101
|
Nagel AC, Krejci A, Tenin G, Bravo-Patiño A, Bray S, Maier D, Preiss A. Hairless-mediated repression of notch target genes requires the combined activity of Groucho and CtBP corepressors. Mol Cell Biol 2005; 25:10433-41. [PMID: 16287856 PMCID: PMC1291231 DOI: 10.1128/mcb.25.23.10433-10441.2005] [Citation(s) in RCA: 114] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Notch signal transduction centers on a conserved DNA-binding protein called Suppressor of Hairless [Su(H)] in Drosophila species. In the absence of Notch activation, target genes are repressed by Su(H) acting in conjunction with a partner, Hairless, which contains binding motifs for two global corepressors, CtBP and Groucho (Gro). Usually these corepressors are thought to act via different mechanisms; complexed with other transcriptional regulators, they function independently and/or redundantly. Here we have investigated the requirement for Gro and CtBP in Hairless-mediated repression. Unexpectedly, we find that mutations inactivating one or the other binding motif can have detrimental effects on Hairless similar to those of mutations that inactivate both motifs. These results argue that recruitment of one or the other corepressor is not sufficient to confer repression in the context of the Hairless-Su(H) complex; Gro and CtBP need to function in combination. In addition, we demonstrate that Hairless has a second mode of repression that antagonizes Notch intracellular domain and is independent of Gro or CtBP binding.
Collapse
Affiliation(s)
- Anja C Nagel
- Anette Preiss, Institut für Genetik (240), Universität Hohenheim, Garbenstr. 30, D-70599 Stuttgart, Germany
| | | | | | | | | | | | | |
Collapse
|
102
|
Scott KL, Plon SE. CHES1/FOXN3 interacts with Ski-interacting protein and acts as a transcriptional repressor. Gene 2005; 359:119-26. [PMID: 16102918 DOI: 10.1016/j.gene.2005.06.014] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2005] [Revised: 05/26/2005] [Accepted: 06/03/2005] [Indexed: 11/29/2022]
Abstract
Checkpoint Suppressor 1 (CHES1; FOXN3) encodes a member of the forkhead/winged-helix transcription factor family. The human CHES1 cDNA was originally identified by its ability to function as a high-copy suppressor of multiple checkpoint mutants of Saccharomyces cerevisiae. Accumulating expression profile data suggest that CHES1 plays a role in tumorigenicity and responses to cancer treatments, though nothing is known regarding the transcriptional function of CHES1 or other FOXN proteins in human cells. In this report, we find that the carboxyl terminus of CHES1 fused to a heterologous DNA binding domain consistently represses reporter gene transcription in cell lines derived from tumor tissues. Using a cytoplasmic two-hybrid screening approach, we find that this portion of CHES1 interacts with Ski-interacting protein (SKIP; NCoA-62), which is a transcriptional co-regulator known to associate with repressor complexes. We verify this interaction through co-immunoprecipitation experiments performed in mammalian cells. Further analysis of the CHES1/SKIP interaction indicates that CHES1 binds to a region within the final 66 hydrophobic residues of SKIP thus defining a new protein-protein interaction domain of SKIP. These data suggest that CHES1 recruits SKIP to repress genes important for tumorigenesis and the response to cancer treatments.
Collapse
Affiliation(s)
- Kenneth L Scott
- Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | | |
Collapse
|
103
|
Somasundaram K, Reddy SP, Vinnakota K, Britto R, Subbarayan M, Nambiar S, Hebbar A, Samuel C, Shetty M, Sreepathi HK, Santosh V, Hegde AS, Hegde S, Kondaiah P, Rao MRS. Upregulation of ASCL1 and inhibition of Notch signaling pathway characterize progressive astrocytoma. Oncogene 2005; 24:7073-83. [PMID: 16103883 DOI: 10.1038/sj.onc.1208865] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Astrocytoma is the most common type of brain cancer constituting more than half of all brain tumors. With an aim to identify markers describing astrocytoma progression, we have carried out microarray analysis of astrocytoma samples of different grades using cDNA microarray containing 1152 cancer-specific genes. Data analysis identified several differentially regulated genes between normal brain tissue and astrocytoma as well as between grades II/III astrocytoma and glioblastoma multiforme (GBM; grade IV). We found several genes known to be involved in malignancy including Achaete-scute complex-like 1 (Drosophila) (ASCL1; Hash 1). As ASCL has been implicated in neuroendocrine, medullary thyroid and small-cell lung cancers, we chose to examine the role of ASCL1 in the astrocytoma development. Our data revealed that ASCL1 is overexpressed in progressive astrocytoma as evidenced by increased levels of ASCL1 transcripts in 85.71% (6/7) of grade II diffuse astrocytoma (DA), 90% (9/10) of grade III anaplastic astrocytoma (AA) and 87.5% (7/8) of secondary GBMs, while the majority of primary de novo GBMs expressed similar to or less than normal brain levels (66.67%; 8/12). ASCL1 upregulation in progressive astrocytoma is accompanied by inhibition of Notch signaling as seen by uninduced levels of HES1, a transcriptional target of Notch1, increased levels of HES6, a dominant-negative inhibitor of HES1-mediated repression of ASCL1, and increased levels of Notch ligand Delta1, which is capable of inhibiting Notch signaling by forming intracellular Notch ligand autonomous complexes. Our results imply that inhibition of Notch signaling may be an important early event in the development of grade II DA and subsequent progression to grade III AA and secondary GBM. Furthermore, ASCL1 appears to be a putative marker to distinguish primary GBM from secondary GBM.
Collapse
Affiliation(s)
- Kumaravel Somasundaram
- 1Department of Microbiology and Cell Biology, Indian Institute of Science, Malleswaram, Bangalore 560012, India
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
104
|
Stockhausen MT, Sjölund J, Axelson H. Regulation of the Notch target gene Hes-1 by TGFalpha induced Ras/MAPK signaling in human neuroblastoma cells. Exp Cell Res 2005; 310:218-28. [PMID: 16120441 DOI: 10.1016/j.yexcr.2005.07.011] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2005] [Revised: 06/08/2005] [Accepted: 07/24/2005] [Indexed: 11/29/2022]
Abstract
Ras and Notch signaling have recently been shown to cooperate in the maintenance of neoplastic transformation. Here, we show that TGFalpha, a known activator of Ras signaling, can drive cell proliferation and at the same time induce the expression of the Notch target Hes-1 in the neuroblastoma cell line SK-N-BE(2)c. The up-regulation of Hes-1 occurred both at the transcriptional and protein levels and by use of EGFR and MEK inhibitors we could show that the Hes-1 response was dependent on activation of the MAP kinase ERK. Blocking Notch activation by gamma-secretase inhibition did not profoundly affect the Hes-1 levels, neither in untreated nor in TGFalpha treated cells. The up-regulation of Hes-1 was associated with down-regulation of its pro-neuronal target gene Hash-1. Taken together, these results show that TGFalpha is a potent mitogen of neuroblastoma cells and suggest a connection between activation of ERK and Hes-1, thus providing a link between the Ras and Notch signaling pathways.
Collapse
Affiliation(s)
- Marie-Thérése Stockhausen
- Department of Laboratory Medicine, Division of Molecular Medicine, Lund University, University Hospital MAS, Entrance 78, S-205 02 Malmö, Sweden
| | | | | |
Collapse
|
105
|
Katic I, Vallier LG, Greenwald I. New positive regulators of lin-12 activity in Caenorhabditis elegans include the BRE-5/Brainiac glycosphingolipid biosynthesis enzyme. Genetics 2005; 171:1605-15. [PMID: 16157663 PMCID: PMC1389698 DOI: 10.1534/genetics.105.048041] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Screens for suppressors of lin-12 hypermorphic alleles in C. elegans have identified core components and modulators of the LIN-12/Notch signaling pathway. Here we describe the recovery of alleles of six new genes from a screen for suppressors of the egg-laying defect associated with elevated lin-12 activity. The molecular identification of one of the new suppressor genes revealed it as bre-5, which had previously been identified in screens for mutations that confer resistance to Bt toxin in C. elegans. bre-5 is the homolog of D. melanogaster brainiac. BRE-5/Brainiac catalyzes a step in the synthesis of glycosphingolipids, components of lipid rafts that are thought to act as platforms for association among certain kinds of membrane-bound proteins. Reducing the activity of several other genes involved in glycosphingolipid biosynthesis also suppresses the effects of constitutive lin-12 activity. Genetic analysis and cell ablation experiments suggest that bre-5 functions prior to ligand-induced ectodomain shedding that activates LIN-12 for signal transduction.
Collapse
Affiliation(s)
- Iskra Katic
- Department of Biochemistry and Molecular Biophysics, Howard Hughes Medical Institute, Columbia University College of Physicians and Surgeons, 701 W. 168th Street, New York, NY 10032, USA
| | | | | |
Collapse
|
106
|
Syed V, Zhang X, Lau KM, Cheng R, Mukherjee K, Ho SM. Profiling estrogen-regulated gene expression changes in normal and malignant human ovarian surface epithelial cells. Oncogene 2005; 24:8128-43. [PMID: 16116479 DOI: 10.1038/sj.onc.1208959] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Estrogens regulate normal ovarian surface epithelium (OSE) cell functions but also affect epithelial ovarian cancer (OCa) development. Little is known about how estrogens play such opposing roles. Transcriptional profiling using a cDNA microarray containing 2400 named genes identified 155 genes whose expression was altered by estradiol-17beta (E2) in three immortalized normal human ovarian surface epithelial (HOSE) cell lines and 315 genes whose expression was affected by the hormone in three established OCa (OVCA) cell lines. All but 19 of the genes in these two sets were different. Among the 19 overlapping genes, five were found to show discordant responses between HOSE and OVCA cell lines. The five genes are those that encode clone 5.1 RNA-binding protein (RNPS1), erythrocyte adducin alpha subunit (ADD1), plexin A3 (PLXNA3 or the SEX gene), nuclear protein SkiP (SKIIP), and Rap-2 (rap-2). RNPS1, ADD1, rap-2, and SKIIP were upregulated by E2 in HOSE cells but downregulated by estrogen in OVCA cells, whereas PLXNA3 showed the reverse pattern of regulation. The estrogen effects was observed within 6-18 h of treatment. In silicon analyses revealed presence of estrogen response elements in the proximal promoters of all five genes. RNPS1, ADD1, and PLXNA3 were underexpressed in OVCA cell lines compared to HOSE cell lines, while the opposite was true for rap-2 and SKIIP. Functional studies showed that RNPS1 and ADD1 exerted multiple antitumor actions in OVCA cells, while PLXNA3 only inhibited cell invasiveness. In contrast, rap-2 was found to cause significant oncogenic effects in OVCA cells, while SKIIP promotes only anchorage-independent growth. In sum, gene profiling data reveal that (1) E2 exerts different actions on HOSE cells than on OVCA cells by affecting two distinct transcriptomes with few overlapping genes and (2) among the overlapping genes, a set of putative oncogenes/tumor suppressors have been identified due to their differential responses to E2 between the two cell types. These findings may explain the paradoxical roles of estrogens in regulating normal and malignant OSE cell functions.
