101
|
Qu R, Zhang Y, Ma Y, Zhou X, Sun L, Jiang C, Zhang Z, Fu W. Role of the Gut Microbiota and Its Metabolites in Tumorigenesis or Development of Colorectal Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2205563. [PMID: 37263983 PMCID: PMC10427379 DOI: 10.1002/advs.202205563] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 04/20/2023] [Indexed: 06/03/2023]
Abstract
Colorectal cancer (CRC) is the most common cancer of the digestive system with high mortality and morbidity rates. Gut microbiota is found in the intestines, especially the colorectum, and has structured crosstalk interactions with the host that affect several physiological processes. The gut microbiota include CRC-promoting bacterial species, such as Fusobacterium nucleatum, Escherichia coli, and Bacteroides fragilis, and CRC-protecting bacterial species, such as Clostridium butyricum, Streptococcus thermophilus, and Lacticaseibacillus paracasei, which along with other microorganisms, such as viruses and fungi, play critical roles in the development of CRC. Different bacterial features are identified in patients with early-onset CRC, combined with different patterns between fecal and intratumoral microbiota. The gut microbiota may be beneficial in the diagnosis and treatment of CRC; some bacteria may serve as biomarkers while others as regulators of chemotherapy and immunotherapy. Furthermore, metabolites produced by the gut microbiota play essential roles in the crosstalk with CRC cells. Harmful metabolites include some primary bile acids and short-chain fatty acids, whereas others, including ursodeoxycholic acid and butyrate, are beneficial and impede tumor development and progression. This review focuses on the gut microbiota and its metabolites, and their potential roles in the development, diagnosis, and treatment of CRC.
Collapse
Affiliation(s)
- Ruize Qu
- Department of General SurgeryPeking University Third HospitalBeijing100191P. R. China
- Cancer CenterPeking University Third HospitalBeijing100191P. R. China
| | - Yi Zhang
- Department of General SurgeryPeking University Third HospitalBeijing100191P. R. China
- Cancer CenterPeking University Third HospitalBeijing100191P. R. China
| | - Yanpeng Ma
- Department of General SurgeryPeking University Third HospitalBeijing100191P. R. China
- Cancer CenterPeking University Third HospitalBeijing100191P. R. China
| | - Xin Zhou
- Department of General SurgeryPeking University Third HospitalBeijing100191P. R. China
- Cancer CenterPeking University Third HospitalBeijing100191P. R. China
| | - Lulu Sun
- State Key Laboratory of Women's Reproductive Health and Fertility PromotionPeking UniversityBeijing100191P. R. China
- Department of Endocrinology and MetabolismPeking University Third HospitalBeijing100191P. R. China
| | - Changtao Jiang
- Center of Basic Medical ResearchInstitute of Medical Innovation and ResearchThird HospitalPeking UniversityBeijing100191P. R. China
- Department of Physiology and PathophysiologySchool of Basic Medical SciencesPeking University and the Key Laboratory of Molecular Cardiovascular Science (Peking University)Ministry of EducationBeijing100191P. R. China
- Center for Obesity and Metabolic Disease ResearchSchool of Basic Medical SciencesPeking UniversityBeijing100191P. R. China
| | - Zhipeng Zhang
- Department of General SurgeryPeking University Third HospitalBeijing100191P. R. China
- Cancer CenterPeking University Third HospitalBeijing100191P. R. China
| | - Wei Fu
- Department of General SurgeryPeking University Third HospitalBeijing100191P. R. China
- Cancer CenterPeking University Third HospitalBeijing100191P. R. China
| |
Collapse
|
102
|
Xu J, Kong L, Oliver BA, Li B, Creasey EA, Guzman G, Schenone M, Carey KL, Carr SA, Graham DB, Deguine J, Xavier RJ. Constitutively active autophagy in macrophages dampens inflammation through metabolic and post-transcriptional regulation of cytokine production. Cell Rep 2023; 42:112708. [PMID: 37392388 PMCID: PMC10503440 DOI: 10.1016/j.celrep.2023.112708] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 02/24/2023] [Accepted: 06/13/2023] [Indexed: 07/03/2023] Open
Abstract
Autophagy is an essential cellular process that is deeply integrated with innate immune signaling; however, studies that examine the impact of autophagic modulation in the context of inflammatory conditions are lacking. Here, using mice with a constitutively active variant of the autophagy gene Beclin1, we show that increased autophagy dampens cytokine production during a model of macrophage activation syndrome and in adherent-invasive Escherichia coli (AIEC) infection. Moreover, loss of functional autophagy through conditional deletion of Beclin1 in myeloid cells significantly enhances innate immunity in these contexts. We further analyzed primary macrophages from these animals with a combination of transcriptomics and proteomics to identify mechanistic targets downstream of autophagy. Our study reveals glutamine/glutathione metabolism and the RNF128/TBK1 axis as independent regulators of inflammation. Altogether, our work highlights increased autophagic flux as a potential approach to reduce inflammation and defines independent mechanistic cascades involved in this control.
Collapse
Affiliation(s)
- Jinjin Xu
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Center for Computational and Integrative Biology, Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Lingjia Kong
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Center for Computational and Integrative Biology, Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Blayne A Oliver
- Center for Computational and Integrative Biology, Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Bihua Li
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Center for Computational and Integrative Biology, Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Elizabeth A Creasey
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Center for Computational and Integrative Biology, Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Gaelen Guzman
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Monica Schenone
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | | | - Steven A Carr
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Daniel B Graham
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Center for Computational and Integrative Biology, Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Jacques Deguine
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Ramnik J Xavier
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Center for Computational and Integrative Biology, Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA.
| |
Collapse
|
103
|
Gu Y, Wang W, Zhan Y, Wei X, Shi Y, Cui D, Peng T, Han J, Li X, Chen Y, Xue Z, Wang W. Dietary artemisinin boosts intestinal immunity and healthy in fat greenling ( Hexagrammos otakii). Front Immunol 2023; 14:1198902. [PMID: 37529040 PMCID: PMC10388541 DOI: 10.3389/fimmu.2023.1198902] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 06/27/2023] [Indexed: 08/03/2023] Open
Abstract
Introduction Artemisinin (ART) is very common as a diet additive due to its immunoregulatory activities. Nonetheless, the immunoregulatory mechanism of ART in marine fish remains unknown. This study comprehensively examined the effects and explored the potential mechanism of ART ameliorating intestinal immune disease (IID) in fat greenlings (Hexagrammos otakii). Methods and results The targets of ART were screened using the Traditional Chinese Medicine Systems Pharmacology (TCMSP) database. Here, eight putative targets of ART were collected and identified with the Uniprot database, and 1419 IID-associated target proteins were filtered through the Drugbank, Genecards, OMIM, and PHARMGKB Databases. The results of Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways point out that ART may have immunoprotective effects by regulating cellular responses to stress, hypoxia, inflammation, and vascular endothelial growth factor stimulus through the hypoxia-inducible factor 1 (HIF-1) signaling pathway. The findings of molecular docking indicated that ART contains one active ingredient and three cross-targets, which showed a kind combination with hypoxia-inducible factor 1-alpha (HIF1-a), transcription factor p65 (RELA), and vascular endothelial growth factor A (VEGF-A), respectively. Furthermore, an ART feeding model was established to assess the ART's immunoprotect effect on the intestine of H.otakii in vivo. The D48 group showed smaller intestinal structural changes after being challenged by Edwardsiella tarda. The supplementation of ART to the diet improved total superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-Px) and reduced the malondialdehyde (MDA) in intestine of H. otakii. The expression of transcription factor p65, HIF1-α, VEGF-A, cyclin D1, matrix metalloprotease 9 (MMP9), monocyte chemoattractant protein-1 (MCP-1), tumor necrosis factor-alpha (TNF-α), and interleukin-6 (IL-6) was decreased after dietary ART in the intestinal of H. otakii. Discussion The present results demonstrated that dietary ART improved antioxidants and immunity, optimized the intestinal structure, and increased resistance to E. tarda through the SOD2/nuclear-factor-kappa- B (NFkB)/HIF1-a/VEGF-A pathway in the intestinal tract of H.otakii. This study integrated pharmacological analysis and experimental validation and revealed the mechanism of ART on IID, which provides insight into the improvement of IID in H. otakii.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Zhuang Xue
- *Correspondence: Zhuang Xue, ; Wei Wang,
| | - Wei Wang
- *Correspondence: Zhuang Xue, ; Wei Wang,
| |
Collapse
|
104
|
BABINES-OROZCO L, BALBUENA-ALONSO MG, BARRIOS-VILLA E, LOZANO-ZARAIN P, MARTÍNEZ-LAGUNA Y, DEL CARMEN ROCHA-GRACIA R, CORTÉS-CORTÉS G. Antimicrobial resistance in food-associated Escherichia coli in Mexico and Latin America. BIOSCIENCE OF MICROBIOTA, FOOD AND HEALTH 2023; 43:4-12. [PMID: 38188662 PMCID: PMC10767319 DOI: 10.12938/bmfh.2023-022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 06/11/2023] [Indexed: 01/09/2024]
Abstract
The World Health Organization (WHO) considers antimicrobial resistance to be one of the critical global public health priorities to address. Escherichia coli is a commensal bacterium of the gut microbiota in humans and animals; however, some strains cause infections and are resistant to antibiotics. One of the most common ways of acquiring pathogenic E. coli strains is through food. This review analyzes multidrug-resistant E. coli isolated from food, emphasizing Latin America and Mexico, and the mobile genetic elements (MGEs) responsible for spreading antibiotic resistance determinants among bacteria in different environments and hosts. We conducted a systematic search of the literature published from 2015 to 2022 in open access databases and electronic repositories. The prevalence of 11 E. coli pathotypes was described, with diarrheagenic E. coli pathotypes being the most frequently associated with foodborne illness in different Latin American countries, highlighting the presence of different antibiotic resistance genes mostly carried by IncF-type plasmids or class 1 integrons. Although the global incidence of foodborne illness is high, there have been few studies in Mexico and Latin America, which highlights the need to generate updated epidemiological data from the "One Health" approach, which allows monitoring of the multidrug-resistance phenomenon in E. coli from a common perspective in the interaction of human, veterinary, and environmental health.
Collapse
Affiliation(s)
- Lorena BABINES-OROZCO
- Posgrado en Microbiología, Centro de Investigaciones en
Ciencias Microbiológicas, Instituto de Ciencias de la Benemérita Universidad Autónoma de
Puebla. Instituto de Ciencias, Ciudad Universitaria, San Manuel C.P. 72570 Puebla,
México
| | - María Guadalupe BALBUENA-ALONSO
- Posgrado en Microbiología, Centro de Investigaciones en
Ciencias Microbiológicas, Instituto de Ciencias de la Benemérita Universidad Autónoma de
Puebla. Instituto de Ciencias, Ciudad Universitaria, San Manuel C.P. 72570 Puebla,
México
| | - Edwin BARRIOS-VILLA
- Departamento de Ciencias Químico Biológicas y Agropecuarias,
Unidad Regional Norte, Campus Caborca, Universidad de Sonora, Col. Eleazar Ortiz C.P.
83621 H. Caborca, Sonora, México
| | - Patricia LOZANO-ZARAIN
- Posgrado en Microbiología, Centro de Investigaciones en
Ciencias Microbiológicas, Instituto de Ciencias de la Benemérita Universidad Autónoma de
Puebla. Instituto de Ciencias, Ciudad Universitaria, San Manuel C.P. 72570 Puebla,
México
| | - Ygnacio MARTÍNEZ-LAGUNA
- Posgrado en Microbiología, Centro de Investigaciones en
Ciencias Microbiológicas, Instituto de Ciencias de la Benemérita Universidad Autónoma de
Puebla. Instituto de Ciencias, Ciudad Universitaria, San Manuel C.P. 72570 Puebla,
México
| | - Rosa DEL CARMEN ROCHA-GRACIA
- Posgrado en Microbiología, Centro de Investigaciones en
Ciencias Microbiológicas, Instituto de Ciencias de la Benemérita Universidad Autónoma de
Puebla. Instituto de Ciencias, Ciudad Universitaria, San Manuel C.P. 72570 Puebla,
México
| | - Gerardo CORTÉS-CORTÉS
- Posgrado en Microbiología, Centro de Investigaciones en
Ciencias Microbiológicas, Instituto de Ciencias de la Benemérita Universidad Autónoma de
Puebla. Instituto de Ciencias, Ciudad Universitaria, San Manuel C.P. 72570 Puebla,
México
- Department of Microbiology and Environmental Toxicology,
University of California at Santa Cruz, Santa Cruz, CA 95064, USA
| |
Collapse
|
105
|
Monteiro R, Chafsey I, Caccia N, Ageorges V, Leroy S, Viala D, Hébraud M, Livrelli V, Pizza M, Pezzicoli A, Desvaux M. Specific Proteomic Identification of Collagen-Binding Proteins in Escherichia coli O157:H7: Characterisation of OmpA as a Potent Vaccine Antigen. Cells 2023; 12:1634. [PMID: 37371104 DOI: 10.3390/cells12121634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 06/02/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
Escherichia coli is a versatile commensal species of the animal gut that can also be a pathogen able to cause intestinal and extraintestinal infections. The plasticity of its genome has led to the evolution of pathogenic strains, which represent a threat to global health. Additionally, E. coli strains are major drivers of antibiotic resistance, highlighting the urgent need for new treatment and prevention measures. The antigenic and structural heterogeneity of enterohaemorrhagic E. coli colonisation factors has limited their use for the development of effective and cross-protective vaccines. However, the emergence of new strains that express virulence factors deriving from different E. coli diarrhoeagenic pathotypes suggests that a vaccine targeting conserved proteins could be a more effective approach. In this study, we conducted proteomics analysis and functional protein characterisation to identify a group of proteins potentially involved in the adhesion of E. coli O157:H7 to the extracellular matrix and intestinal epithelial cells. Among them, OmpA has been identified as a highly conserved and immunogenic antigen, playing a significant role in the adhesion phenotype of E. coli O157:H7 and in bacterial aggregation. Furthermore, antibodies raised against recombinant OmpA effectively reduced the adhesion of E. coli O157:H7 to intestinal epithelial cells. The present work highlights the role of OmpA as a potent antigen for the development of a vaccine against intestinal pathogenic E. coli.
Collapse
Affiliation(s)
- Ricardo Monteiro
- INRAE, UCA, UMR0454 MEDIS, 63000 Clermont-Ferrand, France
- GSK, 53100 Siena, Italy
- Instituto de Investigação e Inovação em Saúde-i3S, Universidade do Porto, 4150-564 Porto, Portugal
| | - Ingrid Chafsey
- INRAE, UCA, UMR0454 MEDIS, 63000 Clermont-Ferrand, France
| | - Nelly Caccia
- INRAE, UCA, UMR0454 MEDIS, 63000 Clermont-Ferrand, France
| | | | - Sabine Leroy
- INRAE, UCA, UMR0454 MEDIS, 63000 Clermont-Ferrand, France
| | - Didier Viala
- INRAE, Metabolism Exploration Platform, Proteomic Component (PFEMcp), 63122 Saint-Genès Champanelle, France
| | - Michel Hébraud
- INRAE, UCA, UMR0454 MEDIS, 63000 Clermont-Ferrand, France
- INRAE, Metabolism Exploration Platform, Proteomic Component (PFEMcp), 63122 Saint-Genès Champanelle, France
| | | | - Mariagrazia Pizza
- GSK, 53100 Siena, Italy
- Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | | | | |
Collapse
|
106
|
Zhang Y, Mu T, Deng X, Guo R, Xia B, Jiang L, Wu Z, Liu M. New Insights of Biological Functions of Natural Polyphenols in Inflammatory Intestinal Diseases. Int J Mol Sci 2023; 24:ijms24119581. [PMID: 37298531 DOI: 10.3390/ijms24119581] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/17/2023] [Accepted: 05/26/2023] [Indexed: 06/12/2023] Open
Abstract
The intestine is critically crucial for nutrient absorption and host defense against exogenous stimuli. Inflammation-related intestinal diseases, including enteritis, inflammatory bowel disease (IBD), and colorectal cancer (CRC), are heavy burdens for human beings due to their high incidence and devastating clinical symptoms. Current studies have confirmed that inflammatory responses, along with oxidative stress and dysbiosis as critical pathogenesis, are involved in most intestinal diseases. Polyphenols are secondary metabolites derived from plants, which possess convincible anti-oxidative and anti-inflammatory properties, as well as regulation of intestinal microbiome, indicating the potential applications in enterocolitis and CRC. Actually, accumulating studies based on the biological functions of polyphenols have been performed to investigate the functional roles and underlying mechanisms over the last few decades. Based on the mounting evidence of literature, the objective of this review is to outline the current research progress regarding the category, biological functions, and metabolism of polyphenols within the intestine, as well as applications for the prevention and treatment of intestinal diseases, which might provide ever-expanding new insights for the utilization of natural polyphenols.
