101
|
Pecora F, Persico F, Gismondi P, Fornaroli F, Iuliano S, de'Angelis GL, Esposito S. Gut Microbiota in Celiac Disease: Is There Any Role for Probiotics? Front Immunol 2020; 11:957. [PMID: 32499787 PMCID: PMC7243837 DOI: 10.3389/fimmu.2020.00957] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 04/23/2020] [Indexed: 12/15/2022] Open
Abstract
Celiac disease (CD) is an immune-mediated disorder initiated by the ingestion of gluten in genetically predisposed individuals. Recent data shows that changes in the gut microbiome composition and function are linked with chronic inflammatory diseases; this might also be the case for CD. The main aim of this manuscript is to discuss our present knowledge of the relationships between gut microbiota alterations and CD and to understand if there is any role for probiotics in CD therapy. PubMed was used to search for all of the studies published from November 2009 to November 2019 using key words such as "Celiac Disease" and "Microbiota" (306 articles), "Celiac Disease" and "Gastrointestinal Microbiome" (139), and "Probiotics" and "Celiac Disease" (97 articles). The search was limited to articles published in English that provided evidence-based data. Literature analysis showed that the gut microbiota has a well-established role in gluten metabolism, in modulating the immune response and in regulating the permeability of the intestinal barrier. Promising studies suggest a possible role of probiotics in treating and/or preventing CD. Nevertheless, human trials on the subject are still scarce and lack homogeneity. A possible role was documented for probiotics in improving CD-related symptoms, modulating the peripheral immune response and altering the fecal microbiota, although the results were not consistent in all of the studies. No evidence was found that probiotic administration might prevent CD onset. Knowledge of the role of intestinal bacteria in the development of CD opens new possibilities for its treatment through probiotic administration, even though further studies are needed to better clarify whether probiotics can help treat or prevent the disease and to define which probiotics to use, at what dose and for how long.
Collapse
Affiliation(s)
- Francesco Pecora
- Department of Medicine and Surgery, Pediatric Clinic, Pietro Barilla Children's Hospital, University of Parma, Parma, Italy
| | - Federica Persico
- Department of Medicine and Surgery, Pediatric Clinic, Pietro Barilla Children's Hospital, University of Parma, Parma, Italy
| | - Pierpacifico Gismondi
- Department of Medicine and Surgery, Pediatric Clinic, Pietro Barilla Children's Hospital, University of Parma, Parma, Italy
| | - Fabiola Fornaroli
- Unit of Gastroenterology and Digestive Endoscopy, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Silvia Iuliano
- Unit of Gastroenterology and Digestive Endoscopy, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Gian Luigi de'Angelis
- Unit of Gastroenterology and Digestive Endoscopy, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Susanna Esposito
- Department of Medicine and Surgery, Pediatric Clinic, Pietro Barilla Children's Hospital, University of Parma, Parma, Italy
| |
Collapse
|
102
|
A Two-Sample Mendelian Randomization Analysis Investigates Associations Between Gut Microbiota and Celiac Disease. Nutrients 2020; 12:nu12051420. [PMID: 32423041 PMCID: PMC7284592 DOI: 10.3390/nu12051420] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 05/05/2020] [Accepted: 05/11/2020] [Indexed: 12/20/2022] Open
Abstract
Celiac disease (CeD) is a complex immune-mediated inflammatory condition triggered by the ingestion of gluten in genetically predisposed individuals. Literature suggests that alterations in gut microbiota composition and function precede the onset of CeD. Considering that microbiota is partly determined by host genetics, we speculated that the genetic makeup of CeD patients could elicit disease development through alterations in the intestinal microbiota. To evaluate potential causal relationships between gut microbiota and CeD, we performed a two-sample Mendelian randomization analysis (2SMR). Exposure data were obtained from the raw results of a previous genome-wide association study (GWAS) of gut microbiota and outcome data from summary statistics of CeD GWAS and Immunochip studies. We identified a number of putative associations between gut microbiota single nucleotide polymorphisms (SNPs) associated with CeD. Regarding bacterial composition, most of the associated SNPs were related to Firmicutes phylum, whose relative abundance has been previously reported to be altered in CeD patients. In terms of functional units, we linked a number of SNPs to several bacterial metabolic pathways that seemed to be related to CeD. Overall, this study represented the first 2SMR approach to elucidate the relationship between microbiome and CeD.
Collapse
|
103
|
Pascale A, Marchesi N, Govoni S, Barbieri A. Targeting the microbiota in pharmacology of psychiatric disorders. Pharmacol Res 2020; 157:104856. [PMID: 32389857 DOI: 10.1016/j.phrs.2020.104856] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 04/18/2020] [Accepted: 04/20/2020] [Indexed: 02/07/2023]
Abstract
There is increasing interest in the role of the gut microbiota in health and disease. In particular, gut microbiota influences the Central Nervous System (CNS) development and homeostasis through neural pathways or routes involving the immune and circulatory systems. The CNS, in turn, shapes the intestinal flora through endocrine or stress-mediated responses. These overall bidirectional interactions, known as gut microbiota-brain axis, profoundly affect some brain functions, such as neurogenesis and the production of neurotransmitters, up to influence behavioral aspects of healthy subjects. Consequently, a dysfunction within this axis, as observed in case of dysbiosis, can have an impact on the behavior of a given individual (e.g. anxiety and depression) or on the development of pathologies affecting the CNS, such as autism spectrum disorders and neurodegenerative diseases (e.g. Alzheimer's disease and Parkinson's disease). It should be considered that the whole microbiota has a significant role not only on aspects concerning human physiology, such as harvesting of nutrients and energy from the ingested food or production of a wide range of bioactive compounds, but also has positive effects on the gastrointestinal barrier function and actively contributes to the pharmacokinetics of several compounds including neuropsychiatric drugs. Indeed, the microbiota is able to affect drug absorption and metabolism up to have an impact on drug activity and/or toxicity. On the other hand, drugs are able to shape the human gut microbiota itself, where these changes may contribute to their pharmacologic profile. Therefore, the emerging picture on the complex drug-microbiota bidirectional interplay will have considerable implications in the future not only in terms of clinical practice but also, upstream, on drug development.
Collapse
Affiliation(s)
- Alessia Pascale
- Department of Drug Sciences, Pharmacology Section, University of Pavia, Viale Taramelli 14, 27100 Pavia, Italy.
| | - Nicoletta Marchesi
- Department of Drug Sciences, Pharmacology Section, University of Pavia, Viale Taramelli 14, 27100 Pavia, Italy
| | - Stefano Govoni
- Department of Drug Sciences, Pharmacology Section, University of Pavia, Viale Taramelli 14, 27100 Pavia, Italy
| | - Annalisa Barbieri
- Department of Drug Sciences, Pharmacology Section, University of Pavia, Viale Taramelli 14, 27100 Pavia, Italy
| |
Collapse
|
104
|
Dumas E, Venken K, Rosenbaum JT, Elewaut D. Intestinal Microbiota, HLA-B27, and Spondyloarthritis: Dangerous Liaisons. Rheum Dis Clin North Am 2020; 46:213-224. [PMID: 32340697 DOI: 10.1016/j.rdc.2020.01.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Spondyloarthritis, although primarily a joint-centered disease, is associated with extra-articular features, such as gut inflammation, psoriasis, and/or uveitis. Evidence points to underlying genetic predisposing factors and/or environmental factors. This is most clear in the gut, with progress through 16S and metagenomics sequencing studies and the results of functional studies in preclinical arthritis models. Translation of these findings to the clinic is making progress based on encouraging results of fecal microbial transplant studies in several human diseases. This review elaborates on novel trends in host-microbial interplay in spondyloarthritis, focusing on microbiota, immune dysregulation, and disease progression, and modulation by HLA-B27.
Collapse
Affiliation(s)
- Emilie Dumas
- Faculty of Medicine and Health Sciences, Department of Internal Medicine and Pediatrics (Rheumatology Unit), Ghent University, Corneel Heymanslaan 10, Gent 9000, Belgium; Molecular Immunology and Inflammation Unit, VIB Center for Inflammatory Research, Ghent, Belgium
| | - Koen Venken
- Faculty of Medicine and Health Sciences, Department of Internal Medicine and Pediatrics (Rheumatology Unit), Ghent University, Corneel Heymanslaan 10, Gent 9000, Belgium; Molecular Immunology and Inflammation Unit, VIB Center for Inflammatory Research, Ghent, Belgium
| | - James T Rosenbaum
- Oregon Health & Science University, Portland, OR, USA; Legacy Devers Eye Institute, Portland, OR, USA
| | - Dirk Elewaut
- Faculty of Medicine and Health Sciences, Department of Internal Medicine and Pediatrics (Rheumatology Unit), Ghent University, Corneel Heymanslaan 10, Gent 9000, Belgium; Molecular Immunology and Inflammation Unit, VIB Center for Inflammatory Research, Ghent, Belgium.
| |
Collapse
|
105
|
Francavilla R, Cristofori F, Vacca M, Barone M, De Angelis M. Advances in understanding the potential therapeutic applications of gut microbiota and probiotic mediated therapies in celiac disease. Expert Rev Gastroenterol Hepatol 2020; 14:323-333. [PMID: 32216476 DOI: 10.1080/17474124.2020.1745630] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 03/18/2020] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Celiac Disease (CD) is an autoimmune enteropathy caused by exposure to gluten in genetically predisposed people. While gluten is the main driving force in CD, evidence has shown that microbiota might be involved in the pathogenesis, development, and clinical presentation of CD. Microbiota manipulation may modify its functional capacity and may be crucial for setting-up potential preventive or therapeutic application. Moreover, probiotics are an excellent source of endopeptidases for digesting gluten. AREAS COVERED In this narrative review we illustrate all the recent scientific discoveries in this field including CD pathogenetic mechanism where gut microbiota might be involved and possible use of probiotics in CD prevention and treatment. EXPERT OPINION In the future, probiotics could be used as an add-on medication for strengthening/facilitating the gluten-free diet (GFD) and improving symptoms; the prospect of using it for therapeutic purposes is to be sought in a more distant future.
Collapse
Affiliation(s)
- Ruggiero Francavilla
- Interdisciplinary Department of Medicine, University of Bari Aldo Moro , Bari, Italy
| | - Fernanda Cristofori
- Interdisciplinary Department of Medicine, University of Bari Aldo Moro , Bari, Italy
| | - Mirco Vacca
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro , Bari, Italy
| | - Michele Barone
- Department of Emergency and Organ Transplantation, Section of Gastroenterology, University "Aldo Moro" , Bari, Italy
| | - Maria De Angelis
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro , Bari, Italy
| |
Collapse
|
106
|
Caio G, Ciccocioppo R, Zoli G, De Giorgio R, Volta U. Therapeutic options for coeliac disease: What else beyond gluten-free diet? Dig Liver Dis 2020; 52:130-137. [PMID: 31831308 DOI: 10.1016/j.dld.2019.11.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 11/12/2019] [Accepted: 11/17/2019] [Indexed: 12/11/2022]
Abstract
Coeliac disease is a chronic and systemic autoimmune condition triggered by gluten ingestion in genetically predisposed subjects. Currently, the only effective treatment available is a strict, lifelong gluten-free diet. However, patients perceive gluten withdrawal as an unsustainable burden in their life and some of them can exhibit persistent symptoms despite a strict diet. Thus, gluten-free diet represents a challenge, leading scientists to look for alternative or complementary treatments. This review will focus on non-dietary therapies for coeliac disease highlighting six therapeutic strategies: (1) decreasing gluten immunogenic content before it reaches the intestine; (2) sequestering gluten in the gut lumen before absorption; (3) blocking the passage of gluten through a leaky intestinal barrier; (4) preventing the enhancement of immune response against gliadin; (5) dampening the downstream immune activation; (6) inducing immune tolerance to gluten. Most developing therapies are only in the pre-clinical phase with only a few being tested in phase 2b or 3 trials. Although new approaches raise the hope for coeliacs giving them a chance to come back to gluten, for the time being a cautionary appraisal of new therapies suggests that they may have a complementary role to gluten withdrawal, mainly to prevent inadvertent gluten contamination.
