101
|
Huang L, Li T, Zhou M, Deng M, Zhang L, Yi L, Zhu J, Zhu X, Mi M. Hypoxia Improves Endurance Performance by Enhancing Short Chain Fatty Acids Production via Gut Microbiota Remodeling. Front Microbiol 2022; 12:820691. [PMID: 35197946 PMCID: PMC8859164 DOI: 10.3389/fmicb.2021.820691] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 12/28/2021] [Indexed: 11/13/2022] Open
Abstract
Hypoxia environment has been widely used to promote exercise capacity. However, the underlying mechanisms still need to be further elucidated. In this study, mice were exposed to the normoxia environment (21% O2) or hypoxia environment (16.4% O2) for 4 weeks. Hypoxia-induced gut microbiota remodeling characterized by the increased abundance of Akkermansia and Bacteroidetes genera, and their related short-chain fatty acids (SCFAs) production. It was observed that hypoxia markedly improved endurance by significantly prolonging the exhaustive running time, promoting mitochondrial biogenesis, and ameliorating exercise fatigue biochemical parameters, including urea nitrogen, creatine kinase, and lactic acid, which were correlated with the concentrations of SCFAs. Additionally, the antibiotics experiment partially inhibited hypoxia-induced mitochondrial synthesis. The microbiota transplantation experiment demonstrated that the enhancement of endurance capacity induced by hypoxia was transferable, indicating that the beneficial effects of hypoxia on exercise performance were partly dependent on the gut microbiota. We further identified that acetate and butyrate, but not propionate, stimulated mitochondrial biogenesis and promoted endurance performance. Our results suggested that hypoxia exposure promoted endurance capacity partially by the increased production of SCFAs derived from gut microbiota remodeling.
Collapse
|
102
|
Torquati L, Gajanand T, Cox ER, Willis C, Zaugg J, Keating SE, Coombes JS. Effects of exercise intensity on gut microbiome composition and function in people with type 2 diabetes. Eur J Sport Sci 2022; 23:530-541. [PMID: 35107058 DOI: 10.1080/17461391.2022.2035436] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Exercise is positively associated with higher microbial diversity, but there is limited information on exercise intensity's effect on gut microbiome composition and function in clinical populations. This study examines whether different intensities of exercise exert differential effects on gut microbiome composition and function in low active people with type 2 diabetes.This is a sub-study of the Exercise for Type 2 Diabetes Study, a single centre, prospective, randomised controlled trial. Participants (n=12) completed 8-weeks of combined aerobic and resistance moderate intensity continuous training (C-MICT) or combined aerobic and resistance high-intensity interval training (C-HIIT). Faecal samples were collected before and after intervention to measure gut microbiome composition and metabolic pathways (metagenome shotgun sequencing) and short-chain fatty acids.Post-exercise α-diversity was different between groups as was the relative abundance of specific taxa was (p<0.05). Post-exercise relative abundance of Bifidobacterium, A. municiphila, and butyrate-producers Lachnospira eligens, Enterococcus spp., and Clostridium Cluster IV were higher at lower exercise intensity. Other butyrate-producers (from Eryspelothrichales and Oscillospirales), and methane producer Methanobrevibacter smithii were higher at higher exercise intensity. Pyruvate metabolism (ko00620),COG 'Cell wall membrane envelope biogenesis' and 'Unknown function' pathways were significantly different between groups and higher in C-MICT post-exercise. Differential abundance analysis on KO showed higher expression of Two-component system in C-HIIT. Transcription factors and 'unknown metabolism' related pathways decreased in both groups. There were no significant between group changes in faecal short chain fatty acids.Exercise intensity had a distinct effect on gut microbiome abundance and metabolic function, without impacting short-chain fatty acid outputTrial registration: Australian New Zealand Clinical Trials Registry identifier: ACTRN12615000475549..
Collapse
Affiliation(s)
- L Torquati
- Department of Sport and Health Sciences, College of Life and Environmental Sciences, University of Exeter, Exeter EX1 2LU, United Kingdom
| | - T Gajanand
- Centre for Research on Exercise, Physical Activity and Health, The University of Queensland, Brisbane, St Lucia campus 4072, Australia
| | - E R Cox
- Centre for Research on Exercise, Physical Activity and Health, The University of Queensland, Brisbane, St Lucia campus 4072, Australia
| | - Crg Willis
- Department of Sport and Health Sciences, College of Life and Environmental Sciences, University of Exeter, Exeter EX1 2LU, United Kingdom
| | - J Zaugg
- Australian Centre for Ecogenomics, The University of Queensland, Brisbane, St Lucia campus 4072, Australia
| | - S E Keating
- Centre for Research on Exercise, Physical Activity and Health, The University of Queensland, Brisbane, St Lucia campus 4072, Australia
| | - J S Coombes
- Centre for Research on Exercise, Physical Activity and Health, The University of Queensland, Brisbane, St Lucia campus 4072, Australia
| |
Collapse
|
103
|
Fukuchi M, Sugita M, Banjo M, Yonekura K, Sasuga Y. The impact of a competitive event and the efficacy of a lactic acid bacteria-fermented soymilk extract on the gut microbiota and urinary metabolites of endurance athletes: An open-label pilot study. PLoS One 2022; 17:e0262906. [PMID: 35085328 PMCID: PMC8794134 DOI: 10.1371/journal.pone.0262906] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 01/08/2022] [Indexed: 12/18/2022] Open
Abstract
Diet and exercise can alter the gut microbiota, but recent studies have assessed the impact of athletic competition on gut microbiota and host metabolites. We designed an open-label pilot study to investigate the effects of both official competition and a multi-strain lactic acid bacteria-fermented soymilk extract (LEX) on the gut microbiota in Japanese college endurance athletes. The analysis of fecal 16S rRNA metagenome and urinary metabolites was used to identify changes in gut microbiota composition and host metabolism. When the fecal microbiota were investigated before and after a race without using of a supplement (pre-observation period), there was an increase in the phylum Firmicutes and decrease in Bacteroidetes. However, no changes in these phyla were seen before and after a race in those who consumed LEX. Before and after LEX ingestion, changes in urinary metabolites included a significant reduction in yeast and fungal markers, neurotransmitters, and mitochondrial metabolites including the TCA cycle. There were several correlations between urinary metabolites and the composition of fecal microbiota. For example, the level of tricarballylic acid was positively correlated with the composition ratio of phylum Firmicutes (Pearson's r = 0.66; p < 0.01). The bacterial species Parabacteroides distasonis was also found to correlate moderately with several urinary metabolites. These findings suggest two possibilities. First, endurance athletes experience significant fluctuations in gut microbiota after a single competition. Second, LEX ingestion may improve yeast and fungal overgrowth in the gastrointestinal tract and enhancing mitochondrial metabolic function.
Collapse
Affiliation(s)
- Mina Fukuchi
- Hachioji Center for Research and Development, B&S Corporation Co., Ltd., Tokyo, Japan
| | | | - Makoto Banjo
- Faculty of Education, Mie University, Mie, Japan
| | | | - Yasuhiro Sasuga
- Hachioji Center for Research and Development, B&S Corporation Co., Ltd., Tokyo, Japan
| |
Collapse
|
104
|
Vijay A, Kouraki A, Gohir S, Turnbull J, Kelly A, Chapman V, Barrett DA, Bulsiewicz WJ, Valdes AM. The anti-inflammatory effect of bacterial short chain fatty acids is partially mediated by endocannabinoids. Gut Microbes 2022; 13:1997559. [PMID: 34787065 PMCID: PMC8604388 DOI: 10.1080/19490976.2021.1997559] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The endocannabinoid (EC) system has pleiotropic functions in the body. It plays a key role in energy homeostasis and the development of metabolic disorders being a mediator in the relationship between the gut microbiota and host metabolism. In the current study we explore the functional interactions between the endocannabinoid system and the gut microbiome in modulating inflammatory markers. Using data from a 6 week exercise intervention (treatment n = 38 control n = 40) and a cross sectional validation cohort (n = 35), we measured the associations of 2-arachidonoylglycerol (2-AG), anandamide (AEA), N-oleoylethanolamine (OEA) and N-palmitoylethanolamine (PEA) with gut microbiome composition, gut derived metabolites (SCFAs) and inflammatory markers both cross-sectionally and longitudinally. At baseline AEA and OEA were positively associated with alpha diversity (β(SE) = .32 (.06), P = .002; .44 (.04), P < .001) and with SCFA producing bacteria such as Bifidobacterium (2-AG β(SE) = .21 (.10), P < .01; PEA β(SE) = .23 (.08), P < .01), Coprococcus 3 and Faecalibacterium (PEA β(SE) = .29 (.11), P = .01; .25 (.09), P < .01) and negatively associated with Collinsella (AEA β(SE) = -.31 (.12), P = .004). Additionally, we found AEA to be positively associated with SCFA Butyrate (β(SE) = .34 (.15), P = .01). AEA, OEA and PEA all increased significantly with the exercise intervention but remained constant in the control group. Changes in AEA correlated with SCFA butyrate and increases in AEA and PEA correlated with decreases in TNF-ɑ and IL-6 statistically mediating one third of the effect of SCFAs on these cytokines. Our data show that the anti-inflammatory effects of SCFAs are partly mediated by the EC system suggesting that there may be other pathways involved in the modulation of the immune system via the gut microbiome.
Collapse
Affiliation(s)
- Amrita Vijay
- Division of Rheumatology, Orthopedics and Dermatology, School of Medicine, University of Nottingham, Nottingham, UK,CONTACT Amrita Vijay Division of Rheumatology, Orthopedics and Dermatology, School of Medicine, University of Nottingham, Nottingham, UK
| | - Afroditi Kouraki
- Division of Rheumatology, Orthopedics and Dermatology, School of Medicine, University of Nottingham, Nottingham, UK,Nihr Nottingham Biomedical Research Centre, University of Nottingham, Nottingham, UK
| | - Sameer Gohir
- Division of Rheumatology, Orthopedics and Dermatology, School of Medicine, University of Nottingham, Nottingham, UK,Nihr Nottingham Biomedical Research Centre, University of Nottingham, Nottingham, UK
| | - James Turnbull
- Nihr Nottingham Biomedical Research Centre, University of Nottingham, Nottingham, UK,Arthritis Research Uk Pain Centre, University of Nottingham, Medical School, Queen’s Medical Centre, Nottingham, UK
| | - Anthony Kelly
- Division of Rheumatology, Orthopedics and Dermatology, School of Medicine, University of Nottingham, Nottingham, UK,Nihr Nottingham Biomedical Research Centre, University of Nottingham, Nottingham, UK
| | - Vicky Chapman
- Division of Rheumatology, Orthopedics and Dermatology, School of Medicine, University of Nottingham, Nottingham, UK,Arthritis Research Uk Pain Centre, University of Nottingham, Medical School, Queen’s Medical Centre, Nottingham, UK
| | - David A Barrett
- Nihr Nottingham Biomedical Research Centre, University of Nottingham, Nottingham, UK,DAB-Centre for Analytical Bioscience, Advanced Materials and Healthcare Technologies Division, School of Pharmacy, University of Nottingham, Nottingham, UK
| | | | - Ana M Valdes
- Division of Rheumatology, Orthopedics and Dermatology, School of Medicine, University of Nottingham, Nottingham, UK,Nihr Nottingham Biomedical Research Centre, University of Nottingham, Nottingham, UK
| |
Collapse
|
105
|
Sawicka-Śmiarowska E, Moniuszko-Malinowska A, Kamiński KA. Why Do These Microbes Like Me and How Could There Be a Link with Cardiovascular Risk Factors? J Clin Med 2022; 11:jcm11030599. [PMID: 35160056 PMCID: PMC8836897 DOI: 10.3390/jcm11030599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 01/15/2022] [Accepted: 01/21/2022] [Indexed: 02/04/2023] Open
Abstract
Cardiovascular diseases are the most common causes of hospitalization, death, and disability in Europe. Due to high prevalence and ensuing clinical complications, they lead to very high social and economic costs. Despite the knowledge of classical cardiovascular risk factors, there is an urgent need for discovering new factors that may play a role in the development of cardiovascular diseases or potentially influence prognosis. Recently, particular attention has been drawn to the endogenous microflora of the human body, mostly those inhabiting the digestive system. It has been shown that bacteria, along with their host cells, create an interactive ecosystem of interdependencies and relationships. This interplay could influence both the metabolic homeostasis and the immune processes of the host, hence leading to cardiovascular disease development. In this review, we attempt to describe, in the context of cardiovascular risk factors, why particular microbes occur in individuals and how they might influence the host’s cardiovascular system in health and disease.
Collapse
Affiliation(s)
- Emilia Sawicka-Śmiarowska
- Department of Population Medicine and Lifestyle Diseases Prevention, Medical University of Bialystok, 15-269 Bialystok, Poland;
- Department of Cardiology, Medical University of Bialystok, 15-276 Bialystok, Poland
| | - Anna Moniuszko-Malinowska
- Department of Infectious Diseases and Neuroinfection, Medical University of Bialystok, 15-540 Bialystok, Poland;
| | - Karol Adam Kamiński
- Department of Population Medicine and Lifestyle Diseases Prevention, Medical University of Bialystok, 15-269 Bialystok, Poland;
- Correspondence: ; Tel.: +48-85-8318-656
| |
Collapse
|
106
|
Fernández J, Fernández-Sanjurjo M, Iglesias-Gutiérrez E, Martínez-Camblor P, Villar CJ, Tomás-Zapico C, Fernández-García B, Lombó F. Resistance and Endurance Exercise Training Induce Differential Changes in Gut Microbiota Composition in Murine Models. Front Physiol 2022; 12:748854. [PMID: 35002754 PMCID: PMC8739997 DOI: 10.3389/fphys.2021.748854] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 12/01/2021] [Indexed: 11/27/2022] Open
Abstract
Background: The effect of resistance training on gut microbiota composition has not been explored, despite the evidence about endurance exercise. The aim of this study was to compare the effect of resistance and endurance training on gut microbiota composition in mice. Methods: Cecal samples were collected from 26 C57BL/6N mice, divided into three groups: sedentary (CTL), endurance training on a treadmill (END), and resistance training on a vertical ladder (RES). After 2 weeks of adaption, mice were trained for 4 weeks, 5 days/week. Maximal endurance and resistance capacity test were performed before and after training. Genomic DNA was extracted and 16S Ribosomal RNA sequenced for metagenomics analysis. The percentages for each phylum, class, order, family, or genus/species were obtained using an open-source bioinformatics pipeline. Results: END showed higher diversity and evenness. Significant differences among groups in microbiota composition were only observed at genera and species level. END showed a significantly higher relative abundance of Desulfovibrio and Desulfovibrio sp., while Clostridium and C. cocleatum where higher for RES. Trained mice showed significantly lower relative abundance of Ruminococcus gnavus and higher of the genus Parabacteroides compared to CTL. We explored the relationship between relative taxa abundance and maximal endurance and resistance capacities after the training period. Lachnospiraceae and Lactobacillaceae families were negatively associated with endurance performance, while several taxa, including Prevotellaceae family, Prevotella genus, and Akkermansia muciniphila, were positively correlated. About resistance performance, Desulfovibrio sp. was negatively correlated, while Alistipes showed a positive correlation. Conclusion: Resistance and endurance training differentially modify gut microbiota composition in mice, under a high-controlled environment. Interestingly, taxa associated with anti- and proinflammatory responses presented the same pattern after both models of exercise. Furthermore, the abundance of several taxa was differently related to maximal endurance or resistance performance, most of them did not respond to training.
