101
|
Eggert LE, He Z, Collins W, Lee AS, Dhondalay G, Jiang SY, Fitzpatrick J, Snow TT, Pinsky BA, Artandi M, Barman L, Puri R, Wittman R, Ahuja N, Blomkalns A, O'Hara R, Cao S, Desai M, Sindher SB, Nadeau K, Chinthrajah RS. Asthma phenotypes, associated comorbidities, and long-term symptoms in COVID-19. Allergy 2022; 77:173-185. [PMID: 34080210 PMCID: PMC8222896 DOI: 10.1111/all.14972] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/30/2021] [Accepted: 05/07/2021] [Indexed: 12/17/2022]
Abstract
BACKGROUND It is unclear whether asthma and its allergic phenotype are risk factors for hospitalization or severe disease from SARS-CoV-2. METHODS All patients over 28 days old testing positive for SARS-CoV-2 between March 1 and September 30, 2020, were retrospectively identified and characterized through electronic analysis at Stanford. A sub-cohort was followed prospectively to evaluate long-term COVID-19 symptoms. RESULTS 168,190 patients underwent SARS-CoV-2 testing, and 6,976 (4.15%) tested positive. In a multivariate analysis, asthma was not an independent risk factor for hospitalization (OR 1.12 [95% CI 0.86, 1.45], p = .40). Among SARS-CoV-2-positive asthmatics, allergic asthma lowered the risk of hospitalization and had a protective effect compared with non-allergic asthma (OR 0.52 [0.28, 0.91], p = .026); there was no association between baseline medication use as characterized by GINA and hospitalization risk. Patients with severe COVID-19 disease had lower eosinophil levels during hospitalization compared with patients with mild or asymptomatic disease, independent of asthma status (p = .0014). In a patient sub-cohort followed longitudinally, asthmatics and non-asthmatics had similar time to resolution of COVID-19 symptoms, particularly lower respiratory symptoms. CONCLUSIONS Asthma is not a risk factor for more severe COVID-19 disease. Allergic asthmatics were half as likely to be hospitalized with COVID-19 compared with non-allergic asthmatics. Lower levels of eosinophil counts (allergic biomarkers) were associated with a more severe COVID-19 disease trajectory. Recovery was similar among asthmatics and non-asthmatics with over 50% of patients reporting ongoing lower respiratory symptoms 3 months post-infection.
Collapse
Affiliation(s)
- Lauren E. Eggert
- Division of Pulmonary, Allergy and Critical Care MedicineStanford UniversityStanfordCAUSA,Sean N. Parker Center for Allergy and Asthma ResearchStanford UniversityStanfordCAUSA
| | - Ziyuan He
- Sean N. Parker Center for Allergy and Asthma ResearchStanford UniversityStanfordCAUSA
| | - William Collins
- Sean N. Parker Center for Allergy and Asthma ResearchStanford UniversityStanfordCAUSA,Division of Hospital MedicineStanford UniversityStanfordCAUSA
| | - Alexandra S. Lee
- Sean N. Parker Center for Allergy and Asthma ResearchStanford UniversityStanfordCAUSA
| | - Gopal Dhondalay
- Sean N. Parker Center for Allergy and Asthma ResearchStanford UniversityStanfordCAUSA
| | - Shirley Y. Jiang
- Department of Internal MedicineSanta Clara Valley Medical CenterSan JoseCAUSA
| | - Jessica Fitzpatrick
- Sean N. Parker Center for Allergy and Asthma ResearchStanford UniversityStanfordCAUSA
| | - Theo T. Snow
- Sean N. Parker Center for Allergy and Asthma ResearchStanford UniversityStanfordCAUSA
| | - Benjamin A. Pinsky
- Department of PathologyStanford University School of MedicineStanfordCAUSA,Division of Infectious Diseases and Geographic MedicineStanford UniversityStanfordCAUSA
| | - Maja Artandi
- Medicine/Primary Care and Population HealthStanford UniversityStanfordCAUSA
| | - Linda Barman
- Medicine/Primary Care and Population HealthStanford UniversityStanfordCAUSA
| | - Rajan Puri
- Medicine/Primary Care and Population HealthStanford UniversityStanfordCAUSA
| | | | - Neera Ahuja
- Division of Hospital MedicineStanford UniversityStanfordCAUSA
| | - Andra Blomkalns
- Department of Emergency MedicineStanford UniversityStanfordCAUSA
| | - Ruth O'Hara
- Psychiatry/Public Mental Health & Population SciencesStanford UniversityStanfordCAUSA
| | - Shu Cao
- Sean N. Parker Center for Allergy and Asthma ResearchStanford UniversityStanfordCAUSA
| | - Manisha Desai
- Sean N. Parker Center for Allergy and Asthma ResearchStanford UniversityStanfordCAUSA,Medicine, Biomedical Informatics ResearchStanford UniversityStanfordCAUSA
| | - Sayantani B. Sindher
- Division of Pulmonary, Allergy and Critical Care MedicineStanford UniversityStanfordCAUSA,Sean N. Parker Center for Allergy and Asthma ResearchStanford UniversityStanfordCAUSA
| | - Kari Nadeau
- Division of Pulmonary, Allergy and Critical Care MedicineStanford UniversityStanfordCAUSA,Sean N. Parker Center for Allergy and Asthma ResearchStanford UniversityStanfordCAUSA,Division of Hospital MedicineStanford UniversityStanfordCAUSA
| | - R. Sharon Chinthrajah
- Division of Pulmonary, Allergy and Critical Care MedicineStanford UniversityStanfordCAUSA,Sean N. Parker Center for Allergy and Asthma ResearchStanford UniversityStanfordCAUSA
| |
Collapse
|
102
|
Attanasi M, Sferrazza Papa S, Porreca A, Sferrazza Papa GF, Di Filippo P, Piloni F, Dodi G, Sansone F, Di Pillo S, Chiarelli F. Use of lung ultrasound in school-aged children with wheezing. Front Pediatr 2022; 10:926252. [PMID: 36699291 PMCID: PMC9869023 DOI: 10.3389/fped.2022.926252] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 12/08/2022] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND There is limited information available on fast and safe bedside tools that could help clinicians establish whether the pathological process underlying cases of wheezing is due to asthmatic exacerbation, asthmatic bronchitis, or pneumonia. The study's aim was to characterize Lung Ultrasound (LUS) in school-aged children with wheezing and evaluate its use for their follow-up treatment. MATERIALS AND METHODS We carried out a cross-sectional study involving 68 consecutive outpatients (mean age 9.9 years) with wheezing and suggestive signs of an acute respiratory infection. An expert sonographer, blinded to all subject characteristics, clinical course, and the study pediatrician's diagnosis, performed an LUS after spirometry and before BDT. The severity of acute respiratory symptoms was determined using the Pediatric Respiratory Assessment Measure (PRAM) score. RESULTS The LUS was positive in 38.2% (26/68) of patients [12 (46.1%) with multiple B-lines, 24 (92.3%) with consolidation, and 22 (84.6%) with pleural abnormalities]. In patients with pneumonia, asthmatic bronchitis, and asthma, the percentages of those patients with a positive LUS were 100%, 57.7%, and 0%, respectively. Of note, patients with a positive LUS were associated with an increased need for hospital admission (30.8% vs. 2.4%, p = 0.001), administration of oxygen therapy (14.6% vs. 0%, p = 0.009), oral corticosteroids (84.6% vs. 19.0%, p < 0.001), and antibiotics (88.5% vs. 11.9%, p < 0.001); and a higher median value of PRAM score (4.0 (2.0-7.0) vs. 2.0 (1.0-5.0); p < 0.001). CONCLUSIONS Our findings would suggest the use of LUS as a safe and cheap tool used by clinicians to define the diagnosis of school-aged children with wheezing of unknown causes.
Collapse
Affiliation(s)
- Marina Attanasi
- Department of Pediatrics, Pediatric Allergy and Pulmonology Unit, University of Chieti-Pescara, Chieti, Italy
| | - Simone Sferrazza Papa
- Department of Pediatrics, Pediatric Allergy and Pulmonology Unit, University of Chieti-Pescara, Chieti, Italy
| | - Annamaria Porreca
- Department of Economic Studies, University of Chieti-Pescara, Chieti, Italy
| | - Giuseppe F Sferrazza Papa
- Department of Health Sciences, Università degli Studi di Milano, Milan, Italy.,Department of Neurorehabilitation Sciences, Casa di Cura del Policlinico, Milan, Italy
| | - Paola Di Filippo
- Department of Pediatrics, Pediatric Allergy and Pulmonology Unit, University of Chieti-Pescara, Chieti, Italy
| | - Francesca Piloni
- Department of Pediatrics, Pediatric Allergy and Pulmonology Unit, University of Chieti-Pescara, Chieti, Italy
| | - Giulia Dodi
- Department of Pediatrics, Pediatric Allergy and Pulmonology Unit, University of Chieti-Pescara, Chieti, Italy
| | - Francesco Sansone
- Department of Pediatrics, Pediatric Allergy and Pulmonology Unit, University of Chieti-Pescara, Chieti, Italy
| | - Sabrina Di Pillo
- Department of Pediatrics, Pediatric Allergy and Pulmonology Unit, University of Chieti-Pescara, Chieti, Italy
| | - Francesco Chiarelli
- Department of Pediatrics, Pediatric Allergy and Pulmonology Unit, University of Chieti-Pescara, Chieti, Italy
| |
Collapse
|
103
|
Wirz OF, Jansen K, Satitsuksanoa P, Veen W, Tan G, Sokolowska M, Mirer D, Stanić B, Message SD, Kebadze T, Glanville N, Mallia P, Gern JE, Papadopoulos N, Akdis CA, Johnston SL, Nadeau K, Akdis M. Experimental rhinovirus infection induces an antiviral response in circulating B cells which is dysregulated in patients with asthma. Allergy 2022; 77:130-142. [PMID: 34169553 PMCID: PMC10138744 DOI: 10.1111/all.14985] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 05/28/2021] [Accepted: 06/05/2021] [Indexed: 01/11/2023]
Abstract
BACKGROUND Rhinoviruses are the predominant cause of respiratory viral infections and are strongly associated with asthma exacerbations. While humoral immunity plays an important role during virus infections, cellular aspects of this response are less well understood. Here, we investigated the antiviral response of circulating B cells upon experimental rhinovirus infection in healthy individuals and asthma patients. METHODS We purified B cells from experimentally infected healthy individuals and patients with asthma and subjected them to total RNA-sequencing. Rhinovirus-derived RNA was measured in isolated B cells using a highly sensitive PCR. B cells were stimulated with rhinovirus in vitro to further study gene expression, expression of antiviral proteins and B-cell differentiation in response rhinovirus stimulation. Protein expression of pro-inflammatory cytokines in response to rhinovirus was assessed using a proximity extension assay. RESULTS B cells isolated from experimentally infected subjects exhibited an antiviral gene profile linked to IFN-alpha, carried viral RNA in vivo and were transiently infected by rhinovirus in vitro. B cells rapidly differentiated into plasmablasts upon rhinovirus stimulation. While B cells lacked expression of interferons in response to rhinovirus exposure, co-stimulation with rhinovirus and IFN-alpha upregulated pro-inflammatory cytokine expression suggesting a potential new function of B cells during virus infections. Asthma patients showed extensive upregulation and dysregulation of antiviral gene expression. CONCLUSION These findings add to the understanding of systemic effects of rhinovirus infections on B-cell responses in the periphery, show potential dysregulation in patients with asthma and might also have implications during infection with other respiratory viruses.
Collapse
Affiliation(s)
- Oliver F. Wirz
- Swiss Institute of Allergy and Asthma Research (SIAF) University of Zurich Davos Switzerland
| | - Kirstin Jansen
- Swiss Institute of Allergy and Asthma Research (SIAF) University of Zurich Davos Switzerland
| | | | - Willem Veen
- Swiss Institute of Allergy and Asthma Research (SIAF) University of Zurich Davos Switzerland
- Christine Kühne – Center for Allergy Research and Education (CK‐CARE) Davos Switzerland
| | - Ge Tan
- Swiss Institute of Allergy and Asthma Research (SIAF) University of Zurich Davos Switzerland
- Functional Genomics Center Zürich ETH Zürich/University of Zürich Zürich Switzerland
| | - Milena Sokolowska
- Swiss Institute of Allergy and Asthma Research (SIAF) University of Zurich Davos Switzerland
| | - David Mirer
- Swiss Institute of Allergy and Asthma Research (SIAF) University of Zurich Davos Switzerland
| | - Barbara Stanić
- Swiss Institute of Allergy and Asthma Research (SIAF) University of Zurich Davos Switzerland
| | - Simon D. Message
- National Heart and Lung Institute Imperial College London London UK
| | - Tatiana Kebadze
- National Heart and Lung Institute Imperial College London London UK
| | | | - Patrick Mallia
- National Heart and Lung Institute Imperial College London London UK
| | - James E. Gern
- Department of Pediatrics University of Wisconsin‐Madison Madison USA
| | - Nikolaos Papadopoulos
- Division of Infection, Immunity & Respiratory Medicine The University of Manchester Manchester UK
- Allergy Department 2nd Pediatric Clinic University of Athens Athens Greece
| | - Cezmi A. Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF) University of Zurich Davos Switzerland
- Christine Kühne – Center for Allergy Research and Education (CK‐CARE) Davos Switzerland
| | | | - Kari Nadeau
- Sean N. Parker Center for Allergy and Asthma Research Department of Medicine Stanford University Palo Alto California USA
| | - Mübeccel Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF) University of Zurich Davos Switzerland
| |
Collapse
|
104
|
Single-cell RNA transcriptomic analysis identifies Creb5 and CD11b-DCs as regulator of asthma exacerbations. Mucosal Immunol 2022; 15:1363-1374. [PMID: 36038770 PMCID: PMC9705253 DOI: 10.1038/s41385-022-00556-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 07/20/2022] [Accepted: 08/08/2022] [Indexed: 02/04/2023]
Abstract
Immune responses that result in asthma exacerbation are associated with allergen or viral exposure. Identification of common immune factors will be beneficial for the development of uniformed targeted therapy. We employed a House Dust Mite (HDM) mouse model of asthma and challenged allergic HDM mice with allergens (HDM, cockroach extract (CRE)) or respiratory syncytial virus (RSV). Purified lung immune cells underwent high-dimensional single-cell RNA deep sequencing (scRNA-seq) to generate an RNA transcriptome. Gene silencing with siRNA was employed to confirm the efficacy of scRNA-seq analysis. scRNA-seq UMAP analysis portrayed an array of cell markers within individual immune clusters. SCENIC R analysis showed an increase in regulon number and activity in CD11b- DC cells. Analysis of conserved regulon factors further identified Creb5 as a shared regulon between the exacerbation groups. Creb5 siRNAs attenuated HDM, CRE or RSV-induced asthma exacerbation. scRNA-seq multidimensional analysis of immune clusters identified gene pathways that were conserved between the exacerbation groups. We propose that these analyses provide a strong framework that could be used to identify specific therapeutic targets in multifaceted pathologies.
Collapse
|
105
|
Coleman LA, Khoo SK, Franks K, Prastanti F, Le Souëf P, Karpievitch YV, Laing IA, Bosco A. Personal Network Inference Unveils Heterogeneous Immune Response Patterns to Viral Infection in Children with Acute Wheezing. J Pers Med 2021; 11:1293. [PMID: 34945765 PMCID: PMC8706513 DOI: 10.3390/jpm11121293] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/26/2021] [Accepted: 12/01/2021] [Indexed: 12/01/2022] Open
Abstract
Human rhinovirus (RV)-induced exacerbations of asthma and wheeze are a major cause of emergency room presentations and hospital admissions among children. Previous studies have shown that immune response patterns during these exacerbations are heterogeneous and are characterized by the presence or absence of robust interferon responses. Molecular phenotypes of asthma are usually identified by cluster analysis of gene expression levels. This approach however is limited, since genes do not exist in isolation, but rather work together in networks. Here, we employed personal network inference to characterize exacerbation response patterns and unveil molecular phenotypes based on variations in network structure. We found that personal gene network patterns were dominated by two major network structures, consisting of interferon-response versus FCER1G-associated networks. Cluster analysis of these structures divided children into subgroups, differing in the prevalence of atopy but not RV species. These network structures were also observed in an independent cohort of children with virus-induced asthma exacerbations sampled over a time course, where we showed that the FCER1G-associated networks were mainly observed at late time points (days four-six) during the acute illness. The ratio of interferon- and FCER1G-associated gene network responses was able to predict recurrence, with low interferon being associated with increased risk of readmission. These findings demonstrate the applicability of personal network inference for biomarker discovery and therapeutic target identification in the context of acute asthma which focuses on variations in network structure.