Collapse
Affiliation(s)
- Viqar Syed
- Department of Surgery, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | | | | | | | | | | |
Collapse
|
107
|
Maier S, Santak M, Mantik A, Grabusic K, Kremmer E, Hammerschmidt W, Kempkes B. A somatic knockout of CBF1 in a human B-cell line reveals that induction of CD21 and CCR7 by EBNA-2 is strictly CBF1 dependent and that downregulation of immunoglobulin M is partially CBF1 independent. J Virol 2005; 79:8784-92. [PMID: 15994772 PMCID: PMC1168782 DOI: 10.1128/jvi.79.14.8784-8792.2005] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2004] [Accepted: 03/28/2005] [Indexed: 11/20/2022] Open
Abstract
CBF1 is a cellular highly conserved DNA binding factor that is ubiquitously expressed in all tissues and acts as a repressor of cellular genes. In Epstein-Barr virus growth-transformed B-cell lines, CBF1 serves as a central DNA adaptor molecule for several viral proteins, including the viral transactivator Epstein-Barr virus nuclear antigen 2 (EBNA-2). EBNA-2 binds to CBF1 and thereby gains access to regulatory regions of target genes and activates transcription. We have inactivated the CBF1 gene by homologous recombination in the human B-cell line DG75 and characterized changes in cellular gene expression patterns upon loss of CBF1 and activation of EBNA-2. CBF1-negative DG75 cells were viable and proliferated at wild-type rates. Loss of CBF1 was not sufficient to release repression of the previously described EBNA-2 target genes CD21 or CCR7, whereas induction of both target genes by EBNA-2 required CBF1. In contrast, repression of immunoglobulin M by EBNA-2 was mainly CBF1 independent. CBF1-negative DG75 B cells thus provide an excellent tool to dissect CBF1-dependent and -independent functions exerted by the EBNA-2 protein in future studies.
Collapse
Affiliation(s)
- Sabine Maier
- Institute of Clinical Molecular Biology, GSF National Research Center for Environment and Health, Marchioninistr. 25, D-81377 Munich, Germany
| | | | | | | | | | | | | |
Collapse
|
108
|
Tang J, Chang HY, Yang X. The death domain-associated protein modulates activity of the transcription co-factor Skip/NcoA62. FEBS Lett 2005; 579:2883-90. [PMID: 15878163 DOI: 10.1016/j.febslet.2005.04.029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2005] [Revised: 03/30/2005] [Accepted: 04/08/2005] [Indexed: 01/16/2023]
Abstract
Death domain-associated protein (Daxx) regulates both transcription and apoptosis. The role of Daxx in transcription is not well understood. Here, we show that Daxx interacts with Skip/NcoA62, a transcription cofactor that modulates the activity of oncoproteins including Ski and NotchIC. Daxx strongly binds with Skip both in vitro and in mammalian cells. This interaction is mediated by the PAH2 domain of Daxx and the highly conserved SNW domain of Skip. Daxx partially co-localizes with Skip in vivo and changes the cellular distribution of Skip. In addition, Skip represses transcription when tethered to a promoter, and Daxx antagonizes this activity. Furthermore, Skip is phosphorylated at serine 224 in its SNW domain. These results suggest a novel function of Daxx in transcription regulation through alteration of the cellular localization of Skip.
Collapse
Affiliation(s)
- Jun Tang
- Abramson Family Cancer Research Institute and Department of Cancer Biology, University of Pennsylvania School of Medicine, Philadelphia, 19104, USA
| | | | | |
Collapse
|
109
|
McKenzie GJ, Stevenson P, Ward G, Papadia S, Bading H, Chawla S, Privalsky M, Hardingham GE. Nuclear Ca2+ and CaM kinase IV specify hormonal- and Notch-responsiveness. J Neurochem 2005; 93:171-85. [PMID: 15773917 DOI: 10.1111/j.1471-4159.2005.03010.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Many neuronal processes require gene activation by synaptically evoked Ca(2+) transients. Ca(2+)-dependent signal pathways activate some transcription factors outright, but here we report that such signals also potentiate the activation of nuclear receptors by their cognate hormone, and of CBF1 by Notch, transcription factors hitherto not thought to be Ca(2+)-responsive. This potentiation is occluded by histone deacetylase inhibition, indicating a mechanism involving inactivation of co-repressors associated with these transcription factors. Synaptic activity, acting via the nuclear Ca(2+)-dependent activation of CaM kinase IV, triggers the disruption of subnuclear domains containing class II histone deacetylases (HDACs) and silencing mediator of retinoic acid and thyroid hormone receptors (SMRT), a broad-specificity co-repressor which represses nuclear hormone receptors and CBF1. The sequential loss of class II HDACs and SMRT from the subnuclear domains, followed by nuclear export, is associated with disruption of SMRT interaction with its target transcription factors and sensitization of these factors to their activating signal. Counterbalancing these changes, protein phosphatase 1 promotes nuclear localization of SMRT and inactivation of nuclear receptors and CBF1. Thus, the synaptically controlled kinase-phosphatase balance of the neuron determines the efficacy of SMRT-mediated repression and the signal-responsiveness of a variety of transcription factors.
Collapse
|
110
|
Abe T, Furue M, Kondow A, Matsuzaki K, Asashima M. Notch signaling modulates the nuclear localization of carboxy-terminal-phosphorylated smad2 and controls the competence of ectodermal cells for activin A. Mech Dev 2005; 122:671-80. [PMID: 15817224 DOI: 10.1016/j.mod.2004.12.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2004] [Revised: 12/11/2004] [Accepted: 12/11/2004] [Indexed: 11/18/2022]
Abstract
Loss of mesodermal competence (LMC) during Xenopus development is a well known but little understood phenomenon that prospective ectodermal cells (animal caps) lose their competence for inductive signals, such as activin A, to induce mesodermal genes and tissues after the start of gastrulation. Notch signaling can delay the onset of LMC for activin A in animal caps [Coffman, C.R., Skoglund, P., Harris, W.A., Kintner, C.R., 1993. Expression of an extracellular deletion of Xotch diverts cell fate in Xenopus embryos. Cell 73, 659-671], although the mechanism by which this modulation occurs remains unknown. Here, we show that Notch signaling also delays the onset of LMC in whole embryos, as it did in animal caps. To better understand this effect and the mechanism of LMC itself, we investigated at which step of activin signal transduction pathway the Notch signaling act to affect the timing of the LMC. In our system, ALK4 (activin type I receptor) maintained the ability to phosphorylate the C-terminal region of smad2 upon activin A stimulus after the onset of LMC in both control- and Notch-activated animal caps. However, C-terminal-phosphorylated smad2 could bind to smad4 and accumulate in the nucleus only in Notch-activated animal caps. We conclude that LMC was induced because C-terminal-phosphorylated smad2 lost its ability to bind to smad4, and consequently could not accumulate in the nucleus. Notch signal activation restored the ability of C-terminal-phosphorylated smad2 to bind to smad4, resulting in a delay in the onset of LMC.
Collapse
Affiliation(s)
- Takanori Abe
- Department of Biological Science, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | | | | | | | | |
Collapse
|
111
|
Chen J, Xu J, Zhao W, Hu G, Cheng H, Kang Y, Xie Y, Lu Y. Characterization of human LNX, a novel ligand of Numb protein X that is downregulated in human gliomas. Int J Biochem Cell Biol 2005; 37:2273-83. [PMID: 16002321 DOI: 10.1016/j.biocel.2005.02.028] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2004] [Revised: 01/03/2005] [Accepted: 02/13/2005] [Indexed: 11/28/2022]
Abstract
Gliomas are major tumors of the central nervous system with a wide spectrum of different tumor types. Ligand of Numb protein X (LNX) is PDZ domain containing protein that interacts with cell fate determinant Numb. cDNA microarray analysis was used to determine the expression of 13,939 genes in a set of 18 gliomas. It showed that human LNX was downregulated in 100% of gliomas including low- and high-grade ones, which was confirmed by Northern blot. In situ hybridization analysis revealed that LNX was lowly expressed in cytoplasm of glioma cells. Thus, LNX might act as a diagnostic marker and a potential therapeutic target for glioma. Two-hybrid screen in yeast was used to identify human LNX interacting proteins important for LNX function. It showed that human LNX interacted with Ski interacting protein (SKIP) via PDZ domains. The co-immunoprecipitation results suggested that LNX interacted with SKIP in HEK293 cells. LNX could affect the subcellular localization of Numb, which indicated that LNX might function as a molecular anchor that localized Numb to the subcellular site of its interaction with Notch. The presence of multiple protein binding domains involved in signal transduction and interaction with Numb and SKIP suggested an important role for LNX in tumorogenesis.