Collapse
Affiliation(s)
- Giacomo Caio
- Department of Medical Sciences, University of Ferrara, Italy
| | - Rachele Ciccocioppo
- Gastroenterology Unit, Department of Medicine, A.O.U.I. Policlinico G. B. Rossi and University of Verona, Italy
| | - Giorgio Zoli
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Italy
| | | | - Umberto Volta
- Department of Medical and Surgical Scieces, University of Bologna, Italy
| |
Collapse
|
107
|
Bascuñán KA, Araya M, Roncoroni L, Doneda L, Elli L. Dietary Gluten as a Conditioning Factor of the Gut Microbiota in Celiac Disease. Adv Nutr 2020; 11:160-174. [PMID: 31399743 PMCID: PMC7442381 DOI: 10.1093/advances/nmz080] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 06/12/2019] [Accepted: 07/01/2019] [Indexed: 12/20/2022] Open
Abstract
The gut microbiota plays a relevant role in determining an individual's health status, and the diet is a major factor in modulating the composition and function of gut microbiota. Gluten constitutes an essential dietary component in Western societies and is the environmental trigger of celiac disease. The presence/absence of gluten in the diet can change the diversity and proportions of the microbial communities constituting the gut microbiota. There is an intimate relation between gluten metabolism and celiac disease pathophysiology and gut microbiota; their interrelation defines intestinal health and homeostasis. Environmental factors modify the intestinal microbiota and, in turn, its changes modulate the mucosal and immune responses. Current evidence from studies of young and adult patients with celiac disease increasingly supports that dysbiosis (i.e., compositional and functional alterations of the gut microbiome) is present in celiac disease, but to what extent this is a cause or consequence of the disease and whether the different intestinal diseases (celiac disease, ulcerative colitis, Crohn disease) have specific change patterns is not yet clear. The use of bacterial-origin enzymes that help completion of gluten digestion is of interest because of the potential application as coadjuvant in the current treatment of celiac disease. In this narrative review, we address the current knowledge on the complex interaction between gluten digestion and metabolism, celiac disease, and the intestinal microbiota.
Collapse
Affiliation(s)
- Karla A Bascuñán
- Department of Nutrition, School of Medicine, University of Chile, Santiago, Chile
- Centre for the Prevention and Diagnosis of Celiac Disease/Gastroenterology II, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, and Università degli Studi di Milano, Milan, Italy
| | - Magdalena Araya
- Institute of Nutrition and Food Technology (INTA), University of Chile, Santiago, Chile
| | - Leda Roncoroni
- Centre for the Prevention and Diagnosis of Celiac Disease/Gastroenterology II, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, and Università degli Studi di Milano, Milan, Italy
- Department of Biomedical, Surgical, and Dental Sciences, University of Milan, Milan, Italy
| | - Luisa Doneda
- Department of Biomedical, Surgical, and Dental Sciences, University of Milan, Milan, Italy
| | - Luca Elli
- Centre for the Prevention and Diagnosis of Celiac Disease/Gastroenterology II, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, and Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
108
|
HLA risk alleles and gut microbiome in ankylosing spondylitis and rheumatoid arthritis. Best Pract Res Clin Rheumatol 2019; 33:101499. [DOI: 10.1016/j.berh.2020.101499] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
109
|
Sanglard LP, Schmitz-Esser S, Gray KA, Linhares DCL, Yeoman CJ, Dekkers JCM, Niederwerder MC, Serão NVL. Investigating the relationship between vaginal microbiota and host genetics and their impact on immune response and farrowing traits in commercial gilts. J Anim Breed Genet 2019; 137:84-102. [PMID: 31762123 DOI: 10.1111/jbg.12456] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 09/30/2019] [Accepted: 10/22/2019] [Indexed: 12/11/2022]
Abstract
Our objectives were to evaluate the interaction between host genetics and vaginal microbiota and their relationships with antibody (Ab) response to porcine reproductive and respiratory syndrome virus (PRRSV) vaccination and farrowing performance in commercial gilts. The farrowing performance traits were number born alive, number weaning (NW), total number born, number born dead, stillborn, mummies and preweaning mortality (PWM). The vaginal microbiota was collected on days 4 (D4) and 52 (D52) after vaccination for PRRSV. Blood samples were collected on D52 for Ab measurement. Actinobacteria, Bacterioidetes, Firmicutes, Proteobacteria and Tenericutes were the most abundant Phyla identified in the vaginal microbiota. Heritability ranged from ~0 to 0.60 (Fusobacterium) on D4 and from ~0 to 0.63 (Terrisporobacter) on D52, with 43 operational taxonomic units (OTUs) presenting moderate to high heritability. One major QTL on chromosome 12 was identified for 5 OTUs (Clostridiales, Acinetobacter, Ruminococcaceae, Campylobacter and Anaerococcus), among other 19 QTL. The microbiability for Ab response to PRRSV vaccination was low for both days (<0.07). For farrowing performance, microbiability varied from <0.001 to 0.15 (NW on D4). For NW and PWM, the microbiability was greater than the heritability estimates. Actinobacillus, Streptococcus, Campylobacter, Anaerococcus, Mollicutes, Peptostreptococcus, Treponema and Fusobacterium showed different abundance between low and high Ab responders. Finally, canonical discriminant analyses revealed that vaginal microbiota was able to classify gilts in high and low Ab responders to PRRSV vaccination with a misclassification rate of <0.02. Although the microbiota explained limited variation in Ab response and farrowing performance traits, there is still potential to explore the use of vaginal microbiota to explain variation in traits such as NW and PWM. In addition, these results revealed that there is a partial control of host genetic over vaginal microbiota, suggesting a possibility for genetic selection on the vaginal microbiota.
Collapse
Affiliation(s)
| | - Stephan Schmitz-Esser
- Department of Animal Science, Iowa State University, Ames, Iowa.,Interdepartmental Microbiology Graduate Program, Iowa State University, Ames, Iowa
| | - Kent A Gray
- Smithfield Premium Genetic, Rose Hill, North Carolina
| | - Daniel C L Linhares
- Department of Veterinary Diagnostic & Production Animal Medicine, Iowa State University, Ames, Iowa
| | - Carl J Yeoman
- Department of Animal & Range Sciences, Montana State University, Bozeman, Montana
| | | | - Megan C Niederwerder
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, Kansas
| | - Nick V L Serão
- Department of Animal Science, Iowa State University, Ames, Iowa
| |
Collapse
|
110
|
Shariati A, Aslani HR, Shayesteh MR, Taghipour A, Nasser A, Safari H, Alizade-Sani M, Dehghan A, Azimi T. Are Viruses and Parasites Linked to Celiac Disease? A Question that Still has no Definite Answer. Curr Pharm Biotechnol 2019; 20:1181-1193. [PMID: 31456516 DOI: 10.2174/1389201020666190828124924] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 07/01/2019] [Accepted: 08/07/2019] [Indexed: 12/17/2022]
Abstract
Celiac Disease (CD) is a complex autoimmune enteropathy of the small intestine that commonly
occurs in genetically predisposed individuals due to intake of gluten and related proteins. Gluten
consumption, duration of breast-feeding, various infections, especially frequent intestinal infections,
vaccinations and use of antibiotics can be linked to CD. It is predicted that it affects 1% of the
global population and its incidence rate is increasing. Most of the people with the HLA-DQ2 or HLADQ8
are at a higher risk of developing this disease. The link between infections and autoimmune diseases
has been very much considered in recent years. In several studies, we explained that pathogenic
and non-pathogenic microorganisms might have multiple roles in initiation, exacerbation, and development
of Irritable Bowel Syndrome (IBS) and Inflammatory Bowel Disease (IBD). In various studies,
the relationship between infections caused by viruses, such as Epstein-Barr Virus (EBV), Rotavirus,
Hepatitis C (HCV), Hepatitis B virus (HBV), Cytomegalovirus (CMV), and Influenza virus, and parasites
including Giardia spp. and Toxoplasma gondii with CD has been raised. However, increasing evidence
proposes that some of these microorganisms, especially helminths, can also have protective and
even therapeutic roles in the CD process. Therefore, in order to determine the role of microorganisms
in the process of this disease, we attempted to summarize the evidence suggesting the role of viral and
parasitic agents in pathogenesis of CD.
Collapse
Affiliation(s)
- Aref Shariati
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Hamid R. Aslani
- Department of Clinical Pharmacy, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad R.H. Shayesteh
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Taghipour
- Department of Parasitology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Ahmad Nasser
- Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Hossein Safari
- Health Promotion Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mahmood Alizade-Sani
- Food Safety and Hygiene Division, Environmental Health Department, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Amin Dehghan
- Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Taher Azimi
- Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
111
|
Perinatal Outcome and Long-Term Gastrointestinal Morbidity of Offspring of Women with Celiac Disease. J Clin Med 2019; 8:jcm8111924. [PMID: 31717472 PMCID: PMC6912641 DOI: 10.3390/jcm8111924] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 10/13/2019] [Accepted: 11/06/2019] [Indexed: 01/03/2023] Open
Abstract
The aim of this study was to evaluate perinatal outcome and long-term offspring gastrointestinal morbidity of women with celiac disease. Perinatal outcomes, as well as long-term gastrointestinal morbidity of offspring of mothers with and without celiac disease were assessed. The study groups were followed until 18 years of age for gastrointestinal-related morbidity. For perinatal outcomes, generalized estimation equation (GEE) models were used. A Kaplan–Meier survival curve was used to compare cumulative incidence of long-term gastrointestinal morbidity, and Cox proportional hazards models were constructed to control for confounders. During the study period, 243,682 deliveries met the inclusion criteria, of which 212 (0.08%) were to mothers with celiac disease. Using GEE models, maternal celiac disease was noted as an independent risk factor for low birth weight and cesarean delivery. Offspring born to mothers with celiac disease had higher rates of gastrointestinal related morbidity (Kaplan–Meier log rank test p < 0.001). Using a Cox proportional hazards model, being born to a mother with celiac disease was found to be an independent risk factor for long-term gastrointestinal morbidity of the offspring. Pregnancy of women with celiac disease is independently associated with adverse perinatal outcome as well as higher risk for long-term gastrointestinal morbidity of offspring.
Collapse
|
112
|
Koenen MH, van Montfrans JM, Sanders EAM, Bogaert D, Verhagen LM. Immunoglobulin A deficiency in children, an undervalued clinical issue. Clin Immunol 2019; 209:108293. [PMID: 31678364 DOI: 10.1016/j.clim.2019.108293] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 10/23/2019] [Accepted: 10/23/2019] [Indexed: 12/24/2022]
Abstract
Immunoglobulin A (IgA) is the principal antibody in secretions that bathe the gastrointestinal and respiratory mucosal surfaces and acts as an important first line of defense against invasion of pathogenic micro-organisms. The reported prevalence rate of complete IgA deficiency in healthy children ranges from 1:170 to 1:400, and as a solitary condition, it is often considered of limited clinical importance. However, patients with IgA deficiency can develop recurrent respiratory and gastrointestinal infections, as well as allergic and autoimmune diseases. In children referred for recurrent respiratory tract infections, the observed prevalence rate increases more than tenfold. This review discusses several aspects of IgA deficiency in children, including immunologic and microbiome changes in early childhood and the potential consequences of this condition in later life. It illustrates the importance of early identification of children with impaired IgA production who deserve appropriate clinical care and follow-up.
Collapse
Affiliation(s)
- M H Koenen
- Department of Pediatric Immunology and Infectious Diseases, Wilhelmina Children's Hospital, Lundlaan 6, 3508 AB Utrecht, the Netherlands.
| | - J M van Montfrans
- Department of Pediatric Immunology and Infectious Diseases, Wilhelmina Children's Hospital, Lundlaan 6, 3508 AB Utrecht, the Netherlands.
| | - E A M Sanders
- Department of Pediatric Immunology and Infectious Diseases, Wilhelmina Children's Hospital, Lundlaan 6, 3508 AB Utrecht, the Netherlands; Centre for Infectious Disease Control (Cib), National Institute of Public Health and the Environment (RIVM), Antonie van Leeuwenhoeklaan 9, 3720 BA Bilthoven, the Netherlands.
| | - D Bogaert
- Department of Pediatric Immunology and Infectious Diseases, Wilhelmina Children's Hospital, Lundlaan 6, 3508 AB Utrecht, the Netherlands; Center for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Little France Crescent 47, EH16 4TJ Edinburgh, United Kingdom.
| | - L M Verhagen
- Department of Pediatric Immunology and Infectious Diseases, Wilhelmina Children's Hospital, Lundlaan 6, 3508 AB Utrecht, the Netherlands.
| |
Collapse
|
113
|
Celiac Disease and the Microbiome. Nutrients 2019; 11:nu11102403. [PMID: 31597349 PMCID: PMC6835875 DOI: 10.3390/nu11102403] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 09/26/2019] [Accepted: 09/27/2019] [Indexed: 02/07/2023] Open
Abstract
Growing evidence supports the hypothesis that changes in both the composition and function of the intestinal microbiome are associated with a number of chronic inflammatory diseases including celiac disease (CD). One of the major advances in the field of microbiome studies over the last few decades has been the development of culture-independent approaches to identify and quantify the components of the human microbiota. The study of nucleic acids DNA and RNA found in feces or other biological samples bypasses the need for tissue cultures and also allows the characterization of non-cultivable microbes. Current evidence on the composition of the intestinal microbiome and its role as a causative trigger for CD is highly heterogeneous and sometimes contradictory. This review is aimed at summarizing both pre-clinical (basic science data) and clinical (cross-sectional and prospective studies) evidence addressing the relationship between the intestinal microbiome and CD.
