101
|
Wu W, Zhang L, Xia B, Tang S, Xie J, Zhang H. Modulation of Pectin on Mucosal Innate Immune Function in Pigs Mediated by Gut Microbiota. Microorganisms 2020; 8:microorganisms8040535. [PMID: 32276396 PMCID: PMC7232157 DOI: 10.3390/microorganisms8040535] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 03/22/2020] [Accepted: 04/03/2020] [Indexed: 12/19/2022] Open
Abstract
The use of prebiotics to regulate gut microbiota is a promising strategy to improve gut health. Pectin (PEC) is a prebiotic carbohydrate that enhances the health of the gut by promoting the growth of beneficial microbes. These microbes produce metabolites that are known to improve mucosal immune responses. This study was conducted to better understand effects of PEC on the microbiome and mucosal immunity in pigs. Pigs were fed two diets, with or without 5% apple PEC, for 72 days. Effects of PEC on the microbiota, cytokine expression, short-chain fatty acids (SCFAs) concentration and barrier function were examined in the ileum and cecum of the pigs. An integrative analysis was used to determine interactions of PEC consumption with bacterial metabolites and microbiome composition and host mucosal responses. Consumption of PEC reduced expression of pro-inflammatory cytokines such as IFN-γ, IL-6, IL-8, IL-12 and IL-18, and the activation of the pro-inflammatory NF-κB signaling cascade. Expression of MUC2 and TFF and the sIgA content was upregulated in the mucosa of PEC-fed pigs. Network analysis revealed that PEC induced significant interactions between microbiome composition in the ileum and cecum on mucosal immune pathways. PEC-induced changes in bacterial genera and fermentation metabolites, such as Akkermansia, Faecalibacterium, Oscillibacter, Lawsonia and butyrate, correlated with the differentially expressed genes and cytokines in the mucosa. In summary, the results demonstrate the anti-inflammatory properties of PEC on mucosal immune status in the ileum and cecum effected through modulation of the host microbiome.
Collapse
Affiliation(s)
- Weida Wu
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (W.W.); (B.X.); (S.T.); (J.X.)
| | - Li Zhang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Nanchang University, Nanchang 330047, China;
| | - Bing Xia
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (W.W.); (B.X.); (S.T.); (J.X.)
| | - Shanlong Tang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (W.W.); (B.X.); (S.T.); (J.X.)
| | - Jingjing Xie
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (W.W.); (B.X.); (S.T.); (J.X.)
| | - Hongfu Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (W.W.); (B.X.); (S.T.); (J.X.)
- Correspondence: ; Tel.: +86-10-62816013
| |
Collapse
|
102
|
Liso M, De Santis S, Verna G, Dicarlo M, Calasso M, Santino A, Gigante I, Eri R, Raveenthiraraj S, Sobolewski A, Palmitessa V, Lippolis A, Mastronardi M, Armentano R, Serino G, De Angelis M, Chieppa M. A Specific Mutation in Muc2 Determines Early Dysbiosis in Colitis-Prone Winnie Mice. Inflamm Bowel Dis 2020; 26:546-556. [PMID: 31748792 PMCID: PMC7054774 DOI: 10.1093/ibd/izz279] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Indexed: 12/13/2022]
Abstract
BACKGROUND Inflammatory bowel disease (IBD), including Crohn disease (CD) and ulcerative colitis (UC), is a multifactorial disorder characterized by chronic inflammation and altered gut barrier function. Dysbiosis, a condition defined by dysregulation of the gut microbiome, has been reported in patients with IBD and in experimental models of colitis. Although several factors have been implicated in directly affecting gut microbial composition, the genetic determinants impacting intestinal dysbiosis in IBD remain relatively unknown. METHODS We compared the microbiome of normal, uninflamed wild-type (WT) mice with that of a murine model of UC (ie, Winnie strain). Winnie mice possess a missense mutation in Muc2 that manifests in altered mucus production as early as 4 weeks of age, with ensuing colonic inflammation. To better address the potential role of mutant Muc2 in promoting dysbiosis in Winnie mice, we evaluated homozygous mutant mice (Winnie-/-) with their WT littermates that, after weaning from common mothers, were caged separately according to genotype. Histologic and inflammatory status were assessed over time, along with changes in their respective microbiome compositions. RESULTS Dysbiosis in Winnie mice was already established at 4 weeks of age, before histologic evidence of gut inflammatory changes, in which microbial communities diverged from that derived from their mothers. Furthermore, dysbiosis persisted until 12 weeks of age, with peak differences in microbiome composition observed between Winnie and WT mice at 8 weeks of age. The relative abundance of Bacteroidetes was greater in Winnie compared with WT mice. Verrucomicrobia was detected at the highest relative levels in 4-week-old Winnie mice; in particular, Akkermansia muciniphila was among the most abundant species found at 4 weeks of age. CONCLUSIONS Our results demonstrate that mutant genetic determinants involved in the complex regulation of intestinal homeostasis, such as that observed in Winnie mice, are able to promote early gut dysbiosis that is independent from maternal microbial transfer, including breastfeeding. Our data provide evidence for intestinal dysbiosis attributed to a Muc2-driven mucus defect that leads to colonic inflammation and may represent an important target for the design of future interventional studies.
Collapse
Affiliation(s)
- Marina Liso
- National Institute of Gastroenterology “S. de Bellis,” Institute of Research, Castellana Grotte (BA), Italy
| | - Stefania De Santis
- Department of Pharmacy, School of Pharmacy, University of Salerno, Fisciano (SA), Italy
| | - Giulio Verna
- National Institute of Gastroenterology “S. de Bellis,” Institute of Research, Castellana Grotte (BA), Italy
| | - Manuela Dicarlo
- National Institute of Gastroenterology “S. de Bellis,” Institute of Research, Castellana Grotte (BA), Italy
| | - Maria Calasso
- Department of Soil, Plant and Food Sciences, University of Bari, Bari, Italy
| | - Angelo Santino
- Institute of Sciences of Food Production C.N.R., Unit of Lecce, Lecce, Italy
| | - Isabella Gigante
- National Institute of Gastroenterology “S. de Bellis,” Institute of Research, Castellana Grotte (BA), Italy
| | - Rajaraman Eri
- Mucosal Biology, School of Health Sciences, University of Tasmania, Launceston, TAS, Australia
| | | | - Anastasia Sobolewski
- School of Pharmacy University of East Anglia, Norwich Research Park, Norwich, UK
| | - Valeria Palmitessa
- National Institute of Gastroenterology “S. de Bellis,” Institute of Research, Castellana Grotte (BA), Italy
| | - Antonio Lippolis
- National Institute of Gastroenterology “S. de Bellis,” Institute of Research, Castellana Grotte (BA), Italy
| | - Mauro Mastronardi
- National Institute of Gastroenterology “S. de Bellis,” Institute of Research, Castellana Grotte (BA), Italy
| | - Raffaele Armentano
- National Institute of Gastroenterology “S. de Bellis,” Institute of Research, Castellana Grotte (BA), Italy
| | - Grazia Serino
- National Institute of Gastroenterology “S. de Bellis,” Institute of Research, Castellana Grotte (BA), Italy
| | - Maria De Angelis
- Department of Soil, Plant and Food Sciences, University of Bari, Bari, Italy
| | - Marcello Chieppa
- National Institute of Gastroenterology “S. de Bellis,” Institute of Research, Castellana Grotte (BA), Italy,Department of Immunology and Cell Biology, European Biomedical ResearchInstitute of Salerno (EBRIS), Salerno, Italy,Address correspondence to: Marcello Chieppa, PhD, National Institute of Gastroenterology “S. de Bellis,” Institute of Research, Castellana Grotte (BA), Italy ()
| |
Collapse
|
103
|
Natural Transmission of Helicobacter saguini Causes Multigenerational Inflammatory Bowel Disease in C57/129 IL-10 -/- Mice. mSphere 2020; 5:5/2/e00011-20. [PMID: 32213619 PMCID: PMC7096620 DOI: 10.1128/msphere.00011-20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
While family history is a significant risk factor for developing inflammatory bowel disease (IBD), it is unclear whether the microbiome from parents is a transmissible influence on disease in their offspring. Furthermore, it is unknown whether IBD-associated microbes undergo genomic adaptations during multigenerational transmission and chronic colonization in their hosts. Herein, we show that a single bacterial species, Helicobacter saguini, isolated from a nonhuman primate species with familial IBD, is transmissible from parent to offspring in germfree IL-10−/− mice and causes multigenerational IBD. Additionally, whole-genome sequence analysis of H. saguini isolated from different mouse generations identified microevolutions in environmental interaction, nutrient metabolism, and virulence factor genes that suggest that multigenerational transmission may promote adaptations related to colonization and survival in new hosts and chronic inflammatory environments. The findings from our study highlight the importance of specific bacterial species with pathogenic potential, like H. saguini, as transmissible microorganisms in the etiopathogenesis of IBD. Cotton-top tamarins (CTTs) are an ideal model of human inflammatory bowel disease (IBD) because these animals develop multigenerational, lower bowel cancer. We previously isolated and characterized a novel enterohepatic Helicobacter species, Helicobacter saguini, from CTTs with IBD and documented that H. saguini infection in germfree C57BL IL-10−/− mice recapitulates IBD, suggesting that H. saguini influences IBD etiopathogenesis. In this study, we utilized a germfree IL-10−/− model to illustrate that H. saguini infection can naturally transmit and infect four generations and cause significant intestinal inflammatory pathology. Additionally, whole-genome sequencing of representative H. saguini isolates from each generation of IL-10−/− mice revealed gene mutations suggestive of multigenerational evolution. Overall, these results support that specific bacterial species with pathogenic potential, like H. saguini, are transmissible microorganisms in the etiopathogenesis of IBD in CTTs and reinforces the importance of specific microbiota in the pathogenesis of IBD in humans. IMPORTANCE While family history is a significant risk factor for developing inflammatory bowel disease (IBD), it is unclear whether the microbiome from parents is a transmissible influence on disease in their offspring. Furthermore, it is unknown whether IBD-associated microbes undergo genomic adaptations during multigenerational transmission and chronic colonization in their hosts. Herein, we show that a single bacterial species, Helicobacter saguini, isolated from a nonhuman primate species with familial IBD, is transmissible from parent to offspring in germfree IL-10−/− mice and causes multigenerational IBD. Additionally, whole-genome sequence analysis of H. saguini isolated from different mouse generations identified microevolutions in environmental interaction, nutrient metabolism, and virulence factor genes that suggest that multigenerational transmission may promote adaptations related to colonization and survival in new hosts and chronic inflammatory environments. The findings from our study highlight the importance of specific bacterial species with pathogenic potential, like H. saguini, as transmissible microorganisms in the etiopathogenesis of IBD.
Collapse
|
104
|
Georgopoulos SD, Michopoulos S, Rokkas T, Apostolopoulos P, Giamarellos E, Kamberoglou D, Mentis A, Triantafyllou K. Hellenic consensus on Helicobacter pylori infection. Ann Gastroenterol 2020; 33:105-124. [PMID: 32127732 PMCID: PMC7049243 DOI: 10.20524/aog.2020.0446] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 10/30/2019] [Indexed: 02/06/2023] Open
Abstract
The Hellenic Society of Gastroenterology recently organized the "Hellenic consensus on Helicobacter pylori (H. pylori) infection". The aim of this publication is to report the guidelines in order to aid the national gastroenterology community in the management of H. pylori infection. Forty-one delegates from all Greek regions, including gastroenterologists, pathologists, clinical microbiologists, epidemiologists and basic scientists, were invited to this meeting. The participants were allocated to 1 of the 4 main topics of the meeting: i.e., H. pylori diagnosis and association with diseases; H. pylori and gastric cancer; H. pylori and extragastric associated disorders; and H. pylori treatment. The results of each subgroup were submitted to a final consensus vote that included all participants. Relevant data based on international and Greek publications were presented, and the quality of evidence, strength of recommendation, and level of consensus were graded. The cutoff level of 70% was considered as acceptance for the final statement. It is hoped that the recommendations and conclusions of this report will guide Greek doctors in their daily practice concerning the management of H. pylori infection.
Collapse
Affiliation(s)
| | | | - Theodoros Rokkas
- Gastroenterology Department, Henry Dynan Hospital (Theodoros Rokkas)
| | | | - Evangelos Giamarellos
- 4 Department of Internal Medicine, Attikon University Hospital (Evangelos Giamarellos)
| | | | - Andreas Mentis
- Laboratory of Medical Microbiology, Hellenic Pasteur Institute, (Andreas Mentis)
| | | |
Collapse
|
105
|
Mirzaei R, Mirzaei H, Alikhani MY, Sholeh M, Arabestani MR, Saidijam M, Karampoor S, Ahmadyousefi Y, Moghadam MS, Irajian GR, Hasanvand H, Yousefimashouf R. Bacterial biofilm in colorectal cancer: What is the real mechanism of action? Microb Pathog 2020; 142:104052. [PMID: 32045645 DOI: 10.1016/j.micpath.2020.104052] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 02/07/2020] [Accepted: 02/07/2020] [Indexed: 02/07/2023]
Abstract
Human colorectal cancer is the third most common cancer around the world. Colorectal cancer has various risk factors, but current works have bolded a significant activity for the microbiota of the human colon in the development of this disease. Bacterial biofilm has been mediated to non-malignant pathologies like inflammatory bowel disease but has not been fully documented in the setting of colorectal cancer. The investigation has currently found that bacterial biofilm is mediated to colon cancer in the human and linked to the location of human cancer, with almost all right-sided adenomas of colon cancers possessing bacterial biofilm, whilst left-sided cancer is rarely biofilm positive. The profound comprehension of the changes in colorectal cancer can provide interesting novel concepts for anticancer treatments. In this review, we will summarize and examine the new knowledge about the links between colorectal cancer and bacterial biofilm.