Collapse
Affiliation(s)
- Javier Fernández
- Department of Functional Biology, Microbiology, University of Oviedo, Oviedo, Spain.,Health Research Institute of the Principality of Asturias (ISPA), Oviedo, Spain.,Instituto Universitario de Oncología del Principado de Asturias (IUOPA), University of Oviedo, Oviedo, Spain
| | - Manuel Fernández-Sanjurjo
- Health Research Institute of the Principality of Asturias (ISPA), Oviedo, Spain.,Department of Functional Biology, Physiology, University of Oviedo, Oviedo, Spain
| | - Eduardo Iglesias-Gutiérrez
- Health Research Institute of the Principality of Asturias (ISPA), Oviedo, Spain.,Department of Functional Biology, Physiology, University of Oviedo, Oviedo, Spain
| | - Pablo Martínez-Camblor
- Department of Biomedical Data Science, Geisel School of Medicine at Dartmouth, Hanover, NH, United States
| | - Claudio J Villar
- Department of Functional Biology, Microbiology, University of Oviedo, Oviedo, Spain.,Health Research Institute of the Principality of Asturias (ISPA), Oviedo, Spain.,Instituto Universitario de Oncología del Principado de Asturias (IUOPA), University of Oviedo, Oviedo, Spain
| | - Cristina Tomás-Zapico
- Health Research Institute of the Principality of Asturias (ISPA), Oviedo, Spain.,Department of Functional Biology, Physiology, University of Oviedo, Oviedo, Spain
| | - Benjamin Fernández-García
- Health Research Institute of the Principality of Asturias (ISPA), Oviedo, Spain.,Department of Morphology and Cell Biology, Anatomy, University of Oviedo, Oviedo, Spain
| | - Felipe Lombó
- Department of Functional Biology, Microbiology, University of Oviedo, Oviedo, Spain.,Health Research Institute of the Principality of Asturias (ISPA), Oviedo, Spain.,Instituto Universitario de Oncología del Principado de Asturias (IUOPA), University of Oviedo, Oviedo, Spain
| |
Collapse
|
107
|
Higarza SG, Arboleya S, Arias JL, Gueimonde M, Arias N. Akkermansia muciniphila and environmental enrichment reverse cognitive impairment associated with high-fat high-cholesterol consumption in rats. Gut Microbes 2022; 13:1-20. [PMID: 33678110 PMCID: PMC7946069 DOI: 10.1080/19490976.2021.1880240] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Nonalcoholic steatohepatitis (NASH) is one of the most prevalent diseases globally. A high-fat, high-cholesterol (HFHC) diet leads to an early NASH model. It has been suggested that gut microbiota mediates the effects of diet through the microbiota-gut-brain axis, modifying the host's brain metabolism and disrupting cognition. Here, we target NASH-induced cognitive damage by testing the impact of environmental enrichment (EE) and the administration of either Lacticaseibacillus rhamnosus GG (LGG) or Akkermansia muciniphila CIP107961 (AKK). EE and AKK, but not LGG, reverse the HFHC-induced cognitive dysfunction, including impaired spatial working memory and novel object recognition; however, whereas AKK restores brain metabolism, EE results in an overall decrease. Moreover, AKK and LGG did not induce major rearrangements in the intestinal microbiota, with only slight changes in bacterial composition and diversity, whereas EE led to an increase in Firmicutes and Verrucomicrobia members. Our findings illustrate the interplay between gut microbiota, the host's brain energy metabolism, and cognition. In addition, the findings suggest intervention strategies, such as the administration of AKK, for the management of the cognitive dysfunction related to NASH.
Collapse
Affiliation(s)
- Sara G. Higarza
- Laboratory of Neuroscience, Department of Psychology. University of Oviedo, Oviedo, Asturias, Spain,Instituto De Neurociencias Del Principado De Asturias (INEUROPA), Asturias, Spain
| | - Silvia Arboleya
- Department of Microbiology and Biochemistry of Dairy Products, Instituto De Productos Lácteos De Asturias (IPLA-CSIC), Villaviciosa, Asturias, Spain
| | - Jorge L. Arias
- Laboratory of Neuroscience, Department of Psychology. University of Oviedo, Oviedo, Asturias, Spain,Instituto De Neurociencias Del Principado De Asturias (INEUROPA), Asturias, Spain
| | - Miguel Gueimonde
- Department of Microbiology and Biochemistry of Dairy Products, Instituto De Productos Lácteos De Asturias (IPLA-CSIC), Villaviciosa, Asturias, Spain,Miguel Gueimonde Department of Microbiology and Biochemistry of Dairy Products, Instituto De Productos Lácteos De Asturias (IPLA-CSIC), Villaviciosa, Asturias 33300, Spain
| | - Natalia Arias
- Instituto De Neurociencias Del Principado De Asturias (INEUROPA), Asturias, Spain,UK Dementia Research Institute, Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK,CONTACT Natalia Arias Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, Denmark Hill, LondonSE5 8AF, United Kingdom
| |
Collapse
|
108
|
The Athlete Gut Microbiome and its Relevance to Health and Performance: A Review. Sports Med 2022; 52:119-128. [PMID: 36396898 PMCID: PMC9734205 DOI: 10.1007/s40279-022-01785-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/25/2022] [Indexed: 11/19/2022]
Abstract
The human gut microbiome is a complex ecosystem of microorganisms that play an important role in human health, influencing functions such as vitamin uptake, digestion and immunomodulation. While research of the gut microbiome has expanded considerably over the past decade, some areas such as the relationship between exercise and the microbiome remain relatively under investigated. Despite this, multiple studies have shown a potential bidirectional relationship between exercise and the gut microbiome, with some studies demonstrating the possibility of influencing this relationship. This, in turn, could provide a useful route to influence athletic performance via microbiome manipulation, a valuable prospect for many elite athletes and their teams. The evidence supporting the potential benefits of pursuing this route and associated future perspectives are discussed in this review.
Collapse
|
109
|
Understanding the Role of the Gut Microbiome and Microbial Metabolites in Non-Alcoholic Fatty Liver Disease: Current Evidence and Perspectives. Biomolecules 2021; 12:biom12010056. [PMID: 35053205 PMCID: PMC8774162 DOI: 10.3390/biom12010056] [Citation(s) in RCA: 151] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 12/24/2021] [Accepted: 12/30/2021] [Indexed: 12/11/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the most common chronic liver disease worldwide. NAFLD begins as a relatively benign hepatic steatosis which can evolve to non-alcoholic steatohepatitis (NASH); the risk of cirrhosis and hepatocellular carcinoma (HCC) increases when fibrosis is present. NAFLD represents a complex process implicating numerous factors—genetic, metabolic, and dietary—intertwined in a multi-hit etiopathogenetic model. Recent data have highlighted the role of gut dysbiosis, which may render the bowel more permeable, leading to increased free fatty acid absorption, bacterial migration, and a parallel release of toxic bacterial products, lipopolysaccharide (LPS), and proinflammatory cytokines that initiate and sustain inflammation. Although gut dysbiosis is present in each disease stage, there is currently no single microbial signature to distinguish or predict which patients will evolve from NAFLD to NASH and HCC. Using 16S rRNA sequencing, the majority of patients with NAFLD/NASH exhibit increased numbers of Bacteroidetes and differences in the presence of Firmicutes, resulting in a decreased F/B ratio in most studies. They also present an increased proportion of species belonging to Clostridium, Anaerobacter, Streptococcus, Escherichia, and Lactobacillus, whereas Oscillibacter, Flavonifaractor, Odoribacter, and Alistipes spp. are less prominent. In comparison to healthy controls, patients with NASH show a higher abundance of Proteobacteria, Enterobacteriaceae, and Escherichia spp., while Faecalibacterium prausnitzii and Akkermansia muciniphila are diminished. Children with NAFLD/NASH have a decreased proportion of Oscillospira spp. accompanied by an elevated proportion of Dorea, Blautia, Prevotella copri, and Ruminococcus spp. Gut microbiota composition may vary between population groups and different stages of NAFLD, making any conclusive or causative claims about gut microbiota profiles in NAFLD patients challenging. Moreover, various metabolites may be involved in the pathogenesis of NAFLD, such as short-chain fatty acids, lipopolysaccharide, bile acids, choline and trimethylamine-N-oxide, and ammonia. In this review, we summarize the role of the gut microbiome and metabolites in NAFLD pathogenesis, and we discuss potential preventive and therapeutic interventions related to the gut microbiome, such as the administration of probiotics, prebiotics, synbiotics, antibiotics, and bacteriophages, as well as the contribution of bariatric surgery and fecal microbiota transplantation in the therapeutic armamentarium against NAFLD. Larger and longer-term prospective studies, including well-defined cohorts as well as a multi-omics approach, are required to better identify the associations between the gut microbiome, microbial metabolites, and NAFLD occurrence and progression.
Collapse
|
110
|
Strategies to Prevent Sarcopenia in the Aging Process: Role of Protein Intake and Exercise. Nutrients 2021; 14:nu14010052. [PMID: 35010928 PMCID: PMC8746908 DOI: 10.3390/nu14010052] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 12/19/2021] [Accepted: 12/21/2021] [Indexed: 12/24/2022] Open
Abstract
Sarcopenia is one of the main issues associated with the process of aging. Characterized by muscle mass loss, it is triggered by several conditions, including sedentary habits and negative net protein balance. According to World Health Organization, it is expected a 38% increase in older individuals by 2025. Therefore, it is noteworthy to establish recommendations to prevent sarcopenia and several events and comorbidities associated with this health issue condition. In this review, we discuss the role of these factors, prevention strategies, and recommendations, with a focus on protein intake and exercise.
Collapse
|
111
|
Donati Zeppa S, Amatori S, Sisti D, Gervasi M, Agostini D, Piccoli G, Pazienza V, Gobbi P, Rocchi MBL, Sestili P, Stocchi V. Nine weeks of high-intensity indoor cycling training induced changes in the microbiota composition in non-athlete healthy male college students. J Int Soc Sports Nutr 2021; 18:74. [PMID: 34922581 PMCID: PMC8684107 DOI: 10.1186/s12970-021-00471-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 11/19/2021] [Indexed: 12/20/2022] Open
Abstract
Background The gut microbiota constitutes a dynamic microbial system constantly challenged by environmental conditions, including physical exercise. Limited human studies suggest that exercise could play a beneficial role for gut health, increasing microbial diversity, even if the effects of exercise on gut microbial microorganisms depends on its intensity and duration. This study aimed to investigate the effects of nine weeks of high-intensity interval exercise on gut microbiota composition in healthy young adults. Methods The gut microbiota composition of seventeen healthy male college students was analysed before and after nine weeks of high-intensity interval cycling training by 16S rRNA amplicon sequencing. PERMANOVA for repeated measures was used to test pre-post differences in the relative abundance of all taxonomic levels, and correlations between variations in microbial composition and physical and dietary features were also assessed. Results Physical exercise induced changes in microbiota composition, at all taxonomic levels analysed (phyla: F [1, 32]=3.97, p=0.029; classes: F [1, 32]=3.39, p=0.033, orders: F [1, 32]=3.17, p=0.044, families: F [1, 32]=1.54, p=0.037, genera: F [1, 32]=1.46, p=0.015, species: F [1, 32]=1.38, p=0.007). Conversely, no differences were found between pre and post-training conditions for microbial community richness (Chao1: V=105, p=0.06) or diversity (Shannon index: V=62, p=0.52; Simpson index: V=59, p=0.43). Changes in the relative abundance of eighteen genera were correlated to changes of twenty environmental factors grouped in physical features, sport-related features, and dietary features. Conclusions Nine weeks of high-intensity exercise induced modifications in gut microbiota composition in healthy male college students, shifting the gut microbial population towards a healthier microbiome with benefit to human health in general. Supplementary Information The online version contains supplementary material available at 10.1186/s12970-021-00471-z.
Collapse
Affiliation(s)
- Sabrina Donati Zeppa
- Department of Biomolecular Sciences, University of Urbino Carlo Bo Piazza Rinascimento 7, 61029, Urbino, Italy
| | - Stefano Amatori
- Department of Biomolecular Sciences, University of Urbino Carlo Bo Piazza Rinascimento 7, 61029, Urbino, Italy
| | - Davide Sisti
- Department of Biomolecular Sciences, University of Urbino Carlo Bo Piazza Rinascimento 7, 61029, Urbino, Italy.
| | - Marco Gervasi
- Department of Biomolecular Sciences, University of Urbino Carlo Bo Piazza Rinascimento 7, 61029, Urbino, Italy
| | - Deborah Agostini
- Department of Biomolecular Sciences, University of Urbino Carlo Bo Piazza Rinascimento 7, 61029, Urbino, Italy
| | - Giovanni Piccoli
- Department of Biomolecular Sciences, University of Urbino Carlo Bo Piazza Rinascimento 7, 61029, Urbino, Italy
| | - Valerio Pazienza
- Division of Gastroenterology "Casa Sollievo della Sofferenza" Hospital, 71013, San Giovanni Rotondo, Italy
| | - Pietro Gobbi
- Department of Biomolecular Sciences, University of Urbino Carlo Bo Piazza Rinascimento 7, 61029, Urbino, Italy
| | - Marco B L Rocchi
- Department of Biomolecular Sciences, University of Urbino Carlo Bo Piazza Rinascimento 7, 61029, Urbino, Italy
| | - Piero Sestili
- Department of Biomolecular Sciences, University of Urbino Carlo Bo Piazza Rinascimento 7, 61029, Urbino, Italy
| | | |
Collapse
|
112
|
Nutrition and Physical Activity-Induced Changes in Gut Microbiota: Possible Implications for Human Health and Athletic Performance. Foods 2021; 10:foods10123075. [PMID: 34945630 PMCID: PMC8700881 DOI: 10.3390/foods10123075] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/05/2021] [Accepted: 12/07/2021] [Indexed: 12/12/2022] Open
Abstract
The gut microbiota is a complex heterogeneous microbial community modulated by endogenous and exogenous factors. Among the external causes, nutrition as well as physical activity appear to be potential drivers of microbial diversity, both at the taxonomic and functional level, likely also influencing endocrine system, and acting as endocrine organ itself. To date, clear-cut data regarding which microbial populations are modified, and by which mechanisms are lacking. Moreover, the relationship between the microbial shifts and the metabolic practical potential of the gut microbiota is still unclear. Further research by longitudinal and well-designed studies is needed to investigate whether microbiome manipulation may be an effective tool for improving human health and, also, performance in athletes, and whether these effects may be then extended to the overall health promotion of general populations. In this review, we evaluate and summarize the current knowledge regarding the interaction and cross-talks among hormonal modifications, physical performance, and microbiota content and function.
Collapse
|
113
|
Houttu V, Boulund U, Nicolaou M, Holleboom AG, Grefhorst A, Galenkamp H, van den Born BJ, Zwinderman K, Nieuwdorp M. Physical Activity and Dietary Composition Relate to Differences in Gut Microbial Patterns in a Multi-Ethnic Cohort-The HELIUS Study. Metabolites 2021; 11:metabo11120858. [PMID: 34940616 PMCID: PMC8707449 DOI: 10.3390/metabo11120858] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 12/03/2021] [Accepted: 12/06/2021] [Indexed: 02/07/2023] Open
Abstract
Physical activity (PA) at recommended levels contributes to the prevention of non-communicable diseases, such as atherosclerotic cardiovascular disease (asCVD) and type 2 diabetes mellitus (T2DM). Since the composition of the gut microbiota is strongly intertwined with dietary intake, the specific effect of exercise on the gut microbiota is not known. Moreover, multiple other factors, such as ethnicity, influence the composition of the gut microbiota, and this may be derived by distinct diet as well as PA patterns. Here we aim to untangle the associations between PA and the gut microbiota in a sample (n = 1334) from the Healthy Life In an Urban Setting (HELIUS) multi-ethnic cohort. The associations of different food groups and gut microbiota were also analyzed. PA was monitored using subjective (n = 1309) and objective (n = 162) methods, and dietary intake was assessed with ethnic-specific food frequency questionnaire (FFQ). The gut microbiota was profiled using 16S rRNA gene amplicon sequencing, and the functional composition was generated with the Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt2). Associations were assessed using multivariable and machine learning models. In this cohort, a distinct gut microbiota composition was associated with meeting the Dutch PA norm as well as with dietary intake, e.g., grains. PA related parameters such as muscle strength and calf circumference correlated with gut microbiota diversity. Furthermore, gut microbial functionality differed between active and sedentary groups. Differential representation of ethnicities in active and sedentary groups in both monitor methods hampered the detection of ethnic-specific effects. In conclusion, both PA and dietary intake were associated with gut microbiota composition in our multi-ethnic cohort. Future studies should further elucidate the role of ethnicity and diet in this association.
Collapse
Affiliation(s)
- Veera Houttu
- Department of Vascular Medicine, Amsterdam UMC, Location AMC at University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (V.H.); (U.B.); (A.G.H.); (A.G.); (B.-J.v.d.B.)
- Department of Experimental Vascular Medicine, Amsterdam UMC, Location AMC at University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Ulrika Boulund
- Department of Vascular Medicine, Amsterdam UMC, Location AMC at University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (V.H.); (U.B.); (A.G.H.); (A.G.); (B.-J.v.d.B.)
- Department of Experimental Vascular Medicine, Amsterdam UMC, Location AMC at University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Mary Nicolaou
- Department of Public and Occupational Health, Amsterdam UMC, Location AMC at University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (M.N.); (H.G.)
| | - Adriaan Georgius Holleboom
- Department of Vascular Medicine, Amsterdam UMC, Location AMC at University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (V.H.); (U.B.); (A.G.H.); (A.G.); (B.-J.v.d.B.)
- Department of Experimental Vascular Medicine, Amsterdam UMC, Location AMC at University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Aldo Grefhorst
- Department of Vascular Medicine, Amsterdam UMC, Location AMC at University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (V.H.); (U.B.); (A.G.H.); (A.G.); (B.-J.v.d.B.)
- Department of Experimental Vascular Medicine, Amsterdam UMC, Location AMC at University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Henrike Galenkamp
- Department of Public and Occupational Health, Amsterdam UMC, Location AMC at University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (M.N.); (H.G.)
| | - Bert-Jan van den Born
- Department of Vascular Medicine, Amsterdam UMC, Location AMC at University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (V.H.); (U.B.); (A.G.H.); (A.G.); (B.-J.v.d.B.)
