101
|
Tsirigotis M, Baldwin RM, Tang MY, Lorimer IAJ, Gray DA. Activation of p38MAPK contributes to expanded polyglutamine-induced cytotoxicity. PLoS One 2008; 3:e2130. [PMID: 18461158 PMCID: PMC2330164 DOI: 10.1371/journal.pone.0002130] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2008] [Accepted: 03/27/2008] [Indexed: 01/30/2023] Open
Abstract
Background The signaling pathways that may modulate the pathogenesis of diseases induced by expanded polyglutamine proteins are not well understood. Methodologies/Principal Findings Herein we demonstrate that expanded polyglutamine protein cytotoxicity is mediated primarily through activation of p38MAPK and that the atypical PKC iota (PKCι) enzyme antagonizes polyglutamine-induced cell death through induction of the ERK signaling pathway. We show that pharmacological blockade of p38MAPK rescues cells from polyglutamine-induced cell death whereas inhibition of ERK recapitulates the sensitivity observed in cells depleted of PKCι by RNA interference. We provide evidence that two unrelated proteins with expanded polyglutamine repeats induce p38MAPK in cultured cells, and demonstrate induction of p38MAPK in an in vivo model of neurodegeneration (spinocerebellar ataxia 1, or SCA-1). Conclusions/Significance Taken together, our data implicate activated p38MAPK in disease progression and suggest that its inhibition may represent a rational strategy for therapeutic intervention in the polyglutamine disorders.
Collapse
Affiliation(s)
- Maria Tsirigotis
- Centre for Cancer Therapeutics, Ottawa Health Research Institute, Ottawa, Ontario, Canada
| | - R. Mitchell Baldwin
- Centre for Cancer Therapeutics, Ottawa Health Research Institute, Ottawa, Ontario, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Matthew Y. Tang
- Centre for Cancer Therapeutics, Ottawa Health Research Institute, Ottawa, Ontario, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Ian A. J. Lorimer
- Centre for Cancer Therapeutics, Ottawa Health Research Institute, Ottawa, Ontario, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Douglas A. Gray
- Centre for Cancer Therapeutics, Ottawa Health Research Institute, Ottawa, Ontario, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
- * E-mail:
| |
Collapse
|
102
|
Turner NC, Lord CJ, Iorns E, Brough R, Swift S, Elliott R, Rayter S, Tutt AN, Ashworth A. A synthetic lethal siRNA screen identifying genes mediating sensitivity to a PARP inhibitor. EMBO J 2008; 27:1368-77. [PMID: 18388863 PMCID: PMC2374839 DOI: 10.1038/emboj.2008.61] [Citation(s) in RCA: 256] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2007] [Accepted: 03/04/2008] [Indexed: 11/08/2022] Open
Abstract
Inhibitors of poly (ADP-ribose)-polymerase-1 (PARP) are highly lethal to cells with deficiencies in BRCA1, BRCA2 or other components of the homologous recombination pathway. This has led to PARP inhibitors entering clinical trials as a potential therapy for cancer in carriers of BRCA1 and BRCA2 mutations. To discover new determinants of sensitivity to these drugs, we performed a PARP-inhibitor synthetic lethal short interfering RNA (siRNA) screen. We identified a number of kinases whose silencing strongly sensitised to PARP inhibitor, including cyclin-dependent kinase 5 (CDK5), MAPK12, PLK3, PNKP, STK22c and STK36. How CDK5 silencing mediates sensitivity was investigated. Previously, CDK5 has been suggested to be active only in a neuronal context, but here we show that CDK5 is required in non-neuronal cells for the DNA-damage response and, in particular, intra-S and G(2)/M cell-cycle checkpoints. These results highlight the potential of synthetic lethal siRNA screens with chemical inhibitors to define new determinants of sensitivity and potential therapeutic targets.
Collapse
Affiliation(s)
- Nicholas C Turner
- The Breakthrough Breast Cancer Research Centre, The Institute of Cancer Research, London, UK
| | - Christopher J Lord
- The Breakthrough Breast Cancer Research Centre, The Institute of Cancer Research, London, UK
| | - Elizabeth Iorns
- The Breakthrough Breast Cancer Research Centre, The Institute of Cancer Research, London, UK
| | - Rachel Brough
- The Breakthrough Breast Cancer Research Centre, The Institute of Cancer Research, London, UK
| | - Sally Swift
- The Breakthrough Breast Cancer Research Centre, The Institute of Cancer Research, London, UK
| | - Richard Elliott
- The Breakthrough Breast Cancer Research Centre, The Institute of Cancer Research, London, UK
| | - Sydonia Rayter
- The Breakthrough Breast Cancer Research Centre, The Institute of Cancer Research, London, UK
| | - Andrew N Tutt
- The Breakthrough Breast Cancer Research Centre, The Institute of Cancer Research, London, UK
- Breakthrough Breast Cancer Research Unit, King's College London School of Medicine, Guy's Hospital, London, UK
| | - Alan Ashworth
- The Breakthrough Breast Cancer Research Centre, The Institute of Cancer Research, London, UK
| |
Collapse
|
103
|
Qi X, Pohl NM, Loesch M, Hou S, Li R, Qin JZ, Cuenda A, Chen G. p38alpha antagonizes p38gamma activity through c-Jun-dependent ubiquitin-proteasome pathways in regulating Ras transformation and stress response. J Biol Chem 2007; 282:31398-408. [PMID: 17724032 DOI: 10.1074/jbc.m703857200] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
p38 MAPK family consists of four isoform proteins (alpha, beta, gamma, and delta) that are activated by the same stimuli, but the information about how these proteins act together to yield a biological response is missing. Here we show a feed-forward mechanism by which p38alpha may regulate Ras transformation and stress response through depleting its family member p38gamma protein via c-Jun-dependent ubiquitin-proteasome pathways. Analyses of MAPK kinase 6 (MKK6)-p38 fusion proteins showed that constitutively active p38alpha (MKK6-p38alpha) and p38gamma (MKK6-p38gamma) stimulates and inhibits c-Jun phosphorylation respectively, leading to a distinct AP-1 regulation. Depending on cell type and/or stimuli, p38alpha phosphorylation results in either Ras-transformation inhibition or a cell-death escalation that invariably couples with a decrease in p38gamma protein expression. p38gamma, on the other hand, increases Ras-dependent growth or inhibits stress induced cell-death independent of phosphorylation. In cells expressing both proteins, p38alpha phosphorylation decreases p38gamma protein expression, whereas its inhibition increases cellular p38gamma concentrations, indicating an active role of p38alpha phosphorylation in negatively regulating p38gamma protein expression. Mechanistic analyses show that p38alpha requires c-Jun activation to deplete p38gamma proteins by ubiquitin-proteasome pathways. These results suggest that p38alpha may, upon phosphorylation, act as a gatekeeper of the p38 MAPK family to yield a coordinative biological response through disrupting its antagonistic p38gamma family protein.
Collapse
Affiliation(s)
- Xiaomei Qi
- Department of Pharmacology and Toxicology, Zablocki Department of Veterans Affairs Medical Center, Wisconsin 53226, USA
| | | | | | | | | | | | | | | |
Collapse
|
104
|
Kubo T, Shimose S, Matsuo T, Sakai A, Ochi M. Efficacy of a nitrogen-containing bisphosphonate, minodronate, in conjunction with a p38 mitogen activated protein kinase inhibitor or doxorubicin against malignant bone tumor cells. Cancer Chemother Pharmacol 2007; 62:111-6. [PMID: 17874104 DOI: 10.1007/s00280-007-0580-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2007] [Accepted: 08/23/2007] [Indexed: 11/26/2022]
Abstract
PURPOSE We recently reported the sarcoma-selective antitumor effects of a newly developed nitrogen-containing bisphosphonate, minodronate (MIN), on malignant bone tumors. The aim of this study was to develop efficient combination MIN therapy in malignant bone tumors. METHODS We examined downstream molecular events of MIN in osteosarcoma and Ewing's sarcoma cells to search for a partner to combine with MIN. Furthermore, we evaluated the combined effects of MIN and clinically available Doxorubicin (DOX). RESULTS We found that MIN inhibited Rap 1A prenylation, and extracellular signal-regulated kinase (ERK) or Akt phosphorylation in osteosarcoma (Saos-2) and Ewing's sarcoma (SK-ES-1) cells. Interestingly, MIN activated p38 mitogen activated protein kinase (MAPK) only in SK-ES-1 cells and a p38 MAPK inhibitor augmented MIN-induced growth inhibition in SK-ES-1 cells. Doxorubicin (DOX) exerted synergistic effects on Saos-2 and SK-ES-1 cell lines. Daily injection of MIN enhanced the growth inhibition of SK-ES-1 xenograft sarcoma treated by DOX in nude mice. CONCLUSIONS These findings suggest that the inhibition of the p38 MAPK pathway may be attractive in overcoming cellular resistance against MIN. In the light of clinical settings, MIN may have a beneficial adjuvant role in the DOX treatment.
Collapse
Affiliation(s)
- Tadahiko Kubo
- Department of Orthopaedic Surgery, Graduate School of Biomedical Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan.
| | | | | | | | | |
Collapse
|
105
|
Riuzzi F, Sorci G, Donato R. RAGE expression in rhabdomyosarcoma cells results in myogenic differentiation and reduced proliferation, migration, invasiveness, and tumor growth. THE AMERICAN JOURNAL OF PATHOLOGY 2007; 171:947-61. [PMID: 17640970 PMCID: PMC1959489 DOI: 10.2353/ajpath.2007.070049] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/30/2007] [Indexed: 11/20/2022]
Abstract
Activation of receptor for advanced glycation end products (RAGE) by its ligand, HMGB1, stimulates myogenesis via a Cdc42-Rac1-MKK6-p38 mitogen-activated protein kinase pathway. In addition, functional inactivation of RAGE in myoblasts results in reduced myogenesis, increased proliferation, and tumor formation in vivo. We show here that TE671 rhabdomyosarcoma cells, which do not express RAGE, can be induced to differentiate on transfection with RAGE (TE671/RAGE cells) but not a signaling-deficient RAGE mutant (RAGEDeltacyto) (TE671/RAGEDeltacyto cells) via activation of a Cdc42-Rac1-MKK6-p38 pathway and that TE671/RAGE cell differentiation depends on RAGE engagement by HMGB1. TE671/RAGE cells also show p38-dependent inactivation of extracellular signal-regulated kinases 1 and 2 and c-Jun NH(2) terminal protein kinase and reduced proliferation, migration, and invasiveness and increased apoptosis, volume, and adhesiveness in vitro; they also grow smaller tumors and show a lower tumor incidence in vivo compared with wild-type cells. Two other rhabdomyosarcoma cell lines that express RAGE, CCA and RMZ-RC2, show an inverse relationship between the level of RAGE expression and invasiveness in vitro and exhibit reduced myogenic potential and enhanced invasive properties in vitro when transfected with RAGEDeltacyto. The rhabdomyosarcoma cell lines used here and C2C12 myoblasts express and release HMGB1, which activates RAGE in an autocrine manner. These data suggest that deregulation of RAGE expression in myoblasts might concur in rhabdomyosarcomagenesis and that increasing RAGE expression in rhabdomyosarcoma cells might reduce their tumor potential.