Collapse
Affiliation(s)
- Juxiang Chen
- Department of Neurosurgery, ChangZheng Hospital, Second Military Medical University, Shanghai 200003, PR China
| | | | | | | | | | | | | | | |
Collapse
|
112
|
Lubman OY, Kopan R, Waksman G, Korolev S. The crystal structure of a partial mouse Notch-1 ankyrin domain: repeats 4 through 7 preserve an ankyrin fold. Protein Sci 2005; 14:1274-81. [PMID: 15802643 PMCID: PMC2253258 DOI: 10.1110/ps.041184105] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Folding and stability of proteins containing ankyrin repeats (ARs) is of great interest because they mediate numerous protein-protein interactions involved in a wide range of regulatory cellular processes. Notch, an ankyrin domain containing protein, signals by converting a transcriptional repression complex into an activation complex. The Notch ANK domain is essential for Notch function and contains seven ARs. Here, we present the 2.2 A crystal structure of ARs 4-7 from mouse Notch 1 (m1ANK). These C-terminal repeats were resistant to degradation during crystallization, and their secondary and tertiary structures are maintained in the absence of repeats 1-3. The crystallized fragment adopts a typical ankyrin fold including the poorly conserved seventh AR, as seen in the Drosophila Notch ANK domain (dANK). The structural preservation and stability of the C-terminal repeats shed a new light onto the mechanism of hetero-oligomeric assembly during Notch-mediated transcriptional activation.
Collapse
Affiliation(s)
- Olga Y Lubman
- Department of Molecular Biology and Pharmacology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | |
Collapse
|
113
|
Wu J, Iwata F, Grass JA, Osborne CS, Elnitski L, Fraser P, Ohneda O, Yamamoto M, Bresnick EH. Molecular determinants of NOTCH4 transcription in vascular endothelium. Mol Cell Biol 2005; 25:1458-74. [PMID: 15684396 PMCID: PMC548019 DOI: 10.1128/mcb.25.4.1458-1474.2005] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The process whereby the primitive vascular network develops into the mature vasculature, known as angiogenic vascular remodeling, is controlled by the Notch signaling pathway. Of the two mammalian Notch receptors expressed in vascular endothelium, Notch1 is broadly expressed in diverse cell types, whereas Notch4 is preferentially expressed in endothelial cells. As mechanisms that confer Notch4 expression were unknown, we investigated how NOTCH4 transcription is regulated in human endothelial cells and in transgenic mice. The NOTCH4 promoter and the 5' portion of NOTCH4 assembled into an endothelial cell-specific histone modification pattern. Analysis of NOTCH4 primary transcripts in human umbilical vein endothelial cells by RNA fluorescence in situ hybridization revealed that 36% of the cells transcribed one or both NOTCH4 alleles. The NOTCH4 promoter was sufficient to confer endothelial cell-specific transcription in transfection assays, but intron 1 or upstream sequences were required for expression in the vasculature of transgenic mouse embryos. Cell-type-specific activator protein 1 (AP-1) complexes occupied NOTCH4 chromatin and conferred endothelial cell-specific transcription. Vascular angiogenic factors activated AP-1 and reprogrammed the endogenous NOTCH4 gene in HeLa cells from a repressed to a transcriptionally active state. These results reveal an AP-1-Notch4 pathway, which we propose to be crucial for transducing angiogenic signals and to be deregulated upon aberrant signal transduction in cancer.
Collapse
MESH Headings
- 5' Flanking Region/genetics
- Alleles
- Animals
- Cells, Cultured
- Embryo, Mammalian/cytology
- Embryo, Mammalian/metabolism
- Endothelial Cells/metabolism
- HeLa Cells
- Histones/genetics
- Histones/metabolism
- Humans
- In Situ Hybridization, Fluorescence
- Introns/genetics
- Mice
- Mice, Transgenic
- Promoter Regions, Genetic
- Proto-Oncogene Proteins/genetics
- Proto-Oncogene Proteins/metabolism
- Receptor, Notch1
- Receptor, Notch4
- Receptors, Cell Surface/genetics
- Receptors, Cell Surface/metabolism
- Receptors, Notch
- Transcription Factor AP-1/genetics
- Transcription Factor AP-1/metabolism
- Transcription Factors/genetics
- Transcription Factors/metabolism
- Transcription, Genetic/genetics
Collapse
Affiliation(s)
- Jing Wu
- Molecular and Cellular Pharmacology Program, Department of Pharmacology, University of Wisconsin Medical School, 1300 University Ave., 383 Medical Sciences Center, Madison, WI 53706, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
114
|
Abstract
Notch signaling can be viewed as an elegantly simple pathway that begins when the Notch receptor binds ligand, and ends when the Notch intracellular domain enters the nucleus and activates transcription. However, it is becoming increasingly clear that this core pathway is subject to a wide array of regulatory influences, from those that affect ligand-receptor interactions to those that govern the choice of Notch target genes. Even Notch ligands are now being scrutinized with respect to the possibility that they, too, function in the nucleus. A complete understanding of Notch signaling therefore requires us to look well beyond the core pathway.
Collapse
Affiliation(s)
- Tom Kadesch
- Department of Genetics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104-6145, USA.
| |
Collapse
|
115
|
Tanimizu N, Miyajima A. Notch signaling controls hepatoblast differentiation by altering the expression of liver-enriched transcription factors. J Cell Sci 2005; 117:3165-74. [PMID: 15226394 DOI: 10.1242/jcs.01169] [Citation(s) in RCA: 200] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Hepatoblasts give rise to both mature hepatocytes and cholangiocytes. While Notch signaling has been implicated in the formation of bile ducts composed of cholangiocytes, little is known about the mechanism of lineage commitment of hepatoblasts. Here we describe the role of the Notch pathway in hepatoblast differentiation. Immunohistochemical analysis showed that Jagged1 was expressed in the cells surrounding the portal veins and Notch2 was expressed in most hepatic cells at mid gestation when ductal plates are formed surrounding the portal veins. Interestingly, the Jagged1+ cells were adjacent to ductal plates, suggesting that the Notch signaling is activated in hepatoblasts that undergo differentiation into cholangiocytes. In fact, expression of the Notch intracellular domain in Dlk+ hepatoblasts inhibited hepatic differentiation and significantly reduced the expression of albumin, a marker of both hepatoblasts and hepatocytes. Furthermore, the addition of Matrigel to the hepatoblast culture upregulated the expression of cytokeratin 7 and 19, integrin beta4, and HNF1beta, which are known to be expressed in cholangiocytes. By contrast, downregulation of the Notch signaling by siRNA specific for Notch2 mRNA as well as by the gamma-secretase inhibitor L-685,458 promoted the hepatic differentiation. Consistent with the previous finding that mature cholangiocytes strongly express HNF1beta, but barely express HNF1alpha, HNF4, and C/EBPalpha, activation of the Notch signaling upregulated HNF1beta expression, whereas it downregulated the expression of HNF1alpha, HNF4, and C/EBPalpha. These results suggest that the Notch signaling contributes to form a network of these transcription factors suitable for cholangiocyte differentiation.
Collapse
Affiliation(s)
- Naoki Tanimizu
- Stem Cell Regulation, Kanagawa Academy of Science and Technology, Teikyo University Biotechnology Research Center, 907 Nogawa, Kawasaki, 216-0001, Japan
| | | |
Collapse
|
116
|
Chen H, Huang J, Wu FY, Liao G, Hutt-Fletcher L, Hayward SD. Regulation of expression of the Epstein-Barr virus BamHI-A rightward transcripts. J Virol 2005; 79:1724-33. [PMID: 15650197 PMCID: PMC544122 DOI: 10.1128/jvi.79.3.1724-1733.2005] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2004] [Accepted: 09/09/2004] [Indexed: 11/20/2022] Open
Abstract
The Epstein-Barr virus (EBV) BamHI-A rightward transcripts, or BARTs, are a family of mRNAs expressed in all EBV latency programs, including EBV-infected B cells in healthy carriers. Despite their ubiquitous expression, the regulation and biological function of BARTs are still unclear. In this study, the BART 5' termini were characterized by using a procedure that selects capped, full-length mRNAs. Two TATA-less promoter regions, designated P1 and P2, were mapped. P1 had relatively high basal activity in both epithelial and B cells, whereas P2 exhibited higher activity in epithelial cells. Upon EBV infection of B cells, transcription from P1 was detected soon after infection, while expression from P2 was delayed. Promoter-reporter assays in transiently transfected cells revealed that P1 and P2 were differentially regulated. Interferon regulatory factor 7 (IRF7) and IRF5 negatively regulated P1 activity. c-Myc and C/EBP family members positively regulated P2. Regulation of P2 by C/EBPs was characterized by electrophoretic mobility shift assay, chromatin immunoprecipitation, and reporter assays. More-abundant BART expression in epithelial cells correlated with the relative expression of positive and negative regulators in these cells.
Collapse
Affiliation(s)
- Honglin Chen
- Department of Microbiology, The University of Hong Kong, Hong Kong
| | | | | | | | | | | |
Collapse
|
117
|
Kiyota T, Kinoshita T. The intracellular domain of X-Serrate-1 is cleaved and suppresses primary neurogenesis in Xenopus laevis. Mech Dev 2005; 121:573-85. [PMID: 15172688 DOI: 10.1016/j.mod.2004.03.034] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2003] [Revised: 03/05/2004] [Accepted: 03/29/2004] [Indexed: 11/26/2022]
Abstract
The Notch ligands, Delta/Serrate/Lag-2 (DSL) proteins, mediate the Notch signaling pathway in a numerous developmental processes in multicellular organisms. Although the ligands induce the activation of the Notch receptor, the intracellular domain-deleted forms of the ligands cause dominant-negative phenotypes, implying that the intracellular domain is necessary for the Notch signal transduction. Here we examined the role of the intracellular domain of Xenopus Serrate (XSICD) in Xenopus embryos. X-Serrate-1 has the putative nuclear localization sequence (NLS) in downstream of the transmembrane domain. Biochemical analysis revealed that XSICD fragments are cleaved from the C-terminus side of X-Serrate-1. Fluorescence microscopic analysis showed that the nuclear localization of XSICD occurs in the neuroectoderm of the embryo injected with the full-length X-Serrate-1/GFP. Overexpression of XSICD showed the inhibitory effect on primary neurogenesis. However, a point mutation in the NLSs of XSICD inhibited the nuclear localization of XSICD, which caused the induction of a neurogenic phenotype. The animal cap assay revealed that X-Serrate-1 suppresses primary neurogenesis in neuralized animal cap, but X-Delta-1 does not. Moreover, XSICD could not activate the expression of the canonical Notch target gene, XESR-1 in contrast to the case of full-length X-Serrate-1. These results suggest that the combination of XSICD-mediated intracellular signaling and the extracellular domain of Notch ligands-mediated activation of Notch receptor is involved in the primary neurogenesis. Moreover, we propose a bi-directional signaling pathway mediated by X-Serrate-1 in Notch signaling.