Collapse
Affiliation(s)
- Rasoul Mirzaei
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohammad Yousef Alikhani
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mohammad Sholeh
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Arabestani
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Massoud Saidijam
- Department of Molecular Medicine and Genetics, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran; Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Hamadan University of Medical Sciences, Hamadan, Iran; Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Sajad Karampoor
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Yaghoub Ahmadyousefi
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Hamadan University of Medical Sciences, Hamadan, Iran; Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mohammad Shokri Moghadam
- Department of Microbiology, School of Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Gholam Reza Irajian
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Hamze Hasanvand
- School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Rasoul Yousefimashouf
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.
| |
Collapse
|
106
|
Pogreba-Brown K, Austhof E, Armstrong A, Schaefer K, Zapata LV, McClelland DJ, Batz MB, Kuecken M, Riddle M, Porter CK, Bazaco MC. Chronic Gastrointestinal and Joint-Related Sequelae Associated with Common Foodborne Illnesses: A Scoping Review. Foodborne Pathog Dis 2020; 17:67-86. [PMID: 31589475 PMCID: PMC9246095 DOI: 10.1089/fpd.2019.2692] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
To strengthen the burden estimates for chronic sequelae of foodborne illness, we conducted a scoping review of the current literature for common foodborne pathogens and their associated sequelae. We aim to describe the current literature and gaps in knowledge of chronic sequelae associated with common foodborne illnesses. A comprehensive search was conducted in PubMed, EMBASE, and Web of Science for peer-reviewed articles published January 1, 2000 to April 1, 2018. Articles available in English, of any epidemiological study design, for 10 common foodborne pathogens (Campylobacter, Salmonella, Escherichia coli, Listeria, Shigella, Cryptosporidium, Cyclospora, Giardia, Yersinia, and norovirus) and their associated gastrointestinal (GI)- and joint-related sequelae were included. Of the 6348 titles screened for inclusion, 380 articles underwent full-text review; of those 380, 129 were included for data extraction. Of the bacterial pathogens included in the search terms, the most commonly reported were Salmonella (n = 104) and Campylobacter (n = 99); E. coli (n = 55), Shigella (n = 49), Yersinia (n = 49), and Listeria (n = 15) all had fewer results. Norovirus was the only virus included in our search, with 28 article that reported mostly GI-related sequelae and reactive arthritis (ReA) reported once. For parasitic diseases, Giardia (n = 26) and Cryptosporidium (n = 18) had the most articles, and no results were found for Cyclospora. The most commonly reported GI outcomes were irritable bowel syndrome (IBS; n = 119) and inflammatory bowel disease (n = 29), and ReA (n = 122) or "joint pain" (n = 19) for joint-related sequelae. Salmonella and Campylobacter were most often associated with a variety of outcomes, with ReA (n = 34 and n = 27) and IBS (n = 17 and n = 20) reported most often. This scoping review shows there are still a relatively small number of studies being conducted to understand specific pathogen/outcome relationships. It also shows where important gaps in the impact of chronic sequelae from common foodborne illnesses still exist and where more focused research would best be implemented.
Collapse
Affiliation(s)
- Kristen Pogreba-Brown
- Epidemiology & Biostatistics Mel and Enid Zuckerman College of Public Health, University of Arizona, Tucson, Arizona
| | - Erika Austhof
- Epidemiology & Biostatistics Mel and Enid Zuckerman College of Public Health, University of Arizona, Tucson, Arizona
| | - Alexandra Armstrong
- Epidemiology & Biostatistics Mel and Enid Zuckerman College of Public Health, University of Arizona, Tucson, Arizona
| | - Kenzie Schaefer
- Epidemiology & Biostatistics Mel and Enid Zuckerman College of Public Health, University of Arizona, Tucson, Arizona
| | - Lorenzo Villa Zapata
- Epidemiology & Biostatistics Mel and Enid Zuckerman College of Public Health, University of Arizona, Tucson, Arizona
| | | | | | - Maria Kuecken
- U.S. Food and Drug Administration, College Park, Maryland
| | - Mark Riddle
- Naval Medical Research Center, Silver Spring, Maryland
| | | | | |
Collapse
|
107
|
Aguilera Matos I, Diaz Oliva SE, Escobedo AA, Villa Jiménez OM, Velazco Villaurrutia YDC. Helicobacter pylori infection in children. BMJ Paediatr Open 2020; 4:e000679. [PMID: 32818155 PMCID: PMC7402006 DOI: 10.1136/bmjpo-2020-000679] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 06/26/2020] [Accepted: 06/29/2020] [Indexed: 12/12/2022] Open
Abstract
Helicobacter pylori infection affects more than half of the world population and it occurs generally in childhood. It is associated with gastroduodenal ulcer, gastric atrophy, intestinal metaplasia, gastric adenocarcinoma and lymphoid tissue-associated lymphoma. It is difficult to eradicate this bacterium due to its high antimicrobial resistance. In children, the infection is asymptomatic in the majority of cases and complications are less common. Probable inverse relationships with allergic diseases and inflammatory bowel diseases are being studied. These reasons mean that the decision to diagnose and treat the infection in children is only considered in specific circumstances in which it provides true benefits. This review focuses on some current considerations regarding epidemiology, diagnosis and treatment of childhood infection, emphasising outcomes and treatment schemes in children.
Collapse
Affiliation(s)
| | | | - Angel A Escobedo
- Epidemiology, Institute of Gastroenterology, Havana City, Havana, Cuba
| | | | | |
Collapse
|
108
|
Yang L, Zhang J, Xu J, Wei X, Yang J, Liu Y, Li H, Zhao C, Wang Y, Zhang L, Gai Z. Helicobacter pylori Infection Aggravates Dysbiosis of Gut Microbiome in Children With Gastritis. Front Cell Infect Microbiol 2019; 9:375. [PMID: 31781514 PMCID: PMC6859803 DOI: 10.3389/fcimb.2019.00375] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 10/16/2019] [Indexed: 02/06/2023] Open
Abstract
Introduction:Helicobacter pylori infection consistently leads to chronic and low degree of inflammatory response in gastric mucosa and is closely related with gastrointestinal and extra-gastric diseases. Effects of local microbiome in the stomach have been studied in adults and children with H. pylori infection. It is, however, not known whether the intestinal microbial community differs in children with varying H. pylori infection. The aim of this study is to characterize the altered composition of microbiome induced by H. pylori infection and in gastritis. Materials and Methods: This study involved 154 individuals, including 50 children affected by H. pylori-induced gastritis, 42 children with H. pylori-negative gastritis, and 62 healthy controls. Gut microbiome composition was analyzed using 16S rRNA gene-based pyrosequencing. Fecal bacterial diversity and composition were then compared. Results: On the basis of an analysis of similarities and differences, we found that children with H. pylori-induced gastritis exhibited gut bacteria dysbiosis. The ratio of Firmicutes/Bacteroidetes (F:B) at the phylum level had dramatically decreased in H. pylori-positive gastritis group (HPG) and H. pylori-negative gastritis group (HNG), compared with the healthy control group (HCG). At the family and genus levels, relative abundance of Bacteroidaceae and Enterobacteriaceae was prevalent in HPG and HNG, whereas relative abundance of Lachnospiraceae, Bifidobacteriaceae, and Lactobacillaceae was seen in HCG. Prevalence of different taxa of gut microbiome at the class, order, family, and genus levels was also observed among the three groups. Conclusions: Gastritis can cause changes in composition of fecal microbiome, which is exacerbated by H. pylori infection. These changes in gut microbiome may be related to drug resistance and development of chronic gastrointestinal diseases.
Collapse
Affiliation(s)
- Lu Yang
- Department of Digestive Disease, Qilu Children's Hospital of Shandong University, Jinan, China
| | - Jiaming Zhang
- Shandong Children's Microbiome Center, Qilu Children's Hospital of Shandong University, Jinan, China
| | - Junjie Xu
- Department of Digestive Disease, Qilu Children's Hospital of Shandong University, Jinan, China
| | - Xuxia Wei
- Department of Digestive Disease, Qilu Children's Hospital of Shandong University, Jinan, China
| | - Junjie Yang
- College of Life Science, Qilu Normal University, Jinan, China
| | - Yi Liu
- Shandong Children's Microbiome Center, Qilu Children's Hospital of Shandong University, Jinan, China.,Research Institute of Pediatrics, Qilu Children's Hospital of Shandong University, Jinan, China
| | - Hua Li
- Department of Digestive Disease, Qilu Children's Hospital of Shandong University, Jinan, China
| | - Changying Zhao
- Shandong Children's Microbiome Center, Qilu Children's Hospital of Shandong University, Jinan, China
| | - Ying Wang
- Shandong Children's Microbiome Center, Qilu Children's Hospital of Shandong University, Jinan, China.,Research Institute of Pediatrics, Qilu Children's Hospital of Shandong University, Jinan, China
| | - Lei Zhang
- Shandong Children's Microbiome Center, Qilu Children's Hospital of Shandong University, Jinan, China.,Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University, Beijing, China
| | - Zhongtao Gai
- Shandong Children's Microbiome Center, Qilu Children's Hospital of Shandong University, Jinan, China.,Research Institute of Pediatrics, Qilu Children's Hospital of Shandong University, Jinan, China
| |
Collapse
|
109
|
Shah SC. Friend or Foe in Inflammatory Bowel Disease Pathogenesis: Not All Infections Are Equal. Gastroenterology 2019; 157:1441-1442. [PMID: 31442437 DOI: 10.1053/j.gastro.2019.06.044] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 06/20/2019] [Indexed: 12/15/2022]
Affiliation(s)
- Shailja C Shah
- Division of Gastroenterology, Hepatology, and Nutrition, Vanderbilt University Medical Center, Nashville, Tennessee
| |
Collapse
|
110
|
Huang K, Dong W, Liu W, Yan Y, Wan P, Peng Y, Xu Y, Zeng X, Cao Y. 2- O-β-d-Glucopyranosyl-l-ascorbic Acid, an Ascorbic Acid Derivative Isolated from the Fruits of Lycium Barbarum L., Modulates Gut Microbiota and Palliates Colitis in Dextran Sodium Sulfate-Induced Colitis in Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:11408-11419. [PMID: 31556290 DOI: 10.1021/acs.jafc.9b04411] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
In this study, the effects of 2-O-β-d-glucopyranosyl-l-ascorbic acid (AA-2βG), a natural ascorbic acid derivative from the fruits of Lycium barbarum, on treating the dextran sulfate sodium (DSS)-induced colitis in mice were investigated. The results revealed that AA-2βG had palliating effects on DSS-induced inflammatory bowel disease (IBD) in terms of slowing down the trends of body weight and solid fecal mass loss, reducing colitis disease activity index, improving serum physiological and biochemical indicators, increasing colon length, blocking proinflammatory cytokines, and increasing tight junction proteins. Additionally, AA-2βG treatment could promote the production of short-chain fatty acids and modulate the composition of the gut microbiota. The key bacteria related to IBD were found to be Porphyromonadaceae, Prevotellaceae, Rikenellaceae, Parasutterella, Parabacteroides, and Clostridium. The results indicated that AA-2βG might treat IBD through the regulation of gut microbiota, suggesting that AA-2βG has the potential to be used as a dietary supplement in the treatment of IBD.
Collapse
Affiliation(s)
- Kaiyin Huang
- College of Food Science and Technology , Nanjing Agricultural University , Nanjing 210095 , Jiangsu , China
| | - Wei Dong
- College of Food Science and Technology , Nanjing Agricultural University , Nanjing 210095 , Jiangsu , China
| | - Wanyu Liu
- College of Food Science and Technology , Nanjing Agricultural University , Nanjing 210095 , Jiangsu , China
| | - Yamei Yan
- National Wolfberry Engineering Research Center , Yinchuan 750002 , Ningxia , China
| | - Peng Wan
- College of Food Science and Technology , Nanjing Agricultural University , Nanjing 210095 , Jiangsu , China
| | - Yujia Peng
- College of Food Science and Technology , Nanjing Agricultural University , Nanjing 210095 , Jiangsu , China
| | - Yujuan Xu
- College of Food Science and Technology , Nanjing Agricultural University , Nanjing 210095 , Jiangsu , China
| | - Xiaoxiong Zeng
- College of Food Science and Technology , Nanjing Agricultural University , Nanjing 210095 , Jiangsu , China
| | - Youlong Cao
- National Wolfberry Engineering Research Center , Yinchuan 750002 , Ningxia , China
| |
Collapse
|
111
|
Hsu T, Gemmell MR, Franzosa EA, Berry S, Mukhopadhya I, Hansen R, Michaud M, Nielsen H, Miller WG, Nielsen H, Bajaj-Elliott M, Huttenhower C, Garrett WS, Hold GL. Comparative genomics and genome biology of Campylobacter showae. Emerg Microbes Infect 2019; 8:827-840. [PMID: 31169073 PMCID: PMC6567213 DOI: 10.1080/22221751.2019.1622455] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Campylobacter showae a bacterium historically linked to gingivitis and periodontitis, has recently been associated with inflammatory bowel disease and colorectal cancer. Our aim was to generate genome sequences for new clinical C. showae strains and identify functional properties explaining their pathogenic potential. Eight C. showae genomes were assessed, four strains isolated from inflamed gut tissues from paediatric Crohn’s disease patients, three strains from colonic adenomas, and one from a gastroenteritis patient stool. Genome assemblies were analyzed alongside the only 3 deposited C. showae genomes. The pangenome from these 11 strains consisted of 4686 unique protein families, and the core genome size was estimated at 1050 ± 15 genes with each new genome contributing an additional 206 ± 16 genes. Functional assays indicated that colonic strains segregated into 2 groups: adherent/invasive vs. non-adherent/non-invasive strains. The former possessed Type IV secretion machinery and S-layer proteins, while the latter contained Cas genes and other CRISPR associated proteins. Comparison of gene profiles with strains in Human Microbiome Project metagenomes showed that gut-derived isolates share genes specific to tongue dorsum and supragingival plaque counterparts. Our findings indicate that C. showae strains are phenotypically and genetically diverse and suggest that secretion systems may play an important role in virulence potential.