Collapse
Affiliation(s)
- Francesca Riuzzi
- Department of Experimental Medicine and Biochemical Sciences, Section of Anatomy, University of Perugia, Via del Giochetto C.P. 81 Succ. 3, 06122 Perugia, Italy.
| | | | | |
Collapse
|
106
|
Wang S, Tang M, Pei B, Xiao X, Wang J, Hang H, Wu L. Cadmium-Induced Germline Apoptosis in Caenorhabditis elegans: The Roles of HUS1, p53, and MAPK Signaling Pathways. Toxicol Sci 2007; 102:345-51. [PMID: 17728284 DOI: 10.1093/toxsci/kfm220] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The transition metal cadmium (Cd) has been shown to induce apoptosis in a variety of cell lines and tissues. Caspase activation of the tumor suppressor gene p53 and mitogen-activated protein kinase (MAPK) signaling cascades have been reported to be involved in Cd-induced apoptosis. However, the underlying pathways of Cd-induced apoptosis have not been clearly elucidated in the in vivo systems, primarily for the lack of appropriate animal models. The nematode Caenorhabditis elegans has been shown to be a good model to study basic biological processes, including apoptosis. In this study, we used the mutated alleles of C. elegans homologs of known mammalian genes that are involved in regulation of apoptosis. Sublethal doses of Cd exposure increased C. elegans germline apoptosis in a dose- and time-dependent manner. The loss-of-function mutations of DNA damage response (DDR) genes HUS1 and p53 exhibited significant increase in germline apoptosis under Cd exposure, and the depletion of p53 antagonist ABL1 significantly enhanced apoptosis. Cd-induced apoptosis was blocked in the loss-of-function alleles of both c-Jun N-terminal kinase (JNK) and p38 MAPK cascades, which behaved normally under gamma-irradiation. Our findings implicate that both JNK and p38 MAPK cascades participate in Cd-induced apoptosis. Together, the results of this study suggest the nonessential roles of the DDR genes hus1 and p53 in Cd-induced germline apoptosis and that the apoptosis occurs through the ASK1/2-MKK7-JNK and ASK1/2-MKK3/6-p38 signaling pathways in a caspase-dependent manner. Finally, our study demonstrates that C. elegans is a mammalian in vivo substitute model to study the mechanisms of Cd-induced apoptosis.
Collapse
Affiliation(s)
- Shunchang Wang
- Key Laboratory of Ion Beam Bioengineering, Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui 230031, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
107
|
Li JP, Yang JL. Cyclin B1 proteolysis via p38 MAPK signaling participates in G2 checkpoint elicited by arsenite. J Cell Physiol 2007; 212:481-8. [PMID: 17373649 DOI: 10.1002/jcp.21042] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Timely induction of cyclin B1 controls mitotic entry, whereas its proteolysis is essential for mitotic exit. By contrast, cyclin B1 transcription is repressed during G(2) arrest induced by DNA damage. The p38 mitogen-activated protein kinase is involved in the G(2) checkpoint; yet, its impact on cyclin B1 protein levels remains unclear. Here we show that untimely proteolysis of cyclin B1 following p38 activation contributes to G(2) checkpoint. Exposing early G(2) cells to arsenite impeded cyclin B1 protein accumulation, Cdk1 activation, and G(2)-to-M progression. Conversely, cyclin B1 was non-degradable in late G(2) and mitotic cells after arsenite. Cyclin B1 proteolysis was enhanced by arsenite in early G(2) and asynchronous cells. This rapid destruction of cyclin B1 was mediated via the ubiquitin-proteasome pathway probably in a Cdc20 and Cdh1 independent mechanism. Under arsenite, inhibition of p38 activation or depletion of p38alpha suppressed cyclin B1 ubiquitination and proteolysis, while forced expression of MKK6-p38 accelerated these events. Inactivation of p38 in arsenite-treated early G(2) cells allowed G(2)-to-M progression, blocked apoptosis, increased cell viability, and decreased micronucleus formation. Thus, p38 signaling pathway triggering cyclin B1 proteolysis after arsenite may play an important role in connecting G(2) arrest with apoptosis or genome instability.
Collapse
Affiliation(s)
- Ju-Pi Li
- Molecular Carcinogenesis Laboratory, Institute of Biotechnology and Department of Life Sciences, National Tsing Hua University, Hsinchu, Taiwan
| | | |
Collapse
|
108
|
Nadeau SI, Landry J. Mechanisms of Activation and Regulation of the Heat Shock-Sensitive Signaling Pathways. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2007; 594:100-13. [PMID: 17205679 DOI: 10.1007/978-0-387-39975-1_10] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Heat shock (HS), like many other stresses, induces specific and highly regulated signaling cascades that promote cellular homeostasis. The three major mitogen-activated protein kinases (MAPK) and protein kinase B (PKB/Akt) are the most notable of these HS-stimulated pathways. Their activation occurs rapidly and sooner than the transcriptional upregulation of heat shock proteins (Hsp), which generate a transient state of extreme resistance against subsequent thermal stress. The direct connection of these signaling pathways to cellular death or survival mechanisms suggests that they contribute importantly to the HS response. Some of them may counteract early noxious effects of heat, while others may bolster key apoptosis events. The triggering events responsible for activating these pathways are unclear. Protein denaturation, specific and nonspecific receptor activation, membrane alteration and chromatin structure perturbation are potential initiating factors.
Collapse
Affiliation(s)
- Sébastien Ian Nadeau
- Centre de recherche en cancérologie de I'Université Laval, L'Hôtel-Dieu de Québec, 9, rue McMahon, Québec, Canada G1 R 2J6
| | | |
Collapse
|
109
|
Cuenda A, Rousseau S. p38 MAP-kinases pathway regulation, function and role in human diseases. BIOCHIMICA ET BIOPHYSICA ACTA 2007; 1773:1358-75. [PMID: 17481747 DOI: 10.1016/j.bbamcr.2007.03.010] [Citation(s) in RCA: 1037] [Impact Index Per Article: 57.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2006] [Revised: 03/13/2007] [Accepted: 03/19/2007] [Indexed: 11/28/2022]
Abstract
Mammalian p38 mitogen-activated protein kinases (MAPKs) are activated by a wide range of cellular stresses as well as in response to inflammatory cytokines. There are four members of the p38MAPK family (p38alpha, p38beta, p38gamma and p38delta) which are about 60% identical in their amino acid sequence but differ in their expression patterns, substrate specificities and sensitivities to chemical inhibitors such as SB203580. A large body of evidences indicates that p38MAPK activity is critical for normal immune and inflammatory response. The p38MAPK pathway is a key regulator of pro-inflammatory cytokines biosynthesis at the transcriptional and translational levels, which makes different components of this pathway potential targets for the treatment of autoimmune and inflammatory diseases. However, recent studies have shed light on the broad effect of p38MAPK activation in the control of many other aspects of the physiology of the cell, such as control of cell cycle or cytoskeleton remodelling. Here we focus on these emergent roles of p38MAPKs and their implication in different pathologies.
Collapse
Affiliation(s)
- Ana Cuenda
- MRC Protein Phosphorylation Unit, College of life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, UK.
| | | |
Collapse
|
110
|
Han J, Sun P. The pathways to tumor suppression via route p38. Trends Biochem Sci 2007; 32:364-71. [PMID: 17624785 DOI: 10.1016/j.tibs.2007.06.007] [Citation(s) in RCA: 212] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2007] [Revised: 05/21/2007] [Accepted: 06/20/2007] [Indexed: 12/13/2022]
Abstract
Besides its well-known functions in inflammation and other stresses, the p38 mitogen-activated protein kinase pathway also negatively regulates cell proliferation and tumorigenesis. Inactivation of the p38 pathway enhances cellular transformation and renders mice prone to tumor development with concurrent disruption of the induction of senescence. Conversely, persistent activation of p38 inhibits tumorigenesis. Mechanistic insights into this additional p38 function are starting to emerge. For example, p38 has been shown to have a crucial role in oncogene-induced senescence, replicative senescence, DNA-damage responses and contact-inhibition. In addition, the role of the p38 pathway in proliferative control and tumor suppression is mediated by its impact on several cell-cycle regulators. These findings reveal a tumor-suppressing function of the p38 pathway, and indicate that components of the p38 pathway are potential targets for novel cancer therapies.
Collapse
Affiliation(s)
- Jiahuai Han
- Key Laboratory of Ministry of Education for Cell Biology and Tumor Cell Engineering, School of Life Sciences, Xiamen University, Xiamen 361005, China.
| | | |
Collapse
|
111
|
Abstract
Mitogen-activated protein kinases (MAPKs) regulate diverse cellular programs including embryogenesis, proliferation, differentiation and apoptosis based on cues derived from the cell surface and the metabolic state and environment of the cell. In mammals, there are more than a dozen MAPK genes. The best known are the extracellular signal-regulated kinases 1 and 2 (ERK1/2), c-Jun N-terminal kinase (JNK(1-3)) and p38(alpha, beta, gamma and delta) families. ERK3, ERK5 and ERK7 are other MAPKs that have distinct regulation and functions. MAPK cascades consist of a core of three protein kinases. Despite the apparently simple architecture of this pathway, these enzymes are capable of responding to a bewildering number of stimuli to produce exquisitely specific cellular outcomes. These responses depend on the kinetics of their activation and inactivation, the subcellular localization of the kinases, the complexes in which they act, and the availability of substrates. Fine-tuning of cascade activity can occur through modulatory inputs to cascade component from the primary kinases to the scaffolding accessory proteins. Here, we describe some of the properties of the three major MAPK pathways and discuss how these properties govern pathway regulation and activity.
Collapse
Affiliation(s)
- M Raman
- Department of Pharmacology, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | | | | |
Collapse
|
112
|
Abstract
G proteins provide signal-coupling mechanisms to heptahelical cell surface receptors and are critically involved in the regulation of different mitogen-activated protein kinase (MAPK) networks. The four classes of G proteins, defined by the G(s), G(i), G(q) and G(12) families, regulate ERK1/2, JNK, p38MAPK, ERK5 and ERK6 modules by different mechanisms. The alpha- as well as betagamma-subunits are involved in the regulation of these MAPK modules in a context-specific manner. While the alpha- and betagamma-subunits primarily regulate the MAPK pathways via their respective effector-mediated signaling pathways, recent studies have unraveled several novel signaling intermediates including receptor tyrosine kinases and small GTPases through which these G-protein subunits positively as well as negatively regulate specific MAPK modules. Multiple mechanisms together with specific scaffold proteins that can link G-protein-coupled receptors or G proteins to distinct MAPK modules contribute to the context-specific and spatio-temporal regulation of mitogen-activated protein signaling networks by G proteins.
Collapse
Affiliation(s)
- Z G Goldsmith
- Fels Institute for Cancer Research and Molecular Biology, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | | |
Collapse
|
113
|
Zhang S, Song YQ, Zhou S, Yang ZH, Liu ZT, Ni TS, Yue W. Inhibitory effect of favonoids from Hedyotis diffusa willd. on hepatoma cells in vitro & vivo and its influence on transplanted H22 tumor cells' proliferation cycle, apoptosis and immune circumstances in mice. Shijie Huaren Xiaohua Zazhi 2007; 15:1347-1352. [DOI: 10.11569/wcjd.v15.i12.1347] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the inhibitory effect of favonoids from Hedyotis diffusa willd. (FHD) on human hepatoma cell line SMMC-7721 and BEL-7402 in vitro, the antitumor effect on transplanted H22 tumor cells in vivo and its influence on the proliferation cycle, apoptosis of tumor cells and immune circumstances.
METHODS: MTT assay was used to measure the inhibition of SMMC-7721 and BEL-7402 cells exposing to 0, 5, 10, 50 and 100 mg/L FHD for 24, 48 and 72 hours. Sixty Kunming mice were randomly and averagely divided into 6 groups. Except those in normal control group, the other mice received inoculation of H22 tumor cells, and then treated with normal saline, 5-fluorouracil (30 mg/kg), and FHD (25, 50, 100 mg/kg), respectively, for 10 days. The following indicators were compared among the 6 groups, including the inhibitory rates of tumor weights, the distribution of H22 cell cycle, the apoptosis of H22 cells, the thymus index (× 10-3) and splenic index (× 10-3) in mice bearing H22 tumors, the splenic lymphocyte transformation efficiency, and the serum levels (ng/L) of tumor necrosis factor (TNF-α) and interferon-g (IFN-g).
