101
|
How to adapt an intestinal microbiota transplantation programme to reduce the risk of invasive multidrug-resistant infection. Clin Microbiol Infect 2021; 28:502-512. [PMID: 34826617 DOI: 10.1016/j.cmi.2021.11.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 10/06/2021] [Accepted: 11/03/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND Vulnerable patients with intestinal colonization of multidrug-resistant organisms (MDROs) are recognized to be at increased risk of invasive MDRO-driven infection. Intestinal microbiota transplantation (IMT, also called faecal microbiota transplant) is the transfer of healthy screened donor stool to an affected recipient, and recent interest has focused on its impact on the reduction of invasive MDRO infection. OBJECTIVES To describe how to establish a clinical IMT pathway for patients at risk of MDRO invasive infection, with special considerations for optimizing administration and assessment of endpoints. SOURCES Expert guidelines and peer-reviewed clinical studies are encompassed and discussed. CONTENT IMT is offered to patients with MDROs detected on rectal or stool screening and either at risk of MDRO invasive infection due to altered immune status or those with recurrent MDRO-mediated invasive disease and considered at risk of further disease. Donor screening should include pathogens with theoretical or demonstrated risk of transmission (including MDROs themselves and SARS-CoV-2) and take into consideration the relative immunosuppressed state of potential recipients. Delivery of IMT is timed for when the patient is free from active infection, but no additional antibiotics are indicated. If administered when future immunosuppression is to take place, IMT is aligned at least 2 weeks beforehand to ensure sufficient time for engraftment. Patients are followed up in terms of adverse effects from IMT and clinicians are advised to discuss with the IMT multidisciplinary team on choice of antibiotics if needed to take into consideration the impact upon the intestinal microbiome. Prevention of invasive disease is the primary measure of success, rather than using intestinal decolonization as a binary outcome. Repeat IMT is considered case by case. IMPLICATIONS Future research areas should include randomized studies that consider clinical outcomes and cost-effectiveness, and better understanding of mechanisms to identify markers of treatment success and functional microbiome components that could be used therapeutically.
Collapse
|
102
|
Phanchana M, Harnvoravongchai P, Wongkuna S, Phetruen T, Phothichaisri W, Panturat S, Pipatthana M, Charoensutthivarakul S, Chankhamhaengdecha S, Janvilisri T. Frontiers in antibiotic alternatives for Clostridioides difficile infection. World J Gastroenterol 2021; 27:7210-7232. [PMID: 34876784 PMCID: PMC8611198 DOI: 10.3748/wjg.v27.i42.7210] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 05/12/2021] [Accepted: 10/25/2021] [Indexed: 02/06/2023] Open
Abstract
Clostridioides difficile (C. difficile) is a gram-positive, anaerobic spore-forming bacterium and a major cause of antibiotic-associated diarrhea. Humans are naturally resistant to C. difficile infection (CDI) owing to the protection provided by healthy gut microbiota. When the gut microbiota is disturbed, C. difficile can colonize, produce toxins, and manifest clinical symptoms, ranging from asymptomatic diarrhea and colitis to death. Despite the steady-if not rising-prevalence of CDI, it will certainly become more problematic in a world of antibiotic overuse and the post-antibiotic era. C. difficile is naturally resistant to most of the currently used antibiotics as it uses multiple resistance mechanisms. Therefore, current CDI treatment regimens are extremely limited to only a few antibiotics, which include vancomycin, fidaxomicin, and metronidazole. Therefore, one of the main challenges experienced by the scientific community is the development of alternative approaches to control and treat CDI. In this Frontier article, we collectively summarize recent advances in alternative treatment approaches for CDI. Over the past few years, several studies have reported on natural product-derived compounds, drug repurposing, high-throughput library screening, phage therapy, and fecal microbiota transplantation. We also include an update on vaccine development, pre- and pro-biotics for CDI, and toxin antidote approaches. These measures tackle CDI at every stage of disease pathology via multiple mechanisms. We also discuss the gaps and concerns in these developments. The next epidemic of CDI is not a matter of if but a matter of when. Therefore, being well-equipped with a collection of alternative therapeutics is necessary and should be prioritized.
Collapse
Affiliation(s)
- Matthew Phanchana
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| | | | - Supapit Wongkuna
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Tanaporn Phetruen
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Wichuda Phothichaisri
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Supakan Panturat
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Methinee Pipatthana
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Sitthivut Charoensutthivarakul
- School of Bioinnovation and Bio-based Product Intelligence, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | | | - Tavan Janvilisri
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| |
Collapse
|
103
|
Liu J, Gu L, Zhang M, Zhang S, Wang M, Long Y, Zhang X. The Fecal Microbiota Transplantation: A Remarkable Clinical Therapy for Slow Transit Constipation in Future. Front Cell Infect Microbiol 2021; 11:732474. [PMID: 34746023 PMCID: PMC8569429 DOI: 10.3389/fcimb.2021.732474] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 10/04/2021] [Indexed: 11/13/2022] Open
Abstract
Slow transit constipation is a common condition that would be difficult to treat in clinical practice with a widespread incidence in the population. Pharmacotherapy and surgery are common treatment modalities. However, the clinical effect is limited, and patients still suffer from it. As the researchers strived in this field for decades, the profound relationship between slow transit constipation and fecal microbiota transplantation has comprehensively been sustained. It is very pivotal to maintain intestinal homeostasis, the structure function and metabolic function of symbiotic bacteria, which can inhibit the engraftment of intestinal pathogens. This mini review explains the treatment effects and possible mechanisms of the fecal microbiota transplantation in treating slow transit constipation. Simultaneously, it is found that there is significant improvement in the disease by adjusting the intestinal microbes like fecal microbiota transplantation. Fecal microbiota transplantation has efficient therapeutic effects in slow transit constipation compared with traditional therapies.