Collapse
Affiliation(s)
- Tiffany Hsu
- a Department of Biostatistics , Harvard T. H. Chan School of Public Health , Boston , USA
| | - Matthew R Gemmell
- b School of Medicine, Medical Sciences and Nutrition , Centre for Genome Enabled Biology and Medicine, University of Aberdeen , Aberdeen , UK
| | - Eric A Franzosa
- a Department of Biostatistics , Harvard T. H. Chan School of Public Health , Boston , USA
| | - Susan Berry
- c School of Medicine, Medical Sciences and Nutrition , GI Research Group, University of Aberdeen , Aberdeen , UK
| | - Indrani Mukhopadhya
- c School of Medicine, Medical Sciences and Nutrition , GI Research Group, University of Aberdeen , Aberdeen , UK
| | - Richard Hansen
- d Department of Paediatric Gastroenterology , Royal Hospital for Children , Glasgow , UK
| | - Monia Michaud
- e Departments of Genetics and Complex Diseases and Immunology and Infectious Diseases , Harvard T. H. Chan School of Public Health , Boston , USA
| | - Hans Nielsen
- f Department of Clinical Microbiology , Aalborg University Hospital , Aalborg , Denmark
| | - William G Miller
- g Produce Safety and Microbiology Research Unit, U.S. Department of Agriculture , Agricultural Research Service , Albany , USA
| | - Henrik Nielsen
- h Department of Infectious Diseases , Aalborg University Hospital Aalborg , Denmark
| | - Mona Bajaj-Elliott
- i Infection, Immunity, Inflammation Programme , UCL Great Ormond Street Institute of Child Health , London , UK
| | - Curtis Huttenhower
- a Department of Biostatistics , Harvard T. H. Chan School of Public Health , Boston , USA
| | - Wendy S Garrett
- e Departments of Genetics and Complex Diseases and Immunology and Infectious Diseases , Harvard T. H. Chan School of Public Health , Boston , USA
| | - Georgina L Hold
- a Department of Biostatistics , Harvard T. H. Chan School of Public Health , Boston , USA.,c School of Medicine, Medical Sciences and Nutrition , GI Research Group, University of Aberdeen , Aberdeen , UK.,e Departments of Genetics and Complex Diseases and Immunology and Infectious Diseases , Harvard T. H. Chan School of Public Health , Boston , USA.,j St George and Sutherland Clinical School , Microbiome Research Centre, University of New South Wales , Sydney , Australia
| |
Collapse
|
112
|
Dąbkowski K, Graca-Pakulska K, Zawada I, Ostrowski J, Starzyńska T. Clinical significance of endoscopic findings in the upper gastrointestinal tract in Crohn's disease. Scand J Gastroenterol 2019; 54:1075-1080. [PMID: 31456461 DOI: 10.1080/00365521.2019.1656776] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Crohn's disease is an inflammatory disorder that can affect the entire gastrointestinal tract but typically involves the ileocecal region. Before endoscopy was widely used, involvement of the esophagus, stomach, and duodenum was thought to be rare. Recent publications demonstrated that not only are upper gastrointestinal lesions common in Crohn's disease (affecting up to 75% of the patients), but they also present characteristic endoscopic findings with potential clinical significance. It was suggested that lesions in the stomach with a bamboo joint-like appearance might be an endoscopic biomarker for Crohn's disease. It was also found that this occurrence is related to a more severe disease course. Our review summarizes the literature, as well as our own observations and considerations, concerning the issue of upper gastrointestinal involvement in Crohn's disease and its clinical meaning.
Collapse
Affiliation(s)
- Krzysztof Dąbkowski
- Department of Gastroenterology, Pomeranian Medical University in Szczecin , Szczecin , Poland
| | | | - Iwona Zawada
- Department of Gastroenterology, Pomeranian Medical University in Szczecin , Szczecin , Poland
| | - Jerzy Ostrowski
- Department of Genetics, Maria Skłodowska-Curie Institute - Oncology Centre , Warsaw , Poland
| | - Teresa Starzyńska
- Department of Gastroenterology, Pomeranian Medical University in Szczecin , Szczecin , Poland
| |
Collapse
|
113
|
Piovani D, Danese S, Peyrin-Biroulet L, Nikolopoulos GK, Lytras T, Bonovas S. Environmental Risk Factors for Inflammatory Bowel Diseases: An Umbrella Review of Meta-analyses. Gastroenterology 2019; 157:647-659.e4. [PMID: 31014995 DOI: 10.1053/j.gastro.2019.04.016] [Citation(s) in RCA: 475] [Impact Index Per Article: 79.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 04/15/2019] [Accepted: 04/15/2019] [Indexed: 12/14/2022]
Abstract
BACKGROUND & AIMS Multiple environmental factors have been associated with the development of inflammatory bowel diseases (IBDs). We performed an umbrella review of meta-analyses to summarize available epidemiologic evidence and assess its credibility. METHODS We systematically identified and appraised meta-analyses of observational studies examining environmental factors and risk of IBD (Crohn's disease [CD] or ulcerative colitis [UC]). For each meta-analysis, we considered the random effects estimate, its 95% confidence interval, the estimates of heterogeneity, and small-study effects, and we graded the evidence according to prespecified criteria. Methodologic quality was assessed with AMSTAR (ie, A Measurement Tool to Assess Systematic Reviews) 2. RESULTS We examined 183 estimates in 53 meta-analyses of 71 environmental factors related to lifestyles and hygiene, surgeries, drug exposures, diet, microorganisms, and vaccinations. We identified 9 factors that increase risk of IBD: smoking (CD), urban living (CD and IBD), appendectomy (CD), tonsillectomy (CD), antibiotic exposure (IBD), oral contraceptive use (IBD), consumption of soft drinks (UC), vitamin D deficiency (IBD), and non-Helicobacter pylori-like enterohepatic Helicobacter species (IBD). We identified 7 factors that reduce risk of IBD: physical activity (CD), breastfeeding (IBD), bed sharing (CD), tea consumption (UC), high levels of folate (IBD), high levels of vitamin D (CD), and H pylori infection (CD, UC, and IBD). Epidemiologic evidence for all of these associations was of high to moderate strength; we identified another 11 factors associated with increased risk and 16 factors associated with reduced risk with weak credibility. Methodologic quality varied considerably among meta-analyses. Several associations were based on findings from retrospective studies, so it is not possible to determine if these are effects of IBD or the results of recall bias. CONCLUSIONS In an umbrella review of meta-analyses, we found varying levels of evidence for associations of different environmental factors with risk of IBD. High-quality prospective studies with analyses of samples from patients with recent diagnoses of IBD are needed to determine whether these factors cause or are results of IBD and their pathogenic mechanisms.
Collapse
Affiliation(s)
- Daniele Piovani
- Department of Biomedical Sciences, Humanitas University, Milan, Italy; Inflammatory Bowel Disease Center, Humanitas Clinical and Research Center-IRCCS, Milan, Italy
| | - Silvio Danese
- Department of Biomedical Sciences, Humanitas University, Milan, Italy; Inflammatory Bowel Disease Center, Humanitas Clinical and Research Center-IRCCS, Milan, Italy
| | - Laurent Peyrin-Biroulet
- Department of Hepato-Gastroenterology and INSERM U954, University Hospital of Nancy, University of Lorraine, Vandoeuvre-lès-Nancy, France
| | | | - Theodore Lytras
- Hellenic Center for Disease Control and Prevention, Athens, Greece
| | - Stefanos Bonovas
- Department of Biomedical Sciences, Humanitas University, Milan, Italy; Inflammatory Bowel Disease Center, Humanitas Clinical and Research Center-IRCCS, Milan, Italy.
| |
Collapse
|
114
|
Burisch J, Jess T. Does Eradication of Helicobacter Pylori Cause Inflammatory Bowel Disease? Clin Gastroenterol Hepatol 2019; 17:1940-1941. [PMID: 30768965 DOI: 10.1016/j.cgh.2019.02.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 02/05/2019] [Accepted: 02/05/2019] [Indexed: 02/07/2023]
Affiliation(s)
- Johan Burisch
- Abdominal Center K, Bispebjerg and Frederiksberg Hospital, Bispebjerg, Denmark; Center for Clinical Research and Prevention, Bispebjerg and Frederiksberg Hospital University of Copenhagen, Copenhagen, Denmark
| | - Tine Jess
- Center for Clinical Research and Prevention, Bispebjerg and Frederiksberg Hospital University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
115
|
Wang D, Li Y, Zhong H, Ding Q, Lin Y, Tang S, Zong Y, Wang Q, Zhang X, Yang H, Wang R, Liu X. Alterations in the human gut microbiome associated with Helicobacter pylori infection. FEBS Open Bio 2019; 9:1552-1560. [PMID: 31250988 PMCID: PMC6724102 DOI: 10.1002/2211-5463.12694] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 06/19/2019] [Accepted: 06/27/2019] [Indexed: 12/27/2022] Open
Abstract
Helicobacter pylori infection (HPI) is a prevalent infectious disease associated with gastric ulcer, gastric cancer, and many nongastrointestinal disorders. To identify genes that may serve as microbial markers for HPI, we performed shotgun metagenomic sequencing of fecal samples from 313 Chinese volunteers who had undergone a C14 breath test. Through comparing differences in intestinal microbial community structure between H. pylori‐positive and H. pylori‐negative individuals, we identified 58 HPI‐associated microbial species (P < 0.05, Wilcoxon test). A classifier based on microbial species markers showed high diagnostic ability for HPI (AUC = 0.84). Furthermore, levels of gut microbial vitamin B12 (VB12) biosynthesis and plasma VB12 were significantly lower in H. pylori‐positive individuals compared with H. pylori‐negative individuals (P < 0.05, Wilcoxon test). This study reveals that certain alterations in gut microbial species and functions are associated with HPI and shows that gut microbial shift in HPI patients may indirectly elevate the risk of VB12 deficiency.
Collapse
Affiliation(s)
- Daoming Wang
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, China.,BGI-Shenzhen, China
| | | | - Huanzi Zhong
- BGI-Shenzhen, China.,China National GeneBank, BGI-Shenzhen, China.,Laboratory of Genomics and Molecular Biomedicine, Department of Biology, Copenhagen Biocenter, University of Copenhagen, Denmark
| | | | - Yuxiang Lin
- BGI-Shenzhen, China.,China National GeneBank, BGI-Shenzhen, China
| | - Shanmei Tang
- BGI-Shenzhen, China.,China National GeneBank, BGI-Shenzhen, China
| | | | - Qi Wang
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, China
| | | | - Huanming Yang
- BGI-Shenzhen, China.,James D. Watson Institute of Genome Sciences, Hangzhou, China
| | - Rong Wang
- BGI-Shenzhen, China.,Icahn Institute and Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | |
Collapse
|
116
|
Modulation of gut microbiota by Ilex kudingcha improves dextran sulfate sodium-induced colitis. Food Res Int 2019; 126:108595. [PMID: 31732076 DOI: 10.1016/j.foodres.2019.108595] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 07/21/2019] [Accepted: 07/27/2019] [Indexed: 02/08/2023]
Abstract
Increasing evidence shows that the gut microbiota contributes to the occurrence and development of colitis. Kudingcha (KDC), made from the leaves of Ilex kudingcha, could mitigate inflammation, however, little is known about the relationship between modulatory effect on gut microbiota by KDC and improvement of colitis. In this study, the attenuating effects of KDC extract (KDCE) on dextran sulfate sodium (DSS)-induced colitis and gut microbiota in C57BL/6 mice were investigated. It was found that the supplementation of KDCE could alleviate typical symptoms of IBD including weight loss, colon shortening, intestinal barrier damage, and decreases in the colitis disease activity index and pro-inflammatory cytokines. Moreover, KDCE supplementation could reverse the alteration of gut microbiota in the colitic mice by increasing the abundances of potential beneficial bacteria, e.g. Odoribacter, Prevotella and Helicobacter, and decreasing the abundances of potential harmful bacteria, e.g. Parabacteroides, Bacteroides, Turicibacter, Parasutterella and Lachnospiraceae. The levels of short-chain fatty acids in feces, cecum contents and serum were also regulated by KDCE. Furthermore, the correlation analysis suggested that KDCE could attenuate DSS-induced colitis which might be related to the alteration of gut microbiota. Therefore, the modulation of gut microbiota by KDCE might be a potential strategy for improving inflammation-driven diseases.