RESULTS: FHD inhibited the proliferation of SMMC-7721 and BEL-7402 cells in vitro in a dose- and time-dependent manner. In comparison with those in the model control mice, when FHD was used at the concentrations of 25, 50 and 100 mg/kg, the growth of H22 tumors was obviously restrained (P < 0.01); the proportion of G0/G1-phase cells was increased (30.36% ± 5.72%, 32.83% ± 6.67%, 39.67% ± 8.01% vs 25.62% ± 4.36%, P < 0.05 or P < 0.01), while that of G2/M-phase cells was decreased (7.65% ± 2.32%, 6.33% ± 3.43%, 2.22% ± 0.98% vs 11.13% ± 2.77%, P < 0.05 or P < 0.01); the apoptosis of tumor cells was significantly promoted (2.41% ± 0.42%, 2.22% ± 0.33%, 2.07% ± 0.40% vs 1.47% ± 0.66%, P < 0.01); the splenic index was down-regulated (51.43 ± 8.31, 47.43 ± 7.89, 48.64 ± 9.35 vs 67.63 ± 7.44, P < 0.01), but the thymus index (33.36 ± 4.09, 40.35 ± 5.79, 34.57 ± 6.56 vs 22.43 ± 4.52, P < 0.01), the splenic lymphocyte transformation rate (10.83% ± 3.75%, 11.33% ± 5.04%, 13.58% ± 4.62% vs 9.35% ± 2.02%, P < 0.05), and the serum levels of TNF-α (257.56 ± 42.29, 386.36 ± 25.97, 364.52 ± 23.62 vs 101.43 ± 24.72, P < 0.01) and IFN-g (355.83 ± 35.74, 392.31 ± 25.17, 357.38 ± 34.82 vs 172.35 ± 29.02, P < 0.01) were markedly elevated.
CONCLUSION: FHD has inhibitory effect on hepatoma cells both in vivo and in vitro, which is related to the blocking of tumor cell proliferation cycle, promotion of tumor cell apoptosis and regulation of immune circumstances.
Collapse
|
114
|
Zhang S, Song YQ, Zhou S, Ni TS, Yue W. Target gene regulation involved in the inhibitory effect of favonoids from Hedyotis diffusa willd. on human hepatoma cell line SMMC-7721. Shijie Huaren Xiaohua Zazhi 2007; 15:1060-1066. [DOI: 10.11569/wcjd.v15.i10.1060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the target gene regulation during the inhibition of human hepatoma cell line SMMC-7721 induced by favonoids from Hedyotis diffusa willd. (FHD).
METHODS: The total RNA was extracted from normal human hepatic cells, SMMC-7721 cells and FHD-treated SMMC-7721 cells, and synthesized into double strand cDNA templates. Transcription of cRNA probe with biotin labeling was performed, and then the obtained cDNA was hybridized with human HO4 gene profile. Cy3 dye was detected with Scan array 5000, and the image information was converted into numeric data. Clusting analysis was performed with IMAGNE Ⅳ software.
RESULTS: Twenty target genes were found to be involved in the FHD-induced inhibition of human hepatoma cells. After FHD treatment, these genes were either up-regulated or down-regulated. Among these genes, oncogenes such as pim-1 (Hs.81170), rel (Hs.858), ras (Hs.204354), fos (Hs.25647), myc (Hs.79070), met (Hs.285754) and Bcl-2-related protein A1 (Hs.227817) were down-regulated; some genes related with cell signal transduction during tumor developing process, such as fibroblast growth factor 2 (Hs.284244), insulin-like growth factor 1 receptor (Hs.239176), insulin-like growth factor-binding protein 4 (Hs.1516), G protein-coupled receptor (Hs.23016), protein tyrosine phosphatase type IVA (Hs.227777), transcription factor 12 (Hs.21704), transcription factor CP2 (Hs.154970), were down-regulated; cytokine interleukin-1 (Hs.1722) was also down-regulated; mitogen-activated protein kinase kinase 6 (Hs.118825) and mitogen-activated protein kinase kinase kinase 12 (Hs.211601), the members of MAPK signal transduction pathway, were up-regulated; NF-2 (Hs.902), the anti-oncogene was up-regulated; the genes which encode the T-cell activation co-stimulatory signal molecules such as TNFSF9 (Hs.1524) and TNFSF7 (Hs.99899) were also up-regulated. All the above genes were closely related with the occurrence and development of hepatoma.
CONCLUSION: FHD inhibits SMMC-7721 cells by co-regulation of various genes, which are involved in the intracellular and extracellular signal transduction pathways.
Collapse
|
115
|
Raman M, Earnest S, Zhang K, Zhao Y, Cobb MH. TAO kinases mediate activation of p38 in response to DNA damage. EMBO J 2007; 26:2005-14. [PMID: 17396146 PMCID: PMC1852793 DOI: 10.1038/sj.emboj.7601668] [Citation(s) in RCA: 158] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2006] [Accepted: 03/07/2007] [Indexed: 12/17/2022] Open
Abstract
Thousand and one amino acid (TAO) kinases are Ste20p-related MAP kinase kinase kinases (MAP3Ks) that activate p38 MAPK. Here we show that the TAO kinases mediate the activation of p38 in response to various genotoxic stimuli. TAO kinases are activated acutely by ionizing radiation, ultraviolet radiation, and hydroxyurea. Full-length and truncated fragments of dominant negative TAOs inhibit the activation of p38 by DNA damage. Inhibition of TAO expression by siRNA also decreases p38 activation by these agents. Cells in which TAO kinases have been knocked down are less capable of engaging the DNA damage-induced G2/M checkpoint and display increased sensitivity to IR. The DNA damage kinase ataxia telangiectasia mutated (ATM) phosphorylates TAOs in vitro; radiation induces phosphorylation of TAO on a consensus site for phosphorylation by the ATM protein kinase in cells; and TAO and p38 activation is compromised in cells from a patient with ataxia telangiectasia that lack ATM. These findings indicate that TAO kinases are regulators of p38-mediated responses to DNA damage and are intermediates in the activation of p38 by ATM.
Collapse
Affiliation(s)
- Malavika Raman
- Department of Pharmacology, University of Texas, Southwestern Medical Center, Dallas, TX, USA
| | - Svetlana Earnest
- Department of Pharmacology, University of Texas, Southwestern Medical Center, Dallas, TX, USA
| | - Kai Zhang
- Department of Biochemistry, University of Texas, Southwestern Medical Center, Dallas, TX, USA
| | - Yingming Zhao
- Department of Biochemistry, University of Texas, Southwestern Medical Center, Dallas, TX, USA
| | - Melanie H Cobb
- Department of Pharmacology, University of Texas, Southwestern Medical Center, Dallas, TX, USA
- Department of Pharmacology, University of Texas, Southwestern Medical Center at Dallas, 6001 Forest Park Road, Dallas, TX 75390-9041, USA. Tel.: +1 214 645 6122; Fax: +1 214 645 6124; E-mail:
| |
Collapse
|
116
|
Golding SE, Rosenberg E, Neill S, Dent P, Povirk LF, Valerie K. Extracellular signal-related kinase positively regulates ataxia telangiectasia mutated, homologous recombination repair, and the DNA damage response. Cancer Res 2007; 67:1046-53. [PMID: 17283137 DOI: 10.1158/0008-5472.can-06-2371] [Citation(s) in RCA: 140] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The accurate joining of DNA double-strand breaks by homologous recombination repair (HRR) is critical to the long-term survival of the cell. The three major mitogen-activated protein (MAP) kinase (MAPK) signaling pathways, extracellular signal-regulated kinase (ERK), p38, and c-Jun-NH(2)-kinase (JNK), regulate cell growth, survival, and apoptosis. To determine the role of MAPK signaling in HRR, we used a human in vivo I-SceI-based repair system. First, we verified that this repair platform is amenable to pharmacologic manipulation and show that the ataxia telangiectasia mutated (ATM) kinase is critical for HRR. The ATM-specific inhibitor KU-55933 compromised HRR up to 90% in growth-arrested cells, whereas this effect was less pronounced in cycling cells. Then, using well-characterized MAPK small-molecule inhibitors, we show that ERK1/2 and JNK signaling are important positive regulators of HRR in growth-arrested cells. On the other hand, inhibition of the p38 MAPK pathway generated an almost 2-fold stimulation of HRR. When ERK1/2 signaling was stimulated by oncogenic RAF-1, an approximately 2-fold increase in HRR was observed. KU-55933 partly blocked radiation-induced ERK1/2 phosphorylation, suggesting that ATM regulates ERK1/2 signaling. Furthermore, inhibition of MAP/ERK kinase (MEK)/ERK signaling resulted in severely reduced levels of phosphorylated (S1981) ATM foci but not gamma-H2AX foci, and suppressed ATM phosphorylation levels >85% throughout the cell cycle. Collectively, these results show that MAPK signaling positively and negatively regulates HRR in human cells. More specifically, ATM-dependent signaling through the RAF/MEK/ERK pathway is critical for efficient HRR and for radiation-induced ATM activation, suggestive of a regulatory feedback loop between ERK and ATM.
Collapse
Affiliation(s)
- Sarah E Golding
- Department of Radiation Oncology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | | | | | | | | | | |
Collapse
|
117
|
Yan Y, Black CP, Cowan KH. Irradiation-induced G2/M checkpoint response requires ERK1/2 activation. Oncogene 2007; 26:4689-98. [PMID: 17297454 DOI: 10.1038/sj.onc.1210268] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Following DNA damage, cells undergo G2/M cell cycle arrest, allowing time for DNA repair. G2/M checkpoint activation involves activation of Wee1 and Chk1 kinases and inhibition of Cdc25A and Cdc25C phosphatases, which results in inhibition of Cdc2 kinase. Results presented in this report indicate that gamma-irradiation (IR) exposure of MCF-7 cells resulted in extracellular signal regulated protein kinase 1 and 2 (ERK1/2) activation and induction of G2/M arrest. Furthermore, inhibition of ERK1/2 signaling resulted in >or=85% attenuation in IR-induced G2/M arrest and concomitant diminution of IR-induced activation of ataxia telangiectasia mutated- and rad3-related (ATR), Chk1 and Wee1 kinases as well as phosphorylation of Cdc25A-Thr506, Cdc25C-Ser216 and Cdc2-Tyr15. Moreover, incubation of cells with caffeine, which inhibits ataxia telangiectasia mutated (ATM)/ATR, or transfection of cells with short interfering RNA targeting ATR abrogated IR-induced Chk1 phosphorylation and G2/M arrest but had no effect on IR-induced ERK1/2 activation. In contrast, inhibition of ERK1/2 signaling resulted in marked attenuation in IR-induced ATR activity with little, if any, effect on IR-induced ATM activation. These results implicate IR-induced ERK1/2 activation as an important regulator of G2/M checkpoint response to IR in MCF-7 cells.