Collapse
|
114
|
The Gut Microbiota in Celiac Disease and probiotics. Nutrients 2019; 11:nu11102375. [PMID: 31590358 PMCID: PMC6836185 DOI: 10.3390/nu11102375] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 10/01/2019] [Accepted: 10/02/2019] [Indexed: 02/07/2023] Open
Abstract
Celiac disease (CeD) is an immune-mediated enteropathy, and unique in that the specific trigger is known: gluten. The current mainstay of therapy is a gluten-free diet (GFD). As novel therapies are being developed, complementary strategies are also being studied, such as modulation of the gut microbiome. The gut microbiota is involved in the initiation and perpetuation of intestinal inflammation in several chronic diseases. Intestinal dysbiosis has been reported in CeD patients, untreated or treated with GFD, compared to healthy subjects. Several studies have identified differential bacterial populations associated with CeD patients and healthy subjects. However, it is still not clear if intestinal dysbiosis is the cause or effect of CeD. Probiotics have also been considered as a strategy to modulate the gut microbiome to an anti-inflammatory state. However, there is a paucity of data to support their use in treating CeD. Further studies are needed with therapeutic microbial formulations combined with human trials on the use of probiotics to treat CeD by restoring the gut microbiome to an anti-inflammatory state.
Collapse
|
115
|
Elhusseiny AM, Fakhari H, Bishehsari F, Kang K, Djalilian AR. A gut connection in mucous membrane pemphigoid: Insights into the role of the microbiome. Ocul Surf 2019; 17:615-616. [PMID: 31541701 DOI: 10.1016/j.jtos.2019.09.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 09/17/2019] [Indexed: 12/31/2022]
Affiliation(s)
- Abdelrahman M Elhusseiny
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, United States; Department of Ophthalmology, Kasr Al Ainy School of Medicine, Cairo University, Egypt
| | - Hoda Fakhari
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, United States
| | - Faraz Bishehsari
- Department of Medicine, Division of Gastroenterology, Rush University Medical Center, Chicago, IL, United States
| | - Kai Kang
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, United States
| | - Ali R Djalilian
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, United States.
| |
Collapse
|
116
|
Asquith M, Sternes PR, Costello ME, Karstens L, Diamond S, Martin TM, Li Z, Marshall MS, Spector TD, le Cao KA, Rosenbaum JT, Brown MA. HLA Alleles Associated With Risk of Ankylosing Spondylitis and Rheumatoid Arthritis Influence the Gut Microbiome. Arthritis Rheumatol 2019; 71:1642-1650. [PMID: 31038287 DOI: 10.1002/art.40917] [Citation(s) in RCA: 114] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 04/25/2019] [Indexed: 12/28/2022]
Abstract
OBJECTIVE HLA alleles affect susceptibility to more than 100 diseases, but the mechanisms that account for these genotype-disease associations are largely unknown. HLA alleles strongly influence predisposition to ankylosing spondylitis (AS) and rheumatoid arthritis (RA). Both AS and RA patients have discrete intestinal and fecal microbiome signatures. Whether these changes are the cause or consequence of the diseases themselves is unclear. To distinguish these possibilities, we examined the effect of HLA-B27 and HLA-DRB1 RA risk alleles on the composition of the intestinal microbiome in healthy individuals. METHODS Five hundred sixty-eight stool and biopsy samples from 6 intestinal sites were collected from 107 healthy unrelated subjects, and stool samples were collected from 696 twin pairs from the TwinsUK cohort. Microbiome profiling was performed using sequencing of the 16S ribosomal RNA bacterial marker gene. All subjects were genotyped using the Illumina CoreExome SNP microarray, and HLA genotypes were imputed from these data. RESULTS Associations were observed between the overall microbial composition and both the HLA-B27 genotype and the HLA-DRB1 RA risk allele (P = 0.0002 and P = 0.00001, respectively). These associations were replicated using the stool samples from the TwinsUK cohort (P = 0.023 and P = 0.033, respectively). CONCLUSION This study shows that the changes in intestinal microbiome composition seen in AS and RA are at least partially due to effects of HLA-B27 and HLA-DRB1 on the gut microbiome. These findings support the hypothesis that HLA alleles operate to cause or increase the risk of these diseases through interaction with the intestinal microbiome and suggest that therapies targeting the microbiome may be effective in preventing or treating these diseases.
Collapse
Affiliation(s)
| | - Peter R Sternes
- Queensland University of Technology, Brisbane, Queensland, Australia
| | | | | | | | | | - Zhixiu Li
- Queensland University of Technology, Brisbane, Queensland, Australia
| | - Mhairi S Marshall
- Queensland University of Technology, Brisbane, Queensland, Australia
| | | | | | - James T Rosenbaum
- Oregon Health & Science University and Legacy Devers Eye Institute, Portland
| | - Matthew A Brown
- Queensland University of Technology, Brisbane, Queensland, Australia
| |
Collapse
|
117
|
Caminero A, Verdu EF. Metabolism of wheat proteins by intestinal microbes: Implications for wheat related disorders. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.gastre.2019.04.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
118
|
Abstract
The prevalence of celiac disease (CeD) has increased in the last decades, suggesting a role for environmental factors in addition to gluten. Several cohort studies have shown that different gastrointestinal infections increase CeD risk. However, the mechanisms by which microbes participate in CeD have remained elusive. Recently, with the use of animal models, both viral and bacterial opportunistic pathogens were shown to induce immune activation relevant for CeD. The hypothesis that viral and/or bacterial infections can contribute to immune activation and breakdown of tolerance toward gluten in genetically susceptible individuals is therefore reinforced. Here, we discuss the evidence regarding the role of microbes in promoting CeD and the specific pathways triggered by microbes that could participate in CeD pathogenesis. Understanding these pathways will allow us to develop optimal microbiota-modulating strategies to help prevent CeD.
Collapse
Affiliation(s)
- Alberto Caminero
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
| | - Elena F. Verdu
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
119
|
Metabolism of wheat proteins by intestinal microbes: Implications for wheat related disorders. GASTROENTEROLOGIA Y HEPATOLOGIA 2019; 42:449-457. [DOI: 10.1016/j.gastrohep.2019.04.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 04/14/2019] [Indexed: 12/22/2022]
|
120
|
Caio G, Volta U, Sapone A, Leffler DA, De Giorgio R, Catassi C, Fasano A. Celiac disease: a comprehensive current review. BMC Med 2019; 17:142. [PMID: 31331324 PMCID: PMC6647104 DOI: 10.1186/s12916-019-1380-z] [Citation(s) in RCA: 543] [Impact Index Per Article: 90.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 06/27/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Celiac disease remains a challenging condition because of a steady increase in knowledge tackling its pathophysiology, diagnosis, management, and possible therapeutic options. MAIN BODY A major milestone in the history of celiac disease was the identification of tissue transglutaminase as the autoantigen, thereby confirming the autoimmune nature of this disorder. A genetic background (HLA-DQ2/DQ8 positivity and non-HLA genes) is a mandatory determinant of the development of the disease, which occurs with the contribution of environmental factors (e.g., viral infections and dysbiosis of gut microbiota). Its prevalence in the general population is of approximately 1%, with female predominance. The disease can occur at any age, with a variety of symptoms/manifestations. This multifaceted clinical presentation leads to several phenotypes, i.e., gastrointestinal, extraintestinal, subclinical, potential, seronegative, non-responsive, and refractory. Although small intestinal biopsy remains the diagnostic 'gold standard', highly sensitive and specific serological tests, such as tissue transglutaminase, endomysial and deamidated gliadin peptide antibodies, have become gradually more important in the diagnostic work-up of celiac disease. Currently, the only treatment for celiac disease is a life-long, strict gluten-free diet leading to improvement in quality of life, ameliorating symptoms, and preventing the occurrence of refractory celiac disease, ulcerative jejunoileitis, and small intestinal adenocarcinoma and lymphoma. CONCLUSIONS The present review is timely and provides a thorough appraisal of various aspects characterizing celiac disease. Remaining challenges include obtaining a better understanding of still-unclear phenotypes such as slow-responsive, potential (minimal lesions) and seronegative celiac disease. The identification of alternative or complementary treatments to the gluten-free diet brings hope for patients unavoidably burdened by diet restrictions.
Collapse
Affiliation(s)
- Giacomo Caio
- Department of Medical Sciences, University of Ferrara, Via Aldo Moro 8, Cona, 44124 Ferrara, Italy
- Center for Celiac Research and Treatment, Massachusetts General Hospital, Boston, MA 02114 USA
| | - Umberto Volta
- Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy
| | - Anna Sapone
- Center for Celiac Research and Treatment, Massachusetts General Hospital, Boston, MA 02114 USA
- Takeda Pharmaceuticals International Co, Cambridge, MA 02139 USA
| | - Daniel A. Leffler
- Takeda Pharmaceuticals International Co, Cambridge, MA 02139 USA
- Division of Gastroenterology, Beth Israel Deaconess Medical Center, Boston, MA 02115 USA
| | - Roberto De Giorgio
- Department of Medical Sciences, University of Ferrara, Via Aldo Moro 8, Cona, 44124 Ferrara, Italy
| | - Carlo Catassi
- Center for Celiac Research and Treatment, Massachusetts General Hospital, Boston, MA 02114 USA
- Department of Pediatrics, Center for Celiac Research, Università Politecnica delle Marche, 60121 Ancona, Italy
| | - Alessio Fasano
- Center for Celiac Research and Treatment, Massachusetts General Hospital, Boston, MA 02114 USA
| |
Collapse
|
121
|
Abstract
PURPOSE OF REVIEW Celiac disease (CD) is an autoimmune enteropathy triggered by gluten. The purpose of this review is to examine the major genetic and environmental factors that contribute to CD pathogenesis. RECENT FINDINGS We reviewed the current state of knowledge on the genetic and environmental components that play a role in CD onset. A genome-wide association study (GWAS) analysis has highlighted several genes other than HLA involved in CD. Recent studies have shown that HLA haplotype influences the microbiome composition in infants and that dysbiosis in the intestinal microflora, in turn, contributes to loss of tolerance to gluten. Recently, observational studies have discussed the hypothesis stating that breast-feeding had a protective role against CD onset. CD etiology is influenced by genetic and environmental factors. A better understanding of these components would deepen our knowledge on the mechanisms that lead to loss of tolerance and could help in developing a more "personalized medicine."
Collapse
|
122
|
Cohen LJ, Cho JH, Gevers D, Chu H. Genetic Factors and the Intestinal Microbiome Guide Development of Microbe-Based Therapies for Inflammatory Bowel Diseases. Gastroenterology 2019; 156:2174-2189. [PMID: 30880022 PMCID: PMC6568267 DOI: 10.1053/j.gastro.2019.03.017] [Citation(s) in RCA: 129] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 02/28/2019] [Accepted: 03/02/2019] [Indexed: 12/22/2022]
Abstract
The intestinal microbiota is a dynamic community of bacteria, fungi, and viruses that mediates mucosal homeostasis and physiology. Imbalances in the microbiome and aberrant immune responses to gut bacteria can disrupt homeostasis and are associated with inflammatory bowel diseases (IBDs) in humans and colitis in mice. We review genetic variants associated with IBD and their effects on the intestinal microbiome, the immune response, and disease pathogenesis. The intestinal microbiome, which includes microbial antigens, adjuvants, and metabolic products, affects the development and function of the intestinal mucosa, influencing inflammatory responses in the gut. Therefore, strategies to manipulate the microbiome might be used in treatment of IBD. We review microbe-based therapies for IBD and the potential to engineer patients' intestinal microbiota. We discuss how studies of patients with IBD and mouse models have advanced our understanding of the interactions between genetic factors and the gut microbiome, and challenges to the development of microbe-based therapies for IBD.