Collapse
Affiliation(s)
- Tomomi Kiyota
- Department of Bioscience, School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo 669-1337, Japan
| | | |
Collapse
|
118
|
Sakamoto K, Chao WS, Katsube KI, Yamaguchi A. Distinct roles of EGF repeats for the Notch signaling system. Exp Cell Res 2005; 302:281-91. [PMID: 15561108 DOI: 10.1016/j.yexcr.2004.09.016] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2004] [Revised: 09/22/2004] [Indexed: 12/01/2022]
Abstract
Notch is a single-pass transmembrane receptor that mediates cell fate choice in various species and developmental contexts. The Notch signal is transduced by its intracellular domain, which acts as a transcriptional activator, and is released from the plasma membrane by proteolytic cleavages. This process is initiated by intercellular association of the epidermal growth factor (EGF) repeats between Notch and the DSL (Delta, Serrate, Lag-2) ligands but the detailed mechanism is yet to be clarified. Here we demonstrate that Notch1 can form homodimers, which is achieved by its EGF motifs. The Notch1 dimer formation increased in response to ligand presentation and HES1 promoter was stimulated, implying that receptor homodimerization is an important initial step in Notch signal transduction. EGF motifs also serve as a protection against proteases, including TNF-alpha converting enzyme, which prevents Notch1 from ligand-independent activation. Multiple functions of the Notch EGF motifs, such as the prevention of constitutive activation, reciprocal interaction with the ligands and lateral interaction for homodimerization, appear to constitute crucial elements of the Notch signaling system.
Collapse
Affiliation(s)
- Kei Sakamoto
- Molecular Pathology, Graduate School of Tokyo Medical and Dental University, Bunkyo-ku, Tokyo 113-8549, Japan.
| | | | | | | |
Collapse
|
119
|
Mosavi LK, Cammett TJ, Desrosiers DC, Peng ZY. The ankyrin repeat as molecular architecture for protein recognition. Protein Sci 2005; 13:1435-48. [PMID: 15152081 PMCID: PMC2279977 DOI: 10.1110/ps.03554604] [Citation(s) in RCA: 650] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The ankyrin repeat is one of the most frequently observed amino acid motifs in protein databases. This protein-protein interaction module is involved in a diverse set of cellular functions, and consequently, defects in ankyrin repeat proteins have been found in a number of human diseases. Recent biophysical, crystallographic, and NMR studies have been used to measure the stability and define the various topological features of this motif in an effort to understand the structural basis of ankyrin repeat-mediated protein-protein interactions. Characterization of the folding and assembly pathways suggests that ankyrin repeat domains generally undergo a two-state folding transition despite their modular structure. Also, the large number of available sequences has allowed the ankyrin repeat to be used as a template for consensus-based protein design. Such projects have been successful in revealing positions responsible for structure and function in the ankyrin repeat as well as creating a potential universal scaffold for molecular recognition.
Collapse
Affiliation(s)
- Leila K Mosavi
- MC3305, Department of Molecular, Microbial, and Structural Biology, University of Connecticut Health Center, 263 Farmington Avenue, Farmington, CT 06032, USA
| | | | | | | |
Collapse
|
120
|
Fryer CJ, White JB, Jones KA. Mastermind recruits CycC:CDK8 to phosphorylate the Notch ICD and coordinate activation with turnover. Mol Cell 2005; 16:509-20. [PMID: 15546612 DOI: 10.1016/j.molcel.2004.10.014] [Citation(s) in RCA: 463] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2004] [Revised: 09/02/2004] [Accepted: 09/03/2004] [Indexed: 12/16/2022]
Abstract
Notch signaling releases the Notch receptor intracellular domain (ICD), which complexes with CBF1 and Mastermind (MAM) to activate responsive genes. We previously reported that MAM interacts with CBP/p300 and promotes hyperphosphorylation and degradation of the Notch ICD in vivo. Here we show that CycC:CDK8 and CycT1:CDK9/P-TEFb are recruited with Notch and associated coactivators (MAM, SKIP) to the HES1 promoter in signaling cells. MAM interacts directly with CDK8 and can cause it to localize to subnuclear foci. Purified recombinant CycC:CDK8 phosphorylates the Notch ICD within the TAD and PEST domains, and expression of CycC:CDK8 strongly enhances Notch ICD hyperphosphorylation and PEST-dependent degradation by the Fbw7/Sel10 ubiquitin ligase in vivo. Point mutations affecting conserved Ser residues within the ICD PEST motif prevent hyperphosphorylation by CycC:CDK8 and stabilize the ICD in vivo. These findings suggest a role for MAM and CycC:CDK8 in the turnover of the Notch enhancer complex at target genes.
Collapse
Affiliation(s)
- Christy J Fryer
- Regulatory Biology Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, California 92037, USA
| | | | | |
Collapse
|
121
|
Lee JM, Lee KH, Farrell CJ, Ling PD, Kempkes B, Park JH, Hayward SD. EBNA2 is required for protection of latently Epstein-Barr virus-infected B cells against specific apoptotic stimuli. J Virol 2004; 78:12694-7. [PMID: 15507659 PMCID: PMC525073 DOI: 10.1128/jvi.78.22.12694-12697.2004] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
In addition to functioning as a transcriptional transactivator, Epstein-Barr virus EBNA2 interacts with Nur77 to protect against Nur77-mediated apoptosis. Estrogen-regulated EBNA2 in EREB2-5 cells was replaced by either EBNA2 or EBNA2 with a deletion of conserved region 4 (EBNA2DeltaCR4). Both EBNA2-converted and EBNA2DeltaCR4-converted EREB2-5 cells grew in the absence of estrogen and expressed LMP1. Treatment with tumor necrosis factor alpha did not induce apoptosis of EBNA2- or EBNA2DeltaCR4-expressing cells, but EBNA2DeltaCR4 cells were susceptible to etoposide and 5-fluorouracil, Nur77-mediated inducers of apoptosis. Thus, EBNA2 protects B cells against specific apoptotic agents against which LMP1 is not effective.
Collapse
Affiliation(s)
- Jae Myun Lee
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, School of Medicine, Bunting-Blaustein Building CRB308, 1650 Orleans Street, Baltimore, MD 21231, USA
| | | | | | | | | | | | | |
Collapse
|
122
|
Abstract
The Notch signaling pathway influences cell fate decisions, proliferation versus differentiation and cell survival. Viruses both utilize and manipulate the differentiation state of infected cells, promote or block cell cycling and employ a variety of mechanisms to evade innate cellular anti-viral responses and promote cell survival. In light of these commonalities, it is perhaps not surprising that several viruses have tapped into the Notch pathway to advance their own life cycles. This first became apparent from studies showing targeting of Epstein-Barr virus proteins to the nuclear effector of Notch signaling CSL (CBF1/RBPJk). More recently the Kaposi's sarcoma-associated herpesvirus RTA protein has been found to bind CSL. Notch pathway interactions have also been described for adenovirus SV40 and human papilloma virus. This review focuses on the herpesvirus protein interactions with the Notch pathway and the insights that these interactions have provided.
Collapse
Affiliation(s)
- S Diane Hayward
- Viral Oncology Program, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, School of Medicine, CRB 308, 1650 Orleans Street, Baltimore, MD 21231, USA.
| |
Collapse
|
123
|
Zweifel ME, Leahy DJ, Hughson FM, Barrick D. Structure and stability of the ankyrin domain of the Drosophila Notch receptor. Protein Sci 2004; 12:2622-32. [PMID: 14573873 PMCID: PMC2366946 DOI: 10.1110/ps.03279003] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The Notch receptor contains a conserved ankyrin repeat domain that is required for Notch-mediated signal transduction. The ankyrin domain of Drosophila Notch contains six ankyrin sequence repeats previously identified as closely matching the ankyrin repeat consensus sequence, and a putative seventh C-terminal sequence repeat that exhibits lower similarity to the consensus sequence. To better understand the role of the Notch ankyrin domain in Notch-mediated signaling and to examine how structure is distributed among the seven ankyrin sequence repeats, we have determined the crystal structure of this domain to 2.0 angstroms resolution. The seventh, C-terminal, ankyrin sequence repeat adopts a regular ankyrin fold, but the first, N-terminal ankyrin repeat, which contains a 15-residue insertion, appears to be largely disordered. The structure reveals a substantial interface between ankyrin polypeptides, showing a high degree of shape and charge complementarity, which may be related to homotypic interactions suggested from indirect studies. However, the Notch ankyrin domain remains largely monomeric in solution, demonstrating that this interface alone is not sufficient to promote tight association. Using the structure, we have classified reported mutations within the Notch ankyrin domain that are known to disrupt signaling into those that affect buried residues and those restricted to surface residues. We show that the buried substitutions greatly decrease protein stability, whereas the surface substitutions have only a marginal affect on stability. The surface substitutions are thus likely to interfere with Notch signaling by disrupting specific Notch-effector interactions and map the sites of these interactions.
Collapse
Affiliation(s)
- Mark E Zweifel
- T.C. Jenkins Department of Biophysics, The Johns Hopkins University, Baltimore, Maryland 21218, USA
| | | | | | | |
Collapse
|
124
|
Laduron S, Deplus R, Zhou S, Kholmanskikh O, Godelaine D, De Smet C, Hayward SD, Fuks F, Boon T, De Plaen E. MAGE-A1 interacts with adaptor SKIP and the deacetylase HDAC1 to repress transcription. Nucleic Acids Res 2004; 32:4340-50. [PMID: 15316101 PMCID: PMC514365 DOI: 10.1093/nar/gkh735] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
MAGE-A1 belongs to a family of 12 genes that are active in various types of tumors and silent in normal tissues except in male germ-line cells. The MAGE-encoded antigens recognized by T cells are highly tumor-specific targets for T cell-oriented cancer immunotherapy. The function of MAGE-A1 is currently unknown. To analyze it, we attempted to identify protein partners of MAGE-A1. Using yeast two-hybrid screening, we detected an interaction between MAGE-A1 and Ski Interacting Protein (SKIP). SKIP is a transcriptional regulator that connects DNA-binding proteins to proteins that either activate or repress transcription. We show that MAGE-A1 inhibits the activity of a SKIP-interacting transactivator, namely the intracellular part of Notch1. Deletion analysis indicated that this inhibition requires the binding of MAGE-A1 to SKIP. Moreover, MAGE-A1 was found to actively repress transcription by binding and recruiting histone deacetylase 1 (HDAC1). Our results indicate that by binding to SKIP and by recruiting HDACs, MAGE-A1 can act as a potent transcriptional repressor. MAGE-A1 could therefore participate in the setting of specific gene expression patterns for tumor cell growth or spermatogenesis.