Collapse
Affiliation(s)
- Y Yan
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198-6805, USA
| | | | | |
Collapse
|
118
|
Mirzoeva OK, Kawaguchi T, Pieper RO. The Mre11/Rad50/Nbs1 complex interacts with the mismatch repair system and contributes to temozolomide-induced G2 arrest and cytotoxicity. Mol Cancer Ther 2006; 5:2757-66. [PMID: 17121922 DOI: 10.1158/1535-7163.mct-06-0183] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The chemotherapeutic agent temozolomide produces O(6)-methylguanine (O6MG) in DNA, which triggers futile DNA mismatch repair, DNA double-strand breaks (DSB), G(2) arrest, and ultimately cell death. Because the protein complex consisting of Mre11/Rad50/Nbs1 (MRN complex) plays a key role in DNA damage detection and signaling, we asked if this complex also played a role in the cellular response to temozolomide. Temozolomide exposure triggered the assembly of MRN complex into chromatin-associated nuclear foci. MRN foci formed significantly earlier than gamma-H2AX and 53BP1 foci that assembled in response to temozolomide-induced DNA DSBs. MRN foci formation was suppressed in cells that incurred lower levels of temozolomide-induced O6MG lesions and/or had decreased mismatch repair capabilities, suggesting that the MRN foci formed not in response to temozolomide-induced DSB but rather in response to mismatch repair processing of mispaired temozolomide-induced O6MG lesions. Consistent with this idea, the MRN foci colocalized with those of proliferating cell nuclear antigen (a component of the mismatch repair complex), and the MRN complex component Nbs1 coimmunoprecipitated with the mismatch repair protein Mlh1 specifically in response to temozolomide treatment. Furthermore, small inhibitory RNA-mediated suppression of Mre11 levels decreased temozolomide-induced G(2) arrest and cytotoxicity in a manner comparable to that achieved by suppression of mismatch repair. These data show that temozolomide-induced O6MG lesions, acted upon by the mismatch repair system, drive formation of the MRN complex foci and the interaction of this complex with the mismatch repair machinery. The MRN complex in turn contributes to the control of temozolomide-induced G(2) arrest and cytotoxicity, and as such is an additional determining factor in glioma sensitivity to DNA methylating chemotherapeutic drugs such as temozolomide.
Collapse
Affiliation(s)
- Olga K Mirzoeva
- UCSF Cancer Center, The University of California-San Francisco, Room N219, 2340 Sutter Street, San Francisco, CA 94115-0875.
| | | | | |
Collapse
|
119
|
Probin V, Wang Y, Bai A, Zhou D. Busulfan selectively induces cellular senescence but not apoptosis in WI38 fibroblasts via a p53-independent but extracellular signal-regulated kinase-p38 mitogen-activated protein kinase-dependent mechanism. J Pharmacol Exp Ther 2006; 319:551-560. [PMID: 16882877 DOI: 10.1124/jpet.106.107771] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Busulfan (BU) is a unique alkylating agent that primarily targets slowly proliferating or nonproliferating cells in the body, leading to various normal tissue damage while killing leukemia cells. However, the mechanism(s) of action whereby BU injures normal cells has not been well defined and, therefore, was investigated in the present study by using the normal human diploid WI38 fibroblasts as a model system. We found that WI38 fibroblasts incubated with BU (from 7.5-120 microM) for 24 h underwent senescence but not apoptosis in a dose-independent manner, whereas cells incubated with 80 and 20 microM etoposide (Etop) were committed to apoptosis and senescence, respectively. The induction of WI38 cell senescence by Etop was associated with p53 activation and could be attenuated by down-regulation of p53 using alpha-pifithrin (alpha-PFT) or p53 small interference RNA (siRNA). In contrast, WI38 cell senescence induced by BU was associated with prolonged activation of extracellular signal-regulated kinase (Erk), p38 mitogen-activated protein kinase (p38), and c-Jun NH(2)-terminal kinase (JNK) and could be suppressed by the inhibition of Erk and/or p38 with PD98059 (2'-amino-3'-methoxyflavone) and/or SB203580 [4-(4-fluorophenyl)-2-(4-methylsulfinylphenyl)-5-(4-pyridyl)1H-imidazole], respectively. However, inhibition of p53 with alpha-PFT or p53 siRNA or JNK with SP600125 (1,9-pyrazoloanthrone) failed to protect WI38 cells from BU-induced senescence. These findings suggest that BU is a distinctive chemotherapeutic agent that can selectively induce normal human fibroblast senescence through the Erk and p38 pathways.
Collapse
Affiliation(s)
- Virginia Probin
- Department of Pathology, Medical University of South Carolina, 165 Ashley Avenue, Suite 309, P.O. Box 250908, Charleston, SC 29425, USA
| | | | | | | |
Collapse
|
120
|
Tabata C, Kadokawa Y, Tabata R, Takahashi M, Okoshi K, Sakai Y, Mishima M, Kubo H. All-trans-retinoic acid prevents radiation- or bleomycin-induced pulmonary fibrosis. Am J Respir Crit Care Med 2006; 174:1352-60. [PMID: 17023731 DOI: 10.1164/rccm.200606-862oc] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
RATIONALE Although radiotherapy is effective in treating lung cancers, resultant pulmonary injury is the main obstacle. Pulmonary fibrosis is characterized by progressive worsening in pulmonary function leading to high incidence of death. Currently, however, there has been little progress in effective preventive and therapeutic strategies. OBJECTIVES Previously, we reported that all-trans-retinoic acid (ATRA) reduced both irradiation-induced interleukin (IL)-6 production in lung fibroblasts and IL-6-dependent cell growth, and also directly inhibited the proliferation of lung fibroblasts after irradiation. In this study, we examined the preventive effect of ATRA on the progression of lung fibrosis both in irradiated and bleomycin-treated mice. MEASUREMENTS We performed histologic examinations and quantitative measurements of IL-6, transforming growth factor (TGF)-beta(1), and collagen type Ialpha1 (COL1A1) in irradiated and bleomycin- treated mouse lung tissues with or without the administration of ATRA. RESULTS Lethal irradiation effect was reduced by intraperitoneal administration of ATRA, and the overall survival rate at 16 wk was 30.0% without ATRA (n = 11), whereas it was 81.8% (n = 10) in the treatment group (p = 0.04). In vitro studies disclosed that the administration of ATRA reduced (1) irradiation-induced production of IL-6, TGF-beta(1), and collagen from IMR90 cells, and (2) IL-6-dependent proliferation and TGF-beta(1)-dependent transdifferentiation of the cells, which could be the mechanism underlying the preventive effect of ATRA on lung fibrosis. Furthermore, ATRA ameliorated bleomycin-induced fibrosis in mouse lung tissues. CONCLUSIONS These data may provide a rationale to explore clinical use of ATRA for the prevention of radiation-induced lung fibrosis and other pathologic conditions involving pulmonary fibrosis.
Collapse
Affiliation(s)
- Chiharu Tabata
- Horizontal Medical Research Organization, Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
121
|
Qi X, Tang J, Loesch M, Pohl N, Alkan S, Chen G. p38gamma mitogen-activated protein kinase integrates signaling crosstalk between Ras and estrogen receptor to increase breast cancer invasion. Cancer Res 2006; 66:7540-7. [PMID: 16885352 PMCID: PMC2174269 DOI: 10.1158/0008-5472.can-05-4639] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Ras is believed to stimulate invasion and growth by different effector pathways, and yet, the existence of such effectors under physiologic conditions has not been shown. Estrogen receptor (ER), on the other hand, is both anti-invasive and proliferative in human breast cancer, with mechanisms for these paradoxical actions remaining largely unknown. Our previous work showed an essential role of p38gamma mitogen-activated protein kinase in Ras transformation in rat intestinal epithelial cells, and here, we show that p38gamma integrates invasive antagonism between Ras and ER to increase human breast cancer invasion without affecting their proliferative activity. Ras positively regulates p38gamma expression, and p38gamma in turn mediates Ras nonmitogenic signaling to increase invasion. Expression of the Ras/p38gamma axis, however, is trans-suppressed by ER that inhibits invasion and stimulates growth also by distinct mechanisms. Analysis of ER and its cytoplasmic localized mutant reveals that ER additionally binds to p38gamma protein, leading to its specific down-regulation in the nuclear compartment. A p38gamma-antagonistic activity of ER was further shown in a panel of breast cancer cell lines and was shown independent of estrogens by both ER depletion and ER expression. These results revealed that both Ras and ER use distinct pathways to regulate breast cancer growth and invasion, and that p38gamma specifically integrates their antagonistic activity to stimulate cell invasion. Selective targeting of p38gamma-dependent invasion pathways may be a novel strategy to control breast cancer progression.
Collapse
Affiliation(s)
- Xiaomei Qi
- Department of Radiation Oncology, Loyola University Chicago, Maywood, Illinois
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Jun Tang
- Department of Radiation Oncology, Loyola University Chicago, Maywood, Illinois
| | - Mathew Loesch
- Department of Pharmacology and Experimental Therapeutics, Loyola University Chicago, Maywood, Illinois
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Nicole Pohl
- Program in Molecular Biology, Loyola University Chicago, Maywood, Illinois
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Serhan Alkan
- Department of Pathology, Loyola University Chicago, Maywood, Illinois
| | - Guan Chen
- Department of Radiation Oncology, Loyola University Chicago, Maywood, Illinois
- Department of Pharmacology and Experimental Therapeutics, Loyola University Chicago, Maywood, Illinois
- Program in Molecular Biology, Loyola University Chicago, Maywood, Illinois
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin
| |
Collapse
|
122
|
Shimada M, Nakanishi M. DNA damage checkpoints and cancer. J Mol Histol 2006; 37:253-60. [PMID: 16841236 DOI: 10.1007/s10735-006-9039-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2006] [Accepted: 06/06/2006] [Indexed: 01/10/2023]
Abstract
DNA damage checkpoint is one of the surveillance systems to maintain genomic integrity. Checkpoint systems sense the DNA damage and execute cell cycle arrest through inhibiting the activity of cell cycle regulators. This pathway is essential for the maintenance of genome stability and prevention of tumor development. Recent studies have showed that the cellular responses towards DNA damage, such as cell cycle arrest, DNA repair, chromatin remodeling, and apoptosis are well coordinated. Here we describe the molecular mechanisms of checkpoint activation in response to DNA damage and the correlation between checkpoint gene mutation and genomic instability.
Collapse
Affiliation(s)
- Midori Shimada
- Department of Biochemistry and Cell Biology, Graduate School of Medical Sciences, Nagoya City University, 1 Kawasumi, Mizuho-ku, Mizuho-cho, Nagoya 467-8601, Japan
| | | |
Collapse
|
123
|
Chen XL, Dodd G, Thomas S, Zhang X, Wasserman MA, Rovin BH, Kunsch C. Activation of Nrf2/ARE pathway protects endothelial cells from oxidant injury and inhibits inflammatory gene expression. Am J Physiol Heart Circ Physiol 2006; 290:H1862-70. [PMID: 16339837 DOI: 10.1152/ajpheart.00651.2005] [Citation(s) in RCA: 327] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The antioxidant response element (ARE) is a transcriptional control element that mediates expression of a set of antioxidant proteins. NF-E2-related factor 2 (Nrf2) is a transcription factor that activates ARE-containing genes. In endothelial cells, the ARE-mediated genes are upregulated by atheroprotective laminar flow through a Nrf2-dependent mechanism. We tested the hypothesis that activation of ARE-regulated genes via adenovirus-mediated expression of Nrf2 may suppress redox-sensitive inflammatory gene expression. Expression of Nrf2 in human aortic endothelial cells (HAECs) resulted in a marked increase in ARE-driven transcriptional activity and protected HAECs from H2O2-mediated cytotoxicity. Nrf2 suppressed TNF-α-induced monocyte chemoattractant protein (MCP)-1 and VCAM-1 mRNA and protein expression in a dose-dependent manner and inhibited TNF-α-induced monocytic U937 cell adhesion to HAECs. Nrf2 also inhibited IL-1β-induced MCP-1 gene expression in human mesangial cells. Expression of Nrf2 inhibited TNF-α-induced activation of p38 MAP kinase. Furthermore, expression of a constitutively active form of MKK6 (an upstream kinase for p38 MAP kinase) partially reversed Nrf2-mediated inhibition of VCAM-1 expression, suggesting that p38 MAP kinase, at least in part, mediates Nrf2's anti-inflammatory action. In contrast, Nrf2 did not inhibit TNF-α-induced NF-κB activation. These data identify the Nrf2/ARE pathway as an endogenous atheroprotective system for antioxidant protection and suppression of redox-sensitive inflammatory genes, suggesting that targeting the Nrf2/ARE pathway may represent a novel therapeutic approach for the treatment of inflammatory diseases such as atherosclerosis.