Collapse
Affiliation(s)
- Louis J. Cohen
- Division of Gastroenterology, Department of Medicine, Icahn
School of Medicine at Mount Sinai, New York, New York, 10029, USA.,Correspondence:
(L.J.C.),
(H.C.)
| | - Judy H. Cho
- Division of Gastroenterology, Department of Medicine, Icahn
School of Medicine at Mount Sinai, New York, New York, 10029, USA.,Department of Genetics and Genomic Sciences, Icahn School
of Medicine at Mount Sinai; The Charles Bronfman Institute for Personalized
Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, 10029,
USA
| | - Dirk Gevers
- Janssen Human Microbiome Institute, Janssen Research &
Development, Cambridge, MA, 02142, USA
| | - Hiutung Chu
- Department of Pathology, University of California-San Diego, La Jolla, California; Chiba University and University of California-San Diego Center for Mucosal Immunology, Allergy, and Vaccines (CU-UCSD cMAV), La Jolla, California.
| |
Collapse
|
123
|
Differential effects of psychotropic drugs on microbiome composition and gastrointestinal function. Psychopharmacology (Berl) 2019; 236:1671-1685. [PMID: 30155748 DOI: 10.1007/s00213-018-5006-5] [Citation(s) in RCA: 174] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 08/16/2018] [Indexed: 02/07/2023]
Abstract
RATIONALE Growing evidence supports a role for the microbiota in regulating gut-brain interactions and, thus, psychiatric disorders. Despite substantial scientific efforts to delineate the mechanism of action of psychotropic medications at a central nervous system (CNS) level, there remains a critical lack of understanding on how these drugs might affect the microbiota and gut physiology. OBJECTIVES We investigated the antimicrobial activity of psychotropics against two bacterial strain residents in the human gut, Lactobacillus rhamnosus and Escherichia coli. In addition, we examined the impact of chronic treatment with these drugs on microbiota and intestinal parameters in the rat. RESULTS In vitro fluoxetine and escitalopram showed differential antimicrobial effects. Lithium, valproate and aripiprazole administration significantly increased microbial species richness and diversity, while the other treatments were not significantly different from controls. At the genus level, several species belonging to Clostridium, Peptoclostridium, Intestinibacter and Christenellaceae were increased following treatment with lithium, valproate and aripiprazole when compared to the control group. Animals treated with escitalopram, venlafaxine, fluoxetine and aripiprazole exhibited an increased permeability in the ileum. CONCLUSIONS These data show that psychotropic medications differentially influence the composition of gut microbiota in vivo and that fluoxetine and escitalopram have specific antimicrobial activity in vitro. Interestingly, drugs that significantly altered gut microbial composition did not increase intestinal permeability, suggesting that the two factors are not causally linked. Overall, unravelling the impact of psychotropics on gastrointestinal and microbiota measures offers the potential to provide critical insight into the mechanism of action and side effects of these medications.
Collapse
|
124
|
Mancuso C, Barisani D. Food additives can act as triggering factors in celiac disease: Current knowledge based on a critical review of the literature. World J Clin Cases 2019; 7:917-927. [PMID: 31119137 PMCID: PMC6509268 DOI: 10.12998/wjcc.v7.i8.917] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Revised: 03/11/2019] [Accepted: 03/16/2019] [Indexed: 02/05/2023] Open
Abstract
Celiac disease (CeD) is an autoimmune disorder, mainly affecting the small intestine, triggered by the ingestion of gluten with the diet in subjects with a specific genetic status. The passage of gluten peptides through the intestinal barrier, the uptake by antigen presenting cells and their presentation to T cells represent essential steps in the pathogenesis of the disease. CeD prevalence varies in different populations, but a tendency to increase has been observed in various studies in recent years. A higher amount of gluten in modern grains could explain this increased frequency, but also food processing could play a role in this phenomenon. In particular, the common use of preservatives such as nanoparticles could intervene in the pathogenesis of CeD, due to their possible effect on the integrity of the intestinal barrier, immune response or microbiota. In fact, these alterations have been reported after exposure to metal nanoparticles, which are commonly used as preservatives or to improve food texture, consistency and color. This review will focus on the interactions between several food additives and the intestine, taking into account data obtained in vitro and in vivo, and analyzing their effect in respect to the development of CeD in genetically predisposed individuals.
Collapse
Affiliation(s)
- Clara Mancuso
- Department of Medicine and Surgery, University of Milano-Bicocca, Via Cadore 48, Monza 20900, Italy
| | - Donatella Barisani
- Department of Medicine and Surgery, University of Milano-Bicocca, Monza 20900, Italy
| |
Collapse
|
125
|
Persisting enteropathy and disturbed adaptive mucosal immunity due to MHC class II deficiency. Clin Immunol 2019; 203:125-133. [PMID: 31028919 DOI: 10.1016/j.clim.2019.04.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 04/20/2019] [Accepted: 04/22/2019] [Indexed: 12/19/2022]
Abstract
Intestinal epithelial cells (IECs) form a fundamental mucosal barrier and actively participate in tolerance and immunity against intestinal contents. Major histocompatibility complex class II (MHC II) and invariant chain (Ii) molecules are essential for adaptive immune response. MHC II deficiency often presents with gastrointestinal disorders. Intestinal biopsy samples revealed an absence of HLA-DR, Ii, and local immunoglobulins in both hematopoietic immune cells and IECs accompanied by a lack of faecal sIgA. After successful hematopoietic stem cell transplantation (HSCT) absent HLA-DR and Ii expression persisted in IECs and faecal stool analysis indicated inflammation and high microbial activity. We describe multifaceted disturbance of adaptive mucosal immunity in MHC II deficient patients suffering from enteropathy. HLA-DR and Ii expression on enterocytes is not restored by HSCT. This may account for increased susceptibility to enteric infections and intestinal inflammation leading to prolonged enteropathy reported in MHC II deficient patients.
Collapse
|
126
|
Moerkens R, Mooiweer J, Withoff S, Wijmenga C. Celiac disease-on-chip: Modeling a multifactorial disease in vitro. United European Gastroenterol J 2019; 7:467-476. [PMID: 31065364 PMCID: PMC6488795 DOI: 10.1177/2050640619836057] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 01/22/2019] [Indexed: 12/16/2022] Open
Abstract
Conventional model systems cannot fully recapitulate the multifactorial character of complex diseases like celiac disease (CeD), a common chronic intestinal disorder in which many different genetic risk factors interact with environmental factors such as dietary gluten. However, by combining recently developed human induced pluripotent stem cell (hiPSC) technology and organ-on-chip technology, in vitro intestine-on-chip systems can now be developed that integrate the genetic background of complex diseases, the different interacting cell types involved in disease pathology, and the modulating environmental factors such as gluten and the gut microbiome. The hiPSCs that are the basis of these systems can be generated from both diseased and healthy individuals, which means they can be stratified based on their load of genetic risk factors. A CeD-on-chip model system has great potential to improve our understanding of disease etiology and accelerate the development of novel treatments and preventive therapies in CeD and other complex diseases.
Collapse
Affiliation(s)
- Renée Moerkens
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Joram Mooiweer
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Sebo Withoff
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Cisca Wijmenga
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands.,K.G. Jebsen Coeliac Disease Research Center, Department of Immunology, University of Oslo, Norway
| |
Collapse
|
127
|
Abstract
The healthy microbiome is necessary for normal immune development in the gut. Alterations in the microbial makeup after a critical window increase the risk of autoimmunity, including celiac disease. Although this dysbiosis has been described in adult and pediatric patients, factors leading to dysbiosis are still being elucidated. Genetics has some role in determining the microbiome makeup of the host, but other factors have yet to be determined. The microbiome remains an important therapeutic target in many autoimmune conditions, including celiac disease, however studies have yet to determine the ideal replacement therapy to correct the dysbiosis.
Collapse
|
128
|
Kauma S, Kaukinen K, Huhtala H, Kivelä L, Pekki H, Salmi T, Saavalainen P, Lindfors K, Kurppa K. The Phenotype of Celiac Disease Has Low Concordance between Siblings, Despite a Similar Distribution of HLA Haplotypes. Nutrients 2019; 11:nu11020479. [PMID: 30823533 PMCID: PMC6412523 DOI: 10.3390/nu11020479] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 02/20/2019] [Accepted: 02/22/2019] [Indexed: 12/12/2022] Open
Abstract
The factors determining the presentation of celiac disease are unclear. We investigated the phenotypic concordance and the distribution of human leukocyte antigen (HLA) risk haplotypes in affected siblings. One hundred sibling pairs were included. Clinical and histological parameters and HLA haplotypes were compared between the first diagnosed indexes and their siblings. The phenotype was categorized into gastrointestinal, extra-intestinal, malabsorption/anemia, and asymptomatic. The phenotype was fully concordant in 21 pairs. The most common concordant phenotype was gastrointestinal (14 pairs). Indexes had more anemia/malabsorption and extra-intestinal symptoms than siblings (45% vs. 20%, p < 0.001 and 33% vs. 12%, p < 0.001, respectively). Twenty siblings and none of the indexes were asymptomatic. The indexes were more often women (81% vs. 63%, p = 0.008). They were also more often seronegative (11% vs. 0%, p = 0.03) and younger (37 vs. 43 year, p < 0.001), and had more severe histopathology (total/subtotal atrophy 79% vs. 58%, p = 0.047) at diagnosis. The indexes and siblings were comparable in other disease features. Pairs with discordant presentation had similar HLA haplotypes more often than the concordant pairs. The phenotype was observed to vary markedly between siblings, with the indexes generally having a more severe presentation. HLA did not explain the differences, suggesting that non-HLA genes and environmental factors play significant roles.
Collapse
Affiliation(s)
- Saana Kauma
- Celiac Disease Research Centre, Faculty of Medicine and Life Sciences, Tampere University, 33520 Tampere, Finland.
| | - Katri Kaukinen
- Celiac Disease Research Centre, Faculty of Medicine and Life Sciences, Tampere University, 33520 Tampere, Finland.
- Department of Internal Medicine, Tampere University Hospital, 33521 Tampere, Finland.
| | - Heini Huhtala
- Faculty of Social Sciences, Tampere University, 33520 Tampere, Finland.
| | - Laura Kivelä
- Tampere Centre for Child Health Research, Tampere University and Tampere University Hospital, 33521 Tampere, Finland.
| | - Henna Pekki
- Celiac Disease Research Centre, Faculty of Medicine and Life Sciences, Tampere University, 33520 Tampere, Finland.
| | - Teea Salmi
- Celiac Disease Research Centre, Faculty of Medicine and Life Sciences, Tampere University, 33520 Tampere, Finland.
- Department of Dermatology, Tampere University Hospital, 33521 Tampere, Finland.
| | - Päivi Saavalainen
- Research Program Unit, Immunobiology, and Department of Medical and Clinical Genetics, University of Helsinki, 00014 Helsinki, Finland.
| | - Katri Lindfors
- Celiac Disease Research Centre, Faculty of Medicine and Life Sciences, Tampere University, 33520 Tampere, Finland.
| | - Kalle Kurppa
- Tampere Centre for Child Health Research, Tampere University and Tampere University Hospital, 33521 Tampere, Finland.
| |
Collapse
|
129
|
Liu S, Ma C, Liu L, Ning D, Liu Y, Dong B. β-xylosidase and β-mannosidase in combination improved growth performance and altered microbial profiles in weanling pigs fed a corn-soybean meal-based diet. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2019; 32:1734-1744. [PMID: 31010999 PMCID: PMC6817776 DOI: 10.5713/ajas.18.0873] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 02/06/2019] [Indexed: 11/27/2022]
Abstract
Objective In this study, two glycosidases (XMosidases), β-xylosidase and β-mannosidase, were investigated on their in vitro hydrolysis activities of feed and on the improvement of growth performance in vivo in weanling pigs. Methods Enzyme activities of XMosidases in vitro were evaluated in test tubes and simulation of gastric and small intestinal digestion, respectively, in the presence of NSPase. In vivo study was performed in 108 weaned piglets in a 28-d treatment. Pigs were allotted to one of three dietary treatments with six replicate pens in each treatment. The three treatment groups were as follows: i) Control (basal diet); ii) CE (basal diets+CE); iii) CE-Xmosidases (basal diets+ CE+β-xylosidase at 800 U/kg and β-mannosidase at 40 U/kg). CE was complex enzymes (amylase, protease, xylanase, and mannanase). Results In vitro XMosidases displayed significant activities on hydrolysis of corn and soybean meal in the presence of non-starch polysaccharide degrading enzymes (xylanase and β-mannanase). In vitro simulation of gastric and small intestinal digestion by XMosidases showed XMosidases achieved 67.89%±0.22% of dry matter digestibility and 63.12%±0.21% of energy digestibility at 40°C for 5 hrs. In weanling pigs, additional XMosidases to CE in feed improved average daily gain, feed conversion rate (p<0.05), and apparent total tract digestibility of crude protein (p = 0.01) and dry matter (p = 0.02). XMosidases also altered the gut bacterial diversity and composition by increasing the proportion of beneficial bacteria. Conclusion Addition of a complex enzyme supplementation (contained xylanase, β-mannanase, protease and amylase), XMosidases (β-xylosidase and β-mannosidase) can further improve the growth performance and nutrient digestion of young pigs.