Collapse
Affiliation(s)
- Laura A. Coleman
- Medical School (Paediatrics), University of Western Australia, Perth, WA 6009, Australia; (L.A.C.); (P.L.S.); (I.A.L.)
- Telethon Kids Institute, University of Western Australia, Perth, WA 6009, Australia; (S.-K.K.); (K.F.); (F.P.); (Y.V.K.)
| | - Siew-Kim Khoo
- Telethon Kids Institute, University of Western Australia, Perth, WA 6009, Australia; (S.-K.K.); (K.F.); (F.P.); (Y.V.K.)
- School of Biomedical Sciences, University of Western Australia, Perth, WA 6009, Australia
| | - Kimberley Franks
- Telethon Kids Institute, University of Western Australia, Perth, WA 6009, Australia; (S.-K.K.); (K.F.); (F.P.); (Y.V.K.)
- School of Biomedical Sciences, University of Western Australia, Perth, WA 6009, Australia
| | - Franciska Prastanti
- Telethon Kids Institute, University of Western Australia, Perth, WA 6009, Australia; (S.-K.K.); (K.F.); (F.P.); (Y.V.K.)
- School of Biomedical Sciences, University of Western Australia, Perth, WA 6009, Australia
| | - Peter Le Souëf
- Medical School (Paediatrics), University of Western Australia, Perth, WA 6009, Australia; (L.A.C.); (P.L.S.); (I.A.L.)
- Telethon Kids Institute, University of Western Australia, Perth, WA 6009, Australia; (S.-K.K.); (K.F.); (F.P.); (Y.V.K.)
| | - Yuliya V. Karpievitch
- Telethon Kids Institute, University of Western Australia, Perth, WA 6009, Australia; (S.-K.K.); (K.F.); (F.P.); (Y.V.K.)
- School of Biomedical Sciences, University of Western Australia, Perth, WA 6009, Australia
| | - Ingrid A. Laing
- Medical School (Paediatrics), University of Western Australia, Perth, WA 6009, Australia; (L.A.C.); (P.L.S.); (I.A.L.)
- Telethon Kids Institute, University of Western Australia, Perth, WA 6009, Australia; (S.-K.K.); (K.F.); (F.P.); (Y.V.K.)
- School of Biomedical Sciences, University of Western Australia, Perth, WA 6009, Australia
| | - Anthony Bosco
- Telethon Kids Institute, University of Western Australia, Perth, WA 6009, Australia; (S.-K.K.); (K.F.); (F.P.); (Y.V.K.)
| |
Collapse
|
106
|
Werder RB, Ullah MA, Rahman MM, Simpson J, Lynch JP, Collinson N, Rittchen S, Rashid RB, Sikder MAA, Handoko HY, Curren BF, Sebina I, Hartel G, Bissell A, Ngo S, Yarlagadda T, Hasnain SZ, Lu W, Sohal SS, Martin M, Bowler S, Burr LD, Martinez LO, Robaye B, Spann K, Ferreira MAR, Phipps S. Targeting the P2Y13 Receptor Suppresses IL-33 and HMGB1 Release and Ameliorates Experimental Asthma. Am J Respir Crit Care Med 2021; 205:300-312. [PMID: 34860143 DOI: 10.1164/rccm.202009-3686oc] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
RATIONALE The alarmins IL-33 and HMGB1 (high mobility group box 1) contribute to type-2 inflammation and asthma pathogenesis. OBJECTIVES To determine whether P2Y13 receptor (P2Y13-R), a purinergic G protein-coupled receptor (GPCR) and risk allele for asthma, regulates the release of IL-33 and HMGB1. METHODS Bronchial biopsies were obtained from healthy and asthmatic subjects. Primary human airway epithelial cells (AECs), primary mouse (m)AECs, or C57Bl/6 mice were inoculated with various aeroallergens or respiratory viruses, and the nuclear-to-cytoplasmic translocation and release of alarmins measured by immunohistochemistry and ELISA. The role of P2Y13-R in AEC function and in the onset, progression, and an exacerbation of experimental asthma, was assessed using pharmacological antagonists and P2Y13-R gene-deleted mice. MEASUREMENTS AND MAIN RESULTS Aeroallergen-exposure induced the extracellular release of ADP and ATP, nucleotides that activate P2Y13-R. ATP, ADP, aeroallergen (house dust mite, cockroach or Alternaria) or virus exposure induced the nuclear-to-cytoplasmic translocation and subsequent release of IL-33 and HMGB1, and this response was ablated by genetic deletion or pharmacological antagonism of P2Y13. In mice, prophylactic or therapeutic P2Y13-R blockade attenuated asthma onset, and critically, ablated the severity of a rhinovirus-associated exacerbation in a high-fidelity experimental model of chronic asthma. Moreover, P2Y13-R antagonism derepressed antiviral immunity, increasing IFN-λ production and decreasing viral copies in the lung. CONCLUSIONS We identify P2Y13-R as a novel gatekeeper of the nuclear alarmins IL-33 and HMGB1, and demonstrate that the targeting of this GPCR via genetic deletion or treatment with a small-molecule antagonist protects against the onset and exacerbations of experimental asthma.
Collapse
Affiliation(s)
- Rhiannon B Werder
- QIMR Berghofer Medical Research Institute, 56362, Respiratory Immunology Laboratory, Brisbane, Queensland, Australia.,The University of Queensland, 1974, Faculty of Medicine, Brisbane, Queensland, Australia.,Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, Massachusetts, United States.,Boston University School of Medicine, 12259, The Pulmonary Center and Department of Medicine, Boston, Massachusetts, United States
| | - Md Ashik Ullah
- QIMR Berghofer Medical Research Institute, 56362, Respiratory Immunology Laboratory, Brisbane, Queensland, Australia
| | - Muhammed Mahfuzur Rahman
- QIMR Berghofer Medical Research Institute, 56362, Respiratory Immunology Laboratory, Brisbane, Queensland, Australia.,The University of Queensland, 1974, Faculty of Medicine, Brisbane, Queensland, Australia
| | - Jennifer Simpson
- QIMR Berghofer Medical Research Institute, 56362, Respiratory Immunology Laboratory, Brisbane, Queensland, Australia.,The University of Queensland, 1974, Faculty of Medicine, Brisbane, Queensland, Australia.,National Institute of Allergy and Infectious Diseases, 35037, Barrier Immunity Section, Laboratory of Viral Diseases, Bethesda, Maryland, United States
| | - Jason P Lynch
- QIMR Berghofer Medical Research Institute, 56362, Respiratory Immunology Laboratory, Brisbane, Queensland, Australia.,Harvard Medical School, 1811, Department of Microbiology, Boston, Massachusetts, United States
| | - Natasha Collinson
- QIMR Berghofer Medical Research Institute, 56362, Respiratory Immunology Laboratory, Brisbane, Queensland, Australia
| | - Sonja Rittchen
- QIMR Berghofer Medical Research Institute, 56362, Respiratory Immunology Laboratory, Brisbane, Queensland, Australia.,Medical University of Graz, 31475, Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Graz, Steiermark, Austria
| | - Ridwan B Rashid
- QIMR Berghofer Medical Research Institute, 56362, Respiratory Immunology Laboratory, Brisbane, Queensland, Australia.,The University of Queensland, 1974, Faculty of Medicine, Brisbane, Queensland, Australia
| | - Md Al Amin Sikder
- QIMR Berghofer Medical Research Institute, 56362, Respiratory Immunology Laboratory, Brisbane, Queensland, Australia.,The University of Queensland, 1974, Faculty of Medicine, Brisbane, Queensland, Australia
| | - Herlina Y Handoko
- QIMR Berghofer Medical Research Institute, 56362, Respiratory Immunology Laboratory, Brisbane, Queensland, Australia
| | - Bodie F Curren
- QIMR Berghofer Medical Research Institute, 56362, Respiratory Immunology Laboratory, Brisbane, Queensland, Australia.,The University of Queensland, 1974, Faculty of Medicine, Brisbane, Queensland, Australia
| | - Ismail Sebina
- QIMR Berghofer Medical Research Institute, 56362, Respiratory Immunology Laboratory, Brisbane, Queensland, Australia
| | - Gunter Hartel
- QIMR Berghofer, 56362, Brisbane, Queensland, Australia
| | - Alec Bissell
- QIMR Berghofer Medical Research Institute, 56362, Respiratory Immunology Laboratory, Brisbane, Queensland, Australia
| | - Sylvia Ngo
- QIMR Berghofer Medical Research Institute, 56362, Respiratory Immunology Laboratory, Brisbane, Queensland, Australia
| | - Tejasri Yarlagadda
- Queensland University of Technology Faculty of Health, 110544, Kelvin Grove, Queensland, Australia
| | - Sumaira Z Hasnain
- Mater Medical Research Institute, 200098, Brisbane, Queensland, Australia
| | - Wenying Lu
- University of Tasmania, 3925, Respiratory Translational Research Group, Launceston , Tasmania, Australia
| | - Sukhwinder S Sohal
- University of Tasmania , Respiratory Translational Research Group, Launceston , Tasmania, Australia
| | - Megan Martin
- Mater Health Services, Respiratory Medicine, South Brisbane, Queensland, Australia
| | - Simon Bowler
- Mater Health Services, Respiratory Medicine, South Brisbane, Queensland, Australia
| | - Lucy D Burr
- UQ School of Medicine, Brisbane, Queensland, Australia
| | - Laurent O Martinez
- University of Toulouse, 137668, Institut National de la Santé et de la Recherche Médicale (INSERM), Toulouse, France
| | - Bernard Robaye
- Université Libre de Bruxelles, 26659, IRIBHM, Bruxelles, Belgium
| | - Kirsten Spann
- Queensland University of Technology, 1969, School of Biomedical Sciences, Brisbane, Queensland, Australia
| | - Manuel A R Ferreira
- QIMR Berghofer Medical Research Institute, 56362, Respiratory Immunology Laboratory, Brisbane, Queensland, Australia
| | - Simon Phipps
- QIMR Berghofer Medical Research Institute, 56362, Respiratory Immunology Laboratory, Brisbane, Queensland, Australia.,The University of Queensland, 1974, Faculty of Medicine, Brisbane, Queensland, Australia.,The University of Queensland, 1974, Australian Infectious Diseases Research Centre, Brisbane, Queensland, Australia;
| |
Collapse
|
107
|
Teoh L, Chang AB. Bird's eye overview of asthma in children. Indian J Med Res 2021; 154:8-11. [PMID: 34782523 PMCID: PMC8715702 DOI: 10.4103/ijmr.ijmr_931_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Affiliation(s)
- Laurel Teoh
- Child Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, Northern Territory; Faculty of Medicine, The University of Queensland; Department of Paediatrics, Caboolture Hospital, Caboolture, Queensland 4510, Australia
| | - Anne B Chang
- Child Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, Northern Territory; Department of Respiratory & Sleep Medicine, Queensland Children's Hospital; Australian Centre for Health Services Innovation, Queensland University of Technology, Brisbane, Australia
| |
Collapse
|
108
|
Yang Z, Mitländer H, Vuorinen T, Finotto S. Mechanism of Rhinovirus Immunity and Asthma. Front Immunol 2021; 12:731846. [PMID: 34691038 PMCID: PMC8526928 DOI: 10.3389/fimmu.2021.731846] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 09/20/2021] [Indexed: 12/30/2022] Open
Abstract
The majority of asthma exacerbations in children are caused by Rhinovirus (RV), a positive sense single stranded RNA virus of the Picornavirus family. The host has developed virus defense mechanisms that are mediated by the upregulation of interferon-activated signaling. However, the virus evades the immune system by inducing immunosuppressive cytokines and surface molecules like programmed cell death protein 1 (PD-1) and its ligand (PD-L1) on immunocompetent cells. Initially, RV infects epithelial cells, which constitute a physiologic mucosal barrier. Upon virus entrance, the host cell immediately recognizes viral components like dsRNA, ssRNA, viral glycoproteins or CpG-DNA by host pattern recognition receptors (PRRs). Activation of toll like receptors (TLR) 3, 7 and 8 within the endosome and through MDA-5 and RIG-I in the cytosol leads to the production of interferon (IFN) type I and other antiviral agents. Every cell type expresses IFNAR1/IFNAR2 receptors thus allowing a generalized antiviral activity of IFN type I resulting in the inhibition of viral replication in infected cells and preventing viral spread to non-infected cells. Among immune evasion mechanisms of the virus, there is downregulation of IFN type I and its receptor as well as induction of the immunosuppressive cytokine TGF-β. TGF-β promotes viral replication and is associated with induction of the immunosuppression signature markers LAP3, IDO and PD-L1. This article reviews the recent advances on the regulation of interferon type I expression in association with RV infection in asthmatics and the immunosuppression induced by the virus.
Collapse
Affiliation(s)
- Zuqin Yang
- Department of Molecular Pneumology, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Hannah Mitländer
- Department of Molecular Pneumology, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Tytti Vuorinen
- Medical Microbiology, Turku University Hospital, Institut of Biomedicine, University of Turku, Turku, Finland
| | - Susetta Finotto
- Department of Molecular Pneumology, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany
| |
Collapse
|
109
|
Defining Age-specific Relationships of Respiratory Syncytial Virus and Rhinovirus Species in Hospitalized Children With Acute Wheeze. Pediatr Infect Dis J 2021; 40:873-879. [PMID: 34321447 DOI: 10.1097/inf.0000000000003194] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Acute wheezing is one of the most common hospital presentations for young children. Respiratory syncytial virus (RSV) and rhinovirus (RV) species A, B and the more recently described species C are implicated in the majority of these presentations. However, the relative importance and age-specificities of these viruses have not been defined. Hence, this study aimed to establish these relationships in a large cohort of prospectively recruited hospitalized children. METHODS The study cohort was 390 children 0-16 years of age presenting with acute wheezing to a children's emergency department, 96.4% being admitted. A nonwheezing control population of 190 was also recruited. Nasal samples were analyzed for viruses. RESULTS For the first 6 months of life, RSV was the dominant virus associated with wheezing (P < 0.001). From 6 months to 2 years, RSV, RV-A and RV-C were all common but none predominated. From 2 to 6 years, RV-C was the dominant virus detected (50-60% of cases), 2-3 times more common than RV-A and RSV, RSV decreasing to be absent from 4 to 7 years. RV-B was rare at all ages. RV-C was no longer dominant in children more than 10 years of age. Overall, RV-C was associated with lower mean oxygen saturation than any other virus (P < 0.001). Controls had no clear age distribution of viruses. CONCLUSION This study establishes a clear profile of age specificity of virus infections causing moderate to severe wheezing in children: RSV as the dominant cause in the first 6 months and RV-C in preschool-age children.