Collapse
Affiliation(s)
- Yunchang Zhang
- College of Animal Science and Technology, Beijing University of Agriculture, Beijing 102206, China
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing 100193, China
| | - Tianqi Mu
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing 100193, China
| | - Xiong Deng
- College of Animal Science and Technology, Beijing University of Agriculture, Beijing 102206, China
| | - Ruiting Guo
- College of Animal Science and Technology, Beijing University of Agriculture, Beijing 102206, China
| | - Bing Xia
- College of Animal Science and Technology, Beijing University of Agriculture, Beijing 102206, China
| | - Linshu Jiang
- College of Animal Science and Technology, Beijing University of Agriculture, Beijing 102206, China
| | - Zhenlong Wu
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing 100193, China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Ming Liu
- College of Animal Science and Technology, Beijing University of Agriculture, Beijing 102206, China
| |
Collapse
|
107
|
Kim DY, Lee TS, Jung DH, Song EJ, Jang AR, Park JY, Ahn JH, Seo IS, Song SJ, Kim YJ, Lee YJ, Lee YJ, Park JH. Oral Administration of Lactobacillus sakei CVL-001 Improves Recovery from Dextran Sulfate Sodium-Induced Colitis in Mice by Microbiota Modulation. Microorganisms 2023; 11:1359. [PMID: 37317332 DOI: 10.3390/microorganisms11051359] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/15/2023] [Accepted: 05/18/2023] [Indexed: 06/16/2023] Open
Abstract
Inflammatory bowel disease (IBD) is an intestinal chronic inflammatory disease, and its incidence is steadily increasing. IBD is closely related to the intestinal microbiota, and probiotics are known to be a potential therapeutic agent for IBD. In our study, we evaluated the protective effect of Lactobacillus sakei CVL-001, isolated from Baechu kimchi, on dextran sulfated sodium (DSS)-induced colitis in mice. The oral administration of L. sakei CVL-001 according to the experimental schedule alleviated weight loss and disease activity in the mice with colitis. Furthermore, the length and histopathology of the colon improved. The expression of tumor necrosis factor (TNF)-α and interleukin (IL)-1β genes decreased in the colons of mice that were administered L. sakei CVL-001, whereas that of IL-10 increased. The expressions of genes coding for E-cadherin, claudin3, occludin, and mucin were also restored. In co-housed conditions, L. sakei CVL-001 administration did not improve disease activity, colon length, and histopathology. Microbiota analysis revealed that L. sakei CVL-001 administration increased the abundance of microbiota and altered Firmicutes/Bacteroidetes ratio, and decreased Proteobacteria. In conclusion, L. sakei CVL-001 administration protects mice from DSS-induced colitis by regulating immune response and intestinal integrity via gut microbiota modulation.
Collapse
Affiliation(s)
- Dong-Yeon Kim
- Laboratory Animal Medicine, Animal Medical Institute, College of Veterinary Medicine, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Republic of Korea
| | - Tae-Sung Lee
- Laboratory Animal Medicine, Animal Medical Institute, College of Veterinary Medicine, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Republic of Korea
| | - Do-Hyeon Jung
- Laboratory Animal Medicine, Animal Medical Institute, College of Veterinary Medicine, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Republic of Korea
| | - Eun-Jung Song
- Nodcure, Inc., 77 Yongbong-ro, Buk-gu, Gwangju 61186, Republic of Korea
| | - Ah-Ra Jang
- Nodcure, Inc., 77 Yongbong-ro, Buk-gu, Gwangju 61186, Republic of Korea
| | - Ji-Yeon Park
- Laboratory Animal Medicine, Animal Medical Institute, College of Veterinary Medicine, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Republic of Korea
| | - Jae-Hun Ahn
- Laboratory Animal Medicine, Animal Medical Institute, College of Veterinary Medicine, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Republic of Korea
| | - In-Su Seo
- Laboratory Animal Medicine, Animal Medical Institute, College of Veterinary Medicine, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Republic of Korea
| | - Seung-Ju Song
- Laboratory Animal Medicine, Animal Medical Institute, College of Veterinary Medicine, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Republic of Korea
| | - Yeong-Jun Kim
- Laboratory Animal Medicine, Animal Medical Institute, College of Veterinary Medicine, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Republic of Korea
| | - Yun-Ji Lee
- Laboratory Animal Medicine, Animal Medical Institute, College of Veterinary Medicine, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Republic of Korea
| | - Yeon-Ji Lee
- Laboratory Animal Medicine, Animal Medical Institute, College of Veterinary Medicine, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Republic of Korea
| | - Jong-Hwan Park
- Laboratory Animal Medicine, Animal Medical Institute, College of Veterinary Medicine, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Republic of Korea
- Nodcure, Inc., 77 Yongbong-ro, Buk-gu, Gwangju 61186, Republic of Korea
| |
Collapse
|
108
|
Mu C, Zhao Q, Zhao Q, Yang L, Pang X, Liu T, Li X, Wang B, Fung SY, Cao H. Multi-omics in Crohn's disease: New insights from inside. Comput Struct Biotechnol J 2023; 21:3054-3072. [PMID: 37273853 PMCID: PMC10238466 DOI: 10.1016/j.csbj.2023.05.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 05/10/2023] [Accepted: 05/11/2023] [Indexed: 06/06/2023] Open
Abstract
Crohn's disease (CD) is an inflammatory bowel disease (IBD) with complex clinical manifestations such as chronic diarrhea, weight loss and hematochezia. Despite the increasing incidence worldwide, cure of CD remains extremely difficult. The rapid development of high-throughput sequencing technology with integrated-omics analyses in recent years has provided a new means for exploring the pathogenesis, mining the biomarkers and designing targeted personalized therapeutics of CD. Host genomics and epigenomics unveil heredity-related mechanisms of susceptible individuals, while microbiome and metabolomics map host-microbe interactions in CD patients. Proteomics shows great potential in searching for promising biomarkers. Nonetheless, single omics technology cannot holistically connect the mechanisms with heterogeneity of pathological behavior in CD. The rise of multi-omics analysis integrates genetic/epigenetic profiles with protein/microbial metabolite functionality, providing new hope for comprehensive and in-depth exploration of CD. Herein, we emphasized the different omics features and applications of CD and discussed the current research and limitations of multi-omics in CD. This review will update and deepen our understanding of CD from integration of broad omics spectra and will provide new evidence for targeted individualized therapeutics.
Collapse
Affiliation(s)
- Chenlu Mu
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Qianjing Zhao
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Qing Zhao
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Lijiao Yang
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Xiaoqi Pang
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Tianyu Liu
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Xiaomeng Li
- Department of Immunology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Science, Tianjin Medical University, Tianjin, China
| | - Bangmao Wang
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Shan-Yu Fung
- Department of Immunology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Science, Tianjin Medical University, Tianjin, China
| | - Hailong Cao
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| |
Collapse
|
109
|
Chen R, Chen Q, Zheng J, Zeng Z, Chen M, Li L, Zhang S. Serum amyloid protein A in inflammatory bowel disease: from bench to bedside. Cell Death Discov 2023; 9:154. [PMID: 37164984 PMCID: PMC10172326 DOI: 10.1038/s41420-023-01455-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 04/18/2023] [Accepted: 04/27/2023] [Indexed: 05/12/2023] Open
Abstract
Inflammatory bowel diseases (IBD) is featured by gastrointestinal inflammation and a disease course with alternating recurrence and remission. The global burden caused by IBD has significantly boosted in recent years, necessitating treatment optimization. Serum amyloid A (SAA) is a class of 104 amino acid conservative acute-phase proteins, which is essential in immune-mediated inflammatory processes, like IBD. The SAA monomeric structure is composed of four α-helical regions and a C-terminal amorphous tail. Its disordered structure enables multiple bindings to different ligands and permits multiple functions. It has been proven that SAA has dual roles in the inflammatory process. SAA stimulates the pro-inflammatory cytokine expression and promotes the pathogenic differentiation of TH17 cells. In addition, SAA can remove toxic lipids produced during inflammatory responses and membrane debris from dead cells, redirect HDL, and recycle cholesterol for tissue repair. In IBD, SAA acts on gut epithelium barriers, induces T-cell differentiation, and promotes phagocytosis of Gram-negative bacteria. Owing to the tight connection between SAA and IBD, several clinical studies have taken SAA for a biomarker for diagnosis, assessing disease activity, and predicting prognosis in IBD. Furthermore, 5-MER peptide, a drug specifically targeting SAA, has shown anti-inflammatory effects in some SAA-dependent animal models, providing novel insights into the therapeutic targets of IBD.
Collapse
Affiliation(s)
- Rirong Chen
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Qia Chen
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Jieqi Zheng
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Zhirong Zeng
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Minhu Chen
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Li Li
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
| | - Shenghong Zhang
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
110
|
Sha S, Zeng H, Gao H, Shi H, Quan X, Chen F, Liu M, Xu B, Liu X. Adherent-invasive Escherichia coli LF82 aggravated intestinal inflammation in colitis mice by affecting the gut microbiota and Th17/Treg cell differentiation balance. Arch Microbiol 2023; 205:218. [PMID: 37145326 DOI: 10.1007/s00203-023-03570-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/17/2023] [Accepted: 04/28/2023] [Indexed: 05/06/2023]
Abstract
The imbalance of Th17 and Treg cell differentiation, intestinal flora imbalance, and intestinal mucosal barrier damage may be important links in the occurrence and development of inflammatory bowel disease (IBD) since Th17 and Treg differentiation are affected by the intestinal flora. This study aimed to explore the effect of Escherichia coli (E. coli) LF82 on the differentiation of Th17 and Treg cells and the role of the intestinal flora in mouse colitis. The effects of E. coli LF82 infection on intestinal inflammation were evaluated by analyzing the disease activity index, histology, myeloperoxidase activity, FITC-D fluorescence value, and claudin-1 and ZO-1 expression. The effects of E. coli LF82 on the Th17/Treg balance and intestinal flora were analyzed by flow cytometry and 16S rDNA sequencing. Inflammatory markers, changes in the intestinal flora, and Th17/Treg cells were then detected after transplanting fecal bacteria from normal mice into colitis mice infected by E. coli LF82. We found that E. coli LF82 infection can aggravate the intestinal inflammation of mice colitis, destroy their intestinal mucosal barrier, increase intestinal mucosal permeability, and aggravate the imbalance of Th17/Treg differentiation and the disorder of intestinal flora. After improving the intestinal flora imbalance by fecal bacteria transplantation, intestinal inflammation and intestinal mucosal barrier damage were reduced, and the differentiation balance of Th17 and Treg cells was restored. This study showed that E. coli LF82 infection aggravates intestinal inflammation and intestinal mucosal barrier damage in colitis by affecting the intestinal flora composition and indirectly regulating the Th17 and Treg cell differentiation balance.
Collapse
Affiliation(s)
- Sumei Sha
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, Shannxi Provincial Key Laboratory of Gastrointestinal Motility Disorders, Clinical Research Center of Gastrointestinal Diseases, Xi'an, Shaanxi Province, 710004, People's Republic of China
| | - Hong Zeng
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, Shannxi Provincial Key Laboratory of Gastrointestinal Motility Disorders, Clinical Research Center of Gastrointestinal Diseases, Xi'an, Shaanxi Province, 710004, People's Republic of China
- Department of Gastroenterology, Xi'an People's Hospital (Xi'an Fourth Hospital), Xi'an, Shaanxi Province, 710000, People's Republic of China
| | - Huijun Gao
- Department of Gastroenterology, No. 988 Hospital of Joint Logistic Support Force, Jiaozuo, Henan Province, 454000, People's Republic of China
| | - Haitao Shi
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, Shannxi Provincial Key Laboratory of Gastrointestinal Motility Disorders, Clinical Research Center of Gastrointestinal Diseases, Xi'an, Shaanxi Province, 710004, People's Republic of China
| | - Xiaojing Quan
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, Shannxi Provincial Key Laboratory of Gastrointestinal Motility Disorders, Clinical Research Center of Gastrointestinal Diseases, Xi'an, Shaanxi Province, 710004, People's Republic of China
| | - Fenrong Chen
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, Shannxi Provincial Key Laboratory of Gastrointestinal Motility Disorders, Clinical Research Center of Gastrointestinal Diseases, Xi'an, Shaanxi Province, 710004, People's Republic of China
| | - Meng Liu
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, Shannxi Provincial Key Laboratory of Gastrointestinal Motility Disorders, Clinical Research Center of Gastrointestinal Diseases, Xi'an, Shaanxi Province, 710004, People's Republic of China
| | - Bin Xu
- Department of General Surgery, The Chenggong Hospital Affiliated to Xiamen University (Central Hospital of the 73th Chinese People's Liberation Army), Xiamen, Fujian Province, 361003, People's Republic of China.
| | - Xin Liu
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, Shannxi Provincial Key Laboratory of Gastrointestinal Motility Disorders, Clinical Research Center of Gastrointestinal Diseases, Xi'an, Shaanxi Province, 710004, People's Republic of China.
| |
Collapse
|
111
|
Chen X, Mendes BG, Alves BS, Duan Y. Phage therapy in gut microbiome. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 201:93-118. [PMID: 37770177 DOI: 10.1016/bs.pmbts.2023.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Phage therapy, the use of bacteriophage viruses for bacterial infection treatment, has been around for almost a century, but with the increase in antibiotic use, its importance has declined rapidly. There has been renewed interest in revisiting this practice due to the general decline in the effectiveness of antibiotics, combined with improved understanding of human microbiota and advances in sequencing technologies. Phage therapy has been proposed as a clinical alternative to restore the gut microbiota in the absence of an effective treatment. That is due to its immunomodulatory and bactericidal effects against its target bacteria. In the gastrointestinal diseases field, phage therapy has been studied mainly as a promising tool in infectious diseases treatment, such as cholera and diarrhea. However, many studies have been conducted in non-communicable diseases, such as the targeting of adherent invasive Escherichia coli in Crohn's disease, the treatment of Clostridioides difficile in ulcerative colitis, the eradication of Fusobacterium nucleatum in colorectal cancer, the targeting of alcohol-producing Klebsiella pneumoniae in non-alcoholic fatty liver disease, or Enterococcus faecalis in alcohol-associated hepatitis. This review will summarize the changes in the gut microbiota and the phageome in association with some gastrointestinal and liver diseases and highlight the recent scientific advances in phage therapy as a therapeutic tool for their treatment.
Collapse
Affiliation(s)
- Xingyao Chen
- Department of Infectious Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China; The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Beatriz G Mendes
- Department of Clinical Analysis, Health Sciences Center, Federal University of Santa Catarina, Campus Universitário Trindade, Florianópolis, Santa Catarina, Brazil
| | - Bruno Secchi Alves
- Department of Clinical Analysis, Health Sciences Center, Federal University of Santa Catarina, Campus Universitário Trindade, Florianópolis, Santa Catarina, Brazil
| | - Yi Duan
- Department of Infectious Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China; The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China.
| |
Collapse
|
112
|
Shen S, Chen Y, Zhou J, Zhang H, Xia X, Yang Y, Zhang Y, Noori A, Mousavi MF, Chen M, Xia Y, Zhang W. Microbe‐Mediated Biosynthesis of Multidimensional Carbon‐Based Materials for Energy Storage Applications. ADVANCED ENERGY MATERIALS 2023; 13. [DOI: 10.1002/aenm.202204259] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Indexed: 01/06/2025]
Abstract
AbstractBiosynthesis methods are considered to be a promising technology for engineering new carbon‐based materials or redesigning the existing ones for specific purposes with the aid of synthetic biology. Lots of biosynthetic processes including metabolism, fermentation, biological mineralization, and gene editing have been adopted to prepare novel carbon‐based materials with exceptional properties that cannot be realized by traditional chemical methods, because microbes evolved to possess special abilities to modulate components/structure of materials. In this review, the recent development on carbon‐based materials prepared via different biosynthesis methods and various microbe factories (such as bacteria, yeasts, fungus, viruses, proteins) are systematically reviewed. The types of biotechniques and the corresponding mechanisms for the synthesis of carbon‐based materials are outlined. This review also focuses on the structural design and compositional engineering of carbon‐based nanostructures (e.g., metals, semiconductors, metal oxides, metal sulfides, phosphates, Mxenes) derived from biotechnology and their applications in electrochemical energy storage devices. Moreover, the relationship of the architecture–composition–electrochemical behavior and performance enhancement mechanism is also deeply discussed and analyzed. Finally, the development perspectives and challenges on the biosynthetic carbons are proposed and may pave a new avenue for rational design of advanced materials for the low‐carbon economy.