Collapse
Affiliation(s)
- Jiafei Liu
- Department of Colorectal Surgery, Tianjin Union Medical Center, Nankai University, Tianjin, China
| | - Liqiang Gu
- Department of Colorectal Surgery, Tianjin Union Medical Center, Nankai University, Tianjin, China
| | - Mingqing Zhang
- Department of Colorectal Surgery, Tianjin Union Medical Center, Nankai University, Tianjin, China
| | - Shiwu Zhang
- Department of Pathology, Tianjin Union Medical Center, Nankai University, Tianjin, China
| | - Min Wang
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
| | - Yu Long
- Department of Colorectal Surgery, Tianjin Union Medical Center, Nankai University, Tianjin, China
| | - Xipeng Zhang
- Department of Colorectal Surgery, Tianjin Union Medical Center, Nankai University, Tianjin, China
| |
Collapse
|
104
|
Wang S, Deng W, Li F, Chen YE, Wang PU. Blockade of T helper 17 cell function ameliorates recurrent Clostridioides difficile infection in mice. Acta Biochim Biophys Sin (Shanghai) 2021; 53:1290-1299. [PMID: 34379099 DOI: 10.1093/abbs/gmab107] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Indexed: 11/12/2022] Open
Abstract
Clostridioides difficile infection (CDI) is a common infection of the gastrointestinal tract. Typically, 20%-30% of CDI patients experience recurrent C.difficile infection (RCDI). Although the role of Th17 in infectious and inflammatory diseases including CDI has gained attention, reports on the correlation between Th17 and RCDI are scarce. In this study, CDI and RCDI mice models were challenged with C. difficile. Serum lactic acid dehydrogenase, inflammatory factor levels, reverse transcriptase-polymerase chain reaction, western blot analysis, hematoxylin and eosin staining, immunohistochemistry, flow cytometry analysis, and enzyme-linked immunosorbent assay were performed on the CDI, RCDI, and control group mice. The results showed more serious clinical manifestations in the RCDI group compared with those in the CDI group. More severe gut barrier disruption and higher degree of microbiota translocation were observed in the RCDI group compared with those in the CDI group. Moreover, extremely severe apoptosis was observed in HCT-116 cells incubated with the serum from RCDI mice model. In addition, higher levels of Th17 and IL-17 were detected in the blood or serum from the RCDI mouse model. Treatment with RORγt small molecule inhibitor SR1001 increased the expression of occludin, decreased the apoptotic rate of HCT-116 cells, and decreased the concentrations of Th17 and IL-17. Concisely, Th17 and IL-17 are potential indicators of RCDI and may serve as therapeutic targets for RCDI treatment. This study lays the foundation for future research on RCDI diagnosis and treatment.
Collapse
Affiliation(s)
- Siqi Wang
- Department of Gastroenterology, Guangdong Provincial Key Laboratory of Gastroenterology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Wenlin Deng
- Department of Gastroenterology, Guangdong Provincial Key Laboratory of Gastroenterology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Department of Pediatrics, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou 510655, China
| | - Fang Li
- Department of Gastroenterology, Guangdong Provincial Key Laboratory of Gastroenterology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Y E Chen
- Department of Gastroenterology, Guangdong Provincial Key Laboratory of Gastroenterology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - P U Wang
- Department of Gastroenterology, Guangdong Provincial Key Laboratory of Gastroenterology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
105
|
Yau YK, Mak WYJ, Lui NSR, Ng WYR, Cheung CYK, Li YLA, Ching YLJ, Chin ML, Lau HSL, Chan KLF, Chan KSP, Ng SC. High prevalence of extended-spectrum beta-lactamase organisms and the COVID-19 pandemic impact on donor recruitment for fecal microbiota transplantation in Hong Kong. United European Gastroenterol J 2021; 9:1027-1038. [PMID: 34623758 PMCID: PMC8598959 DOI: 10.1002/ueg2.12160] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 08/23/2021] [Accepted: 08/24/2021] [Indexed: 02/06/2023] Open
Abstract
Background With increasing number of clinical trials relating to fecal microbiota transplantation (FMT), it is crucial to identify and recruit long‐term, healthy, and regular fecal donors. Objective We aimed to report the outcomes of screening and recruitment of fecal donors for FMT. Methods Potential donors were recruited via advertisement through internal mass emails at a university. They were required to undergo a pre‐screening telephone interview, a detailed questionnaire, followed by blood and stool investigations. Results From January 2017 to December 2020, 119 potential donors were assessed with 75 failed pre‐screening. Reasons for failure included: inability to come back for regular and long‐term donation (n = 19), high body mass index (n = 17), underlying chronic illness or on long‐term medications (n = 11), being healthcare professionals (n = 10), use of antibiotics within 3 months (n = 5) and others (n = 13). Forty‐four donors completed questionnaires and 11 did not fulfill the clinical criteria. Of the remaining 33 potential donors who had stool and blood tests, 21 failed stool investigations (19 extended‐spectrum beta‐lactamase [ESBL] organisms, one Clostridioides difficile, one C. difficile plus Methicillin Resistant Staphylococcus aureus), one failed blood tests (high serum alkaline phosphatase level), one required long‐term medication and nine withdrew consent and/or lost to follow‐up. In total, only one out of 119 (0.8%) potential donors was successfully recruited as a regular donor. Conclusion There was a high failure rate in donor screening for FMT. Main reasons for screening failure included high prevalence of positive ESBL organisms in stool and failed commitment to regular stool donation.
Collapse
Affiliation(s)
- Yuk Kam Yau
- Center for Gut Microbiota Research, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China.,Department of Medicine & Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Wing Yan Joyce Mak
- Center for Gut Microbiota Research, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China.,Department of Medicine & Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Nok Shun Rashid Lui
- Department of Medicine & Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Wai Yin Rita Ng
- Center for Gut Microbiota Research, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China.,Department of Microbiology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Choi Yan Kitty Cheung
- Center for Gut Microbiota Research, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China.,Department of Medicine & Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Ying Lee Amy Li
- Center for Gut Microbiota Research, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China.,Department of Medicine & Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Yuet Ling Jessica Ching
- Center for Gut Microbiota Research, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China.,Department of Medicine & Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Miu Ling Chin
- Center for Gut Microbiota Research, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China.,Department of Microbiology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Ho Shing Louis Lau
- Department of Medicine & Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Ka Leung Francis Chan
- Center for Gut Microbiota Research, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China.,Department of Medicine & Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China.,LKS Institute of Health Science, The Chinese University of Hong Kong, Hong Kong, China
| | - Kay Sheung Paul Chan
- Center for Gut Microbiota Research, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China.,Department of Microbiology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Siew Chien Ng
- Center for Gut Microbiota Research, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China.,Department of Medicine & Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China.,LKS Institute of Health Science, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
106
|
Zhang X, Li N, Chen Q, Qin H. Fecal Microbiota Transplantation Modulates the Gut Flora Favoring Patients With Functional Constipation. Front Microbiol 2021; 12:700718. [PMID: 34690948 PMCID: PMC8529243 DOI: 10.3389/fmicb.2021.700718] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 08/23/2021] [Indexed: 12/14/2022] Open
Abstract
Intestinal dysmotility is common in many diseases and is correlated with gut microbiota dysbiosis and systemic inflammation. Functional constipation (FC) is the most typical manifestation of intestinal hypomotility and reduces patients' quality of life. Some studies have reported that fecal micriobiota transplantation (FMT) may be an effective and safe therapy for FC as it corrects intestinal dysbiosis. This study was conducted to evaluate how FMT remodels the gut microbiome and to determine a possible correlation between certain microbes and clinical symptoms in constipated individuals. Data were retrospectively collected on 18 patients who underwent FMT between January 1, 2019 and June 30, 2020. The fecal bacterial genome was detected by sequencing the V3-V4 hypervariable regions of the 16S rDNA gene. Fecal short chain fatty acids (SCFAs) were detected by gas chromatography-mass spectrometry, and serum inflammatory factor concentrations were detected via enzyme-linked immunosorbent assay. Comparing the changes in fecal microbiome compositions before and after FMT revealed a significant augmentation in the alpha diversity and increased abundances of some flora such as Clostridiales, Fusicatenibacter, and Paraprevotella. This was consistent with the patients experiencing relief from their clinical symptoms. Abundances of other flora, including Lachnoanaerobaculum, were decreased, which might correlate with the severity of patients' constipation. Although no differences were found in SCFA production, the butyric acid concentration was correlated with both bacterial alterations and clinical symptoms. Serum IL-8 levels were significantly lower after FMT than at baseline, but IL-4, IL-6, IL-10, and IL-12p70 levels were not noticeably changed. This study showed how FMT regulates the intestinal microenvironment and affects systemic inflammation in constipated patients, providing direction for further research on the mechanisms of FMT. It also revealed potential microbial targets for precise intervention, which may bring new breakthroughs in treating constipation.