Collapse
|
110
|
Howell D, Verma H, Ho KS, Narasimhan B, Steiger D, Rogers L. Asthma and COVID-19: lessons learned and questions that remain. Expert Rev Respir Med 2021; 15:1377-1386. [PMID: 34570678 DOI: 10.1080/17476348.2021.1985763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
INTRODUCTION Asthma is one of the most common chronic diseases worldwide. As a disease of the respiratory tract, the site of entry for the SARS-CoV-2 virus, there may be an important interplay between asthma and COVID-19 disease. AREAS COVERED We report asthma prevalence among hospitalized cohorts with COVID-19. Those with non-allergic and severe asthma may be at increased risk of a worsened clinical outcome from COVID-19 infection. We explore the epidemiology of asthma as a risk factor for the severity of COVID-19 infection. We then consider the role COVID-19 may play in leading to exacerbations of asthma. The impact of asthma endotype on outcome is discussed. Lastly, we address the safety of common asthma therapeutics. A literature search was performed with relevant terms for each of the sections of the review using PubMed, Google Scholar, and Medline. EXPERT OPINION Asthma diagnosis may be a risk factor for severe COVID-19 especially for those with severe disease or nonallergic phenotypes. COVID-19 does not appear to provoke asthma exacerbations and asthma therapeutics should be continued for patients with exposure to COVID-19. Clearly much regarding this topic remains unknown and we identify some key questions that may be of interest for future researchers.[Figure: see text].
Collapse
Affiliation(s)
- Daniel Howell
- Division of Pulmonary and Critical Care, Woodhull Hospital, New York University, New York, USA
| | - Hannah Verma
- Icahn School of Medicine at Mount Sinai, New York, USA
| | - Kam Sing Ho
- Department of Medicine, Mount Sinai Morningside & Mount Sinai West Hospitals, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Bharat Narasimhan
- Department of Medicine, Mount Sinai Morningside & Mount Sinai West Hospitals, Icahn School of Medicine at Mount Sinai, New York, USA
| | - David Steiger
- Division of Pulmonary & Critical Care, Mount Sinai Beth Israel, Mount Sinai Morningside, & Mount Sinai West Hospitals, Icahn School of Medicine at Mount Sinai, New York, USA
| | | |
Collapse
|
111
|
Mohan A, Ludwig A, Brehm C, Lugogo N, Sumino K, Hanania NA. Revisiting Mild Asthma: Current Knowledge and Future Needs. Chest 2021; 161:26-39. [PMID: 34543667 DOI: 10.1016/j.chest.2021.09.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/22/2021] [Accepted: 09/09/2021] [Indexed: 11/24/2022] Open
Abstract
Asthma is a common chronic airways disease with significant impact on patients, caregivers, and the health-care system. Although most research and novel interventions mainly have focused on patients with uncontrolled severe asthma, most patients with asthma have mild disease. Epidemiologic studies suggest that many patients with mild asthma report frequent exacerbations of the disease and uncontrolled symptoms. However, despite its impact, mild asthma does not have either a uniformly agreed on definition for or a consensus on its clinical and pathophysiologic progression. More recently, the approach to treatment of patients with mild asthma has undergone significant changes primarily based on emerging evidence that airway inflammation in this population is important. This led to clinical research studies that explored the efficacy of as-needed inhaled corticosteroids along with the rescue medications that traditionally have been the mainstay of treatment. Despite some advancement in the field in recent years, many controversies and unmet needs remain. In this review, we examine the current understanding of the pathophysiologic features and management of mild asthma. In addition, we outline unmet needs for future research. We conclude that mild asthma contributes significantly to the morbidity and mortality of asthma and should be the focus of future research.
Collapse
Affiliation(s)
- Arjun Mohan
- Division of Pulmonary Diseases and Critical Care Medicine, Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA.
| | - Amy Ludwig
- Department of Internal Medicine and Pediatrics, Department of Internal Medicine, University of Michigan, Ann Arbor, MI
| | - Caryn Brehm
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI
| | - Njira Lugogo
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI
| | - Kaharu Sumino
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Washington University, St. Louis, MO
| | - Nicola A Hanania
- Section of Pulmonary, Critical Care and Sleep Medicine, Baylor College of Medicine, Houston, TX
| |
Collapse
|
112
|
Proskocil BJ, Wai K, Lebold KM, Norgard MA, Michaelis KA, De La Torre U, Cook M, Marks DL, Fryer AD, Jacoby DB, Drake MG. TLR7 is expressed by support cells, but not sensory neurons, in ganglia. J Neuroinflammation 2021; 18:209. [PMID: 34530852 PMCID: PMC8447680 DOI: 10.1186/s12974-021-02269-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 08/31/2021] [Indexed: 11/10/2022] Open
Abstract
Background Toll-like receptor 7 (TLR7) is an innate immune receptor that detects viral single-stranded RNA and triggers the production of proinflammatory cytokines and type 1 interferons in immune cells. TLR7 agonists also modulate sensory nerve function by increasing neuronal excitability, although studies are conflicting whether sensory neurons specifically express TLR7. This uncertainty has confounded the development of a mechanistic understanding of TLR7 function in nervous tissues. Methods TLR7 expression was tested using in situ hybridization with species-specific RNA probes in vagal and dorsal root sensory ganglia in wild-type and TLR7 knockout (KO) mice and in guinea pigs. Since TLR7 KO mice were generated by inserting an Escherichia coli lacZ gene in exon 3 of the mouse TLR7 gene, wild-type and TLR7 (KO) mouse vagal ganglia were also labeled for lacZ. In situ labeling was compared to immunohistochemistry using TLR7 antibody probes. The effects of influenza A infection on TLR7 expression in sensory ganglia and in the spleen were also assessed. Results In situ probes detected TLR7 in the spleen and in small support cells adjacent to sensory neurons in the dorsal root and vagal ganglia in wild-type mice and guinea pigs, but not in TLR7 KO mice. TLR7 was co-expressed with the macrophage marker Iba1 and the satellite glial cell marker GFAP, but not with the neuronal marker PGP9.5, indicating that TLR7 is not expressed by sensory nerves in either vagal or dorsal root ganglia in mice or guinea pigs. In contrast, TLR7 antibodies labeled small- and medium-sized neurons in wild-type and TLR7 KO mice in a TLR7-independent manner. Influenza A infection caused significant weight loss and upregulation of TLR7 in the spleens, but not in vagal ganglia, in mice. Conclusion TLR7 is expressed by macrophages and satellite glial cells, but not neurons in sensory ganglia suggesting TLR7’s neuromodulatory effects are mediated indirectly via activation of neuronally-associated support cells, not through activation of neurons directly. Our data also suggest TLR7’s primary role in neuronal tissues is not related to antiviral immunity. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-021-02269-x.
Collapse
Affiliation(s)
- Becky J Proskocil
- Division of Pulmonary and Critical Care Medicine, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, UHN67, Portland, OR, 97239, USA
| | - Karol Wai
- Division of Pulmonary and Critical Care Medicine, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, UHN67, Portland, OR, 97239, USA
| | - Katherine M Lebold
- Division of Pulmonary and Critical Care Medicine, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, UHN67, Portland, OR, 97239, USA
| | - Mason A Norgard
- Papé Family Pediatric Research Institute, Oregon Health & Science University, Portland, OR, USA
| | - Katherine A Michaelis
- Papé Family Pediatric Research Institute, Oregon Health & Science University, Portland, OR, USA
| | - Ubaldo De La Torre
- Division of Pulmonary and Critical Care Medicine, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, UHN67, Portland, OR, 97239, USA
| | - Madeline Cook
- Division of Pulmonary and Critical Care Medicine, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, UHN67, Portland, OR, 97239, USA
| | - Daniel L Marks
- Papé Family Pediatric Research Institute, Oregon Health & Science University, Portland, OR, USA
| | - Allison D Fryer
- Division of Pulmonary and Critical Care Medicine, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, UHN67, Portland, OR, 97239, USA
| | - David B Jacoby
- Division of Pulmonary and Critical Care Medicine, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, UHN67, Portland, OR, 97239, USA
| | - Matthew G Drake
- Division of Pulmonary and Critical Care Medicine, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, UHN67, Portland, OR, 97239, USA.
| |
Collapse
|
113
|
Asthma and COVID-19: Emphasis on Adequate Asthma Control. Can Respir J 2021; 2021:9621572. [PMID: 34457096 PMCID: PMC8397565 DOI: 10.1155/2021/9621572] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 07/18/2021] [Accepted: 08/13/2021] [Indexed: 12/15/2022] Open
Abstract
Asthmatics are at an increased risk of developing exacerbations after being infected by respiratory viruses such as influenza virus, parainfluenza virus, and human and severe acute respiratory syndrome coronaviruses (SARS-CoV). Asthma, especially when poorly controlled, is an independent risk factor for developing pneumonia. A subset of asthmatics can have significant defects in their innate, humoral, and cell-mediated immunity arms, which may explain the increased susceptibility to infections. Adequate asthma control is associated with a significant decrease in episodes of exacerbation. Because of their wide availability and potency to promote adequate asthma control, glucocorticoids, especially inhaled ones, are the cornerstone of asthma management. The current COVID-19 pandemic affects millions of people worldwide and possesses mortality several times that of seasonal influenza; therefore, it is necessary to revisit this subject. The pathogenesis of SARS-CoV-2, the virus that causes COVID-19, can potentiate the development of acute asthmatic exacerbation with the potential to worsen the state of chronic airway inflammation. The relationship is evident from several studies that show asthmatics experiencing a more adverse clinical course of SARS-CoV-2 infection than nonasthmatics. Recent studies show that dexamethasone, a potent glucocorticoid, and other inhaled corticosteroids significantly reduce morbidity and mortality among hospitalized COVID-19 patients. Hence, while we are waiting for more studies with higher level of evidence that further narrate the association between COVID-19 and asthma, we advise clinicians to try to achieve adequate disease control in asthmatics as it may reduce incidences and severity of exacerbations especially from SARS-CoV-2 infection.
Collapse
|
114
|
Bloom CI, Johnston SL. Decline in respiratory and cardiac admissions during the COVID-19 pandemic: What is the role of common respiratory virus infections? Respirology 2021; 26:1010-1011. [PMID: 34427013 PMCID: PMC8662067 DOI: 10.1111/resp.14138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 08/16/2021] [Indexed: 12/01/2022]
Affiliation(s)
- Chloe I Bloom
- National Heart and Lung Institute, Imperial College London, London, UK
| | | |
Collapse
|
115
|
Kim SH, Ji E, Won SH, Cho J, Kim YH, Ahn S, Chang YS. Association of asthma comorbidity with poor prognosis of coronavirus disease 2019. World Allergy Organ J 2021; 14:100576. [PMID: 34422204 PMCID: PMC8364802 DOI: 10.1016/j.waojou.2021.100576] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 07/08/2021] [Accepted: 08/03/2021] [Indexed: 12/29/2022] Open
Abstract
Background While global health agencies have listed asthma as a vulnerability for severe cases of coronavirus disease 2019 (COVID-19), the evidence supporting this is scarce. Methods A nationwide cohort study was conducted using the validated Korean national health insurance claim data of patients diagnosed with COVID-19 between January 1 and April 8, 2020. Asthma comorbidity was determined using a diagnosis code assigned by the physician and the prescription of asthma-related medications. The clinical course of COVID-19 was classified into 3 severity grades according to the requirements for oxygen supply and mechanical ventilation. We also evaluated the association of asthma with overall and in-hospital mortality of COVID-19. Results Asthma morbidity was a significant risk factor for severe COVID-19 (grade 2 requiring oxygen supply) (adjusted odds ratio [aOR] = 1.341, 95% confidence interval [CI], 1.051−1.711, P = 0.018) and grade 3 requiring mechanical ventilation or leading to death (aOR = 1.723, 95% CI: 1.230−2.412, P = 0.002) multinomial logistic regression adjusting co-risk factors. Asthma was also significantly associated with mortality of COVID-19 (aOR = 1.453, 95% CI: 1.015−2.080, P = 0.041) and was revealed to have a shorter time to in-hospital mortality of COVID-19 (P < 0.001). Patients with recent asthma exacerbation showed more severe COVID-19 of grade 3 (OR = 7.371, 95% CI: 2.018−26.924, P = 0.003) and higher mortality (OR = 9.208, 95% CI: 2.597−32.646, P < 0.001) in univariable analysis, but the statistical significance was not found in multivariable analysis. Conclusion Asthma morbidity was associated with severity and mortality of COVID-19. Patients with asthma should pay more attention to avoid worsening of COVID-19.
Collapse
Affiliation(s)
- Sae-Hoon Kim
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, South Korea.,Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center, Seoul National University College of Medicine, Seoul, South Korea.,Department of Internal Medicine, Seoul National University College of Medicine, Seoul, South Korea
| | - Eunjeong Ji
- Division of Statistics, Medical Research Collaborating Center, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Seung-Hyun Won
- Division of Statistics, Medical Research Collaborating Center, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Jungwon Cho
- Department of Pharmacy, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Yong-Hyun Kim
- Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center, Seoul National University College of Medicine, Seoul, South Korea.,Department of Internal Medicine, Seoul National University College of Medicine, Seoul, South Korea
| | - Soyeon Ahn
- Division of Statistics, Medical Research Collaborating Center, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Yoon-Seok Chang
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, South Korea.,Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center, Seoul National University College of Medicine, Seoul, South Korea.,Department of Internal Medicine, Seoul National University College of Medicine, Seoul, South Korea
| |
Collapse
|
116
|
Karakioulaki M, Papakonstantinou E, Goulas A, Stolz D. The Role of Atopy in COPD and Asthma. Front Med (Lausanne) 2021; 8:674742. [PMID: 34490286 PMCID: PMC8418108 DOI: 10.3389/fmed.2021.674742] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 07/26/2021] [Indexed: 12/31/2022] Open
Abstract
Common to several allergic diseases is the generation of immunoglobulin E (IgE) by plasma cells, when exposed to an innocuous antigen. Asthma and chronic obstructive pulmonary disease (COPD) are two prevalent chronic airway inflammatory diseases. Asthma is mediated in some patients through eosinophilic inflammatory mechanisms that include allergic sensitization and Th2-mediated immune airway response. COPD, on the other hand is mainly considered a Th1-mediated inflammatory process with neutrophilic predominance or a non-Th2 inflammation, occasionally associated with the presence of airway bacteria or viruses. IgE production appears to play an important role in the development of both COPD and asthma, as it has been associated to respiratory symptoms, lung function, bacterial and viral infections, airway remodeling and bronchial hyperreactivity in both diseases. The aim of this review is to summarize all current data concerning the role of specific and total IgE in COPD and asthma and to highlight similarities and differences in view of possible therapeutic interventions.
Collapse
Affiliation(s)
- Meropi Karakioulaki
- Clinic of Respiratory Medicine and Pulmonary Cell Research, University Hospital of Basel, Basel, Switzerland
- First Laboratory of Pharmacology, Department of Medicine, School of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Eleni Papakonstantinou
- Clinic of Respiratory Medicine and Pulmonary Cell Research, University Hospital of Basel, Basel, Switzerland
- First Laboratory of Pharmacology, Department of Medicine, School of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Antonios Goulas
- First Laboratory of Pharmacology, Department of Medicine, School of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Daiana Stolz
- Clinic of Respiratory Medicine and Pulmonary Cell Research, University Hospital of Basel, Basel, Switzerland
| |
Collapse
|
117
|
Jackson DJ, Bacharier LB. Inhaled corticosteroids for the prevention of asthma exacerbations. Ann Allergy Asthma Immunol 2021; 127:524-529. [PMID: 34400314 DOI: 10.1016/j.anai.2021.08.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 07/27/2021] [Accepted: 08/09/2021] [Indexed: 11/19/2022]
Abstract
OBJECTIVE To provide an overview of the risk factors and mechanisms underlying asthma exacerbations and the role of inhaled corticosteroids (ICSs) in preventing exacerbations. DATA SOURCES Queries for asthma exacerbations and ICSs were conducted using PubMed, searching for primary articles and reviews. STUDY SELECTIONS Studies written in English, with a focus on well-designed randomized controlled clinical trials. RESULTS Asthma exacerbations remain a major source of morbidity, with future exacerbations most likely among patients with previous exacerbations and among those with peripheral blood eosinophilia. Exacerbations are often triggered by viral respiratory tract infections, but recent evidence supports nonviral triggers as well. In terms of exacerbation prevention, several approaches to ICS therapy have been found to be effective, including intermittent high-dose ICS without use of background controller in preschool children with recurrent episodic wheezing, intermittent high-dose ICS without use of background controller in adults with mild asthma, and as-needed ICS dosing whenever rescue treatment is needed among children, adolescents, and adults with mild asthma not receiving daily controller therapy. CONCLUSION ICSs are highly effective in preventing exacerbations of asthma. Multiple dosing strategies have been found to reduce exacerbation risk, allowing for a personalization of approaches based on individual patient phenotypes and preferences.