Collapse
Affiliation(s)
- Sandra Laduron
- Ludwig Institute for Cancer Research, Brussels branch, and Cellular Genetics Unit, Université Catholique de Louvain, Brussels B1200, Belgium
| | | | | | | | | | | | | | | | | | | |
Collapse
|
125
|
Kovall RA, Hendrickson WA. Crystal structure of the nuclear effector of Notch signaling, CSL, bound to DNA. EMBO J 2004; 23:3441-51. [PMID: 15297877 PMCID: PMC516623 DOI: 10.1038/sj.emboj.7600349] [Citation(s) in RCA: 121] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2004] [Accepted: 07/08/2004] [Indexed: 11/08/2022] Open
Abstract
Notch signaling is a conserved pathway of communication between neighboring cells that results in cell fate specification, and CSL is the universal transcriptional effector of Notch signaling. The Notch intracellular domain translocates to the nucleus after proteolytic release upon Notch extracellular engagement, and there it displaces corepressors from DNA-bound CSL and recruits activators of Notch target genes. Here we report the 2.85 A crystal structure of CSL with a target DNA. CSL comprises three structurally integrated domains: its amino (NTD)- and carboxy (CTD)-terminal domains are strikingly similar to those of Rel transcription factors, but a surprising beta-trefoil domain (BTD) is inserted between them. CSL-bound DNA is recognized specifically by conserved residues from NTD and BTD. A hydrophobic pocket on BTD is identified as the likely site of Notch interaction with CSL, which has functional implications for the mechanism of Notch signaling.
Collapse
Affiliation(s)
- Rhett A Kovall
- Department of Biochemistry and Molecular Biophysics, Howard Hughes Medical Institute, Columbia University, New York, NY, USA
| | - Wayne A Hendrickson
- Department of Biochemistry and Molecular Biophysics, Howard Hughes Medical Institute, Columbia University, New York, NY, USA
- Department of Biochemistry and Molecular Biophysics, Howard Hughes Medical Institute, Columbia University, New York, NY 10032, USA. Tel.: +1 212 305 3456; Fax: +1 212 305 7379; E-mail:
| |
Collapse
|
126
|
Figueroa JD, Hayman MJ. The human Ski-interacting protein functionally substitutes for the yeast PRP45 gene. Biochem Biophys Res Commun 2004; 319:1105-9. [PMID: 15194481 DOI: 10.1016/j.bbrc.2004.05.096] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2004] [Indexed: 10/26/2022]
Abstract
The PRP45 gene has been identified as encoding a protein involved in mRNA splicing that is essential in Saccharomyces cerevisiae. PRP45's human homolog SKIP has been identified as a mediator of transcriptional programming in a variety of signal transduction pathways including TGFbeta, nuclear hormones, Notch, and retinoblastoma signaling. However, Skip has been also identified in purified spliceosomal complexes but an explicit role in splicing has not been identified in mammalian cells. To determine if the Skip protein could function as a splicing factor we investigated if the SKIP gene could functionally complement the yeast PRP45 gene. We show that SKIP complements the PRP45 deletion and rescues the lethal phenotype. These results show that the human SKIP gene can functionally substitute for the mRNA splicing gene PRP45 of S. cerevisiae.
Collapse
Affiliation(s)
- Jonine D Figueroa
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY 11794-5222, USA
| | | |
Collapse
|
127
|
Carbone M, Bocchetta M. SV40 and Notch-I: multi-functionality meets pleiotropy. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2004; 36:289-305. [PMID: 15171617 DOI: 10.1007/978-3-540-74264-7_14] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- M Carbone
- Cancer Immunology Program, Department of Pathology, Cardinal Bernardin Cancer Center, Loyola University Chicago, Maywood, Illinois 60153, USA
| | | |
Collapse
|
128
|
Figueroa JD, Hayman MJ. Differential effects of the Ski-interacting protein (SKIP) on differentiation induced by transforming growth factor-β1 and bone morphogenetic protein-2 in C2C12 cells. Exp Cell Res 2004; 296:163-72. [PMID: 15149847 DOI: 10.1016/j.yexcr.2004.01.025] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2003] [Revised: 01/23/2004] [Indexed: 11/28/2022]
Abstract
The transforming growth factor-beta (TGF-beta) and bone morphogenetic proteins (BMP) are key regulatory factors that affect many critical cellular events in growth and development. Recently, we have shown that the Ski-interacting protein (SKIP) can augment TGF-beta signals. Here, we extended these studies by examining the biologic consequences of SKIP overexpression on TGF-beta1 and BMP-2 signals in C2C12 cells. C2C12 myoblasts differentiate into myotubes when the media is depleted of mitogenic factors, and TGF-beta1 inhibits this myotube formation. BMP-2 not only inhibits the myotube formation, but also induces C2C12 cells to differentiate into osteoblasts. Here, we show that SKIP-overexpressing C2C12 cells treated with TGF-beta1 or BMP-2 displayed no differences in comparison to vector control cells in their ability to form myotubes or in the expression of the myogenic markers myosin heavy chain-1 and myogenin. Unexpectedly, SKIP-overexpressing C2C12 cells treated with BMP-2 displayed suppressed expression of the induced osteoblast markers alkaline phosphatase, osteocalcin, and the transcription factor Runx2. Lastly, SKIP could repress transcription induced by BMP-2 in luciferase reporter assays done in C2C12 cells. These data show that SKIP has specific inhibitory effects on BMP-2-induced differentiation and implicate SKIP to be a novel regulator of the differentiation programming induced by TGF-beta signals.
Collapse
Affiliation(s)
- Jonine D Figueroa
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY 11794-5222, USA
| | | |
Collapse
|
129
|
Ross DA, Kadesch T. Consequences of Notch-mediated induction of Jagged1. Exp Cell Res 2004; 296:173-82. [PMID: 15149848 DOI: 10.1016/j.yexcr.2004.02.003] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2004] [Revised: 02/03/2004] [Indexed: 12/22/2022]
Abstract
Notch signaling is initiated upon contact of cells expressing Notch receptors with those expressing ligands. While examining the dynamic response of NIH 3T3 cells to cells expressing the Notch ligand Jagged1, we found that Notch signaling resulted in increased levels of the ligand Jagged1. Induction of Jagged1 was delayed relative to the generation of active Notch and dependent on the transcription factor p63. The induced Jagged1 had no apparent autocrine effects on Notch signaling but could promote signaling in naïve cells. These results describe a mechanism through which Notch signaling can be relayed from cell to cell.
Collapse
Affiliation(s)
- David A Ross
- Department of Genetics, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6145, USA
| | | |
Collapse
|
130
|
Ross DA, Rao PK, Kadesch T. Dual roles for the Notch target gene Hes-1 in the differentiation of 3T3-L1 preadipocytes. Mol Cell Biol 2004; 24:3505-13. [PMID: 15060169 PMCID: PMC381674 DOI: 10.1128/mcb.24.8.3505-3513.2004] [Citation(s) in RCA: 120] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The process of adipogenesis involves a complex program of gene expression that includes down-regulation of the gene encoding Hes-1, a target of the Notch signaling pathway. To determine if Notch signaling affects adipogenesis, we exposed 3T3-L1 preadipocytes to the Notch ligand Jagged1 and found that differentiation was significantly reduced. This effect could be mimicked by constitutive expression of Hes-1. The block was associated with a complete loss of C/EBPalpha and peroxisome proliferator-activated receptor gamma (PPARgamma) induction and could be overcome by retroviral expression of either C/EBPalpha or PPARgamma2. Surprisingly, small interfering RNA (siRNA)-mediated reduction of Hes-1 mRNA in 3T3-L1 cells also inhibited differentiation, suggesting an additional, obligatory role for Hes-1 in adipogenesis. This role may be related to our observation that both Notch signaling and Hes-1 down-regulate transcription of the gene encoding DLK/Pref-1, a protein known to inhibit differentiation of 3T3-L1 cells. The results presented in this study establish a new target downstream of the Notch-Hes-1 pathway and suggest a dual role for Hes-1 in adipocyte development.
Collapse
Affiliation(s)
- David A Ross
- Department of Genetics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104-6145, USA
| | | | | |
Collapse
|
131
|
Lubman OY, Korolev SV, Kopan R. Anchoring notch genetics and biochemistry; structural analysis of the ankyrin domain sheds light on existing data. Mol Cell 2004; 13:619-26. [PMID: 15023333 DOI: 10.1016/s1097-2765(04)00120-0] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Notch signaling is important in development and in human disease. Notch receptors regulate transcription through direct interactions with several proteins at the promoter regions of target genes. To understand the mechanism of Notch signaling, numerous deletion and mutagenesis studies have been carried out to identify functional domains in Notch, but domain definition and their role during the assembly of the transcriptionally active complex remains controversial. Recently reported biophysical and structural studies of the Notch ANK domain permit us to reevaluate the existing domain assignments and their predicted functional role, thereby providing further insight into the mechanism of Notch signaling.
Collapse
Affiliation(s)
- Olga Y Lubman
- Department of Molecular Biology and Pharmacology and the Department of Medicine, Washington University School of Medicine, Saint Louis, MO 63104 USA
| | | | | |
Collapse
|
132
|
Radtke F, Wilson A, Mancini SJC, MacDonald HR. Notch regulation of lymphocyte development and function. Nat Immunol 2004; 5:247-53. [PMID: 14985712 DOI: 10.1038/ni1045] [Citation(s) in RCA: 401] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Notch proteins regulate a broad spectrum of cell fate decisions and differentiation processes during fetal and postnatal development. Mammals have four Notch receptors that bind five different ligands. The function of Notch signaling during lymphopoiesis and T cell neoplasia, based on gain-of-function and conditional loss-of-function approaches for the Notch1 receptor, indicates Notch1 is essential in T cell lineage commitment. Recent studies have addressed the involvement of other Notch receptors and ligands as well as their downstream targets, demonstrating additional functions of Notch signaling in embryonic hematopoiesis, intrathymic T cell development, B cell development and peripheral T cell function.