Collapse
Affiliation(s)
| | | | - Qiyi Chen
- Intestinal Microenvironment Treatment Center, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Huanlong Qin
- Intestinal Microenvironment Treatment Center, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
107
|
Fan L, Lee JH. Enteral feeding and the microbiome in critically ill children: a narrative review. Transl Pediatr 2021; 10:2778-2791. [PMID: 34765500 PMCID: PMC8578772 DOI: 10.21037/tp-20-349] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 04/09/2021] [Indexed: 01/10/2023] Open
Abstract
OBJECTIVE This narrative review summarizes our current knowledge on the interplay between enteral nutrition (EN) and gut microbiota in critically ill children, using examples from two commonly encountered diagnoses in the pediatric intensive care unit (PICU): severe sepsis and acute respiratory distress syndrome (ARDS). This review will also highlight potential areas of therapeutic interventions that should be explored in future studies. BACKGROUND Critically ill children display extreme dysbiosis in their gut microbiome. Factors within the PICU that are often associated with dysbiosis include the use of broad-spectrum antibiotics, proton-pump inhibitors (PPIs), intravenous morphine, and fasting. Dysbiosis can potentially lead to adverse clinical outcomes (e.g., nosocomial infection, and prolonged hospitalization). EN may modulate dysbiosis. The gut microbiota is involved in the breaking down of macronutrients, mainly carbohydrates and proteins. Fermentation of undigestible carbohydrate (e.g., inulin and oligosaccharides), and amino acids by large intestine microbiota produces short chain fatty acids (SCFAs). SCFAs serve as the main fuel source for enterocytes and help to maintain healthy gut lining. Changes to selected components of macronutrients can result in alterations in gut microbiome and have potentially beneficial effects in patients in the PICU. METHODS A comprehensive search of the MEDLINE, Cochrane Library and Google Scholar databases was conducted using appropriate MESH terms and keywords. In this narrative review, we provide a summary of current knowledge on effect of EN on gut microbiota in pediatric studies, but also describes animal- and lab-based, as well as adult studies where relevant. CONCLUSIONS The gut microbiome can be altered by dietary modifications and common PICU practices and treatment. Although there are strong associations in restoring eubiosis and improvement in clinical outcomes, proving causality remains challenging. Further microbiome research is needed to provide mechanistic insights into the impact of the ever changing gut microbiome. In the future, new microbiota targeted therapies could potentially be the treatment of challenging PICU conditions and restore homeostasis in these children.
Collapse
Affiliation(s)
- Lijia Fan
- Division of Paediatric Critical Care, Department of Paediatrics, Khoo Teck Puat-National University Children's Medical Institute, National University Hospital, Singapore, Singapore
| | - Jan Hau Lee
- Children's Intensive Care Unit, KK Women's and Children's Hospital, Singapore, Singapore.,Duke-NUS Medical School, Singapore, Singapore
| |
Collapse
|
108
|
Innes AJ, Mullish BH, Ghani R, Szydlo RM, Apperley JF, Olavarria E, Palanicawandar R, Kanfer EJ, Milojkovic D, McDonald JAK, Brannigan ET, Thursz MR, Williams HRT, Davies FJ, Marchesi JR, Pavlů J. Fecal Microbiota Transplant Mitigates Adverse Outcomes Seen in Patients Colonized With Multidrug-Resistant Organisms Undergoing Allogeneic Hematopoietic Cell Transplantation. Front Cell Infect Microbiol 2021; 11:684659. [PMID: 34513724 PMCID: PMC8430254 DOI: 10.3389/fcimb.2021.684659] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 08/12/2021] [Indexed: 12/28/2022] Open
Abstract
The gut microbiome can be adversely affected by chemotherapy and antibiotics prior to hematopoietic cell transplantation (HCT). This affects graft success and increases susceptibility to multidrug-resistant organism (MDRO) colonization and infection. We performed an initial retrospective analysis of our use of fecal microbiota transplantation (FMT) from healthy donors as therapy for MDRO-colonized patients with hematological malignancy. FMT was performed on eight MDRO-colonized patients pre-HCT (FMT-MDRO group), and outcomes compared with 11 MDRO colonized HCT patients from the same period. At 12 months, survival was significantly higher in the FMT-MDRO group (70% versus 36% p = 0.044). Post-HCT, fewer FMT-MDRO patients required intensive care (0% versus 46%, P = 0.045) or experienced fever (0.29 versus 0.11 days, P = 0.027). Intestinal MDRO decolonization occurred in 25% of FMT-MDRO patients versus 11% non-FMT MDRO patients. Despite the significant differences and statistically comparable patient/transplant characteristics, as the sample size was small, a matched-pair analysis between both groups to non-MDRO colonized control cohorts (2:1 matching) was performed. At 12 months, the MDRO group who did not have an FMT had significantly lower survival (36.4% versus 61.9% respectively, p=0.012), and higher non relapse mortality (NRM; 60.2% versus 16.7% respectively, p=0.009) than their paired non-MDRO-colonized cohort. Conversely, there was no difference in survival (70% versus 43.4%, p=0.14) or NRM (12.5% versus 31.2% respectively, p=0.24) between the FMT-MDRO group and their paired non-MDRO cohort. Collectively, these data suggest that negative clinical outcomes, including mortality associated with MDRO colonization, may be ameliorated by pre-HCT FMT, even in the absence of intestinal MDRO decolonization. Further work is needed to explore this observed benefit.