Collapse
Affiliation(s)
- Shenghui Shen
- School of Materials Science and Engineering Zhejiang Sci‐Tech University Hangzhou 310018 China
| | - Yanbin Chen
- School of Materials Science and Engineering Zhejiang Sci‐Tech University Hangzhou 310018 China
| | - Jiancang Zhou
- Department of Critical Care Medicine Sir Run Run Shaw Hospital Zhejiang University School of Medicine Hangzhou 310016 China
| | - Haomiao Zhang
- Department of Critical Care Medicine Sir Run Run Shaw Hospital Zhejiang University School of Medicine Hangzhou 310016 China
- State Key Laboratory of Silicon Materials Key Laboratory of Advanced Materials and Applications for Batteries of Zhejiang Province School of Materials Science and Engineering Zhejiang University Hangzhou 310027 China
| | - Xinhui Xia
- Department of Critical Care Medicine Sir Run Run Shaw Hospital Zhejiang University School of Medicine Hangzhou 310016 China
- State Key Laboratory of Silicon Materials Key Laboratory of Advanced Materials and Applications for Batteries of Zhejiang Province School of Materials Science and Engineering Zhejiang University Hangzhou 310027 China
- College of Materials Science and Engineering Zhejiang University of Technology Hangzhou 310014 China
| | - Yefeng Yang
- School of Materials Science and Engineering Zhejiang Sci‐Tech University Hangzhou 310018 China
| | - Yongqi Zhang
- Institute of Fundamental and Frontier Science University of Electronic Science and Technology of China Chengdu 611371 China
| | - Abolhassan Noori
- Department of Chemistry Faculty of Basic Sciences Tarbiat Modares University Tehran 14117‐13116 Iran
| | - Mir F. Mousavi
- Department of Chemistry Faculty of Basic Sciences Tarbiat Modares University Tehran 14117‐13116 Iran
| | - Minghua Chen
- Key Laboratory of Engineering Dielectric and Applications (Ministry of Education) School of Electrical and Electronic Engineering Harbin University of Science and Technology Harbin 150080 P. R. China
| | - Yang Xia
- College of Materials Science and Engineering Zhejiang University of Technology Hangzhou 310014 China
| | - Wenkui Zhang
- College of Materials Science and Engineering Zhejiang University of Technology Hangzhou 310014 China
| |
Collapse
|
113
|
Oliveira ECSD, Quaglio AEV, Magro DO, Di Stasi LC, Sassaki LY. Intestinal Microbiota and miRNA in IBD: A Narrative Review about Discoveries and Perspectives for the Future. Int J Mol Sci 2023; 24:ijms24087176. [PMID: 37108339 PMCID: PMC10138604 DOI: 10.3390/ijms24087176] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/04/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
Inflammatory bowel disease (IBD) includes Crohn's disease (CD) and ulcerative colitis (UC) and comprises a chronic gastrointestinal tract disorder characterized by hyperactive and dysregulated immune responses to environmental factors, including gut microbiota and dietary components. An imbalance of the intestinal microbiota may contribute to the development and/or worsening of the inflammatory process. MicroRNAs (miRNAs) have been associated with various physiological processes, such as cell development and proliferation, apoptosis, and cancer. In addition, they play an important role in inflammatory processes, acting in the regulation of pro- and anti-inflammatory pathways. Differences in the profiles of miRNAs may represent a useful tool in the diagnosis of UC and CD and as a prognostic marker in both diseases. The relationship between miRNAs and the intestinal microbiota is not completely elucidated, but recently this topic has gained prominence and has become the target of several studies that demonstrate the role of miRNAs in the modulation of the intestinal microbiota and induction of dysbiosis; the microbiota, in turn, can regulate the expression of miRNAs and, consequently, alter the intestinal homeostasis. Therefore, this review aims to describe the interaction between the intestinal microbiota and miRNAs in IBD, recent discoveries, and perspectives for the future.
Collapse
Affiliation(s)
- Ellen Cristina Souza de Oliveira
- Department of Internal Medicine, Medical School, Sao Paulo State University (UNESP), Campus Botucatu, Sao Paulo CEP 18618-970, Brazil
| | - Ana Elisa Valencise Quaglio
- Laboratory of Phytomedicines, Pharmacology and Biotechnology (PhytoPharmaTec), Department of Biophysics and Pharmacology, Institute of Biosciences, Sao Paulo State University (UNESP), Campus Botucatu, Sao Paulo CEP 18618-689, Brazil
| | - Daniéla Oliveira Magro
- Department of Surgery, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Campinas, Sao Paulo CEP 13083-970, Brazil
| | - Luiz Claudio Di Stasi
- Laboratory of Phytomedicines, Pharmacology and Biotechnology (PhytoPharmaTec), Department of Biophysics and Pharmacology, Institute of Biosciences, Sao Paulo State University (UNESP), Campus Botucatu, Sao Paulo CEP 18618-689, Brazil
| | - Ligia Yukie Sassaki
- Department of Internal Medicine, Medical School, Sao Paulo State University (UNESP), Campus Botucatu, Sao Paulo CEP 18618-970, Brazil
| |
Collapse
|
114
|
Szydlowska M, Lasky G, Oldham S, Rivera C, Ford M, Sellman BR, Rhodes CJ, Cohen TS. Restoring polyamine levels by supplementation of spermidine modulates hepatic immune landscape in murine model of NASH. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166697. [PMID: 37054999 DOI: 10.1016/j.bbadis.2023.166697] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 03/01/2023] [Accepted: 03/15/2023] [Indexed: 04/15/2023]
Abstract
AIMS To determine if changes in polyamines metabolism occur during non-alcoholic steatohepatitis (NASH) in human patients and mice, as well as to assess systemic and liver-specific effects of spermidine administration into mice suffering from advanced NASH. MATERIALS AND METHODS Human fecal samples were collected from 50 healthy and 50 NASH patients. For the preclinical studies C57Bl6/N male mice fed GAN or NIH-31 diet for 6 months were ordered from Taconic and liver biopsy was performed. Based on severity of liver fibrosis, body composition and body weight, the mice from both dietary groups were randomized into another two groups: half receiving 3 mM spermidine in drinking water, half normal water for subsequent 12 weeks. Body weight was measured weekly and glucose tolerance and body composition were assessed at the end. Blood and organs were collected during necropsy, and intrahepatic immune cells were isolated for flow cytometry analysis. RESULTS Metabolomic analysis of human and murine feces confirmed that levels of polyamines decreased along NASH progression. Administration of exogenous spermidine to the mice from both dietary groups did not affect body weight, body composition or adiposity. Moreover, incidence of macroscopic hepatic lesions was higher in NASH mice receiving spermidine. On the other hand, spermidine normalized numbers of Kupffer cells in the livers of mice suffering from NASH, although these beneficial effects did not translate into improved liver steatosis or fibrosis severity. CONCLUSION Levels of polyamines decrease during NASH in mice and human patients but spermidine administration does not improve advanced NASH.
Collapse
Affiliation(s)
- Marta Szydlowska
- Microbiome Discovery, Vaccines and Immune Therapies, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, USA.
| | - Ginger Lasky
- Microbiome Discovery, Vaccines and Immune Therapies, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, USA
| | - Stephanie Oldham
- Research and Early Development, Cardiovascular Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, USA
| | - Cristian Rivera
- Research and Early Development, Cardiovascular Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, USA
| | - Michael Ford
- Animal Sciences & Technologies, AstraZeneca, Gaithersburg, MD, USA
| | - Bret R Sellman
- Microbiome Discovery, Vaccines and Immune Therapies, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, USA
| | - Christopher J Rhodes
- Research and Early Development, Cardiovascular Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, USA
| | - Taylor S Cohen
- Microbiome Discovery, Vaccines and Immune Therapies, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, USA.
| |
Collapse
|
115
|
Gong J, Yu J, Yin S, Ke J, Wu J, Liu C, Luo Z, Cheng WM, Xie Y, Chen Y, He Z, Lan P. Mesenteric Adipose Tissue-Derived Klebsiella variicola Disrupts Intestinal Barrier and Promotes Colitis by Type VI Secretion System. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2205272. [PMID: 36802200 PMCID: PMC10131791 DOI: 10.1002/advs.202205272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 01/17/2023] [Indexed: 06/18/2023]
Abstract
Mesenteric adipose tissue (MAT) in Crohn's disease (CD) is associated with transmural inflammation. Extended mesenteric excision can reduce surgical recurrence and improve long-term outcomes, indicating that MAT plays an important role in the pathogenesis of CD. Bacterial translocation has been reported to occur in the MAT of patients with CD (CD-MAT), but the mechanisms by which translocated bacteria lead to intestinal colitis remain unclear. Here it is shown that members of Enterobacteriaceae are highly enriched in CD-MAT compared with non-CD controls. Viable Klebsiella variicola in Enterobacteriaceae is isolated exclusively in CD-MAT and can induce a pro-inflammatory response in vitro and exacerbates colitis both in dextran sulfate sodium (DSS)-induced colitis mice model and IL-10-/- spontaneous colitis mice model. Mechanistically, active type VI secretion system (T6SS) is identified in the genome of K. variicola, which can impair the intestinal barrier by inhibiting the zonula occludens (ZO-1) expression. Dysfunction of T6SS by CRISPR interference system alleviates the inhibitory effect of K. variicola on ZO-1 expression and attenuated colitis in mice. Overall, these findings demonstrate that a novel colitis-promoting bacteria exist in the mesenteric adipose tissue of CD, opening a new therapeutic avenue for colitis management.
Collapse
Affiliation(s)
- Junli Gong
- Department of Colorectal SurgeryThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdong510655P. R. China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor DiseasesThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdong510655P. R. China
- Guangdong Institute of GastroenterologyGuangzhouGuangdong510655P. R. China
| | - Jing Yu
- Department of Colorectal SurgeryThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdong510655P. R. China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor DiseasesThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdong510655P. R. China
| | - Shengmei Yin
- School of MedicineSun Yat‐sen UniversityGuangzhouGuangdong510275P. R. China
| | - Jia Ke
- Department of Colorectal SurgeryThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdong510655P. R. China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor DiseasesThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdong510655P. R. China
| | - Jinjie Wu
- Department of Colorectal SurgeryThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdong510655P. R. China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor DiseasesThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdong510655P. R. China
| | - Chen Liu
- Department of Colorectal SurgeryThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdong510655P. R. China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor DiseasesThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdong510655P. R. China
- Guangdong Institute of GastroenterologyGuangzhouGuangdong510655P. R. China
| | - Zhanhao Luo
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor DiseasesThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdong510655P. R. China
- Guangdong Institute of GastroenterologyGuangzhouGuangdong510655P. R. China
| | - Wai Ming Cheng
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor DiseasesThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdong510655P. R. China
- Guangdong Institute of GastroenterologyGuangzhouGuangdong510655P. R. China
| | - Yaozu Xie
- Department of Colorectal SurgeryThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdong510655P. R. China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor DiseasesThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdong510655P. R. China
| | - Yuan Chen
- School of MedicineSun Yat‐sen UniversityGuangzhouGuangdong510275P. R. China
| | - Zhen He
- Department of Colorectal SurgeryThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdong510655P. R. China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor DiseasesThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdong510655P. R. China
| | - Ping Lan
- Department of Colorectal SurgeryThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdong510655P. R. China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor DiseasesThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdong510655P. R. China
- Guangdong Institute of GastroenterologyGuangzhouGuangdong510655P. R. China
| |
Collapse
|
116
|
Chang SH, Choi Y. Gut dysbiosis in autoimmune diseases: Association with mortality. Front Cell Infect Microbiol 2023; 13:1157918. [PMID: 37065187 PMCID: PMC10102475 DOI: 10.3389/fcimb.2023.1157918] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 03/15/2023] [Indexed: 04/03/2023] Open
Abstract
To better understand the impact of gut dysbiosis on four autoimmune diseases [Sjögren’s syndrome (SS), systemic lupus erythematosus (SLE), rheumatoid arthritis (RA), and multiple sclerosis (MS)], this review investigated the altered gut bacteria in each disease and the shared ones among the four diseases. The enriched gut bacteria shared by three of the four autoimmune diseases were Streptococcus, Prevotella, and Eggerthella, which are associated with autoantibody production or activation of Th17 cells in immune-related diseases. On the other hand, Faecalibacterium comprises depleted gut bacteria shared by patients with SLE, MS, and SS, which is associated with various anti-inflammatory activities. The indexes of gut dysbiosis, defined as the number of altered gut bacterial taxa divided by the number of studies in SLE, MS, RA, and SS, were 1.7, 1.8, 0.7, and 1.3, respectively. Interestingly, these values presented a positive correlation trend with the standardized mortality rates —2.66, 2.89, 1.54, and 1.41, respectively. In addition, shared altered gut bacteria among the autoimmune diseases may correlate with the prevalence of polyautoimmunity in patients with SLE, SS, RA, and MS, that is, 41 percent, 32.6 percent, 14 percent, and 1–16.6 percent, respectively. Overall, this review suggests that gut dysbiosis in autoimmune diseases may be closely related to the failure of the gut immune system to maintain homeostasis.
Collapse
|
117
|
Peterson CT, Pérez-Santiago J, Iablokov SN, Rodionov DA, Peterson SN. Alteration of Community Metabolism by Prebiotics and Medicinal Herbs. Microorganisms 2023; 11:868. [PMID: 37110291 PMCID: PMC10141170 DOI: 10.3390/microorganisms11040868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/15/2023] [Accepted: 03/22/2023] [Indexed: 03/31/2023] Open
Abstract
Several studies have examined the impact of prebiotics on gut microbiota and associated changes in host physiology. Here, we used the in vitro cultivation of human fecal samples stimulated with a series of chemically related prebiotics and medicinal herbs commonly used in Ayurvedic medicine, followed by 16S rRNA sequencing. We applied a genome-wide metabolic reconstruction of enumerated communities to compare and contrast the structural and functional impact of prebiotics and medicinal herbs. In doings so, we examined the relationships between discrete variations in sugar composition and sugar linkages associated with each prebiotic to drive changes in microbiota composition. The restructuring of microbial communities with glycan substrates alters community metabolism and its potential impact on host physiology. We analyzed sugar fermentation pathways and products predicted to be formed and prebiotic-induced changes in vitamin and amino acid biosynthesis and degradation. These results highlight the utility of combining a genome-wide metabolic reconstruction methodology with 16S rRNA sequence-based community profiles to provide insights pertaining to community metabolism. This process also provides a rational means for prioritizing in vivo analysis of prebiotics and medicinal herbs in vivo to test hypotheses related to therapeutic potential in specific diseases of interest.