Collapse
Affiliation(s)
- Xi-Lin Chen
- Discovery Research, AtheroGenics, Incorporated, Alpharetta, GA 30004, USA.
| | | | | | | | | | | | | |
Collapse
|
124
|
Tauchi T, Shin-ya K, Sashida G, Sumi M, Okabe S, Ohyashiki JH, Ohyashiki K. Telomerase inhibition with a novel G-quadruplex-interactive agent, telomestatin: in vitro and in vivo studies in acute leukemia. Oncogene 2006; 25:5719-25. [PMID: 16652154 DOI: 10.1038/sj.onc.1209577] [Citation(s) in RCA: 175] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The telomerase complex is responsible for telomere maintenance and represents a promising neoplasia therapeutic target. Recently, we have demonstrated that treatment with a G-quadruplex-interactive agent, telomestatin reproducibly inhibited telomerase activity in the BCR-ABL-positive leukemic cell lines. In the present study, we investigated the mechanisms of apoptosis induced by telomerase inhibition in acute leukemia. We have found the activation of caspase-3 and poly-(ADP-ribose) polymerase in telomestatin-treated U937 cells (PD20) and dominant-negative DN-hTERT-expressing U937 cells (PD25). Activation of p38 mitogen-activated protein (MAP) kinase and MKK3/6 was also found in telomestatin-treated U937 cells (PD20) and dominant-negative DN-hTERT-expressing U937 cells (PD25); however, activation of JNK and ASK1 was not detected in these cells. To examine the effect of p38 MAP kinase inhibition on growth properties and apoptosis in telomerase-inhibited cells, we cultured DN-hTERT-expressing U937 cells with or without SB203580. Dominant-negative-hTERT-expressing U937 cells stopped proliferation on PD25; however, a significant increase in growth rate was observed in the presence of SB203580. Treatment of SB203580 also reduced the induction of apoptosis in DN-hTERT-expressing U937 cells (PD25). These results suggest that p38 MAP kinase has a critical role for the induction of apoptosis in telomerase-inhibited leukemia cells. Further, we evaluated the effect of telomestatin on the growth of U937 cells in xenograft mouse model. Systemic intraperitoneal administration of telomestatin in U937 xenografts decreased tumor telomerase levels and reduced tumor volumes. Tumor tissue from telomestatin-treated animals exhibited marked apoptosis. None of the mice treated with telomestatin displayed any signs of toxicity. Taken together, these results lay the foundations for a program of drug development to achieve the dual aims of efficacy and selectivity in vivo.
Collapse
Affiliation(s)
- T Tauchi
- First Department of Internal Medicine, Tokyo Medical University, Shinjuku-ku, Tokyo, Japan.
| | | | | | | | | | | | | |
Collapse
|
125
|
Seymour KJ, Roberts LE, Fini MA, Parmley LA, Oustitch TL, Wright RM. Stress Activation of Mammary Epithelial Cell Xanthine Oxidoreductase Is Mediated by p38 MAPK and CCAAT/Enhancer-binding Protein-β. J Biol Chem 2006; 281:8545-58. [PMID: 16452486 DOI: 10.1074/jbc.m507349200] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Xanthine oxidoreductase (XOR) catalyzes the formation of uric acid from xanthine and hypoxanthine and is recognized as a source of reactive oxygen and nitrogen species. Unexpectedly, XOR was found to play an essential role in milk secretion in the differentiating mammary gland, where it is an integral component of the milk fat globule. XOR gene expression in both mammary glands and differentiating mammary epithelial cells in culture is regulated by the lactogenic hormones prolactin and cortisol. Expression in mammary epithelial cells is also regulated by inflammatory cytokines and induced by cycloheximide. Cycloheximide was found to stimulate XOR gene expression in differentiating HC11 mouse mammary epithelial cells. Activation of XOR gene expression by both cycloheximide and inflammatory cytokines suggested that XOR may be regulated by stress-activated protein kinases, the MAPKs. We demonstrate here that XOR was induced in HC11 cells by low dose cycloheximide and that expression was blocked by inhibitors of p38 MAPK. Accumulation of phospho-p38 was stimulated by low dose cycloheximide. Low dose cycloheximide stress promoted phosphorylation and nuclear accumulation of the CCAAT/enhancer-binding protein-beta (C/EBPbeta) transcription factor, which was blocked by inhibition of p38. Furthermore, C/EBPbeta was found to activate the mouse XOR promoter, and XOR promoter-C/EBPbeta protein complexes were induced by low dose cycloheximide stress. These data demonstrate, for the first time, that mouse mammary epithelial cell XOR is regulated by p38 MAPK. They identify an essential function of the C/EBPbeta transcription factor in mouse XOR expression and suggest a potential role for p38 MAPK activation of C/EBPbeta in mammary epithelial cells.
Collapse
Affiliation(s)
- Katherine J Seymour
- Department of Biochemistry, University of Bath, Bath BA2 7AY, United Kingdom
| | | | | | | | | | | |
Collapse
|
126
|
Pedraza-Alva G, Koulnis M, Charland C, Thornton T, Clements JL, Schlissel MS, Rincón M. Activation of p38 MAP kinase by DNA double-strand breaks in V(D)J recombination induces a G2/M cell cycle checkpoint. EMBO J 2006; 25:763-73. [PMID: 16456545 PMCID: PMC1383553 DOI: 10.1038/sj.emboj.7600972] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2005] [Accepted: 01/02/2006] [Indexed: 11/09/2022] Open
Abstract
Delay of cell cycle progression in response to double-strand DNA breaks (DSBs) is critical to allow time for DNA repair and prevent cellular transformation. Here, we show that the p38 mitogen-activated protein (MAP) kinase signaling pathway is activated in immature thymocytes along with TcRbeta gene V(D)J recombination. Active p38 MAP kinase promotes a G2/M cell cycle checkpoint through the phosphorylation and activation of p53 in these cells in vivo. Inactivation of p38 MAP kinase and p53 is required for DN3 thymocytes to exit the G2/M checkpoint, progress through mitosis and further differentiate. We propose that p38 MAP kinase is activated by V(D)J-mediated DSBs and induces a p53-mediated G2/M checkpoint to allow DNA repair and prevent cellular transformation.
Collapse
Affiliation(s)
- Gustavo Pedraza-Alva
- Department of Medicine/Immunobiology Program, University of Vermont, Burlington, VT, USA
- Instituto de Biotecnología, Universidad Nacional Autónoma de México. Cuernavaca, Mor., México
| | - Miroslav Koulnis
- Department of Medicine/Immunobiology Program, University of Vermont, Burlington, VT, USA
| | - Colette Charland
- Department of Medicine/Immunobiology Program, University of Vermont, Burlington, VT, USA
| | - Tina Thornton
- Department of Medicine/Immunobiology Program, University of Vermont, Burlington, VT, USA
| | - James L Clements
- Department of Immunology, Cancer Cell Center, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Mark S Schlissel
- Department of Molecular & Cell Biology, University of California-Berkeley, Berkeley, CA, USA
| | - Mercedes Rincón
- Department of Medicine/Immunobiology Program, University of Vermont, Burlington, VT, USA
- Department of Medicine/Immunobiology Program, Given Medical Building D-305, University of Vermont, 89 Beaumont Avenue, Burlington, VT 05405, USA. Tel.: +1 802 656 0937; Fax: +1 802 656 3854; E-mail:
| |
Collapse
|
127
|
Kurosu T, Takahashi Y, Fukuda T, Koyama T, Miki T, Miura O. p38 MAP kinase plays a role in G2 checkpoint activation and inhibits apoptosis of human B cell lymphoma cells treated with etoposide. Apoptosis 2006; 10:1111-20. [PMID: 16151644 DOI: 10.1007/s10495-005-3372-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
p38 MAPK is mainly activated by stress stimuli and mediates signals that regulate various cellular responses, including cell-cycle progression and apoptosis, depending on cell types and stimuli. Here we examine the role of p38 in regulation of apoptosis and cell cycle checkpoint in Daudi B-cell lymphoma cells treated with the topoisomerase II inhibitor etoposide. Etoposide activated p38, inhibited the G2/M transition with the persistent inhibitory phosphorylation of Cdc2 on Tyr15, and caused apoptosis of Daudi cells. Inducible expression of a dominant negative p38alpha mutant in Daudi cells reduced the inhibition of Cdc2 as well as G2/M arrest and augmented apoptosis induced by etoposide. SB203580, a specific inhibitor of p38alpha and p38beta, similarly reduced the inhibitory phosphorylation of Cdc2 as well as G2/M arrest and augmented apoptosis of Daudi cells treated with etoposide. These results suggest that p38 plays a role in G2/M checkpoint activation through induction of the persistent inhibitory phosphorylation of Cdc2 and, thereby, inhibits apoptosis of Daudi cells treated with etoposide. The present study, thus, raises the possibility that p38 may represent a new target for sensitization of lymphoma cells to DNA-damaging chemotherapeutic agents.
Collapse
Affiliation(s)
- T Kurosu
- Department of Hematology, Tokyo Medical and Dental University, 1-5-45 Yushima, Tokyo 113-8519, Bunkyoku, Japan
| | | | | | | | | | | |
Collapse
|
128
|
Shimizu T, Nakazato T, Xian MJ, Sagawa M, Ikeda Y, Kizaki M. Resveratrol induces apoptosis of human malignant B cells by activation of caspase-3 and p38 MAP kinase pathways. Biochem Pharmacol 2006; 71:742-50. [PMID: 16427027 DOI: 10.1016/j.bcp.2005.12.018] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2005] [Revised: 12/06/2005] [Accepted: 12/08/2005] [Indexed: 11/19/2022]
Abstract
Red wine polyphenol, trans-resveratrol (trans-3,4',5-trihydroxy stilbene), has potent chemopreventive effects against various tumors. In this study, we found for the first time that resveratrol rapidly induces S phase cell cycle arrest of human malignant B cells including myeloma cells in dose- and time-dependent manners, followed by S phase cell cycle arrest through ATM/Chk pathway. Resveratrol-induced apoptosis occurs in association with the activation of caspase-3 and the loss of mitochondrial transmembrane potentials. In addition, resveratrol induces the phosphorylation of p38 MAP kinase, and specific inhibition of p38 MAP kinase abolishes the resveratrol-induced apoptosis, indicating that activation of the p38 MAP kinase pathway is required for inducing apoptosis in malignant B cells. These results suggest that resveratrol may have potential as a novel therapeutic agent for the patients with B cell malignancies including multiple myeloma.