Collapse
Affiliation(s)
- Andrew J Innes
- Centre for Haematology, Imperial College London at Hammersmith Hospital, London, United Kingdom
| | - Benjamin H Mullish
- Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
| | - Rohma Ghani
- Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
| | - Richard M Szydlo
- Centre for Haematology, Imperial College London at Hammersmith Hospital, London, United Kingdom
| | - Jane F Apperley
- Centre for Haematology, Imperial College London at Hammersmith Hospital, London, United Kingdom
| | - Eduardo Olavarria
- Centre for Haematology, Imperial College London at Hammersmith Hospital, London, United Kingdom
| | - Renuka Palanicawandar
- Centre for Haematology, Imperial College London at Hammersmith Hospital, London, United Kingdom
| | - Edward J Kanfer
- Centre for Haematology, Imperial College London at Hammersmith Hospital, London, United Kingdom
| | - Dragana Milojkovic
- Centre for Haematology, Imperial College London at Hammersmith Hospital, London, United Kingdom
| | - Julie A K McDonald
- Medical Research Council (MRC) Centre for Molecular Bacteriology and Infection, Imperial College London, London, United Kingdom
| | - Eimear T Brannigan
- National Institute for Health Research Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance, Imperial College London, London, United Kingdom
| | - Mark R Thursz
- Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
| | - Horace R T Williams
- Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
| | - Frances J Davies
- Medical Research Council (MRC) Centre for Molecular Bacteriology and Infection, Imperial College London, London, United Kingdom
| | - Julian R Marchesi
- Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
| | - Jiří Pavlů
- Centre for Haematology, Imperial College London at Hammersmith Hospital, London, United Kingdom
| |
Collapse
|
109
|
Girleanu I, Trifan A, Huiban L, Muzica C, Nemteanu R, Teodorescu A, Singeap AM, Cojocariu C, Chiriac S, Petrea O, Zenovia S, Nastasa R, Cuciureanu T, Stanciu C. The Risk of Clostridioides difficile Infection in Cirrhotic Patients Receiving Norfloxacin for Secondary Prophylaxis of Spontaneous Bacterial Peritonitis-A Real Life Cohort. MEDICINA (KAUNAS, LITHUANIA) 2021; 57:964. [PMID: 34577887 PMCID: PMC8464987 DOI: 10.3390/medicina57090964] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/30/2021] [Accepted: 09/11/2021] [Indexed: 02/05/2023]
Abstract
Background and Objectives: Spontaneous bacterial peritonitis (SBP) is a life-threatening complication of liver cirrhosis. Antibiotic prophylaxis is effective but can lead to an increased incidence of Clostridioides difficile infection (CDI). The aim of this study was to evaluate the incidence of CDI and the risk factors in cirrhotic patients with a previous episode of SBP receiving norfloxacin as secondary prophylaxis. Materials and Methods: We performed a prospective, cohort study including patients with liver cirrhosis and SBP, successfully treated over a 2-year period in a tertiary university hospital. All the patients received secondary prophylaxis for SBP with norfloxacin 400 mg/day. Results: There were 122 patients with liver cirrhosis and SBP included (mean age 57.5 ± 10.8 years, 65.5% males). Alcoholic cirrhosis was the major etiology accounting for 63.1% of cases. The mean MELD score was 19.7 ± 6.1. Twenty-three (18.8%) of all patients developed CDI during follow-up, corresponding to an incidence of 24.8 cases per 10,000 person-years. The multivariate Cox regression analysis demonstrated that alcoholic LC etiology (HR 1.40, 95% CI 1.104-2.441, p = 0.029) and Child-Pugh C class (HR 2.50, 95% CI 1.257-3.850, p = 0.034) were independent risk factors for CDI development during norfloxacin secondary prophylaxis. The development of CDI did not influence the mortality rates in cirrhotic patients with SBP receiving norfloxacin. Conclusions: Cirrhotic patients with SBP and Child-Pugh C class and alcoholic liver cirrhosis had a higher risk of developing Clostridioides difficile infection during norfloxacin secondary prophylaxis. In patients with alcoholic Child-Pugh C class liver cirrhosis, alternative prophylaxis should be evaluated as SBP secondary prophylaxis.
Collapse
Affiliation(s)
- Irina Girleanu
- Gastroenterology Department “Grigore T. Popa”, University of Medicine and Pharmacy, 700111 Iasi, Romania; (I.G.); (L.H.); (C.M.); (R.N.); (A.T.); (A.M.S.); (C.C.); (S.C.); (O.P.); (S.Z.); (R.N.); (T.C.); (C.S.)
- Institute of Gastroenterology and Hepatology, “St. Spiridon” University Hospital, 700111 Iasi, Romania
| | - Anca Trifan
- Gastroenterology Department “Grigore T. Popa”, University of Medicine and Pharmacy, 700111 Iasi, Romania; (I.G.); (L.H.); (C.M.); (R.N.); (A.T.); (A.M.S.); (C.C.); (S.C.); (O.P.); (S.Z.); (R.N.); (T.C.); (C.S.)
- Institute of Gastroenterology and Hepatology, “St. Spiridon” University Hospital, 700111 Iasi, Romania
| | - Laura Huiban
- Gastroenterology Department “Grigore T. Popa”, University of Medicine and Pharmacy, 700111 Iasi, Romania; (I.G.); (L.H.); (C.M.); (R.N.); (A.T.); (A.M.S.); (C.C.); (S.C.); (O.P.); (S.Z.); (R.N.); (T.C.); (C.S.)
- Institute of Gastroenterology and Hepatology, “St. Spiridon” University Hospital, 700111 Iasi, Romania
| | - Cristina Muzica
- Gastroenterology Department “Grigore T. Popa”, University of Medicine and Pharmacy, 700111 Iasi, Romania; (I.G.); (L.H.); (C.M.); (R.N.); (A.T.); (A.M.S.); (C.C.); (S.C.); (O.P.); (S.Z.); (R.N.); (T.C.); (C.S.)
- Institute of Gastroenterology and Hepatology, “St. Spiridon” University Hospital, 700111 Iasi, Romania
| | - Roxana Nemteanu
- Gastroenterology Department “Grigore T. Popa”, University of Medicine and Pharmacy, 700111 Iasi, Romania; (I.G.); (L.H.); (C.M.); (R.N.); (A.T.); (A.M.S.); (C.C.); (S.C.); (O.P.); (S.Z.); (R.N.); (T.C.); (C.S.)
- Institute of Gastroenterology and Hepatology, “St. Spiridon” University Hospital, 700111 Iasi, Romania
| | - Andreea Teodorescu
- Gastroenterology Department “Grigore T. Popa”, University of Medicine and Pharmacy, 700111 Iasi, Romania; (I.G.); (L.H.); (C.M.); (R.N.); (A.T.); (A.M.S.); (C.C.); (S.C.); (O.P.); (S.Z.); (R.N.); (T.C.); (C.S.)
- Institute of Gastroenterology and Hepatology, “St. Spiridon” University Hospital, 700111 Iasi, Romania
| | - Ana Maria Singeap
- Gastroenterology Department “Grigore T. Popa”, University of Medicine and Pharmacy, 700111 Iasi, Romania; (I.G.); (L.H.); (C.M.); (R.N.); (A.T.); (A.M.S.); (C.C.); (S.C.); (O.P.); (S.Z.); (R.N.); (T.C.); (C.S.)
- Institute of Gastroenterology and Hepatology, “St. Spiridon” University Hospital, 700111 Iasi, Romania
| | - Camelia Cojocariu
- Gastroenterology Department “Grigore T. Popa”, University of Medicine and Pharmacy, 700111 Iasi, Romania; (I.G.); (L.H.); (C.M.); (R.N.); (A.T.); (A.M.S.); (C.C.); (S.C.); (O.P.); (S.Z.); (R.N.); (T.C.); (C.S.)