Collapse
Affiliation(s)
- Christine Tara Peterson
- Center of Excellence for Research and Training in Integrative Health, Department of Family Medicine, School of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Josué Pérez-Santiago
- Division of Cancer Biology, University of Puerto Rico Comprehensive Cancer Center, San Juan, PR 00927, USA
- School of Dental Medicine, Office of Research, University of Puerto Rico Medical Sciences Campus, San Juan, PR 00921, USA
| | | | - Dmitry A. Rodionov
- Bioinformatics and Structural Biology Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Scott N. Peterson
- Tumor Microenvironment and Cancer Immunology Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| |
Collapse
|
118
|
Song Y, He Y, Rong L, Wang Z, Ma Y, Zhang N, Wang B. "Platelet-coated bullets" biomimetic nanoparticles to ameliorate experimental colitis by targeting endothelial cells. BIOMATERIALS ADVANCES 2023; 148:213378. [PMID: 36963342 DOI: 10.1016/j.bioadv.2023.213378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/28/2023] [Accepted: 03/06/2023] [Indexed: 03/12/2023]
Abstract
Intestinal vascular impairment is critical to the recovery of inflammatory bowel disease (IBD), and targeting vascular endothelial cells is a promising emerging therapeutic option. Considering the natural homing properties of platelets to activated vascular endothelium, platelet membrane-mimetic nanoparticles are expected to achieve precise treatment of IBD. Patchouli alcohol (PA) has proven efficacy in experimental colitis, yet its pharmacochemical properties require improvement to enhance efficacy. The rationale for targeting vascular lesions in IBD was analyzed by network pharmacology, and PA-affecting pathways were predicted. PA-encapsulated bio-nanoparticles (PNPs) were constructed to investigate the efficacy of agents on mouse intestinal microvascular endothelial cells (MIMVEC) inflammation model and dextran sulfate sodium (DSS)-induced acute mouse colitis model. PNPs were endocytosed by MIMVEC in vitro and efficiently enriched in inflamed colon. PNPs significantly alleviated the symptoms of experimental colitis and improved neutrophil infiltration. PNPs down-regulated LPS-induced aberrant elevation of il1β, tnfα and il6 mRNAs and reduced p65 phosphorylation in MIMVEC. Intracellular calcium expression, mitochondrial respiration and reactive oxygen species expression were also downregulated by PNPs. PNPs amplified the potency of PA as a calcium antagonist, restrained intracellular Ca2+ perturbations to prevent endothelial activation, which may block leukocyte recruitment in vivo to improve colitis.
Collapse
Affiliation(s)
- Yijie Song
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Experiment Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yihao He
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Center for Pharmaceutics Research, Shanghai Institute of Materia Medica Chinese Academy of Sciences, Shanghai 201203, China
| | - Lan Rong
- Department of Digestive Diseases, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Zhicheng Wang
- Department of Transfusion Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Yueming Ma
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Ning Zhang
- Experiment Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Bing Wang
- Center for Pharmaceutics Research, Shanghai Institute of Materia Medica Chinese Academy of Sciences, Shanghai 201203, China.
| |
Collapse
|
119
|
Fang X, Kang L, Qiu YF, Li ZS, Bai Y. Yersinia enterocolitica in Crohn’s disease. Front Cell Infect Microbiol 2023; 13:1129996. [PMID: 36968108 PMCID: PMC10031030 DOI: 10.3389/fcimb.2023.1129996] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 02/13/2023] [Indexed: 03/11/2023] Open
Abstract
Increasing attention is being paid to the unique roles gut microbes play in both physiological and pathological processes. Crohn’s disease (CD) is a chronic, relapsing, inflammatory disease of the gastrointestinal tract with unknown etiology. Currently, gastrointestinal infection has been proposed as one initiating factor of CD. Yersinia enterocolitica, a zoonotic pathogen that exists widely in nature, is one of the most common bacteria causing acute infectious gastroenteritis, which displays clinical manifestations similar to CD. However, the specific role of Y. enterocolitica in CD is controversial. In this Review, we discuss the current knowledge on how Y. enterocolitica and derived microbial compounds may link to the pathogenesis of CD. We highlight examples of Y. enterocolitica-targeted interventions in the diagnosis and treatment of CD, and provide perspectives for future basic and translational investigations on this topic.
Collapse
Affiliation(s)
| | | | | | | | - Yu Bai
- *Correspondence: Zhao-Shen Li, ; Yu Bai,
| |
Collapse
|
120
|
Evidence for a Causal Role for Escherichia coli Strains Identified as Adherent-Invasive (AIEC) in Intestinal Inflammation. mSphere 2023; 8:e0047822. [PMID: 36883813 PMCID: PMC10117065 DOI: 10.1128/msphere.00478-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023] Open
Abstract
Enrichment of adherent-invasive Escherichia coli (AIEC) has been consistently detected in subsets of inflammatory bowel disease (IBD) patients. Although some AIEC strains cause colitis in animal models, these studies did not systematically compare AIEC with non-AIEC strains, and causal links between AIEC and disease are still disputed. Specifically, it remains unclear whether AIEC shows enhanced pathogenicity compared to that of commensal E. coli found in the same ecological microhabitat and if the in vitro phenotypes used to classify strains as AIEC are pathologically relevant. Here, we utilized in vitro phenotyping and a murine model of intestinal inflammation to systematically compare strains identified as AIEC with those identified as non-AIEC and relate AIEC phenotypes to pathogenicity. Strains identified as AIEC caused, on average, more severe intestinal inflammation. Intracellular survival/replication phenotypes routinely used to classify AIEC positively correlated with disease, while adherence to epithelial cells and tumor necrosis factor alpha production by macrophages did not. This knowledge was then applied to design and test a strategy to prevent inflammation by selecting E. coli strains that adhered to epithelial cells but poorly survived/replicated intracellularly. Two E. coli strains that ameliorated AIEC-mediated disease were subsequently identified. In summary, our results show a relationship between intracellular survival/replication in E. coli and pathology in murine colitis, suggesting that strains possessing these phenotypes might not only become enriched in human IBD but also contribute to disease. We provide new evidence that specific AIEC phenotypes are pathologically relevant and proof of principle that such mechanistic information can be therapeutically exploited to alleviate intestinal inflammation. IMPORTANCE Inflammatory bowel disease (IBD) is associated with an altered gut microbiota composition, including expansion of Proteobacteria. Many species in this phylum are thought to contribute to disease under certain conditions, including adherent-invasive Escherichia coli (AIEC) strains, which are enriched in some patients. However, whether this bloom contributes to disease or is just a response to IBD-associated physiological changes is unknown. Although assigning causality is challenging, appropriate animal models can test the hypothesis that AIEC strains have an enhanced ability to cause colitis in comparison to other gut commensal E. coli strains and to identify bacterial traits contributing to virulence. We observed that AIEC strains are generally more pathogenic than commensal E. coli and that bacterial intracellular survival/replication phenotypes contributed to disease. We also found that E. coli strains lacking primary virulence traits can prevent inflammation. Our findings provide critical information on E. coli pathogenicity that may inform development of IBD diagnostic tools and therapies.
Collapse
|
121
|
Abstract
Mucosal tissues are constantly exposed to the outside environment. They receive signals from the commensal microbiome and tissue-specific triggers including alimentary and airborne elements and are tasked to maintain balance in the absence of inflammation and infection. Here, we present neutrophils as sentinel cells in mucosal immunity. We discuss the roles of neutrophils in mucosal homeostasis and overview clinical susceptibilities in patients with neutrophil defects. Finally, we present concepts related to specification of neutrophil responses within specific mucosal tissue microenvironments.
Collapse
Affiliation(s)
- Lakmali M. Silva
- Oral Immunity and Infection Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892
- Proteases and Tissue Remodeling Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - Tae Sung Kim
- Oral Immunity and Infection Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892
| | - Niki M. Moutsopoulos
- Oral Immunity and Infection Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
122
|
Cao Z, Qi M, Shang P, Zhang H, Nawaz S, Ghaffar A, Wu Q, Dong H. Characterization, estimation of virulence and drug resistance of diarrheagenic escherichia coli (DEC) isolated from Tibetan pigs. Microb Pathog 2023; 177:106046. [PMID: 36842515 DOI: 10.1016/j.micpath.2023.106046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 02/21/2023] [Accepted: 02/22/2023] [Indexed: 02/28/2023]
Abstract
In this study, we collected feces of Tibetan piglets from Nyingchi area for isolation, culture, identification, virulence gene analysis and drug resistance analysis of Escherichia Coli. The results demonstrated a 41.3% isolation rate of Diarrheagenic Escherichia Coli from Tibetan pigs with the main phylogenetic groups: group A (68.6%) and group B2 (15.7%). Typical E.coli accounted for 76.5%. The highest detection rates of porcine virulence genes were E.coli heat-resistant enterotoxin STb (58.82%) and F107 fimbrial subunit (23.53%). The highest detection rates of virulence genes from Tibetan pigs were fimC (80.39%) and ompA (76.47%). A drug sensitivity test showed that Diarrheagenic Escherichia Coli from Tibetan pigs had high drug resistance rates to mezlocillin, doxycycline and gentamicin. This study comprehensively analyzed the species composition, virulence and drug resistance of Diarrheagenic Escherichia Coli from Tibetan pigs, which provided a clearer and more targeted idea for the prevention and treatment of yellow and white dysentery in Tibetan pigs in the future.
Collapse
Affiliation(s)
- Zhipeng Cao
- Animal Science College, Tibet Agriculture & Animal Husbandry University, Linzhi, 860000, China
| | - Ming Qi
- Animal Science College, Tibet Agriculture & Animal Husbandry University, Linzhi, 860000, China
| | - Peng Shang
- Animal Science College, Tibet Agriculture & Animal Husbandry University, Linzhi, 860000, China
| | - Hui Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Shah Nawaz
- Department of Anatomy, Faculty of Veterinary Science, University of Agriculture, Faisalabad, 38000, Pakistan
| | - Abdul Ghaffar
- Department of Zoology, Faculty of Chemical & Biological Sciences, The Islamia University of Bahawalpur, 63100, Pakistan
| | - Qingxia Wu
- Animal Science College, Tibet Agriculture & Animal Husbandry University, Linzhi, 860000, China
| | - Hailong Dong
- Animal Science College, Tibet Agriculture & Animal Husbandry University, Linzhi, 860000, China.
| |
Collapse
|
123
|
Arroyo-Mendoza M, Proctor A, Correa-Medina A, Brand MW, Rosas V, Wannemuehler MJ, Phillips GJ, Hinton DM. The E. coli pathobiont LF82 encodes a unique variant of σ 70 that results in specific gene expression changes and altered phenotypes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.08.523653. [PMID: 36798310 PMCID: PMC9934711 DOI: 10.1101/2023.02.08.523653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
LF82, an adherent invasive Escherichia coli pathobiont, is associated with ileal Crohn's disease, an inflammatory bowel disease of unknown etiology. Although LF82 contains no virulence genes, it carries several genetic differences, including single nucleotide polymorphisms (SNPs), that distinguish it from nonpathogenic E. coli. We have identified and investigated an extremely rare SNP that is within the highly conserved rpoD gene, encoding σ70, the primary sigma factor for RNA polymerase. We demonstrate that this single residue change (D445V) results in specific transcriptome and phenotypic changes that are consistent with multiple phenotypes observed in LF82, including increased antibiotic resistance and biofilm formation, modulation of motility, and increased capacity for methionine biosynthesis. Our work demonstrates that a single residue change within the bacterial primary sigma factor can lead to multiple alterations in gene expression and phenotypic changes, suggesting an underrecognized mechanism by which pathobionts and other strain variants with new phenotypes can emerge.
Collapse
Affiliation(s)
- Melissa Arroyo-Mendoza
- Gene Expression and Regulation Section, Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 8 Center Dr., Bethesda, MD, United States, 20892
- Department of Veterinary Microbiology and Preventative Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, United States, 50011
| | - Alexandra Proctor
- Department of Veterinary Microbiology and Preventative Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, United States, 50011
| | - Abraham Correa-Medina
- Gene Expression and Regulation Section, Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 8 Center Dr., Bethesda, MD, United States, 20892
| | - Meghan Wymore Brand
- Department of Veterinary Microbiology and Preventative Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, United States, 50011
| | - Virginia Rosas
- Gene Expression and Regulation Section, Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 8 Center Dr., Bethesda, MD, United States, 20892
| | - Michael J Wannemuehler
- Department of Veterinary Microbiology and Preventative Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, United States, 50011
| | - Gregory J Phillips
- Department of Veterinary Microbiology and Preventative Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, United States, 50011
| | - Deborah M Hinton
- Gene Expression and Regulation Section, Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 8 Center Dr., Bethesda, MD, United States, 20892
| |
Collapse
|
124
|
Nakahara K, Nakane S, Ishii K, Ikeda T, Ando Y. Gut microbiota of Parkinson's disease in an appendectomy cohort: a preliminary study. Sci Rep 2023; 13:2210. [PMID: 36750613 PMCID: PMC9905566 DOI: 10.1038/s41598-023-29219-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 01/31/2023] [Indexed: 02/09/2023] Open
Abstract
In patients with Parkinson's disease (PD), α-synuclein pathology is thought to spread to the brain via the dorsal motor nucleus of the vagus nerve. The link between the gut microbiome and PD has been explored in various studies. The appendix might play an important role in immunity by maintaining the microbiota as a reservoir. In recent times, appendectomy has been linked to a lower risk of PD, possibly owing to the role of the appendix in altering the gut microbiome. We aimed to elucidate whether the gut microbiota affects PD development in the appendectomy cohort. We analyzed the fecal microbial composition in patients with PD and healthy controls with and without a history of appendectomy. The abundance of microbes from the family Enterobacteriaceae was higher in feces samples from patients with Parkinson's disease compared to that in samples collected from healthy controls. Furthermore, there was a significant phylogenetic difference between patients with PD and healthy controls who had undergone appendectomy. There was a significant phylogenetic difference between patients with PD and HCs who had undergone APP. These results suggest the correlation between gut microbiota and PD in patients who have undergone APP.
Collapse
Affiliation(s)
- Keiichi Nakahara
- Department of Neurology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-Ku, Kumamoto, 860-8556, Japan
| | - Shunya Nakane
- Department of Neurology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-Ku, Kumamoto, 860-8556, Japan. .,Department of Neurology, Nippon Medical School Hospital, 1-1-5 Sendagi, Bunkyo-Ku, Tokyo, 113-8603, Japan.
| | - Kazuo Ishii
- Biostatistics Center, Kurume University, 67 Asahi-Machi, Kurume, Fukuoka, 830-0011, Japan
| | - Tokunori Ikeda
- Department of Clinical Investigation, Kumamoto University, 1-1-1 Honjo, Chuo-Ku, Kumamoto, 860-8556, Japan
| | - Yukio Ando
- Department of Neurology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-Ku, Kumamoto, 860-8556, Japan
| |
Collapse
|
125
|
Insightful Improvement in the Design of Potent Uropathogenic E. coli FimH Antagonists. Pharmaceutics 2023; 15:pharmaceutics15020527. [PMID: 36839848 PMCID: PMC9962304 DOI: 10.3390/pharmaceutics15020527] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 01/25/2023] [Accepted: 02/02/2023] [Indexed: 02/09/2023] Open
Abstract
Selective antiadhesion antagonists of Uropathogenic Escherichia coli (UPEC) type-1 Fimbrial adhesin (FimH) are attractive alternatives for antibiotic therapies and prophylaxes against acute or recurrent urinary tract infections (UTIs) caused by UPECs. A rational small library of FimH antagonists based on previously described C-linked allyl α-D-mannopyranoside was synthesized using Heck cross-coupling reaction using a series of iodoaryl derivatives. This work reports two new members of FimH antagonist amongst the above family with sub nanomolar affinity. The resulting hydrophobic aglycones, including constrained alkene and aryl groups, were designed to provide additional favorable binding interactions with the so-called FimH "tyrosine gate". The newly synthesized C-linked glycomimetic antagonists, having a hydrolytically stable anomeric linkage, exhibited improved binding when compared to previously published analogs, as demonstrated by affinity measurement through interactions by FimH lectin. The crystal structure of FimH co-crystallized with one of the nanomolar antagonists revealed the binding mode of this inhibitor into the active site of the tyrosine gate. In addition, selected mannopyranoside constructs neither affected bacterial growth or cell viability nor interfered with antibiotic activity. C-linked mannoside antagonists were effective in decreasing bacterial adhesion to human bladder epithelial cells (HTB-9). Therefore, these molecules constituted additional therapeutic candidates' worth further development in the search for potent anti-adhesive drugs against infections caused by UPEC.