Collapse
Affiliation(s)
- Takayuki Shimizu
- Division of Hematology, Department of Internal Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | | | | | | | | | | |
Collapse
|
129
|
Abstract
DNA damage is a common event and probably leads to mutation or deletion within chromosomal DNA, which may cause cancer or premature aging. DNA damage induces several cellular responses including DNA repair, checkpoint activity and the triggering of apoptotic pathways. DNA damage checkpoints are associated with biochemical pathways that end delay or arrest of cell-cycle progression. These checkpoints engage damage sensor proteins, such as the Rad9-Rad1-Hus1 (9-1-1) complex, and the Rad17-RFC complex, in the detection of DNA damage and transduction of signals to ATM, ATR, Chk1 and Chk2 kinases. Chk1 and Chk2 kinases regulate Cdc25, Wee1 and p53 that ultimately inactivate cyclin-dependent kinases (Cdks) which inhibit cell-cycle progression. In this review, we discuss the molecular mechanisms by which DNA damage is recognized by sensor proteins and signals are transmitted to Cdks. We classify the genes involved in checkpoint signaling into four categories, namely sensors, mediators, transducers and effectors, although their proteins have the broad activity, and thus this classification is for convenience and is not definitive.
Collapse
Affiliation(s)
- Hiroyuki Niida
- Department of Biochemistry and Cell Biology, Graduate School of Medical Sciences, Nagoya City University, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601, Japan
| | | |
Collapse
|
130
|
Wakeman TP, Wyczechowska D, Xu B. Involvement of the p38 MAP kinase in Cr(VI)-induced growth arrest and apoptosis. Mol Cell Biochem 2005; 279:69-73. [PMID: 16283515 PMCID: PMC4136756 DOI: 10.1007/s11010-005-8216-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Hexavalent chromium [Cr(VI)] is a carcinogenic genotoxin commonly found in industry and the environment. DNA damage resulting from Cr(VI) exposure triggers numerous stress responses, including activation of cell cycle checkpoints and initiation of apoptosis. Mechanisms controlling these responses, while extensively studied, have yet to be fully elucidated. Here, we demonstrate that the p38 mitogen-activated protein kinase (MAPK) is activated by Cr(VI) exposure and that inhibition of p38 function using the selective inhibitor SB203580 results in abrogation of S-phase and G2 cell cycle checkpoints in response to Cr(VI). Also, we observe that inhibition of p38 results in decreased cell survival and increased percentage of apoptotic cells following Cr(VI) treatment. Taken together, these results indicate that p38 function is critical for optimal stress response induced by Cr(VI) exposure.
Collapse
Affiliation(s)
- Timothy P Wakeman
- Department of Genetics, and Department of Biochemistry and Molecular Biology, LSU Health Sciences Center, New Orleans, Louisiana, USA
| | | | | |
Collapse
|
131
|
Mezhir JJ, Advani SJ, Smith KD, Darga TE, Poon APW, Schmidt H, Posner MC, Roizman B, Weichselbaum RR. Ionizing Radiation Activates Late Herpes Simplex Virus 1 Promoters via the p38 Pathway in Tumors Treated with Oncolytic Viruses. Cancer Res 2005; 65:9479-84. [PMID: 16230412 DOI: 10.1158/0008-5472.can-05-1927] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Ionizing radiation potentiates the oncolytic activity of attenuated herpes simplex viruses in tumors exposed to irradiation at specific time intervals by inducing higher virus yields. Cell culture studies have shown that an attenuated virus lacking the viral gamma(1)34.5 genes underproduces late proteins whose synthesis depends on sustained synthesis of viral DNA. Here we report that ionizing radiation enhances gene expression from late viral promoters in transduced cells in the absence of other viral gene products. Consistent with this result, we show that in tumors infected with the attenuated virus, ionizing radiation increases 13.6-fold above baseline the gene expression from a late viral promoter as early as 2 hours after virus infection, an interval too short to account for viral DNA synthesis. The radiation-dependent up-regulation of late viral genes is mediated by the p38 pathway, inasmuch as the enhancement is abolished by p38 inhibitors or a p38 dominant-negative construct. The p38 pathway is not essential for wild-type virus gene expression. The results suggest that ionizing radiation up-regulates late promoters active in the course of viral DNA synthesis and provide a rationale for use of radiation to up-regulate cytotoxic genes introduced into tumor cells by viral vectors for cytoreductive therapy.
Collapse
Affiliation(s)
- James J Mezhir
- Department of Surgery, University of Chicago, Chicago, IL 60637, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
132
|
Hirose Y, Katayama M, Mirzoeva OK, Berger MS, Pieper RO. Akt activation suppresses Chk2-mediated, methylating agent-induced G2 arrest and protects from temozolomide-induced mitotic catastrophe and cellular senescence. Cancer Res 2005; 65:4861-9. [PMID: 15930307 DOI: 10.1158/0008-5472.can-04-2633] [Citation(s) in RCA: 117] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Pharmacologic inhibition of the DNA signal transducers Chk1 and p38 blocks G2 arrest and sensitizes glioblastoma cells to chemotherapeutic methylating agent-induced cytotoxicity. Because Akt pathway activation has been suggested to also block G2 arrest induced by DNA-damaging agents and because glioma cells frequently have high levels of Akt activation, we examined the contribution of the Akt pathway to methylating agent-induced G2 arrest and toxicity. U87MG human glioma cells containing an inducible Akt expression construct were incubated with inducing agent or vehicle, after which the cells were exposed to temozolomide and assayed for activation of the components of the G2 arrest pathway and survival. Temozolomide-treated control cells activated the DNA damage signal transducers Chk1, Chk2, and p38, leading to Cdc25C and Cdc2 inactivation, prolonged G2 arrest, and loss of clonagenicity by a combination of senescence and mitotic catastrophe. Temozolomide-treated cells induced to overexpress Akt, however, exhibited significantly less drug-induced Cdc25C/Cdc2 inactivation and less G2 arrest. Akt-mediated suppression of G2 arrest was associated not with alterations in Chk1 or p38 activation but rather with suppression of Chk2 activation and reduced recruitment of Chk2 to sites of damage in chromatin. Unlike bypass of the G2 checkpoint induced by pharmacologic inhibitors of Chk1 or p38, however, Akt-induced bypass of G2 arrest suppressed, rather than enhanced, temozolomide-induced senescence and mitotic catastrophe. These results show that whereas Akt activation suppresses temozolomide-induced Chk2 activation and G2 arrest, the overriding effect is protection from temozolomide-induced cytotoxicity. The Akt pathway therefore represents a new target for the sensitization of gliomas to chemotherapeutic methylating agents such as temozolomide.
Collapse
Affiliation(s)
- Yuchi Hirose
- Department of Neurological Surgery and the Brain Tumor Research Center, University of California at San Francisco, San Francisco, California, USA
| | | | | | | | | |
Collapse
|
133
|
Philip B, Lu Z, Gao Y. Regulation of GDF-8 signaling by the p38 MAPK. Cell Signal 2005; 17:365-75. [PMID: 15567067 DOI: 10.1016/j.cellsig.2004.08.003] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2004] [Revised: 08/11/2004] [Accepted: 08/11/2004] [Indexed: 11/19/2022]
Abstract
Growth differentiation factor-8 (GDF-8), a member of the TGF-beta superfamily, is a negative regulator of skeletal muscle growth, which functions through activation of the Smad proteins. We found that GDF-8 can activate the p38 mitogen-activated protein kinase (MAPK) through the TGF-beta-activated kinase 1 (TAK1), and this appeared to be independent of Smad signaling. GDF-8-induced transcriptional activation was inhibited by expression of dominant negative MKK6 or treatment with the p38 inhibitor SB203580, while overexpression of wild-type forms of either MKK6 or p38 augmented GDF-8-induced transcriptional activity. In addition, ATF-2, a known transcription factor target of p38, was found to be phosphorylated on GDF-8 stimulation and was detected in a complex with Smad3/Smad4 upon GDF-8 treatment. Furthermore, we found that the p38 MAPK played an important role in GDF-8-induced inhibition of proliferation and upregulation of the cyclin kinase inhibitor p21. Together, these results highlight a functional link between the p38 MAPK and GDF-8-activated Smad pathways, and identify a critical role for the p38 MAPK in GDF-8's function as a negative regulator of muscle growth.
Collapse
Affiliation(s)
- Bevin Philip
- Protein Technologies Group, Wyeth Research, 87 Cambridge Park Drive, Cambridge MA 02140, USA
| | | | | |
Collapse
|
134
|
Chen Y, Miao ZH, Zhao WM, Ding J. The p53 pathway is synergized by p38 MAPK signaling to mediate 11,11′-dideoxyverticillin-induced G2/M arrest. FEBS Lett 2005; 579:3683-90. [PMID: 15963507 DOI: 10.1016/j.febslet.2005.05.053] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2005] [Revised: 05/23/2005] [Accepted: 05/24/2005] [Indexed: 11/26/2022]
Abstract
The phytochemical 11,11'-dideoxyverticillin, derived from the fungus Shiraia bambusicola, has been shown to possess potent anticancer activity in vitro and in vivo. Here, we investigated the effect of 11,11'-dideoxyverticillin on cell cycle progression, and explored the potential mechanisms for this effect. A concentration- and time-dependent cell cycle blockade at G2/M phase was observed in human colon cancer cells (HCT-116) following 11,11'-dideoxyverticillin treatment and was associated with marked increases in levels of p53, phospho-p53(ser20) and phospho-Chk2(Thr 68). When wild type p53 expression was specifically inhibited by RNA interference, HCT-116 cells treated with 11,11'-dideoxyverticillin failed to arrest in G2/M and did not show increased phospho-Chk2(Thr 68). On the other hand, 11,11'-dideoxyverticillin treatment also elicited p38 MAP kinase activity and expression of phospho-p38 MAPK. Treatment with a specific p38 MAPK inhibitor (SB203580) successfully inhibited p38 MAPK and delayed the onset of G2/M arrest induced by 0.5 microM 11,11'-dideoxyverticillin after approximately 6 h, but did not abolish the induction of G2/M arrest. Additionally, SB203580 did not alter the levels of p53, phospho-p53 (ser20), or phospho-Chk2 (Thr68) proteins in 11,11'-dideoxyverticillin-treated cells. Together, these findings indicate that p53-mediated phosphorylation of Chk2 maybe plays a vital role in 11,11'-dideoxyverticillin-induced G2/M arrest, and that p38 MAPK might accelerate this progression. Our work suggests a new possibility of interactions among p53, Chk2 and p38 MAPK signaling in G2/M arrest.
Collapse
Affiliation(s)
- Yi Chen
- Division of Anti-tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Shanghai Institutes for Biological Science, Chinese Academy of Sciences, Shanghai, PR China
| | | | | | | |
Collapse
|
135
|
Abstract
The family members of the mitogen-activated protein (MAP) kinases mediate a wide variety of cellular behaviors in response to extracellular stimuli. One of the four main sub-groups, the p38 group of MAP kinases, serve as a nexus for signal transduction and play a vital role in numerous biological processes. In this review, we highlight the known characteristics and components of the p38 pathway along with the mechanism and consequences of p38 activation. We focus on the role of p38 as a signal transduction mediator and examine the evidence linking p38 to inflammation, cell cycle, cell death, development, cell differentiation, senescence and tumorigenesis in specific cell types. Upstream and downstream components of p38 are described and questions remaining to be answered are posed. Finally, we propose several directions for future research on p38.