- Department of Public and Occupational Health, Amsterdam UMC, Location AMC at University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (M.N.); (H.G.)
| | - Koos Zwinderman
- Department of Clinical Epidemiology, Biostatistics and Bioinformatics, Amsterdam UMC, Location AMC at University of Amsterdam, 1105 AZ Amsterdam, The Netherlands;
| | - Max Nieuwdorp
- Department of Vascular Medicine, Amsterdam UMC, Location AMC at University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (V.H.); (U.B.); (A.G.H.); (A.G.); (B.-J.v.d.B.)
- Department of Experimental Vascular Medicine, Amsterdam UMC, Location AMC at University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
- Correspondence: ; Tel.: +31-(0)20-5665-737
| |
Collapse
|
114
|
Santarossa S, Sitarik AR, Johnson CC, Li J, Lynch SV, Ownby DR, Ramirez A, Yong GLM, Cassidy-Bushrow AE. Associations of physical activity with gut microbiota in pre-adolescent children. Phys Act Nutr 2021; 25:24-37. [PMID: 35152621 PMCID: PMC8843867 DOI: 10.20463/pan.2021.0023] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/03/2021] [Accepted: 12/19/2021] [Indexed: 11/22/2022] Open
Abstract
PURPOSE To determine whether physical activity (PA), primarily the recommended 60 minutes of moderate-to-vigorous PA, is associated with gut bacterial microbiota in 10-year-old children. METHODS The Block Physical Activity Screener, which provides minutes/day PA variables, was used to determine whether the child met the PA recommendations. 16S rRNA sequencing was performed on stool samples from the children to profile the composition of their gut bacterial microbiota. Differences in alpha diversity metrics (richness, Pielou's evenness, and Faith's phylogenetic diversity) by PA were determined using linear regression, whereas beta diversity (unweighted and weighted UniFrac) relationships were assessed using PERMANOVA. Taxon relative abundance differentials were determined using DESeq2. RESULTS The analytic sample included 321 children with both PA and 16S rRNA sequencing data (mean age [SD] =10.2 [0.8] years; 54.2% male; 62.9% African American), where 189 (58.9%) met the PA recommendations. After adjusting for covariates, meeting the PA recommendations as well as minutes/day PA variables were not significantly associated with gut richness, evenness, or diversity (p ≥ 0.19). However, meeting the PA recommendations (weighted UniFrac R2 = 0.014, p = 0.001) was significantly associated with distinct gut bacterial composition. These compositional differences were partly characterized by increased abundance of Megamonas and Anaerovorax as well as specific Christensenellaceae_R-7_group taxa in children with higher PA. CONCLUSION Children who met the recommendations of PA had altered gut microbiota compositions. Whether this translates to a reduced risk of obesity or associated metabolic diseases is still unclear.
Collapse
Affiliation(s)
- Sara Santarossa
- Department of Public Health Sciences, Henry Ford Health System, Michigan, USA
| | | | | | - Jia Li
- Department of Public Health Sciences, Henry Ford Health System, Michigan, USA
| | - Susan V. Lynch
- Department of Medicine, University of California, California, USA
| | - Dennis R. Ownby
- Department of Pediatrics, Georgia Regents University, Georgia, USA
| | - Alex Ramirez
- Department of Public Health Sciences, Henry Ford Health System, Michigan, USA
- Wayne State University School of Medicine Detroit, Michigan, USA
| | | | | |
Collapse
|
115
|
Marfil-Sánchez A, Seelbinder B, Ni Y, Varga J, Berta J, Hollosi V, Dome B, Megyesfalvi Z, Dulka E, Galffy G, Weiss GJ, Panagiotou G, Lohinai Z. Gut microbiome functionality might be associated with exercise tolerance and recurrence of resected early-stage lung cancer patients. PLoS One 2021; 16:e0259898. [PMID: 34793492 PMCID: PMC8601557 DOI: 10.1371/journal.pone.0259898] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 10/28/2021] [Indexed: 11/18/2022] Open
Abstract
Impaired exercise tolerance and lung function is a marker for increased mortality in lung cancer patients undergoing lung resection surgery. Recent data suggest that the gut-lung axis regulates systemic metabolic and immune functions, and microbiota might alter exercise tolerance. Here, we aimed to evaluate the associations between gut microbiota and outcomes in lung cancer patients who underwent lung resection surgery. We analysed stool samples, from 15 early-stage lung cancer patients, collected before and after surgical resection using shotgun metagenomic and Internal Transcribed Spacer (ITS) sequencing. We analysed microbiome and mycobiome associations with post-surgery lung function and cardiopulmonary exercise testing (CPET) to assess the maximum level of work achieved. There was a significant difference, between pre- and post-surgical resection samples, in microbial community functional profiles and several species from Alistipes and Bacteroides genus, associated with the production of SCFAs, increased significantly in abundance. Interestingly, an increase in VO2 coincides with an increase in certain species and the "GABA shunt" pathway, suggesting that treatment outcome might improve by enriching butyrate-producing species. Here, we revealed associations between specific gut bacteria, fungi, and their metabolic pathways with the recovery of lung function and exercise capacity.
Collapse
Affiliation(s)
- Andrea Marfil-Sánchez
- Systems Biology and Bioinformatics, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, Jena, Germany
| | - Bastian Seelbinder
- Systems Biology and Bioinformatics, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, Jena, Germany
| | - Yueqiong Ni
- Systems Biology and Bioinformatics, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, Jena, Germany
| | - Janos Varga
- National Koranyi Institute of Pulmonology, Budapest, Hungary
| | - Judit Berta
- National Koranyi Institute of Pulmonology, Budapest, Hungary
| | - Virag Hollosi
- National Koranyi Institute of Pulmonology, Budapest, Hungary
| | - Balazs Dome
- National Koranyi Institute of Pulmonology, Budapest, Hungary
- Department of Thoracic Surgery, National Institute of Oncology-Semmelweis University, Budapest, Hungary
- Division of Thoracic Surgery, Department of Surgery, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Zsolt Megyesfalvi
- National Koranyi Institute of Pulmonology, Budapest, Hungary
- Department of Thoracic Surgery, National Institute of Oncology-Semmelweis University, Budapest, Hungary
- Division of Thoracic Surgery, Department of Surgery, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Edit Dulka
- County Hospital of Torokbalint, Torokbalint, Hungary
| | | | - Glen J. Weiss
- MiRanostics Consulting, Oro Valley, Arizona, United States of America
| | - Gianni Panagiotou
- Systems Biology and Bioinformatics, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, Jena, Germany
- * E-mail:
| | - Zoltan Lohinai
- National Koranyi Institute of Pulmonology, Budapest, Hungary
| |
Collapse
|
116
|
Rong B, Wu Q, Saeed M, Sun C. Gut microbiota-a positive contributor in the process of intermittent fasting-mediated obesity control. ACTA ACUST UNITED AC 2021; 7:1283-1295. [PMID: 34786501 PMCID: PMC8567329 DOI: 10.1016/j.aninu.2021.09.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 09/12/2021] [Accepted: 09/25/2021] [Indexed: 12/12/2022]
Abstract
Historically, intermittent fasting (IF) has been considered as an effective strategy for controlling the weight of athletes before competition. Along with excellent insight into its application in various spaces by numerous studies, increasing IF-mediated positive effects have been reported, including anti-aging, neuroprotection, especially obesity control. Recently, the gut microbiota has been considered as an essential manipulator for host energy metabolism and its structure has been reported to be sensitive to dietary structure and habits, indicating that there is a potential and strong association between IF and gut microbiota. In this paper, we focus on the crosstalk between these symbionts and energy metabolism during IF which hold the promise to optimize host energy metabolism at various physical positions, including adipose tissue, liver and intestines, and further improve milieu internal homeostasis. Moreover, this paper also discusses the positive function of a potential recommendatory strain (Akkermansia muciniphila) based on the observational data for IF-mediated alternated pattern of gut microbiota and a hopefully regulatory pathway (circadian rhythm) for gut microbiota in IF-involved improvement on host energy metabolism. Finally, this review addresses the limitation and perspective originating from these studies, such as the association with tissue-specific bio-clock and single strain research, which may continuously reveal novel viewpoints and mechanisms to understand the energy metabolism and develop new strategies for treating obesity, diabetes, and metabolic disorders.
Collapse
Affiliation(s)
- Bohan Rong
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Qiong Wu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China.,Department of Pathophysiology, Qinghai University Medical College, Xining, Qinghai, China
| | - Muhammad Saeed
- Faculty of Animal Production & Technology, Cholistan University of Veterinary and Animal Sciences, Bahawalpur, 63100, Pakistan
| | - Chao Sun
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| |
Collapse
|
117
|
Szurkowska J, Wiącek J, Laparidis K, Karolkiewicz J. A Comparative Study of Selected Gut Bacteria Abundance and Fecal pH in Bodybuilders Eating High-Protein Diet and More Sedentary Controls. Nutrients 2021; 13:nu13114093. [PMID: 34836348 PMCID: PMC8623519 DOI: 10.3390/nu13114093] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/09/2021] [Accepted: 11/13/2021] [Indexed: 11/17/2022] Open
Abstract
Bodybuilders tend to overeat their daily protein needs. The purpose of a high-protein diet is to support post-workout recovery and skeletal muscle growth; however, its exact impact on gut microbiota still remains under investigation. The aim of this study was to assess the differences in selected gut bacteria (Faecalibacterium prausnitzii, Akkermansia muciniphila, Bifidobacterium spp., and Bacteroides spp.) abundance and fecal pH between the group of amateur bodybuilders and more sedentary control group. In total, 26 young healthy men took part in the study, and their daily nutrients intake was measured using a dietary interview. Real-time PCR was used to assess the stool bacteria abundance. Both groups reported fiber intake within the recommended range, but bodybuilders consumed significantly more protein (33.6% ± 6.5% vs. 22% ± 6.3%) and less fat (27.6% ± 18.9% vs. 36.4% ± 10%) than controls. Study results showed no significant differences in terms of selected intestinal bacteria colony forming unit counts. Significantly higher fecal pH in the bodybuilders’ fecal samples was observed in comparison to the control group 6.9 ± 0.7 vs. 6.2 ± 0.7. Gut microbiota composition similarities could be a result of appropriate fiber intake in both groups.
Collapse
Affiliation(s)
- Joanna Szurkowska
- Department of Food and Nutrition, Poznan University of Physical Education, 61-871 Poznań, Poland; (J.S.); (J.W.)
| | - Jakub Wiącek
- Department of Food and Nutrition, Poznan University of Physical Education, 61-871 Poznań, Poland; (J.S.); (J.W.)
| | - Konstantinos Laparidis
- Department of Physical Education and Sports Science, School of Physical Education & Sport Sciences, Democritus University of Thrace University Campus, 69100 Komotini, Greece;
| | - Joanna Karolkiewicz
- Department of Food and Nutrition, Poznan University of Physical Education, 61-871 Poznań, Poland; (J.S.); (J.W.)
- Correspondence:
| |
Collapse
|
118
|
Arazi H, Falahati A, Suzuki K. Moderate Intensity Aerobic Exercise Potential Favorable Effect Against COVID-19: The Role of Renin-Angiotensin System and Immunomodulatory Effects. Front Physiol 2021; 12:747200. [PMID: 34867452 PMCID: PMC8634264 DOI: 10.3389/fphys.2021.747200] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 10/11/2021] [Indexed: 12/17/2022] Open
Abstract
The coronavirus disease (COVID-19) pandemic is caused by a novel coronavirus (CoV) named severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). As the angiotensin converting enzyme 2 (ACE2) is the cellular receptor of SARS-CoV-2, it has a strong interaction with the renin angiotensin system (RAS). Experimental studies have shown that the higher levels of ACE2 or increasing ACE2/ACE1 ratio improve COVID-19 outcomes through lowering inflammation and death. Aerobic moderate intensity physical exercise fights off infections by two mechanisms, the inhibition of ACE/Ang II/AT1-R pathway and the stimulation of ACE2/Ang-(1-7)/MasR axis. Exercise can also activate the anti-inflammatory response so that it can be a potential therapeutic strategy against COVID-19. Here, we summarize and focus the relation among COVID-19, RAS, and immune system and describe the potential effect of aerobic moderate intensity physical exercise against CoV as a useful complementary tool for providing immune protection against SARS-CoV-2 virus infection, which is a novel intervention that requires further investigation.
Collapse
Affiliation(s)
- Hamid Arazi
- Department of Exercise Physiology, Faculty of Sport Sciences, University of Guilan, Rasht, Iran
| | - Akram Falahati
- Department of Exercise Physiology, Faculty of Sport Sciences, University of Guilan, Rasht, Iran
| | | |
Collapse
|
119
|
Aragón-Vela J, Solis-Urra P, Ruiz-Ojeda FJ, Álvarez-Mercado AI, Olivares-Arancibia J, Plaza-Diaz J. Impact of Exercise on Gut Microbiota in Obesity. Nutrients 2021; 13:3999. [PMID: 34836254 PMCID: PMC8624603 DOI: 10.3390/nu13113999] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/05/2021] [Accepted: 11/08/2021] [Indexed: 12/19/2022] Open
Abstract
Physical activity, exercise, or physical fitness are being studied as helpful nonpharmacological therapies to reduce signaling pathways related to inflammation. Studies describing changes in intestinal microbiota have stated that physical activity could increase the microbial variance and enhance the ratio of Firmicutes/Bacteroidetes, and both actions could neutralize the obesity progression and diminish body weight. The aim of this review is to provide an overview of the literature describing the relationship between physical activity profiles and gut microbiota and in obesity and some associated comorbidities. Promoting physical activity could support as a treatment to maintain the gut microbiota composition or to restore the balance toward an improvement of dysbiosis in obesity; however, these mechanisms need to be studied in more detail. The opportunity to control the microbiota by physical activity to improve health results and decrease obesity and related comorbidities is very attractive. Nevertheless, several incompletely answered questions need to be addressed before this strategy can be implemented.
Collapse
Affiliation(s)
- Jerónimo Aragón-Vela
- Department of Physiology, School of Pharmacy, University of Granada, Campus de Cartuja s/n, 18071 Granada, Spain
- Institute of Nutrition and Food Technology “José Mataix”, Center of Biomedical Research, University of Granada, Avda. del Conocimiento s/n, 18016 Granada, Spain; (F.J.R.-O.); (A.I.Á.-M.)
| | - Patricio Solis-Urra
- PROFITH “PROmoting FITness and Health through Physical Activity” Research Group, Department of Physical Education and Sports, Faculty of Sports Science, University of Granada, 18071 Granada, Spain;
- Faculty of Education and Social Sciences, Universidad Andres Bello, Viña del Mar 2531015, Chile
| | - Francisco Javier Ruiz-Ojeda
- Institute of Nutrition and Food Technology “José Mataix”, Center of Biomedical Research, University of Granada, Avda. del Conocimiento s/n, 18016 Granada, Spain; (F.J.R.-O.); (A.I.Á.-M.)
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria IBS.GRANADA, Complejo Hospitalario Universitario de Granada, 18014 Granada, Spain
- RG Adipocytes and Metabolism, Institute for Diabetes and Obesity, Helmholtz Diabetes Center at Helmholtz Center Munich, Neuherberg, 85764 Munich, Germany
| | - Ana Isabel Álvarez-Mercado
- Institute of Nutrition and Food Technology “José Mataix”, Center of Biomedical Research, University of Granada, Avda. del Conocimiento s/n, 18016 Granada, Spain; (F.J.R.-O.); (A.I.Á.-M.)
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria IBS.GRANADA, Complejo Hospitalario Universitario de Granada, 18014 Granada, Spain
| | - Jorge Olivares-Arancibia
- Grupo AFySE, Investigación en Actividad Física y Salud Escolar, Escuela de Pedagogía en Educación Física, Facultad de Educación, Universidad de las Américas, Santiago 8370035, Chile;
- IRyS Research Group, School of Physical Education, Pontificia Universidad Católica de Valparaíso, Valparaíso 2374631, Chile
| | - Julio Plaza-Diaz
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria IBS.GRANADA, Complejo Hospitalario Universitario de Granada, 18014 Granada, Spain
- Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON K1H 8L1, Canada
| |
Collapse
|
120
|
Abstract
The enzyme polypeptide N-acetylgalactosaminyltransferase like 6, encoded by the GALANTL6 gene, plays a role in the gut microbiome regarding regulation of short-chain fatty acids and their anti-inflammatory and resynthesis functions. It was hypothesized that the T allele of the GALNTL6 rs558129 polymorphism could have a positive effect on anaerobic metabolism. Thus, this study was performed to investigate the association between GALNTL6 rs558129 polymorphism and athletic performance in swimmers. A total of 147 Polish short distance (SDS) and 49 long distance swimmers (LDS) of national or international competitive levels and 379 controls were genotyped using the real-time polymerase chain reaction (real-time PCR). We found that the carriers of the T allele (CT+TT) had a 1.56 times higher chance of being SDS (odds ratio (OR): 95%CI 1.06-2.29) than the CC homozygotes. The T allele was overrepresented in the SDS compared with controls (33.7% vs. 25.7%, p = 0.025, OR 1.40, 95% CI 1.04-1.87), but no statistically significant differences were found for LDS. This study provides evidence for an association between the GALNTL6 rs558129 polymorphism and short distance swimming athlete status. Although more replication studies are needed, the preliminary data suggest an opportunity to use the analysis of GALNTL6 polymorphism along with other variants of candidate genes and standard phenotypic assessment in power-oriented sports selection.