Collapse
|
126
|
Wen C, Pan Y, Gao M, Wang J, Huang K, Tu P. Altered gut microbiome composition in nontreated plaque psoriasis patients. Microb Pathog 2023; 175:105970. [PMID: 36621696 DOI: 10.1016/j.micpath.2023.105970] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 01/02/2023] [Accepted: 01/03/2023] [Indexed: 01/07/2023]
Abstract
Recent studies have demonstrated that dysbiosis of the gut microbiota is associated with psoriasis, but these studies showed some conflicting results. Our study examined differences in microbiome composition associated in people with psoriasis and those without. Comparing individuals with their healthy partners was a second strategy. We explored the fecal microbiota among 32 nontreated plaque psoriasis patients, 15 healthy controls and 17 healthy couples by metagenomic gene sequencing. The relative levels of intestinal microbiota of the psoriasis cohort differed from those in healthy controls and these patients' partners. However, there was no microbial diversity among these three cohorts. On the level of the phylum, Firmicutes and Bacteroidetes' relative abundances were reversed. Escherichia coli was significantly enriched in the psoriasis group compared with the healthy people and the healthy spouses. Gene functional analysis indicated that Ribosome (ko03010) was upregulated, Flagellar assembly (ko02040) and Bacterial chemotaxis (ko02030) were downregulated in the psoriasis cohort compared with the healthy individuals and the healthy spouses. The microbiota in severe psoriasis patients differed from those with milder conditions. These findings strongly support the association between intestinal flora and psoriasis. It is necessary to perform more meaningful experiments to identify whether the differences of gut microbiota are the cause or consequences of psoriasis in future.
Collapse
Affiliation(s)
- Chunmiao Wen
- Department of Dermatology and Venerology, Peking University First Hospital, 8 Xishiku Street, Xicheng District, Beijing, 100034, China
| | - Yuanming Pan
- Cancer Research Center, Beijing Chest Hospital, Capital Medical University & Beijing Tuberculosis and Thoracic Tumor Research Institute, No.9 Beiguan Street, Tongzhou District, Beijing, 101149, China
| | - Ming Gao
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Engineering Medicine, Beihang University, 37 Xueyuan Road, Haidian District, Beijing, 100083, China
| | - Jianlei Wang
- Department of Dermatology and Venerology, Civil Aviation General Hospital, 1 Gaojing A, Chaoyang District, Beijing, 100123, China
| | - Kun Huang
- Department of Gastroenterology, Civil Aviation General Hospital, 1 Gaojing A, Chaoyang District, Beijing, 100123, China
| | - Ping Tu
- Department of Dermatology and Venerology, Peking University First Hospital, 8 Xishiku Street, Xicheng District, Beijing, 100034, China.
| |
Collapse
|
127
|
Pokharel P, Dhakal S, Dozois CM. The Diversity of Escherichia coli Pathotypes and Vaccination Strategies against This Versatile Bacterial Pathogen. Microorganisms 2023; 11:344. [PMID: 36838308 PMCID: PMC9965155 DOI: 10.3390/microorganisms11020344] [Citation(s) in RCA: 68] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 01/24/2023] [Accepted: 01/25/2023] [Indexed: 02/03/2023] Open
Abstract
Escherichia coli (E. coli) is a gram-negative bacillus and resident of the normal intestinal microbiota. However, some E. coli strains can cause diseases in humans, other mammals and birds ranging from intestinal infections, for example, diarrhea and dysentery, to extraintestinal infections, such as urinary tract infections, respiratory tract infections, meningitis, and sepsis. In terms of morbidity and mortality, pathogenic E. coli has a great impact on public health, with an economic cost of several billion dollars annually worldwide. Antibiotics are not usually used as first-line treatment for diarrheal illness caused by E. coli and in the case of bloody diarrhea, antibiotics are avoided due to the increased risk of hemolytic uremic syndrome. On the other hand, extraintestinal infections are treated with various antibiotics depending on the site of infection and susceptibility testing. Several alarming papers concerning the rising antibiotic resistance rates in E. coli strains have been published. The silent pandemic of multidrug-resistant bacteria including pathogenic E. coli that have become more difficult to treat favored prophylactic approaches such as E. coli vaccines. This review provides an overview of the pathogenesis of different pathotypes of E. coli, the virulence factors involved and updates on the major aspects of vaccine development against different E. coli pathotypes.
Collapse
Affiliation(s)
- Pravil Pokharel
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS), 531 Boul des Prairies, Laval, QC H7V 1B7, Canada
- Centre de Recherche en Infectiologie Porcine et Avicole (CRIPA), Faculté de Médecine Vétérinaire, Université de Montréal Saint-Hyacinthe, Saint-Hyacinthe, QC J2S 2M2, Canada
| | - Sabin Dhakal
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS), 531 Boul des Prairies, Laval, QC H7V 1B7, Canada
- Centre de Recherche en Infectiologie Porcine et Avicole (CRIPA), Faculté de Médecine Vétérinaire, Université de Montréal Saint-Hyacinthe, Saint-Hyacinthe, QC J2S 2M2, Canada
| | - Charles M. Dozois
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS), 531 Boul des Prairies, Laval, QC H7V 1B7, Canada
- Centre de Recherche en Infectiologie Porcine et Avicole (CRIPA), Faculté de Médecine Vétérinaire, Université de Montréal Saint-Hyacinthe, Saint-Hyacinthe, QC J2S 2M2, Canada
- Pasteur Network, Laval, QC H7V 1B7, Canada
| |
Collapse
|
128
|
Li X, Zhang M, Zhou G, Xie Z, Wang Y, Han J, Li L, Wu Q, Zhang S. Role of Rho GTPases in inflammatory bowel disease. Cell Death Dis 2023; 9:24. [PMID: 36690621 PMCID: PMC9871048 DOI: 10.1038/s41420-023-01329-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/08/2023] [Accepted: 01/11/2023] [Indexed: 01/24/2023]
Abstract
Rat sarcoma virus homolog (Rho) guanosine triphosphatases (GTPases) function as "molecular switch" in cellular signaling regulation processes and are associated with the pathogenesis of inflammatory bowel disease (IBD). This chronic intestinal tract inflammation primarily encompasses two diseases: Crohn's disease and ulcerative colitis. The pathogenesis of IBD is complex and considered to include four main factors and their interactions: genetics, intestinal microbiota, immune system, and environment. Recently, several novel pathogenic components have been identified. In addition, potential therapies for IBD targeting Rho GTPases have emerged and proven to be clinically effective. This review mainly focuses on Rho GTPases and their possible mechanisms in IBD pathogenesis. The therapeutic possibility of Rho GTPases is also discussed.
Collapse
Affiliation(s)
- Xiaoling Li
- grid.12981.330000 0001 2360 039XDivision of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, PR China
| | - Mudan Zhang
- grid.12981.330000 0001 2360 039XDivision of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, PR China
| | - Gaoshi Zhou
- grid.12981.330000 0001 2360 039XDivision of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, PR China
| | - Zhuo Xie
- grid.12981.330000 0001 2360 039XDivision of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, PR China
| | - Ying Wang
- grid.12981.330000 0001 2360 039XDivision of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, PR China
| | - Jing Han
- grid.12981.330000 0001 2360 039XDivision of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, PR China
| | - Li Li
- grid.12981.330000 0001 2360 039XDivision of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, PR China
| | - Qirui Wu
- grid.12981.330000 0001 2360 039XDivision of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, PR China
| | - Shenghong Zhang
- grid.12981.330000 0001 2360 039XDivision of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, PR China
| |
Collapse
|
129
|
Activity and Crystal Structure of the Adherent-Invasive Escherichia coli Tle3/Tli3 T6SS Effector/Immunity Complex Determined Using an AlphaFold2 Predicted Model. Int J Mol Sci 2023; 24:ijms24021740. [PMID: 36675258 PMCID: PMC9860674 DOI: 10.3390/ijms24021740] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/11/2023] [Accepted: 01/13/2023] [Indexed: 01/19/2023] Open
Abstract
The type VI secretion system (T6SS) delivers enzymatic effectors into target cells to destroy them. Cells of the same strain protect themselves against effectors with immunity proteins that specifically inhibit effectors. Here, we report the identification and characterization of a Tle3 phospholipase effector and its cognate immunity protein Tli3-an outer membrane lipoprotein from adherent-invasive Escherichia coli (AIEC). Enzymatic assays demonstrate that purified Tle3AIEC has a phospholipase A1, and not A2, activity and that its toxicity is neutralized by the cognate immunity protein Tli3AIEC. Tli3AIEC binds Tle3 in a 1:1 stoichiometric ratio. Tle3AIEC, Tli3AIEC and the Tle3AIEC-Tli3AIEC complex were purified and subjected to crystallization. The Tle3AIEC-Tli3AIEC complex structure could not be solved by SeMet phasing, but only by molecular replacement when using an AlphaFold2 prediction model. Tle3AIEC exhibits an α/β-hydrolase fold decorated by two protruding segments, including a N-terminus loop. Tli3AIEC displays a new fold of three stacked β-sheets and a protruding loop that inserts in Tle3AIECcatalytic crevice. We showed, experimentally, that Tle3AIEC interacts with the VgrG AIEC cargo protein and AlphaFold2 prediction of the VgrGAIEC-Tle3AIEC complex reveals a strong interaction between the VgrGAIEC C-terminus adaptor and Tle3AIEC N-terminal loop.
Collapse
|
130
|
Singh R, Rossini V, Stockdale SR, Saiz-Gonzalo G, Hanrahan N, D’ Souza T, Clooney A, Draper LA, Hill C, Nally K, Shanahan F, Andersson-Engels S, Melgar S. An IBD-associated pathobiont synergises with NSAID to promote colitis which is blocked by NLRP3 inflammasome and Caspase-8 inhibitors. Gut Microbes 2023; 15:2163838. [PMID: 36656595 PMCID: PMC9858430 DOI: 10.1080/19490976.2022.2163838] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Conflicting evidence exists on the association between consumption of non-steroidal anti-inflammatory drugs (NSAIDs) and symptomatic worsening of inflammatory bowel disease (IBD). We hypothesized that the heterogeneous prevalence of pathobionts [e.g., adherent-invasive Escherichia coli (AIEC)], might explain this inconsistent NSAIDs/IBD correlation. Using IL10-/- mice, we found that NSAID aggravated colitis in AIEC-colonized animals. This was accompanied by activation of the NLRP3 inflammasome, Caspase-8, apoptosis, and pyroptosis, features not seen in mice exposed to AIEC or NSAID alone, revealing an AIEC/NSAID synergistic effect. Inhibition of NLRP3 or Caspase-8 activity ameliorated colitis, with reduction in NLRP3 inflammasome activation, cell death markers, activated T-cells and macrophages, improved histology, and increased abundance of Clostridium cluster XIVa species. Our findings provide new insights into how NSAIDs and an opportunistic gut-pathobiont can synergize to worsen IBD symptoms. Targeting the NLRP3 inflammasome or Caspase-8 could be a potential therapeutic strategy in IBD patients with gut inflammation, which is worsened by NSAIDs.
Collapse
Affiliation(s)
- Raminder Singh
- APC Microbiome Ireland, University College Cork, Cork, Ireland,Department of Medicine, School of Medicine, University College Cork, Cork, Ireland
| | - Valerio Rossini
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | | | - Gonzalo Saiz-Gonzalo
- APC Microbiome Ireland, University College Cork, Cork, Ireland,Department of Medicine, School of Medicine, University College Cork, Cork, Ireland,School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | - Naomi Hanrahan
- APC Microbiome Ireland, University College Cork, Cork, Ireland,Department of Medicine, School of Medicine, University College Cork, Cork, Ireland,School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | - Tanya D’ Souza
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Adam Clooney
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | | | - Colin Hill
- APC Microbiome Ireland, University College Cork, Cork, Ireland,School of Microbiology, University College Cork, Cork, Ireland
| | - Ken Nally
- APC Microbiome Ireland, University College Cork, Cork, Ireland,School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | - Fergus Shanahan
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Stefan Andersson-Engels
- Irish Photonics Integration Centre, Tyndall National Institute, Cork, Ireland,Department of Physics, University College Cork, Cork, Ireland
| | - Silvia Melgar
- APC Microbiome Ireland, University College Cork, Cork, Ireland,CONTACT Silvia Melgar APC Microbiome Ireland, University College Cork, Biosciences Building, 4th Floor, Cork, Ireland
| |
Collapse
|
131
|
Wang EJ, Wu MY, Ren ZY, Zheng Y, Ye RD, TAN CSH, Wang Y, Lu JH. Targeting macrophage autophagy for inflammation resolution and tissue repair in inflammatory bowel disease. BURNS & TRAUMA 2023; 11:tkad004. [PMID: 37152076 PMCID: PMC10157272 DOI: 10.1093/burnst/tkad004] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/22/2022] [Accepted: 01/16/2023] [Indexed: 05/09/2023]
Abstract
Inflammatory bowel disease (IBD) is a chronic, non-specific, recurrent inflammatory disease, majorly affecting the gastrointestinal tract. Due to its unclear pathogenesis, the current therapeutic strategy for IBD is focused on symptoms alleviation. Autophagy is a lysosome-mediated catabolic process for maintaining cellular homeostasis. Genome-wide association studies and subsequent functional studies have highlighted the critical role of autophagy in IBD via a number of mechanisms, including modulating macrophage function. Macrophages are the gatekeepers of intestinal immune homeostasis, especially involved in regulating inflammation remission and tissue repair. Interestingly, many autophagic proteins and IBD-related genes have been revealed to regulate macrophage function, suggesting that macrophage autophagy is a potentially important process implicated in IBD regulation. Here, we have summarized current understanding of macrophage autophagy function in pathogen and apoptotic cell clearance, inflammation remission and tissue repair regulation in IBD, and discuss how this knowledge can be used as a strategy for IBD treatment.
Collapse
Affiliation(s)
- Er-jin Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, 999078, China
| | - Ming-Yue Wu
- Center for Metabolic Liver Diseases and Center for Cholestatic Liver Diseases, Department of Gastroenterology, The First Affiliated Hospital (Southwest Hospital), Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Zheng-yu Ren
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, 999078, China
| | - Ying Zheng
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, 999078, China
| | - Richard D Ye
- Kobilka Institute of Innovative Drug Discovery, School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, 518172, China
| | - Chris Soon Heng TAN
- Department of Chemistry, College of Science, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yitao Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, 999078, China
| | | |
Collapse
|
132
|
Bosák J, Kohoutová D, Hrala M, Křenová J, Morávková P, Rejchrt S, Bureš J, Šmajs D. Escherichia coli from biopsies differ in virulence genes between patients with colorectal neoplasia and healthy controls. Front Microbiol 2023; 14:1141619. [PMID: 37125208 PMCID: PMC10133476 DOI: 10.3389/fmicb.2023.1141619] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 03/27/2023] [Indexed: 05/02/2023] Open
Abstract
Introduction Pathogenic strains of Escherichia coli have been clearly identified as the causative agents of extraintestinal and diarrheal infections; however, the etiopathogenic role of E. coli in other conditions, including colorectal cancer, remains unclear. Methods This study aimed to characterize mucosal E. coli isolates (n = 246) from 61 neoplasia patients and 20 healthy controls for the presence of 35 genetic determinants encoding known virulence factors. Results Virulence determinants encoding invasin (ibeA), siderophore receptor (iroN), S-fimbriae (sfa), and genotoxin (usp) were more prevalent among E. coli isolated from patients with neoplasia compared to the control group (p < 0.05). In addition, the prevalence of these virulence determinants was increased in more advanced neoplasia stages (p adj < 0.0125). Compared to patients with advanced colorectal adenoma and carcinoma, the ibeA gene was rarely found in the control group and among patients with non-advanced adenoma (p < 0.05), indicating its potential as the advanced-neoplasia biomarker. Patients with neoplasia frequently had E. coli strains with at least one of the abovementioned virulence factors, whereby specific combinations of these virulence factors were found. Discussion These findings suggest that E. coli strains isolated from patients with colorectal neoplasia possess several virulence factors, which could contribute to the development of neoplastic processes in the large intestine.