Collapse
Affiliation(s)
- Shaoshuai Liu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Chang Ma
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Ling Liu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Dong Ning
- Asiapac Limited Company, Dongguan, Guangdong 523808, China
| | - Yajing Liu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Bing Dong
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| |
Collapse
|
130
|
Abstract
Coeliac disease (CD) is an immune-mediated disorder triggered by the ingestion of gluten in genetically susceptible individuals. However, only a small proportion of subjects harbouring CD-related genetic risk develop the disease. Among the environmental factors that may influence CD risk, pre- and perinatal factors, delivery methods, parental lifestyle, infant feeding practices, seasonality, dietary factors, drug use, childhood infections and variability in gut microbiota are those most widely studied regarding the risk to develop CD. Although for many of these external factors the exact mechanism of action is unknown, most of them are thought to act by disrupting the intestinal barrier, facilitating contact between potential antigens and the immune system effector cells. Management of CD is relatively easy in patients with a definite diagnosis and requires a strict, lifelong, gluten-free diet. Better knowledge of environmental exposures apart from gluten can facilitate understanding of the pathogenesis of the disorder and the wide heterogeneity of its clinical spectrum. The purpose of this review is to discuss current knowledge on environmental CD risk factors, as well as possible interaction between them, on the grounds of the reliable scientific evidence available. Key messages The risk of developing CD is influenced not only by gluten ingestion but also by a number of environmental factors including childhood infections and variability in gut microbiota, pre- and perinatal factors, infant feeding practices, delivery methods, parental lifestyle, seasonality, dietary factors and drug use, acting mainly by disrupting intestinal permeability. Better knowledge of exposure to these factors can facilitate their identification, and subsequent elimination, in the individual patient.
Collapse
Affiliation(s)
- Giovanni Mario Pes
- a Department of Medical , Surgical and Experimental Sciences, University of Sassari , Sassari , Italy
| | - Stefano Bibbò
- a Department of Medical , Surgical and Experimental Sciences, University of Sassari , Sassari , Italy
| | - Maria Pina Dore
- a Department of Medical , Surgical and Experimental Sciences, University of Sassari , Sassari , Italy.,b Baylor College of Medicine , Houston , TX , USA
| |
Collapse
|
131
|
Walker MD, Zylberberg HM, Green PHR, Katz MS. Endocrine complications of celiac disease: a case report and review of the literature. Endocr Res 2019; 44:27-45. [PMID: 30198791 DOI: 10.1080/07435800.2018.1509868] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
PURPOSE The purpose of this article is to review recent literature regarding endocrine disorders related to celiac disease (CD). METHODS We describe a case report and review existing literature on the endocrine manifestations of CD. RESULTS CD is an autoimmune disorder characterized by intestinal inflammation in response to gluten. CD can cause a wide range of extra-intestinal complications, including endocrine manifestations. Metabolic bone disease including osteoporosis and osteopenia, vitamin D deficiency, secondary hyperparathyroidism and less frequently osteomalacia can be seen. In CD, fracture risk is increased by 30-40%, while risk for hip fracture is approximately doubled. The risk for other endocrine disorders, particularly autoimmune endocrinopathies, is also increased in those with CD compared to the general population. Epidemiologic data indicate the risk for hypothyroidism is 3-4 times higher among those with CD, while risk of type 1 diabetes is greater than double. Risk for primary adrenal insufficiency is a striking 11-fold higher in those with versus without CD, though the absolute risk is low. Fertility is reduced in women with CD before diagnosis by 37% while male fertility in the absence of hypogonadism does not appear to be affected. Other endocrine conditions including hyperthyroidism, ovarian failure, androgen insensitivity, impaired growth and growth hormone deficiency and autoimmune polyendocrine syndromes have also been associated with CD. CONCLUSIONS CD is associated with a wide range of endocrine manifestations.
Collapse
Affiliation(s)
- Marcella D Walker
- a Department of Medicine , Columbia University , New York , NY , USA
| | | | - Peter H R Green
- a Department of Medicine , Columbia University , New York , NY , USA
| | - Michael S Katz
- c Department of Medicine , University of Texas Health Science Center at San Antonio , San Antonio , TX , USA
| |
Collapse
|
132
|
Malla MA, Dubey A, Kumar A, Yadav S, Hashem A, Abd_Allah EF. Exploring the Human Microbiome: The Potential Future Role of Next-Generation Sequencing in Disease Diagnosis and Treatment. Front Immunol 2019; 9:2868. [PMID: 30666248 PMCID: PMC6330296 DOI: 10.3389/fimmu.2018.02868] [Citation(s) in RCA: 172] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 11/21/2018] [Indexed: 12/12/2022] Open
Abstract
The interaction between the human microbiome and immune system has an effect on several human metabolic functions and impacts our well-being. Additionally, the interaction between humans and microbes can also play a key role in determining the wellness or disease status of the human body. Dysbiosis is related to a plethora of diseases, including skin, inflammatory, metabolic, and neurological disorders. A better understanding of the host-microbe interaction is essential for determining the diagnosis and appropriate treatment of these ailments. The significance of the microbiome on host health has led to the emergence of new therapeutic approaches focused on the prescribed manipulation of the host microbiome, either by removing harmful taxa or reinstating missing beneficial taxa and the functional roles they perform. Culturing large numbers of microbial taxa in the laboratory is problematic at best, if not impossible. Consequently, this makes it very difficult to comprehensively catalog the individual members comprising a specific microbiome, as well as understanding how microbial communities function and influence host-pathogen interactions. Recent advances in sequencing technologies and computational tools have allowed an increasing number of metagenomic studies to be performed. These studies have provided key insights into the human microbiome and a host of other microbial communities in other environments. In the present review, the role of the microbiome as a therapeutic agent and its significance in human health and disease is discussed. Advances in high-throughput sequencing technologies for surveying host-microbe interactions are also discussed. Additionally, the correlation between the composition of the microbiome and infectious diseases as described in previously reported studies is covered as well. Lastly, recent advances in state-of-the-art bioinformatics software, workflows, and applications for analysing metagenomic data are summarized.
Collapse
Affiliation(s)
- Muneer Ahmad Malla
- Department of Zoology, Dr. Harisingh Gour Central University, Sagar, India
| | - Anamika Dubey
- Metagenomics and Secretomics Research Laboratory, Department of Botany, Dr. Harisingh Gour Central University, Sagar, India
| | - Ashwani Kumar
- Metagenomics and Secretomics Research Laboratory, Department of Botany, Dr. Harisingh Gour Central University, Sagar, India
| | - Shweta Yadav
- Department of Zoology, Dr. Harisingh Gour Central University, Sagar, India
| | - Abeer Hashem
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
- Mycology and Plant Disease Survey Department, Plant Pathology Research Institute, Agriculture Research Center, Giza, Egypt
| | - Elsayed Fathi Abd_Allah
- Department of Plant Production, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
133
|
Bin P, Tang Z, Liu S, Chen S, Xia Y, Liu J, Wu H, Zhu G. Intestinal microbiota mediates Enterotoxigenic Escherichia coli-induced diarrhea in piglets. BMC Vet Res 2018; 14:385. [PMID: 30518356 PMCID: PMC6282381 DOI: 10.1186/s12917-018-1704-9] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 11/21/2018] [Indexed: 12/31/2022] Open
Abstract
Background Enterotoxigenic Escherichia coli (ETEC) causes diarrhea in humans, cows, and pigs. The gut microbiota underlies pathology of several infectious diseases yet the role of the gut microbiota in the pathogenesis of ETEC-induced diarrhea is unknown. Results By using an ETEC induced diarrheal model in piglet, we profiled the jejunal and fecal microbiota using metagenomics and 16S rRNA sequencing. A jejunal microbiota transplantation experiment was conducted to determine the role of the gut microbiota in ETEC-induced diarrhea. ETEC-induced diarrhea influenced the structure and function of gut microbiota. Diarrheal piglets had lower Bacteroidetes: Firmicutes ratio and microbiota diversity in the jejunum and feces, and lower percentage of Prevotella in the feces, but higher Lactococcus in the jejunum and higher Escherichia-Shigella in the feces. The transplantation of the jejunal microbiota from diarrheal piglets to uninfected piglets leaded to diarrhea after transplantation. Microbiota transplantation experiments also supported the notion that dysbiosis of gut microbiota is involved in the immune responses in ETEC-induced diarrhea. Conclusion We conclude that ETEC infection influences the gut microbiota and the dysbiosis of gut microbiota after ETEC infection mediates the immune responses in ETEC infection. Electronic supplementary material The online version of this article (10.1186/s12917-018-1704-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Peng Bin
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Jiangsu Co-innovation Center for Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Zhiyi Tang
- College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Shaojuan Liu
- College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Shuai Chen
- Laboratory of Animal Nutrition and Health and Key Laboratory of Agro-Ecology, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, Hunan, 410125, People's Republic of China
| | - Yaoyao Xia
- Laboratory of Animal Nutrition and Health and Key Laboratory of Agro-Ecology, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, Hunan, 410125, People's Republic of China
| | - Jiaqi Liu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Jiangsu Co-innovation Center for Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Hucong Wu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Jiangsu Co-innovation Center for Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Guoqiang Zhu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Jiangsu Co-innovation Center for Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, China.
| |
Collapse
|
134
|
Abstract
Acute anterior uveitis (AAU) and the spondyloarthritis (SpA) subtypes ankylosing spondylitis, reactive arthritis and psoriatic arthritis are among the inflammatory diseases affected by the biology of the intestinal microbiome. In this Review, the relationship between AAU, SpA and the microbiome is discussed, with a focus on the major SpA risk gene HLA-B*27 and how it is associated with both intestinal tolerance and the loss of ocular immune privilege that can accompany AAU. We provide four potential mechanisms to account for how dysbiosis, barrier function and immune response contribute to the development of ocular inflammation and the pathogenesis of AAU. Finally, potential therapeutic avenues to target the microbiota for the clinical management of AAU and SpA are outlined.
Collapse
Affiliation(s)
- James T Rosenbaum
- Departments of Ophthalmology, Medicine and Cell Biology, Oregon Health and Science University, Portland, OR, USA
- Legacy Devers Eye Institute, Portland, OR, USA
| | - Mark Asquith
- Department of Medicine, Oregon Health and Science University, Portland, OR, USA.
| |
Collapse
|
135
|
Rodrigues-Amorim D, Rivera-Baltanás T, Regueiro B, Spuch C, de Las Heras ME, Vázquez-Noguerol Méndez R, Nieto-Araujo M, Barreiro-Villar C, Olivares JM, Agís-Balboa RC. The role of the gut microbiota in schizophrenia: Current and future perspectives. World J Biol Psychiatry 2018; 19:571-585. [PMID: 29383983 DOI: 10.1080/15622975.2018.1433878] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
OBJECTIVES Schizophrenia is a poorly understood chronic disease. Its pathophysiology is complex, dynamic, and linked to epigenetic mechanisms and microbiota involvement. Nowadays, correlating schizophrenia with the environment makes sense owing to its multidimensional implications: temporal and spatial variability. Microbiota involvement and epigenetic mechanisms are factors that are currently being considered to better understand another dimension of schizophrenia. METHODS This review summarises and discusses currently available information, focussing on the microbiota, epigenetic mechanisms, technological approaches aimed at performing exhaustive analyses of the microbiota, and psychotherapies, to establish future perspectives. RESULTS The connection between the microbiota, epigenetic mechanisms and technological developments allows for formulating new approaches objectively oriented towards the development of alternative psychotherapies that may help treat schizophrenia. CONCLUSIONS In this review, the gut microbiota and epigenetic mechanisms were considered as key regulators, revealing a potential new aetiology of schizophrenia. Likewise, continuous technological advances (e.g. culturomics), aimed at the microbiota-gut-brain axis generate new evidence on this concept.