Collapse
|
117
|
Impact of the Gastrointestinal Microbiome in Health and Disease: Co-evolution with the Host Immune System. Curr Top Microbiol Immunol 2019; 421:303-318. [PMID: 31123894 DOI: 10.1007/978-3-030-15138-6_12] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Microbes within the gastrointestinal tract communicate with each other and with the host, which has profound effects on health and disease development. Only now, it is becoming apparent that how and when we acquire our own unique collection of "gut microbes" and also how we choose to maintain them is fundamental to our health. Helicobacter pylori is the most common bacterial infection worldwide, colonizing around half of the world's population, and is the major risk factor for gastric adenocarcinoma. More recently, it has also been shown to have some beneficial effects in terms of protecting against the development of other diseases. Here, we review the current knowledge on how H. pylori has shaped gastrointestinal microbiota colonization and the host immune system with specific focus on the impact of H. pylori on the various microbiome niches of the gastrointestinal tract. We discuss how the presence of H. pylori influences the physiology of three major regions within the gastrointestinal tract-specifically the oesophagus, stomach and colon. We pay particular attention to the role of H. pylori under chronic inflammatory conditions including the development of cancer. With increased incidence of diseases such as eosinophilic oesophagitis, oesophageal adenocarcinoma and squamous cell carcinoma being attributed to the decline in H. pylori, their disease pathogenesis in light of changing H. pylori colonization is also discussed.
Collapse
|
118
|
Tepler A, Narula N, Peek RM, Patel A, Edelson C, Colombel JF, Shah SC. Systematic review with meta-analysis: association between Helicobacter pylori CagA seropositivity and odds of inflammatory bowel disease. Aliment Pharmacol Ther 2019; 50:121-131. [PMID: 31165513 PMCID: PMC7393806 DOI: 10.1111/apt.15306] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 02/13/2019] [Accepted: 04/25/2019] [Indexed: 12/14/2022]
Abstract
BACKGROUND Accumulating data support a protective role of Helicobacter pylori against inflammatory bowel diseases (IBD), which might be mediated by strain-specific constituents, specifically cagA expression. AIM To perform a systematic review and meta-analysis to more clearly define the association between CagA seropositivity and IBD. METHODS We identified comparative studies that included sufficient detail to determine the odds or risk of IBD, Crohn's disease (CD) or ulcerative colitis (UC) amongst individuals with vs without evidence of cagA expression (eg CagA seropositivity). Estimates were pooled using a random effects model. RESULTS Three clinical studies met inclusion criteria. cagA expression was represented by CagA seropositivity in all studies. Compared to CagA seronegativity overall, CagA seropositivity was associated with lower odds of IBD (OR 0.31, 95% CI 0.21-0.44) and CD (OR 0.25, 95% CI 0.17-0.38), and statistically nonsignificant lower odds for UC (OR 0.68, 95% CI 0.35-1.32). Similarly, compared to H pylori non-exposed individuals, H pylori exposed, CagA seropositive individuals had lower odds of IBD (OR 0.26, 95% CI 0.16-0.41) and CD (OR 0.23, 95% CI 0.15-0.35), but not UC (OR 0.66, 0.34-1.27). However, there was no significant difference in the odds of IBD, CD or UC between H pylori exposed, CagA seronegative and H pylori non-exposed individuals. CONCLUSION We found evidence for a significant association between CagA seropositive H pylori exposure and reduced odds of IBD, particularly CD, but not for CagA seronegative H pylori exposure. Additional studies are needed to confirm these findings and define underlying mechanisms.
Collapse
Affiliation(s)
- Adam Tepler
- Department of Medicine, Montefiore Medical Center, New York NY USA
| | - Neeraj Narula
- Division of Gastroenterology, Department of Medicine and Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton Ontario Canada
| | - Richard M. Peek
- Division of Gastroenterology, Hepatology, and Nutrition, Vanderbilt University Medical Center, Nashville TN USA
| | - Anish Patel
- Department of Gastroenterology, Brooke Army Medical Center, Houston TX USA
| | - Cyrus Edelson
- Department of Medicine, Brooke Army Medical Center, Houston TX USA
| | | | - Shailja C. Shah
- Division of Gastroenterology, Hepatology, and Nutrition, Vanderbilt University Medical Center, Nashville TN USA,Corresponding Author: Shailja C. Shah, MD, 2215 Garland Avenue, Medical Research Building IV, 1030C, Vanderbilt University Medical Center, Nashville, TN 37212, Phone: (615) 343-5952 / Fax: (615) 343-6229,
| |
Collapse
|
119
|
BATF3-dependent dendritic cells drive both effector and regulatory T-cell responses in bacterially infected tissues. PLoS Pathog 2019; 15:e1007866. [PMID: 31188899 PMCID: PMC6590837 DOI: 10.1371/journal.ppat.1007866] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 06/24/2019] [Accepted: 05/23/2019] [Indexed: 12/23/2022] Open
Abstract
The gastric lamina propria of mice that have been experimentally infected with the pathobiont Helicobacter pylori hosts a dense network of myeloid cells that includes BATF3-dependent CD103+ dendritic cells (DCs). We show here that CD103+ DCs are strictly required for gastric Th1 responses to H. pylori and for H. pylori infection control. A similar dependence of type 1 immunity on CD103+ DCs is observed in a Mycobacterium bovis BCG infection model, and in a syngeneic colon cancer model. Strikingly, we find that not only the expansion and/or recruitment of Th1 cells, but also of peripherally induced, neuropilin-negative regulatory T-cells to sites of infection requires BATF3-dependent DCs. A shared feature of the examined models is the strongly reduced production of the chemokines and CXCR3 ligands CXCL9, 10 and 11 in BATF3-deficient mice. The results implicate BATF3-dependent DCs in the recruitment of CXCR3+ effector and regulatory T-cells to target tissues and in their local expansion. In this work, Arnold & Zhang et al report that CD103+ DCs are required for protective Th1 responses, infection control of mucosal and systemic bacterial pathogens, and anti-tumor immunity driven by CD4+ Th1 cells and CD8+ T cells. CD103+ DCs further specifically promote the recruitment of Tbet+ peripherally induced Tregs to sites of infection. The results implicate CD103+ DCs in the trafficking of CXCR3+ Tbet+ T-cells to sites of infection and tumorigenesis.
Collapse
|
120
|
Axelrad JE, Olén O, Askling J, Lebwohl B, Khalili H, Sachs MC, Ludvigsson JF. Gastrointestinal Infection Increases Odds of Inflammatory Bowel Disease in a Nationwide Case-Control Study. Clin Gastroenterol Hepatol 2019; 17:1311-1322.e7. [PMID: 30389589 DOI: 10.1016/j.cgh.2018.09.034] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 09/10/2018] [Accepted: 09/13/2018] [Indexed: 02/06/2023]
Abstract
BACKGROUND & AIMS Gastrointestinal infections have been associated with later development of inflammatory bowel diseases (IBD). However, studies have produced conflicting results. We performed a nationwide case-control study in Sweden to determine whether gastroenteritis is associated with the development of Crohn's disease (CD) or ulcerative colitis (UC). METHODS Using the Swedish National Patient Register, we identified 44,214 patients with IBD (26,450 with UC; 13,387 with CD; and 4377 with IBD-unclassified) from 2002 to 2014 and matched them with 436,507 individuals in the general population (control subjects). We then identified patients and control subjects with reported episodes of gastroenteritis (from 1964 to 2014) and type of pathogen associated. We collected medical and demographic data and used logistic regression to estimate odds ratios (ORs) for IBD associated with enteric infection. RESULTS Of the patients with IBD, 3105 (7.0%) (1672 with UC, 1050 with CD, and 383 with IBD-unclassified) had a record of previous gastroenteritis compared with 17,685 control subjects (4.1%). IBD cases had higher odds for an antecedent episode of gastrointestinal infection (aOR, 1.64; 1.57-1.71), bacterial gastrointestinal infection (aOR, 2.02; 1.82-2.24), parasitic gastrointestinal infection (aOR, 1.55; 1.03-2.33), and viral gastrointestinal infection (aOR, 1.55; 1.34-1.79). Patients with UC had higher odds of previous infection with Salmonella, Escherichia coli, Campylobacter, or Clostridium difficile compared to control subjects. Patients with CD had higher odds of previous infection with Salmonella, Campylobacter, Yersinia enterocolitica, C difficile, amoeba, or norovirus compared to control subjects. Increasing numbers of gastroenteritis episodes were associated with increased odds of IBD, and a previous episode of gastroenteritis remained associated with odds for IBD more than 10 years later (aOR, 1.26; 1.19-1.33). CONCLUSIONS In an analysis of the Swedish National Patient Register, we found previous episodes of gastroenteritis to increase odds of later development of IBD. Although we cannot formally exclude misclassification bias, enteric infections might induce microbial dysbiosis that contributes to the development of IBD in susceptible individuals.
Collapse
Affiliation(s)
- Jordan E Axelrad
- Inflammatory Bowel Disease Center, Division of Gastroenterology, Department of Medicine, NYU Langone Health, New York, New York; Division of Digestive and Liver Disease, Department of Medicine, Columbia University Medical Center, New York, New York.
| | - Ola Olén
- Sachs' Children and Youth Hospital, Stockholm South General Hospital, Stockholm, Sweden; Department of Clinical Science and Education Södersjukhuset, Karolinska Institutet, Stockholm, Sweden; Clinical Epidemiology Unit, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | - Johan Askling
- Clinical Epidemiology Unit, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | - Benjamin Lebwohl
- Division of Digestive and Liver Disease, Department of Medicine, Columbia University Medical Center, New York, New York
| | - Hamed Khalili
- Inflammatory Bowel Disease Center, Division of Gastroenterology, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts
| | - Michael C Sachs
- Clinical Epidemiology Unit, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | - Jonas F Ludvigsson
- Division of Digestive and Liver Disease, Department of Medicine, Columbia University Medical Center, New York, New York; Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Solna, Sweden; Department of Pediatrics, Orebro University Hospital, Orebro, Sweden; Division of Epidemiology and Public Health, School of Medicine, University of Nottingham, Nottingham, United Kingdom
| |
Collapse
|
121
|
Peng Y, Yan Y, Wan P, Chen D, Ding Y, Ran L, Mi J, Lu L, Zhang Z, Li X, Zeng X, Cao Y. Gut microbiota modulation and anti-inflammatory properties of anthocyanins from the fruits of Lycium ruthenicum Murray in dextran sodium sulfate-induced colitis in mice. Free Radic Biol Med 2019; 136:96-108. [PMID: 30959170 DOI: 10.1016/j.freeradbiomed.2019.04.005] [Citation(s) in RCA: 278] [Impact Index Per Article: 46.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 04/02/2019] [Accepted: 04/02/2019] [Indexed: 02/07/2023]
Abstract
In the present study, the therapeutic effects of crude anthocyanins (ACN) from the fruits of Lycium ruthenicum Murray and the main monomer of ACN, petunidin 3-O-[rhamnopyranosyl-(trans-p-coumaroyl)]-5-O-[β-d-glucopyranoside] (P3G), on the dextran sodium sulfate (DSS)-induced colitis in mice were investigated. Both ACN and P3G showed intestinal anti-inflammatory effects, evidenced by restoration of various physical signs (body weight, feed quantity, solid fecal weight and colon length were increased, and DAI score was decreased), reduction of the expression of proinflammatory cytokines and related mRNA (such as TNF-α, IL-6, IL-1β and IFN-γ), and promotion of the intestinal barrier function by histological and immunofluorescence analysis (proteins such as ZO-1, occludin and claudin-1 were increased). Furthermore, the effects on gut microbiota community of DSS-induced colitis in mice have been investigated. It was found that Porphyromonadaceae, Helicobacter, Parasutterella, Parabacteroides, Oscillibacter and Lachnospiraceae were the key bacteria associated with inflammatory bowel disease. Taken together, P3G and ACN ameliorated DSS-induced colitis in mice through three aspects including blocking proinflammatory cytokines, increasing tight junction protein and modulating gut microbiota. What's more, P3G showed better anti-inflammatory effects than ACN.