- Institute of Gastroenterology and Hepatology, “St. Spiridon” University Hospital, 700111 Iasi, Romania
| | - Stefan Chiriac
- Gastroenterology Department “Grigore T. Popa”, University of Medicine and Pharmacy, 700111 Iasi, Romania; (I.G.); (L.H.); (C.M.); (R.N.); (A.T.); (A.M.S.); (C.C.); (S.C.); (O.P.); (S.Z.); (R.N.); (T.C.); (C.S.)
- Institute of Gastroenterology and Hepatology, “St. Spiridon” University Hospital, 700111 Iasi, Romania
| | - Oana Petrea
- Gastroenterology Department “Grigore T. Popa”, University of Medicine and Pharmacy, 700111 Iasi, Romania; (I.G.); (L.H.); (C.M.); (R.N.); (A.T.); (A.M.S.); (C.C.); (S.C.); (O.P.); (S.Z.); (R.N.); (T.C.); (C.S.)
- Institute of Gastroenterology and Hepatology, “St. Spiridon” University Hospital, 700111 Iasi, Romania
| | - Sebastian Zenovia
- Gastroenterology Department “Grigore T. Popa”, University of Medicine and Pharmacy, 700111 Iasi, Romania; (I.G.); (L.H.); (C.M.); (R.N.); (A.T.); (A.M.S.); (C.C.); (S.C.); (O.P.); (S.Z.); (R.N.); (T.C.); (C.S.)
- Institute of Gastroenterology and Hepatology, “St. Spiridon” University Hospital, 700111 Iasi, Romania
| | - Robert Nastasa
- Gastroenterology Department “Grigore T. Popa”, University of Medicine and Pharmacy, 700111 Iasi, Romania; (I.G.); (L.H.); (C.M.); (R.N.); (A.T.); (A.M.S.); (C.C.); (S.C.); (O.P.); (S.Z.); (R.N.); (T.C.); (C.S.)
- Institute of Gastroenterology and Hepatology, “St. Spiridon” University Hospital, 700111 Iasi, Romania
| | - Tudor Cuciureanu
- Gastroenterology Department “Grigore T. Popa”, University of Medicine and Pharmacy, 700111 Iasi, Romania; (I.G.); (L.H.); (C.M.); (R.N.); (A.T.); (A.M.S.); (C.C.); (S.C.); (O.P.); (S.Z.); (R.N.); (T.C.); (C.S.)
- Institute of Gastroenterology and Hepatology, “St. Spiridon” University Hospital, 700111 Iasi, Romania
| | - Carol Stanciu
- Gastroenterology Department “Grigore T. Popa”, University of Medicine and Pharmacy, 700111 Iasi, Romania; (I.G.); (L.H.); (C.M.); (R.N.); (A.T.); (A.M.S.); (C.C.); (S.C.); (O.P.); (S.Z.); (R.N.); (T.C.); (C.S.)
- Institute of Gastroenterology and Hepatology, “St. Spiridon” University Hospital, 700111 Iasi, Romania
| |
Collapse
|
110
|
Liu C, Wang YL, Yang YY, Zhang NP, Niu C, Shen XZ, Wu J. Novel approaches to intervene gut microbiota in the treatment of chronic liver diseases. FASEB J 2021; 35:e21871. [PMID: 34473374 DOI: 10.1096/fj.202100939r] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 08/05/2021] [Accepted: 08/09/2021] [Indexed: 02/07/2023]
Abstract
Recent investigations of gut microbiota have contributed to understanding of the critical role of microbial community in pathophysiology. Dysbiosis not only causes disturbance directly to the gastrointestinal tract but also affects the liver through gut-liver axis. Various types of dysbiosis have been documented in alcoholic liver disease (ALD), nonalcoholic fatty liver disease, autoimmune hepatitis (AIH), primary sclerosing cholangitis, and may be crucial for the initiation, progression, or deterioration to end-stage liver disease. A few microbial species have been identified as the causal factors leading to these chronic illnesses that either do not have clear etiologies or lack effective treatment. Notably, cytolysin-producing Enterococcus faecalis, Klebsiella pneumoniae and Enterococcus gallinarum were defined for ALD, NASH, and AIH, respectively. These groundbreaking discoveries drive a rapid development in innovative therapeutics, such as fecal microbial transplantation and implementation of specific bacteriophages in addition to prebiotics, probiotics, or synbiotics for intervention of dysbiosis. Although most emerging interventions are in preclinical development or early clinical trials, a better delineation of specific dysbiosis in these disorders at metabolic, immunogenic, or molecular levels in establishing particular causal effects aids in modulating or correcting the microbial community which is the part of daily life for human being.
Collapse
Affiliation(s)
- Chang Liu
- MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, Department of Medical Microbiology & Parasitology, School of Basic Medical Sciences, Fudan University Shanghai Medical College, Shanghai, China
| | - Yu-Li Wang
- MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, Department of Medical Microbiology & Parasitology, School of Basic Medical Sciences, Fudan University Shanghai Medical College, Shanghai, China
| | - Yong-Yu Yang
- MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, Department of Medical Microbiology & Parasitology, School of Basic Medical Sciences, Fudan University Shanghai Medical College, Shanghai, China
| | - Ning-Ping Zhang
- Department of Gastroenterology & Hepatology, Zhongshan Hospital of Fudan University, Shanghai, China.,Shanghai Institute of Liver Diseases, Fudan University Shanghai Medical College, Shanghai, China
| | - Chen Niu
- MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, Department of Medical Microbiology & Parasitology, School of Basic Medical Sciences, Fudan University Shanghai Medical College, Shanghai, China
| | - Xi-Zhong Shen
- Department of Gastroenterology & Hepatology, Zhongshan Hospital of Fudan University, Shanghai, China.,Shanghai Institute of Liver Diseases, Fudan University Shanghai Medical College, Shanghai, China
| | - Jian Wu
- MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, Department of Medical Microbiology & Parasitology, School of Basic Medical Sciences, Fudan University Shanghai Medical College, Shanghai, China.,Department of Gastroenterology & Hepatology, Zhongshan Hospital of Fudan University, Shanghai, China.,Shanghai Institute of Liver Diseases, Fudan University Shanghai Medical College, Shanghai, China
| |
Collapse
|
111
|
Baunwall SMD, Dahlerup JF, Engberg JH, Erikstrup C, Helms M, Juel MA, Kjeldsen J, Nielsen HL, Nilsson AC, Rode AA, Vinter-Jensen L, Hvas CL. Danish national guideline for the treatment of Clostridioides difficile infection and use of faecal microbiota transplantation (FMT). Scand J Gastroenterol 2021; 56:1056-1077. [PMID: 34261379 DOI: 10.1080/00365521.2021.1922749] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Aim: This Danish national guideline describes the treatment of adult patients with Clostridioides (formerly Clostridium) difficile (CD) infection and the use of faecal microbiota transplantation (FMT). It suggests minimum standard for implementing an FMT service.Method: Four scientific societies appointed members for a working group which conducted a systematic literature review and agreed on the text and recommendations. All clinical recommendations were evalluated for evidence level and grade of recommendation.Results: In CD infection, the use of marketed and experimental antibiotics as well as microbiota-based therapies including FMT are described. An algorithm for evaluating treatment effect is suggested. The organisation of FMT, donor recruitment and screening, laboratory preparation, clinical application and follow-up are described.Conclusion: Updated evidence for the treatment of CD infection and the use of FMT is provided.