Collapse
Affiliation(s)
- Juraj Bosák
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Darina Kohoutová
- Center of Biomedical Research, University Hospital Hradec Králové, Hradec Králové, Czechia
- The Royal Marsden Hospital NHS Foundation Trust, London, United Kingdom
| | - Matěj Hrala
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Jitka Křenová
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Paula Morávková
- Second Department of Internal Medicine - Gastroenterology, Charles University, Faculty of Medicine in Hradec Králové, University Hospital Hradec Králové, Hradec Králové, Czechia
| | - Stanislav Rejchrt
- Center of Biomedical Research, University Hospital Hradec Králové, Hradec Králové, Czechia
| | - Jan Bureš
- Center of Biomedical Research, University Hospital Hradec Králové, Hradec Králové, Czechia
| | - David Šmajs
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czechia
- *Correspondence: David Šmajs,
| |
Collapse
|
133
|
Wiredu Ocansey DK, Hang S, Yuan X, Qian H, Zhou M, Valerie Olovo C, Zhang X, Mao F. The diagnostic and prognostic potential of gut bacteria in inflammatory bowel disease. Gut Microbes 2023; 15:2176118. [PMID: 36794838 PMCID: PMC9980661 DOI: 10.1080/19490976.2023.2176118] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 01/26/2023] [Indexed: 02/17/2023] Open
Abstract
The gut microbiome serves as a signaling hub that integrates environmental inputs with genetic and immune signals to influence the host's metabolism and immunity. Gut bacteria are intricately connected with human health and disease state, with specific bacteria species driving the characteristic dysbiosis found in gastrointestinal conditions such as inflammatory bowel disease (IBD); thus, gut bacteria changes could be harnessed to improve IBD diagnosis, prognosis, and treatment. The advancement in next-generation sequencing techniques such as 16S rRNA and whole-genome shotgun sequencing has allowed the exploration of the complexity of the gut microbial ecosystem with high resolution. Current microbiome data is promising and appears to perform better in some studies than the currently used fecal inflammation biomarker, calprotectin, in predicting IBD from healthy controls and irritable bowel syndrome (IBS). This study reviews current data on the differential potential of gut bacteria within IBD cohorts, and between IBD and other gastrointestinal diseases.
Collapse
Affiliation(s)
- Dickson Kofi Wiredu Ocansey
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, P.R. China
- Directorate of University Health Services, University of Cape Coast, PMB, Cape Coast, Ghana
| | - Sanhua Hang
- The People’s Hospital of Danyang, Affiliated Danyang Hospital of Nantong University, Zhenjiang, P.R. China
| | - Xinyi Yuan
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, P.R. China
| | - Hua Qian
- Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, P.R. China
| | - Mengjiao Zhou
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, P.R. China
| | - Chinasa Valerie Olovo
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, P.R. China
- Department of Microbiology, University of Nigeria, Nsukka, Nigeria
| | - Xu Zhang
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, P.R. China
| | - Fei Mao
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, P.R. China
| |
Collapse
|
134
|
Buisson A, Sokol H, Hammoudi N, Nancey S, Treton X, Nachury M, Fumery M, Hébuterne X, Rodrigues M, Hugot JP, Boschetti G, Stefanescu C, Wils P, Seksik P, Le Bourhis L, Bezault M, Sauvanet P, Pereira B, Allez M, Barnich N. Role of adherent and invasive Escherichia coli in Crohn's disease: lessons from the postoperative recurrence model. Gut 2023; 72:39-48. [PMID: 35361684 DOI: 10.1136/gutjnl-2021-325971] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 03/10/2022] [Indexed: 02/04/2023]
Abstract
OBJECTIVE We used the postoperative recurrence model to better understand the role of adherent and invasive Escherichia coli (AIEC) bacteria in Crohn's disease (CD), taking advantage of a well-characterised postoperative cohort. DESIGN From a prospective, multicentre cohort of operated patients with CD, AIEC identification was performed within the surgical specimen (M0) (N=181 patients) and the neoterminal ileum (n=119 patients/181) during colonoscopy performed 6 months after surgery (M6). Endoscopic postoperative recurrence was graded using Rutgeerts' index. The mucosa-associated microbiota was analysed by 16S sequencing at M0 and M6. Relative risks or ORs were adjusted on potential confounders. RESULTS AIEC prevalence was twofold higher within the neoterminal ileum at M6 (30.3%) than within the surgical specimen (14.9%) (p<0.001). AIEC within the neoterminal ileum at M6 was associated with higher rate of early ileal lesions (i1) (41.6% vs 17.1%; aRR 3.49 (95% CI 1.01 to 12.04), p=0.048) or ileal lesions (i2b+i3) (38.2% vs 17.1%; aRR 3.45 (95% CI 1.06 to 11.30), p=0.040) compared with no lesion (i0). AIEC within the surgical specimen was predictive of higher risk of i2b-endoscopic postoperative recurrence (POR) (aOR 2.54 (95% CI 1.01 to 6.44), p=0.049) and severe endoscopic POR (aOR 3.36 (95% CI 1.25 to 9.06), p=0.017). While only 5.0% (6/119) of the patients were AIEC-positive at both M0 and M6, 43.7% (52/119), patients with history of positive test for AIEC (M0 or M6) had higher risk of ileal endoscopic POR (aOR 2.32 (95% CI 1.01 to 5.39), p=0.048)), i2b-endoscopic postoperative recurrence (aOR 2.41 (95% CI 1.01 to 5.74); p=0.048) and severe endoscopic postoperative (aOR=3.84 (95% CI 1.32 to 11.18), p=0.013). AIEC colonisation was associated with a specific microbiota signature including increased abundance of Ruminococcus gnavus. CONCLUSION Based on the postoperative recurrence model, our data support the idea that AIEC are involved in the early steps of ileal CD. TRIAL REGISTRATION NUMBER NCT03458195.
Collapse
Affiliation(s)
- Anthony Buisson
- Microbes, Intestin, Inflammation et Susceptibilité de l'Hôte (M2iSH), UMR 1071, USC INRAE 2018, Clermont-Ferrand, France .,Université Clermont Auvergne, Inserm, 3iHP, CHU Clermont-Ferrand, Service d'Hépato-Gastroentérologie, Clermont-Ferrand, France
| | - Harry Sokol
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine, CRSA, AP-HP, Saint Antoine Hospital, Gastroenterology department, F-75012 Paris, France.,Paris Center for Microbiome Medicine (PaCeMM) FHU, Paris, France.,INRAE, UMR1319 Micalis, AgroParisTech, Jouy-en-Josas, France
| | - Nassim Hammoudi
- Gastroenterology Department, Hôpital Saint-Louis hospital, Assitance Publique-Hôpitaux de Paris (AP-HP), Paris, France.,Université De Paris, Institut de Recherche Saint-Louis, EMily, INSERM U1160, F-75010, Paris, France
| | - Stéphane Nancey
- Gastroenterology Department, Centre Hospitalier Lyon-Sud, Pierre-Benite, France
| | - Xavier Treton
- Gastroenterology Department, Hôpital Beaujon, MICI et Assistance Nutritive, APHP, Paris, France
| | - Maria Nachury
- Univ. Lille, Inserm, CHU Lille, U1286 - INFINITE - Institute for Translational Research in Inflammation, F-59000 Lille, France
| | - Mathurin Fumery
- Hepatogastroenterology department, Amiens University Hospital, an Peritox, UMR-I 01, University Amiens, Amiens, France
| | - Xavier Hébuterne
- Gastroenterology and Clinical Nutrition, CHU of Nice and University Côte d'Azur Nice, Nice, France
| | - Michael Rodrigues
- Microbes, Intestin, Inflammation et Susceptibilité de l'Hôte (M2iSH), UMR 1071, USC INRAE 2018, Clermont-Ferrand, France
| | - Jean-Pierre Hugot
- Centre de recherche sur l'inflammation; INSERM UMR 1149; Assistance Publique-Hôpitaux de Paris; Université de Paris, F-75018 Paris, France
| | - Gilles Boschetti
- Gastroenterology Department, Centre Hospitalier Lyon-Sud, Pierre-Benite, France
| | - Carmen Stefanescu
- Gastroenterology Department, Hôpital Beaujon, MICI et Assistance Nutritive, APHP, Paris, France
| | - Pauline Wils
- Univ. Lille, Inserm, CHU Lille, U1286 - INFINITE - Institute for Translational Research in Inflammation, F-59000 Lille, France
| | - Philippe Seksik
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine, CRSA, AP-HP, Saint Antoine Hospital, Gastroenterology department, F-75012 Paris, France.,Paris Center for Microbiome Medicine (PaCeMM) FHU, Paris, France
| | - Lionel Le Bourhis
- Université De Paris, Institut de Recherche Saint-Louis, EMily, INSERM U1160, F-75010, Paris, France
| | | | - Pierre Sauvanet
- Microbes, Intestin, Inflammation et Susceptibilité de l'Hôte (M2iSH), UMR 1071, USC INRAE 2018, Clermont-Ferrand, France.,Chirurgie digestive, CHU Clermont-Ferrand, Clermont-Ferrand, France
| | - Bruno Pereira
- Biostatistics Unit, University Hospital, DRCI, Clermont-Ferrand, France
| | - Matthieu Allez
- Gastroenterology Department, Hôpital Saint-Louis hospital, Assitance Publique-Hôpitaux de Paris (AP-HP), Paris, France.,Université De Paris, Institut de Recherche Saint-Louis, EMily, INSERM U1160, F-75010, Paris, France
| | - Nicolas Barnich
- Microbes, Intestin, Inflammation et Susceptibilité de l'Hôte (M2iSH), UMR 1071, USC INRAE 2018, Clermont-Ferrand, France
| | | |
Collapse
|
135
|
Xu Y, Qian W, Huang L, Wen W, Li Y, Guo F, Zhu Z, Li Z, Gong J, Yu Z, Zhou Y, Lu N, Zhu W, Guo Z. Crohn's disease-associated AIEC inhibiting intestinal epithelial cell-derived exosomal let-7b expression regulates macrophage polarization to exacerbate intestinal fibrosis. Gut Microbes 2023; 15:2193115. [PMID: 36945126 PMCID: PMC10038049 DOI: 10.1080/19490976.2023.2193115] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 03/14/2023] [Indexed: 03/23/2023] Open
Abstract
The interaction between adherent-invasive Escherichia coli (AIEC) and intestinal macrophages is implicated in the pathogenesis of Crohn's disease (CD). However, its role in intestinal fibrogenesis and the underlying molecular mechanisms are poorly understood. In addition, miRNAs such as let-7b may participate in AIEC-macrophage interactions. In this study, we identified that the colonization of AIEC in the ileum was associated with enhanced intestinal fibrosis and reduced let-7b expression by enrolling a prospective cohort of CD patients undergoing ileocolectomy. Besides, AIEC-infected IL-10-/- mice presented more severe intestinal fibrosis and could be improved by exogenous let-7b. Mechanistically, intestinal macrophages were found to be the main target of let-7b. Transferring let-7b-overexpressing macrophages to AIEC-infected IL-10-/- mice significantly alleviated intestinal fibrosis. In vitro, AIEC suppressed exosomal let-7b derived from intestinal epithelial cells (IECs), instead of the direct inhibition of let-7b in macrophages, to promote macrophages to a fibrotic phenotype. Finally, TGFβR1 was identified as one target of let-7b that regulates macrophage polarization. Overall, the results of our work indicate that AIEC is associated with enhanced intestinal fibrosis in CD. AIEC could inhibit exosomal let-7b from IECs to promote intestinal macrophages to a fibrotic phenotype and then contributed to fibrogenesis. Thus, anti-AIEC or let-7b therapy may serve as novel therapeutic approaches to ameliorate intestinal fibrosis.
Collapse
Affiliation(s)
- Yihan Xu
- Department of General Surgery, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Wenwei Qian
- Department of General Surgery, Jinling Hospital, Medical School of Southeast University, Nanjing, China
| | - Liangyu Huang
- Department of Colorectal Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, China
| | - Weiwei Wen
- Department of General Surgery, Jinling Hospital, Medical School of Southeast University, Nanjing, China
| | - Yi Li
- Department of General Surgery, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Feilong Guo
- Department of General Surgery, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Zhenxing Zhu
- Department of General Surgery, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Zhun Li
- Department of General Surgery, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Jianfeng Gong
- Department of General Surgery, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Zeqian Yu
- Department of General Surgery, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Yan Zhou
- Department of General Surgery, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Nan Lu
- Department of General Surgery, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Weiming Zhu
- Department of General Surgery, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Zhen Guo
- Department of General Surgery, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| |
Collapse
|
136
|
Zhang K, Wang S, Yao D, Zhang X, Zhang Q, Liu W, Li Y, Yin Y, An S, Zhang R, Zhang Z. Aerobic and facultative anaerobic Klebsiella pneumoniae strains establish mutual competition and jointly promote Musca domestica development. Front Immunol 2023; 14:1102065. [PMID: 36875080 PMCID: PMC9982019 DOI: 10.3389/fimmu.2023.1102065] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 02/06/2023] [Indexed: 02/19/2023] Open
Abstract
Introduction The gut microenvironment in housefly harbors a rich and diverse microbial community which plays a crucial role in larval development. However, little is known about the impact of specific symbiotic bacteria on larval development as well as the composition of the indigenous gut microbiota of housefly. Methods In the present study, two novel strains were isolated from housefly larval gut, i.e., Klebsiella pneumoniae KX (aerobe) and K. pneumoniae KY (facultative anaerobe). Moreover, the bacteriophages KXP/KYP specific for strains KX and KY were used to analyse the effects of K. pneumoniae on larval development. Results Our results showed that dietary supplementation with K. pneumoniae KX and KY individually promoted housefly larval growth. However, no significant synergistic effect was observed when the two bacterial strains were administered in combination. In addition, using high-throughput sequencing, it was demonstrated that the abundance of Klebsiella increased whereas that of Provincia, Serratia and Morganella decreased when housefly larvae received supplementation with K. pneumoniae KX, KY or the KX-KY mixture. Moreover, when used combined, K. pneumoniae KX/KY inhibited the growth of Pseudomonas and Providencia. When the abundance of both bacterial strains simultaneously increased, a balance in total bacterial abundance was reached. Discussion Thus, it can be assumed that strains K. pneumoniae KX and KY maintain an equilibrium to facilitate their development in housefly gut, by establishing competition but also cooperation with each other to maintain the constant composition of gut bacteria in housefly larvae. Thus, our findings highlight the essential role of K. pneumoniae in regulating the composition of the gut microbiota in insects.
Collapse
Affiliation(s)
- Kexin Zhang
- School of Basic Medical Science, Shandong First Medical University, Shandong Academy of Medical Sciences, Taian, Shandong, China.,Collaborative Innovation Center for the Origin and Control of Emerging Infectious Diseases, Shandong First Medical University, Shandong Academy of Medical Sciences, Taian, Shandong, China
| | - Shumin Wang
- School of Basic Medical Science, Shandong First Medical University, Shandong Academy of Medical Sciences, Taian, Shandong, China.,School of Life Science, Shandong First Medical University, Shandong Academy of Medical Sciences, Taian, Shandong, China
| | - Dawei Yao
- School of Basic Medical Science, Shandong First Medical University, Shandong Academy of Medical Sciences, Taian, Shandong, China.,Shandong Institute of Endocrine and Metabolic Diseases, Shandong First Medical University, Jinan, Shandong, China
| | - Xinyu Zhang
- School of Basic Medical Science, Shandong First Medical University, Shandong Academy of Medical Sciences, Taian, Shandong, China.,Collaborative Innovation Center for the Origin and Control of Emerging Infectious Diseases, Shandong First Medical University, Shandong Academy of Medical Sciences, Taian, Shandong, China
| | - Qian Zhang
- School of Basic Medical Science, Shandong First Medical University, Shandong Academy of Medical Sciences, Taian, Shandong, China.,Collaborative Innovation Center for the Origin and Control of Emerging Infectious Diseases, Shandong First Medical University, Shandong Academy of Medical Sciences, Taian, Shandong, China
| | - Wenjuan Liu
- School of Basic Medical Science, Shandong First Medical University, Shandong Academy of Medical Sciences, Taian, Shandong, China.,Collaborative Innovation Center for the Origin and Control of Emerging Infectious Diseases, Shandong First Medical University, Shandong Academy of Medical Sciences, Taian, Shandong, China
| | - Ying Li
- School of Basic Medical Science, Shandong First Medical University, Shandong Academy of Medical Sciences, Taian, Shandong, China.,Collaborative Innovation Center for the Origin and Control of Emerging Infectious Diseases, Shandong First Medical University, Shandong Academy of Medical Sciences, Taian, Shandong, China
| | - Yansong Yin
- School of Basic Medical Science, Shandong First Medical University, Shandong Academy of Medical Sciences, Taian, Shandong, China.,Collaborative Innovation Center for the Origin and Control of Emerging Infectious Diseases, Shandong First Medical University, Shandong Academy of Medical Sciences, Taian, Shandong, China
| | - Sha An
- School of Basic Medical Science, Shandong First Medical University, Shandong Academy of Medical Sciences, Taian, Shandong, China.,Collaborative Innovation Center for the Origin and Control of Emerging Infectious Diseases, Shandong First Medical University, Shandong Academy of Medical Sciences, Taian, Shandong, China
| | - Ruiling Zhang
- School of Basic Medical Science, Shandong First Medical University, Shandong Academy of Medical Sciences, Taian, Shandong, China.,Collaborative Innovation Center for the Origin and Control of Emerging Infectious Diseases, Shandong First Medical University, Shandong Academy of Medical Sciences, Taian, Shandong, China
| | - Zhong Zhang
- School of life Science, Weifang Medical University, Weifang, Shandong, China.,Medical Science and Technology Innovation Center, The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong, China
| |
Collapse
|
137
|
Vaghari-Tabari M, Moein S, Alipourian A, Qujeq D, Malakoti F, Alemi F, Yousefi B, Khazaie S. Melatonin and inflammatory bowel disease: From basic mechanisms to clinical application. Biochimie 2022; 209:20-36. [PMID: 36535545 DOI: 10.1016/j.biochi.2022.12.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 10/25/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022]
Abstract
Inflammatory bowel disease is a chronic inflammatory disease and has periods of recurrence and remission. Improper immune responses to gut flora bacteria, along with genetic susceptibility, appear to be involved in causing this complex disease. It seems dysbiosis and oxidative stress may also be involved in IBD pathogenesis. A significant number of clinical studies have shown an interesting association between sleep disturbances and IBD. Studies in animal models have also shown that sleep deprivation has a significant effect on the pathogenesis of IBD and can aggravate inflammation. These interesting findings have drawn attention to melatonin, a sleep-related hormone. Melatonin is mainly produced by the pineal gland, but many tissues in the body, including the intestines, can produce it. Melatonin can have an interesting effect on the pathogenesis of IBD. Melatonin can enhance the intestinal mucosal barrier, alter the composition of intestinal bacteria in favor of bacteria with anti-inflammatory properties, regulate the immune response, alleviate inflammation and attenuate oxidative stress. It seems that, melatonin supplementation is effective in relieving inflammation and healing intestinal ulcers in IBD animal models. Some clinical studies have also shown that melatonin supplementation as an adjuvant therapy may be helpful in reducing disease activity in IBD patients. In this review article, in addition to reviewing the effects of sleep disturbances and melatonin on key mechanisms involved in the pathogenesis of IBD, we will review the findings of clinical studies regarding the effects of melatonin supplementation on IBD treatment.