Collapse
Affiliation(s)
- Yujia Peng
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Yamei Yan
- National Wolfberry Engineering Research Center, Yinchuan, 750002, Ningxia, China
| | - Peng Wan
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Dan Chen
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Yu Ding
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Linwu Ran
- Laboratory Animal Center, Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Jia Mi
- National Wolfberry Engineering Research Center, Yinchuan, 750002, Ningxia, China
| | - Lu Lu
- National Wolfberry Engineering Research Center, Yinchuan, 750002, Ningxia, China
| | - Zhijuan Zhang
- National Wolfberry Engineering Research Center, Yinchuan, 750002, Ningxia, China
| | - Xiaoying Li
- National Wolfberry Engineering Research Center, Yinchuan, 750002, Ningxia, China
| | - Xiaoxiong Zeng
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China.
| | - Youlong Cao
- National Wolfberry Engineering Research Center, Yinchuan, 750002, Ningxia, China.
| |
Collapse
|
122
|
Arnold IC, Zhang X, Urban S, Artola-Borán M, Manz MG, Ottemann KM, Müller A. NLRP3 Controls the Development of Gastrointestinal CD11b + Dendritic Cells in the Steady State and during Chronic Bacterial Infection. Cell Rep 2019; 21:3860-3872. [PMID: 29281833 DOI: 10.1016/j.celrep.2017.12.015] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 10/24/2017] [Accepted: 12/01/2017] [Indexed: 12/14/2022] Open
Abstract
The gastric lamina propria is largely uncharted immunological territory. Here we describe the evolution and composition of the gastric, small intestinal, and colonic lamina propria mononuclear phagocyte system during the steady state and infection with the gastric pathogen Helicobacter pylori. We show that monocytes, CX3CR1hi macrophages, and CD11b+ dendritic cells are recruited to the infected stomach in a CCR2-dependent manner. All three populations, but not BATF3-dependent CD103+ DCs, sample red fluorescent protein (RFP)+Helicobacter pylori (H. pylori). Mice reconstituted with human hematopoietic stem cells recapitulate several features of the myeloid cell-H. pylori interaction. The differentiation in and/or recruitment to gastrointestinal, lung, and lymphoid tissues of CD11b+ DCs requires NLRP3, but not apoptosis-associated speck-like protein containing a carboxy-terminal CARD (ASC) or caspase-1, during steady-state and chronic infection. NLRP3-/- mice fail to generate Treg responses to H. pylori and control the infection more effectively than wild-type mice. The results demonstrate a non-canonical inflammasome-independent function of NLRP3 in DC development and immune regulation.
Collapse
Affiliation(s)
- Isabelle C Arnold
- Institute of Molecular Cancer Research , University of Zürich, 8057 Zürich, Switzerland.
| | - Xiaozhou Zhang
- Institute of Molecular Cancer Research , University of Zürich, 8057 Zürich, Switzerland
| | - Sabine Urban
- Institute of Molecular Cancer Research , University of Zürich, 8057 Zürich, Switzerland
| | - Mariela Artola-Borán
- Institute of Molecular Cancer Research , University of Zürich, 8057 Zürich, Switzerland
| | - Markus G Manz
- Department of Hematology, University of Zürich, 8057 Zürich, Switzerland
| | - Karen M Ottemann
- Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - Anne Müller
- Institute of Molecular Cancer Research , University of Zürich, 8057 Zürich, Switzerland.
| |
Collapse
|
123
|
Nielsen HL, Dalager-Pedersen M, Nielsen H. Risk of inflammatory bowel disease after Campylobacter jejuni and Campylobacter concisus infection: a population-based cohort study. Scand J Gastroenterol 2019; 54:265-272. [PMID: 30905214 DOI: 10.1080/00365521.2019.1578406] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Objectives: In this population-based cohort study, we aimed to examine the risk of IBD following a positive stool culture with Campylobacter jejuni or Campylobacter concisus, as well as following culture-negative stool testing. Materials and methods: Patients with a first-time positive stool culture with C. jejuni or C. concisus, as well as negative stool testing, from 2009 through 2013 in North Denmark Region, Denmark, were identified. Patients diagnosed with IBD during follow-up (to 1 March 2018) were identified using national registries. For each case, we selected ten population comparisons matched by age, gender, and calendar-time. Results: We identified 1693 patients with C. jejuni, 910 C. concisus-positive patients, and 11,383 patients with culture-negative stools. During the first year of follow-up C. jejuni-positive patients had higher risk of IBD (HR 2.2, 95% CI 1.3-3.7) compared to population comparisons, but not after exclusion of the first year (HR 1.1, 95% CI 0.5-2.3). Campylobacter concisus-positive patients and culture-negative patients had similar risk of IBD (HR 12.9, 95% CI 7.2-22.9 and HR 8.7, 95% CI 7.5-10.2), during the first year, which decreased to (HR 3.3, 95% CI 1.3-8.5 and HR 3.2, 95% CI 2.6-4.0) after exclusion of the first year. Conclusions: This study does not support exposure of C. jejuni or C. concisus infection as a causal trigger in subsequent development of IBD, since culture-negative patients had similar risk for IBD on long term follow-up. Additional studies including C. concisus exposures for an evaluation of the specific risk of IBD are needed.
Collapse
Affiliation(s)
- Hans Linde Nielsen
- a Department of Clinical Microbiology , Aalborg University Hospital , Aalborg , Denmark.,b Department of Clinical Medicine , Aalborg University , Aalborg , Denmark
| | - Michael Dalager-Pedersen
- b Department of Clinical Medicine , Aalborg University , Aalborg , Denmark.,c Department of Infectious Diseases , Aalborg University Hospital , Aalborg , Denmark
| | - Henrik Nielsen
- b Department of Clinical Medicine , Aalborg University , Aalborg , Denmark.,c Department of Infectious Diseases , Aalborg University Hospital , Aalborg , Denmark
| |
Collapse
|
124
|
Pichon M, Burucoa C. Impact of the Gastro-Intestinal Bacterial Microbiome on Helicobacter-Associated Diseases. Healthcare (Basel) 2019; 7:E34. [PMID: 30813360 PMCID: PMC6473412 DOI: 10.3390/healthcare7010034] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 02/18/2019] [Accepted: 02/20/2019] [Indexed: 12/15/2022] Open
Abstract
Helicobacter pylori is a bacterium that selectively infects the gastric epithelium of half of the world population. The microbiome, community of microorganisms gained major interest over the last years, due to its modification associated to health and disease states. Even if most of these descriptions have focused on chronic disorders, this review describes the impact of the intestinal bacterial microbiome on host response to Helicobacter associated diseases. Microbiome has a direct impact on host cells, major barrier of the gastro-intestinal tract, but also an indirect impact on immune system stimulation, by enhancing or decreasing non-specific or adaptive response. In microbial infections, especially in precancerous lesions induced by Helicobacter pylori infection, these modifications could lead to different outcome. Associated to data focusing on the microbiome, transcriptomic analyses of the eukaryote response would lead to a complete understanding of these complex interactions and will allow to characterize innovative biomarkers and personalized therapies.
Collapse
Affiliation(s)
- Maxime Pichon
- Bacteriology and Infection Control Laboratory, Infectious Agents Department, University Hospital of Poitiers, 86021 Poitiers, France.
- Laboratoire Inflammation, Tissus Épithéliaux et Cytokines, EA 4331, Faculté de Médecine et de Pharmacie, University of Poitiers, 86022 Poitiers, France.
| | - Christophe Burucoa
- Bacteriology and Infection Control Laboratory, Infectious Agents Department, University Hospital of Poitiers, 86021 Poitiers, France.
- Laboratoire Inflammation, Tissus Épithéliaux et Cytokines, EA 4331, Faculté de Médecine et de Pharmacie, University of Poitiers, 86022 Poitiers, France.
| |
Collapse
|
125
|
Khalil M, Zhang Z, Engel MA. Neuro-Immune Networks in Gastrointestinal Disorders. Visc Med 2019; 35:52-60. [PMID: 31312651 DOI: 10.1159/000496838] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 01/11/2019] [Indexed: 12/13/2022] Open
Abstract
Tissue homeostasis is controlled by multilateral cell interactions. Established in autoimmune diseases of the central nervous system, growing evidence shows a fundamental role of bidirectional communication between the nervous and immune systems in various gastrointestinal disorders. Primarily the primary sensory nervous system seems to play an important role in this cross talk because of its ability for transducing inflammatory signals and to convey them to the central nervous system, which in turn responds in an efferent manner (gut-brain axis vs. brain-gut axis). Moreover, sensory neurons that play a central role in pain processing immediately respond to inflammatory stimuli through releasing a myriad of immunomodulatory neuropeptides and neurotransmitters whose receptors are expressed in different immune cell populations. Thus, a better understanding of neuro-immune networks will pave the way to novel therapeutic strategies in inflammatory as well as functional gastrointestinal disorders.
Collapse
Affiliation(s)
- Mohammad Khalil
- Department of Medicine 1, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Zehua Zhang
- Department of Medicine 1, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Matthias A Engel
- Department of Medicine 1, Universitätsklinikum Erlangen, Erlangen, Germany
| |
Collapse
|
126
|
Mannion A, Shen Z, Fox JG. Comparative genomics analysis to differentiate metabolic and virulence gene potential in gastric versus enterohepatic Helicobacter species. BMC Genomics 2018; 19:830. [PMID: 30458713 PMCID: PMC6247508 DOI: 10.1186/s12864-018-5171-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 10/15/2018] [Indexed: 02/08/2023] Open
Abstract
Background The genus Helicobacter are gram-negative, microaerobic, flagellated, mucus-inhabiting bacteria associated with gastrointestinal inflammation and classified as gastric or enterohepatic Helicobacter species (EHS) according to host species and colonization niche. While there are over 30 official species, little is known about the physiology and pathogenic mechanisms of EHS, which account for most in the genus, as well as what genetic factors differentiate gastric versus EHS, given they inhabit different hosts and colonization niches. The objective of this study was to perform a whole-genus comparative analysis of over 100 gastric versus EHS genomes in order to identify genetic determinants that distinguish these Helicobacter species and provide insights about their evolution/adaptation to different hosts, colonization niches, and mechanisms of virulence. Results Whole-genome phylogeny organized Helicobacter species according to their presumed gastric or EHS classification. Analysis of orthologs revealed substantial heterogeneity in physiological and virulence-related genes between gastric and EHS genomes. Metabolic reconstruction predicted that unlike gastric species, EHS appear asaccharolytic and dependent on amino/organic acids to fuel metabolism. Additionally, gastric species lack de novo biosynthetic pathways for several amino acids and purines found in EHS and instead rely on environmental uptake/salvage pathways. Comparison of virulence factor genes between gastric and EHS genomes identified overlapping yet distinct profiles and included canonical cytotoxins, outer membrane proteins, secretion systems, and survival factors. Conclusions The major differences in predicted metabolic function suggest gastric species and EHS may have evolved for survival in the nutrient-rich stomach versus the nutrient-devoid environments, respectively. Contrasting virulence factor gene profiles indicate gastric species and EHS may utilize different pathogenic mechanisms to chronically infect hosts and cause inflammation and tissue damage. The findings from this study provide new insights into the genetic differences underlying gastric versus EHS and support the need for future experimental studies to characterize these pathogens. Electronic supplementary material The online version of this article (10.1186/s12864-018-5171-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Anthony Mannion
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Zeli Shen
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - James G Fox
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
127
|
Mannion A, Shen Z, Feng Y, Artim SC, Ravindra K, Ge Z, Fox JG. Gamma-glutamyltranspeptidase expression by Helicobacter saguini, an enterohepatic Helicobacter species isolated from cotton top tamarins with chronic colitis. Cell Microbiol 2018; 21:e12968. [PMID: 30365223 DOI: 10.1111/cmi.12968] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 10/12/2018] [Accepted: 10/16/2018] [Indexed: 12/17/2022]
Abstract
BACKGROUND Helicobacter saguini is a novel enterohepatic Helicobacter species isolated from captive cotton top tamarins with chronic colitis and colon cancer. Monoassociated H. saguini infection in gnotobiotic IL-10-/- mice causes typhlocolitis and dysplasia; however, the virulent mechanisms of this species are unknown. Gamma-glutamyltranspeptidase (GGT) is an enzymatic virulence factor expressed by pathogenic Helicobacter and Campylobacter species that inhibits host cellular proliferation and promotes inflammatory-mediated gastrointestinal pathology. The aim of this study was to determine if H. saguini expresses an enzymatically active GGT homologue with virulence properties. EXPERIMENTAL PROCEDURES Two putative GGT paralogs (HSGGT1 and HSGGT2) identified in the H. saguini genome were bioinformatically analysed to predict enzymatic functionality and virulence potential. An isogenic knockout mutant strain and purified recombinant protein of HSGGT1 were created to study enzymatic activity and virulence properties by in vitro biochemical and cell culture experiments. RESULTS Bioinformatic analysis predicted that HSGGT1 has enzymatic functionality and is most similar to the virulent homologue expressed by Helicobacter bilis, whereas HSGGT2 contains putatively inactivating mutations. An isogenic knockout mutant strain and recombinant HSGGT1 protein were successfully created and demonstrated that H. saguini has GGT enzymatic activity. Recombinant HSGGT1 protein and sonicate from wild-type but not mutant H. saguini inhibited gastrointestinal epithelial and lymphocyte cell proliferation without evidence of cell death. The antiproliferative effect by H. saguini sonicate or recombinant HSGGT1 protein could be significantly prevented with glutamine supplementation or the GGT-selective inhibitor acivicin. Recombinant HSGGT1 protein also induced proinflammatory gene expression in colon epithelial cells. CONCLUSIONS This study shows that H. saguini may express GGT as a potential virulence factor and supports further in vitro and in vitro studies into how GGT expression by enterohepatic Helicobacter species influences the pathogenesis of gastrointestinal inflammatory diseases.
Collapse
Affiliation(s)
- Anthony Mannion
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Zeli Shen
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Yan Feng
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Stephen C Artim
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Kodihalli Ravindra
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Zhongming Ge
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - James G Fox
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.,Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| |
Collapse
|
128
|
Abstract
EDUCATION GAP Campylobacter is one of the 2 most common causes of foodborne illness in the United States. It most commonly occurs in children younger than 5 years of age. Campylobacter species can cause a wide range of syndromes, from asymptomatic infections to severe systemic infections. OBJECTIVES After completing this article, readers should be able to: 1. Recognize that Campylobacter is a common cause of foodborne illness in the United States and internationally. 2. Understand the indications for testing and the treatment of Campylobacter infection.
