletal muscle biomarkers of injury. Exhaustive or acute physical exercise causes an increased generation of reactive oxygen species, resulting in cellular injury. Thus, exercise and training may trigger pathophysiological changes in serum concentrations of a variety of biomarkers. In this study, we aimed to evaluate the variation of novel biomarkers of stress and cardiovascular disease such as copeptin, midregional part of proadrenomedullin (MR-proADM), growth differentiation factor 15 (GDF15), soluble vascular endothelial growth factor receptor, and placental growth factor along with uric acid before and after acute high-intensity exercise and allopurinol administration. We also assessed whether allopurinol administration may affect the circulating levels of these biomarkers by inhibition of XO activity. This is a double-blind, placebo-controlled study in which 12 professional football players were divided into 2 experimental groups. An oral dose of 300 mg of allopurinol was administered to one group of six participants 4 hours before a match of the Spanish Football League, whereas the other 6 participants received placebo (cellulose). Venous blood samples were obtained before the match (baseline) and twelve hours afterwards (post-match). Serum MR-proADM levels increased significantly in the placebo group, whereas serum GDF15 levels increased significantly in both the placebo and allopurinol group after the match. No differences in the other parameters tested were found after the match in any experimental group. The trend toward postexercise increase of serum MR-proADM and GDF15 levels shows that the metabolism of these proteins is clearly imbalanced after exercise, which thereby represents a potential source of biological variability in their clinical assessment.
Collapse
|
150
|
The multiple facets of the TGF-β family cytokine growth/differentiation factor-15/macrophage inhibitory cytokine-1. Cytokine Growth Factor Rev 2013; 24:373-84. [DOI: 10.1016/j.cytogfr.2013.05.003] [Citation(s) in RCA: 193] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Accepted: 05/21/2013] [Indexed: 12/23/2022]
|