Collapse
Affiliation(s)
| | - Jens Frederik Dahlerup
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Aarhus, Denmark
| | | | - Christian Erikstrup
- Department of Clinical Immunology, Aarhus University Hospital, Aarhus, Denmark
| | - Morten Helms
- Department of Infectious Diseases, Hvidovre Hospital, Hvidovre, Denmark
| | | | - Jens Kjeldsen
- Department of Gastroenterology, Odense University Hospital, Odense, Denmark
| | - Hans Linde Nielsen
- Department of Clinical Microbiology, Aalborg University Hospital, Aalborg, Denmark
| | | | - Anne Abildtrup Rode
- Department of Internal Medicine, Zealand University Hospital, Roskilde, Denmark
| | - Lars Vinter-Jensen
- Department of Gastroenterology, Aalborg University Hospital, Aalborg, Denmark
| | - Christian Lodberg Hvas
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
112
|
Cold F, Baunwall SMD, Dahlerup JF, Petersen AM, Hvas CL, Hansen LH. Systematic review with meta-analysis: encapsulated faecal microbiota transplantation - evidence for clinical efficacy. Therap Adv Gastroenterol 2021; 14:17562848211041004. [PMID: 34484424 PMCID: PMC8414624 DOI: 10.1177/17562848211041004] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 07/30/2021] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Faecal microbiota transplantation (FMT) is an effective treatment of recurrent Clostridioides difficile infection (rCDI) and is being applied experimentally in other diseases. Encapsulated administration may be equivalent in efficacy to delivery through other routes. METHODS A systematic review was undertaken of studies using encapsulated FMT up to 26 October 2020. Data on indication, clinical outcomes, safety, treatment protocol and capsule preparation were collected and reported. Pooled rates of clinical efficacy in rCDI were calculated using random-effects meta-analysis. The impact of single variables on clinical efficacy was evaluated using univariate meta-regression. RESULTS A total of 35 studies reporting the treatment of 960 patients with encapsulated FMT for eight different indications met the inclusion criteria. Most studies (n = 18, 51%) and patients (n = 755, 79%) were from studies on rCDI. Cure rates after single and multiple courses of treatments with encapsulated FMT in rCDI were 85% (95% CI: 82%-88%) and 93% (95% CI: 88%-96%) respectively. The treatment outcome was not significantly affected by dose, number of delivered capsules, anaerobic/aerobic processing, single/multi-donor treatment, lyophilisation, or any other single factor in the production or delivery of encapsulated FMT. Promising but non-comparable results from the treatment of ulcerative colitis and multidrug-resistant organisms were reported. CONCLUSIONS Encapsulated FMT is an effective and safe treatment of rCDI, with cure rates comparable to FMT delivered through other routes. The treatment is effective despite variations in donor screening, preparation and treatment protocol. For other indications, the role of FMT capsules is still not sufficiently examined, although some studies show promising results. PLAIN LANGUAGE SUMMARY Transfer of faecal material through capsules in the treatment of various diseases. Evidence for clinical efficacy The bacteria and other microorganisms of the gut is different in patient with various diseases in comparison with healthy subjects.Therefore, ways to change the microorganisms of the gut in a beneficial direction has been the subject of various research projects within recent years.Faecal microbiota transplantation often referred as FMT is a method of transferring microorganisms from healthy donors to patients with various diseases and is seen as one way to change the microbial community of the gut in a beneficial direction.Faecal microbiota transplantation can be performed in different ways such as through endoscopy, enemas or capsules. The transfer through capsules is preferred by the patients and has advantages since it can be administered long-term and can be delivered to the patients in their home. In this paper, we evaluated all accessible research reporting treatment with encapsulated faecal microbiota transplantation in the treatment of various diseases. We report the following major findings:-Treatment with capsules is safe when guidelines for screening donors and testing faecal material is followed.-The treatment is highly effective in the treatment of recurrent C. difficile infection, a disease with high mortality often caused by repeated antibiotic treatments. The treatment was effective in 596 of 723 patients following one course of capsule treatment.-Faecal microbiota transplantation delivered through capsules is as effective as treatment delivered through other routes in the treatment of C. difficile infection.-The treatment is effective in the treatment of C. difficile infection across studies and countries, despite great differences in the ways the capsules were prepared and delivered.-Increasing the amount of faecal material used in the production did not affect the efficacy of the treatment.-There are promising results in the treatment of other diseases such as liver disease, inflammatory bowel disease and the treatment of multi-drug resistant bacteria.
Collapse
Affiliation(s)
| | | | - Jens Frederik Dahlerup
- Department of Hepatology and Gastroenterology,
Aarhus University Hospital, Aarhus, Denmark
| | - Andreas Munk Petersen
- Gastrounit, Medical Division, Copenhagen
University Hospital Hvidovre, Hvidovre, Denmark,Department of Clinical Microbiology, Copenhagen
University Hospital Hvidovre, Hvidovre, Denmark
| | - Christian Lodberg Hvas
- Department of Hepatology and Gastroenterology,
Aarhus University Hospital, Aarhus, Denmark
| | - Lars Hestbjerg Hansen
- Department of Plant and Environmental Sciences,
Copenhagen University, Frederiksberg, Denmark
| |
Collapse
|
113
|
Barqawi HJ, Adra SF, Ramzi HR, Abouaggour MA, Almehairi SK. Evaluating the knowledge, attitudes and practices of the UAE community on microbiota composition and the main factors affecting it: a cross-sectional study. BMJ Open 2021; 11:e047869. [PMID: 34404705 PMCID: PMC8372808 DOI: 10.1136/bmjopen-2020-047869] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVES This study aims to explore the knowledge, attitudes and practices (KAP) of the population in the United Arab Emirates (UAE) regarding microbiota and the main factors affecting its composition. DESIGN/SETTING A cross-sectional study, using a self-administered questionnaire, was conducted from May 2018 to September 2018, recruiting participants in public venues via convenience sampling. PARTICIPANTS UAE residents (aged 18 years and above) who spoke either Arabic or English. RESULTS 419 responses were completed and analysed using SPSS V.24. Only 29.3% (n=94) of the participants who defined microbiota correctly had good knowledge. There was a significant difference in knowledge among different age groups (p=0.004) and educational levels (p<0.001). Multiple linear regression (MLR) model indicated that being a university student and a healthcare professional (HCP) are the only significant predictors regarding microbiota knowledge (p=0.014 and p<0.001, respectively). Of the respondents who claimed to be aware of probiotics, only 9.1% (n=15) exhibited good knowledge. MLR model showed that being a postgraduate and an HCP are the only significant predictors for probiotics knowledge (p=0.016 and p<0.001, respectively). 42.4% (n=143) and 34.6% (n=28) of the non-medical and HCP participants, respectively, use antibiotics without a prescription. None of the respondents, with or without a medical background, demonstrated good attitudes and practices toward the use of antibiotics. CONCLUSION Despite the fact that the participants had a basic understanding of microbiota and probiotics, the overall knowledge was substandard. Additionally, the respondents engaged in improper practices that alter the microbiota composition, especially via antibiotics misuse. Campaigns should target the general population as well as HCPs to upheave their overall KAP.