Collapse
Affiliation(s)
- Rebecca G Same
- Division of Pediatric Infectious Diseases, Department of Pediatrics, The Johns Hopkins University School of Medicine, Baltimore, MD
| | - Pranita D Tamma
- Division of Pediatric Infectious Diseases, Department of Pediatrics, The Johns Hopkins University School of Medicine, Baltimore, MD
| |
Collapse
|
129
|
Enteric Infections Are Common in Patients with Flares of Inflammatory Bowel Disease. Am J Gastroenterol 2018; 113:1530-1539. [PMID: 30072777 PMCID: PMC7939066 DOI: 10.1038/s41395-018-0211-8] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 06/29/2018] [Indexed: 02/08/2023]
Abstract
OBJECTIVES Few studies have examined the role of non-Clostridium difficile enteric infections in flares of inflammatory bowel disease (IBD). Our objective was to investigate enteric infection detected by multiplex PCR stool testing in patients with IBD. METHODS We performed a cross-sectional analysis of 9403 patients who underwent 13,231 stool tests with a gastrointestinal pathogen PCR panel during a diarrheal illness from March 2015 to May 2017. Our primary outcome was the presence of an infection. Secondary outcomes included endoscopic and histologic predictors of infection, and IBD outcomes following testing. RESULTS A total of 277 patients with Crohn's disease (CD), 300 patients with ulcerative colitis (UC), and 8826 patients without IBD underwent 454, 503, and 12,275 tests, respectively. Compared to patients without IBD, patients with IBD were less likely to test positive (CD 18.1%, UC 16.1%, no IBD 26.6%, p < 0.001). Compared to patients without IBD, CD had a higher prevalence of norovirus (p = 0.05) and Campylobacter (p = 0.043), whereas UC had a lower prevalence of norovirus (p = 0.001) and a higher prevalence of Campylobacter (p = 0.013), Plesiomonas (p = 0.049), and Escherichia coli species (p < 0.001). Of 77 patients who underwent endoscopy, there were no major endoscopic or histologic predictors of a positive test. Patients who tested negative were more likely to have IBD therapy escalated (p = 0.004). Enteric infection did not impact IBD outcomes following testing (log-rank 0.224). CONCLUSIONS Non-Clostridium difficile enteric infections were identified in 17% of symptomatic patients with IBD. Endoscopic and histologic findings may not differentiate flare from infection. Norovirus and E.coli may play an important role in flare of IBD.
Collapse
|
130
|
Benoit SL, Maier RJ. Site-directed mutagenesis of Campylobacter concisus respiratory genes provides insight into the pathogen's growth requirements. Sci Rep 2018; 8:14203. [PMID: 30242194 PMCID: PMC6155014 DOI: 10.1038/s41598-018-32509-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 09/10/2018] [Indexed: 12/30/2022] Open
Abstract
Campylobacter concisus is an emerging human pathogen found throughout the entire human oral-gastrointestinal tract. The ability of C. concisus to colonize diverse niches of the human body indicates the pathogen is metabolically versatile. C. concisus is able to grow under both anaerobic conditions and microaerophilic conditions. Hydrogen (H2) has been shown to enhance growth and may even be required. Analysis of several C. concisus genome sequences reveals the presence of two sets of genes encoding for distinct hydrogenases: a H2-uptake-type ("Hyd") complex and a H2-evolving hydrogenase ("Hyf"). Whole cells hydrogenase assays indicate that the former (H2-uptake) activity is predominant in C. concisus, with activity among the highest we have found for pathogenic bacteria. Attempts to generate site-directed chromosomal mutants were partially successful, as we could disrupt hyfB, but not hydB, suggesting that H2-uptake, but not H2-evolving activity, is an essential respiratory pathway in C. concisus. Furthermore, the tetrathionate reductase ttrA gene was inactivated in various C. concisus genomospecies. Addition of tetrathionate to the medium resulted in a ten-fold increase in cell yield for the WT, while it had no effect on the ttrA mutant growth. To our knowledge, this is the first report of mutants in C. concisus.
Collapse
Affiliation(s)
- Stéphane L Benoit
- Department of Microbiology, University of Georgia, Athens, 30602, Georgia.
- Center for Metalloenzyme Studies, University of Georgia, Athens, 30602, Georgia.
| | - Robert J Maier
- Department of Microbiology, University of Georgia, Athens, 30602, Georgia
- Center for Metalloenzyme Studies, University of Georgia, Athens, 30602, Georgia
| |
Collapse
|
131
|
Yu Y, Zhu S, Li P, Min L, Zhang S. Helicobacter pylori infection and inflammatory bowel disease: a crosstalk between upper and lower digestive tract. Cell Death Dis 2018; 9:961. [PMID: 30237392 PMCID: PMC6148320 DOI: 10.1038/s41419-018-0982-2] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 08/22/2018] [Accepted: 08/22/2018] [Indexed: 02/07/2023]
Abstract
Helicobacter pylori has coexisted with humans for approximately 60,000 years and greater than 50% of the global population is infected with H. pylori. H. pylori was successfully cultured in vitro in 1983 and studies of H. pylori have achieved substantial advances over the last 35 years. Since then, H. pylori has been characterized as the primary pathogenic factor for chronic gastritis, peptic ulcer, and gastric malignancy. Numerous patients have received H. pylori eradication treatment, but only 1-2% of H. pylori-infected individuals ultimately develop gastric cancer. Recently, numerous epidemiological and basic experimental studies suggested a role for chronic H. pylori infection in protecting against inflammatory bowel disease (IBD) by inducing systematic immune tolerance and suppressing inflammatory responses. Here we summarize the current research progress on the association between H. pylori and IBD, and further describe the detailed molecular mechanism underlying H. pylori-induced dendritic cells (DCs) with the tolerogenic phenotype and immunosuppressive regulatory T cells (Tregs). Based on the potential protective role of H. pylori infection on IBD, we suggest that the interaction between H. pylori and the host is complicated, and H. pylori eradication treatment should be administered with caution, especially for children and young adults.
Collapse
Affiliation(s)
- Yang Yu
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing, 100050, China
| | - Shengtao Zhu
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing, 100050, China
| | - Peng Li
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing, 100050, China
| | - Li Min
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing, 100050, China.
| | - Shutian Zhang
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing, 100050, China.
| |
Collapse
|
132
|
Abstract
Many studies have been performed in the last year concerning the potential role of Helicobacter pylori in different extragastric diseases, reinforcing the idea that specific microorganisms may cause diseases even far from the primary site of infection. While the role of H. pylori on idiopathic thrombocytopenic purpura, sideropenic anemia, and vitamin B12 deficiency has been well established, there is a growing interest in other conditions, such as cardiovascular, neurologic, dermatologic, obstetric, immunologic, and metabolic diseases. Concerning neurologic diseases, there is a great interest in cognitive impairment and neurodegeneration. The aim of this review was to summarize the results of the most relevant studies published over the last year on this fascinating topic.
Collapse
Affiliation(s)
| | - Bianca Giupponi
- Internal Medicine Institute, Fondaeione Policlinico Unversitario Agostino Gemelli IRCCS, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Francesco Franceschi
- Internal Medicine Institute, Fondaeione Policlinico Unversitario Agostino Gemelli IRCCS, Università Cattolica del Sacro Cuore, Rome, Italy
| |
Collapse
|
133
|
Abstract
The current article is a review of the most important, accessible, and relevant literature published between April 2017 and March 2018 on other Helicobacters and the gastric microbiome. The first part of the review focuses on literature describing non-Helicobacter pylori-Helicobacter (NHPH) infections in humans and animals whilst the subsequent section focuses specifically on the human gastric microbiome. Novel diagnostic methods as well as new NHPHs species have been identified in recent studies. Furthermore, our knowledge about the pathogenesis of NHPH infections has been further enhanced by important fundamental studies in cell lines and animal models. Over the last year, additional insights over the prevalence and potential prevention strategies of NHPHs have also been reported. With regard to understanding the gastric microbiome, new information detailing the structure of the gastric microbiota at different stages of H. pylori infection, within different patient geographical locations, was documented. There was also a study detailing the impact of proton-pump inhibitor usage and the effect on the gastric microbiome. Newer analysis approaches including defining the active microbiome through analysis of RNA rather than DNA-based sequencing were also published allowing the first assessments of the functional capabilities of the gastric microbiome.
Collapse
Affiliation(s)
- Juozas Kupcinskas
- Department of Gastroenterology and Institute for Digestive Research, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Georgina L Hold
- Microbiome Research Centre, St George & Sutherland Clinical School, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
134
|
Bravo D, Hoare A, Soto C, Valenzuela MA, Quest AFG. Helicobacter pylori in human health and disease: Mechanisms for local gastric and systemic effects. World J Gastroenterol 2018; 24:3071-3089. [PMID: 30065554 PMCID: PMC6064966 DOI: 10.3748/wjg.v24.i28.3071] [Citation(s) in RCA: 138] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 05/17/2018] [Accepted: 06/27/2018] [Indexed: 02/06/2023] Open
Abstract
Helicobacter pylori (H. pylori) is present in roughly 50% of the human population worldwide and infection levels reach over 70% in developing countries. The infection has classically been associated with different gastro-intestinal diseases, but also with extra gastric diseases. Despite such associations, the bacterium frequently persists in the human host without inducing disease, and it has been suggested that H. pylori may also play a beneficial role in health. To understand how H. pylori can produce such diverse effects in the human host, several studies have focused on understanding the local and systemic effects triggered by this bacterium. One of the main mechanisms by which H. pylori is thought to damage the host is by inducing local and systemic inflammation. However, more recently, studies are beginning to focus on the effects of H. pylori and its metabolism on the gastric and intestinal microbiome. The objective of this review is to discuss how H. pylori has co-evolved with humans, how H. pylori presence is associated with positive and negative effects in human health and how inflammation and/or changes in the microbiome are associated with the observed outcomes.
Collapse
Affiliation(s)
- Denisse Bravo
- Oral Microbiology Laboratory, Pathology and Oral Medicine Department, Faculty of Dentistry, Universidad de Chile, Santiago 8380492, Chile
| | - Anilei Hoare
- Oral Microbiology Laboratory, Pathology and Oral Medicine Department, Faculty of Dentistry, Universidad de Chile, Santiago 8380492, Chile
| | - Cristopher Soto
- Oral Microbiology Laboratory, Pathology and Oral Medicine Department, Faculty of Dentistry, Universidad de Chile, Santiago 8380492, Chile
| | - Manuel A Valenzuela
- Advanced Center for Chronic Diseases, Institute for Health-Related Research and Innovation, Faculty of Health Sciences, Universidad Central de Chile, Santiago 8380447, Chile
| | - Andrew FG Quest
- Advanced Center for Chronic Diseases, Center for Studies on Exercise, Metabolism and Cancer, Biomedical Science Institute, Faculty of Medicine, Universidad de Chile, Santiago 8380447, Chile
| |
Collapse
|
135
|
Brunner K, John CM, Phillips NJ, Alber DG, Gemmell MR, Hansen R, Nielsen HL, Hold GL, Bajaj-Elliott M, Jarvis GA. Novel Campylobacter concisus lipooligosaccharide is a determinant of inflammatory potential and virulence. J Lipid Res 2018; 59:1893-1905. [PMID: 30049709 DOI: 10.1194/jlr.m085860] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 06/29/2018] [Indexed: 12/15/2022] Open
Abstract
The pathogenicity of Campylobacter concisus, increasingly found in the human gastrointestinal (GI) tract, is unclear. Some studies indicate that its role in GI conditions has been underestimated, whereas others suggest that the organism has a commensal-like phenotype. For the enteropathogen C. jejuni, the lipooligosaccharide (LOS) is a main driver of virulence. We investigated the LOS structure of four C. concisus clinical isolates and correlated the inflammatory potential of each isolate with bacterial virulence. Mass spectrometric analyses of lipid A revealed a novel hexa-acylated diglucosamine moiety with two or three phosphoryl substituents. Molecular and fragment ion analysis indicated that the oligosaccharide portion of the LOS had only a single phosphate and lacked phosphoethanolamine and sialic acid substitution, which are hallmarks of the C. jejuni LOS. Consistent with our structural findings, C. concisus LOS and live bacteria induced less TNF-α secretion in human monocytes than did C. jejuni Furthermore, the C. concisus bacteria were less virulent than C. jejuni in a Galleria mellonella infection model. The correlation of the novel lipid A structure, decreased phosphorylation, and lack of sialylation along with reduced inflammatory potential and virulence support the significance of the LOS as a determinant in the relative pathogenicity of C. concisus.