Collapse
Affiliation(s)
- Mostafa Vaghari-Tabari
- Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran; Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Soheila Moein
- Medicinal Plants Processing Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Alipourian
- Sleep Disorders Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Durdi Qujeq
- Cellular and Molecular Biology Research Center (CMBRC), Health Research Institute, Babol University of Medical Sciences, Babol, Iran; Department of Clinical Biochemistry, Babol University of Medical Sciences, Babol, Iran
| | - Faezeh Malakoti
- Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Forough Alemi
- Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Bahman Yousefi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Liver and Gastrointestinal Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Sepideh Khazaie
- Sleep Disorders Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
138
|
Liang B, Wu C, Wang C, Sun W, Chen W, Hu X, Liu N, Xing D. New insights into bacterial mechanisms and potential intestinal epithelial cell therapeutic targets of inflammatory bowel disease. Front Microbiol 2022; 13:1065608. [PMID: 36590401 PMCID: PMC9802581 DOI: 10.3389/fmicb.2022.1065608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 11/30/2022] [Indexed: 12/23/2022] Open
Abstract
The global incidence of inflammatory bowel disease (IBD) has increased rapidly in recent years, but its exact etiology remains unclear. In the past decade, IBD has been reported to be associated with dysbiosis of gut microbiota. Although not yet proven to be a cause or consequence of IBD, the common hypothesis is that at least some alterations in the microbiome are protective or pathogenic. Furthermore, intestinal epithelial cells (IECs) serve as a protective physical barrier for gut microbiota, essential for maintaining intestinal homeostasis and actively contributes to the mucosal immune system. Thus, dysregulation within the intestinal epithelium increases intestinal permeability, promotes the entry of bacteria, toxins, and macromolecules, and disrupts intestinal immune homeostasis, all of which are associated with the clinical course of IBD. This article presents a selective overview of recent studies on bacterial mechanisms that may be protective or promotive of IBD in biological models. Moreover, we summarize and discuss the recent discovery of key modulators and signaling pathways in the IECs that could serve as potential IBD therapeutic targets. Understanding the role of the IECs in the pathogenesis of IBD may help improve the understanding of the inflammatory process and the identification of potential therapeutic targets to help ameliorate this increasingly common disease.
Collapse
Affiliation(s)
- Bing Liang
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Changhao Wu
- Department of Biochemistry and Physiology, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| | - Chao Wang
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Wenshe Sun
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Wujun Chen
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xiaokun Hu
- Intervention Neurosurgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Ning Liu
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao, China,*Correspondence: Ning Liu, ; Dongming Xing,
| | - Dongming Xing
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao, China,School of Life Sciences, Tsinghua University, Beijing, China,*Correspondence: Ning Liu, ; Dongming Xing,
| |
Collapse
|
139
|
Mecocci S, De Paolis L, Zoccola R, Fruscione F, De Ciucis CG, Chiaradia E, Moccia V, Tognoloni A, Pascucci L, Zoppi S, Zappulli V, Chillemi G, Goria M, Cappelli K, Razzuoli E. Antimicrobial and Immunomodulatory Potential of Cow Colostrum Extracellular Vesicles (ColosEVs) in an Intestinal In Vitro Model. Biomedicines 2022; 10:3264. [PMID: 36552020 PMCID: PMC9775086 DOI: 10.3390/biomedicines10123264] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 12/01/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Extracellular Vesicles (EVs) are nano-sized double-lipid-membrane-bound structures, acting mainly as signalling mediators between distant cells and, in particular, modulating the immune response and inflammation of targeted cells. Milk and colostrum contain high amounts of EVs that could be exploited as alternative natural systems in antimicrobial fighting. The aim of this study is to evaluate cow colostrum-derived EVs (colosEVs) for their antimicrobial, anti-inflammatory and immunomodulating effects in vitro to assess their suitability as natural antimicrobial agents as a strategy to cope with the drug resistance problem. ColosEVs were evaluated on a model of neonatal calf diarrhoea caused by Escherichia coli infection, a livestock disease where antibiotic therapy often has poor results. Colostrum from Piedmontese cows was collected within 24 h of calving and colosEVs were immediately isolated. IPEC-J2 cell line was pre-treated with colosEVs for 48 h and then infected with EPEC/NTEC field strains for 2 h. Bacterial adherence and IPEC-J2 gene expression analysis (RT-qPCR) of CXCL8, DEFB1, DEFB4A, TLR4, TLR5, NFKB1, MYD88, CGAS, RIGI and STING were evaluated. The colosEVs pre-treatment significantly reduced the ability of EPEC/NTEC strains to adhere to cell surfaces (p = 0.006), suggesting a role of ColosEVs in modulating host−pathogen interactions. Moreover, our results showed a significant decrease in TLR5 (p < 0.05), CGAS (p < 0.05) and STING (p < 0.01) gene expression in cells that were pre-treated with ColosEVs and then infected, thus highlighting a potential antimicrobial activity of ColosEVs. This is the first preliminarily study investigating ColosEV immunomodulatory and anti-inflammatory effects on an in vitro model of neonatal calf diarrhoea, showing its potential as a therapeutic and prophylactic tool.
Collapse
Affiliation(s)
- Samanta Mecocci
- Department of Veterinary Medicine, University of Perugia, 06123 Perugia, Italy
| | - Livia De Paolis
- National Reference Center of Veterinary and Comparative Oncology (CEROVEC), Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, Piazza Borgo Pila 39-24, 16129 Genova, Italy
| | - Roberto Zoccola
- S.C. Biotecnologie Applicate alle Produzioni, Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, via Bologna 148, 10154 Torino, Italy
| | - Floriana Fruscione
- National Reference Center of Veterinary and Comparative Oncology (CEROVEC), Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, Piazza Borgo Pila 39-24, 16129 Genova, Italy
| | - Chiara Grazia De Ciucis
- National Reference Center of Veterinary and Comparative Oncology (CEROVEC), Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, Piazza Borgo Pila 39-24, 16129 Genova, Italy
| | | | - Valentina Moccia
- Department of Comparative Biomedicine and Food Science, University of Padova, 35020 Legnaro, Italy
| | - Alessia Tognoloni
- Department of Veterinary Medicine, University of Perugia, 06123 Perugia, Italy
| | - Luisa Pascucci
- Department of Veterinary Medicine, University of Perugia, 06123 Perugia, Italy
| | - Simona Zoppi
- S.C. Diagnostica Generale, Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, via Bologna 148, 10154 Torino, Italy
| | - Valentina Zappulli
- Department of Comparative Biomedicine and Food Science, University of Padova, 35020 Legnaro, Italy
| | - Giovanni Chillemi
- Department for Innovation in Biological, Agro-Food and Forest Systems (DIBAF), University of Tuscia, 01100 Viterbo, Italy
| | - Maria Goria
- S.C. Biotecnologie Applicate alle Produzioni, Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, via Bologna 148, 10154 Torino, Italy
| | - Katia Cappelli
- Department of Veterinary Medicine, University of Perugia, 06123 Perugia, Italy
| | - Elisabetta Razzuoli
- National Reference Center of Veterinary and Comparative Oncology (CEROVEC), Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, Piazza Borgo Pila 39-24, 16129 Genova, Italy
| |
Collapse
|
140
|
RyhB in Avian Pathogenic Escherichia coli Regulates the Expression of Virulence-Related Genes and Contributes to Meningitis Development in a Mouse Model. Int J Mol Sci 2022; 23:ijms232415532. [PMID: 36555174 PMCID: PMC9778962 DOI: 10.3390/ijms232415532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/27/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022] Open
Abstract
Avian pathogenic Escherichia coli (APEC) is an important member of extraintestinal pathogenic Escherichia coli (ExPEC). It shares similar pathogenic strategies with neonatal meningitis E. coli (NMEC) and may threaten human health due to its potential zoonosis. RyhB is a small non-coding RNA that regulates iron homeostasis in E. coli. However, it is unclear whether RyhB regulates meningitis occurrence. To investigate the function of RyhB in the development of meningitis, we constructed the deletion mutant APEC XM∆ryhB and the complemented mutant APEC XM∆ryhB/pryhB, established a mouse meningitis model and evaluated the role of RyhB in virulence of APEC. The results showed that the deletion of ryhB decreased biofilm formation, adhesion to the brain microvascular endothelial cell line bEnd.3 and serum resistance. RNA-seq data showed that the expression of multiple virulence-related genes changed in the ryhB deletion mutant in the presence of duck serum. Deletion of ryhB reduced the clinical symptoms of mice, such as opisthotonus, diarrhea and neurological signs, when challenged with APEC. Compared with the mice infected with the wild-type APEC, fewer histopathological lesions were observed in the brain of mice infected with the ryhB deletion mutant APEC XM∆ryhB. The bacterial loads in the tissues and the relative expression of cytokines (IL-1β, IL-6, and TNF-α) in the brain significantly decreased when challenged with the APEC XM∆ryhB. The expressions of tight junction proteins (claudin-5, occludin and ZO-1) were not reduced in the brain of mice infected with APEC XM∆ryhB; that is, the blood-brain barrier permeability of mice was not significantly damaged. In conclusion, RyhB contributes to the pathogenicity of APEC XM in the meningitis-causing process by promoting biofilm formation, adhesion to endothelial cells, serum resistance and virulence-related genes expression.
Collapse
|
141
|
Abstract
The diet and gut microbiota have been extensively interrogated as a fuel for gut inflammation in inflammatory bowel diseases (IBDs) in the last few years. Here, we review how specific nutrients, typically enriched in a Western diet, instigate or deteriorate experimental gut inflammation in a genetically susceptible host and we discuss microbiota-dependent and independent mechanisms. We depict the study landscape of nutritional trials in paediatric and adult IBD and delineate common grounds for dietary advice. Conclusively, the diet reflects a critical rheostat of microbial dysbiosis and gut inflammation in IBD. Dietary restriction by exclusive enteral nutrition, with or without a specific exclusion diet, is effectively treating paediatric Crohn's disease, while adult IBD trials are less conclusive. Insights into molecular mechanisms of nutritional therapy will change the perception of IBD and will allow us to enter the era of precision nutrition. To achieve this, we discuss the need for carefully designed nutritional trials with scientific rigour comparable to medical trials, which also requires action from stake holders. Establishing evidence-based dietary therapy for IBD does not only hold promise to avoid long-term immunosuppression, but to provide a widely accessible therapy at low cost. Identification of dietary culprits disturbing gut health also bears the potential to prevent IBD and allows informed decision making in food politics.
Collapse
Affiliation(s)
- Timon E Adolph
- Department of Medicine I, Gastroenterology, Hepatology & Metabolism, Medical University Innsbruck, Innsbruck, Austria
| | - Jingwan Zhang
- Department of Medicine & Therapeutics, The Chinese University of Hong Kong, Hong Kong, Hong Kong
| |
Collapse
|
142
|
Zhang Y, Zhang J, Duan L. The role of microbiota-mitochondria crosstalk in pathogenesis and therapy of intestinal diseases. Pharmacol Res 2022; 186:106530. [DOI: 10.1016/j.phrs.2022.106530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 10/17/2022] [Accepted: 10/28/2022] [Indexed: 11/06/2022]
|
143
|
Geurtsen J, de Been M, Weerdenburg E, Zomer A, McNally A, Poolman J. Genomics and pathotypes of the many faces of Escherichia coli. FEMS Microbiol Rev 2022; 46:fuac031. [PMID: 35749579 PMCID: PMC9629502 DOI: 10.1093/femsre/fuac031] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 06/22/2022] [Indexed: 01/09/2023] Open
Abstract
Escherichia coli is the most researched microbial organism in the world. Its varied impact on human health, consisting of commensalism, gastrointestinal disease, or extraintestinal pathologies, has generated a separation of the species into at least eleven pathotypes (also known as pathovars). These are broadly split into two groups, intestinal pathogenic E. coli (InPEC) and extraintestinal pathogenic E. coli (ExPEC). However, components of E. coli's infinite open accessory genome are horizontally transferred with substantial frequency, creating pathogenic hybrid strains that defy a clear pathotype designation. Here, we take a birds-eye view of the E. coli species, characterizing it from historical, clinical, and genetic perspectives. We examine the wide spectrum of human disease caused by E. coli, the genome content of the bacterium, and its propensity to acquire, exchange, and maintain antibiotic resistance genes and virulence traits. Our portrayal of the species also discusses elements that have shaped its overall population structure and summarizes the current state of vaccine development targeted at the most frequent E. coli pathovars. In our conclusions, we advocate streamlining efforts for clinical reporting of ExPEC, and emphasize the pathogenic potential that exists throughout the entire species.