Collapse
Affiliation(s)
- Tyler Zarubin
- Department of Immunology, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | | |
Collapse
|
136
|
Tang J, Qi X, Mercola D, Han J, Chen G. Essential role of p38gamma in K-Ras transformation independent of phosphorylation. J Biol Chem 2005; 280:23910-7. [PMID: 15851477 PMCID: PMC1224721 DOI: 10.1074/jbc.m500699200] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
MAPK cascades play the critical role in regulating Ras oncogene activity by phosphorylation-dependent mechanisms. Whereas the ERK MAPK pathway is required for Ras transformation, our previous works established that the p38 activity is inhibitory to Ras signaling in both experimental and ras-mutated cancer cells (Chen, G., Hitomi, M., Han, J., and Stacey, D. W. (2000) J. Biol. Chem. 275, 38973-38980; Qi, X., Tang, J., Pramanik, R., Schultz, R. M., Shirasawa, S., Sasazuki, T., Han, J., and Chen, G. (2004) J. Biol. Chem., 279, 22138-22144). Here we report that K-Ras activated p38gamma, a p38 MAPK family member, by inducing its expression without increasing its phosphorylation and that depletion of induced p38gamma suppressed Ras transformation in rat intestinal epithelial cells. This p38gamma activity contrasts with that of its family member, p38alpha, which is activated by Ras through phosphorylation, leading to an inhibition of Ras transformation. Mechanistic analyses showed that unphosphorylated p38gamma may promote Ras transformation through an increased complex formation with ERK proteins. Significantly, functional p38gamma protein was expressed only in K-ras-mutated human colon cancer cells, and p38gamma transcripts were ubiquitously increased in a set of primary human colon cancer tissues. These studies thus demonstrate the essential role of p38gamma in K-Ras transformation independent of phosphorylation, and elevated p38gamma may serve as a novel diagnostic marker and therapeutic target for human colon cancer.
Collapse
Affiliation(s)
- Jun Tang
- Department of Radiation Oncology
| | | | - Dan Mercola
- Department of Cancer Gene Therapy, Sidney Kimmel Cancer Center, San Diego, CA 92121
| | - Jiahuai Han
- Department of Immunology, The Scripps Research Institute, La Jolla, CA 92037
| | - Guan Chen
- Department of Radiation Oncology
- Department of Pharmacology and Experimental Therapeutics
- Program in Molecular Biology and Biochemistry, Loyola University of Chicago, Maywood, IL 60153
| |
Collapse
|
137
|
Parnaud G, Li P, Cassar G, Rouimi P, Tulliez J, Combaret L, Gamet-Payrastre L. Mechanism of sulforaphane-induced cell cycle arrest and apoptosis in human colon cancer cells. Nutr Cancer 2005; 48:198-206. [PMID: 15231455 DOI: 10.1207/s15327914nc4802_10] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Sulforaphane (SFN) is a natural micronutrient found in cruciferous vegetables that has been shown to possess antitumoral properties in carcinogen-treated rats. In vitro, SFN regulates phase II enzymes, cell cycle, and apoptosis. In the present study, we investigated the relationship between SFN induction of apoptosis and cell cycle arrest in HT29 human colon carcinoma cells. In previously published data, a significant increase in the G2/M phase of the cell cycle has been observed in SFN-treated cells that was associated with increased cyclin B1 protein levels. In the present study, our results show that SFN induced p21 expression. Moreover, preincubation of HT29 cells with roscovitine, a specific cdc2 kinase inhibitor, blocked the G2/M phase accumulation of HT29 cells treated with SFN and abolished its apoptotic effect (22.2 +/- 4 of floating cells in SFN-treated cells vs. 6.55 +/- 2 in cells treated with both SFN and roscovitine). These results suggest that the cdc2 kinase could be a key target for SFN in the regulation of G2/M block and apoptosis. Moreover, in SFN-treated cells the retinoblastoma tumor suppressor protein (Rb) is highly phosphorylated. Inhibition of the cdc2 kinase by roscovitine did not change the phosphorylation status of Rb in SFN-treated cells, suggesting that this cyclin-dependent kinase may not be involved. In our study, we did not observe any significant change in the proteasomal activity between control and SFN-treated cells. Moreover, inhibition of proteasomal activity through the use of MG132 diminished SFN-induced HT29 cell death, suggesting that the apoptotic effect of SFN requires a functional proteasome-dependent degradation system. In summary, we have elucidated part of the mechanism of action of SFN in the concomitant regulation of intestinal cell growth and death.
Collapse
|
138
|
Hsu YL, Kuo PL, Lin LT, Lin CC. Asiatic acid, a triterpene, induces apoptosis and cell cycle arrest through activation of extracellular signal-regulated kinase and p38 mitogen-activated protein kinase pathways in human breast cancer cells. J Pharmacol Exp Ther 2005; 313:333-44. [PMID: 15626723 DOI: 10.1124/jpet.104.078808] [Citation(s) in RCA: 173] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
This study first investigates the anticancer effect of asiatic acid in two human breast cancer cell lines, MCF-7 and MDA-MB-231. Asiatic acid exhibited effective cell growth inhibition by inducing cancer cells to undergo S-G2/M phase arrest and apoptosis. Blockade of cell cycle was associated with increased p21/WAF1 levels and reduced amounts of cyclinB1, cyclinA, Cdc2, and Cdc25C in a p53-independent manner. Asiatic acid also reduced Cdc2 function by increasing the association of p21/WAF1/Cdc2 complex and the level of inactivated phospho-Cdc2 and phospho-Cdc25C. Asiatic acid treatment triggered the mitochondrial apoptotic pathway indicated by changing Bax/Bcl-2 ratios, cytochrome c release, and caspase-9 activation, but it did not act on Fas/Fas ligand pathways and the activation of caspase-8. We also found that mitogen-activated protein kinases (MAPKs), extracellular signal-regulated kinase (ERK1/2), and p38, but not c-Jun NH2-terminal kinase (JNK), are critical mediators in asiatic acid-induced cell growth inhibition. U0126 [1,4-diamino-2,3-dicyano-1,4-bis(2-aminophenylthio)butadiene] or SB203580 [4-(4-fluorophenyl)-2-(4-methylsulfinylphenyl)-5-(4-pyridyl)-1H-imidazole], specific inhibitors of mitogen-activated protein kinase kinase and p38 kinase activities, significantly decreased or delayed apoptosis. Asiatic acid was likely to confine the breast cancer cells in the S-G2/M phase mainly through the p38 pathway, because both SB203580 and p38 small interfering RNA (siRNA) inhibition significantly attenuated the accumulation of inactive phospho-Cdc2 and phospho-Cdc25C proteins and the cell numbers of S-G2/M phase. Moreover, U0126 and ERK siRNA inhibition completely suppressed asiatic acid-induced Bcl-2 phosphorylation and Bax up-regulation, and caspase-9 activation. Together, these results imply a critical role for ERK1/2 and p38 but not JNK, p53, and Fas/Fas ligand in asiatic acid-induced S-G2/M arrest and apoptosis of human breast cancer cells.
Collapse
Affiliation(s)
- Ya-Ling Hsu
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, 100 Shih-Chuan 1st Rd., Kaohsiung 807, Taiwan, Republic of China
| | | | | | | |
Collapse
|
139
|
Behren A, Binder K, Vucelic G, Herberhold S, Hirt B, Loewenheim H, Preyer S, Zenner HP, Simon C. The p38 SAPK pathway is required for Ha-ras induced in vitro invasion of NIH3T3 cells. Exp Cell Res 2005; 303:321-30. [PMID: 15652346 DOI: 10.1016/j.yexcr.2004.10.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2004] [Revised: 09/26/2004] [Indexed: 11/26/2022]
Abstract
Constitutive activation of the ras oncoprotein plays a critical role in cancer invasion and metastasis. Particularly, ras-related protease expression such as the serine protease urokinase plasminogen activator (u-PA) has been implicated in mediating cancer cell invasion. Previous studies have shown that ras-mediated u-PA expression is regulated through the mitogen- (MAPK) and stress-activated protein kinase (SAPK) signal transduction pathways extracellular signal-regulated kinase (ERK) and c-Jun-activating kinase (JNK). We therefore asked the question, if ras-related cell invasion might additionally require the third MAPK/SAPK signal transduction cascade, p38. Indeed, we found that ras induces invasion based on the activation of certain p38 protein kinase isoforms, in particular, p38alpha. Moreover, ras activation through transient or stable expression of a Ha-rasEJ mutant induced the expression of u-PA. This was found to be a consequence of an increase of u-PA m-RNA, which was paralleled by only a modest activation of the u-PA promoter. In conclusion, we provide evidence for the requirement of a novel ras-p38alpha-u-PA pathway for ras-dependent cellular invasion.
Collapse
Affiliation(s)
- Andreas Behren
- Department of Otolaryngology, Head and Neck Surgery, The University of Tuebingen, Elfriede-Aulhornstrasse 5, 72076 Tuebingen, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
140
|
Abstract
How cells behave as they divide in the presence of chromosome (DNA) damage is only just beginning to be explored. It appears to depend on the cell type and organism, the stage of development, how extensive the damage is and when it occurs. The existing data support the conclusion that vertebrate somatic cells lack a conventional DNA damage checkpoint during mitosis, and that when damaged DNA does prolong mitosis it is mediated by the spindle assembly checkpoint. As a rule, in the presence of DNA damage cells ultimately undergo an aberrant mitosis and enter the ensuing G1. They then either die, via apoptosis or mitotic catastrophe, or survive with an altered genome. To avoid these outcomes, cells with DNA damage are normally prevented from entering mitosis by a number of G2 checkpoint control pathways.
Collapse
Affiliation(s)
- Ciaran Morrison
- Department of Biochemistry/NCBES, National University of Ireland-Galway, University Road, Galway, Ireland.
| | | |
Collapse
|
141
|
Abstract
The DNA damage response is a hierarchical process. DNA damage is detected by sensor proteins such as the MRN complex that transmit the information to transducer proteins such as ATM and ATR, which control the damage response through the phosphorylation of effector proteins. The extent of the DNA damage determines cell fate: cell cycle arrest and DNA repair or the activation of apoptotic pathways. In aerobic cells, reactive oxygen species (ROS) are generated as a by-product of normal mitochondrial activity. If not properly controlled, ROS can cause severe damage to cellular macromolecules, especially the DNA. We describe here some of the cellular responses to alterations in the cellular redox state during hypoxia or oxidative stress. Oxidative damage in DNA is repaired primarily via the base excision repair (BER) pathway which appears to be the simplest of the three excision repair pathways. To allow time for DNA repair, the cells activate their cell cycle checkpoints, leading to cell cycle arrest and preventing the replication of damage and defective DNA.
Collapse
Affiliation(s)
- Ari Barzilai
- Department of Neurobiochemistry, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel.
| | | |
Collapse
|
142
|
López-Avilés S, Grande M, González M, Helgesen AL, Alemany V, Sanchez-Piris M, Bachs O, Millar JBA, Aligue R. Inactivation of the Cdc25 phosphatase by the stress-activated Srk1 kinase in fission yeast. Mol Cell 2005; 17:49-59. [PMID: 15629716 DOI: 10.1016/j.molcel.2004.11.043] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2004] [Revised: 10/01/2004] [Accepted: 11/22/2004] [Indexed: 11/30/2022]
Abstract
The mechanisms by which environmental stress regulates cell cycle progression are poorly understood. In fission yeast, we show that Srk1 kinase, which associates with the stress-activated p38/Sty1 MAP kinase, regulates the onset of mitosis by inhibiting the Cdc25 phosphatase. Srk1 is periodically active in G2, and its overexpression causes cell cycle arrest in late G2 phase, whereas cells lacking srk1 enter mitosis prematurely. We find that Srk1 interacts with and phosphorylates Cdc25 at the same sites phosphorylated by the Chk1 and Cds1 (Chk2) kinases and that this phosphorylation is necessary for Srk1 to delay mitotic entry. Phosphorylation by Srk1 causes Cdc25 to bind to Rad24, a 14-3-3 protein family member, and accumulation of Cdc25 in the cytoplasm. However, Srk1 does not regulate Cdc25 in response to replication arrest or DNA damage but, rather, during a normal cell cycle and in response to nongenotoxic environmental stress.