Collapse
Affiliation(s)
- Katja Brunner
- Infection, Immunity and Inflammation Programme, University College London Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Constance M John
- Center for Immunochemistry, Veterans Affairs Medical Center, San Francisco, CA.,Department of Laboratory Medicine University of California, San Francisco, CA
| | - Nancy J Phillips
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA
| | - Dagmar G Alber
- Infection, Immunity and Inflammation Programme, University College London Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Matthew R Gemmell
- Center for Genome-Enabled Biology and Medicine, School of Medicine, Medical Sciences and Nutrition, Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Richard Hansen
- Department of Paediatric Gastroenterology, Royal Hospital for Children, Glasgow, United Kingdom
| | - Hans L Nielsen
- Department of Infectious Diseases Aalborg University Hospital, Aalborg, Denmark.,Department of Clinical Microbiology, Aalborg University Hospital, Aalborg, Denmark
| | - Georgina L Hold
- St George and Sutherland Clinical School, University of New South Wales, Sydney, Australia
| | - Mona Bajaj-Elliott
- Infection, Immunity and Inflammation Programme, University College London Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Gary A Jarvis
- Center for Immunochemistry, Veterans Affairs Medical Center, San Francisco, CA .,Department of Laboratory Medicine University of California, San Francisco, CA
| |
Collapse
|
136
|
Zhang H, Dai Y, Liu Y, Wu T, Li J, Wang X, Wang W. Helicobacter pylori Colonization Protects Against Chronic Experimental Colitis by Regulating Th17/Treg Balance. Inflamm Bowel Dis 2018; 24:1481-1492. [PMID: 29788098 DOI: 10.1093/ibd/izy107] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Indexed: 12/13/2022]
Abstract
BACKGROUND Epidemiological studies have demonstrated an inverse association between Helicobacter pylori infection and the risk of developing inflammatory bowel disease (IBD). The mechanisms by which H. pylori infection protects against IBD are unclear. Here, we explored the possible protective effects and mechanisms of gastric H. pylori colonization on a chronic colitis model, with focus on whether H. pylori exerted its effects through regulating Th17/Treg immune responses. METHODS Chronic colitis was induced by dextran sulfate sodium (DSS) treatment. Flow cytometry analysis was performed to determine Th17 cells, Treg cells, and M1/M2 macrophages in the spleen, mesenteric lymph nodes, and colonic lamina propria. The levels of Th17- and Treg-associated cytokines were measured by quantitative polymerase chain reaction. The direct effect of H. pylori extract on the polarization status of macrophages was determined in vitro. RESULTS Gastric H. pylori colonization significantly ameliorated the severity of chronic DSS-induced colitis. H. pylori colonization decreased Th17 cells and mRNA levels of IL-17A, IL-17F, and IL-21 in the colon. Simultaneously, H. pylori colonization increased Treg cells and IL-10 expression. As to cytokines driving Th17 and Treg differentiation, H. pylori colonization increased TGFβ and decreased IL-6 and IL-23. Moreover, H. pylori colonization significantly increased M2 macrophages in the colon. In vitro, H. pylori extract promotion of M2 macrophage polarization was dependent on the presence of CagA. CONCLUSIONS H. pylori colonization protects against chronic DSS-induced colitis via balancing Th17/Treg responses and shifting macrophages toward anti-inflammatory M2 phenotype. Our results strengthen the rationale for gastric H. pylori colonization affecting the immune homeostasis of the colon.
Collapse
Affiliation(s)
- Hongchen Zhang
- Department of Gastroenterology, Peking University First Hospital, Beijing, China
| | - Yun Dai
- Department of Gastroenterology, Peking University First Hospital, Beijing, China
| | - Yun Liu
- Department of Gastroenterology, Peking University First Hospital, Beijing, China
| | - Ting Wu
- Department of Gastroenterology, Peking University First Hospital, Beijing, China
| | - Jing Li
- Department of Gastroenterology, Peking University First Hospital, Beijing, China
| | - Xiaolei Wang
- Department of Gastroenterology, Peking University First Hospital, Beijing, China
| | - Weihong Wang
- Department of Gastroenterology, Peking University First Hospital, Beijing, China
| |
Collapse
|
137
|
Xun Z, Zhang Q, Xu T, Chen N, Chen F. Dysbiosis and Ecotypes of the Salivary Microbiome Associated With Inflammatory Bowel Diseases and the Assistance in Diagnosis of Diseases Using Oral Bacterial Profiles. Front Microbiol 2018; 9:1136. [PMID: 29899737 PMCID: PMC5988890 DOI: 10.3389/fmicb.2018.01136] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 05/14/2018] [Indexed: 12/16/2022] Open
Abstract
Inflammatory bowel diseases (IBDs) are chronic, idiopathic, relapsing disorders of unclear etiology affecting millions of people worldwide. Aberrant interactions between the human microbiota and immune system in genetically susceptible populations underlie IBD pathogenesis. Despite extensive studies examining the involvement of the gut microbiota in IBD using culture-independent techniques, information is lacking regarding other human microbiome components relevant to IBD. Since accumulated knowledge has underscored the role of the oral microbiota in various systemic diseases, we hypothesized that dissonant oral microbial structure, composition, and function, and different community ecotypes are associated with IBD; and we explored potentially available oral indicators for predicting diseases. We examined the 16S rRNA V3–V4 region of salivary bacterial DNA from 54 ulcerative colitis (UC), 13 Crohn’s disease (CD), and 25 healthy individuals using Illumina sequencing. Distinctive sample clusters were driven by disease or health based on principal coordinate analysis (PCoA) of both the Operational Taxonomic Unit profile and Kyoto Encyclopedia of Genes and Genomes pathways. Comparisons of taxa abundances revealed enrichment of Streptococcaceae (Streptococcus) and Enterobacteriaceae in UC and Veillonellaceae (Veillonella) in CD, accompanied by depletion of Lachnospiraceae and [Prevotella] in UC and Neisseriaceae (Neisseria) and Haemophilus in CD, most of which have been demonstrated to exhibit the same variation tendencies in the gut of IBD patients. IBD-related oral microorganisms were associated with white blood cells, reduced basic metabolic processes, and increased biosynthesis and transport of substances facilitating oxidative stress and virulence. Furthermore, UC and CD communities showed robust sub-ecotypes that were not demographic or severity-specific, suggesting their value for future applications in precision medicine. Additionally, indicator species analysis revealed several genera indicative of UC and CD, which were confirmed in a longitudinal cohort. Collectively, this study demonstrates evident salivary dysbiosis and different ecotypes in IBD communities and provides an option for identifying at-risk populations, not only enhancing our understanding of the IBD microbiome apart from the gut but also offering a clinically useful strategy to track IBD as saliva can be sampled conveniently and non-invasively.
Collapse
Affiliation(s)
- Zhe Xun
- Department of Preventive Dentistry, Peking University School and Hospital of Stomatology, Beijing, China
| | - Qian Zhang
- Central Laboratory, Peking University School and Hospital of Stomatology, Beijing, China.,National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - Tao Xu
- Department of Preventive Dentistry, Peking University School and Hospital of Stomatology, Beijing, China
| | - Ning Chen
- Department of Gastroenterology, Peking University People's Hospital, Beijing, China
| | - Feng Chen
- Central Laboratory, Peking University School and Hospital of Stomatology, Beijing, China.,National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing, China
| |
Collapse
|
138
|
Sutton P, Boag JM. Status of vaccine research and development for Helicobacter pylori. Vaccine 2018; 37:7295-7299. [PMID: 29627231 PMCID: PMC6892279 DOI: 10.1016/j.vaccine.2018.01.001] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 01/02/2018] [Indexed: 12/18/2022]
Abstract
Gastric adenocarcinoma is globally the third leading cause of death due to malignancy, with the bulk of this disease burden being suffered by low and middle income countries (LMIC), especially in Asia. The majority of these cancers develop as a result of a chronic gastritis that arises in response to infection with the stomach-dwelling bacterium, Helicobacter pylori. A vaccine against this pathogen would therefore be a powerful tool for preventing gastric adenocarcinoma. However, notwithstanding a proof-of-concept that vaccination can protect children from acquisition of H. pylori infection, there are currently no advanced vaccine candidates with only a single vaccine in Phase I clinical trial. Further, the development of a vaccine against H. pylori is not a current strategic priority of major pharmaceutical companies despite the large global disease burden. Given the involvement of such companies is likely to be critical for late stage development, there is therefore a need for an increased appreciation of the burden of this disease in LMIC and more investment to reinvigorate research in H. pylori vaccine Research and Development.
Collapse
Affiliation(s)
- Philip Sutton
- Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, Victoria 3052, Australia; Centre for Animal Biotechnology, Faculty of Veterinary and Agricultural Science, University of Melbourne, Parkville, Victoria 3010, Australia; Department of Paediatrics, University of Melbourne, Parkville, Victoria 3010, Australia.
| | - Joanne M Boag
- Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, Victoria 3052, Australia
| |
Collapse
|
139
|
Lord AR, Simms LA, Hanigan K, Sullivan R, Hobson P, Radford-Smith GL. Protective effects of Helicobacter pylori for IBD are related to the cagA-positive strain. Gut 2018; 67:393-394. [PMID: 28408384 DOI: 10.1136/gutjnl-2017-313805] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 03/19/2017] [Accepted: 03/21/2017] [Indexed: 02/06/2023]
Affiliation(s)
- A R Lord
- Inflammatory Bowel Diseases, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - L A Simms
- Inflammatory Bowel Diseases, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - K Hanigan
- Inflammatory Bowel Diseases, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | | | - P Hobson
- Immunology/Serology, Sullivan Nicolaides Pathology, Brisbane, Australia
| | - G L Radford-Smith
- Inflammatory Bowel Diseases, QIMR Berghofer Medical Research Institute, Brisbane, Australia.,Department of Gastroenterology, Royal Brisbane and Women's Hospital, Brisbane, Australia.,University of Queensland School of Medicine, Herston Campus, Brisbane, Australia
| |
Collapse
|
140
|
Maev IV, Bakulin IG, Kurilovich SA, Bakulina NV, Andreev NG, Golubev NN. Helicobacter pylori and extragastroduodenal diseases: the proven facts and assumptions. DOKAZATEL'NAYA GASTROENTEROLOGIYA 2018; 7:45. [DOI: 10.17116/dokgastro2018703145] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
141
|
Gorkiewicz G, Moschen A. Gut microbiome: a new player in gastrointestinal disease. Virchows Arch 2018; 472:159-172. [PMID: 29243124 PMCID: PMC5849673 DOI: 10.1007/s00428-017-2277-x] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 11/28/2017] [Accepted: 11/29/2017] [Indexed: 02/07/2023]
Abstract
The gastrointestinal (GI) tract harbors a diverse and host-specific gut microbial community. Whereas host-microbe interactions are based on homeostasis and mutualism, the microbiome also contributes to disease development. In this review, we summarize recent findings connecting the GI microbiome with GI disease. Starting with a description of biochemical factors shaping microbial compositions in each gut segment along the longitudinal axis, improved histological techniques enabling high resolution visualization of the spatial microbiome structure are highlighted. Subsequently, inflammatory and neoplastic diseases of the esophagus, stomach, and small and large intestines are discussed and the respective changes in microbiome compositions summarized. Finally, approaches aiming to restore disturbed microbiome compositions thereby promoting health are discussed.
Collapse
Affiliation(s)
- Gregor Gorkiewicz
- Institute of Pathology, Medical University of Graz, Neue Stiftingtalstrasse 6, 8010 Graz, Austria
| | - Alexander Moschen
- Christian Doppler Laboratory for Mucosal Immunology & Division of Internal Medicine I, Department of Medicine, Medical University Innsbruck, Peter-Mayr-Strasse 1, 6020 Innsbruck, Austria
| |
Collapse
|
142
|
Castaño-Rodríguez N, Mitchell HM, Kaakoush NO. NAFLD, Helicobacter species and the intestinal microbiome. Best Pract Res Clin Gastroenterol 2017; 31:657-668. [PMID: 29566909 DOI: 10.1016/j.bpg.2017.09.008] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 09/03/2017] [Indexed: 02/06/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) has become the most common chronic liver disease worldwide. It is well-accepted that gut dysbiosis is associated with NAFLD, however, there is some conflicting evidence regarding the nature of these alterations. Infection with Helicobacter species, mainly H. pylori, has also been associated with increased NAFLD risk, however, some studies have failed to reproduce this finding. Further studies including large study samples and standardised procedures for microbiota analyses, H. pylori detection and NAFLD diagnostic criteria, are required. The mechanisms involving Helicobacter species and the intestinal microbiome in NAFLD pathogenesis appear to be part of the multiple-hit theory, in which increased intestinal permeability, inflammatory responses, altered choline, bile acids and carbohydrate metabolism, production of short-chain fatty acids, urea cycle and urea transport systems, altered maintenance of hepatic γδT-17 cells, insulin resistance, hormones secreted by the adipose tissue, metabolic hormones, bacterial metabolites and Helicobacter toxins, are all implicated.