Collapse
Affiliation(s)
- Daniel J Jackson
- Division of Allergy, Immunology and Rheumatology, Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin.
| | - Leonard B Bacharier
- Division of Allergy, Immunology and Pulmonary Medicine, Department of Pediatrics, Monroe Carell Jr. Children's Hospital at Vanderbilt, Nashville, Tennessee
| |
Collapse
|
118
|
Asthma, Allergic Rhinitis, and Atopic Dermatitis Incidence in Korean Adolescents before and after COVID-19. J Clin Med 2021; 10:jcm10153446. [PMID: 34362229 PMCID: PMC8347114 DOI: 10.3390/jcm10153446] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/18/2021] [Accepted: 07/29/2021] [Indexed: 12/12/2022] Open
Abstract
With changes in personal habits (masks and handwashing) during the COVID-19 outbreak, the study analyzed the reporting of physician-diagnosed cases (incidence) of allergic diseases (asthma, allergic rhinitis, and atopic dermatitis) using the data for years 2019 and 2020 from the Korean adolescent risk behavior web-based survey (KYRBWS-15 and 16). Altogether, 92,659 adolescents (48,443 in 2019 and 44,216 in 2020) were enrolled. The crude and adjusted odd ratios (ORs) were calculated for each disease in 2020 compared to that in 2019 using multiple logistic regression. Subgroup analyses were performed according to sex and economic status. The incidence of asthma decreased from 1.5% in 2019 to 1.0% 2020 (p < 0.001). The incidence of allergic rhinitis in 2019 and 2020 was 19.5% and 16.3%, respectively (p < 0.001). Compared with 2019, the adjusted OR (aOR) in 2020 was 0.68 (95% CI = 0.66–0.77, p value < 0.001) for asthma and 0.82 (95% CI = 0.78–0.85, p < 0.001) for allergic rhinitis. In contrast, there was no statistically significant difference between the incidence of atopic dermatitis in 2019 and that in 2020 (6.4%, vs. 6.4%, p > 0.05, respectively). Subgroup analyses results were consistent. In conclusion, there was decrease in the incidence of asthma and allergic rhinitis but not in that of atopic dermatitis from 2019 to 2020.
Collapse
|
119
|
Lammers A, Brinkman P, te Nijenhuis LH, Vries R, Dagelet YWF, Duijvelaar E, Xu B, Abdel‐Aziz MI, Vijverberg SJ, Neerincx AH, Frey U, Lutter R, Maitland‐van der Zee AH, Sterk PJ, Sinha A. Increased day-to-day fluctuations in exhaled breath profiles after a rhinovirus challenge in asthma. Allergy 2021; 76:2488-2499. [PMID: 33704785 PMCID: PMC8360186 DOI: 10.1111/all.14811] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 01/19/2021] [Accepted: 01/31/2021] [Indexed: 11/28/2022]
Abstract
Background Early detection/prediction of flare‐ups in asthma, commonly triggered by viruses, would enable timely treatment. Previous studies on exhaled breath analysis by electronic nose (eNose) technology could discriminate between stable and unstable episodes of asthma, using single/few time‐points. To investigate its monitoring properties during these episodes, we examined day‐to‐day fluctuations in exhaled breath profiles, before and after a rhinovirus‐16 (RV16) challenge, in healthy and asthmatic adults. Methods In this proof‐of‐concept study, 12 atopic asthmatic and 12 non‐atopic healthy adults were prospectively followed thrice weekly, 60 days before, and 30 days after a RV16 challenge. Exhaled breath profiles were detected using an eNose, consisting of 7 different sensors. Per sensor, individual means were calculated using pre‐challenge visits. Absolute deviations (|%|) from this baseline were derived for all visits. Within‐group comparisons were tested with Mann‐Whitney U tests and receiver operating characteristic (ROC) analysis. Finally, Spearman's correlations between the total change in eNose deviations and fractional exhaled nitric oxide (FeNO), cold‐like symptoms, and pro‐inflammatory cytokines were examined. Results Both groups had significantly increased eNose fluctuations post‐challenge, which in asthma started 1 day post‐challenge, before the onset of symptoms. Discrimination between pre‐ and post‐challenge reached an area under the ROC curve of 0.82 (95% CI = 0.65–0.99) in healthy and 0.97 (95% CI = 0.91–1.00) in asthmatic adults. The total change in eNose deviations moderately correlated with IL‐8 and TNFα (ρ ≈ .50–0.60) in asthmatics. Conclusion Electronic nose fluctuations rapidly increase after a RV16 challenge, with distinct differences between healthy and asthmatic adults, suggesting that this technology could be useful in monitoring virus‐driven unstable episodes in asthma.
Collapse
Affiliation(s)
- Ariana Lammers
- Department of Respiratory Medicine Amsterdam UMC University of Amsterdam Amsterdam The Netherlands
| | - Paul Brinkman
- Department of Respiratory Medicine Amsterdam UMC University of Amsterdam Amsterdam The Netherlands
| | - Louwrina H. te Nijenhuis
- Department of Respiratory Medicine Amsterdam UMC University of Amsterdam Amsterdam The Netherlands
| | - Rianne Vries
- Department of Respiratory Medicine Amsterdam UMC University of Amsterdam Amsterdam The Netherlands
- Breathomix BV Leiden The Netherlands
| | - Yennece W. F. Dagelet
- Department of Respiratory Medicine Amsterdam UMC University of Amsterdam Amsterdam The Netherlands
| | - Erik Duijvelaar
- Department of Respiratory Medicine Amsterdam UMC University of Amsterdam Amsterdam The Netherlands
| | - Binbin Xu
- EuroMov Digital Health in Motion Univ Montpellier IMT Mines Ales Ales France
| | - Mahmoud I. Abdel‐Aziz
- Department of Respiratory Medicine Amsterdam UMC University of Amsterdam Amsterdam The Netherlands
| | - Susanne J. Vijverberg
- Department of Respiratory Medicine Amsterdam UMC University of Amsterdam Amsterdam The Netherlands
| | - Anne H. Neerincx
- Department of Respiratory Medicine Amsterdam UMC University of Amsterdam Amsterdam The Netherlands
| | - Urs Frey
- University Children's Hospital Basel UKBB University of Basel Basel Switzerland
| | - Rene Lutter
- Department of Respiratory Medicine Amsterdam UMC University of Amsterdam Amsterdam The Netherlands
- Department of Experimental Immunology Amsterdam UMC University of Amsterdam Amsterdam Infection & Immunity Institute Amsterdam The Netherlands
| | | | - Peter J. Sterk
- Department of Respiratory Medicine Amsterdam UMC University of Amsterdam Amsterdam The Netherlands
| | - Anirban Sinha
- Department of Respiratory Medicine Amsterdam UMC University of Amsterdam Amsterdam The Netherlands
| |
Collapse
|
120
|
Warren KJ, Poole JA, Sweeter JM, DeVasure JM, Dickinson JD, Peebles RS, Wyatt TA. Neutralization of IL-33 modifies the type 2 and type 3 inflammatory signature of viral induced asthma exacerbation. Respir Res 2021; 22:206. [PMID: 34266437 PMCID: PMC8281667 DOI: 10.1186/s12931-021-01799-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 07/08/2021] [Indexed: 12/14/2022] Open
Abstract
Background Respiratory viral infections are one of the leading causes of need for emergency care and hospitalizations in asthmatic individuals, and airway-secreted cytokines are released within hours of viral infection to initiate these exacerbations. IL-33, specifically, contributes to these allergic exacerbations by amplifying type 2 inflammation. We hypothesized that blocking IL-33 in RSV-induced exacerbation would significantly reduce allergic inflammation. Methods Sensitized BALB/c mice were challenged with aerosolized ovalbumin (OVA) to establish allergic inflammation, followed by RSV-A2 infection to yield four treatment groups: saline only (Saline), RSV-infected alone (RSV), OVA alone (OVA), and OVA-treated with RSV infection (OVA-RSV). Lung outcomes included lung mRNA and protein markers of allergic inflammation, histology for mucus cell metaplasia and lung immune cell influx by cytospin and flow cytometry. Results While thymic stromal lymphopoietin (TSLP) and IL-33 were detected 6 h after RSV infection in the OVA-RSV mice, IL-23 protein was uniquely upregulated in RSV-infected mice alone. OVA-RSV animals varied from RSV- or OVA-treated mice as they had increased lung eosinophils, neutrophils, group 2 innate lymphoid cells (ILC2) and group 3 innate lymphoid cells (ILC3) detectable as early as 6 h after RSV infection. Neutralized IL-33 significantly reduced ILC2 and eosinophils, and the prototypical allergic proteins, IL-5, IL-13, CCL17 and CCL22 in OVA-RSV mice. Numbers of neutrophils and ILC3 were also reduced with anti-IL-33 treatment in both RSV and OVA-RSV treated animals as well. Conclusions Taken together, our findings indicate a broad reduction in allergic-proinflammatory events mediated by IL-33 neutralization in RSV-induced asthma exacerbation.
Collapse
Affiliation(s)
- Kristi J Warren
- Division of Pulmonary Medicine, Department of Internal Medicine, University of Utah Health, 26 N 1900 E, Salt Lake City, UT, 84132, USA. .,VA Salt Lake City Health Care System, Salt Lake City, UT, 84148, USA.
| | - Jill A Poole
- Critical Care and Sleep Division, Department of Internal Medicine, Pulmonary, University of Nebraska Medical Center, Omaha, USA
| | - Jenea M Sweeter
- Critical Care and Sleep Division, Department of Internal Medicine, Pulmonary, University of Nebraska Medical Center, Omaha, USA
| | - Jane M DeVasure
- Critical Care and Sleep Division, Department of Internal Medicine, Pulmonary, University of Nebraska Medical Center, Omaha, USA
| | - John D Dickinson
- Critical Care and Sleep Division, Department of Internal Medicine, Pulmonary, University of Nebraska Medical Center, Omaha, USA
| | - R Stokes Peebles
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University, Nashville, USA
| | - Todd A Wyatt
- Critical Care and Sleep Division, Department of Internal Medicine, Pulmonary, University of Nebraska Medical Center, Omaha, USA.,Department of Environmental, Agricultural and Occupational Health, University of Nebraska Medical Center, Omaha, NE, 68198-5910, USA.,VA Nebraska-Western Iowa Health Care System, Omaha, NE, 68105, USA
| |
Collapse
|
121
|
Coultas JA, Cafferkey J, Mallia P, Johnston SL. Experimental Antiviral Therapeutic Studies for Human Rhinovirus Infections. J Exp Pharmacol 2021; 13:645-659. [PMID: 34276229 PMCID: PMC8277446 DOI: 10.2147/jep.s255211] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 06/01/2021] [Indexed: 12/17/2022] Open
Abstract
Rhinovirus infection is common and usually causes mild, self-limiting upper respiratory tract symptoms. Rhinoviruses can cause exacerbation of chronic respiratory diseases, such as asthma or chronic obstructive pulmonary disease, leading to a significant burden of morbidity and mortality. There has been a great deal of progress in efforts to understand the immunological basis of rhinovirus infection. However, despite a number of in vitro and in vivo attempts, there have been no effective treatments developed. This review article summarises the up to date virological and immunological understanding of these infections. We discuss the challenges researchers face, and key solutions, in their work to investigate potential therapies including in vivo rhinovirus challenge studies. Finally, we explore past and present experimental therapeutic strategies employed in the treatment of rhinovirus infections and highlight promising areas of future work.
Collapse
Affiliation(s)
- James A Coultas
- National Heart and Lung Institute, Imperial College London, London, UK
| | - John Cafferkey
- Respiratory Medicine, St Mary's Hospital, Imperial College Healthcare Foundation Trust, London, UK
| | - Patrick Mallia
- National Heart and Lung Institute, Imperial College London, London, UK
| | | |
Collapse
|
122
|
Sousa-Pinto B, Halonen JI, Antó A, Jormanainen V, Czarlewski W, Bedbrook A, Papadopoulos NG, Freitas A, Haahtela T, Antó JM, Fonseca JA, Bousquet J. Prediction of Asthma Hospitalizations for the Common Cold Using Google Trends: Infodemiology Study. J Med Internet Res 2021; 23:e27044. [PMID: 34255692 PMCID: PMC8292933 DOI: 10.2196/27044] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 03/04/2021] [Accepted: 03/24/2021] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND In contrast to air pollution and pollen exposure, data on the occurrence of the common cold are difficult to incorporate in models predicting asthma hospitalizations. OBJECTIVE This study aims to assess whether web-based searches on common cold would correlate with and help to predict asthma hospitalizations. METHODS We analyzed all hospitalizations with a main diagnosis of asthma occurring in 5 different countries (Portugal, Spain, Finland, Norway, and Brazil) for a period of approximately 5 years (January 1, 2012-December 17, 2016). Data on web-based searches on common cold were retrieved from Google Trends (GT) using the pseudo-influenza syndrome topic and local language search terms for common cold for the same countries and periods. We applied time series analysis methods to estimate the correlation between GT and hospitalization data. In addition, we built autoregressive models to forecast the weekly number of asthma hospitalizations for a period of 1 year (June 2015-June 2016) based on admissions and GT data from the 3 previous years. RESULTS In time series analyses, GT data on common cold displayed strong correlations with asthma hospitalizations occurring in Portugal (correlation coefficients ranging from 0.63 to 0.73), Spain (ρ=0.82-0.84), and Brazil (ρ=0.77-0.83) and moderate correlations with those occurring in Norway (ρ=0.32-0.35) and Finland (ρ=0.44-0.47). Similar patterns were observed in the correlation between forecasted and observed asthma hospitalizations from June 2015 to June 2016, with the number of forecasted hospitalizations differing on average between 12% (Spain) and 33% (Norway) from observed hospitalizations. CONCLUSIONS Common cold-related web-based searches display moderate-to-strong correlations with asthma hospitalizations and may be useful in forecasting them.