Collapse
Affiliation(s)
- Hiba Jawdat Barqawi
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, UAE
| | | | | | | | | |
Collapse
|
114
|
Cui J, Lin Z, Tian H, Yang B, Zhao D, Ye C, Li N, Qin H, Chen Q. Long-Term Follow-Up Results of Fecal Microbiota Transplantation for Irritable Bowel Syndrome: A Single-Center, Retrospective Study. Front Med (Lausanne) 2021; 8:710452. [PMID: 34395484 PMCID: PMC8362996 DOI: 10.3389/fmed.2021.710452] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 06/29/2021] [Indexed: 12/12/2022] Open
Abstract
Objective: This study aimed to investigate the long-term efficacy of fecal microbiota transplantation (FMT) in patients with irritable bowel syndrome (IBS). Study Methods: In this single-center long-term follow-up study, FMT treatment was administered to patients with moderate to severe IBS (IBS severity scoring system (IBS-SSS) > 175). After 1 year of treatment, it was decided whether to repeat FMT based on IBS-SSS score (IBS-SSS > 175). Baseline characteristics before and after FMT and questionnaires were completed at 1, 3, 6, 12, 24, 36, 48, and 60 months after FMT. The study outcomes included treatment efficacy rates, change of IBS-SSS, IBS-specific quality of life and fatigue, effect on stool frequency, Bristol Stool Scale for IBS-C and IBS-D, and side effects. Results: A total of 227 patients (47.58% IBS-C, 39.21% IBS-D, and 13.22% IBS-M) were recruited (142 females and 85 males with a mean age of 41.89 ± 13.57 years). The efficacy rates were 108 (51.92%), 147 (74.62%), 125 (74.41 %), 88 (71.54%), 78 (75.00%), 65 (73.03%), 45 (61.64%), and 37 (62.71%) at different follow-up time points. The total IBS-SSS score was 321.37 ± 73.89 before FMT, which significantly decreased after 1 month. The IBS-specific quality of life (IBS-QoL) score was 40.24 ± 11.34 before FMT, increased gradually, and was significantly higher at 3 months compared to before FMT. The total Fatigue Assessment Scale (FAS) score was 47 ± 8.64 before FMT and was significantly lower at 3 months. During follow-up, 89 (39.21%) side effects occurred that were alleviated by symptomatic treatment, and no serious adverse events were detected. Conclusion: Based on 60 months of long-term follow-up, the safety and efficacy of FMT for IBS was established. However, as the treatment effect declines over time, periodic and repetitive FMT is required for a sustained effect.
Collapse
Affiliation(s)
- Jiaqu Cui
- Intestinal Microenvironment Treatment Center of General Surgery, Shanghai Tenth People's Hospital, Tenth People's Hospital of Tongji University, Shanghai, China
| | - Zhiliang Lin
- Intestinal Microenvironment Treatment Center of General Surgery, Shanghai Tenth People's Hospital, Tenth People's Hospital of Tongji University, Shanghai, China
| | - Hongliang Tian
- Intestinal Microenvironment Treatment Center of General Surgery, Shanghai Tenth People's Hospital, Tenth People's Hospital of Tongji University, Shanghai, China
| | - Bo Yang
- Intestinal Microenvironment Treatment Center of General Surgery, Shanghai Tenth People's Hospital, Tenth People's Hospital of Tongji University, Shanghai, China
| | - Di Zhao
- Intestinal Microenvironment Treatment Center of General Surgery, Shanghai Tenth People's Hospital, Tenth People's Hospital of Tongji University, Shanghai, China
| | - Chen Ye
- Intestinal Microenvironment Treatment Center of General Surgery, Shanghai Tenth People's Hospital, Tenth People's Hospital of Tongji University, Shanghai, China
| | - Ning Li
- Intestinal Microenvironment Treatment Center of General Surgery, Shanghai Tenth People's Hospital, Tenth People's Hospital of Tongji University, Shanghai, China
| | - Huanlong Qin
- Intestinal Microenvironment Treatment Center of General Surgery, Shanghai Tenth People's Hospital, Tenth People's Hospital of Tongji University, Shanghai, China
| | - Qiyi Chen
- Intestinal Microenvironment Treatment Center of General Surgery, Shanghai Tenth People's Hospital, Tenth People's Hospital of Tongji University, Shanghai, China
| |
Collapse
|
115
|
Jo HG, Seo GS. [Efficacy and Safety of Fecal Microbiota Transplantation and Prospect of Microbe-based Therapies for Inflammatory Bowel Disease]. THE KOREAN JOURNAL OF GASTROENTEROLOGY 2021; 78:31-36. [PMID: 34312355 DOI: 10.4166/kjg.2021.089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/15/2021] [Accepted: 07/16/2021] [Indexed: 11/03/2022]
Abstract
The use of 5-ASA, immunomodulators, biologics, and small molecule drugs are the main treatment for inflammatory bowel disease (IBD), however, fecal microbiota transplantation (FMT) is also drawing attention as a treatment to improve intestinal dysbiosis by transplantaing normal human stool into patients with IBD. FMT demonstrates relatively good effects in inducing clinical remission in IBD, but unlike Clostridium difficile infection, multiple FMT can enhance the clinical effect. There are no reports of the long-term effectiveness and safety of FMT conducted in IBD yet, therefore, well-designed, prospective studies will be needed. Gut microbiota can affect inflammatory response, intestinal barrier function, and host metabolism, so microbe-based therapies are likely to be a new treatment option for IBD. The deeper the understanding of microbe products or effectors, the more likely it is to provide personalized therapy in IBD.
Collapse
Affiliation(s)
- Hoon Gil Jo
- Department of Internal Medicine and Digestive Disease Research Institute, Wonkwang University School of Medicine, Iksan, Korea
| | - Geom Seog Seo
- Department of Internal Medicine and Digestive Disease Research Institute, Wonkwang University School of Medicine, Iksan, Korea
| |
Collapse
|
116
|
Alexander JL, Mullish BH. A Guide to the Gut Microbiome and its Relevance to Critical Care. ACTA ACUST UNITED AC 2021; 29:1106-1112. [PMID: 33104419 DOI: 10.12968/bjon.2020.29.19.1106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Although it is well-established that particular bacteria may cause gastroenteritis and other infections when present in the gut, it is only recently that scientists have made significant inroads into understanding the huge number of other bacteria and additional microbes that live within the gastrointestinal tract, referred to as the gut microbiome. In particular, it is now recognised that bacteria within the gut microbiome have a wide variety of roles in maintaining different aspects of human health, and that disturbances of these bacteria may potentially cause or contribute to a number of different medical conditions, including particular infections, certain cancers, and chronic conditions, including inflammatory bowel disease. Moreover, there is increasing awareness that these bacteria help determine how the body responds to medication, including antibiotics and chemotherapy. There has been growing interest in different approaches to alter the gut microbiome as a novel approach to medical therapy. This article provides an overview of the importance of the gut microbiome, with a particular focus on critical care.