Collapse
Affiliation(s)
- Freddy Radtke
- The Ludwig Institute for Cancer Research, Lausanne Branch, University of Lausanne, Chemin des Boveresses 155, 1066 Epalinges, Switzerland.
| | | | | | | |
Collapse
|
133
|
Leong GM, Subramaniam N, Issa LL, Barry JB, Kino T, Driggers PH, Hayman MJ, Eisman JA, Gardiner EM. Ski-interacting protein, a bifunctional nuclear receptor coregulator that interacts with N-CoR/SMRT and p300. Biochem Biophys Res Commun 2004; 315:1070-6. [PMID: 14985122 DOI: 10.1016/j.bbrc.2004.02.004] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2004] [Indexed: 11/27/2022]
Abstract
Ski-interacting protein (SKIP), a vitamin D receptor (VDR) coactivator, also functions as a repressor in Notch signalling in association with the corepressor SMRT. Here we show that SKIP bifunctionally modulates (activates or represses) Retinoid-X receptor (RXR)- and VDR-dependent gene transcription in a cell line-specific manner, with activation in CV-1 and repression in P19 cells. The coactivator function of SKIP in these cells appeared to correlate with the relative level and ratio of expression of N-CoR and p300, with greater SKIP activation in higher p300-expressing and lower N-CoR-expressing cell-lines. C-terminal deletion of SKIP (delta334-536 aa) was associated with strong activation in both CV-1 and P19 cells. The corepressors N-CoR and SMRT and the coregulator p300 interacted with SKIP through the same N-terminal region (1-200 aa). Overall these results suggest that transcriptional action of SKIP may depend on distinct functional domains and cell line-specific interactions with both corepressors and coactivators.
Collapse
Affiliation(s)
- Gary M Leong
- Bone and Mineral Research Program, Garvan Institute of Medical Research, Sydney, NSW, Australia.
| | | | | | | | | | | | | | | | | |
Collapse
|
134
|
Trifonova R, Small D, Kacer D, Kovalenko D, Kolev V, Mandinova A, Soldi R, Liaw L, Prudovsky I, Maciag T. The non-transmembrane form of Delta1, but not of Jagged1, induces normal migratory behavior accompanied by fibroblast growth factor receptor 1-dependent transformation. J Biol Chem 2004; 279:13285-8. [PMID: 14769803 DOI: 10.1074/jbc.c300564200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The interactions between Notch (N) receptors and their transmembrane ligands, Jagged1 (JI) and Delta1 (Dl1), mediate signaling events between neighboring cells that are crucial during embryonal development and in adults. Since the non-transmembrane extracellular form of J1 acts as an antagonist of N activation in NIH 3T3 mouse fibroblast cells and induces fibroblast growth factor 1 (FGF1)-dependent transformation (Small, D., Kovalenko, D., Soldi, R., Mandinova, A., Kolev, V., Trifonova, R., Bagala, C., Kacer, D., Battelli, C., Liaw, L., Prudovsky, I., and Maciag, T. (2003) J. Biol. Chem. 278, 16405-16413), we examined the potential redundant functions of the two subfamilies of Notch ligands and report that while the soluble (s) forms of both Dl1 and J1 act as N signaling antagonists in NIH 3T3 cells, they do display disparate functions. While sJ1 induced an attenuation of cell motility which is accompanied by a decrease in actin stress fibers and an increase in adherence junctions, sDl1 does not. However, sJ1, like sDl1, induces a NIH 3T3 cell tranformed phenotype mediated by FGF signaling. Because the inhibition of N signaling by sJ1 and sDl1 is rescued by dominant-negative Src expression, we suggest that there may be cooperation between the Notch and Src signaling pathways.
Collapse
Affiliation(s)
- Radiana Trifonova
- Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, Maine 04074, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
135
|
Dahlqvist C, Blokzijl A, Chapman G, Falk A, Dannaeus K, Ibâñez CF, Lendahl U. Functional Notch signaling is required for BMP4-induced inhibition of myogenic differentiation. Development 2004; 130:6089-99. [PMID: 14597575 DOI: 10.1242/dev.00834] [Citation(s) in RCA: 201] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The bone morphogenetic protein (BMP) and Notch signaling pathways are crucial for cellular differentiation. In many cases, the two pathways act similarly; for example, to inhibit myogenic differentiation. It is not known whether this inhibition is caused by distinct mechanisms or by an interplay between Notch and BMP signaling. Here we demonstrate that functional Notch signaling is required for BMP4-mediated block of differentiation of muscle stem cells, i.e. satellite cells and the myogenic cell line C2C12. Addition of BMP4 during induction of differentiation dramatically reduced the number of differentiated satellite and C2C12 cells. Differentiation was substantially restored in BMP4-treated cultures by blocking Notch signaling using either the gamma-secretase inhibitor L-685,458 or by introduction of a dominant-negative version of the Notch signal mediator CSL. BMP4 addition to C2C12 cells increased transcription of two immediate Notch responsive genes, Hes1 and Hey1, an effect that was abrogated by L-685,458. A 3 kb Hey1-promoter reporter construct was synergistically activated by the Notch 1 intracellular domain (Notch 1 ICD) and BMP4. The BMP4 mediator SMAD1 mimicked BMP activation of the Hey1 promoter. A synthetic Notch-responsive promoter containing no SMAD1 binding sites responded to SMAD1, indicating that DNA-binding activity of SMAD1 is not required for activation. Accordingly, Notch 1 ICD and SMAD1 interacted in binding experiments in vitro. Thus, the data presented here provide evidence for a direct interaction between the Notch and BMP signaling pathways, and indicate that Notch has a crucial role in the execution of certain aspects of BMP-mediated differentiation control.
Collapse
Affiliation(s)
- Camilla Dahlqvist
- Department of Cell and Molecular Biology, Karolinska Institute, SE-171 77 Stockholm, Sweden
| | | | | | | | | | | | | |
Collapse
|
136
|
Abstract
Notch receptors are single pass transmembrane receptors activated by membrane-bound ligands with a role in cell proliferation and differentiation. As Notch 1 and 2 mRNAs are expressed by osteoblasts and induced by cortisol, we postulated that Notch could regulate osteoblastogenesis. We investigated the effects of retroviral vectors directing the constitutive expression of the Notch 1 intracellular domain (NotchIC) in murine ST-2 stromal and in MC3T3 cells. NotchIC overexpression was documented by increased Notch 1 transcripts and activity of the Notch-dependent Hairy Enhancer of Split promoter. In the presence of bone morphogenetic protein-2 (BMP-2), ST-2 cells differentiated toward osteoblasts forming mineralized nodules, and Notch 1 opposed this effect and decreased the expression of osteocalcin, type I collagen, and alkaline phosphatase transcripts and Delta2Delta FosB protein. Further, NotchIC decreased Wnt/beta-catenin signaling. As cells differentiated in the presence of BMP-2, they underwent apoptosis, and Notch opposed this event. In the presence of cortisol, NotchIC induced the formation of mature adipocytes and enhanced the effect of cortisol on adipsin, peroxisome proliferator-activated receptor-gamma2 and CCAAT enhancer binding protein alpha and delta mRNA levels. NotchIC also opposed MC3T3 cell differentiation and the expression of a mature osteoblastic phenotype. In conclusion, NotchIC impairs osteoblast differentiation and enhances adipogenesis in stromal cell cultures.
Collapse
Affiliation(s)
- Maria Sciaudone
- Department of Research, Saint Francis Hospital and Medical Center, Hartford, Connecticut 06105-1299, USA
| | | | | | | | | |
Collapse
|
137
|
Chu J, Bresnick EH. Evidence that C promoter-binding factor 1 binding is required for Notch-1-mediated repression of activator protein-1. J Biol Chem 2003; 279:12337-45. [PMID: 14645224 DOI: 10.1074/jbc.m311510200] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cell fate determination in invertebrate and vertebrate systems is regulated by the Notch signaling pathway. Four mammalian Notch genes, Notch 1-4, encode differentially expressed transmembrane receptors. The canonical Notch pathway involves proteolytic liberation of the Notch-1 intracellular domain (NIC-1), which activates CSL (CBF1, Su(H), and Lag-1)-mediated transactivation. We showed previously that NIC-1 also represses activator protein-1 (AP-1)-mediated transactivation. The N-terminal RAM (RBP-Jkappa associated molecule) domain of NIC-1 was required for both activation and repression. To investigate the mechanism of AP-1 repression, we tested whether distinct sequences within the RAM domain mediate activation versus repression. We analyzed the capacity of RAM domain mutants to bind endogenous CBF1, to activate CSL-mediated transactivation, and to repress AP-1. A mutant lacking 20 amino acids of the RAM domain (Delta1759-1778) resembled the RAM domain deletion mutant in being defective in all activities. Analysis of 14 deletion and alanine substitution mutants revealed a correlation between CBF1 binding, CSL-mediated transactivation, and AP-1 repression. Stably transfected K562 cells could only tolerate very low level expression of wild-type NIC-1 and NIC-1 mutants retaining activation/repression activities. By contrast, transcriptionally compromised NIC-1 mutants accumulated at high levels. These results support a model in which the binding of NIC-1 to CBF1 is required for AP-1 repression and reveal a powerful cell-sensing mechanism that suppresses the levels of transcriptionally competent NIC-1.