Collapse
|
121
|
Prokopidis K, Chambers E, Ni Lochlainn M, Witard OC. Mechanisms Linking the Gut-Muscle Axis With Muscle Protein Metabolism and Anabolic Resistance: Implications for Older Adults at Risk of Sarcopenia. Front Physiol 2021; 12:770455. [PMID: 34764887 PMCID: PMC8576575 DOI: 10.3389/fphys.2021.770455] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 10/07/2021] [Indexed: 12/13/2022] Open
Abstract
Aging is associated with a decline in skeletal muscle mass and function-termed sarcopenia-as mediated, in part, by muscle anabolic resistance. This metabolic phenomenon describes the impaired response of muscle protein synthesis (MPS) to the provision of dietary amino acids and practice of resistance-based exercise. Recent observations highlight the gut-muscle axis as a physiological target for combatting anabolic resistance and reducing risk of sarcopenia. Experimental studies, primarily conducted in animal models of aging, suggest a mechanistic link between the gut microbiota and muscle atrophy, mediated via the modulation of systemic amino acid availability and low-grade inflammation that are both physiological factors known to underpin anabolic resistance. Moreover, in vivo and in vitro studies demonstrate the action of specific gut bacteria (Lactobacillus and Bifidobacterium) to increase systemic amino acid availability and elicit an anti-inflammatory response in the intestinal lumen. Prospective lifestyle approaches that target the gut-muscle axis have recently been examined in the context of mitigating sarcopenia risk. These approaches include increasing dietary fiber intake that promotes the growth and development of gut bacteria, thus enhancing the production of short-chain fatty acids (SCFA) (acetate, propionate, and butyrate). Prebiotic/probiotic/symbiotic supplementation also generates SCFA and may mitigate low-grade inflammation in older adults via modulation of the gut microbiota. Preliminary evidence also highlights the role of exercise in increasing the production of SCFA. Accordingly, lifestyle approaches that combine diets rich in fiber and probiotic supplementation with exercise training may serve to produce SCFA and increase microbial diversity, and thus may target the gut-muscle axis in mitigating anabolic resistance in older adults. Future mechanistic studies are warranted to establish the direct physiological action of distinct gut microbiota phenotypes on amino acid utilization and the postprandial stimulation of muscle protein synthesis in older adults.
Collapse
Affiliation(s)
- Konstantinos Prokopidis
- Department of Musculoskeletal Biology, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Edward Chambers
- Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College, London, United Kingdom
| | - Mary Ni Lochlainn
- Department of Twin Research and Genetic Epidemiology, King’s College London, London, United Kingdom
| | - Oliver C. Witard
- Faculty of Life Sciences and Medicine, Centre for Human and Applied Physiological Sciences, King’s College London, London, United Kingdom
| |
Collapse
|
122
|
Cui M, Trimigno A, Castro-Mejía JL, Reitelseder S, Bülow J, Bechshøft RL, Nielsen DS, Holm L, Engelsen SB, Khakimov B. Human Fecal Metabolome Reflects Differences in Body Mass Index, Physical Fitness, and Blood Lipoproteins in Healthy Older Adults. Metabolites 2021; 11:717. [PMID: 34822375 PMCID: PMC8620003 DOI: 10.3390/metabo11110717] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/12/2021] [Accepted: 10/15/2021] [Indexed: 12/12/2022] Open
Abstract
This study investigated how body mass index (BMI), physical fitness, and blood plasma lipoprotein levels are related to the fecal metabolome in older adults. The fecal metabolome data were acquired using proton nuclear magnetic resonance spectroscopy and gas chromatography-mass spectrometry on 163 healthy older adults (65-80 years old, 80 females and 83 males). Overweight and obese subjects (BMI ≥ 27) showed higher levels of fecal amino acids (AAs) (valine, alanine, and phenylalanine) compared to normal-weight subjects (BMI ≤ 23.5). Adults classified in the high-fitness group displayed slightly lower concentrations of fecal short-chain fatty acids, propionic acid, and AAs (methionine, leucine, glutamic acid, and threonine) compared to the low-fitness group. Subjects with lower levels of cholesterol in low-density lipoprotein particles (LDLchol, ≤2.6 mmol/L) displayed higher fecal levels of valine, glutamic acid, phenylalanine, and lactic acid, while subjects with a higher level of cholesterol in high-density lipoprotein particles (HDLchol, ≥2.1 mmol/L) showed lower fecal concentration of isovaleric acid. The results from this study suggest that the human fecal metabolome, which primarily represents undigested food waste and metabolites produced by the gut microbiome, carries important information about human health and should be closely integrated to other omics data for a better understanding of the role of the gut microbiome and diet on human health and metabolism.
Collapse
Affiliation(s)
- Mengni Cui
- Chemometrics and Analytical Technology Section, Department of Food Science University of Copenhagen Rolighedsvej 26, 1958 Frederiksberg C, Denmark; (M.C.); (A.T.)
| | - Alessia Trimigno
- Chemometrics and Analytical Technology Section, Department of Food Science University of Copenhagen Rolighedsvej 26, 1958 Frederiksberg C, Denmark; (M.C.); (A.T.)
| | - Josue L. Castro-Mejía
- Food Microbiology & Fermentation Section, Department of Food Science University of Copenhagen Rolighedsvej 26, 1958 Frederiksberg C, Denmark; (J.L.C.-M.); (D.S.N.)
| | - Søren Reitelseder
- Institute of Sports Medicine, Department of Orthopedic Surgery, Bispebjerg and Frederiksberg Hospital, Nielsine Nielsens Vej 11, 2400 Copenhagen, Denmark; (S.R.); (J.B.); (R.L.B.); (L.H.)
| | - Jacob Bülow
- Institute of Sports Medicine, Department of Orthopedic Surgery, Bispebjerg and Frederiksberg Hospital, Nielsine Nielsens Vej 11, 2400 Copenhagen, Denmark; (S.R.); (J.B.); (R.L.B.); (L.H.)
| | - Rasmus Leidesdorff Bechshøft
- Institute of Sports Medicine, Department of Orthopedic Surgery, Bispebjerg and Frederiksberg Hospital, Nielsine Nielsens Vej 11, 2400 Copenhagen, Denmark; (S.R.); (J.B.); (R.L.B.); (L.H.)
| | - Dennis Sandris Nielsen
- Food Microbiology & Fermentation Section, Department of Food Science University of Copenhagen Rolighedsvej 26, 1958 Frederiksberg C, Denmark; (J.L.C.-M.); (D.S.N.)
| | - Lars Holm
- Institute of Sports Medicine, Department of Orthopedic Surgery, Bispebjerg and Frederiksberg Hospital, Nielsine Nielsens Vej 11, 2400 Copenhagen, Denmark; (S.R.); (J.B.); (R.L.B.); (L.H.)
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Søren Balling Engelsen
- Chemometrics and Analytical Technology Section, Department of Food Science University of Copenhagen Rolighedsvej 26, 1958 Frederiksberg C, Denmark; (M.C.); (A.T.)
| | - Bekzod Khakimov
- Chemometrics and Analytical Technology Section, Department of Food Science University of Copenhagen Rolighedsvej 26, 1958 Frederiksberg C, Denmark; (M.C.); (A.T.)
| |
Collapse
|
123
|
Gut Microbiota, Microbial Metabolites and Human Physical Performance. Metabolites 2021; 11:metabo11110716. [PMID: 34822374 PMCID: PMC8619554 DOI: 10.3390/metabo11110716] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/12/2021] [Accepted: 10/16/2021] [Indexed: 01/02/2023] Open
Abstract
Trillions of microbes inhabiting the gut modulate the metabolism of the host. Cross-sectional studies have reported associations between physical performance and the gut microbiota (GM). Physical activity seems to increase GM diversity and the abundance of certain health-beneficial microbes. We reviewed the evidence from longitudinal studies on the connection between physically active lifestyle or long-term exercise interventions and the GM. We made literature searches using databases of Web of Science and PubMed Medline to collect human studies showing or not the associations between the GM and exercise. Many controversies exist in the studies. However, the longitudinal studies show that frequently, medium-intensity endurance exercise has yielded most beneficial effects on the GM, but the results vary depending on the study population and exercise protocol. In addition, the literature shows that certain microbes own the potency to increase physical activity and performance. Generally, a physically active lifestyle and exercise associate with a “healthy” GM. However, in previously sedentary subjects, the exercise-induced improvements in the GM seem to disappear unless the active lifestyle is continued. Unfortunately, several studies are not controlled for the diet. Thus, in the future, more longitudinal studies on the GM and physical performance are needed, with detailed dietary information.
Collapse
|
124
|
Yang W, Liu Y, Yang G, Meng B, Yi Z, Yang G, Chen M, Hou P, Wang H, Xu X. Moderate-Intensity Physical Exercise Affects the Exercise Performance and Gut Microbiota of Mice. Front Cell Infect Microbiol 2021; 11:712381. [PMID: 34631598 PMCID: PMC8498591 DOI: 10.3389/fcimb.2021.712381] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 09/08/2021] [Indexed: 01/08/2023] Open
Abstract
The gut microbiota is closely associated with the health of the host and is affected by many factors, including exercise. In this study, we compared the gut microbial changes and exercise performance over a 14-week period in mice that performed exercise (NE; n = 15) and mice that did not perform exercise (NC; n = 15). Mice were subjected to stool collection and exercise tests one week prior to adaptive training and after 2, 6, 10, and 14 weeks of exercise. Bacteria associated with the stool samples were assessed via Illumina-based 16S rRNA gene sequencing. While there was no significant difference in body weight between the groups (p > 0.05), the NE group had a significantly higher exercise performance from weeks 2-14 (p < 0.01) and lower fat coefficient (p < 0.01) compared with the NC group. The Shannon index of the gut microbiota in the NC group was higher than that in the NE group at weeks 6 and 10, and the Chao1 index was higher than that in the NE group at week 14. Exercise performance positively correlated with the relative abundance of Phascolarctobacterium. Grouped time series data analysis demonstrated that Bifidobacteria, Coprococcus, and one unnamed genus in the Clostridiales order were significantly increased in the NE group, which correlated with increased glucose, flavonoid, arginine, and proline metabolism. In conclusion, moderate-intensity treadmill exercise significantly increased the exercise performance of mice and changed the core bacteria and bacterial metabolic activity. These results provide a reference for studying the effects of exercise intervention and exercise performance on the gut microbiota of mice.
Collapse
Affiliation(s)
- Wenqian Yang
- School of Physical Education and Sports Science, South China Normal University, Guangzhou, China.,School of Physical Education, Guangdong Baiyun University, Guangzhou, China
| | - Yuqian Liu
- School of Sport & Exercise Science, Lingnan Normal University, Zhanjiang, China
| | - Guang Yang
- Department of Basic Education, Guangzhou Vocational and Technical University of Science and Technology, Guangzhou, China
| | - Binglin Meng
- Training & Scientific Research & Medical Management Center, Hebei Institute of Sports Science, Shijiazhuang, China
| | - Zhicheng Yi
- School of Physical Education, Guangdong Baiyun University, Guangzhou, China
| | - Guan Yang
- School of Physical Education, South China University of Technology, Guangzhou, China
| | - Mingjian Chen
- School of Physical Education and Sports Science, South China Normal University, Guangzhou, China
| | - Pengcheng Hou
- School of Physical Education and Sports Science, South China Normal University, Guangzhou, China
| | - Haitao Wang
- School of Sport & Exercise Science, Lingnan Normal University, Zhanjiang, China
| | - Xiaoyang Xu
- School of Physical Education and Sports Science, South China Normal University, Guangzhou, China
| |
Collapse
|
125
|
Lee MC, Hsu YJ, Ho HH, Kuo YW, Lin WY, Tsai SY, Chen WL, Lin CL, Huang CC. Effectiveness of human-origin Lactobacillus plantarum PL-02 in improving muscle mass, exercise performance and anti-fatigue. Sci Rep 2021; 11:19469. [PMID: 34593921 PMCID: PMC8484333 DOI: 10.1038/s41598-021-98958-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 09/17/2021] [Indexed: 12/15/2022] Open
Abstract
Gut microbiota is very important for energy metabolism and regulation, which in turn affect the health and physiological functions of the host, and provide energy required for exercise. Supplementation with probiotics may be one of the ways to change the gut microbiota. In recent years, many studies have shown that probiotic supplementation can effectively improve sports performance. In this study, we screened Lactobacillus plantarum (PL-02), a probiotic of human-origin, from the intestines of 2008 Olympic women's 48 kg weightlifting gold medalist and explored the role of PL-02 in improved exercise endurance performance, reduced fatigue biochemical parameters, and changes in body composition. Male Institute of Cancer Research (ICR) mice were assigned to 0, 2.05 × 109, 4.10 × 109 and 1.03 × 1010 CFU/kg/day groups and were fed by oral gavage once daily for 4 weeks. The results showed that 4 weeks of PL-02 supplementation could significantly increase muscle mass, muscle strength and endurance performance, and hepatic and muscular glycogen storage. Furthermore, PL-02 could significantly decrease lactate, blood urea nitrogen (BUN), ammonia, and creatine kinase (CK) levels after exercise (p < 0.05). We believe that PL-02 can be used as a supplement to improve exercise performance and for its anti-fatigue effect.
Collapse
Affiliation(s)
- Mon-Chien Lee
- Graduate Institute of Sports Science, National Taiwan Sport University, Taoyuan City, 333325, Taiwan
| | - Yi-Ju Hsu
- Graduate Institute of Sports Science, National Taiwan Sport University, Taoyuan City, 333325, Taiwan
| | - Hsieh-Hsun Ho
- Research and Development Department, Bioflag Biotech Co, Ltd, Tainan, Taiwan
| | - Yi-Wei Kuo
- Research and Development Department, Bioflag Biotech Co, Ltd, Tainan, Taiwan
| | - Wen-Yang Lin
- Research and Development Department, Bioflag Biotech Co, Ltd, Tainan, Taiwan
| | - Shin-Yu Tsai
- Research and Development Department, Bioflag Biotech Co, Ltd, Tainan, Taiwan
| | - Wei-Ling Chen
- Department of Sports Training Science-Athletics, National Taiwan Sport University, Taoyuan City, 333325, Taiwan
| | - Che-Li Lin
- Department of Orthopedics, School of Medicine, College of Medicine, Taipei Medical University, Taipei City, 11031, Taiwan.
| | - Chi-Chang Huang
- Graduate Institute of Sports Science, National Taiwan Sport University, Taoyuan City, 333325, Taiwan.
| |
Collapse
|
126
|
Fu H, Zhang L, Fan C, Li W, Liu C, Zhang H, Cheng Q, Zhang Y. Sympatric Yaks and Plateau Pikas Promote Microbial Diversity and Similarity by the Mutual Utilization of Gut Microbiota. Microorganisms 2021; 9:microorganisms9091890. [PMID: 34576785 PMCID: PMC8467723 DOI: 10.3390/microorganisms9091890] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/31/2021] [Accepted: 09/01/2021] [Indexed: 01/17/2023] Open
Abstract
Interactions between species provide the basis for understanding coexisting mechanisms. The plateau pika (Ochotona curzoniae) and the yak (Bos grunniens) are considered competitors because they have shared habitats and consumed similar food on the Qinghai–Tibetan Plateau for more than 1 million years. Interestingly, the population density of plateau pikas increases with yak population expansion and subsequent overgrazing. To reveal the underlying mechanism, we sequenced the fecal microbial 16S rDNA from both sympatric and allopatric pikas and yaks. Our results indicated that sympatry increased both gut microbial diversity and similarity between pikas and yaks. The abundance of Firmicutes, Proteobacteria, Cyanobacteria, and Tenericutes decreased, while that of Verrucomicrobia increased in sympatric pikas. As for sympatric yaks, Firmicutes, Bacteroidetes, and Spirochaetes significantly increased, while Cyanobacteria, Euryarchaeota, and Verrucomicrobia significantly decreased. In sympatry, plateau pikas acquired 2692 OTUs from yaks, and yaks obtained 453 OTUs from pikas. The predominant horizontally transmitted bacteria were Firmicutes, Bacteroidetes, Verrucomicrobia, and Proteobacteria. These bacteria enhanced the enrichment of pathways related to prebiotics and immunity for pikas, such as heparin sulfate, heparin, chitin disaccharide, chondroitin-sulfate-ABC, and chondroitin-AC degradation pathways. In yaks, the horizontally transmitted bacteria enhanced pathways related to hepatoprotection, xenobiotic biodegradation, and detoxification. Our results suggest that horizontal transmission is a process of selection, and pikas and yaks tend to develop reciprocity through the horizontal transmission of gut microbiota.