Collapse
Affiliation(s)
- Bernardo Sousa-Pinto
- MEDCIDS - Department of Community Medicine, Information and Health Decision Sciences; Faculty of Medicine, University of Porto, Porto, Portugal.,CINTESIS - Center for Health Technology and Services Research; University of Porto, Porto, Portugal
| | - Jaana I Halonen
- Finnish Institute for Health and Welfare (THL), Helsinki, Finland
| | | | - Vesa Jormanainen
- Finnish Institute for Health and Welfare (THL), Helsinki, Finland
| | - Wienczyslawa Czarlewski
- MASK-air, Montpellier, France.,Medical Consulting Czarlewski, Levallois, France.,MACVIA-France, Montpellier, France
| | - Anna Bedbrook
- MASK-air, Montpellier, France.,MACVIA-France, Montpellier, France
| | - Nikolaos G Papadopoulos
- Allergy Department, 2nd Pediatric Clinic, Athens General Children's Hospital "P&A Kyriakou", University of Athens, Athens, Greece.,Division of Infection, Immunity & Respiratory Medicine, Royal Manchester Children's Hospital, University of Manchester, Manchester, United Kingdom
| | - Alberto Freitas
- MEDCIDS - Department of Community Medicine, Information and Health Decision Sciences; Faculty of Medicine, University of Porto, Porto, Portugal.,CINTESIS - Center for Health Technology and Services Research; University of Porto, Porto, Portugal
| | - Tari Haahtela
- Skin and Allergy Hospital, Helsinki University Hospital, and University of Helsinki, Helsinki, Finland
| | - Josep M Antó
- ISGlobal, Barcelona Institute for Global Health, Barcelona, Spain.,Universitat Pompeu Fabra, Barcelona, Spain.,IMIM - Hospital del Mar Medical Research Institute, Barcelona, Spain.,CIBER Epidemiología y Salud Pública - CIBERESP, Barcelona, Spain
| | - João Almeida Fonseca
- MEDCIDS - Department of Community Medicine, Information and Health Decision Sciences; Faculty of Medicine, University of Porto, Porto, Portugal.,CINTESIS - Center for Health Technology and Services Research; University of Porto, Porto, Portugal
| | - Jean Bousquet
- MACVIA-France, Montpellier, France.,Charité, Universitätsmedizin Berlin, Humboldt-Universität zu Berlin, Berlin, Germany.,Comprehensive Allergy Center, Department of Dermatology and Allergy, Berlin Institute of Health, Berlin, Germany.,University Hospital, Montpellier, France
| |
Collapse
|
123
|
Al-Hazaymeh A, Patrie J, Adams JC, Borish L, McGowan EC. Asthma-related outcomes during the SARS-CoV2 pandemic: A single-center observational study. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY-IN PRACTICE 2021; 9:3483-3486.e2. [PMID: 34144223 PMCID: PMC8225608 DOI: 10.1016/j.jaip.2021.05.034] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 05/26/2021] [Accepted: 05/27/2021] [Indexed: 12/05/2022]
Affiliation(s)
- Amani Al-Hazaymeh
- Division of Allergy and Immunology, University of Virginia School of Medicine, Charlottesville, Va
| | - James Patrie
- Department of Public Health Sciences, University of Virginia School of Medicine, Charlottesville, Va
| | - Jason C Adams
- Quality and Performance Improvement, University of Virginia Medical Center, Charlottesville, Va
| | - Larry Borish
- Division of Allergy and Immunology, Departments of Medicine and Microbiology, University of Virginia School of Medicine, Charlottesville, Va
| | - Emily C McGowan
- Division of Allergy and Immunology, University of Virginia School of Medicine, Charlottesville, Va; Division of Allergy and Clinical Immunology, Johns Hopkins University School of Medicine, Baltimore, Md.
| |
Collapse
|
124
|
Satia I, Adatia A, Cusack RP, Greene JM, O'Byrne PM, Killian KJ, Johnston N. Influence of age, sex and respiratory viruses on the rates of emergency department visits and hospitalisations with respiratory tract infections, asthma and COPD. ERJ Open Res 2021; 7:00053-2021. [PMID: 34046485 PMCID: PMC8141702 DOI: 10.1183/23120541.00053-2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 03/18/2021] [Indexed: 01/08/2023] Open
Abstract
Background The importance of age, sex and respiratory virus prevalence in emergency department (ED) visits and hospitalisations for respiratory tract infections (RTIs), asthma and COPD in a whole population over time is not well established. Methods This study retrospectively analysed data for daily ED visits and hospitalisations from 2003 to 2013 in Ontario, Canada and the daily number of virus positive tests. Daily numbers of ED visits and hospitalisations with RTIs, asthma and COPD listed as a primary diagnosis were collected from the Canadian Institute for Health Information. Virus data were obtained from the Respiratory Virus Detection Surveillance System. Multiple linear regression was used to assess the association of individual viruses with the daily rates. Results There were 4 365 578 ED visits and 321 719 (7.4%) admissions for RTIs, 817 141 ED visits and 260 665 (31.9%) admissions for COPD and 649 666 ED visits and 68 626 (10.6%) admissions for asthma. Respiratory syncytial virus and influenza A were associated with male ED visits, whereas human rhinovirus was associated with female ED visits for RTIs in preschool children. 19.2% of males, but only 7.2% of females were admitted. The correlation between the prevalence of each virus and ED visits and hospitalisations for asthma was weak, irrespective of age group and sex. Influenza A was most strongly associated with COPD ED visits and hospitalisations in males and females. Conclusions There are significant age and sex differences in the contribution of respiratory viruses to the number of ED visits and hospitalisations for RTIs, asthma and COPD. There are important age- and sex-related differences in the contribution of respiratory viruses to the number of ED visits and hospitalisations for respiratory tract infections, asthma and COPDhttps://bit.ly/39hrhIW
Collapse
Affiliation(s)
- Imran Satia
- Dept of Medicine, McMaster University, Hamilton, Canada.,Firestone Institute for Respiratory Health, St Joseph's Healthcare, Hamilton, Canada.,Division of Infection, Immunity and Respiratory Medicine, and Manchester Academic Health Science Centre, University of Manchester, Manchester, UK.,These authors contributed equally
| | - Adil Adatia
- Dept of Medicine, McMaster University, Hamilton, Canada.,Firestone Institute for Respiratory Health, St Joseph's Healthcare, Hamilton, Canada.,These authors contributed equally
| | - Ruth P Cusack
- Dept of Medicine, McMaster University, Hamilton, Canada
| | | | - Paul M O'Byrne
- Dept of Medicine, McMaster University, Hamilton, Canada.,Firestone Institute for Respiratory Health, St Joseph's Healthcare, Hamilton, Canada
| | | | - Neil Johnston
- Firestone Institute for Respiratory Health, St Joseph's Healthcare, Hamilton, Canada
| |
Collapse
|
125
|
Laura G, Liu Y, Fernandes K, Willis-Owen SAG, Ito K, Cookson WO, Moffatt MF, Zhang Y. ORMDL3 regulates poly I:C induced inflammatory responses in airway epithelial cells. BMC Pulm Med 2021; 21:167. [PMID: 34001091 PMCID: PMC8127224 DOI: 10.1186/s12890-021-01496-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 04/06/2021] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Oroscomucoid 3 (ORMDL3) has been linked to susceptibility of childhood asthma and respiratory viral infection. Polyinosinic-polycytidylic acid (poly I:C) is a synthetic analog of viral double-stranded RNA, a toll-like receptor 3 (TLR3) ligand and mimic of viral infection. METHODS To investigate the functional role of ORMDL3 in the poly I:C-induced inflammatory response in airway epithelial cells, ORMDL3 knockdown and over-expression models were established in human A549 epithelial cells and primary normal human bronchial epithelial (NHBE) cells. The cells were stimulated with poly I:C or the Th17 cytokine IL-17A. IL-6 and IL-8 levels in supernatants, mRNA levels of genes in the TLR3 pathway and inflammatory response from cell pellets were measured. ORMDL3 knockdown models in A549 and BEAS-2B epithelial cells were then infected with live human rhinovirus (HRV16) followed by IL-6 and IL-8 measurement. RESULTS ORMDL3 knockdown and over-expression had little influence on the transcript levels of TLR3 in airway epithelial cells. Time course studies showed that ORMDL3-deficient A549 and NHBE cells had an attenuated IL-6 and IL-8 response to poly I:C stimulation. A549 and NHBE cells over-expressing ORMDL3 released relatively more IL-6 and IL-8 following poly I:C stimulation. IL-17A exhibited a similar inflammatory response in ORMDL3 knockdown and over-expressing cells, but co-stimulation of poly I:C and IL-17A did not significantly enhance the IL-6 and IL-8 response. Transcript abundance of IFNB following poly I:C stimulation was not significantly altered by ORMDL3 knockdown or over-expression. Dampening of the IL-6 response by ORMDL3 knockdown was confirmed in HRV16 infected BEAS-2B and A549 cells. CONCLUSIONS ORMDL3 regulates the viral inflammatory response in airway epithelial cells via mechanisms independent of the TLR3 pathway.
Collapse
Affiliation(s)
- Gemma Laura
- National Heart and Lung Institute, Imperial College London, London, SW3 6LY, UK
| | - Yi Liu
- National Heart and Lung Institute, Imperial College London, London, SW3 6LY, UK
| | - Kieran Fernandes
- National Heart and Lung Institute, Imperial College London, London, SW3 6LY, UK
| | | | - Kazuhiro Ito
- National Heart and Lung Institute, Imperial College London, London, SW3 6LY, UK.,Pulmocide Ltd., London, WC2A 1AP, UK
| | - William O Cookson
- National Heart and Lung Institute, Imperial College London, London, SW3 6LY, UK
| | - Miriam F Moffatt
- National Heart and Lung Institute, Imperial College London, London, SW3 6LY, UK
| | - Youming Zhang
- National Heart and Lung Institute, Imperial College London, London, SW3 6LY, UK.
| |
Collapse
|
126
|
Prevalence of Respiratory Viral Infections in Children with Asthma in Kermanshah. Jundishapur J Microbiol 2021. [DOI: 10.5812/jjm.100101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Background: Asthma is a chronic inflammatory disorder of lung airways, affecting about 300 million people worldwide. Several risk factors are involved in asthma development, such as environmental allergens, genetic susceptibility, and respiratory viral infections. Viral infections induce NF-kB and inflammatory pathways that lead to the production of cytokines, chemokines, and inflammatory proteins and, finally, a reduction of lung volume and function. Objectives: The aim of this study was to evaluate viral infections’ prevalence in children with asthma from 2016 to 2017. Methods: One hundred throat swab samples were collected from asthmatic children. Extraction of RNA and cDNA synthesis were performed to recognize parainfluenza viruses, rhinoviruses, influenza viruses, and respiratory syncytial virus (RSV) using real-time PCR. Also, the associations of age, sex, and other studied factors with asthmatic attacks were evaluated. Results: In this study, 41 viruses were detected, including 21 cases of rhinoviruses (51.22%), 10 cases of parainfluenza (24.39%), seven cases of respiratory syncytial virus (17.07%), and three cases of the influenza virus (7.32%). Regarding seasonal incidence, the prevalence of the viruses was high in autumn and winter, and there was a significant relationship between seasonal incidence and gender. However, there were no statistically significant relationships between the prevalence of the viruses and age or gender. Conclusions: The most important viral causes of childhood asthma in this study were found to be rhinoviruses, followed by parainfluenza. The lowest prevalence was related to the RSV and influenza virus, which the two viruses also showed the lowest seasonal outbreaks. Therefore, it can be said that with an increase in the seasonal incidence of respiratory viruses, the effects of these viruses will be greater on asthma.
Collapse
|
127
|
Alamri A. Diversity of Microbial Signatures in Asthmatic Airways. Int J Gen Med 2021; 14:1367-1378. [PMID: 33889017 PMCID: PMC8057789 DOI: 10.2147/ijgm.s304339] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 03/29/2021] [Indexed: 12/12/2022] Open
Abstract
Asthma is a chronic inflammatory disease affecting the respiratory system. The global incidence of asthma is rising. Clinical and experimental models of asthma clearly indicate that the disease is multifactorial in nature with a wide array of factors contributing to progression and exacerbation, including interactions between immunological markers and the microbial community populating the respiratory tract. In particular, strict hygiene compliance during the early years of life and early exposure to antibiotics are linked to alterations in the biological environment within the airways and to changes in immunological markers, leading to allergies, such as asthma. With the gap in current research knowledge on the various non-bacterial microbial communities in the asthmatic airways, this review summarizes current methods used to assess microbial diversity as well as evidence for the link between microbial alterations and asthma, including changes in the bacterial microbiome, often characterized by the outgrowth of certain bacterial phyla such as proteobacteria and Firmicutes, in addition to disrupted mycobiome, virome, and parasitome. The current review emphasizes the dynamic, context-dependent changes in the microbiome in asthma and the importance of broad-scope analyses, covering a wide range of taxa. In conclusion, the interaction between the resident microbiota and the immune system is essential and significant in modulating the inflammatory responses; however, further investigations are needed to improve our understanding of the risk factors that disrupt the diversity of the microbiome in the different body systems.
Collapse
Affiliation(s)
- Aisha Alamri
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences Imam Abdulrahman Bin Faisal University, Dammam, Kingdom of Saudi Arabia
| |
Collapse
|
128
|
Spyridaki I, Taka S, Skevaki C, Trochoutsou A, Papadopoulos NG. In Vitro Effects of 5-Lipoxygenase Pathway Inhibition on Rhinovirus-Associated Bronchial Epithelial Inflammation. Pulm Ther 2021; 7:237-249. [PMID: 33847974 PMCID: PMC8137792 DOI: 10.1007/s41030-021-00152-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 03/02/2021] [Indexed: 11/29/2022] Open
Abstract
Introduction The leukotriene pathway may be implicated in the induction of virus-induced inflammation. Respiratory epithelial cells may express low levels of 5-lipoxygenase (5-LO) and release leukotrienes (LTs) C4, D4, and E4, upon exposure to viruses or other stimuli. Enhanced expression of 5-LO pathway proteins after rhinovirus (RV) infection has previously been described. We hypothesized that anti-leukotriene treatment of epithelial cells, with or without exposure to RV-infected peripheral blood mononuclear cells (PBMCs)-conditioned media, may inhibit RV-induced up-regulation of inflammatory cytokines. Methods PBMCs from a healthy donor were exposed to RV1B and supernatants were harvested at 48 h post infection. BEAS-2B cells were infected with RV, with or without conditioning with the PBMC supernatant. Treatment with anti-LT agents was performed either on both PBMCs and BEAS-2B or at the bronchial epithelial level only, with varying concentrations of montelukast (CysLT receptor antagonist) or MK-886 [FLAP(5-lipoxygenase-activating-protein) inhibitor]. Evaluation of the inflammatory cytokines IL-8, RANTES, IL-11, IL-6, and IP-10 was performed using ELISA. Results Our results show that anti-LT treatment of RV-infected bronchial epithelial cells suppresses epithelial RV-mediated cytokine production, independent of conditioning. Conclusions This observation may represent an indirect mode of action of the anti-leukotrienes in virus-induced asthma. Supplementary Information The online version contains supplementary material available at 10.1007/s41030-021-00152-x.
Collapse
Affiliation(s)
- Irini Spyridaki
- Allergy Department, 2nd Pediatric Clinic, National and Kapodistrian University of Athens, Athens, Greece
| | - Styliani Taka
- Allergy Department, 2nd Pediatric Clinic, National and Kapodistrian University of Athens, Athens, Greece.
| | - Chrysanthi Skevaki
- Allergy Department, 2nd Pediatric Clinic, National and Kapodistrian University of Athens, Athens, Greece.,Institute of Laboratory Medicine, Philipps-Universität Marburg, Marburg, Germany.,Universities of Giessen and Marburg Lung Center (UGMLC), German Center for Lung Research (DZL), Philipps-Universität Marburg, Hannover, Germany.,German Center for Lung Research (DZL), Hannover, Germany
| | - Aikaterini Trochoutsou
- Allergy Department, 2nd Pediatric Clinic, National and Kapodistrian University of Athens, Athens, Greece
| | - Nikolaos G Papadopoulos
- Allergy Department, 2nd Pediatric Clinic, National and Kapodistrian University of Athens, Athens, Greece.,Division of Infection, Inflammation and Respiratory Medicine, University of Manchester, Manchester, UK
| |
Collapse
|
129
|
Collison AM, Sokulsky LA, Kepreotes E, Pereira de Siqueira A, Morten M, Edwards MR, Walton RP, Bartlett NW, Yang M, Nguyen TH, Johnston SL, Foster PS, Mattes J. miR-122 promotes virus-induced lung disease by targeting SOCS1. JCI Insight 2021; 6:127933. [PMID: 33830082 PMCID: PMC8119205 DOI: 10.1172/jci.insight.127933] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 03/02/2021] [Indexed: 11/17/2022] Open
Abstract
Virus-induced respiratory tract infections are a major health burden in childhood, and available treatments are supportive rather than disease modifying. Rhinoviruses (RVs), the cause of approximately 80% of common colds, are detected in nearly half of all infants with bronchiolitis and the majority of children with an asthma exacerbation. Bronchiolitis in early life is a strong risk factor for the development of asthma. Here, we found that RV infection induced the expression of miRNA 122 (miR-122) in mouse lungs and in human airway epithelial cells. In vivo inhibition specifically in the lung reduced neutrophilic inflammation and CXCL2 expression, boosted innate IFN responses, and ameliorated airway hyperreactivity in the absence and in the presence of allergic lung inflammation. Inhibition of miR-122 in the lung increased the levels of suppressor of cytokine signaling 1 (SOCS1), which is an in vitro-validated target of miR-122. Importantly, gene silencing of SOCS1 in vivo completely reversed the protective effects of miR-122 inhibition on RV-induced lung disease. Higher miR-122 expression in nasopharyngeal aspirates was associated with a longer time on oxygen therapy and a higher rate of treatment failure in 87 infants hospitalized with moderately severe bronchiolitis. These results suggest that miR-122 promotes RV-induced lung disease via suppression of its target SOCS1 in vivo. Higher miR-122 expression was associated with worse clinical outcomes, highlighting the potential use of anti-miR-122 oligonucleotides, successfully trialed for treatment of hepatitis C, as potential therapeutics for RV-induced bronchiolitis and asthma exacerbations.