Collapse
Affiliation(s)
- Daniela Rodrigues-Amorim
- a Psychiatric Diseases Research Group , Galicia Sur Health Research Institute. Complexo Hospitalario Universitario de Vigo (CHUVI), SERGAS, CIBERSAM , Vigo , Spain
| | - Tania Rivera-Baltanás
- a Psychiatric Diseases Research Group , Galicia Sur Health Research Institute. Complexo Hospitalario Universitario de Vigo (CHUVI), SERGAS, CIBERSAM , Vigo , Spain
| | - Benito Regueiro
- b Microbiology and Parasitology Department (School of Medicine , Universidad de Santiago de Compostela). Complexo Hospitalario Universitario de Vigo (CHUVI), SERGAS , Vigo , Spain
| | - Carlos Spuch
- c Neurology Research Group , Galicia Sur Health Research Institute. Complexo Hospitalario Universitario de Vigo (CHUVI), SERGAS, CIBERSAM , Vigo , Spain
| | - María Elena de Las Heras
- a Psychiatric Diseases Research Group , Galicia Sur Health Research Institute. Complexo Hospitalario Universitario de Vigo (CHUVI), SERGAS, CIBERSAM , Vigo , Spain
| | - Raul Vázquez-Noguerol Méndez
- a Psychiatric Diseases Research Group , Galicia Sur Health Research Institute. Complexo Hospitalario Universitario de Vigo (CHUVI), SERGAS, CIBERSAM , Vigo , Spain
| | - Maria Nieto-Araujo
- a Psychiatric Diseases Research Group , Galicia Sur Health Research Institute. Complexo Hospitalario Universitario de Vigo (CHUVI), SERGAS, CIBERSAM , Vigo , Spain
| | - Carolina Barreiro-Villar
- a Psychiatric Diseases Research Group , Galicia Sur Health Research Institute. Complexo Hospitalario Universitario de Vigo (CHUVI), SERGAS, CIBERSAM , Vigo , Spain
| | - Jose Manuel Olivares
- a Psychiatric Diseases Research Group , Galicia Sur Health Research Institute. Complexo Hospitalario Universitario de Vigo (CHUVI), SERGAS, CIBERSAM , Vigo , Spain
| | - Roberto Carlos Agís-Balboa
- a Psychiatric Diseases Research Group , Galicia Sur Health Research Institute. Complexo Hospitalario Universitario de Vigo (CHUVI), SERGAS, CIBERSAM , Vigo , Spain
| |
Collapse
|
136
|
Feng XW, Ding WP, Xiong LY, Guo L, Sun JM, Xiao P. Recent Advancements in Intestinal Microbiota Analyses: A Review for Non-Microbiologists. Curr Med Sci 2018; 38:949-961. [PMID: 30536055 DOI: 10.1007/s11596-018-1969-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2017] [Revised: 06/12/2018] [Indexed: 02/06/2023]
Abstract
Microbial constituents naturally inhabiting the gastrointestinal tract may influence the homeostasis of the gut environment. The presence or overabundance of some bacterial taxa has been reported to be associated with complex diseases, and the metabolites of certain bacteria may contribute to diverse disorders by influencing signaling pathways. Therefore, the study of gut microbial population has emerged as a crucial field and a new potential area of clinical significance. Advances in the methods of microbiota analysis have shed light upon the details including species diversity, microfloral activities as well as the entire gut microbiota. Nevertheless, comprehensive reviews on this subject are still limited. For elucidating the appropriate selection strategy of the methods to address a particular research question, we comprehensively reviewed the continuously improving technologies, classical to newly developed, and dissected their relative advantages and drawbacks. In addition, aiming at the rapidly advancing next-generation sequencing, we enumerated the improvements in mainstream platforms and made the horizontal and vertical comparison among them. Additionally, we demonstrated the four main -omics methods, which may provide further mechanistic insights into the role of microbiota, to propel phylotyping analysis to functional analysis.
Collapse
Affiliation(s)
- Xiao-Wei Feng
- Department of Psychiatry, Wuhan Youfu Hospital, Wuhan, 430050, China
| | - Wen-Ping Ding
- Department of Ultrasound, Wuhan Women and Children's Health Care Center, Wuhan, 430016, China
| | - Ling-Yun Xiong
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Liang Guo
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jia-Ming Sun
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Peng Xiao
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
137
|
Cristofori F, Indrio F, Miniello VL, De Angelis M, Francavilla R. Probiotics in Celiac Disease. Nutrients 2018; 10:1824. [PMID: 30477107 PMCID: PMC6316269 DOI: 10.3390/nu10121824] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 11/06/2018] [Accepted: 11/15/2018] [Indexed: 02/06/2023] Open
Abstract
Recently, the interest in the human microbiome and its interplay with the host has exploded and provided new insights on its role in conferring host protection and regulating host physiology, including the correct development of immunity. However, in the presence of microbial imbalance and particular genetic settings, the microbiome may contribute to the dysfunction of host metabolism and physiology, leading to pathogenesis and/or the progression of several diseases. Celiac disease (CD) is a chronic autoimmune enteropathy triggered by dietary gluten exposure in genetically predisposed individuals. Despite ascertaining that gluten is the trigger in CD, evidence has indicated that intestinal microbiota is somehow involved in the pathogenesis, progression, and clinical presentation of CD. Indeed, several studies have reported imbalances in the intestinal microbiota of patients with CD that are mainly characterized by an increased abundance of Bacteroides spp. and a decrease in Bifidobacterium spp. The evidence that some of these microbial imbalances still persist in spite of a strict gluten-free diet and that celiac patients suffering from persistent gastrointestinal symptoms have a desert gut microbiota composition further support its close link with CD. All of this evidence gives rise to the hypothesis that probiotics might play a role in this condition. In this review, we describe the recent scientific evidences linking the gut microbiota in CD, starting from the possible role of microbes in CD pathogenesis, the attempt to define a microbial signature of disease, the effect of a gluten-free diet and host genetic assets regarding microbial composition to end in the exploration of the proof of concept of probiotic use in animal models to the most recent clinical application of selected probiotic strains.
Collapse
Affiliation(s)
| | - Flavia Indrio
- Department of Paediatrics, Paediatric Hospital Giovanni XXIII, Via Amendola 207, 70126 Bari, Italy.
| | - Vito Leonardo Miniello
- Department of Paediatrics, Paediatric Hospital Giovanni XXIII, Via Amendola 207, 70126 Bari, Italy.
| | - Maria De Angelis
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, 70126 Bari, Italy.
| | - Ruggiero Francavilla
- Department of Paediatrics, Paediatric Hospital Giovanni XXIII, Via Amendola 207, 70126 Bari, Italy.
- Pediatric Section, Department of Interdisciplinary Medicine, University of Bari Aldo Moro, 70124 Bari, Italy.
| |
Collapse
|
138
|
Chander AM, Yadav H, Jain S, Bhadada SK, Dhawan DK. Cross-Talk Between Gluten, Intestinal Microbiota and Intestinal Mucosa in Celiac Disease: Recent Advances and Basis of Autoimmunity. Front Microbiol 2018; 9:2597. [PMID: 30443241 PMCID: PMC6221985 DOI: 10.3389/fmicb.2018.02597] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 10/11/2018] [Indexed: 12/17/2022] Open
Abstract
Celiac disease (CD) is an autoimmune disorder of the small intestine, caused by gluten induced inflammation in some individuals susceptible to genetic and environmental influences. To date, pathophysiology of CD in relation to intestinal microbiota is not known well. This review relies on contribution of intestinal microbiome and oral microbiome in pathogenesis of CD based on their interactions with gluten, thereby highlighting the role of upper gastrointestinal microbiota. It has been hypothesized that CD might be triggered by additive effects of immunotoxic gluten peptides and intestinal dysbiosis (microbial imbalance) in the people with or without genetic susceptibilities, where antibiotics may be deriving dysbiotic agents. In contrast to the intestinal dysbiosis, genetic factors even seem secondary in disease outcome thus suggesting the importance of interaction between microbes and dietary factors in immune regulation at intestinal mucosa. Moreover, association of imbalanced counts of some commensal microbes in intestine of CD patients suggests the scope for probiotic therapies. Lactobacilli and specific intestinal and oral bacteria are potent source of gluten degrading enzymes (glutenases) that may contribute to commercialization of a novel glutenase therapy. In this review, we shall discuss advantages and disadvantages of food based therapies along with probiotic therapies where probiotic therapies are expected to emerge as the safest biotherapies among other in-process therapies. In addition, this review emphasizes on differential targets of probiotics that make them suitable to manage CD as along with glutenase activity, they also exhibit immunomodulatory and intestinal microbiome modulatory properties.
Collapse
Affiliation(s)
- Atul Munish Chander
- Department of Endocrinology, Postgraduate Institute of Medical Education and Research, Chandigarh, India.,Department of Biophysics, Panjab University, Chandigarh, India
| | - Hariom Yadav
- Center for Diabetes, Obesity and Metabolism, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Shalini Jain
- Center for Diabetes, Obesity and Metabolism, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Sanjay Kumar Bhadada
- Department of Endocrinology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | | |
Collapse
|
139
|
Lamacchia C, Musaico D, Henderson ME, Bergillos-Meca T, Roul M, Landriscina L, Decina I, Corona G, Costabile A. Temperature-treated gluten proteins in Gluten-Friendly™ bread increase mucus production and gut-barrier function in human intestinal goblet cells. J Funct Foods 2018. [DOI: 10.1016/j.jff.2018.07.047] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
140
|
Cozzolino M, Serena C, Calabró AS, Savi E, Rambaldi MP, Simeone S, Ottanelli S, Mello G, Rombolá G, Troiano G, Nante N, Vannuccini S, Mecacci F, Petraglia F. Human leukocyte antigen DQ2/DQ8 positivity in women with history of stillbirth. Am J Reprod Immunol 2018; 80:e13038. [PMID: 30125434 DOI: 10.1111/aji.13038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 07/23/2018] [Accepted: 07/27/2018] [Indexed: 12/20/2022] Open
Abstract
PROBLEM The aim of this study was to investigate the prevalence of human leukocyte antigens (HLA) DQ2 and DQ8 haplotypes, two common polymorphisms associate with celiac disease (CD), in women with previous stillbirth, but not affected by CD. METHOD OF STUDY Women with history of unexplained term stillbirth referred to our Center for High-Risk Pregnancies for a preconception counseling, and women with previous uncomplicated pregnancies, were enrolled as cases and controls. Celiac women were excluded from the study. Genetic tests for HLA DQ2/DQ8 were performed, and patients' data were compared. RESULTS The population included 56 women with a previous term stillbirth and 379 women with history of uncomplicated pregnancies. The prevalence of HLA-DQ2 or DQ8 positivity was significantly higher in cases than in controls (50% vs 29.5%) (P = 0.0031). Women with HLA DQ8 genotype have a significantly higher risk of stillbirth (OR: 2.84 CI: 1.1840-6.817) and in case of DQ2 genotype the OR for stillbirth was even higher (OR: 4.46 CI: 2.408-8.270). In the stillbirth group, SGA neonates were significantly more frequent in those with HLA-DQ2/DQ8 haplotypes than in those resulted negative to genetic testing (85.7% vs 42 .8%, P = 0.004). CONCLUSION In women with history of term stillbirth, a significantly higher prevalence of HLA DQ2/DQ8 haplotypes has been found compared to women with previous uneventful pregnancies. In addition, HLA DQ2/DQ8 positivity was significantly associated with suboptimal fetal growth in intrauterine fetal death cases, as shown by an increased prevalence of SGA babies.
Collapse
Affiliation(s)
- Mauro Cozzolino
- Instituto Valenciano de Infertilidad (IVI) - IVI-RMA Global Madrid, Madrid, Spain.,Division of Obstetrics and Gynecology, Department of Biomedical, Experimental and Clinical Sciences, Careggi University Hospital, University of Florence, Florence, Italy
| | - Caterina Serena
- Division of Obstetrics and Gynecology, Department of Biomedical, Experimental and Clinical Sciences, Careggi University Hospital, University of Florence, Florence, Italy
| | - Antonino Salvatore Calabró
- Department of Experimental and Clinical Biomedical Sciences, Gastroenterology Unit, Careggi University Hospital, Florence, Italy
| | - Elena Savi
- Division of Obstetrics and Gynecology, Department of Biomedical, Experimental and Clinical Sciences, Careggi University Hospital, University of Florence, Florence, Italy
| | - Marianna Pina Rambaldi
- Division of Obstetrics and Gynecology, Department of Biomedical, Experimental and Clinical Sciences, Careggi University Hospital, University of Florence, Florence, Italy
| | - Serena Simeone
- Division of Obstetrics and Gynecology, Department of Biomedical, Experimental and Clinical Sciences, Careggi University Hospital, University of Florence, Florence, Italy
| | - Serena Ottanelli
- Division of Obstetrics and Gynecology, Department of Biomedical, Experimental and Clinical Sciences, Careggi University Hospital, University of Florence, Florence, Italy
| | - Giorgio Mello
- Division of Obstetrics and Gynecology, Department of Biomedical, Experimental and Clinical Sciences, Careggi University Hospital, University of Florence, Florence, Italy
| | - Giovanni Rombolá
- Genetics Diagnostics - Laboratory of Immunogenetics and Transplant Biology, Careggi Hospital, Florence, Italy
| | - Gianmarco Troiano
- Post Graduate School of Public Health, University of Siena, Siena, Italy
| | - Nicola Nante
- Post Graduate School of Public Health, University of Siena, Siena, Italy
| | - Silvia Vannuccini
- Division of Obstetrics and Gynecology, Department of Health Sciences, Careggi University Hospital, University of Florence, Florence, Italy.,Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Federico Mecacci
- Division of Obstetrics and Gynecology, Department of Biomedical, Experimental and Clinical Sciences, Careggi University Hospital, University of Florence, Florence, Italy
| | - Felice Petraglia
- Division of Obstetrics and Gynecology, Department of Biomedical, Experimental and Clinical Sciences, Careggi University Hospital, University of Florence, Florence, Italy
| |
Collapse
|
141
|
Slim M, Rico-Villademoros F, Calandre EP. Psychiatric Comorbidity in Children and Adults with Gluten-Related Disorders: A Narrative Review. Nutrients 2018; 10:875. [PMID: 29986423 PMCID: PMC6073457 DOI: 10.3390/nu10070875] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 06/26/2018] [Accepted: 07/04/2018] [Indexed: 12/22/2022] Open
Abstract
Gluten-related disorders are characterized by both intestinal and extraintestinal manifestations. Previous studies have suggested an association between gluten-related disorder and psychiatric comorbidities. The objective of our current review is to provide a comprehensive review of this association in children and adults. A systematic literature search using MEDLINE, Embase and PsycINFO from inception to 2018 using terms of ‘celiac disease’ or ‘gluten-sensitivity-related disorders’ combined with terms of ‘mental disorders’ was conducted. A total of 47 articles were included in our review, of which 28 studies were conducted in adults, 11 studies in children and eight studies included both children and adults. The majority of studies were conducted in celiac disease, two studies in non-celiac gluten sensitivity and none in wheat allergy. Enough evidence is currently available supporting the association of celiac disease with depression and, to a lesser extent, with eating disorders. Further investigation is warranted to evaluate the association suggested with other psychiatric disorders. In conclusion, routine surveillance of potential psychiatric manifestations in children and adults with gluten-related disorders should be carried out by the attending physician.