Collapse
Affiliation(s)
- Sandra López-Avilés
- Departament de Biologia Cellular, Institut de Investigacions Biomèdiques August Pi i Sunyer, Universitat de Barcelona, E-08036 Barcelona, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
143
|
Adamson AW, Beardsley DI, Kim WJ, Gao Y, Baskaran R, Brown KD. Methylator-induced, mismatch repair-dependent G2 arrest is activated through Chk1 and Chk2. Mol Biol Cell 2005; 16:1513-26. [PMID: 15647386 PMCID: PMC551512 DOI: 10.1091/mbc.e04-02-0089] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
SN1 DNA methylating agents such as the nitrosourea N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) elicit a G2/M checkpoint response via a mismatch repair (MMR) system-dependent mechanism; however, the exact nature of the mechanism governing MNNG-induced G2/M arrest and how MMR mechanistically participates in this process are unknown. Here, we show that MNNG exposure results in activation of the cell cycle checkpoint kinases ATM, Chk1, and Chk2, each of which has been implicated in the triggering of the G2/M checkpoint response. We document that MNNG induces a robust, dose-dependent G2 arrest in MMR and ATM-proficient cells, whereas this response is abrogated in MMR-deficient cells and attenuated in ATM-deficient cells treated with moderate doses of MNNG. Pharmacological and RNA interference approaches indicated that Chk1 and Chk2 are both required components for normal MNNG-induced G2 arrest. MNNG-induced nuclear exclusion of the cell cycle regulatory phosphatase Cdc25C occurred in an MMR-dependent manner and was compromised in cells lacking ATM. Finally, both Chk1 and Chk2 interact with the MMR protein MSH2, and this interaction is enhanced after MNNG exposure, supporting the notion that the MMR system functions as a molecular scaffold at the sites of DNA damage that facilitates activation of these kinases.
Collapse
Affiliation(s)
- Aaron W Adamson
- Department of Biochemistry and Molecular Biology and the Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | | | | | | | | | | |
Collapse
|
144
|
del Arroyo AG, Peters G. The Ink4a/Arf network--cell cycle checkpoint or emergency brake? ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2005; 570:227-47. [PMID: 18727503 DOI: 10.1007/1-4020-3764-3_8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
145
|
Abstract
The p38 proteins are an evolutionally conserved family of mitogen-activated protein kinases (MAPK). Recent studies have led to progress in our understanding the roles of p38 MAPK in regulation of tumorigenesis through key cellular growth-control mechanisms. Along with the previously well-characterized proapoptotic functions, new data highlight the critical contributions of p38 MAPK in the negative regulation of cell cycle progression. This review will focus on the ability of p38 MAPK to positively regulate several tumor suppressor (p53- and Rb-dependent) pathways and to attenuate oncogenic (Cdc25A and Cdc25B phosphatases) signals. The concept of p38 MAPK as a potential tumor suppressor will be developed.
Collapse
|
146
|
Wang WH, Grégori G, Hullinger RL, Andrisani OM. Sustained activation of p38 mitogen-activated protein kinase and c-Jun N-terminal kinase pathways by hepatitis B virus X protein mediates apoptosis via induction of Fas/FasL and tumor necrosis factor (TNF) receptor 1/TNF-alpha expression. Mol Cell Biol 2004; 24:10352-65. [PMID: 15542843 PMCID: PMC529056 DOI: 10.1128/mcb.24.23.10352-10365.2004] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2003] [Revised: 12/31/2003] [Accepted: 09/07/2004] [Indexed: 12/24/2022] Open
Abstract
Activation of the cellular stress pathways (c-Jun N-terminal kinase [JNK] and p38 mitogen-activated protein [MAP] kinase) is linked to apoptosis. However, whether both pathways are required for apoptosis remains unresolved. Hepatitis B virus X protein (pX) activates p38 MAP kinase and JNK pathways and, in response to weak apoptotic signals, sensitizes hepatocytes to apoptosis. Employing hepatocyte cell lines expressing pX, which was regulated by tetracycline, we investigated the mechanism of apoptosis by p38 MAP kinase and JNK pathway activation. Inhibition of the p38 MAP kinase pathway rescues by 80% the initiation of pX-mediated apoptosis, whereas subsequent apoptotic events involve both pathways. pX-mediated activation of p38 MAP kinase and JNK pathways is sustained, inducing the transcription of the death receptor family genes encoding Fas/FasL and tumor necrosis factor receptor 1 (TNFR1)/TNF-alpha and the p53-regulated Bax and Noxa genes. The pX-dependent expression of Fas/FasL and TNFR1/TNF-alpha mediates caspase 8 activation, resulting in Bid cleavage. In turn, activated Bid, acting with pX-induced Bax and Noxa, mediates the mitochondrial release of cytochrome c, resulting in the activation of caspase 9 and apoptosis. Combined antibody neutralization of FasL and TNF-alpha reduces by 70% the initiation of pX-mediated apoptosis. These results support the importance of the pX-dependent activation of both the p38 MAP kinase and JNK pathways in pX-mediated apoptosis and suggest that this mechanism of apoptosis occurs in vivo in response to weak apoptotic signals.
Collapse
Affiliation(s)
- Wen-Horng Wang
- Department of Basic Medical Sciences, Purdue University, West Lafayette, IN 47907-1246, USA
| | | | | | | |
Collapse
|
147
|
Bogoyevitch MA, Court NW. Counting on mitogen-activated protein kinases—ERKs 3, 4, 5, 6, 7 and 8. Cell Signal 2004; 16:1345-54. [PMID: 15381250 DOI: 10.1016/j.cellsig.2004.05.004] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2004] [Accepted: 05/12/2004] [Indexed: 11/19/2022]
Abstract
Signal transduction pathways in eukaryotic cells integrate diverse extracellular signals, and regulate complex biological responses such as growth, differentiation and death. One group of proline-directed Ser/Thr protein kinases, the mitogen-activated protein kinases (MAPKs), plays a central role in these signalling pathways. Much attention has focused in recent years on three subfamilies of MAPKs, the extracellular signal regulated kinases (ERKs), c-Jun N-terminal kinases (JNKs) and the p38 MAPKs. However, the ERK family is broader than the ERK1 and ERK2 proteins that have been the subject of most studies in this area. Here we overview the work on ERKs 3 to 8, emphasising where possible their biological activities as well as distinctive biochemical properties. It is clear from these studies that these additional ERKs show similarities to ERK1 and ERK2, but with some interesting differences that challenge the paradigm of the archetypical ERK1/2 MAPK pathway.
Collapse
Affiliation(s)
- Marie A Bogoyevitch
- Cell Signalling Laboratory, Biochemistry and Molecular Biology, School of Biomedical and Chemical Sciences, University of Western Australia, Crawley, WA 6009, Australia.
| | | |
Collapse
|
148
|
Yee AS, Paulson EK, McDevitt MA, Rieger-Christ K, Summerhayes I, Berasi SP, Kim J, Huang CY, Zhang X. The HBP1 transcriptional repressor and the p38 MAP kinase: unlikely partners in G1 regulation and tumor suppression. Gene 2004; 336:1-13. [PMID: 15225871 DOI: 10.1016/j.gene.2004.04.004] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2003] [Revised: 03/03/2004] [Accepted: 04/05/2004] [Indexed: 02/07/2023]
Abstract
Mechanisms that inhibit cell cycle progression and establish growth arrest are fundamental to tumor suppression and to normal cell differentiation. A complete understanding of these mechanisms should provide new diagnostic and therapeutic targets for future clinical applications related to cancer-specific pathways. This review will focus on the HMG-box protein 1 (HBP1) transcriptional repressor and its roles in cell cycle progression and tumor suppression. The work of several labs now suggests a new pathway for inhibiting G1 progression with exciting possible implications for tumor suppression. Our recent work suggests that the two previously unassociated proteins-the HBP1 transcription factor and the p38 MAP kinase pathway-may now participate together in a G1 regulatory network. Several recent papers collectively highlight an unexpected role and connection of the p38 MAP kinase-signaling pathway in cell cycle control, senescence, and tumor suppression. Together, these initially divergent observations may provide clues into a new tumor suppressive network and spur further investigations that may contribute to new diagnostic and therapeutic targets for cancer.
Collapse
Affiliation(s)
- Amy S Yee
- Department of Biochemistry, Tufts University School of Medicine, Boston, MA 02111, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
149
|
Abstract
Evidence has accumulated that inositol pyrophosphates (diphosphoinositol pentakisphosphate (PP-InsP5) and bisdiphosphoinositol tetrakisphosphate ([PP]2-InsP4)) are intracellular signals that regulate many cellular processes including endocytosis, vesicle trafficking, apoptosis, and DNA repair. Yet, in contrast to the situation with all other second messengers, no one studying multicellular organisms has previously described a stimulus that acutely and specifically elevates cellular levels of PP-InsP5 or [PP]2-InsP4. We now show up to 25-fold elevations in [PP]2-InsP4 levels in animal cells. Importantly, this does not involve classical agonists. Instead, we show that this [PP]2-InsP4 response is a novel consequence of the activation of ERK1/2 and p38MAPalpha/beta kinases by hyperosmotic stress. JNK did not participate in regulating [PP]2-InsP4 levels. Identification of [PP]2-InsP4 as a sensor of hyperosmotic stress opens up a new area of research for studies into the cellular activities of higher inositol phosphates.
Collapse
Affiliation(s)
- Xavier Pesesse
- Inositide Signaling Group, NIEHS, National Institutes of Health, Department of Health and Social Services, Research Triangle Park, North Carolina 27709, USA
| | | | | | | |
Collapse
|
150
|
Yu J, Bian D, Mahanivong C, Cheng RK, Zhou W, Huang S. p38 Mitogen-activated protein kinase regulation of endothelial cell migration depends on urokinase plasminogen activator expression. J Biol Chem 2004; 279:50446-54. [PMID: 15371454 DOI: 10.1074/jbc.m409221200] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The migration of endothelial cells in response to various stimulating factors plays an essential role in angiogenesis. The p38 MAPK pathway has been implicated to play an important role in endothelial cell migration because inhibiting p38 MAPK activity down-regulates vascular endothelial growth factor (VEGF)-stimulated migration. Currently, the signaling components in the p38 MAPK activation pathway and especially the mechanisms responsible for p38 MAPK-regulated endothelial cell migration are not well understood. In the present study, we found that p38 MAPK activity is required for endothelial cell migration stimulated by both VEGF and nongrowth factor stimulants, sphingosine 1-phosphate and soluble vascular cell adhesion molecule. By using dominant negative forms of signaling components in the p38 MAPK pathway, we identified that a regulatory pathway consisting of MKK3-p38alpha/gamma-MAPK-activated protein kinase 2 participated in VEGF-stimulated migration. In further studies, we showed that a minimum of a 10-h treatment with SB203580 (specific p38 MAPK inhibitor) was needed to block VEGF-stimulated migration, suggesting an indirect role of p38 MAPK in this cellular event. Most interestingly, the occurrence of SB203580-induced migratory inhibition coincided with a reduction of urokinase plasminogen activator (uPA) expression. Furthermore, agents disrupting uPA and uPA receptor interaction abrogated VEGF-stimulated cell migration. These results suggest a possible association between cell migration and uPA expression. Indeed, VEGF-stimulated migration was not compromised by SB203580 in endothelial cells expressing the uPA transgene; however, VEGF-stimulated migration was inhibited by agents disrupting uPA-uPA receptor interaction. These results thus suggest that the p38 MAPK pathway participates in endothelial cell migration by regulating uPA expression.
Collapse
Affiliation(s)
- Jianqiang Yu
- Department of Immunology, The Scripps Research Institute, La Jolla, California 92037, USA
| | | | | | | | | | | |
Collapse
|