Collapse
Affiliation(s)
| | - Hazel M Mitchell
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Sydney, NSW, 2052, Australia
| | - Nadeem O Kaakoush
- School of Medical Sciences, UNSW Sydney, Sydney, NSW, 2052, Australia
| |
Collapse
|
143
|
Castaño-Rodríguez N, Goh KL, Fock KM, Mitchell HM, Kaakoush NO. Dysbiosis of the microbiome in gastric carcinogenesis. Sci Rep 2017; 7:15957. [PMID: 29162924 PMCID: PMC5698432 DOI: 10.1038/s41598-017-16289-2] [Citation(s) in RCA: 178] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 11/09/2017] [Indexed: 12/12/2022] Open
Abstract
The gastric microbiome has been proposed as an etiological factor in gastric carcinogenesis. We compared the gastric microbiota in subjects presenting with gastric cancer (GC, n = 12) and controls (functional dyspepsia (FD), n = 20) from a high GC risk population in Singapore and Malaysia. cDNA from 16S rRNA transcripts were amplified (515F-806R) and sequenced using Illumina MiSeq 2 × 250 bp chemistry. Increased richness and phylogenetic diversity but not Shannon’s diversity was found in GC as compared to controls. nMDS clustered GC and FD subjects separately, with PERMANOVA confirming a significant difference between the groups. H. pylori serological status had a significant impact on gastric microbiome α-diversity and composition. Several bacterial taxa were enriched in GC, including Lactococcus, Veilonella, and Fusobacteriaceae (Fusobacterium and Leptotrichia). Prediction of bacterial metabolic contribution indicated that serological status had a significant impact on metabolic function, while carbohydrate digestion and pathways were enriched in GC. Our findings highlight three mechanisms of interest in GC, including enrichment of pro-inflammatory oral bacterial species, increased abundance of lactic acid producing bacteria, and enrichment of short chain fatty acid production pathways.
Collapse
Affiliation(s)
| | - Khean-Lee Goh
- Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Kwong Ming Fock
- Division of Gastroenterology, Department of Medicine, Changi General Hospital, Singapore City, Singapore
| | - Hazel M Mitchell
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Nadeem O Kaakoush
- School of Medical Sciences, UNSW Sydney, Sydney, NSW 2052, Australia.
| |
Collapse
|
144
|
Te Velde AA. The C-Type Lectin Mincle: Clues for a Role in Crohn's Disease Adjuvant Reaction. Front Immunol 2017; 8:1304. [PMID: 29109721 PMCID: PMC5660320 DOI: 10.3389/fimmu.2017.01304] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 09/27/2017] [Indexed: 12/17/2022] Open
Affiliation(s)
- Anje A Te Velde
- Tytgat Institute for Liver and Intestinal Research, Academic Medical Center, Amsterdam, Netherlands
| |
Collapse
|
145
|
de Korwin JD, Ianiro G, Gibiino G, Gasbarrini A. Helicobacter pylori infection and extragastric diseases in 2017. Helicobacter 2017; 22 Suppl 1. [PMID: 28891133 DOI: 10.1111/hel.12411] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The huge variety of extragastric diseases linked to Helicobacter pylori infection is widely known, and new studies are conducted every year on this topic. Neurological disorders and metabolic syndrome are some of the main issues debated in the most recent literature. Articles on the association of H. pylori with skin diseases, inflammatory bowel diseases, immunologic impairment, kidney dysfunction, allergic asthma, and respiratory diseases have been published as well. In this perspective, eradication therapy for this infection could become a mandatory measure in prevention strategy.
Collapse
Affiliation(s)
- Jean-Dominique de Korwin
- Department of Internal Medicine, University of Lorraine and University Hospital of Nancy, Nancy, France
| | - Gianluca Ianiro
- Department of Internal Medicine, Gastroenterology and Hepatology, Agostino Gemelli Hospital, Catholic University of Rome, Milano, Italy
| | - Giulia Gibiino
- Department of Internal Medicine, Gastroenterology and Hepatology, Agostino Gemelli Hospital, Catholic University of Rome, Milano, Italy
| | - Antonio Gasbarrini
- Department of Internal Medicine, Gastroenterology and Hepatology, Agostino Gemelli Hospital, Catholic University of Rome, Milano, Italy
| |
Collapse
|
146
|
Shah A, Talley NJ, Walker M, Koloski N, Morrison M, Burger D, Andrews JM, McGuckin M, Jones M, Holtmann G. Is There a Link Between H. Pylori and the Epidemiology of Crohn's Disease? Dig Dis Sci 2017; 62:2472-2480. [PMID: 28281167 DOI: 10.1007/s10620-017-4496-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 02/08/2017] [Indexed: 12/17/2022]
Abstract
INTRODUCTION Case control studies suggest an inverse association between Helicobacter pylori (H. pylori) and Crohn's disease (CD). It is possible this could be accounted for by confounders such as antibiotic therapy. Analyzing the geographic distribution of H. pylori and the links with the incidence and prevalence of CD would be an alternative approach to circumvent these confounders. METHODS The literature was searched for studies published between 1990 and 2016 that reported incidence or prevalence data for CD in random population samples in developed countries (GDP per capita >20,000 USD/year). Corresponding prevalence studies for H. pylori in these same regions were then sought matched to the same time period (±6 years). The association between the incidence and prevalence of CD and H. pylori prevalence rates were assessed before and after adjusting for GDP and life expectancy. RESULTS A total of 19 CD prevalence and 22 CD incidence studies from 10 European countries, Japan, USA, and Australia with date-matched H. pylori prevalence data were identified. The mean H. pylori prevalence rate was 43.4% (range 15.5-85%), and the mean rates for incidence and prevalence for CD were 6.9 and 91.0/100,000 respectively. The incidence (r = -0.469, p < 0.03) and prevalence (r = -0.527, p = 0.02) of CD was inversely and significantly associated with prevalence of H. pylori infection. CONCLUSIONS Our data demonstrate a significant inverse association between geographic distribution of H. pylori and CD. Thus, it is highly unlikely that the findings of previous case control studies were simply due to confounding factors such as concomitant antibiotic use in CD patients.
Collapse
Affiliation(s)
- Ayesha Shah
- Department of Gastroenterology and Hepatology, Princess Alexandra Hospital, Faculty of Medicine and Faculty of Health and Behavioural Sciences, Translational Research Institute, University of Queensland, Ipswich Road, Woolloongabba, Brisbane, QLD, Australia
| | - Nicholas J Talley
- Faculty of Health and Medicine, University of Newcastle, Newcastle, NSW, Australia
| | - Marjorie Walker
- Faculty of Health and Medicine, University of Newcastle, Newcastle, NSW, Australia
| | - Natasha Koloski
- Department of Gastroenterology and Hepatology, Princess Alexandra Hospital, Faculty of Medicine and Faculty of Health and Behavioural Sciences, Translational Research Institute, University of Queensland, Ipswich Road, Woolloongabba, Brisbane, QLD, Australia.,Faculty of Health and Medicine, University of Newcastle, Newcastle, NSW, Australia
| | - Mark Morrison
- Microbial Biology and Metagenomics, Diamantina Institute, University of Queensland, Brisbane, QLD, Australia
| | - Daniel Burger
- Department of Gastroenterology and Hepatology, Princess Alexandra Hospital, Faculty of Medicine and Faculty of Health and Behavioural Sciences, Translational Research Institute, University of Queensland, Ipswich Road, Woolloongabba, Brisbane, QLD, Australia
| | - Jane M Andrews
- Department of Gastroenterology and Hepatology, Royal Adelaide Hospital, University of Adelaide, Adelaide, SA, Australia
| | - Michael McGuckin
- Mater Medical Research Institute, Translational Research Institute, University of Queensland, Woolloongabba, QLD, Australia
| | - Mike Jones
- Department of Psychology, Macquarie University, Sydney, NSW, Australia
| | - Gerald Holtmann
- Department of Gastroenterology and Hepatology, Princess Alexandra Hospital, Faculty of Medicine and Faculty of Health and Behavioural Sciences, Translational Research Institute, University of Queensland, Ipswich Road, Woolloongabba, Brisbane, QLD, Australia.
| |
Collapse
|
147
|
|
148
|
Bartels LE, Jepsen P, Tøttrup A, Vilstrup H, Dahlerup JF. Helicobacter pylori infection is associated with reduced prevalence of colonic diverticular disease. Helicobacter 2017; 22. [PMID: 28299869 DOI: 10.1111/hel.12384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
BACKGROUND Colonic diverticular disease is a common disorder with increasing incidence in Western societies. The intestinal microbiome may be among etiological factors. Helicobacter pylori may protect against some intestinal diseases, and incidence of H. pylori is decreasing in Western societies. Thus, we aimed to determine whether H. pylori is associated to decreased prevalence of registered colonic diverticular disease. MATERIALS AND METHODS In a historical cohort study, patients were enrolled from primary health care centers after urea breath test for H. pylori and then followed for a median of 6 years. The patient's diagnostic codes and country of birth were acquired from nationwide Danish administrative registries. We used logistic regression to compare prevalence and Cox regression to compare incidence of diverticular disease between H. pylori-positive and H. pylori-negative patients, adjusting for confounding variables. RESULTS Patients infected with H. pylori had lower prevalence of colonic diverticular disease (0.87% vs 1.14%, OR=0.62, 95% CI: 0.50-0.78). This phenomenon was observed whether we studied all registered diagnoses or only cases registered as primary diagnoses at discharge. After urea breath test, we observed no statistical difference in incidence rates of diverticular disease. CONCLUSION H. pylori is associated with reduced prevalence of colonic diverticular disease. The inverse association was absent after the urea breath test. Thus, we speculate that H. pylori may provide protection from colonic diverticular disease. Alternatively, H. pylori is a marker for other factors affecting disease development.
Collapse
Affiliation(s)
- Lars Erik Bartels
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Aarhus C, Denmark
| | - Peter Jepsen
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Aarhus C, Denmark.,Department of Clinical Epidemiology, Aarhus University Hospital, Aarhus N, Denmark
| | - Anders Tøttrup
- Department of Surgery, Aarhus University Hospital, Aarhus C, Denmark
| | - Hendrik Vilstrup
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Aarhus C, Denmark
| | - Jens Frederik Dahlerup
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Aarhus C, Denmark
| |
Collapse
|
149
|
The endoscopic findings of the upper gastrointestinal tract in patients with Crohn's disease. Clin J Gastroenterol 2017; 10:289-296. [PMID: 28695451 DOI: 10.1007/s12328-017-0759-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 06/08/2017] [Indexed: 02/08/2023]
Abstract
Crohn's disease (CD) is a type of chronic inflammatory bowel disease (IBD) associated with ulceration, and the main foci of the inflammation in CD patients are typically the terminal ileum and colon. However, in the upper gastrointestinal tract (GIT), including the esophagus, stomach and duodenum, inflammatory lesions are also detected as well, with a relatively high frequency (30-75%). Recent advances in imaging modalities, including endoscopy, have aided in the diagnosis of CD. Various lesions, including aphtha, erosion, ulcers, bamboo-joint-like appearance and notch-like appearance, are detected in the upper GI of CD patients. Of these lesions, the bamboo-joint-like appearance in the gastric cardiac region and notch-like appearance in the second portion of the duodenum are highly specific for CD, regardless of the disease activity at other sites. These two findings, particularly a bamboo-joint-like appearance, have therefore been considered as potential biomarkers for CD. Although proton pump inhibitors (PPIs) are administered as an initial treatment for upper GIT lesions of CD, the efficacy of this treatment remains controversial. The administration of mesalazine, steroids, immunosuppressant and biologic agents is expected to be effective for treating such lesions.
Collapse
|
150
|
Saeed MA, Ng GZ, Däbritz J, Wagner J, Judd L, Han JX, Dhar P, Kirkwood CD, Sutton P. Protease-activated Receptor 1 Plays a Proinflammatory Role in Colitis by Promoting Th17-related Immunity. Inflamm Bowel Dis 2017; 23:593-602. [PMID: 28296821 DOI: 10.1097/mib.0000000000001045] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Proteolytic cleavage of protease-activated receptor 1 (PAR1) can result in potent downstream regulatory effects on inflammation. Although PAR1 is expressed throughout the gastrointestinal tract and activating proteases are increased in inflammatory bowel disease, the effect of PAR1 activation on colitis remains poorly understood, and has not previously been studied in pediatric disease. METHODS Expression of PAR1 and inflammatory cytokines in colonic biopsies from pediatric patients with Crohn's disease exhibiting active moderate to severe colitis was measured by quantitative PCR. The functional relevance of these clinical data was further studied in a mouse model of Citrobacter rodentium-induced colitis. RESULTS PAR1 expression was significantly upregulated in the inflamed colons of pediatric patients with Crohn's disease, with expression levels directly correlating to disease severity. In patients with severe colitis, PAR1 expression uniquely correlated with Th17-related (IL17A, IL22, and IL23A) cytokines. Infection of PAR1-deficient (PAR1) and wildtype mice with colitogenic C. rodentium revealed that disease severity and colonic pathology were strongly attenuated in mice lacking PAR1. Furthermore, Th17-type immune response was completely abolished in the colons of infected PAR1 but not wildtype mice. Finally, PAR1 was shown to be essential for secretion of the Th17-driving cytokine IL-23 by C. rodentium-stimulated macrophages. CONCLUSIONS This study demonstrates a strong link between PAR1 expression, Th17-type immunity, and disease severity in both pediatric patients with Crohn's disease and C. rodentium-induced colitis in mice. The data presented suggest PAR1 exerts a proinflammatory role in colitis in both humans and mice by promoting a Th17-type immune response, potentially by supporting the production of IL-23.
Collapse
Affiliation(s)
- Muhammad A Saeed
- *Murdoch Childrens Research Institute, Royal Children's Hospital, Parkville, Melbourne, Victoria, Australia; †Centre for Animal Biotechnology, Faculty of Veterinary and Agricultural Science, University of Melbourne, Melbourne, Victoria, Australia; ‡Department of Paediatrics, University Medicine Rostock, Rostock, Mecklenburg-Vorpommern, Germany; and §Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|