Collapse
Affiliation(s)
- Mahmoud Slim
- Division of Neurology, The Hospital for Sick Children, The Peter Gilgan Centre for Research and Learning, 686 Bay St., Toronto, ON M5G 0A4, Canada.
| | - Fernando Rico-Villademoros
- Instituto de Neurociencias, Universidad de Granada, Avenida del Conocimiento s/n, 18100 Armilla, Granada, Spain.
| | - Elena P Calandre
- Instituto de Neurociencias, Universidad de Granada, Avenida del Conocimiento s/n, 18100 Armilla, Granada, Spain.
| |
Collapse
|
142
|
Clinical intervention using Bifidobacterium strains in celiac disease children reveals novel microbial modulators of TNF-α and short-chain fatty acids. Clin Nutr 2018; 38:1373-1381. [PMID: 29960810 DOI: 10.1016/j.clnu.2018.06.931] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 05/30/2018] [Accepted: 06/06/2018] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS Celiac disease (CD) is an immune-mediated systemic disease, caused by ingestion of gluten in genetically predisposed individuals. Gut microbiota dysbiosis might play a significant role in pathogenesis of chronic enteropathies and its modulation can be used as an intervention strategy in CD as well. In this study, we aimed to identify correlations between fecal microbiota, serum tumor necrosis factor alpha (TNF-α) and fecal short-chain fatty acids (SCFAs) in healthy children and children with CD after administration of probiotic Bifidobacterium breve BR03 and B632. METHODS A double-blind placebo-controlled study enrolled 40 children with CD (CD) and 16 healthy children (HC). CD children were randomly allocated into two groups, of which 20 belonged to the placebo (PL) group and 20 to the Probiotic (PR) group. The PR group received a probiotic formulation containing a mixture of 2 strains, B. breve BR03 (DSM 16604) and B. breve B632 (DSM 24706) in 1:1 ratio for 3 months. Subsequently, for statistical analysis, blood and fecal samples from CD children (on enrolment - T0 and after 3 months, at the end of intervention with probiotic/placebo - T1) and HC children were used. The HC group was sampled only once (T0). RESULTS Verrucomicrobia, Parcubacteria and some yet unknown phyla of Bacteria and Archaea may be involved in the disease, indicated by a strong correlation to TNF-α. Likewise, Proteobacteria strongly correlated with fecal SCFAs concentration. The effect of probiotic administration has disclosed a negative correlation between Verrucomicrobia, some unknown phyla of Bacteria, Synergistetes, Euryarchaeota and some SCFAs, turning them into an important target in microbiome restoration process. Synergistetes and Euryarchaeota may have a role in the anti-inflammatory process in healthy human gut. CONCLUSIONS Our results highlight new phyla, which may have an important relation to disease-related parameters, CD itself and health.
Collapse
|
143
|
Flandroy L, Poutahidis T, Berg G, Clarke G, Dao MC, Decaestecker E, Furman E, Haahtela T, Massart S, Plovier H, Sanz Y, Rook G. The impact of human activities and lifestyles on the interlinked microbiota and health of humans and of ecosystems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 627:1018-1038. [PMID: 29426121 DOI: 10.1016/j.scitotenv.2018.01.288] [Citation(s) in RCA: 182] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 01/28/2018] [Accepted: 01/28/2018] [Indexed: 05/03/2023]
Abstract
Plants, animals and humans, are colonized by microorganisms (microbiota) and transiently exposed to countless others. The microbiota affects the development and function of essentially all organ systems, and contributes to adaptation and evolution, while protecting against pathogenic microorganisms and toxins. Genetics and lifestyle factors, including diet, antibiotics and other drugs, and exposure to the natural environment, affect the composition of the microbiota, which influences host health through modulation of interrelated physiological systems. These include immune system development and regulation, metabolic and endocrine pathways, brain function and epigenetic modification of the genome. Importantly, parental microbiotas have transgenerational impacts on the health of progeny. Humans, animals and plants share similar relationships with microbes. Research paradigms from humans and other mammals, amphibians, insects, planktonic crustaceans and plants demonstrate the influence of environmental microbial ecosystems on the microbiota and health of organisms, and indicate links between environmental and internal microbial diversity and good health. Therefore, overlapping compositions, and interconnected roles of microbes in human, animal and plant health should be considered within the broader context of terrestrial and aquatic microbial ecosystems that are challenged by the human lifestyle and by agricultural and industrial activities. Here, we propose research priorities and organizational, educational and administrative measures that will help to identify safe microbe-associated health-promoting modalities and practices. In the spirit of an expanding version of "One health" that includes environmental health and its relation to human cultures and habits (EcoHealth), we urge that the lifestyle-microbiota-human health nexus be taken into account in societal decision making.
Collapse
Affiliation(s)
- Lucette Flandroy
- Federal Public Service Health, Food Chain Safety and Environment, Belgium
| | - Theofilos Poutahidis
- Laboratory of Pathology, Faculty of Health Sciences, School of Veterinary Medicine, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - Gabriele Berg
- Environmental Biotechnology, Graz University of Technology, Petersgasse 12, A-8010 Graz, Austria
| | - Gerard Clarke
- Department of Psychiatry and Neurobehavioural Science, APC Microbiome Institute, University College Cork, Cork, Ireland
| | - Maria-Carlota Dao
- ICAN, Institute of Cardiometabolism and Nutrition, Assistance Publique Hôpitaux de Paris, Pitié-Salpêtrière Hospital, Paris, France; INSERM, UMRS U1166 (Eq 6) Nutriomics, Paris 6, France; UPMC, Sorbonne University, Pierre et Marie Curie-Paris 6, France
| | - Ellen Decaestecker
- Aquatic Biology, Department Biology, Science, Engineering & Technology Group, KU Leuven, Campus Kortrijk. E. Sabbelaan 53, B-8500 Kortrijk, Belgium
| | - Eeva Furman
- Finnish Environment Institute (SYKE), Helsinki, Finland
| | - Tari Haahtela
- Skin and Allergy Hospital, Helsinki University Hospital, University of Helsinki, Finland
| | - Sébastien Massart
- Laboratory of Integrated and Urban Phytopathology, TERRA, Gembloux Agro-Bio Tech, University of Liège, Passage des deportes, 2, 5030 Gembloux, Belgium
| | - Hubert Plovier
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, Université Catholique de Louvain, Brussels, Belgium
| | - Yolanda Sanz
- Microbial Ecology, Nutrition & Health Research Unit, Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Valencia, Spain
| | - Graham Rook
- Centre for Clinical Microbiology, Department of Infection, UCL (University College London), London, UK.
| |
Collapse
|
144
|
Olivares M, Benítez-Páez A, de Palma G, Capilla A, Nova E, Castillejo G, Varea V, Marcos A, Garrote JA, Polanco I, Donat E, Ribes-Koninckx C, Calvo C, Ortigosa L, Palau F, Sanz Y. Increased prevalence of pathogenic bacteria in the gut microbiota of infants at risk of developing celiac disease: The PROFICEL study. Gut Microbes 2018; 9:551-558. [PMID: 29672211 PMCID: PMC6287676 DOI: 10.1080/19490976.2018.1451276] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Celiac disease (CD) is an immune-mediated enteropathy involving genetic and environmental factors, whose interaction influences disease risk. The intestinal microbiota, including viruses and bacteria, could play a role in the pathological process leading to gluten intolerance. In this study, we investigated the prevalence of pathogens in the intestinal microbiota of infants at familial risk of developing CD. We included 127 full-term newborns with at least one first-degree relative with CD. Infants were classified according to milk-feeding practice (breastfeeding or formula feeding) and HLA-DQ genotype (low, intermediate or high genetic risk). The prevalence of pathogenic bacteria and viruses was assessed in the faeces of the infants at 7 days, 1 month and 4 months of age. The prevalence of Clostridium perfringens was higher in formula-fed infants than in breast-fed over the study period, and that of C. difficile at 4 months. Among breastfed infants, a higher prevalence of enterotoxigenic E. coli (ETEC) was found in infants with the highest genetic risk compared either to those with a low or intermediate risk. Among formula-fed infants, a higher prevalence of ETEC was also found in infants with a high genetic risk compared to those of intermediate risk. Our results show that specific factors, such as formula feeding and the HLA-DQ2 genotype, previously linked to a higher risk of developing CD, influence the presence of pathogenic bacteria differently in the intestinal microbiota in early life. Further studies are warranted to establish whether these associations are related to CD onset later in life.
Collapse
Affiliation(s)
- Marta Olivares
- Microbial Ecology, Nutrition & Health Research Unit. Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Valencia, Spain,CONTACT Marta Olivares IATA-CSIC, C/Catedrático Agustín Escardino, 7. 46980, Paterna, Valencia, Spain
| | - Alfonso Benítez-Páez
- Microbial Ecology, Nutrition & Health Research Unit. Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Valencia, Spain
| | - Giada de Palma
- Microbial Ecology, Nutrition & Health Research Unit. Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Valencia, Spain
| | - Amalia Capilla
- Genetics and Molecular Medicine Unit. Institute of Biomedicine of Valencia, Spanish National Research Council (IBV-CSIC), Valencia, Spain
| | - Esther Nova
- Institute of Food Science, Technology and Nutrition, Spanish National Research Council (ICTAN-CSIC), Madrid, Spain
| | - Gemma Castillejo
- Universitary Hospital Sant Joan of Reus, URV, IISPV, Tarragona, Spain
| | - Vicente Varea
- Gastroenterología, Nutrición y Hepatología Pediátrica, Hospital Universitario Sant Joan de Deu, and Instituto de Gastroeneterología y Nutrición Pediátrica de Barcelona, Barcelona, Spain
| | - Ascensión Marcos
- Institute of Food Science, Technology and Nutrition, Spanish National Research Council (ICTAN-CSIC), Madrid, Spain
| | - José Antonio Garrote
- Research Unit and Paediatric Service, Hospital Clínico Universitario, Valladolid, Spain
| | - Isabel Polanco
- Servicio de Gastroenterología y Nutrición Pediátrica, Hospital Universitario La Paz, Madrid, Spain
| | - Ester Donat
- Unidad de Gastroenterología, Hospital Infantil Universitario La Fe, Valencia, Spain
| | | | - Carmen Calvo
- Research Unit and Paediatric Service, Hospital Clínico Universitario, Valladolid, Spain
| | - Luis Ortigosa
- Unidad de Gastroenterologia, Hepatología y Nutrición Pediátrica, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Canary Islands, Spain
| | - Francesc Palau
- Genetics and Molecular Medicine Unit. Institute of Biomedicine of Valencia, Spanish National Research Council (IBV-CSIC), Valencia, Spain
| | - Yolanda Sanz
- Microbial Ecology, Nutrition & Health Research Unit. Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Valencia, Spain,Yolanda Sanz IATA-CSIC, C/Catedrático Agustín Escardino, 7. 46980, Paterna, Valencia, Spain
| |
Collapse
|
145
|
Rintala A, Riikonen I, Toivonen A, Pietilä S, Munukka E, Pursiheimo JP, Elo LL, Arikoski P, Luopajärvi K, Schwab U, Uusitupa M, Heinonen S, Savilahti E, Eerola E, Ilonen J. Early fecal microbiota composition in children who later develop celiac disease and associated autoimmunity. Scand J Gastroenterol 2018; 53:403-409. [PMID: 29504486 DOI: 10.1080/00365521.2018.1444788] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
OBJECTIVES Several studies have reported that the intestinal microbiota composition of celiac disease (CD) patients differs from healthy individuals. The possible role of gut microbiota in the pathogenesis of the disease is, however, not known. Here, we aimed to assess the possible differences in early fecal microbiota composition between children that later developed CD and healthy controls matched for age, sex and HLA risk genotype. MATERIALS AND METHODS We used 16S rRNA gene sequencing to examine the fecal microbiota of 27 children with high genetic risk of developing CD. Nine of these children developed the disease by the age of 4 years. Stool samples were collected at the age of 9 and 12 months, before any of the children had developed CD. The fecal microbiota composition of children who later developed the disease was compared with the microbiota of the children who did not have CD or associated autoantibodies at the age of 4 years. Delivery mode, early nutrition, and use of antibiotics were taken into account in the analyses. RESULTS No statistically significant differences in the fecal microbiota composition were found between children who later developed CD (n = 9) and the control children without disease or associated autoantibodies (n = 18). CONCLUSIONS Based on our results, the fecal microbiota composition at the age of 9 and 12 months is not associated with the development of CD. Our results, however, do not exclude the possibility of duodenal microbiota changes or a later microbiota-related trigger for the disease.