Collapse
Affiliation(s)
- Jeroen Geurtsen
- Janssen Vaccines and Prevention B.V., 2333 Leiden, the Netherlands
| | - Mark de Been
- Janssen Vaccines and Prevention B.V., 2333 Leiden, the Netherlands
| | | | - Aldert Zomer
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, 3584 Utrecht, the Netherlands
| | - Alan McNally
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, B15 2TT Birmingham, United Kingdom
| | - Jan Poolman
- Janssen Vaccines and Prevention B.V., 2333 Leiden, the Netherlands
| |
Collapse
|
144
|
Boucher D, Barnich N. Phage Therapy Against Adherent-invasive E. coli: Towards a Promising Treatment of Crohn's Disease Patients? J Crohns Colitis 2022; 16:1509-1510. [PMID: 35796668 DOI: 10.1093/ecco-jcc/jjac070] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Delphine Boucher
- Université Clermont Auvergne, Inserm U1071, USC-INRAE 2018, Microbes, Intestin, Inflammation et Susceptibilité de l'Hôte (M2iSH), Clermont-Ferrand, 63001, France
| | - Nicolas Barnich
- Université Clermont Auvergne, Inserm U1071, USC-INRAE 2018, Microbes, Intestin, Inflammation et Susceptibilité de l'Hôte (M2iSH), Clermont-Ferrand, 63001, France
| |
Collapse
|
145
|
Wang Z, Guo K, Liu Y, Huang C, Wu M. Dynamic impact of virome on colitis and colorectal cancer: Immunity, inflammation, prevention and treatment. Semin Cancer Biol 2022; 86:943-954. [PMID: 34656791 PMCID: PMC9008076 DOI: 10.1016/j.semcancer.2021.10.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 09/20/2021] [Accepted: 10/08/2021] [Indexed: 02/05/2023]
Abstract
The gut microbiome includes a series of microorganism genomes, such as bacteriome, virome, mycobiome, etc. The gut microbiota is critically involved in intestine immunity and diseases, including inflammatory bowel disease (IBD) and colorectal cancer (CRC); however, the underlying mechanism remains incompletely understood. Clarifying the relationship between microbiota and inflammation may profoundly improve our understanding of etiology, disease progression, patient management, and the development of prevention and treatment. In this review, we discuss the latest studies of the influence of enteric viruses (i.e., commensal viruses, pathogenic viruses, and bacteriophages) in the initiation, progression, and complication of colitis and colorectal cancer, and their potential for novel preventative approaches and therapeutic application. We explore the interplay between gut viruses and host immune systems for its effects on the severity of inflammatory diseases and cancer, including both direct and indirect interactions between enteric viruses with other microbes and microbial products. Furthermore, the underlying mechanisms of the virome's roles in gut inflammatory response have been explained to infer potential therapeutic targets with examples in specific clinical trials. Given that very limited literature has thus far discussed these various topics with the gut virome, we believe these extensive analyses may provide insight into the understanding of the molecular pathogenesis of IBD and CRC, which could help add the design of improved therapies for these important human diseases.
Collapse
Affiliation(s)
- Zhihan Wang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China; Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, 58202, USA
| | - Kai Guo
- Department of Neurology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Yingying Liu
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, 58202, USA
| | - Canhua Huang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China.
| | - Min Wu
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, 58202, USA.
| |
Collapse
|
146
|
Dubinsky V, Reshef L, Rabinowitz K, Wasserberg N, Dotan I, Gophna U. Escherichia coli Strains from Patients with Inflammatory Bowel Diseases have Disease-specific Genomic Adaptations. J Crohns Colitis 2022; 16:1584-1597. [PMID: 35560165 DOI: 10.1093/ecco-jcc/jjac071] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND AND AIMS Escherichia coli is over-abundant in the gut microbiome of patients with inflammatory bowel disease [IBD]. Here, we aimed to identify IBD-specific genomic functions of diverse E. coli lineages. METHODS We investigated E. coli genomes from patients with ulcerative colitis [UC], Crohn's disease [CD] or a pouch, and healthy subjects. The majority of genomes were reconstructed from metagenomic samples, including newly sequenced faecal metagenomes. Clinical metadata were collected. Functional analysis at the gene and mutation level were performed and integrated with IBD phenotypes and biomarkers. RESULTS Overall, 530 E. coli genomes were analysed. The E. coli B2 lineage was more prevalent in UC compared with other IBD phenotypes. Genomic metabolic capacities varied across E. coli lineages and IBD phenotypes. Host mucin utilisation enzymes were present in a single lineage and depleted in patients with a pouch, whereas those involved in inulin hydrolysis were enriched in patients with a pouch. E. coli strains from patients with UC were twice as likely to encode the genotoxic molecule colibactin than strains from patients with CD or a pouch. Strikingly, patients with a pouch showed the highest inferred E. coli growth rates, even in the presence of antibiotics. Faecal calprotectin did not correlate with the relative abundance of E. coli. Finally, we identified multiple IBD-specific non-synonymous mutations in E. coli genes encoding for bacterial cell envelope components. CONCLUSIONS Comparative genomics indicates that E. coli is a commensal species adapted to the overactive mucosal immune milieu in IBD, rather than causing it. Our results reveal mutations that may lead to attenuated antigenicity in some E. coli strains.
Collapse
Affiliation(s)
- Vadim Dubinsky
- Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel Aviv, Israel
| | - Leah Reshef
- Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel Aviv, Israel
| | - Keren Rabinowitz
- Division of Gastroenterology, Rabin Medical Center, Petah-Tikva, Israel
- Felsenstein Medical Research Center, Rabin Medical Center, Petah Tikva, Israel
| | - Nir Wasserberg
- Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv, Israel
- Colorectal Unit, Division of Surgery, Rabin Medical Center, Petah-Tikva, Israel
| | - Iris Dotan
- Division of Gastroenterology, Rabin Medical Center, Petah-Tikva, Israel
- Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv, Israel
| | - Uri Gophna
- Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel Aviv, Israel
| |
Collapse
|
147
|
Titécat M, Rousseaux C, Dubuquoy C, Foligné B, Rahmouni O, Mahieux S, Desreumaux P, Woolston J, Sulakvelidze A, Wannerberger K, Neut C. Safety and Efficacy of an AIEC-targeted Bacteriophage Cocktail in a Mice Colitis Model. J Crohns Colitis 2022; 16:1617-1627. [PMID: 35997152 DOI: 10.1093/ecco-jcc/jjac064] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
BACKGROUND AND AIMS Adherent invasive Escherichia coli [AIEC] are recovered with a high frequency from the gut mucosa of Crohn's disease patients and are believed to contribute to the dysbiosis and pathogenesis of this inflammatory bowel disease. In this context, bacteriophage therapy has been proposed for specifically targeting AIEC in the human gut with no deleterious impact on the commensal microbiota. METHODS The in vitro efficacy and specificity of a seven lytic phage cocktail [EcoActive™] was assessed against [i] 210 clinical AIEC strains, and [ii] 43 non-E. coli strains belonging to the top 12 most common bacterial genera typically associated with a healthy human microbiome. These data were supported by in vivo safety and efficacy assays conducted on healthy and AIEC-colonized mice, respectively. RESULTS The EcoActive cocktail was effective in vitro against 95% of the AIEC strains and did not lyse any of the 43 non-E. coli commensal strains, in contrast to conventional antibiotics. Long-term administration of the EcoActive cocktail to healthy mice was safe and did not induce dysbiosis according to metagenomic data. Using a murine model of induced colitis of animals infected with the AIEC strain LF82, we found that a single administration of the cocktail failed to alleviate inflammatory symptoms, while mice receiving the cocktail twice a day for 15 days were protected from clinical and microscopical manifestations of inflammation. CONCLUSIONS Collectively, the data support the approach of AIEC-targeted phage therapy as safe and effective treatment for reducing AIEC levels in the gut of IBD patients.
Collapse
Affiliation(s)
- Marie Titécat
- Univ. Lille, INSERM, CHU Lille, U1286 - Institute for Translational Research in Inflammation, Lille, France
| | | | | | - Benoît Foligné
- Univ. Lille, INSERM, CHU Lille, U1286 - Institute for Translational Research in Inflammation, Lille, France
| | - Oumaïra Rahmouni
- Univ. Lille, INSERM, CHU Lille, U1286 - Institute for Translational Research in Inflammation, Lille, France
| | - Séverine Mahieux
- Univ. Lille, INSERM, CHU Lille, U1286 - Institute for Translational Research in Inflammation, Lille, France
| | - Pierre Desreumaux
- Univ. Lille, INSERM, CHU Lille, U1286 - Institute for Translational Research in Inflammation, Lille, France.,Intestinal Biotech Development, 59045 Lille, France
| | | | | | | | - Christel Neut
- Univ. Lille, INSERM, CHU Lille, U1286 - Institute for Translational Research in Inflammation, Lille, France
| |
Collapse
|
148
|
Gerner RR, Hossain S, Sargun A, Siada K, Norton GJ, Zheng T, Neumann W, Nuccio SP, Nolan EM, Raffatellu M. Siderophore Immunization Restricted Colonization of Adherent-Invasive Escherichia coli and Ameliorated Experimental Colitis. mBio 2022; 13:e0218422. [PMID: 36094114 PMCID: PMC9600343 DOI: 10.1128/mbio.02184-22] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 08/03/2022] [Indexed: 11/20/2022] Open
Abstract
Inflammatory bowel diseases (IBD) are characterized by chronic inflammation of the gastrointestinal tract and profound alterations to the gut microbiome. Adherent-invasive Escherichia coli (AIEC) is a mucosa-associated pathobiont that colonizes the gut of patients with Crohn's disease, a form of IBD. Because AIEC exacerbates gut inflammation, strategies to reduce the AIEC bloom during colitis are highly desirable. To thrive in the inflamed gut, Enterobacteriaceae acquire the essential metal nutrient iron by producing and releasing siderophores. Here, we implemented an immunization-based strategy to target the siderophores enterobactin and its glucosylated derivative salmochelin to reduce the AIEC bloom in the inflamed gut. Using chemical (dextran sulfate sodium) and genetic (Il10-/- mice) IBD mouse models, we showed that immunization with enterobactin conjugated to the mucosal adjuvant cholera toxin subunit B potently elicited mucosal and serum antibodies against these siderophores. Siderophore-immunized mice exhibited lower AIEC gut colonization, diminished AIEC association with the gut mucosa, and reduced colitis severity. Moreover, Peyer's patches and the colonic lamina propria harbored enterobactin-specific B cells that could be identified by flow cytometry. The beneficial effect of siderophore immunization was primarily B cell-dependent because immunized muMT-/- mice, which lack mature B lymphocytes, were not protected during AIEC infection. Collectively, our study identified siderophores as a potential therapeutic target to reduce AIEC colonization and its association with the gut mucosa, which ultimately may reduce colitis exacerbation. Moreover, this work provides the foundation for developing monoclonal antibodies against siderophores, which could provide a narrow-spectrum strategy to target the AIEC bloom in Crohn's disease patients. IMPORTANCE Adherent-invasive Escherichia coli (AIEC) is abnormally prevalent in patients with ileal Crohn's disease and exacerbates intestinal inflammation, but treatment strategies that selectively target AIEC are unavailable. Iron is an essential micronutrient for most living organisms, and bacterial pathogens have evolved sophisticated strategies to capture iron from the host environment. AIEC produces siderophores, small, secreted molecules with a high affinity for iron. Here, we showed that immunization to elicit antibodies against siderophores promoted a reduction of the AIEC bloom, interfered with AIEC association with the mucosa, and mitigated colitis in experimental mouse models. We also established a flow cytometry-based approach to visualize and isolate siderophore-specific B cells, a prerequisite for engineering monoclonal antibodies against these molecules. Together, this work could lead to a more selective and antibiotic-sparing strategy to target AIEC in Crohn's disease patients.
Collapse
Affiliation(s)
- Romana R. Gerner
- Department of Pediatrics, Division of Host-Microbe Systems and Therapeutics, University of California San Diego, La Jolla, California, USA
| | - Suzana Hossain
- Department of Pediatrics, Division of Host-Microbe Systems and Therapeutics, University of California San Diego, La Jolla, California, USA
| | - Artur Sargun
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Kareem Siada
- Department of Pediatrics, Division of Host-Microbe Systems and Therapeutics, University of California San Diego, La Jolla, California, USA
| | - Grant J. Norton
- Department of Pediatrics, Division of Host-Microbe Systems and Therapeutics, University of California San Diego, La Jolla, California, USA
| | - Tengfei Zheng
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Wilma Neumann
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Sean-Paul Nuccio
- Department of Pediatrics, Division of Host-Microbe Systems and Therapeutics, University of California San Diego, La Jolla, California, USA
| | - Elizabeth M. Nolan
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Manuela Raffatellu
- Department of Pediatrics, Division of Host-Microbe Systems and Therapeutics, University of California San Diego, La Jolla, California, USA
- Center for Microbiome Innovation, University of California San Diego, La Jolla, California, USA
- Chiba University-University of California-San Diego Center for Mucosal Immunology, Allergy, and Vaccines (CU-UCSD cMAV), La Jolla, California, USA
| |
Collapse
|
149
|
Sezgin E, Terlemez G, Bozkurt B, Bengi G, Akpinar H, Büyüktorun İ. Quantitative real-time PCR analysis of bacterial biomarkers enable fast and accurate monitoring in inflammatory bowel disease. PeerJ 2022; 10:e14217. [PMID: 36275453 PMCID: PMC9586115 DOI: 10.7717/peerj.14217] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 09/20/2022] [Indexed: 01/24/2023] Open
Abstract
Inflammatory bowel diseases (IBD) affect millions of people worldwide with increasing incidence. Ulcerative colitis (UC) and Crohn's disease (CD) are the two most common IBDs. There is no definite cure for IBD, and response to treatment greatly vary among patients. Therefore, there is urgent need for biomarkers to monitor therapy efficacy, and disease prognosis. We aimed to test whether qPCR analysis of common candidate bacteria identified from a patient's individual fecal microbiome can be used as a fast and reliable personalized microbial biomarker for efficient monitoring of disease course in IBD. Next generation sequencing (NGS) of 16S rRNA gene region identified species level microbiota profiles for a subset of UC, CD, and control samples. Common high abundance bacterial species observed in all three groups, and reported to be associated with IBD are chosen as candidate marker species. These species, and total bacteria amount are quantified in all samples with qPCR. Relative abundance of anti-inflammatory, beneficial Faecalibacterium prausnitzii, Akkermansia muciniphila, and Streptococcus thermophilus was significantly lower in IBD compared to control samples. Moreover, the relative abundance of the examined common species was correlated with the severity of IBD disease. The variance in qPCR data was much lower compared to NGS data, and showed much higher statistical power for clinical utility. The qPCR analysis of target common bacterial species can be a powerful, cost and time efficient approach for monitoring disease status and identify better personalized treatment options for IBD patients.
Collapse
Affiliation(s)
- Efe Sezgin
- Izmir Institute of Technology, Izmir, Turkey
| | | | | | | | | | | |
Collapse
|
150
|
Sun L, Zou Y, Su P, Xue C, Wang D, Zhao F, Luo W, Zhang J. Lead Exposure Induced Neural Stem Cells Death via Notch Signaling Pathway and Gut-Brain Axis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:7676872. [PMID: 36238644 PMCID: PMC9553360 DOI: 10.1155/2022/7676872] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 09/17/2022] [Indexed: 11/18/2022]
Abstract
Numerous studies have examined the effects of lead (Pb) on cognitive ability. It is essential for the brain to maintain its functions through the differentiation of neural stem cells into various types of cells. Despite this, it remains unclear how Pb exposure affects neural stem cells and how it does, so the Pb-exposed mice were treated with the Notch inhibitor DAPT after we established the Pb exposure models. Neuronal stem cells and autophagy were assessed by immunofluorescence staining and western blot. The microbiota of the feces was also analyzed using the 16S rRNA amplicon sequencing technique. In this study, we found that Pb exposure caused neural injuries and deficits in neural stem cells, whereas DAPT rescued the damage. With DAPT, Pb-induced autophagy was partially reversed. Exposure to Pb also reduced inflammation and damaged gut barrier function. Furthermore, Pb exposure led to low bacterial diversity, an increase in pathogen abundance, and an unusual mode of interaction. Taken together, this study revealed that damages in neural stem cells contributed largely to cognitive impairment during Pb exposure, and this process was partially dependent on the Notch pathway and gut dysbiosis.
Collapse
Affiliation(s)
- Lijuan Sun
- Department of Occupational and Environmental Health, The Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, No. 169 Chang Le West Rd., Xi'an, Shaanxi 710032, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, 229 Taibai North Road, Xi'an 710069, China
| | - Yuankang Zou
- Department of Occupational and Environmental Health, The Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, No. 169 Chang Le West Rd., Xi'an, Shaanxi 710032, China
| | - Peng Su
- Department of Occupational and Environmental Health, The Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, No. 169 Chang Le West Rd., Xi'an, Shaanxi 710032, China
| | - Chong Xue
- Department of Occupational and Environmental Health, The Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, No. 169 Chang Le West Rd., Xi'an, Shaanxi 710032, China
| | - Diya Wang
- Department of Occupational and Environmental Health, The Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, No. 169 Chang Le West Rd., Xi'an, Shaanxi 710032, China
| | - Fang Zhao
- Department of Occupational and Environmental Health, The Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, No. 169 Chang Le West Rd., Xi'an, Shaanxi 710032, China
| | - Wenjing Luo
- Department of Occupational and Environmental Health, The Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, No. 169 Chang Le West Rd., Xi'an, Shaanxi 710032, China
| | - Jianbin Zhang
- Department of Occupational and Environmental Health, The Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, No. 169 Chang Le West Rd., Xi'an, Shaanxi 710032, China
| |
Collapse
|