Collapse
Affiliation(s)
- Jianlin Chu
- Department of Pharmacology, Molecular and Cellular Pharmacology Program, University of Wisconsin Medical School, 383 Medical Sciences Center, 1300 University Avenue, Madison, WI 53706, USA
| | | |
Collapse
|
138
|
Nickoloff BJ, Osborne BA, Miele L. Notch signaling as a therapeutic target in cancer: a new approach to the development of cell fate modifying agents. Oncogene 2003; 22:6598-608. [PMID: 14528285 DOI: 10.1038/sj.onc.1206758] [Citation(s) in RCA: 238] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Notch signaling controls cell fate decisions including during development and stem cell renewal and differentiation in many postnatal tissues. Increasing evidence suggests that the Notch signaling network is frequently deregulated in human malignancies and that genetic or pharmacological manipulation of Notch signaling is a novel potential strategy for the treatment of human neoplasms. This review article summarizes the most recent preclinical and clinical evidence linking Notch signaling to cancer, delineates questions that remain unanswered and explores potential biopharmacological strategies to manipulate Notch signaling in vivo.
Collapse
|
139
|
Yeh TS, Lin YM, Hsieh RH, Tseng MJ. Association of transcription factor YY1 with the high molecular weight Notch complex suppresses the transactivation activity of Notch. J Biol Chem 2003; 278:41963-9. [PMID: 12913000 DOI: 10.1074/jbc.m304353200] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Notch receptors are evolutionarily conserved from Drosophila to human and play important roles in cell fate decisions. After ligand binding, Notch receptors are cleaved to release their intracellular domains. The intracellular domains, the activated form of Notch receptors, are then translocated into the nucleus where they interact with other transcriptional machinery to regulate the expression of cellular genes. To dissect the molecular mechanisms of Notch signaling, the cellular targets that interact with Notch1 receptor intracellular domain (N1IC) were screened. In this study, we found that endogenous transcription factor Ying Yang 1 (YY1) was associated with exogenous N1IC in human K562 erythroleukemic cells. The ankyrin (ANK) domain of N1IC and zinc finger domains of YY1 were essential for the association of N1IC and YY1 according to the pull-down assay of glutathione S-transferase fusion proteins. Furthermore, both YY1 and N1IC were present in a large complex of the nucleus to suppress the luciferase reporter activity transactivated by Notch signaling. The transcription factor YY1 indirectly regulated the transcriptional activity of the wild-type CBF1-response elements via the direct interaction of N1IC and CBF1. We also demonstrated the association between endogenous N1IC and intrinsic YY1 in human acute T-cell lymphoblastic leukemia cell lines. Taken together, these results indicate that transcription factor YY1 may modulate Notch signaling via association with the high molecular weight Notch complex.
Collapse
Affiliation(s)
- Tien-Shun Yeh
- Graduate Institute of Cell and Molecular Biology, Center for Stem Cells Research at Wan-Fang Hospital, Taipei Medical University, Taipei 110, Taiwan.
| | | | | | | |
Collapse
|
140
|
Abstract
Notch signalling participates in the development of multicellular organisms by maintaining the self-renewal potential of some tissues and inducing the differentiation of others. Involvement of Notch in cancer was first highlighted in human T-cell leukaemia, fuelling the notion that aberrant Notch signalling promotes tumorigenesis. However, there is mounting evidence that Notch signalling is not exclusively oncogenic. It can instead function as a tumour suppressor.
Collapse
Affiliation(s)
- Freddy Radtke
- Ludwig Institute for Cancer Research, Lausanne Branch, University of Lausanne, Chemin des Boveresses 155, 1066 Epalinges, Switzerland.
| | | |
Collapse
|
141
|
|
142
|
Oakley F, Mann J, Ruddell RG, Pickford J, Weinmaster G, Mann DA. Basal expression of IkappaBalpha is controlled by the mammalian transcriptional repressor RBP-J (CBF1) and its activator Notch1. J Biol Chem 2003; 278:24359-70. [PMID: 12700242 DOI: 10.1074/jbc.m211051200] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
By using the hepatic stellate cell (HSC) as a paradigm for cells that undergo long term re-programming of NF-kappaB-dependent transcription, we have determined a novel mechanism by which mammalian cells establish their basal NF-kappaB activity. Elevation of NF-kappaB activity during HSC activation is accompanied by induction of CBF1 expression and DNA binding activity. We show that the transcriptional repressor CBF1 interacts with a dual NF-kappaB/CBF1-binding site (kappaB2) in the IkappaBalpha promoter. Nucleotide substitutions that disrupt CBF1 binding to the kappaB2 site result in an elevation of IkappaBalpha promoter activity and loss of responsiveness of the promoter to a transfected CBF1 reporter vector. Overexpression of CBF1 in COS1 cells was associated with markedly reduced IkappaBalpha protein expression and elevated NF-kappaB DNA binding activity. CBF1-induced repression of IkappaBalpha promoter activity was reversed in HSC transfected with the Notch1 intracellular domain (NICD). The ability of NICD to enhance IkappaBalpha gene transcription was confirmed in COS1 cells and was found to be dependent on an intact RAM domain of NICD that has been shown previously to help mediate the interaction of NICD with CBF1. One of the mechanisms by which NICD is thought to convert CBF1 into an activator of transcription is via the recruitment of transcriptional co-activators/histone acetylases to gene promoters. Co-transfection of HSC with NICD and p53 caused a diminution of IkappaBalpha promoter activity, by contrast overexpression of p300 enhanced IkappaBalpha promoter function. Taken together, these data suggest that basal IkappaBalpha expression (and as a consequence NF-kappaB activity) is under the control of the various components of the CBF1/Notch signal transduction pathway.
Collapse
Affiliation(s)
- Fiona Oakley
- Liver Group, Division of Infection, Inflammation and Repair, University of Southampton, United Kingdom
| | | | | | | | | | | |
Collapse
|
143
|
Alazard N, Gruffat H, Hiriart E, Sergeant A, Manet E. Differential hyperacetylation of histones H3 and H4 upon promoter-specific recruitment of EBNA2 in Epstein-Barr virus chromatin. J Virol 2003; 77:8166-72. [PMID: 12829856 PMCID: PMC161941 DOI: 10.1128/jvi.77.14.8166-8172.2003] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Epstein-Barr virus nuclear antigen 2 (EBNA2) is a transcriptional activator involved in the immortalization of B lymphocytes by the virus. EBNA2 is targeted to the promoters of its responsive genes, via interaction with cellular DNA-binding proteins. Using chromatin immunoprecipitation assays, we show for the first time the conditional recruitment of EBNA2 on two specific viral promoters in vivo and demonstrate a correlation between this recruitment and a local change in the acetylation of histones H3 and H4, which is promoter dependent.
Collapse
Affiliation(s)
- Nathalie Alazard
- Unité de Virologie Humaine, U412 INSERM, Ecole Normale Supérieure de Lyon, 46 Allée d'Italie, 69364 Lyon Cedex 07, France
| | | | | | | | | |
Collapse
|
144
|
Beverly LJ, Capobianco AJ. Perturbation of Ikaros isoform selection by MLV integration is a cooperative event in Notch(IC)-induced T cell leukemogenesis. Cancer Cell 2003; 3:551-64. [PMID: 12842084 DOI: 10.1016/s1535-6108(03)00137-5] [Citation(s) in RCA: 116] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The chromosomal translocation t(7;9)(q34;q34.3) in human T cell acute lymphoblastic leukemia (T-ALL) results in the aberrant expression of the intracellular domain of Notch (N(ic)). Consistent with the current multistep model for tumorigenesis, mice that express N(ic) in T cell progenitors develop a T-ALL-like disease with a lengthened latency. Proviral insertional mutagenesis greatly accelerated the onset of leukemia in N(ic) transgenic mice. We demonstrate that the Ikaros (Ik) locus is a common target of proviral integration in N(ic) transgenic mice, which results in the loss of Ik DNA binding activity through altered isoform expression. We propose that cooperative leukemogenesis occurs in cells that have constitutive N(ic) and altered Ik isoform expression because genes normally repressed by Ik become activated by N(ic)/CSL.
Collapse
MESH Headings
- Acute Disease
- Animals
- Cell Transformation, Neoplastic
- DNA Primers/chemistry
- DNA, Viral/genetics
- DNA-Binding Proteins
- Gene Expression Regulation, Neoplastic
- Humans
- Ikaros Transcription Factor
- Leukemia Virus, Murine/genetics
- Leukemia-Lymphoma, Adult T-Cell/genetics
- Leukemia-Lymphoma, Adult T-Cell/metabolism
- Leukemia-Lymphoma, Adult T-Cell/virology
- Membrane Glycoproteins/metabolism
- Membrane Proteins/chemistry
- Membrane Proteins/genetics
- Membrane Proteins/metabolism
- Mice
- Mice, Transgenic
- Protein Isoforms
- RNA, Neoplasm/genetics
- Receptors, Cell Surface/chemistry
- Receptors, Cell Surface/genetics
- Receptors, Cell Surface/metabolism
- Receptors, Notch
- Transcription Factors/genetics
- Transcription Factors/metabolism
- Tumor Cells, Cultured/transplantation
- Virus Integration
- Zinc Fingers
Collapse
Affiliation(s)
- Levi J Beverly
- Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati College of Medicine, 231 Albert Sabin Way, Cincinnati, OH 45267, USA
| | | |
Collapse
|
145
|
Kostrouchova M, Kostrouch Z, Saudek V, Piatigorsky J, Rall JE. BIR-1, a Caenorhabditis elegans homologue of Survivin, regulates transcription and development. Proc Natl Acad Sci U S A 2003; 100:5240-5. [PMID: 12682297 PMCID: PMC154329 DOI: 10.1073/pnas.0730770100] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
bir-1, a Caenorhabditis elegans inhibitor-of-apoptosis gene homologous to Survivin is organized in an operon with the transcription cofactor C. elegans SKIP (skp-1). Because genes arranged in operons are frequently linked functionally, we have asked whether BIR-1 also functions in transcription. bir-1 inhibition resulted in multiple developmental defects that overlapped with C. elegans SKIP loss-of-function phenotypes: retention of eggs, dumpy, movement defects, and lethality. bir-1 RNA-mediated interference decreased expression of several gfp transgenes and the endogenous genes dpy-7 and hlh-1. Immunoblot analysis revealed decreased phosphoacetylated histones in bir-1 RNA-mediated interference-treated worms. In a heterologous transfection system, BIR-1 augments thyroid hormone-regulated transcription and has an additive effect with SKIP. These results show that BIR-1 functions in the regulation of transcription and development.