Collapse
Affiliation(s)
- Adam M. Collison
- Priority Research Centre GrowUpWell, Experimental and Translational Respiratory Medicine Group, School of Medicine and Public Health, University of Newcastle, Newcastle, New South Wales, Australia
| | - Leon A. Sokulsky
- Priority Research Centre GrowUpWell, Experimental and Translational Respiratory Medicine Group, School of Medicine and Public Health, University of Newcastle, Newcastle, New South Wales, Australia
| | - Elizabeth Kepreotes
- Priority Research Centre GrowUpWell, Experimental and Translational Respiratory Medicine Group, School of Medicine and Public Health, University of Newcastle, Newcastle, New South Wales, Australia
| | - Ana Pereira de Siqueira
- Priority Research Centre GrowUpWell, Experimental and Translational Respiratory Medicine Group, School of Medicine and Public Health, University of Newcastle, Newcastle, New South Wales, Australia
| | - Matthew Morten
- Priority Research Centre GrowUpWell, Experimental and Translational Respiratory Medicine Group, School of Medicine and Public Health, University of Newcastle, Newcastle, New South Wales, Australia
| | - Michael R. Edwards
- Airway Disease Infection Section, National Heart and Lung Institute, Medical Research Council & Asthma UK Centre in Allergic Mechanisms of Asthma, Imperial College London, London, United Kingdom
| | - Ross P. Walton
- Airway Disease Infection Section, National Heart and Lung Institute, Medical Research Council & Asthma UK Centre in Allergic Mechanisms of Asthma, Imperial College London, London, United Kingdom
| | - Nathan W. Bartlett
- Airway Disease Infection Section, National Heart and Lung Institute, Medical Research Council & Asthma UK Centre in Allergic Mechanisms of Asthma, Imperial College London, London, United Kingdom
- Priority Research Centre for Healthy Lungs, University of Newcastle and Hunter Medical Research Institute, Newcastle, New South Wales, Australia
| | - Ming Yang
- Priority Research Centre for Healthy Lungs, University of Newcastle and Hunter Medical Research Institute, Newcastle, New South Wales, Australia
| | - Thi Hiep Nguyen
- Priority Research Centre for Healthy Lungs, University of Newcastle and Hunter Medical Research Institute, Newcastle, New South Wales, Australia
| | - Sebastian L. Johnston
- Airway Disease Infection Section, National Heart and Lung Institute, Medical Research Council & Asthma UK Centre in Allergic Mechanisms of Asthma, Imperial College London, London, United Kingdom
| | - Paul S. Foster
- Priority Research Centre for Healthy Lungs, University of Newcastle and Hunter Medical Research Institute, Newcastle, New South Wales, Australia
| | - Joerg Mattes
- Priority Research Centre GrowUpWell, Experimental and Translational Respiratory Medicine Group, School of Medicine and Public Health, University of Newcastle, Newcastle, New South Wales, Australia
- Department of Paediatric Respiratory and Sleep Medicine, John Hunter Children’s Hospital, Newcastle, New South Wales, Australia
| |
Collapse
|
130
|
Beasley R, Hills T, Kearns N. Asthma and COVID-19: Preconceptions about Predisposition. Am J Respir Crit Care Med 2021; 203:799-801. [PMID: 33600744 PMCID: PMC8017587 DOI: 10.1164/rccm.202102-0266ed] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Affiliation(s)
- Richard Beasley
- Medical Research Institute of New Zealand Wellington, New Zealand and
| | - Thomas Hills
- Department of Clinical Immunology Auckland District Health Board Auckland, New Zealand
| | - Nethmi Kearns
- Medical Research Institute of New Zealand Wellington, New Zealand and
| |
Collapse
|
131
|
Evaluating the impact of coronavirus disease 2019 on asthma morbidity: A comprehensive analysis of potential influencing factors. Ann Allergy Asthma Immunol 2021; 127:91-99. [PMID: 33775900 PMCID: PMC9338685 DOI: 10.1016/j.anai.2021.03.018] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 03/05/2021] [Accepted: 03/18/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND The coronavirus disease 2019 (COVID-19) pandemic period is experiencing better asthma control, fewer exacerbations, and health care utilization, with limited data on factors that could explain this phenomenon. OBJECTIVE To confirm these improved asthma outcomes during COVID-19 and evaluate potential contributing factors. METHODS In 18,912 pediatric patients with asthma treated in the Children's Hospital of Orange County network from 2017 to 2020, monthly asthma-related encounters and medication summaries were extracted from electronic health records, particulate matter 2.5 (PM2.5) air pollution from the California Air Resources Board, and influenza-like illness from Illness Surveillance Network for the first 6 months of each year. Changes in outcomes between January to March and April to June (post-COVID-19 shutdown in 2020) were compared with historical data using generalized estimating equations analyses for patient outcomes and generalized linear models for pollution exceedance, influenza-positive, and telehealth visit rates. RESULTS During COVID-19, we found 78%, 90%, 68% reductions in hospitalization, emergency department visits, and exacerbations, respectively, compared with pre-COVID-19 2020, with significantly greater changes than the same time period of 2017 to 2019 and significant reductions in albuterol and inhaled corticosteroid use (P < .05). Emergency department visit reduction was not seen for African Americans. The PM2.5 and influenza rates were also significantly reduced during COVID-19 (P < .05). Increased rates in telehealth visits were greater in the publicly insured group when compared with commercially insured. CONCLUSION Our data confirm reduced health care utilization and suggest better asthma control during COVID-19, except for African Americans. This was associated with a significant increase in telehealth visits and reductions in PM2.5 and influenza infections, but not better asthma controller adherence.
Collapse
|
132
|
Pincus AB, Fryer AD, Jacoby DB. Mini review: Neural mechanisms underlying airway hyperresponsiveness. Neurosci Lett 2021; 751:135795. [PMID: 33667601 DOI: 10.1016/j.neulet.2021.135795] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 02/22/2021] [Accepted: 02/23/2021] [Indexed: 12/25/2022]
Abstract
Neural changes underly hyperresponsiveness in asthma and other airway diseases. Afferent sensory nerves, nerves within the brainstem, and efferent parasympathetic nerves all contribute to airway hyperresponsiveness. Inflammation plays a critical role in these nerve changes. Chronic inflammation and pre-natal exposures lead to increased airway innervation and structural changes. Acute inflammation leads to shifts in neurotransmitter expression of afferent nerves and dysfunction of M2 muscarinic receptors on efferent nerve endings. Eosinophils and macrophages drive these changes through release of inflammatory mediators. Novel tools, including optogenetics, two photon microscopy, and optical clearing and whole mount microscopy, allow for improved studies of the structure and function of airway nerves and airway hyperresponsiveness.
Collapse
Affiliation(s)
- Alexandra B Pincus
- Oregon Health and Science University, 3181 SW Sam Jackson Park Road, BRB 440, Portland, OR, 97239, USA.
| | - Allison D Fryer
- Oregon Health and Science University, 3181 SW Sam Jackson Park Road, BRB 440, Portland, OR, 97239, USA
| | - David B Jacoby
- Oregon Health and Science University, 3181 SW Sam Jackson Park Road, BRB 440, Portland, OR, 97239, USA
| |
Collapse
|
133
|
Williams TC, Jackson DJ, Maltby S, Walton RP, Ching YM, Glanville N, Singanayagam A, Brewins JJ, Clarke D, Hirsman AG, Loo SL, Wei L, Beale JE, Casolari P, Caramori G, Papi A, Belvisi M, Wark PAB, Johnston SL, Edwards MR, Bartlett NW. Rhinovirus-induced CCL17 and CCL22 in Asthma Exacerbations and Differential Regulation by STAT6. Am J Respir Cell Mol Biol 2021; 64:344-356. [PMID: 33264064 PMCID: PMC7909342 DOI: 10.1165/rcmb.2020-0011oc] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 10/19/2020] [Indexed: 12/17/2022] Open
Abstract
The interplay of type-2 inflammation and antiviral immunity underpins asthma exacerbation pathogenesis. Virus infection induces type-2 inflammation-promoting chemokines CCL17 and CCL22 in asthma; however, mechanisms regulating induction are poorly understood. By using a human rhinovirus (RV) challenge model in human airway epithelial cells in vitro and mice in vivo, we assessed mechanisms regulating CCL17 and CCL22 expression. Subjects with mild to moderate asthma and healthy volunteers were experimentally infected with RV and airway CCL17 and CCL22 protein quantified. In vitro airway epithelial cell- and mouse-RV infection models were then used to define STAT6- and NF-κB-mediated regulation of CCL17 and CCL22 expression. Following RV infection, CCL17 and CCL22 expression was higher in asthma, which differentially correlated with clinical and immunological parameters. Air-liquid interface-differentiated primary epithelial cells from donors with asthma also expressed higher levels of RV-induced CCL22. RV infection boosted type-2 cytokine-induced STAT6 activation. In epithelial cells, type-2 cytokines and STAT6 activation had differential effects on chemokine expression, increasing CCL17 and suppressing CCL22, whereas NF-κB promoted expression of both chemokines. In mice, RV infection activated pulmonary STAT6, which was required for CCL17 but not CCL22 expression. STAT6-knockout mice infected with RV expressed increased levels of NF-κB-regulated chemokines, which was associated with rapid viral clearance. Therefore, RV-induced upregulation of CCL17 and CCL22 was mediated by NF-κB activation, whereas expression was differentially regulated by STAT6. Together, these findings suggest that therapeutic targeting of type-2 STAT6 activation alone will not block all inflammatory pathways during RV infection in asthma.
Collapse
Affiliation(s)
- Teresa C. Williams
- School of Biomedical Science and Pharmacy, Faculty Health and Medicine and Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, University of Newcastle, New Lambton Heights, New South Wales, Australia
| | - David J. Jackson
- Asthma UK Centre, Faculty of Life Sciences and Medicine, King’s College London, London, United Kingdom
- Guy’s Severe Asthma Centre, Guy’s & St. Thomas’ National Health Service Trust, London, United Kingdom
| | - Steven Maltby
- School of Biomedical Science and Pharmacy, Faculty Health and Medicine and Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, University of Newcastle, New Lambton Heights, New South Wales, Australia
| | - Ross P. Walton
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Yee-Mann Ching
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Nicholas Glanville
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Aran Singanayagam
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Jennifer J. Brewins
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Deborah Clarke
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
- Respiratory, Inflammation and Autoimmunity Department, MedImmune, Cambridge, United Kingdom
| | - Aurica G. Hirsman
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Su-Ling Loo
- School of Biomedical Science and Pharmacy, Faculty Health and Medicine and Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, University of Newcastle, New Lambton Heights, New South Wales, Australia
| | - Lan Wei
- School of Biomedical Science and Pharmacy, Faculty Health and Medicine and Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, University of Newcastle, New Lambton Heights, New South Wales, Australia
| | - Janine E. Beale
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Paolo Casolari
- Interdepartmental Study Center for Inflammatory and Smoke-Related Airway Diseases, Cardiorespiratory and Internal Medicine Section, University of Ferrara, Ferrara, Italy
| | - Gaetano Caramori
- Interdepartmental Study Center for Inflammatory and Smoke-Related Airway Diseases, Cardiorespiratory and Internal Medicine Section, University of Ferrara, Ferrara, Italy
- Dipartimento di Scienze Biomediche, Pneumologia, Odontoiatriche e delle Immagini Morfologiche e Funzionali, Università degli Studi di Messina, Messina, Italy; and
| | - Alberto Papi
- Interdepartmental Study Center for Inflammatory and Smoke-Related Airway Diseases, Cardiorespiratory and Internal Medicine Section, University of Ferrara, Ferrara, Italy
| | - Maria Belvisi
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
- Respiratory, Inflammation and Autoimmunity Department, MedImmune, Cambridge, United Kingdom
| | - Peter A. B. Wark
- Department of Respiratory and Sleep Medicine, John Hunter Hospital, New Lambton Heights, New South Wales, Australia
| | | | - Michael R. Edwards
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Nathan W. Bartlett
- School of Biomedical Science and Pharmacy, Faculty Health and Medicine and Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, University of Newcastle, New Lambton Heights, New South Wales, Australia
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| |
Collapse
|
134
|
Gasmi A, Peana M, Pivina L, Srinath S, Gasmi Benahmed A, Semenova Y, Menzel A, Dadar M, Bjørklund G. Interrelations between COVID-19 and other disorders. Clin Immunol 2021; 224:108651. [PMID: 33333255 PMCID: PMC7833539 DOI: 10.1016/j.clim.2020.108651] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 12/11/2020] [Accepted: 12/12/2020] [Indexed: 02/07/2023]
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a respiratory tract virus that causes Coronavirus disease (COVID-19). The virus originated in Wuhan, China, in December 2019 and has spread across the globe to-date. The disease ranges from asymptomatic carriers to symptoms such as fever, sore throat, cough, lung infections, and in severe cases, acute respiratory distress syndrome, sepsis, and death. As many as 50% of patients reported having at least one comorbidities with COVID-19 upon hospital admission. Hypertension, diabetes, chronic obstructive pulmonary disease, obesity, and cardiovascular diseases are among the most commonly reported. Comorbidities are contributing to acute disease prognosis and increased risk of severe symptoms. Around 70% of patients who require ICU care have been observed to have comorbidities. This review intends to understand how some of these comorbidities affect the disease's prognosis and how severe the outcome can be expected.
Collapse
Affiliation(s)
- Amin Gasmi
- Société Francophone de Nutrithérapie et de Nutrigénétique Appliquée, Villeurbanne, France
| | - Massimiliano Peana
- Department of Chemistry and Pharmacy, University of Sassari, Sassari, Italy.
| | - Lyudmila Pivina
- Semey Medical University, Semey, Kazakhstan; CONEM Kazakhstan Environmental Health and Safety Research Group, Semey Medical University, Semey, Kazakhstan
| | - Shvetha Srinath
- Société Francophone de Nutrithérapie et de Nutrigénétique Appliquée, Villeurbanne, France
| | | | - Yuliya Semenova
- Semey Medical University, Semey, Kazakhstan; CONEM Kazakhstan Environmental Health and Safety Research Group, Semey Medical University, Semey, Kazakhstan
| | | | - Maryam Dadar
- Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Geir Bjørklund
- Council for Nutritional and Environmental Medicine (CONEM), Mo i Rana, Norway.
| |
Collapse
|
135
|
Oliver ME, Hinks TSC. Azithromycin in viral infections. Rev Med Virol 2021; 31:e2163. [PMID: 32969125 PMCID: PMC7536932 DOI: 10.1002/rmv.2163] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/19/2020] [Accepted: 08/20/2020] [Indexed: 12/18/2022]
Abstract
Azithromycin (AZM) is a synthetic macrolide antibiotic effective against a broad range of bacterial and mycobacterial infections. Due to an additional range of anti-viral and anti-inflammatory properties, it has been given to patients with the coronaviruses SARS-CoV or MERS-CoV. It is now being investigated as a potential candidate treatment for SARS-CoV-2 having been identified as a candidate therapeutic for this virus by both in vitro and in silico drug screens. To date there are no randomised trial data on its use in any novel coronavirus infection, although a large number of trials are currently in progress. In this review, we summarise data from in vitro, murine and human clinical studies on the anti-viral and anti-inflammatory properties of macrolides, particularly AZM. AZM reduces in vitro replication of several classes of viruses including rhinovirus, influenza A, Zika virus, Ebola, enteroviruses and coronaviruses, via several mechanisms. AZM enhances expression of anti-viral pattern recognition receptors and induction of anti-viral type I and III interferon responses. Of relevance to severe coronavirus-19 disease (COVID-19), which is characterised by an over-exuberant innate inflammatory response, AZM also has anti-inflammatory properties including suppression of IL-1beta, IL-2, TNF and GM-CSF. AZM inhibits T cells by inhibiting calcineurin signalling, mammalian target of rapamycin activity and NFκB activation. AZM particularly targets granulocytes where it concentrates markedly in lysosomes, particularly affecting accumulation, adhesion, degranulation and apoptosis of neutrophils. Given its proven safety, affordability and global availability, tempered by significant concerns about antimicrobial stewardship, there is an urgent mandate to perform well-designed and conducted randomised clinical trials.