Collapse
Affiliation(s)
- Haibo Fu
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China; (H.F.); (L.Z.); (C.F.); (W.L.); (C.L.); (H.Z.); (Q.C.)
- Qinghai Key Laboratory of Animal Ecological Genomics, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liangzhi Zhang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China; (H.F.); (L.Z.); (C.F.); (W.L.); (C.L.); (H.Z.); (Q.C.)
- Qinghai Key Laboratory of Animal Ecological Genomics, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China
| | - Chao Fan
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China; (H.F.); (L.Z.); (C.F.); (W.L.); (C.L.); (H.Z.); (Q.C.)
- Qinghai Key Laboratory of Animal Ecological Genomics, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenjing Li
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China; (H.F.); (L.Z.); (C.F.); (W.L.); (C.L.); (H.Z.); (Q.C.)
- Qinghai Key Laboratory of Animal Ecological Genomics, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China
| | - Chuanfa Liu
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China; (H.F.); (L.Z.); (C.F.); (W.L.); (C.L.); (H.Z.); (Q.C.)
- Qinghai Key Laboratory of Animal Ecological Genomics, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - He Zhang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China; (H.F.); (L.Z.); (C.F.); (W.L.); (C.L.); (H.Z.); (Q.C.)
- Qinghai Key Laboratory of Animal Ecological Genomics, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China
| | - Qi Cheng
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China; (H.F.); (L.Z.); (C.F.); (W.L.); (C.L.); (H.Z.); (Q.C.)
- Qinghai Key Laboratory of Animal Ecological Genomics, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanming Zhang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China; (H.F.); (L.Z.); (C.F.); (W.L.); (C.L.); (H.Z.); (Q.C.)
- Qinghai Key Laboratory of Animal Ecological Genomics, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China
- Correspondence:
| |
Collapse
|
127
|
Abstract
Given the participation of the microbiome in human health and disease, understanding the context of host-microbe interactions involved in vascular pathophysiology is now evolving through identifying microbial communities, specific taxa, and metabolic profiling which can be coupled to human health outcomes. Exercise has been used to define mechanisms related to improved vascular health, which may involve the microbiome. Motivated by the clinical significance that both exercise and the gut microbiome have; the objective of our work is to assist in defining the gut-vascular axis while identifying biomarkers of gut microbial health linked to vascular function. In this commentary, we will provide context to the mechanistic perspectives of exercise-induced improvements in gut microbial characteristics coupled to vascular health outcomes and offer insight on necessary future prospective investigations.
Collapse
|
128
|
Morishima S, Oda N, Ikeda H, Segawa T, Oda M, Tsukahara T, Kawase Y, Takagi T, Naito Y, Fujibayashi M, Inoue R. Altered Fecal Microbiotas and Organic Acid Concentrations Indicate Possible Gut Dysbiosis in University Rugby Players: An Observational Study. Microorganisms 2021; 9:1687. [PMID: 34442766 PMCID: PMC8400784 DOI: 10.3390/microorganisms9081687] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/23/2021] [Accepted: 08/05/2021] [Indexed: 11/27/2022] Open
Abstract
Gut eubiosis is essential for the host's health. In athletes, the gut microbiota can be altered by several factors, including diets. While eubiotic gut microbiota in elite rugby players has been reported, our survey found that university rugby players suffered from loose stools and frequent urgency to defecate. To establish the causes of the condition, the microbiota and the concentrations of organic acids in fecal samples of university male rugby players (URP) were analyzed and compared with those of age-matching, non-rugby playing males (control). Body mass indices were significantly (p < 0.05) different between groups. Chao1 index was significant (p < 0.05) lower in URP than in control. The relative abundances of phyla Firmicutes and Bacteroidetes were significantly (p < 0.05) higher and lower, respectively, in URP than in control. Potential pathobiont genera Collinsella, Enterobacter, and Haemophilus were significantly (p < 0.05) abundant, whereas beneficial Akkermansia was lower (p < 0.05) in URP than in control. Succinate, a potential causative of gut inflammation, was five-fold higher in URP than in controls. Our findings all but confirmed that the dysbiotic status of gut in URP.
Collapse
Affiliation(s)
- So Morishima
- Laboratory of Animal Science, Department of Applied Biological Sciences, Faculty of Agriculture, Setsunan University, Nagaotoge-cho 45-1, Hirakata, Osaka 573-0101, Japan; (S.M.); (H.I.); (M.O.)
| | - Naoko Oda
- Department of Food Science and Human Nutrition, Faculty of Agriculture, Setsunan University, I Nagaotoge-cho 45-1, Hirakata, Osaka 573-0101, Japan; (N.O.); (M.F.)
| | - Hiromi Ikeda
- Laboratory of Animal Science, Department of Applied Biological Sciences, Faculty of Agriculture, Setsunan University, Nagaotoge-cho 45-1, Hirakata, Osaka 573-0101, Japan; (S.M.); (H.I.); (M.O.)
| | - Tomohiro Segawa
- Division of Physical and Health Education, Setsunan University, Ikedanaka-machi 17-8, Neyagawa, Osaka 572-8508, Japan; (T.S.); (Y.K.)
| | - Machi Oda
- Laboratory of Animal Science, Department of Applied Biological Sciences, Faculty of Agriculture, Setsunan University, Nagaotoge-cho 45-1, Hirakata, Osaka 573-0101, Japan; (S.M.); (H.I.); (M.O.)
| | | | - Yasuharu Kawase
- Division of Physical and Health Education, Setsunan University, Ikedanaka-machi 17-8, Neyagawa, Osaka 572-8508, Japan; (T.S.); (Y.K.)
| | - Tomohisa Takagi
- Department of Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto 602-8566, Japan;
| | - Yuji Naito
- Department of Human Immunology and Nutrition Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto 602-8566, Japan;
| | - Mami Fujibayashi
- Department of Food Science and Human Nutrition, Faculty of Agriculture, Setsunan University, I Nagaotoge-cho 45-1, Hirakata, Osaka 573-0101, Japan; (N.O.); (M.F.)
| | - Ryo Inoue
- Laboratory of Animal Science, Department of Applied Biological Sciences, Faculty of Agriculture, Setsunan University, Nagaotoge-cho 45-1, Hirakata, Osaka 573-0101, Japan; (S.M.); (H.I.); (M.O.)
| |
Collapse
|
129
|
Madison AA, Kiecolt-Glaser JK. The gut microbiota and nervous system: Age-defined and age-defying. Semin Cell Dev Biol 2021; 116:98-107. [PMID: 33422403 PMCID: PMC8257779 DOI: 10.1016/j.semcdb.2020.12.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 12/01/2020] [Accepted: 12/21/2020] [Indexed: 02/07/2023]
Abstract
Even healthy older adults experience gastrointestinal (GI) and neurological changes. In fact, the aging process of these two systems are interrelated due the extensive, multifaceted communication network connecting them, termed the gut-brain axis. Age-related modification of the GI environment can influence the bacterial species that survive and thrive there. Additionally, the lifestyle common to older adults in the West, including sedentariness, polypharmacy, and a poor diet, can compound the effect of aging on the GI tract, gut microbiota, and nervous system. Emerging animal and human findings suggest that GI organisms play a major role in gut-brain communication, ultimately shaping neurological aging trajectories by either helping to maintain nervous system function into late life or promoting pathology. Aging and age-related behaviors help to define the gut microbiota's composition and function, but, conversely, the gut microbiota may help to determine late-life functionality and may be harnessed to limit the prevalence of steep neurological decline and diseases. Focusing primarily on clinical research, this review first defines the gut-brain axis, then details age-related GI and nervous system changes, and discusses the impact of age-related lifestyle factors on the GI and nervous systems. The remainder of this review describes cutting-edge research that positions the gut microbiota as an arbiter of age-related neurological decline.
Collapse
Affiliation(s)
- Annelise A Madison
- The Institute for Behavioral Medicine Research, The Ohio State University College of Medicine, USA; Department of Psychology, The Ohio State University, USA
| | - Janice K Kiecolt-Glaser
- The Institute for Behavioral Medicine Research, The Ohio State University College of Medicine, USA; Department of Psychiatry and Behavioral Health, The Ohio State University College of Medicine, USA.
| |
Collapse
|
130
|
Nardone OM, de Sire R, Petito V, Testa A, Villani G, Scaldaferri F, Castiglione F. Inflammatory Bowel Diseases and Sarcopenia: The Role of Inflammation and Gut Microbiota in the Development of Muscle Failure. Front Immunol 2021; 12:694217. [PMID: 34326845 PMCID: PMC8313891 DOI: 10.3389/fimmu.2021.694217] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 06/28/2021] [Indexed: 12/13/2022] Open
Abstract
Sarcopenia represents a major health burden in industrialized country by reducing substantially the quality of life. Indeed, it is characterized by a progressive and generalized loss of muscle mass and function, leading to an increased risk of adverse outcomes and hospitalizations. Several factors are involved in the pathogenesis of sarcopenia, such as aging, inflammation, mitochondrial dysfunction, and insulin resistance. Recently, it has been reported that more than one third of inflammatory bowel disease (IBD) patients suffered from sarcopenia. Notably, the role of gut microbiota (GM) in developing muscle failure in IBD patient is a matter of increasing interest. It has been hypothesized that gut dysbiosis, that typically characterizes IBD, might alter the immune response and host metabolism, promoting a low-grade inflammation status able to up-regulate several molecular pathways related to sarcopenia. Therefore, we aim to describe the basis of IBD-related sarcopenia and provide the rationale for new potential therapeutic targets that may regulate the gut-muscle axis in IBD patients.
Collapse
Affiliation(s)
- Olga Maria Nardone
- Gastroenterology, Department of Clinical Medicine and Surgery, University Federico II of Naples, Naples, Italy
| | - Roberto de Sire
- Gastroenterology, Department of Clinical Medicine and Surgery, University Federico II of Naples, Naples, Italy
| | - Valentina Petito
- Department of Medicine and Translational Surgery, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, University Cattolica del Sacro Cuore, Rome, Italy
| | - Anna Testa
- Gastroenterology, Department of Clinical Medicine and Surgery, University Federico II of Naples, Naples, Italy
| | - Guido Villani
- Gastroenterology, Department of Clinical Medicine and Surgery, University Federico II of Naples, Naples, Italy
| | - Franco Scaldaferri
- Department of Medicine and Translational Surgery, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, University Cattolica del Sacro Cuore, Rome, Italy
| | - Fabiana Castiglione
- Gastroenterology, Department of Clinical Medicine and Surgery, University Federico II of Naples, Naples, Italy
| |
Collapse
|
131
|
Beale AL, O'Donnell JA, Nakai ME, Nanayakkara S, Vizi D, Carter K, Dean E, Ribeiro RV, Yiallourou S, Carrington MJ, Marques FZ, Kaye DM. The Gut Microbiome of Heart Failure With Preserved Ejection Fraction. J Am Heart Assoc 2021; 10:e020654. [PMID: 34212778 PMCID: PMC8403331 DOI: 10.1161/jaha.120.020654] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Background Risk factors for heart failure with preserved ejection fraction (HFpEF) include hypertension, age, sex, and obesity. Emerging evidence suggests that the gut microbiota independently contributes to each one of these risk factors, potentially mediated via gut microbial‐derived metabolites such as short‐chain fatty acids. In this study, we determined whether the gut microbiota were associated with HFpEF and its risk factors. Methods and Results We recruited 26 patients with HFpEF and 67 control participants from 2 independent communities. Patients with HFpEF were diagnosed by exercise right heart catheterization. We assessed the gut microbiome by bacterial 16S rRNA sequencing and food intake by the food frequency questionnaire. There was a significant difference in α‐diversity (eg, number of microbes) and β‐diversity (eg, type and abundance of microbes) between both cohorts of controls and patients with HFpEF (P=0.001). We did not find an association between β‐diversity and specific demographic or hemodynamic parameters or risk factors for HFpEF. The Firmicutes to Bacteroidetes ratio, a commonly used marker of gut dysbiosis, was lower, but not significantly so (P=0.093), in the patients with HFpEF. Compared with controls, the gut microbiome of patients with HFpEF was depleted of bacteria that are short‐chain fatty acid producers. Consistent with this, participants with HFpEF consumed less dietary fiber (17.6±7.7 versus 23.2±8.8 g/day; P=0.016). Conclusions We demonstrate key changes in the gut microbiota in patients with HFpEF, including the depletion of bacteria that generate metabolites known to be important for cardiovascular homeostasis. Further studies are required to validate the role of these gut microbiota and metabolites in the pathophysiology of HFpEF.
Collapse
Affiliation(s)
- Anna L Beale
- Heart Failure Research Group Baker Heart and Diabetes Institute Melbourne Australia.,Department of Cardiology Alfred Hospital Melbourne Australia.,Faculty of Medicine Nursing and Health Sciences Monash University Melbourne Australia
| | - Joanne A O'Donnell
- Hypertension Research Laboratory, School of Biological Sciences, Faculty of Science Monash University Melbourne Australia
| | - Michael E Nakai
- Hypertension Research Laboratory, School of Biological Sciences, Faculty of Science Monash University Melbourne Australia
| | - Shane Nanayakkara
- Heart Failure Research Group Baker Heart and Diabetes Institute Melbourne Australia.,Department of Cardiology Alfred Hospital Melbourne Australia
| | - Donna Vizi
- Department of Cardiology Alfred Hospital Melbourne Australia
| | - Kaye Carter
- Department of Cardiology Alfred Hospital Melbourne Australia
| | - Eliza Dean
- Department of Cardiology Alfred Hospital Melbourne Australia
| | - Rosilene V Ribeiro
- School of Life and Environmental Sciences, Charles Perkins Centre University of Sydney Australia
| | - Stephanie Yiallourou
- Pre-Clinical Disease and Prevention Baker Heart and Diabetes Institute Melbourne Australia
| | - Melinda J Carrington
- Pre-Clinical Disease and Prevention Baker Heart and Diabetes Institute Melbourne Australia
| | - Francine Z Marques
- Heart Failure Research Group Baker Heart and Diabetes Institute Melbourne Australia.,Hypertension Research Laboratory, School of Biological Sciences, Faculty of Science Monash University Melbourne Australia
| | - David M Kaye
- Heart Failure Research Group Baker Heart and Diabetes Institute Melbourne Australia.,Department of Cardiology Alfred Hospital Melbourne Australia.,Faculty of Medicine Nursing and Health Sciences Monash University Melbourne Australia
| |
Collapse
|
132
|
Fu H, Zhang L, Fan C, Liu C, Li W, Cheng Q, Zhao X, Jia S, Zhang Y. Environment and host species identity shape gut microbiota diversity in sympatric herbivorous mammals. Microb Biotechnol 2021; 14:1300-1315. [PMID: 33369229 PMCID: PMC8313255 DOI: 10.1111/1751-7915.13687] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 10/07/2020] [Indexed: 02/01/2023] Open
Abstract
The previous studies have reported that the mammalian gut microbiota is a physiological consequence; nonetheless, the factors influencing its composition and function remain unclear. In this study, to evaluate the contributions of the host and environment to the gut microbiota, we conducted a sequencing analysis of 16S rDNA and shotgun metagenomic DNA from plateau pikas and yaks, two sympatric herbivorous mammals, and further compared the sequences in summer and winter. The results revealed that both pikas and yaks harboured considerably more distinct communities between summer and winter. We detected the over-representation of Verrucomicrobia and Proteobacteria in pikas, and Archaea and Bacteroidetes in yaks. Firmicutes and Actinobacteria, associated with energy-efficient acquisition, significantly enriched in winter. The diversity of the microbial community was determined by the interactive effects between the host and season. Metagenomic analysis revealed that methane-metabolism-related pathway of yaks was significantly enriched in summer, while some pathogenic pathways were more abundant in pikas. Both pikas and yaks had a higher capacity for lipid degradation in winter. Pika and yak shared more OTUs when food shortage occurred in winter, and this caused a convergence in gut microbial composition and function. From winter to summer, the network module number increased from one to five in pikas, which was different in yaks. Our study demonstrates that the host is a dominant factor in shaping the microbial communities and that seasonality promotes divergence or convergence based on dietary quality across host species identity.