Collapse
Affiliation(s)
- Anniina Rintala
- a Department of Medical Microbiology and Immunology , University of Turku , Turku , Finland.,b Department of Clinical Microbiology , Turku University Hospital , Turku , Finland
| | - Iiris Riikonen
- a Department of Medical Microbiology and Immunology , University of Turku , Turku , Finland
| | - Anne Toivonen
- c Department of Bacteriology and Immunology , University of Helsinki and Laboratory Services (HUSLAB), Division of Clinical Microbiology, Helsinki University Hospital , Helsinki , Finland.,d Department of Clinical Microbiology , Institute of Clinical Medicine, University of Eastern Finland , Kuopio , Finland
| | - Sami Pietilä
- e Turku Centre for Biotechnology , University of Turku and Åbo Akademi University , Turku , Finland
| | - Eveliina Munukka
- a Department of Medical Microbiology and Immunology , University of Turku , Turku , Finland
| | | | - Laura L Elo
- e Turku Centre for Biotechnology , University of Turku and Åbo Akademi University , Turku , Finland
| | - Pekka Arikoski
- g Department of Pediatrics , Kuopio University Hospital and University of Eastern Finland , Kuopio , Finland
| | - Kristiina Luopajärvi
- h Children's Hospital, Department of Pediatrics , Helsinki University Hospital and University of Helsinki , Helsinki , Finland
| | - Ursula Schwab
- i Institute of Public Health and Clinical Nutrition , University of Eastern Finland , Kuopio , Finland
| | - Matti Uusitupa
- i Institute of Public Health and Clinical Nutrition , University of Eastern Finland , Kuopio , Finland
| | - Seppo Heinonen
- j Department of Obstetrics and Gynecology , Helsinki University Hospital and University of Helsinki , Helsinki , Finland
| | - Erkki Savilahti
- h Children's Hospital, Department of Pediatrics , Helsinki University Hospital and University of Helsinki , Helsinki , Finland
| | - Erkki Eerola
- a Department of Medical Microbiology and Immunology , University of Turku , Turku , Finland.,b Department of Clinical Microbiology , Turku University Hospital , Turku , Finland
| | - Jorma Ilonen
- a Department of Medical Microbiology and Immunology , University of Turku , Turku , Finland.,k Immunogenetics Laboratory , Institute of Biomedicine, University of Turku , Turku , Finland
| |
Collapse
|
146
|
Abstract
Since the discovery of HLA 60 years ago, it has contributed to the understanding of the immune system as well as of the pathogenesis of several diseases. Aside from its essential role in determining donor-recipient immune compatibility in organ transplantation, HLA genotyping is meanwhile performed routinely as part of the diagnostic work-up of certain autoimmune diseases. Considering the ability of HLA to influence thymic selection as well as peripheral anergy of T cells, its role in the pathogenesis of autoimmunity is understandable. The aim of this paper is to provide a brief overview of the role and current clinical relevance of HLA-B27 in spondyloarthritis and HLA-B51 in Behçet's disease as well as HLA-DQ2/DQ8 in celiac disease and HLA-DRB1 in rheumatoid arthritis and to discuss possible future implications.
Collapse
Affiliation(s)
- Gergely Bodis
- Division of Rheumatology and Clinical Immunology, University Hospital, Mainz, Germany.,Institut für Medizinische Diagnostik GmbH, Bioscientia Labor Ingelheim, Ingelheim Am Rhein, Germany
| | - Victoria Toth
- Division of Rheumatology and Clinical Immunology, University Hospital, Mainz, Germany.,Institut für Medizinische Diagnostik GmbH, Bioscientia Labor Ingelheim, Ingelheim Am Rhein, Germany
| | - Andreas Schwarting
- Division of Rheumatology and Clinical Immunology, University Hospital, Mainz, Germany. .,ACURA Center for Rheumatic Diseases, Bad Kreuznach, Germany.
| |
Collapse
|
147
|
Olivares M, Walker AW, Capilla A, Benítez-Páez A, Palau F, Parkhill J, Castillejo G, Sanz Y. Gut microbiota trajectory in early life may predict development of celiac disease. MICROBIOME 2018; 6:36. [PMID: 29458413 PMCID: PMC5819212 DOI: 10.1186/s40168-018-0415-6] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 01/24/2018] [Indexed: 05/28/2023]
Abstract
BACKGROUND To investigate whether alterations in the developing intestinal microbiota and immune markers precede celiac disease (CD) onset in infants at familial risk of developing the disease. METHODS A nested case-control study was carried out as part of a larger prospective cohort study, which included healthy full-term newborns (> 200) with at least one first relative with biopsy-verified CD. The present study includes cases of CD (n = 10) and the best-matched controls (n = 10) who did not develop the disease after 5-year follow-up. Fecal microbiota, assessed by high-throughput 16S rRNA gene amplicon sequencing, and immune parameters were profiled at 4 and 6 months of age and related to CD onset. RESULTS The microbiota of infants who remained healthy showed an increase in bacterial diversity over time, characterized by increases in Firmicutes families, but not those who developed CD. Infants who subsequently developed CD showed a significant reduction in sIgA levels over time, while those who remained healthy showed increases in TNF-α correlated to Bifidobacterium spp. An increased relative abundance of Bifidobacterium longum was associated with control children while increased proportions of Bifidobacterium breve and Enterococcus spp. were associated with CD development. CONCLUSION The findings suggest that alterations in the early trajectory of gut microbiota in infants at CD risk could influence the immune maturation process and predispose to CD, although larger population studies are warranted to confirm this hypothesis.
Collapse
Affiliation(s)
- Marta Olivares
- Microbial Ecology, Nutrition and Health Research Unit, Institute of Agrochemistry and Food Technology, National Research Council (IATA-CSIC), C/Catedrático Agustín Escardino, 7. 46980, Paterna, Valencia, Spain
| | - Alan W. Walker
- Gut Health Group, The Rowett Institute, University of Aberdeen, Aberdeen, UK
- Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire UK
| | - Amalia Capilla
- Genetics and Molecular Medicine Unit, Institute of Biomedicine of Valencia, National Research Council (IBV-CSIC), Valencia, Spain
- Center for regenerative medicine, Boston university school of medicine, Boston, USA
| | - Alfonso Benítez-Páez
- Microbial Ecology, Nutrition and Health Research Unit, Institute of Agrochemistry and Food Technology, National Research Council (IATA-CSIC), C/Catedrático Agustín Escardino, 7. 46980, Paterna, Valencia, Spain
| | - Francesc Palau
- Genetics and Molecular Medicine Unit, Institute of Biomedicine of Valencia, National Research Council (IBV-CSIC), Valencia, Spain
- Institut de Recerca Sant Joan de Déu and CIBERER, Hospital Sant Joan de Déu, Barcelona, Spain
| | | | - Gemma Castillejo
- Hospital Universitari de Sant Joan de Reus, IISPV, URV, Tarragona, Spain
| | - Yolanda Sanz
- Microbial Ecology, Nutrition and Health Research Unit, Institute of Agrochemistry and Food Technology, National Research Council (IATA-CSIC), C/Catedrático Agustín Escardino, 7. 46980, Paterna, Valencia, Spain
| |
Collapse
|
148
|
Abstract
Coeliac disease occurs in about 1% of people in most populations. Diagnosis rates are increasing, and this seems to be due to a true rise in incidence rather than increased awareness and detection. Coeliac disease develops in genetically susceptible individuals who, in response to unknown environmental factors, develop an immune response that is subsequently triggered by the ingestion of gluten. The disease has many clinical manifestations, ranging from severe malabsorption to minimally symptomatic or non-symptomatic presentations. Diagnosis requires the presence of duodenal villous atrophy, and most patients have circulating antibodies against tissue transglutaminase; in children, European guidelines allow a diagnosis without a duodenal biopsy provided that strict symptomatic and serological criteria are met. Although a gluten-free diet is an effective treatment in most individuals, a substantial minority develop persistent or recurrent symptoms. Difficulties adhering to a gluten-free diet have led to the development of non-dietary therapies, several of which are undergoing trials in human beings.
Collapse
Affiliation(s)
- Benjamin Lebwohl
- Celiac Disease Center, College of Physicians and Surgeons, Columbia University Medical Center, New York, NY, USA; Department of Epidemiology, Mailman School of Public Health, Columbia University Medical Center, New York, NY, USA
| | - David S Sanders
- Academic Unit of Gastroenterology, Royal Hallamshire Hospital & University of Sheffield, UK
| | - Peter H R Green
- Celiac Disease Center, College of Physicians and Surgeons, Columbia University Medical Center, New York, NY, USA.
| |
Collapse
|
149
|
Abstract
The aim of this review is to provide a brief overview of the role and current clinical relevance of HLA-B27 in spondyloarthritis and HLA-B51 in Behcet's disease as well as HLA-DQ2/DQ8 in celiac disease and HLA-DRB1 in rheumatoid arthritis and to discuss possible future implications.
Collapse
Affiliation(s)
- Gergely Bodis
- Bioscientia Institut für Medizinische Diagnostik GmbH, Ingelheim, Germany
- Acura Rheumatology Center Rhineland Palatine, Bad Kreuznach, Germany
| | - Victoria Toth
- Bioscientia Institut für Medizinische Diagnostik GmbH, Ingelheim, Germany
- Acura Rheumatology Center Rhineland Palatine, Bad Kreuznach, Germany
| | - Andreas Schwarting
- Acura Rheumatology Center Rhineland Palatine, Bad Kreuznach, Germany.
- Division of Rheumatology and Clinical Immunology, Department of Internal Medicine I, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany.
| |
Collapse
|
150
|
Abstract
Celiac disease (CD) is a common autoimmune disorder induced by ingestion of gluten in genetically susceptible individuals. Despite the prerequisite for a genetic predisposition, only a minority of the 40% of the Caucasian population that has this genetic predisposition develops the disease. Thus, environmental and/or lifestyle factors play a causal role in the development of CD. The incidence of CD has increased over the last half-century, resulting in rising interest in identifying risk factors for CD to enable primary prevention. Early infant feeding practices have been suggested as one of the factors influencing the risk of CD in genetically susceptible individuals. However, recent large prospective studies have shown that neither the timing of gluten introduction nor the duration or maintenance of breastfeeding influence the risk of CD. Also, other environmental influences have been investigated as potential risk factors, but have not led to primary prevention strategies. Secondary prevention is possible through early diagnosis and treatment. Since CD is significantly underdiagnosed and a large proportion of CD patients are asymptomatic at the time of diagnosis, secondary prevention will not identify all CD patients, as long as mass screening has not been introduced. As following a gluten-free diet is a major challenge, tertiary prevention strategies are discussed as well.
Collapse
Affiliation(s)
- Caroline Meijer
- Deptartment of Pediatrics, Leiden University Medical Center, Willem Alexander Children's Hospital, Leiden, Netherlands
| | - Raanan Shamir
- Institute for Gastroenterology, Nutrition and Liver Diseases, Schneider Children's Medical Center, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Hania Szajewska
- Department of Pediatrics, The Medical University of Warsaw, Warsaw, Poland
| | - Luisa Mearin
- Deptartment of Pediatrics, Leiden University Medical Center, Willem Alexander Children's Hospital, Leiden, Netherlands
| |
Collapse
|