Collapse
Affiliation(s)
| | - Timothy S. C. Hinks
- Nuffield Department of Medicine Experimental Medicine, Respiratory Medicine Unit and National Institute for Health Research (NIHR), Oxford Biomedical Research Centre (BRC)University of OxfordOxfordUK
| |
Collapse
|
136
|
Mechanisms of Rhinovirus Neutralisation by Antibodies. Viruses 2021; 13:v13030360. [PMID: 33668934 PMCID: PMC7996599 DOI: 10.3390/v13030360] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 02/21/2021] [Accepted: 02/22/2021] [Indexed: 01/01/2023] Open
Abstract
Antibodies are a critical immune correlate of protection for rhinoviruses, particularly those antibodies found in the secretory compartment. For nonenveloped viruses such as rhinoviruses, antibody binding to regions of the icosahedral capsid can neutralise infections by a number of different mechanisms. The purpose of this review is to address the neutralising mechanisms of antibodies to rhinoviruses that would help progress vaccine development. At least five mechanisms of antibody neutralisation have been identified which depend to some extent on the antibody binding footprints upon the capsid. The most studied mechanisms are virion aggregation, inhibition of attachment to cells, and stabilisation or destabilisation of the capsid structure. Newer mechanisms of degradation inside the cell through cytoplasmic antibody detection or outside by phagocytosis rely on what might have been previously considered as non-neutralising antibodies. We discuss these various approaches of antibody interference of rhinoviruses and offer suggestions as to how these could influence vaccine design.
Collapse
|
137
|
Marcellini A, Swieboda D, Guedán A, Farrow SN, Casolari P, Contoli M, Johnston SL, Papi A, Solari R. Glucocorticoids impair type I IFN signalling and enhance rhinovirus replication. Eur J Pharmacol 2021; 893:173839. [PMID: 33359650 DOI: 10.1016/j.ejphar.2020.173839] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 12/15/2020] [Accepted: 12/22/2020] [Indexed: 02/07/2023]
Abstract
Inhaled corticosteroids (ICS) are recommended treatments for all degrees of asthma severity and in combination with bronchodilators are indicated for COPD patients with a history of frequent exacerbations. However, the long-term side effects of glucocorticoids (GCs) may include increased risk of respiratory infections, including viral triggered exacerbations. Rhinovirus (RV) infection is the main trigger of asthma and COPD exacerbations. Thus, we sought to explore the influence of GCs on viral replication. We demonstrate the ICS fluticasone propionate (FP) and two selective non-steroidal (GRT7) and steroidal (GRT10) glucocorticoid receptor (GR) agonists significantly suppress pro-inflammatory (IL-6 and IL-8) and antiviral (IFN-λ1) cytokine production and the expression of the interferon-stimulated genes (ISGs) OAS and viperin in RV-infected bronchial epithelial cells, with a consequent increase of viral replication. We also show that FP, GRT7 and GRT10 inhibit STAT1 Y701 and/or STAT2 Y690 phosphorylation and ISG mRNA induction following cell stimulation with recombinant IFN-β. In addition, we investigated the effects of the ICS budesonide (BD) and the long-acting β2 agonist (LABA) formoterol, alone or as an ICS/LABA combination, on RV-induced ISG expression and viral replication. Combination of BD/formoterol increases the suppression of OAS and viperin mRNA observed with both BD and formoterol alone, but an increase in viral RNA was only observed with BD treatment and not with formoterol. Overall, we provide evidence of an impairment of the innate antiviral immune response by GC therapy and the potential for GCs to enhance viral replication. These findings could have important clinical implications.
Collapse
Affiliation(s)
- Andrea Marcellini
- Research Centre on Asthma and COPD, University of Ferrara, Ferrara, Italy.
| | - Dawid Swieboda
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Anabel Guedán
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Stuart N Farrow
- Cancer Research Therapeutic Discovery Laboratories, Cambridge, UK
| | - Paolo Casolari
- Research Centre on Asthma and COPD, University of Ferrara, Ferrara, Italy
| | - Marco Contoli
- Research Centre on Asthma and COPD, University of Ferrara, Ferrara, Italy
| | | | - Alberto Papi
- Research Centre on Asthma and COPD, University of Ferrara, Ferrara, Italy
| | - Roberto Solari
- National Heart and Lung Institute, Imperial College London, London, UK
| |
Collapse
|
138
|
Teoh L, Chatfield MD, Acworth JP, McCallum GB, Chang AB. Determinants of cough and caregivers' quality of life in pediatric asthma exacerbations. Pediatr Pulmonol 2021; 56:371-377. [PMID: 33179390 DOI: 10.1002/ppul.25168] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 10/26/2020] [Accepted: 11/03/2020] [Indexed: 01/26/2023]
Abstract
OBJECTIVES In hospitalized and nonhospitalized children with asthma exacerbations, we evaluated the determinants of (a) prolonged cough on day-14 and (b) asthma quality of life (QoL) questionnaires for parents (PACQLQ) on day-21. We hypothesized that children with more severe acute asthma are more likely to have prolonged cough and/or poorer PACQLQ during the recovery phase. DESIGN Prospective cohort study performed during 2009-2011. METHODOLOGY Two hundred and forty-four children aged 2-16 years presenting with acute asthma to the Emergency Departments of two hospitals were recruited. Clinical history, examination, baseline asthma severity, and acute asthma severity on presentation were documented. Validated daily cough diaries and weekly PACQLQ were recorded for 14 and 21 days, respectively. RESULTS 34.4% and 32.2% of children who returned the daytime and nighttime cough diaries respectively had a prolonged cough. Those on regular inhaled corticosteroids (ICS) were significantly more likely to have a daytime or nighttime cough score of ≥1 on day-14 (odds ratio [ORadjusted ] = 4.70, 95% confidence interval [CI] 1.65, 13.35, p = .004 and ORadjusted = 2.65, 95% CI 1.05, 6.69, p = .040, respectively). PACQLQ on day-21 was significantly poorer in younger children (mean difference [MD] = -0.04 per year, 95% CI -0.08, -0.01, p = .016), those on ICS (MD = -0.31, 95% CI -0.52, -0.09, p = .005), leukotriene antagonists (MD = -0.42, 95% CI -0.83, -0.02, p = .040) and in those who had an unplanned visit for asthma on day-21 (MD = -1.20, 95% CI -1.61, -0.78, p = .0001). CONCLUSIONS Post an acute asthma exacerbation, children on regular ICS were more likely to have prolonged cough and poorer QoL. While this may be reflective of asthma severity or control, its association deserves further evaluation.
Collapse
Affiliation(s)
- Laurel Teoh
- Child Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, Northern Territory, Australia.,Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| | - Mark D Chatfield
- Child Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, Northern Territory, Australia.,Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| | - Jason P Acworth
- Department of Emergency Medicine, Queensland Children's Hospital, Brisbane, Queensland, Australia
| | - Gabrielle B McCallum
- Child Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, Northern Territory, Australia
| | - Anne B Chang
- Child Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, Northern Territory, Australia.,Department of Respiratory and Sleep Medicine, Queensland Children's Hospital and Centre for Children's Health Research, Queensland University of Technology, Brisbane, Queensland, Australia
| |
Collapse
|
139
|
Jazaeri S, Goldsmith AM, Jarman CR, Lee J, Hershenson MB, Lewis TC. Nasal interferon responses to community rhinovirus infections are similar in controls and children with asthma. Ann Allergy Asthma Immunol 2021; 126:690-695.e1. [PMID: 33515711 DOI: 10.1016/j.anai.2021.01.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 12/12/2020] [Accepted: 01/19/2021] [Indexed: 12/15/2022]
Abstract
BACKGROUND Rhinovirus (RV) is the main cause of asthma exacerbations in children. Some studies reported that persons with asthma have attenuated interferon (IFN) responses to experimental RV infection compared with healthy individuals. However, responses to community-acquired RV infections in controls and children with asthma have not been compared. OBJECTIVE To evaluate nasal cytokine responses after natural RV infections in people with asthma and healthy children. METHODS We compared nasal cytokine expression among controls and children with asthma during healthy, virus-negative surveillance weeks and self-reported RV-positive sick weeks. A total of 14 controls and 21 patients with asthma were studied. Asthma disease severity was based on symptoms and medication use. Viral genome was detected by multiplex polymerase chain reaction. Nasal cytokine protein levels were determined by multiplex assays. RESULTS Two out of 47 surveillance weeks tested positive for RV, illustrating an asymptomatic infection rate of 5%. A total of 38 of 47 sick weeks (81%) tested positive for the respiratory virus. Of these, 33 (87%) were positive for RV. During well weeks, nasal interleukin 8 (IL-8), IL-12, and IL-1β levels were higher in children with asthma than controls. Compared with healthy virus-negative surveillance weeks, IL-8, IL-13, and interferon beta increased during colds only in patients with asthma. In both controls and children with asthma, the nasal levels of interferon gamma, interferon lambda-1, IL-1β, IL-8, and IL-10 increased during RV-positive sick weeks. During RV infection, IL-8, IL-1β, and tumor necrosis factor-α levels were strongly correlated. CONCLUSION In both controls and patients with asthma, natural RV infection results in robust type II and III IFN responses.
Collapse
Affiliation(s)
| | - Adam M Goldsmith
- Department of Pediatrics, University of Michigan Medical School, Ann Arbor, Michigan
| | - Caitlin R Jarman
- Department of Pediatrics, University of Michigan Medical School, Ann Arbor, Michigan
| | - Julie Lee
- Department of Pediatrics, University of Michigan Medical School, Ann Arbor, Michigan
| | - Marc B Hershenson
- Department of Pediatrics, University of Michigan Medical School, Ann Arbor, Michigan
| | - Toby C Lewis
- Department of Pediatrics, University of Michigan Medical School, Ann Arbor, Michigan.
| |
Collapse
|
140
|
Li Y, Wang D, Zhi L, Zhu Y, Qiao L, Zhu Y, Hu X, Wang Q, Cao Y, Gao Y, Chen Y, Zhang Z, Bi F, Yan G. Respiratory tract infections in children with allergic asthma on allergen immunotherapy during influenza season. Sci Rep 2021; 11:2083. [PMID: 33483566 PMCID: PMC7822879 DOI: 10.1038/s41598-021-81558-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 12/17/2020] [Indexed: 01/07/2023] Open
Abstract
To describle how respiratory tract infections (RTIs) that occurred in children with allergic asthma (AA) on allergen immunotherapy (AIT) during an influenza season. Data including clinical symptoms and treatment history of children (those with AA on AIT and their siblings under 14 years old), who suffered from RTIs during an influenza season (Dec 1st, 2019–Dec 31st, 2019), were collected (by face to face interview and medical records) and analyzed. Children on AIT were divided into 2 groups: stage 1 (dose increasing stage) and stage 2 (dose maintenance stage). Their siblings were enrolled as control. During the study period, 49 children with AA on AIT (33 patients in stage 1 and 16 patients in stage 2) as well as 49 children without AA ( their siblings ) were included. There were no significant differences in occurrences of RTIs among the three groups (p > 0.05). Compared with children in the other two groups, patients with RTIs in stage 2 had less duration of coughing and needed less medicine. Children on AIT with maintenance doses had fewer symptoms and recovered quickly when they were attacked by RTIs, which suggested that AIT with dose maintenance may enhance disease resistance of the body.
Collapse
Affiliation(s)
- Yuyun Li
- Zibo Central Hospital, No. 54, Gongqingtuan West Road, Zibo, 255036, Shandong Province, People's Republic of China
| | - Dongming Wang
- People's Hospital of Huantai County, No. 2198, Huantai Street, Zibo City, 256400, Shandong Province, China
| | - Lili Zhi
- Zibo Central Hospital, No. 54, Gongqingtuan West Road, Zibo, 255036, Shandong Province, People's Republic of China. .,Shandong Provincial Qianfoshan Hospital, The First Affiliated Hospital of Shandong First Medical University, Shandong Institute of Respiratory Diseases, Jinan, 250013, China.
| | - Yunmei Zhu
- Zibo Central Hospital, No. 54, Gongqingtuan West Road, Zibo, 255036, Shandong Province, People's Republic of China
| | - Lan Qiao
- Zibo Central Hospital, No. 54, Gongqingtuan West Road, Zibo, 255036, Shandong Province, People's Republic of China
| | - Yan Zhu
- Zibo Central Hospital, No. 54, Gongqingtuan West Road, Zibo, 255036, Shandong Province, People's Republic of China
| | - Xin Hu
- Zibo Central Hospital, No. 54, Gongqingtuan West Road, Zibo, 255036, Shandong Province, People's Republic of China
| | - Qian Wang
- Zibo Central Hospital, No. 54, Gongqingtuan West Road, Zibo, 255036, Shandong Province, People's Republic of China
| | - Yuan Cao
- Zibo Central Hospital, No. 54, Gongqingtuan West Road, Zibo, 255036, Shandong Province, People's Republic of China
| | - Yan Gao
- Zhangdian District Center for Disease Control and Prevention, No. 184, Xincun West Road, Zibo, 255000, Shandong Province, China
| | - Yousheng Chen
- Respiratory Medicine Department, Zibo Central Hospital, No. 54, Gongqingtuan West Road, Zibo, 255036, Shandong Province, People's Republic of China
| | - Zeng Zhang
- Department of ENT, Zibo Central Hospital, No. 54, Gongqingtuan West Road, Zibo, 255036, Shandong Province, People's Republic of China
| | - Fangjie Bi
- Internal Cardiovascular Department, Zibo Central Hospital, No. 54, Gongqingtuan West Road, Zibo, 255036, Shandong Province, People's Republic of China
| | - Guangxing Yan
- Pediatrics, Zibo Municipal Hospital, No. 139, Huangong Road, Zibo, 255400, Shandong Province, China
| |
Collapse
|
141
|
Lee Y, Jang JH, Park HS. Management of allergic patients during severe acute respiratory syndrome coronavirus-2 pandemic. ALLERGY ASTHMA & RESPIRATORY DISEASE 2021. [DOI: 10.4168/aard.2021.9.3.115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Youngsoo Lee
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, Korea
| | - Jae-Hyuk Jang
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, Korea
| | - Hae-Sim Park
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, Korea
| |
Collapse
|
142
|
Liu L, Zhang J, Zhang L, Yuan SH, Wu JH, Tang MY, Chen JD, Zhang F, Qi XY, Yin Y. The Relationship of the Test for Respiratory and Asthma Control in Kids Initial Score on the Prognosis of Pre-school Children With Asthma: A Prospective Cohort Study. Front Pediatr 2021; 9:690333. [PMID: 34277524 PMCID: PMC8277926 DOI: 10.3389/fped.2021.690333] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 06/03/2021] [Indexed: 11/21/2022] Open
Abstract
Objective: The test for respiratory and asthma control in kids (TRACK) is currently the only standard follow-up tool for children under 5 years of age with asthma. The purpose of this study was to investigate the relationship between the TRACK initial score (Ti) and their prognosis after 6 months of follow-up in pre-schoolers with asthma. Design: A prospective cohort study. Methods: The study included pre-schoolers diagnosed with asthma at the Shanghai Children's Medical Center between January 2019 and June 2020, and follow-up for 6 months. TRACK scores, frequency of wheezing and respiratory infections, number of Emergency Department (ED) visits and treatment regimen were collected. According to the TRACK initial score, the children were divided into "Ti < 60 group" and "Ti ≥ 60 group," and the two groups were compared in terms of TRACK score related indicators, clinical manifestations and treatment. Results: There are 102 pre-schoolers included in the analysis [78 boys (76.5%) and 24 girls (23.5%); mean (SD) age, 28.05 (11.63) months]. After 6 months of follow-up, the TRACK score was improved in both groups, and the "Ti ≥ 60 group" had a higher score, lower rate of uncontrolled asthma and fewer reassessments were required. There was no difference in the number of wheezing attacks between the two groups in terms of clinical presentation, but the "Ti < 60 group" had more respiratory infections and ED visits. Regarding the use of ICSs, in the "Ti < 60 groups," the dose of ICSs was higher and reduced slowly, and the dose difference between the two groups began to appear after 5 months of follow-up. Conclusion: TRACK is essential for pre-schoolers with asthma at the time they are diagnosed. In addition, if the TRACK initial score is < 60, the probability of poor prognosis is higher.