Collapse
Affiliation(s)
- Haibo Fu
- Key Laboratory of Adaptation and Evolution of Plateau BiotaNorthwest Institute of Plateau BiologyChinese Academy of SciencesXiningQinghai810008China
- Qinghai Provincial Key Laboratory of Animal Ecological GenomicsXiningQinghai ProvinceChina
- University of Chinese Academy of SciencesBeijing100049China
| | - Liangzhi Zhang
- Key Laboratory of Adaptation and Evolution of Plateau BiotaNorthwest Institute of Plateau BiologyChinese Academy of SciencesXiningQinghai810008China
- Qinghai Provincial Key Laboratory of Animal Ecological GenomicsXiningQinghai ProvinceChina
| | - Chao Fan
- Key Laboratory of Adaptation and Evolution of Plateau BiotaNorthwest Institute of Plateau BiologyChinese Academy of SciencesXiningQinghai810008China
- Qinghai Provincial Key Laboratory of Animal Ecological GenomicsXiningQinghai ProvinceChina
- University of Chinese Academy of SciencesBeijing100049China
| | - Chuanfa Liu
- Key Laboratory of Adaptation and Evolution of Plateau BiotaNorthwest Institute of Plateau BiologyChinese Academy of SciencesXiningQinghai810008China
- Qinghai Provincial Key Laboratory of Animal Ecological GenomicsXiningQinghai ProvinceChina
- University of Chinese Academy of SciencesBeijing100049China
| | - Wenjing Li
- Key Laboratory of Adaptation and Evolution of Plateau BiotaNorthwest Institute of Plateau BiologyChinese Academy of SciencesXiningQinghai810008China
- Qinghai Provincial Key Laboratory of Animal Ecological GenomicsXiningQinghai ProvinceChina
| | - Qi Cheng
- Key Laboratory of Adaptation and Evolution of Plateau BiotaNorthwest Institute of Plateau BiologyChinese Academy of SciencesXiningQinghai810008China
- Qinghai Provincial Key Laboratory of Animal Ecological GenomicsXiningQinghai ProvinceChina
- University of Chinese Academy of SciencesBeijing100049China
| | - Xinquan Zhao
- Key Laboratory of Adaptation and Evolution of Plateau BiotaNorthwest Institute of Plateau BiologyChinese Academy of SciencesXiningQinghai810008China
- Qinghai Provincial Key Laboratory of Animal Ecological GenomicsXiningQinghai ProvinceChina
| | - Shangang Jia
- College of Grassland Science and TechnologyChina Agricultural UniversityBeijing100193China
| | - Yanming Zhang
- Key Laboratory of Adaptation and Evolution of Plateau BiotaNorthwest Institute of Plateau BiologyChinese Academy of SciencesXiningQinghai810008China
- Qinghai Provincial Key Laboratory of Animal Ecological GenomicsXiningQinghai ProvinceChina
| |
Collapse
|
133
|
Castanier C, Bougault V, Teulier C, Jaffré C, Schiano-Lomoriello S, Vibarel-Rebot N, Villemain A, Rieth N, Le-Scanff C, Buisson C, Collomp K. The Specificities of Elite Female Athletes: A Multidisciplinary Approach. Life (Basel) 2021; 11:622. [PMID: 34206866 PMCID: PMC8303304 DOI: 10.3390/life11070622] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/21/2021] [Accepted: 06/23/2021] [Indexed: 12/19/2022] Open
Abstract
Female athletes have garnered considerable attention in the last few years as more and more women participate in sports events. However, despite the well-known repercussions of female sex hormones, few studies have investigated the specificities of elite female athletes. In this review, we present the current but still limited data on how normal menstrual phases, altered menstrual phases, and hormonal contraception affect both physical and cognitive performances in these elite athletes. To examine the implicated mechanisms, as well as the potential performances and health risks in this population, we then take a broader multidisciplinary approach and report on the causal/reciprocal relationships between hormonal status and mental and physical health in young (18-40 years) healthy females, both trained and untrained. We thus cover the research on both physiological and psychological variables, as well as on the Athlete Biological Passport used for anti-doping purposes. We consider the fairly frequent discrepancies and summarize the current knowledge in this new field of interest. Last, we conclude with some practical guidelines for eliciting improvements in physical and cognitive performance while minimizing the health risks for female athletes.
Collapse
Affiliation(s)
- Carole Castanier
- CIAMS, Université Paris-Saclay, 91405 Orsay, France; (C.C.); (C.T.); (S.S.-L.); (N.V.-R.); (A.V.); (N.R.); (C.L.-S.)
- CIAMS, Université d’Orléans, 45067 Orléans, France
| | | | - Caroline Teulier
- CIAMS, Université Paris-Saclay, 91405 Orsay, France; (C.C.); (C.T.); (S.S.-L.); (N.V.-R.); (A.V.); (N.R.); (C.L.-S.)
- CIAMS, Université d’Orléans, 45067 Orléans, France
| | | | - Sandrine Schiano-Lomoriello
- CIAMS, Université Paris-Saclay, 91405 Orsay, France; (C.C.); (C.T.); (S.S.-L.); (N.V.-R.); (A.V.); (N.R.); (C.L.-S.)
- CIAMS, Université d’Orléans, 45067 Orléans, France
| | - Nancy Vibarel-Rebot
- CIAMS, Université Paris-Saclay, 91405 Orsay, France; (C.C.); (C.T.); (S.S.-L.); (N.V.-R.); (A.V.); (N.R.); (C.L.-S.)
- CIAMS, Université d’Orléans, 45067 Orléans, France
| | - Aude Villemain
- CIAMS, Université Paris-Saclay, 91405 Orsay, France; (C.C.); (C.T.); (S.S.-L.); (N.V.-R.); (A.V.); (N.R.); (C.L.-S.)
- CIAMS, Université d’Orléans, 45067 Orléans, France
| | - Nathalie Rieth
- CIAMS, Université Paris-Saclay, 91405 Orsay, France; (C.C.); (C.T.); (S.S.-L.); (N.V.-R.); (A.V.); (N.R.); (C.L.-S.)
- CIAMS, Université d’Orléans, 45067 Orléans, France
| | - Christine Le-Scanff
- CIAMS, Université Paris-Saclay, 91405 Orsay, France; (C.C.); (C.T.); (S.S.-L.); (N.V.-R.); (A.V.); (N.R.); (C.L.-S.)
- CIAMS, Université d’Orléans, 45067 Orléans, France
| | - Corinne Buisson
- Département des Analyses, AFLD, 92290 Chatenay-Malabry, France;
| | - Katia Collomp
- CIAMS, Université Paris-Saclay, 91405 Orsay, France; (C.C.); (C.T.); (S.S.-L.); (N.V.-R.); (A.V.); (N.R.); (C.L.-S.)
- CIAMS, Université d’Orléans, 45067 Orléans, France
- Département des Analyses, AFLD, 92290 Chatenay-Malabry, France;
| |
Collapse
|
134
|
Šoltys K, Lendvorský L, Hric I, Baranovičová E, Penesová A, Mikula I, Bohmer M, Budiš J, Vávrová S, Grones J, Grendar M, Kolísek M, Bielik V. Strenuous Physical Training, Physical Fitness, Body Composition and Bacteroides to Prevotella Ratio in the Gut of Elderly Athletes. Front Physiol 2021; 12:670989. [PMID: 34239449 PMCID: PMC8257935 DOI: 10.3389/fphys.2021.670989] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 05/05/2021] [Indexed: 12/21/2022] Open
Abstract
Regular physical activity seems to have a positive effect on the microbiota composition of the elderly, but little is known about the added possible benefits of strenuous endurance training. To gain insight into the physiology of the elderly and to identify biomarkers associated with endurance training, we combined different omics approaches. We aimed to investigate the gut microbiome, plasma composition, body composition, cardiorespiratory fitness, and muscle strength of lifetime elderly endurance athletes (LA) age 63.5 (95% CI 61.4, 65.7), height 177.2 (95% CI 174.4, 180.1) cm, weight 77.8 (95% CI 75.1, 80.5) kg, VO2max 42.4 (95% CI 39.8, 45.0) ml.kg–1.min–1 (n = 13) and healthy controls age 64.9 (95% CI 62.1, 67.7), height 174.9 (95% CI 171.2, 178.6) cm, weight 83.4 (95% CI 77.1, 89.7) kg, VO2max 28.9 (95% CI 23.9, 33.9), ml.kg–1.min–1 (n = 9). Microbiome analysis was performed on collected stool samples further subjected to 16S rRNA gene analysis. NMR-spectroscopic analysis was applied to determine and compare selected blood plasma metabolites mostly linked to energy metabolism. The machine learning (ML) analysis discriminated subjects from the LA and CTRL groups using the joint predictors Bacteroides 1.8E + 00 (95% CI 1.1, 2.5)%, 3.8E + 00 (95% CI 2.7, 4.8)% (p = 0.002); Prevotella 1.3 (95% CI 0.28, 2.4)%, 0.1 (95% CI 0.07, 0.3)% (p = 0.02); Intestinimonas 1.3E-02 (95% CI 9.3E-03, 1.7E-02)%, 5.9E-03 (95% CI 3.9E-03, 7.9E-03)% (p = 0.002), Subdoligranulum 7.9E-02 (95% CI 2.5E-02, 1.3E-02)%, 3.2E-02 (95% CI 1.8E-02, 4.6E-02)% (p = 0.02); and the ratio of Bacteroides to Prevotella 133 (95% CI -86.2, 352), 732 (95% CI 385, 1079.3) (p = 0.03), leading to an ROC curve with AUC of 0.94. Further, random forest ML analysis identified VO2max, BMI, and the Bacteroides to Prevotella ratio as appropriate, joint predictors for discriminating between subjects from the LA and CTRL groups. Although lifelong endurance training does not bring any significant benefit regarding overall gut microbiota diversity, strenuous athletic training is associated with higher cardiorespiratory fitness, lower body fat, and some favorable gut microbiota composition, all factors associated with slowing the rate of biological aging.
Collapse
Affiliation(s)
- Katarína Šoltys
- Department of Microbiology and Virology, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia.,Comenius University Science Park, Comenius University in Bratislava, Bratislava, Slovakia
| | - Leonard Lendvorský
- Department of Biological and Medical Science, Faculty of Physical Education and Sport, Comenius University in Bratislava, Bratislava, Slovakia
| | - Ivan Hric
- Department of Biological and Medical Science, Faculty of Physical Education and Sport, Comenius University in Bratislava, Bratislava, Slovakia
| | - Eva Baranovičová
- Biomedical Center Martin, Jessenius Faculty of Medicine in Matin, Comenius University in Bratislava, Martin, Slovakia
| | - Adela Penesová
- Institute of Clinical and Translational Research Biomedical Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Ivan Mikula
- The Concern Foundation Laboratories at The Lautenberg Center for Immunology and Cancer Research, Israel-Canada Medical Research Institute, Faculty of Medicine, The Hebrew University, Jerusalem, Israel
| | - Miroslav Bohmer
- Comenius University Science Park, Comenius University in Bratislava, Bratislava, Slovakia
| | - Jaroslav Budiš
- Comenius University Science Park, Comenius University in Bratislava, Bratislava, Slovakia
| | - Silvia Vávrová
- Department of Molecular Biology, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia
| | - Jozef Grones
- Department of Molecular Biology, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia
| | - Marian Grendar
- Biomedical Center Martin, Jessenius Faculty of Medicine in Matin, Comenius University in Bratislava, Martin, Slovakia
| | - Martin Kolísek
- Biomedical Center Martin, Jessenius Faculty of Medicine in Matin, Comenius University in Bratislava, Martin, Slovakia
| | - Viktor Bielik
- Department of Biological and Medical Science, Faculty of Physical Education and Sport, Comenius University in Bratislava, Bratislava, Slovakia
| |
Collapse
|
135
|
Castro AP, Silva KKS, Medeiros CSA, Alves F, Araujo RC, Almeida JA. Effects of 12 weeks of resistance training on rat gut microbiota composition. J Exp Biol 2021; 224:269165. [PMID: 34137868 DOI: 10.1242/jeb.242543] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 05/17/2021] [Indexed: 12/15/2022]
Abstract
In addition to its health benefits, exercise training has been noted as a modulator of the gut microbiota. However, the effects of resistance training (RT) on gut microbiota composition remain unknown. Wistar rats underwent 12 weeks of RT. Body mass, glucose tolerance, visceral body fat, triglyceride concentration and food consumption were evaluated. The gut microbiota was analyzed by 16S rRNA gene sequencing. Rats that underwent RT showed lower body mass (P=0.0005), lower fat content (P=0.02) and better glucose kinetics (P=0.047) when compared with the control. Improvements in the diversity and composition of the gut microbiota were identified in the RT group. The relative abundance of Pseudomonas, Serratia and Comamonas decreased significantly after 12 weeks of RT (P<0.001). These results suggest that RT has the potential to enhance the diversity of the gut microbiota and improve its biological functions.
Collapse
Affiliation(s)
- Alinne P Castro
- Catholic University Dom Bosco, Graduate Program in Biotechnology, Campo Grande, Mato Grosso do Sul 79117-900, Brazil
| | - Keemilyn K S Silva
- Exercise and Nutrition in Health and Sports Performance Research Group - PENSARE, Graduate Program in Movement Sciences, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, Brazil
| | - Claudia S A Medeiros
- Graduate Program in Health and Development in the Midwest Region, Faculty of Medicine, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, Brazil
| | - Fernanda Alves
- Catholic University Dom Bosco, Graduate Program in Biotechnology, Campo Grande, Mato Grosso do Sul 79117-900, Brazil
| | - Ronaldo C Araujo
- Department of Biophysics, Federal University of São Paulo, São Paulo 04021-001, Brazil
| | - Jeeser A Almeida
- Exercise and Nutrition in Health and Sports Performance Research Group - PENSARE, Graduate Program in Movement Sciences, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, Brazil.,Graduate Program in Health and Development in the Midwest Region, Faculty of Medicine, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, Brazil
| |
Collapse
|
136
|
Strasser B, Wolters M, Weyh C, Krüger K, Ticinesi A. The Effects of Lifestyle and Diet on Gut Microbiota Composition, Inflammation and Muscle Performance in Our Aging Society. Nutrients 2021; 13:nu13062045. [PMID: 34203776 PMCID: PMC8232643 DOI: 10.3390/nu13062045] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/09/2021] [Accepted: 06/11/2021] [Indexed: 01/10/2023] Open
Abstract
Living longer is associated with an increased risk of chronic diseases, including impairments of the musculoskeletal and immune system as well as metabolic disorders and certain cancers, each of which can negatively affect the relationship between host and microbiota up to the occurrence of dysbiosis. On the other hand, lifestyle factors, including regular physical exercise and a healthy diet, can affect skeletal muscle and immune aging positively at all ages. Accordingly, health benefits could partly depend on the effect of such interventions that influence the biodiversity and functionality of intestinal microbiota. In the present review, we first discuss the physiological effects of aging on the gut microbiota, immune system, and skeletal muscle. Secondly, we describe human epidemiological evidence about the associations between physical activity and fitness and the gut microbiota composition in older adults. The third part highlights the relevance and restorative mechanisms of immune protection through physical activity and specific exercise interventions during aging. Fourth, we present important research findings on the effects of exercise and protein as well as other nutrients on skeletal muscle performance in older adults. Finally, we provide nutritional recommendations to prevent malnutrition and support healthy active aging with a focus on gut microbiota. Key nutrition-related concerns include the need for adequate energy and protein intake for preventing low muscle mass and a higher demand for specific nutrients (e.g., dietary fiber, polyphenols and polyunsaturated fatty acids) that can modify the composition, diversity, and metabolic capacity of the gut microbiota, and may thus provide a practical means of enhancing gut and systemic immune function.
Collapse
Affiliation(s)
- Barbara Strasser
- Medical Faculty, Sigmund Freud Private University, 1020 Vienna, Austria
- Correspondence:
| | - Maike Wolters
- Leibniz Institute for Prevention Research and Epidemiology–BIPS, 28359 Bremen, Germany;
| | - Christopher Weyh
- Department of Exercise Physiology and Sports Therapy, University of Giessen, 35394 Giessen, Germany; (C.W.); (K.K.)
| | - Karsten Krüger
- Department of Exercise Physiology and Sports Therapy, University of Giessen, 35394 Giessen, Germany; (C.W.); (K.K.)
| | - Andrea Ticinesi
- Geriatric-Rehabilitation Department, Azienda Ospedaliero-Universitaria di Parma, 43126 Parma, Italy;
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
- Microbiome Research Hub, University of Parma, 43124 Parma, Italy
| |
Collapse
|
137
|
Clauss M, Gérard P, Mosca A, Leclerc M. Interplay Between Exercise and Gut Microbiome in the Context of Human Health and Performance. Front Nutr 2021; 8:637010. [PMID: 34179053 PMCID: PMC8222532 DOI: 10.3389/fnut.2021.637010] [Citation(s) in RCA: 147] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 05/17/2021] [Indexed: 12/16/2022] Open
Abstract
Gut microbiota and exercise have recently been shown to be interconnected. Both moderate and intense exercise are typically part of the training regimen of endurance athletes, but they exert different effects on health. Moderate exercise has positive effects on the health of average athletes, such as a reduction in inflammation and intestinal permeability and an improvement in body composition. It also induces positive changes in the gut microbiota composition and in the microbial metabolites produced in the gastrointestinal tract. Conversely, intense exercise can increase gastrointestinal epithelial wall permeability and diminish gut mucus thickness, potentially enabling pathogens to enter the bloodstream. This, in turn, may contribute to the increase in inflammation levels. However, elite athletes seem to have a higher gut microbial diversity, shifted toward bacterial species involved in amino acid biosynthesis and carbohydrate/fiber metabolism, consequently producing key metabolites such as short-chain fatty acids. Moreover, rodent studies have highlighted a bidirectional relationship, with exercise impacting the gut microbiota composition while the microbiota may influence performance. The present review focuses on gut microbiota and endurance sports and how this interconnection depends upon exercise intensity and training. After pointing out the limits of the studies so far available, we suggest that taking into account the microbiota composition and its metabolic contribution to human host health could help in monitoring and modulating athletes' health and performance. Such an integrated approach should help in the design of microbiome-based solutions for health or performance.