Collapse
Affiliation(s)
- Marta Kostrouchova
- Laboratory of Molecular Biology and Genetics, Institute of Inherited Metabolic Disorders, First Faculty of Medicine, Charles University, CZ-128 01 Prague 2, Czech Republic.
| | | | | | | | | |
Collapse
|
146
|
Barry JB, Leong GM, Church WB, Issa LL, Eisman JA, Gardiner EM. Interactions of SKIP/NCoA-62, TFIIB, and retinoid X receptor with vitamin D receptor helix H10 residues. J Biol Chem 2003; 278:8224-8. [PMID: 12529369 DOI: 10.1074/jbc.c200712200] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The vitamin D receptor (VDR) is a ligand-dependent transcription factor that heterodimerizes with retinoid X receptor (RXR) and interacts with the basal transcription machinery and transcriptional cofactors to regulate target gene activity. The p160 coactivator GRIP1 and the distinct coregulator Ski-interacting protein (SKIP)/NCoA-62 synergistically enhance ligand-dependent VDR transcriptional activity. Both coregulators bind directly to and form a ternary complex with VDR, with GRIP1 contacting the activation function-2 (AF-2) domain and SKIP/NCoA-62 interacting through an AF-2 independent interface. It was previously reported that SKIP/NCoA-62 interaction with VDR was independent of the heterodimerization interface (specifically, helices H10/H11). In contrast, the present study defines specific residues within a conserved and surface-exposed region of VDR helix H10 that are required for interaction with SKIP/NCoA-62 and for full ligand-dependent transactivation activity. SKIP/NCoA-62, the basal transcription factor TFIIB, and RXR all interacted with VDR helix H10 mutants at reduced levels compared with wild type in the absence of ligand and exhibited different degrees of increased interaction upon ligand addition. Thus, SKIP/NCoA-62 interacts with VDR at a highly conserved region not previously associated with coregulator binding to regulate transactivation by a molecular mechanism distinct from that of p160 coactivators.
Collapse
Affiliation(s)
- Janelle B Barry
- Bone and Mineral Research Program and Molecular Modeling Facility, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, Sydney NSW 2010, Australia
| | | | | | | | | | | |
Collapse
|
147
|
Albers M, Diment A, Muraru M, Russell CS, Beggs JD. Identification and characterization of Prp45p and Prp46p, essential pre-mRNA splicing factors. RNA (NEW YORK, N.Y.) 2003; 9:138-50. [PMID: 12554883 PMCID: PMC1370377 DOI: 10.1261/rna.2119903] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2002] [Accepted: 09/19/2002] [Indexed: 05/20/2023]
Abstract
Through exhaustive two-hybrid screens using a budding yeast genomic library, and starting with the splicing factor and DEAH-box RNA helicase Prp22p as bait, we identified yeast Prp45p and Prp46p. We show that as well as interacting in two-hybrid screens, Prp45p and Prp46p interact with each other in vitro. We demonstrate that Prp45p and Prp46p are spliceosome associated throughout the splicing process and both are essential for pre-mRNA splicing. Under nonsplicing conditions they also associate in coprecipitation assays with low levels of the U2, U5, and U6 snRNAs that may indicate their presence in endogenous activated spliceosomes or in a postsplicing snRNP complex.
Collapse
Affiliation(s)
- Michael Albers
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, UK
| | | | | | | | | |
Collapse
|
148
|
Wu FY, Chen H, Wang SE, ApRhys CMJ, Liao G, Fujimuro M, Farrell CJ, Huang J, Hayward SD, Hayward GS. CCAAT/enhancer binding protein alpha interacts with ZTA and mediates ZTA-induced p21(CIP-1) accumulation and G(1) cell cycle arrest during the Epstein-Barr virus lytic cycle. J Virol 2003; 77:1481-500. [PMID: 12502863 PMCID: PMC140856 DOI: 10.1128/jvi.77.2.1481-1500.2003] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Cellular CCAAT/enhancer binding protein alpha (C/EBPalpha) promotes cellular differentiation and has antimitotic activities involving cell cycle arrest at G(1)/S through stabilization of p21(CIP-1)/WAF1 and through transcriptional activation of the p21 promoter. The Epstein-Barr virus lytic-cycle transactivator protein ZTA is known to arrest the host cell cycle at G(1)/S via a p53-independent p21 pathway, but the detailed molecular mechanisms involved have not been defined. To further evaluate the role of ZTA in cell cycle arrest, we constructed a recombinant adenovirus vector expressing ZTA (Ad-ZTA), whose level of expression at a low multiplicity of infection in normal human diploid fibroblast (HF) cells was lower than or equal to the physiological level seen in Akata cells lytically induced by EBV (EBV-Akata cells). Fluorescence-activated cell sorting analysis of HF cells infected with Ad-ZTA confirmed that G(1)/S cell cycle arrest occurred in the majority of ZTA-positive cells, but not with an adenovirus vector expressing green fluorescent protein. Double-label immunofluorescence assays (IFA) performed with Ad-ZTA-infected HF cells revealed that only ZTA-positive cells induced the expression of both endogenous C/EBPalpha and p21 and blocked the progression into S phase, as detected by a lack of incorporation of bromodeoxyuridine. The stimulation of endogenous ZTA protein expression either through treatment with tetradecanoyl phorbol acetate in D98/HR1 cells or through B-cell receptor cross-linking with anti-immunoglobulin G antibody in EBV-Akata cells also coincided with the induction of both C/EBPalpha and p21 and their mRNAs, as assayed by Northern blot, Western blot, and IFA experiments. Mechanistically, the ZTA protein proved to directly interact with C/EBPalpha by coimmunoprecipitation in EBV-Akata cells and with DNA-bound C/EBPalpha in electrophoretic mobility shift assay experiments, and the in vitro interaction domain encompassed the basic leucine zipper domain of ZTA. ZTA also specifically protected C/EBPalpha from degradation in a protein stability assay with a non-EBV-induced Akata cell proteasome extract. Furthermore, both C/EBPalpha and ZTA were found to specifically associate with the C/EBPalpha promoter in chromatin immunoprecipitation assays, but the interaction with ZTA appeared to be mediated by C/EBPalpha because it was abolished by clearing with anti-C/EBPalpha antibody. ZTA did not bind to or activate the C/EBPalpha promoter directly but cooperatively enhanced the positive autoregulation of the C/EBPalpha promoter by cotransfected C/EBPalpha in transient luciferase reporter gene assays with Vero and HeLa cells as well as with DG75 B lymphocytes. Similarly, ZTA alone had little effect on the p21 promoter in transient reporter gene assays, but in the presence of cotransfected C/EBPalpha, ZTA enhanced the level of C/EBPalpha activation. This effect proved to require a previously unrecognized region in the proximal p21 promoter that contains three high-affinity C/EBPalpha binding sites. Finally, in C/EBPalpha-deficient mouse embryonic fibroblasts (MEF), Ad-ZTA was unable to induce either p21 or G(1) arrest, whereas it was able to induce both in wild-type MEF. Overall, we conclude that C/EBPalpha is essential for at least one pathway of ZTA-induced G(1) arrest during EBV lytic-cycle DNA replication and that this process involves a physical piggyback interaction between ZTA and C/EBPalpha leading to greatly enhanced C/EBPalpha and p21 levels through both transcriptional and posttranslational mechanisms.
Collapse
Affiliation(s)
- Frederick Y Wu
- Molecular Virology Laboratories, Department of Pharmacology and Molecular Sciences, School of Medicine, The Johns Hopkins University, Baltimore, Maryland 21231-1000, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
149
|
Itoh M, Kim CH, Palardy G, Oda T, Jiang YJ, Maust D, Yeo SY, Lorick K, Wright GJ, Ariza-McNaughton L, Weissman AM, Lewis J, Chandrasekharappa SC, Chitnis AB. Mind bomb is a ubiquitin ligase that is essential for efficient activation of Notch signaling by Delta. Dev Cell 2003; 4:67-82. [PMID: 12530964 DOI: 10.1016/s1534-5807(02)00409-4] [Citation(s) in RCA: 625] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Lateral inhibition, mediated by Notch signaling, leads to the selection of cells that are permitted to become neurons within domains defined by proneural gene expression. Reduced lateral inhibition in zebrafish mib mutant embryos permits too many neural progenitors to differentiate as neurons. Positional cloning of mib revealed that it is a gene in the Notch pathway that encodes a RING ubiquitin ligase. Mib interacts with the intracellular domain of Delta to promote its ubiquitylation and internalization. Cell transplantation studies suggest that mib function is essential in the signaling cell for efficient activation of Notch in neighboring cells. These observations support a model for Notch activation where the Delta-Notch interaction is followed by endocytosis of Delta and transendocytosis of the Notch extracellular domain by the signaling cell. This facilitates intramembranous cleavage of the remaining Notch receptor, release of the Notch intracellular fragment, and activation of target genes in neighboring cells.
Collapse
Affiliation(s)
- Motoyuki Itoh
- Laboratory of Molecular Genetics, NICHD, NIH, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
150
|
Prathapam T, Kühne C, Banks L. Skip interacts with the retinoblastoma tumor suppressor and inhibits its transcriptional repression activity. Nucleic Acids Res 2002; 30:5261-8. [PMID: 12466551 PMCID: PMC137971 DOI: 10.1093/nar/gkf658] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Ski interacting protein (Skip) plays an important role in the transforming activity of both v-Ski and EBNA2 (Epstein-Barr virus encoded latency protein) and is involved in EBNA2 and NotchIC activation of CBF1-repressed promoters. We have previously shown that Skip acts as a transcriptional co-activator on a number of cellular and viral promoters. Here, we report that Skip also interacts with pRb and, in cooperation with Ski, can overcome pRb-induced transcriptional repression. We show a strong and direct interaction between pRb and Skip, and we map the site of interaction to amino acid residues 171-353 of the evolutionarily conserved SNW domain of Skip. Furthermore, the combination of Skip and Ski can successfully overcome the G1 arrest and flat cell phenotype induced by pRb. Taken together, these studies suggest that one potential function of the Skip-Ski complex is to overcome the growth-suppressive activities of pRb.
Collapse
Affiliation(s)
- Tulasiram Prathapam
- International Centre for Genetic Engineering and Biotechnology, Padriciano 99, I-34012, Trieste, Italy
| | | | | |
Collapse
|