Collapse
Affiliation(s)
- Lu Liu
- Department of Respiratory Medicine, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jing Zhang
- Department of Respiratory Medicine, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Lei Zhang
- Department of Respiratory Medicine, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Shu-Hua Yuan
- Department of Respiratory Medicine, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jin-Hong Wu
- Department of Respiratory Medicine, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ming-Yu Tang
- Department of Respiratory Medicine, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jian-De Chen
- Department of Respiratory Medicine, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Fen Zhang
- Department of Respiratory Medicine, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xin-Yi Qi
- Department of Respiratory Medicine, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yong Yin
- Department of Respiratory Medicine, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
143
|
Nawroth JC, Lucchesi C, Cheng D, Shukla A, Ngyuen J, Shroff T, Varone A, Karalis K, Lee HH, Alves S, Hamilton GA, Salmon M, Villenave R. A Microengineered Airway Lung Chip Models Key Features of Viral-induced Exacerbation of Asthma. Am J Respir Cell Mol Biol 2020; 63:591-600. [PMID: 32706623 DOI: 10.1165/rcmb.2020-0010ma] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Viral-induced exacerbation of asthma remains a major cause of hospitalization and mortality. New human-relevant models of the airways are urgently needed to understand how respiratory infections may trigger asthma attacks and to advance treatment development. Here, we describe a new human-relevant model of rhinovirus-induced asthma exacerbation that recapitulates viral infection of asthmatic airway epithelium and neutrophil transepithelial migration, and enables evaluation of immunomodulatory therapy. Specifically, a microengineered model of fully differentiated human mucociliary airway epithelium was stimulated with IL-13 to induce a T-helper cell type 2 asthmatic phenotype and infected with live human rhinovirus 16 (HRV16) to reproduce key features of viral-induced asthma exacerbation. We observed that the infection with HRV16 replicated key hallmarks of the cytopathology and inflammatory responses observed in human airways. Generation of a T-helper cell type 2 microenvironment through exogenous IL-13 stimulation induced features of asthmatic airways, including goblet cell hyperplasia, reduction of cilia beating frequency, and endothelial activation, but did not alter rhinovirus infectivity or replication. High-resolution kinetic analysis of secreted inflammatory markers revealed that IL-13 treatment altered IL-6, IFN-λ1, and CXCL10 secretion in response to HRV16. Neutrophil transepithelial migration was greatest when viral infection was combined with IL-13 treatment, whereas treatment with MK-7123, a CXCR2 antagonist, reduced neutrophil diapedesis in all conditions. In conclusion, our microengineered Airway Lung-Chip provides a novel human-relevant platform for exploring the complex mechanisms underlying viral-induced asthma exacerbation. Our data suggest that IL-13 may impair the hosts' ability to mount an appropriate and coordinated immune response to rhinovirus infection. We also show that the Airway Lung-Chip can be used to assess the efficacy of modulators of the immune response.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Hyun-Hee Lee
- Merck Research Laboratories, Boston, Massachusetts
| | | | | | | | | |
Collapse
|
144
|
Yildirim M, Serban N, Shih J, Keskinocak P. Reflecting on prediction strategies for epidemics: Preparedness and public health response. Ann Allergy Asthma Immunol 2020; 126:338-349. [PMID: 33307158 PMCID: PMC7836303 DOI: 10.1016/j.anai.2020.11.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 11/18/2020] [Accepted: 11/24/2020] [Indexed: 02/07/2023]
Abstract
Objective To provide an overview of the literature on respiratory infectious disease epidemic prediction, preparedness, and response (including pharmaceutical and nonpharmaceutical interventions) and their impact on public health, with a focus on respiratory conditions such as asthma. Data Sources Published literature obtained through PubMed database searches. Study Selections Studies relevant to infectious epidemics, asthma, modeling approaches, health care access, and data analytics related to intervention strategies. Results Prediction, prevention, and response strategies for infectious disease epidemics use extensive data sources and analytics, addressing many areas including testing and early diagnosis, identifying populations at risk of severe outcomes such as hospitalizations or deaths, monitoring and understanding transmission and spread patterns by age group, social interactions geographically and over time, evaluating the effectiveness of pharmaceutical and nonpharmaceutical interventions, and understanding prioritization of and access to treatment or preventive measures (eg, vaccination, masks), given limited resources and system constraints. Conclusion Previous epidemics and pandemics have revealed the importance of effective preparedness and response. Further research and implementation need to be performed to emphasize timely and actionable strategies, including for populations with particular health conditions (eg, chronic respiratory diseases) at risk for severe outcomes.
Collapse
Affiliation(s)
- Melike Yildirim
- H. Milton Stewart School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, Georgia; Center for Health and Humanitarian Systems, Georgia Institute of Technology, Atlanta, Georgia
| | - Nicoleta Serban
- H. Milton Stewart School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, Georgia.
| | - Jennifer Shih
- Department of Pediatrics, Emory University School of Medcine, Atlanta, Georgia; Department of Medicine, Emory University School of Medcine, Atlanta, Georgia
| | - Pinar Keskinocak
- H. Milton Stewart School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, Georgia; Center for Health and Humanitarian Systems, Georgia Institute of Technology, Atlanta, Georgia; Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia
| |
Collapse
|
145
|
Skevaki C, Karsonova A, Karaulov A, Xie M, Renz H. Asthma-associated risk for COVID-19 development. J Allergy Clin Immunol 2020; 146:1295-1301. [PMID: 33002516 PMCID: PMC7834224 DOI: 10.1016/j.jaci.2020.09.017] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/22/2020] [Accepted: 09/23/2020] [Indexed: 02/06/2023]
Abstract
The newly described severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is responsible for a pandemic (coronavirus disease 2019 [COVID-19]). It is now well established that certain comorbidities define high-risk patients. They include hypertension, diabetes, and coronary artery disease. In contrast, the context with bronchial asthma is controversial and shows marked regional differences. Because asthma is the most prevalent chronic inflammatory lung disease worldwide and SARS-CoV-2 primarily affects the upper and lower airways leading to marked inflammation, the question arises about the possible clinical and pathophysiological association between asthma and SARS-CoV-2/COVID-19. Here, we analyze the global epidemiology of asthma among patients with COVID-19 and propose the concept that patients suffering from different asthma endotypes (type 2 asthma vs non-type 2 asthma) present with a different risk profile in terms of SARS-CoV-2 infection, development of COVID-19, and progression to severe COVID-19 outcomes. This concept may have important implications for future COVID-19 diagnostics and immune-based therapy developments.
Collapse
Affiliation(s)
- Chrysanthi Skevaki
- Institute of Laboratory Medicine, Universities of Giessen and Marburg Lung Center (UGMLC), Philipps Universität Marburg, German Center for Lung Research (DZL), Marburg, Germany; German Center for Lung Research (DZL), Marburg, Germany
| | - Antonina Karsonova
- Department of Clinical Immunology and Allergology, Laboratory of Immunopathology, Sechenov University, Moscow, Russia
| | - Alexander Karaulov
- Department of Clinical Immunology and Allergology, Laboratory of Immunopathology, Sechenov University, Moscow, Russia
| | - Min Xie
- Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Harald Renz
- Institute of Laboratory Medicine, Universities of Giessen and Marburg Lung Center (UGMLC), Philipps Universität Marburg, German Center for Lung Research (DZL), Marburg, Germany; German Center for Lung Research (DZL), Marburg, Germany; Department of Clinical Immunology and Allergology, Laboratory of Immunopathology, Sechenov University, Moscow, Russia.
| |
Collapse
|
146
|
Wirz OF, Üzülmez Ö, Jansen K, Veen W, Lammela A, Kainulainen L, Vuorinen T, Breiteneder H, Akdis CA, Jartti T, Akdis M. Increased antiviral response in circulating lymphocytes from hypogammaglobulinemia patients. Allergy 2020; 75:3147-3158. [PMID: 32533713 DOI: 10.1111/all.14445] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 04/21/2020] [Accepted: 04/29/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND B cells play a crucial role during rhinovirus (RV) infections by production of virus-neutralizing antibodies. A main feature of common variable immunodeficiency (CVID) is hypogammaglobulinemia (HG). HG patients have severely reduced levels of antibody-producing B cells and suffer from prolonged virus infections. Here, we addressed whether antiviral response of peripheral blood lymphocytes differs between HG patients and healthy individuals during natural RV infection. METHODS Using fluorescence-activated cell sorting, B-cell subsets were analyzed. Simultaneously, CD19 + B cells, CD14 + monocytes, and CD3 + T cells were sorted from frozen peripheral blood mononuclear cells from 11 RV-infected hypogammaglobulinemia patients, 7 RV-infected control subjects, and 14 noninfected control subjects. Real-time PCR was used to study expression of antiviral genes. A pan-RV PCR was used to detect RV genome in all samples. RESULTS In HG patients, total B-cell numbers, as well as IgA + and IgG + switched memory B cells, were reduced while naïve B cells and T cells were increased. STAT1 expression was increased in HG patients compared to controls in all lymphocyte subsets analyzed. The expression of antiviral genes IFITM1 and MX1 correlated with STAT1 expression in B cells and monocytes. RV RNA was found in 88.9% of monocytes from infected HG patients, 85.7% of monocytes from infected controls, and 7.1% of monocytes from uninfected controls. CONCLUSIONS We demonstrate an increased antiviral response in B cells and monocytes in HG patients and their correlation with STAT1 expression. Monocytes of infected HG patients and infected non-HG controls carry RV RNA.
Collapse
Affiliation(s)
- Oliver F. Wirz
- Swiss Institute of Allergy and Asthma Research (SIAF) University of Zurich Davos Switzerland
| | - Öykü Üzülmez
- Department of Pathophysiology and Allergy Research Medical University of Vienna Vienna Austria
| | - Kirstin Jansen
- Swiss Institute of Allergy and Asthma Research (SIAF) University of Zurich Davos Switzerland
| | - Willem Veen
- Swiss Institute of Allergy and Asthma Research (SIAF) University of Zurich Davos Switzerland
- Christine Kühne—Center for Allergy Research and Education (CK‐CARE) Davos Switzerland
| | - Auli Lammela
- Department of Pediatrics and Adolescent Medicine Turku University Hospital and University of Turku Turku Finland
| | - Leena Kainulainen
- Department of Pediatrics and Adolescent Medicine Turku University Hospital and University of Turku Turku Finland
| | - Tytti Vuorinen
- Department of Clinical Virology Turku University Hospital Turku Finland
- Department of Virology University of Turku Turku Finland
| | - Heimo Breiteneder
- Department of Pathophysiology and Allergy Research Medical University of Vienna Vienna Austria
| | - Cezmi A. Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF) University of Zurich Davos Switzerland
- Christine Kühne—Center for Allergy Research and Education (CK‐CARE) Davos Switzerland
| | - Tuomas Jartti
- Department of Pediatrics and Adolescent Medicine Turku University Hospital and University of Turku Turku Finland
| | - Mübeccel Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF) University of Zurich Davos Switzerland
| |
Collapse
|
147
|
Bardin PG, Johnston SL. Attenuating COVID-19 infection and inflammation: Lessons from asthma. Respirology 2020; 25:1233-1234. [PMID: 33051923 PMCID: PMC7675645 DOI: 10.1111/resp.13961] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 10/06/2020] [Indexed: 12/15/2022]
Affiliation(s)
- Philip G Bardin
- Monash Lung and Sleep, Monash University and Medical Centre, Melbourne, VIC, Australia
| | | |
Collapse
|
148
|
O'Sullivan MJ, Phung TKN, Park JA. Bronchoconstriction: a potential missing link in airway remodelling. Open Biol 2020; 10:200254. [PMID: 33259745 PMCID: PMC7776576 DOI: 10.1098/rsob.200254] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 11/10/2020] [Indexed: 02/06/2023] Open
Abstract
In asthma, progressive structural changes of the airway wall are collectively termed airway remodelling. Despite its deleterious effect on lung function, airway remodelling is incompletely understood. As one of the important causes leading to airway remodelling, here we discuss the significance of mechanical forces that are produced in the narrowed airway during asthma exacerbation, as a driving force of airway remodelling. We cover in vitro, ex vivo and in vivo work in this field, and discuss up-to-date literature supporting the idea that bronchoconstriction may be the missing link in a comprehensive understanding of airway remodelling in asthma.
Collapse
Affiliation(s)
| | | | - Jin-Ah Park
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, 665 Huntington Ave, Boston, MA, USA
| |
Collapse
|
149
|
The Airway Epithelium-A Central Player in Asthma Pathogenesis. Int J Mol Sci 2020; 21:ijms21238907. [PMID: 33255348 PMCID: PMC7727704 DOI: 10.3390/ijms21238907] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 11/20/2020] [Accepted: 11/21/2020] [Indexed: 12/11/2022] Open
Abstract
Asthma is a chronic inflammatory airway disease characterized by variable airflow obstruction in response to a wide range of exogenous stimuli. The airway epithelium is the first line of defense and plays an important role in initiating host defense and controlling immune responses. Indeed, increasing evidence indicates a range of abnormalities in various aspects of epithelial barrier function in asthma. A central part of this impairment is a disruption of the airway epithelial layer, allowing inhaled substances to pass more easily into the submucosa where they may interact with immune cells. Furthermore, many of the identified susceptibility genes for asthma are expressed in the airway epithelium. This review focuses on the biology of the airway epithelium in health and its pathobiology in asthma. We will specifically discuss external triggers such as allergens, viruses and alarmins and the effect of type 2 inflammatory responses on airway epithelial function in asthma. We will also discuss epigenetic mechanisms responding to external stimuli on the level of transcriptional and posttranscriptional regulation of gene expression, as well the airway epithelium as a potential treatment target in asthma.
Collapse
|
150
|
Ortega H, Nickle D, Carter L. Rhinovirus and asthma: Challenges and opportunities. Rev Med Virol 2020; 31:e2193. [PMID: 33217098 PMCID: PMC8365703 DOI: 10.1002/rmv.2193] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 10/29/2020] [Accepted: 10/30/2020] [Indexed: 12/11/2022]
Abstract
Human rhinoviruses (RVs) are the primary aetiological agent of the common cold. Generally, the associated infection is mild and self‐limiting, but may also be associated with bronchiolitis in infants, pneumonia in the immunocompromised and exacerbation in patients with pulmonary conditions such as asthma or chronic obstructive pulmonary disease. Viral infection accounts for as many as two thirds of asthma exacerbations in children and more than half in adults. Allergy and asthma are major risk factors for more frequent and severe RV‐related illnesses. The prevalence of RV‐induced wheezing will likely continue to increase given that asthma affects a significant proportion of the population, with allergic asthma accounting for the majority. Several new respiratory viruses and their subgroups have been discovered, with various degrees of relevance. This review will focus on RV infection in the context of the epidemiologic evidence, genetic variability, pathobiology, clinical studies in the context of asthma, differences with other viruses including COVID‐19 and current treatment interventions.
Collapse
|