Collapse
Affiliation(s)
- Matthieu Clauss
- Université Paris-Saclay, INRAE, AgroParisTech, MICALIS Institute, Jouy-en-Josas, France
- Department of Physical Performance, Norwegian School of Sport Sciences, Oslo, Norway
| | - Philippe Gérard
- Université Paris-Saclay, INRAE, AgroParisTech, MICALIS Institute, Jouy-en-Josas, France
| | - Alexis Mosca
- Hôpital Robert Debré, Assistance Publique-Hôpitaux de Paris, Paris, France
- Institut National de la Santé et de la Recherche Médicale et Université Paris Diderot, Sorbonne Paris-Cité, United Medical Resources 1149 Labex Inflamex, Paris, France
| | - Marion Leclerc
- Université Paris-Saclay, INRAE, AgroParisTech, MICALIS Institute, Jouy-en-Josas, France
| |
Collapse
|
138
|
Martinez JE, Kahana DD, Ghuman S, Wilson HP, Wilson J, Kim SCJ, Lagishetty V, Jacobs JP, Sinha-Hikim AP, Friedman TC. Unhealthy Lifestyle and Gut Dysbiosis: A Better Understanding of the Effects of Poor Diet and Nicotine on the Intestinal Microbiome. Front Endocrinol (Lausanne) 2021; 12:667066. [PMID: 34168615 PMCID: PMC8218903 DOI: 10.3389/fendo.2021.667066] [Citation(s) in RCA: 105] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 05/17/2021] [Indexed: 12/31/2022] Open
Abstract
The study of the intestinal or gut microbiome is a newer field that is rapidly gaining attention. Bidirectional communication between gut microbes and the host can impact numerous biological systems regulating immunity and metabolism to either promote or negatively impact the host's health. Habitual routines, dietary choices, socioeconomic status, education, host genetics, medical care and environmental factors can all contribute to the composition of an individual's microbiome. A key environmental factor that may cause negative outcomes is the consumption of nicotine products. The effects of nicotine on the host can be exacerbated by poor dietary choices and together can impact the composition of the gut microbiota to promote the development of metabolic disease including non-alcoholic fatty liver disease. This review explores the contribution of nicotine, poor dietary choices and other unhealthy lifestyle factors to gut dysbiosis.
Collapse
Affiliation(s)
- Jason E. Martinez
- Department of Internal Medicine, Charles R. Drew University of Medicine and Science, Los Angeles, CA, United States
| | - Doron D. Kahana
- Department of Internal Medicine, Charles R. Drew University of Medicine and Science, Los Angeles, CA, United States
- Department of Medicine, David Geffen School of Medicine at University of California, Los Angeles, CA, United States
| | - Simran Ghuman
- Department of Internal Medicine, Charles R. Drew University of Medicine and Science, Los Angeles, CA, United States
| | - Haley P. Wilson
- Department of Internal Medicine, Charles R. Drew University of Medicine and Science, Los Angeles, CA, United States
| | - Julian Wilson
- Department of Internal Medicine, Charles R. Drew University of Medicine and Science, Los Angeles, CA, United States
| | - Samuel C. J. Kim
- Department of Internal Medicine, Charles R. Drew University of Medicine and Science, Los Angeles, CA, United States
| | - Venu Lagishetty
- Vatche and Tamar Manoukian Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine at University of California, Los Angeles (UCLA), Los Angeles, CA, United States
- David Geffen School of Medicine at University of California, UCLA Microbiome Center, Los Angeles, CA, United States
| | - Jonathan P. Jacobs
- Vatche and Tamar Manoukian Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine at University of California, Los Angeles (UCLA), Los Angeles, CA, United States
- David Geffen School of Medicine at University of California, UCLA Microbiome Center, Los Angeles, CA, United States
- Division of Gastroenterology, Hepatology and Parenteral Nutrition, Veterans Administration Greater Los Angeles Healthcare System, Los Angeles, CA, United States
| | - Amiya P. Sinha-Hikim
- Department of Internal Medicine, Charles R. Drew University of Medicine and Science, Los Angeles, CA, United States
- Department of Medicine, David Geffen School of Medicine at University of California, Los Angeles, CA, United States
| | - Theodore C. Friedman
- Department of Internal Medicine, Charles R. Drew University of Medicine and Science, Los Angeles, CA, United States
- Department of Medicine, David Geffen School of Medicine at University of California, Los Angeles, CA, United States
| |
Collapse
|
139
|
Dorelli B, Gallè F, De Vito C, Duranti G, Iachini M, Zaccarin M, Preziosi Standoli J, Ceci R, Romano F, Liguori G, Romano Spica V, Sabatini S, Valeriani F, Cattaruzza MS. Can Physical Activity Influence Human Gut Microbiota Composition Independently of Diet? A Systematic Review. Nutrients 2021; 13:nu13061890. [PMID: 34072834 PMCID: PMC8228232 DOI: 10.3390/nu13061890] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/21/2021] [Accepted: 05/27/2021] [Indexed: 02/06/2023] Open
Abstract
Evidence suggests that physical activity (PA) influences the human gut microbiota composition, but its role is unclear because of dietary interference. The aim of this review is to clarify this issue from this new perspective in healthy individuals. Articles analyzing intestinal microbiota from fecal samples by 16S rRNA amplicon sequencing were selected by searching the electronic databases PubMed, Scopus, and Web of Science until December 2020. For each study, methodological quality was assessed, and results about microbiota biodiversity indices, phylum and genus composition, and information on PA and diet were considered. From 997 potentially relevant articles, 10 met the inclusion criteria and were analyzed. Five studies involved athletes, three were performed on active people classified on the basis of habitual PA level, and two among sedentary subjects undergoing exercise interventions. The majority of the studies reported higher variability and prevalence of the phylum Firmicutes (genera Ruminococcaceae or Fecalibacteria) in active compared to inactive individuals, especially in athletes. The assessment of diet as a possible confounder of PA/exercise effects was completed only in four studies. They reported a similar abundance of Lachnospiraceae, Paraprevotellaceae, Ruminococcaceae, and Veillonellaceae, which are involved in metabolic, protective, structural, and histological functions. Further studies are needed to confirm these findings.
Collapse
Affiliation(s)
- Barbara Dorelli
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, 00185 Roma, Italy; (B.D.); (C.D.V.); (M.I.); (M.Z.); (J.P.S.); (F.R.); (M.S.C.)
| | - Francesca Gallè
- Department of Movement Sciences and Wellbeing, University of Naples “Parthenope”, 80133 Napoli, Italy; (F.G.); (G.L.)
| | - Corrado De Vito
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, 00185 Roma, Italy; (B.D.); (C.D.V.); (M.I.); (M.Z.); (J.P.S.); (F.R.); (M.S.C.)
| | - Guglielmo Duranti
- Department of Movement, Human, and Health Sciences, University of Rome “Foro Italico”, 00135 Roma, Italy; (R.C.); (V.R.S.); (S.S.)
- Correspondence: (G.D.); (F.V.); Tel.: +39-0636733479 (G.D.); +39-0636733223 (F.V.)
| | - Matteo Iachini
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, 00185 Roma, Italy; (B.D.); (C.D.V.); (M.I.); (M.Z.); (J.P.S.); (F.R.); (M.S.C.)
| | - Matteo Zaccarin
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, 00185 Roma, Italy; (B.D.); (C.D.V.); (M.I.); (M.Z.); (J.P.S.); (F.R.); (M.S.C.)
| | - Jacopo Preziosi Standoli
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, 00185 Roma, Italy; (B.D.); (C.D.V.); (M.I.); (M.Z.); (J.P.S.); (F.R.); (M.S.C.)
| | - Roberta Ceci
- Department of Movement, Human, and Health Sciences, University of Rome “Foro Italico”, 00135 Roma, Italy; (R.C.); (V.R.S.); (S.S.)
| | - Ferdinando Romano
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, 00185 Roma, Italy; (B.D.); (C.D.V.); (M.I.); (M.Z.); (J.P.S.); (F.R.); (M.S.C.)
| | - Giorgio Liguori
- Department of Movement Sciences and Wellbeing, University of Naples “Parthenope”, 80133 Napoli, Italy; (F.G.); (G.L.)
| | - Vincenzo Romano Spica
- Department of Movement, Human, and Health Sciences, University of Rome “Foro Italico”, 00135 Roma, Italy; (R.C.); (V.R.S.); (S.S.)
| | - Stefania Sabatini
- Department of Movement, Human, and Health Sciences, University of Rome “Foro Italico”, 00135 Roma, Italy; (R.C.); (V.R.S.); (S.S.)
| | - Federica Valeriani
- Department of Movement, Human, and Health Sciences, University of Rome “Foro Italico”, 00135 Roma, Italy; (R.C.); (V.R.S.); (S.S.)
- Correspondence: (G.D.); (F.V.); Tel.: +39-0636733479 (G.D.); +39-0636733223 (F.V.)
| | - Maria Sofia Cattaruzza
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, 00185 Roma, Italy; (B.D.); (C.D.V.); (M.I.); (M.Z.); (J.P.S.); (F.R.); (M.S.C.)
| |
Collapse
|
140
|
Tao K, Duan Y, Wang H, Zeng D, Fang Z, Yan H, Lu Y. De novo Explorations of Sarcopenia via a Dynamic Model. Front Physiol 2021; 12:670381. [PMID: 34122142 PMCID: PMC8194405 DOI: 10.3389/fphys.2021.670381] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 05/07/2021] [Indexed: 12/17/2022] Open
Abstract
Background: The cause of sarcopenia has been observed over decades by clinical trials, which, however, are still insufficient to systematically unravel the enigma of how resistance exercise mediates skeletal muscle mass. Materials and Methods: Here, we proposed a minimal regulatory network and developed a dynamic model to rigorously investigate the mechanism of sarcopenia. Our model is consisted of eight ordinary differential equations and incorporates linear and Hill-function terms to describe positive and negative feedbacks between protein species, respectively. Results: A total of 720 samples with 10 scaled intensities were included in simulations, which revealed the expression level of AKT (maximum around 3.9-fold) and mTOR (maximum around 5.5-fold) at 3, 6, and 24 h at high intensity, and non-monotonic relation (ranging from 1.2-fold to 1.7-fold) between the graded intensities and skeletal muscle mass. Furthermore, continuous dynamics (within 24 h) of AKT, mTOR, and other proteins were obtained accordingly, and we also predicted the delaying effect with the median of maximized muscle mass shifting from 1.8-fold to 4.6-fold during a 4-fold increase of delay coefficient. Conclusion: The de novo modeling framework sheds light on the interdisciplinary methodology integrating computational approaches with experimental results, which facilitates the deeper understandings of exercise training and sarcopenia.
Collapse
Affiliation(s)
- Kuan Tao
- School of Sports Engineering, Beijing Sport University, Beijing, China
| | - Yushuang Duan
- School of Sport Medicine and Physical Therapy, Beijing Sport University, Beijing, China
| | - Huohuo Wang
- School of Sport Medicine and Physical Therapy, Beijing Sport University, Beijing, China
| | - Dan Zeng
- School of Sport Medicine and Physical Therapy, Beijing Sport University, Beijing, China
| | - Zilong Fang
- School of Sport Medicine and Physical Therapy, Beijing Sport University, Beijing, China
| | - Huiping Yan
- School of Sport Medicine and Physical Therapy, Beijing Sport University, Beijing, China
| | - Yifan Lu
- School of Sport Medicine and Physical Therapy, Beijing Sport University, Beijing, China.,Key Laboratory of Sports and Physical Fitness of the Ministry of Education, Beijing Sport University, Beijing, China
| |
Collapse
|
141
|
Differences in Gut Microbiome Composition and Antibiotic Resistance Gene Distribution between Chinese and Pakistani University Students from a Common Peer Group. Microorganisms 2021; 9:microorganisms9061152. [PMID: 34072124 PMCID: PMC8229524 DOI: 10.3390/microorganisms9061152] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/20/2021] [Accepted: 05/21/2021] [Indexed: 12/13/2022] Open
Abstract
Gut microbiomes play important functional roles in human health and are also affected by many factors. However, few studies concentrate on gut microbiomes under exercise intervention. Additionally, antibiotic resistance genes (ARGs) carried by gut microbiomes may constantly pose a threat to human health. Here, ARGs and microbiomes of Chinese and Pakistanis participants were investigated using 16S rRNA gene sequencing and high-throughput quantitative PCR techniques. The exercise had no impact on gut microbiomes in the 12 individuals investigated during the observation period, while the different distribution of gut microbiomes was found in distinct nationalities. Overall, the dominant microbial phyla in the participants’ gut were Bacteroidota, Firmicutes and Proteobacteria. Some genera such as Prevotella and Dialister were more abundant in Pakistani participants and some other genera such as Bacteroides and Faecalibacterium were more abundant in Chinese participants. The microbial diversity in Chinese was higher than that in Pakistanis. Furthermore, microbial community structures were also different between Chinese and Pakistanis. For ARGs, the distribution of all detected ARGs is not distinct at each time point. Among these ARGs, floR was distributed differently in Chinese and Pakistani participants, and some ARGs such as tetQ and sul2 are positively correlated with several dominant microbiomes, particularly Bacteroidota and Firmicutes bacteria that did not fluctuate over time.
Collapse
|
142
|
Park J, Kato K, Murakami H, Hosomi K, Tanisawa K, Nakagata T, Ohno H, Konishi K, Kawashima H, Chen YA, Mohsen A, Xiao JZ, Odamaki T, Kunisawa J, Mizuguchi K, Miyachi M. Comprehensive analysis of gut microbiota of a healthy population and covariates affecting microbial variation in two large Japanese cohorts. BMC Microbiol 2021; 21:151. [PMID: 34016052 PMCID: PMC8139087 DOI: 10.1186/s12866-021-02215-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 05/04/2021] [Indexed: 01/06/2023] Open
Abstract
Background Inter-individual variations in gut microbiota composition are observed even among healthy populations. The gut microbiota may exhibit a unique composition depending on the country of origin and race of individuals. To comprehensively understand the link between healthy gut microbiota and host state, it is beneficial to conduct large-scale cohort studies. The aim of the present study was to elucidate the integrated and non-redundant factors associated with gut microbiota composition within the Japanese population by 16S rRNA sequencing of fecal samples and questionnaire-based covariate analysis. Results A total of 1596 healthy Japanese individuals participated in this study via two independent cohorts, NIBIOHN cohort (n=954) and MORINAGA cohort (n=642). Gut microbiota composition was described and the interaction of these microorganisms with metadata parameters such as anthropometric measurements, bowel habits, medical history, and lifestyle were obtained. Thirteen genera, including Alistipes, Anaerostipes, Bacteroides, Bifidobacterium, Blautia, Eubacterium halli group, Faecalibacterium, Fusicatenibacter, Lachnoclostridium, Parabacteroides, Prevotella_9, Roseburia, and Subdoligranulum were predominant among the two cohorts. On the basis of univariate analysis for overall microbiome variation, 18 matching variables exhibited significant association in both cohorts. A stepwise redundancy analysis revealed that there were four common covariates, Bristol Stool Scale (BSS) scores, gender, age, and defecation frequency, displaying non-redundant association with gut microbial variance. Conclusions We conducted a comprehensive analysis of gut microbiota in healthy Japanese individuals, based on two independent cohorts, and obtained reliable evidence that questionnaire-based covariates such as frequency of bowel movement and specific dietary habit affects the microbial composition of the gut. To our knowledge, this was the first study to investigate integrated and non-redundant factors associated with gut microbiota among Japanese populations. Supplementary Information The online version contains supplementary material available at 10.1186/s12866-021-02215-0.
Collapse
Affiliation(s)
- Jonguk Park
- Laboratory of Bioinformatics, Artificial Intelligence Center for Health and Biomedical Research, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, 567-0085, Japan
| | - Kumiko Kato
- Morinaga Milk Industry Co., Ltd., Next Generation Science Institute, Kanagawa, 252-8583, Japan
| | - Haruka Murakami
- Department of Physical Activity Research, National Institutes of Biomedical Innovation, Health and Nutrition, Tokyo, 162-8636, Japan
| | - Koji Hosomi
- Laboratory of Vaccine Materials, Center for Vaccine and Adjuvant Research and Laboratory of Gut Environmental System, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, 567-0085, Japan
| | - Kumpei Tanisawa
- Department of Physical Activity Research, National Institutes of Biomedical Innovation, Health and Nutrition, Tokyo, 162-8636, Japan.,Faculty of Sport Sciences, Waseda University, Saitama, 359-1192, Japan
| | - Takashi Nakagata
- Department of Physical Activity Research, National Institutes of Biomedical Innovation, Health and Nutrition, Tokyo, 162-8636, Japan
| | - Harumi Ohno
- Department of Physical Activity Research, National Institutes of Biomedical Innovation, Health and Nutrition, Tokyo, 162-8636, Japan.,Faculty of Human Nutrition, Tokyo Kasei Gakuin University, Tokyo, 102-8341, Japan
| | - Kana Konishi
- Department of Physical Activity Research, National Institutes of Biomedical Innovation, Health and Nutrition, Tokyo, 162-8636, Japan.,Faculty of Food and Nutritional Sciences, Toyo University, Gunma, 374-0193, Japan
| | - Hitoshi Kawashima
- Laboratory of Bioinformatics, Artificial Intelligence Center for Health and Biomedical Research, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, 567-0085, Japan
| | - Yi-An Chen
- Laboratory of Bioinformatics, Artificial Intelligence Center for Health and Biomedical Research, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, 567-0085, Japan
| | - Attayeb Mohsen
- Laboratory of Bioinformatics, Artificial Intelligence Center for Health and Biomedical Research, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, 567-0085, Japan
| | - Jin-Zhong Xiao
- Morinaga Milk Industry Co., Ltd., Next Generation Science Institute, Kanagawa, 252-8583, Japan
| | - Toshitaka Odamaki
- Morinaga Milk Industry Co., Ltd., Next Generation Science Institute, Kanagawa, 252-8583, Japan.
| | - Jun Kunisawa
- Laboratory of Vaccine Materials, Center for Vaccine and Adjuvant Research and Laboratory of Gut Environmental System, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, 567-0085, Japan.
| | - Kenji Mizuguchi
- Laboratory of Bioinformatics, Artificial Intelligence Center for Health and Biomedical Research, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, 567-0085, Japan.
| | - Motohiko Miyachi
- Department of Physical Activity Research, National Institutes of Biomedical Innovation, Health and Nutrition, Tokyo, 162-8636, Japan. .,Faculty of Sport Sciences, Waseda University, Saitama, 359-1192, Japan.
| |
Collapse
|
143
|
Pugh JN, Lydon K, O'Donovan CM, O'Sullivan O, Madigan SM. More than a gut feeling: What is the role of the gastrointestinal tract in female athlete health? Eur J Sport Sci 2021; 22:755-764. [PMID: 33944684 DOI: 10.1080/17461391.2021.1921853] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
As with much of science, the female athlete is under researched, particularly in the area of gastrointestinal (GI) physiology. Gut function is of pivotal importance to athletes in that it supports digestion and absorption of nutrients, as well as providing a barrier between the external environment and the circulation. While sex-derived differences in GI structure and function have been well characterised at rest, there remains a paucity of data examining this during exercise. The wider impact of the GI system has begun to be realised and it is now widely acknowledged to play a role in more systemic bodily systems. In the current review, we discuss localised issues including the GI structure, function, and microbiome of male and females. We also discuss GI-related symptoms experienced by athletes, highlight the differences in incidence between males and females, and discuss contributing factors. We then move beyond the gut to discuss wider biological processes that have been shown to have both sex-related differences and that are impacted by the GI system. Some of these areas include immune function and risk of illness, sleep, hormones, bone health and the gut-brain-axis. The magnitude of such effects and relationships is currently unknown but there is enough mechanistic data for future studies to consider a more central role that the gastrointestinal tract may play in overall female athlete health.Highlights There are both clear similarities and differences in male-female gastrointestinal structure and function.Females typically reported a greater prevalence of gastrointestinal symptoms at rest, in particular during menstruation, but not during exercise.The links between female microbiome, oestrogen, and systemic physiological and biological processes are yet to be fully elucidated.Many of the male-female differences seen (e.g. in immune function) may be, at least in part, influenced by such GI related differences.
Collapse
Affiliation(s)
- Jamie N Pugh
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, UK
| | - Katie Lydon
- Department for Health, University of Bath, Bath, UK.,Trinity College Dublin/Health Service Executive Specialist Training Scheme in General Practice, School of Medicine, Trinity College Dublin, Dublin, Ireland
| | - Ciara M O'Donovan
- Teagasc Food Research Centre, Moorepark, Fermoy, Ireland.,APC Microbiome Ireland, Cork, Ireland
| | - Orla O'Sullivan
- Teagasc Food Research Centre, Moorepark, Fermoy, Ireland.,APC Microbiome Ireland, Cork, Ireland
| | - Sharon M Madigan
- Sport Ireland Institute, Dublin, Ireland.,Department of Physical Education and Sport Sciences, University of Limerick, Limerick, Ireland
| |
Collapse
|
144
|
Reiman D, Layden BT, Dai Y. MiMeNet: Exploring microbiome-metabolome relationships using neural networks. PLoS Comput Biol 2021; 17:e1009021. [PMID: 33999922 PMCID: PMC8158931 DOI: 10.1371/journal.pcbi.1009021] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 05/27/2021] [Accepted: 04/28/2021] [Indexed: 12/31/2022] Open
Abstract
The advance in microbiome and metabolome studies has generated rich omics data revealing the involvement of the microbial community in host disease pathogenesis through interactions with their host at a metabolic level. However, the computational tools to uncover these relationships are just emerging. Here, we present MiMeNet, a neural network framework for modeling microbe-metabolite relationships. Using ten iterations of 10-fold cross-validation on three paired microbiome-metabolome datasets, we show that MiMeNet more accurately predicts metabolite abundances (mean Spearman correlation coefficients increase from 0.108 to 0.309, 0.276 to 0.457, and -0.272 to 0.264) and identifies more well-predicted metabolites (increase in the number of well-predicted metabolites from 198 to 366, 104 to 143, and 4 to 29) compared to state-of-art linear models for individual metabolite predictions. Additionally, we demonstrate that MiMeNet can group microbes and metabolites with similar interaction patterns and functions to illuminate the underlying structure of the microbe-metabolite interaction network, which could potentially shed light on uncharacterized metabolites through “Guilt by Association”. Our results demonstrated that MiMeNet is a powerful tool to provide insights into the causes of metabolic dysregulation in disease, facilitating future hypothesis generation at the interface of the microbiome and metabolomics. The microbiome has shown to functionally interact with its host or environment at a metabolic level, however the exact nature of these interactions is not well understood. In addition, metabolic dysregulation caused by the microbiome is believed to contribute to the development of diseases such as inflammatory bowel disease, diabetes mellitus, and obesity. In this manuscript, we introduce a computational framework to integrate microbiome and metabolome data to uncover microbe-metabolite interactions in a data-driven manner. Our model uses neural networks to predict metabolite abundances from microbe abundances. The trained models are then used to derive microbe-metabolite feature scores, which are used for clustering microbes and metabolites into functional modules. These module-based interactions are useful in generating biological insights and facilitating hypothesis generation for the investigation of their roles in various metabolic diseases. The software of our model is made freely available to interested researchers.
Collapse
Affiliation(s)
- Derek Reiman
- Department of Bioengineering, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Brian T. Layden
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Illinois at Chicago, Chicago, Illinois, United States of America
- Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois, United States of America
| | - Yang Dai
- Department of Bioengineering, University of Illinois at Chicago, Chicago, Illinois, United States of America
- * E-mail:
| |
Collapse
|
145
|
Probiotics in Fish Nutrition—Long-Standing Household Remedy or Native Nutraceuticals? WATER 2021. [DOI: 10.3390/w13101348] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Over the last decades, aquaculture production increased rapidly. The future development of the industry highly relies on the sustainable utilization of natural resources. The need for improving disease resistance, growth performance, food conversion, and product safety for human consumption has stimulated the application of probiotics in aquaculture. Probiotics increase growth and feed conversion, improve health status, raise disease resistance, decrease stress susceptibility, and improve general vigor. Currently, most probiotics still originate from terrestrial sources rather than fish. However, host-associated (autochthonous) probiotics are likely more persistent in the gastrointestinal tract of fish and may, therefore, exhibit longer-lasting effects on the host. Probiotic candidates are commonly screened in in vitro assays, but the transfer to in vivo assessment is often problematic. In conclusion, modulation of the host-associated microbiome by the use of complex probiotics is promising, but a solid understanding of the interactions involved is only in its infancy and requires further research. Probiotics could be used to explore novel ingredients such as chitin-rich insect meal, which cannot be digested by the fish host alone. Most importantly, probiotics offer the opportunity to improve stress and disease resistance, which is among the most pressing problems in aquaculture.
Collapse
|
146
|
McKenna CF, Salvador AF, Hughes RL, Scaroni SE, Alamilla RA, Askow AT, Paluska SA, Dilger AC, Holscher HD, De Lisio M, Khan NA, Burd NA. Higher protein intake during resistance training does not potentiate strength, but modulates gut microbiota, in middle-aged adults: a randomized control trial. Am J Physiol Endocrinol Metab 2021; 320:E900-E913. [PMID: 33682457 DOI: 10.1152/ajpendo.00574.2020] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Protein intake above the recommended dietary allowance (RDA) and resistance training are known anabolic stimuli to support healthy aging. Specifically, protein supplementation after resistance exercise and nightly are strategies to maximize utilization of protein intake above the RDA in healthy adults. As such, the primary objective was to examine the efficacy of protein supplementation and nutritional counseling resulting in either moderate (MOD: ∼1.0 g·kg-1·day-1) or higher (HIGH: ∼1.6 g·kg-1·day-1) protein intake during resistance training on strength (one-repetition maximum, 1-RM; isokinetic and isometric peak torque) in healthy middle-aged adults. Exploratory analyses include diet-exercise effects on lean body mass (LBM), clinical biomarkers, gut microbiota, and diet composition. In all, 50 middle-aged adults (age: 50 ± 8 yr, BMI: 27.2 ± 4.1 kg/m2) were randomized to either MOD or HIGH protein intake during a 10-wk resistance training program (3 × wk). Participants received dietary counseling and consumed either 15 g (MOD) or 30 g (HIGH) of protein from lean beef in the immediate postexercise period and each evening. Maximal strength (1-RM) for all upper and lower body exercises significantly increased with no effect of protein intake (P < 0.050). There was a main effect of time for LBM (P < 0.005). Cardiovascular, renal, or glycemic biomarkers were not affected by the intervention. Gut microbiota were associated with several health outcomes (P < 0.050). In conclusion, higher protein intake above moderate amounts does not potentiate resistance training adaptations in previously untrained middle-aged adults. This trial was registered at clinicaltrials.gov as NCT03029975.NEW & NOTEWORTHY Our research evaluates the efficacy of higher in comparison with moderate animal-based protein intake on resistance exercise training-induced muscle strength, clinical biomarkers, and gut microbiota in middle-aged adults through a dietary counseling-controlled intervention. Higher protein intake did not potentiate training adaptations, nor did the intervention effect disease biomarkers. Both diet and exercise modified gut microbiota composition. Collectively, moderate amounts of high-quality, animal-based protein is sufficient to promote resistance exercise adaptations at the onset of aging.
Collapse
Affiliation(s)
- Colleen F McKenna
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Amadeo F Salvador
- Division of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Riley L Hughes
- Division of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Susannah E Scaroni
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Rafael A Alamilla
- Division of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Andrew T Askow
- Division of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Scott A Paluska
- Division of Family Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Anna C Dilger
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Hannah D Holscher
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois
- Division of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, Illinois
- Division of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Michael De Lisio
- School of Human Kinetics and Cellular and Molecular Medicine, University of Ottawa, Ontario, Canada
| | - Naiman A Khan
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois
- Division of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, Illinois
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Nicholas A Burd
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois
- Division of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, Illinois
| |
Collapse
|
147
|
Carey RA, Montag D. Exploring the relationship between gut microbiota and exercise: short-chain fatty acids and their role in metabolism. BMJ Open Sport Exerc Med 2021; 7:e000930. [PMID: 33981447 PMCID: PMC8061837 DOI: 10.1136/bmjsem-2020-000930] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/26/2021] [Indexed: 12/16/2022] Open
Abstract
The human body is host to a multitude of bacteria, fungi, viruses and other species in the intestine, collectively known as the microbiota. Dietary carbohydrates which bypass digestion and absorption are broken down and fermented by the microbiota to produce short-chain fatty acids (SCFAs). Previous research has established the role of SCFAs in the control of human metabolic pathways. In this review, we evaluate SCFAs as a metabolic regulator and how they might improve endurance performance in athletes. By looking at research conducted in animal models, we identify several pathways downstream of SCFAs, either directly modulating metabolic pathways through second messenger pathways or through neuronal pathways, that contribute to energy utilisation. These pathways contribute to efficient energy metabolism and are thus key to maximising substrate utilisation in endurance exercise. Future research may prove the usefulness of targeted dietary interventions allowing athletes to maximise their performance in competition.
Collapse
Affiliation(s)
- Ryan A Carey
- Global Public Health, Queen Mary University of London, London, UK
| | - Doreen Montag
- Global Public Health, Queen Mary University of London, London, UK
| |
Collapse
|
148
|
Molecular Mechanisms Underlying the Beneficial Effects of Exercise on Brain Function and Neurological Disorders. Int J Mol Sci 2021; 22:ijms22084052. [PMID: 33919972 PMCID: PMC8070923 DOI: 10.3390/ijms22084052] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 04/11/2021] [Accepted: 04/12/2021] [Indexed: 12/11/2022] Open
Abstract
As life expectancy has increased, particularly in developed countries, due to medical advances and increased prosperity, age-related neurological diseases and mental health disorders have become more prevalent health issues, reducing the well-being and quality of life of sufferers and their families. In recent decades, due to reduced work-related levels of physical activity, and key research insights, prescribing adequate exercise has become an innovative strategy to prevent or delay the onset of these pathologies and has been demonstrated to have therapeutic benefits when used as a sole or combination treatment. Recent evidence suggests that the beneficial effects of exercise on the brain are related to several underlying mechanisms related to muscle–brain, liver–brain and gut–brain crosstalk. Therefore, this review aims to summarize the most relevant current knowledge of the impact of exercise on mood disorders and neurodegenerative diseases, and to highlight the established and potential underlying mechanisms involved in exercise–brain communication and their benefits for physiology and brain function.
Collapse
|
149
|
Mach N, Moroldo M, Rau A, Lecardonnel J, Le Moyec L, Robert C, Barrey E. Understanding the Holobiont: Crosstalk Between Gut Microbiota and Mitochondria During Long Exercise in Horse. Front Mol Biosci 2021; 8:656204. [PMID: 33898524 PMCID: PMC8063112 DOI: 10.3389/fmolb.2021.656204] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 02/16/2021] [Indexed: 12/17/2022] Open
Abstract
Endurance exercise has a dramatic impact on the functionality of mitochondria and on the composition of the intestinal microbiome, but the mechanisms regulating the crosstalk between these two components are still largely unknown. Here, we sampled 20 elite horses before and after an endurance race and used blood transcriptome, blood metabolome and fecal microbiome to describe the gut-mitochondria crosstalk. A subset of mitochondria-related differentially expressed genes involved in pathways such as energy metabolism, oxidative stress and inflammation was discovered and then shown to be associated with butyrate-producing bacteria of the Lachnospiraceae family, especially Eubacterium. The mechanisms involved were not fully understood, but through the action of their metabolites likely acted on PPARγ, the FRX-CREB axis and their downstream targets to delay the onset of hypoglycemia, inflammation and extend running time. Our results also suggested that circulating free fatty acids may act not merely as fuel but drive mitochondrial inflammatory responses triggered by the translocation of gut bacterial polysaccharides following endurance. Targeting the gut-mitochondria axis therefore appears to be a potential strategy to enhance athletic performance.
Collapse
Affiliation(s)
- Núria Mach
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350, Jouy-en-Josas, France
| | - Marco Moroldo
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350, Jouy-en-Josas, France
| | - Andrea Rau
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350, Jouy-en-Josas, France.,BioEcoAgro Joint Research Unit, INRAE, Université de Liège, Université de Lille, Université de Picardie Jules Verne, Estrées-Mons, France
| | - Jérôme Lecardonnel
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350, Jouy-en-Josas, France
| | - Laurence Le Moyec
- Université d'Évry Val d'Essonne, Université Paris-Saclay, Évry, France ABI UMR 1313, INRAE, Université Paris-Saclay, AgroParisTech, Jouy-en-Josas, France.,MCAM UMR7245, CNRS, Muséum National d'Histoire Naturelle, Paris, France
| | - Céline Robert
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350, Jouy-en-Josas, France.,École Nationale Vétérinaire d'Alfort, Maisons-Alfort, France
| | - Eric Barrey
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350, Jouy-en-Josas, France
| |
Collapse
|
150
|
|