Collapse
Affiliation(s)
- James L Alexander
- Clinical Lecturer and Honorary Specialty Registrar, Department of Metabolism, Digestion and Reproduction, Imperial College London, and Departments of Gastroenterology and Hepatology, St Mary's Hospital, Imperial College Healthcare NHS Trust, London
| | - Benjamin H Mullish
- Clinical Lecturer and Honorary Specialty Registrar, Department of Metabolism, Digestion and Reproduction, Imperial College London, and Departments of Gastroenterology and Hepatology, St Mary's Hospital, Imperial College Healthcare NHS Trust, London
| |
Collapse
|
117
|
Zhu F, Ke Y, Luo Y, Wu J, Wu P, Ma F, Liu Y. Effects of Different Treatment of Fecal Microbiota Transplantation Techniques on Treatment of Ulcerative Colitis in Rats. Front Microbiol 2021; 12:683234. [PMID: 34335508 PMCID: PMC8317227 DOI: 10.3389/fmicb.2021.683234] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 06/11/2021] [Indexed: 12/12/2022] Open
Abstract
Background: Ulcerative colitis (UC) is a chronic non-specific inflammatory bowel disease with abdominal pain, mucus, pus and blood in the stool as the main clinical manifestations. The pathogenesis of UC is still not completely clear, and multiple factors, such as genetic susceptibility, immune response, intestinal microecological changes and environmental factors, together lead to the onset of UC. In recent years, the role of intestinal microbiota disturbances on the pathogenesis of UC has received widespread attention. Therefore, fecal microbiota transplantation (FMT), which changes the intestinal microecological environment of UC patients by transplantation of normal fecal bacteria, has attracted increasing attention from researchers. However, there are no guidelines to recommend fresh FMT or frozen FMT in the treatment of UC, and there are few studies on this. Therefore, the purpose of this study was to explore the effects of fresh and frozen FMT methods on the treatment of experimental UC models in rats. Results: Compared with the model control group, all FMT groups achieved better efficacy, mainly manifested as weight gain by the rats, improvements in fecal characteristics and blood stools, reduced inflammatory factors and normal bacterial microbiota. The efficacy of the frozen FMT group was better than that of the fresh FMT group in terms of behavior and colon length. Conclusion: FMT method supplements the gut microbiota with beneficial bacteria, such as short-chain fatty acid-producing bacteria. These bacteria can regulate intestinal function, protect the mucosal barrier and reduce harmful bacteria, thus mitigating the damage to the intestinal barrier and the associated inflammatory response, resulting in UC remission. FMT is a feasible method for treating UC, with frozen FMT having a superior therapeutic effect than that of fresh FMT.
Collapse
Affiliation(s)
- Fangyuan Zhu
- The 2nd Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yifan Ke
- The 2nd Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yiting Luo
- The 2nd Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jiaqian Wu
- The 2nd Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Pei Wu
- The 2nd Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Fangxiao Ma
- The 2nd Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yingchao Liu
- Academic Affairs Office, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
118
|
Danne C, Rolhion N, Sokol H. Recipient factors in faecal microbiota transplantation: one stool does not fit all. Nat Rev Gastroenterol Hepatol 2021; 18:503-513. [PMID: 33907321 DOI: 10.1038/s41575-021-00441-5] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/15/2021] [Indexed: 02/08/2023]
Abstract
Faecal microbiota transplantation (FMT) is a promising therapy for chronic diseases associated with gut microbiota alterations. FMT cures 90% of recurrent Clostridioides difficile infections. However, in complex diseases, such as inflammatory bowel disease, irritable bowel syndrome and metabolic syndrome, its efficacy remains variable. It is accepted that donor selection and sample administration are key determinants of FMT success, yet little is known about the recipient factors that affect it. In this Perspective, we discuss the effects of recipient parameters, such as genetics, immunity, microbiota and lifestyle, on donor microbiota engraftment and clinical efficacy. Emerging evidence supports the possibility that controlling inflammation in the recipient intestine might facilitate engraftment by reducing host immune system pressure on the newly transferred microbiota. Deciphering FMT engraftment rules and developing novel therapeutic strategies are priorities to alleviate the burden of chronic diseases associated with an altered gut microbiota such as inflammatory bowel disease.
Collapse
Affiliation(s)
- Camille Danne
- INRA, UMR1319 Micalis & AgroParisTech, Jouy en Josas, France.,Paris Center for Microbiome Medicine (PaCeMM) FHU, Paris, France.,Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine, CRSA, AP-HP, Saint Antoine Hospital, Gastroenterology Department, Paris, France
| | - Nathalie Rolhion
- Paris Center for Microbiome Medicine (PaCeMM) FHU, Paris, France.,Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine, CRSA, AP-HP, Saint Antoine Hospital, Gastroenterology Department, Paris, France.,French Group of Fecal Microbiota Transplantation (GFTF), Paris, France
| | - Harry Sokol
- INRA, UMR1319 Micalis & AgroParisTech, Jouy en Josas, France. .,Paris Center for Microbiome Medicine (PaCeMM) FHU, Paris, France. .,Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine, CRSA, AP-HP, Saint Antoine Hospital, Gastroenterology Department, Paris, France. .,French Group of Fecal Microbiota Transplantation (GFTF), Paris, France. .,AP-HP Fecal Microbiota transplantation Center, Saint Antoine Hospital, Paris, France.
| |
Collapse
|
119
|
Feng J, Tang YN, Zhou LX, Pan JS. Standardized Nursing Procedures for Fecal Microbiota Transplantation via Upper Endoscopy. Gastroenterol Nurs 2021; 44:227-232. [PMID: 34176888 DOI: 10.1097/sga.0000000000000577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 10/20/2020] [Indexed: 11/25/2022] Open
Abstract
Fecal microbiota transplantation is an emerging treatment option that lacks a standardized nursing procedure. In our department, fecal microbiota transplantation has been undertaken to treat chronic hepatitis B and inflammatory bowel diseases since 2015. The fecal microbiota transplantation process involves various nursing measures that are critical for the successful completion of the procedures. In our center, a set of standardized nursing procedures has been established and has proved effective and operable. Standardized nursing procedures enhance the efficacy of fecal microbiota transplantation and alleviate the risk of treatment-related complications.
Collapse
Affiliation(s)
- Juan Feng
- Juan Feng, BSc, is Specialist Nurse of Endoscopy, Department of Gastroenterology, Zhongshan Hospital Affiliated to Xiamen University, Xiamen, Fujian, China
- Yun-Na Tang, BSc, is Specialist Nurse of Endoscopy, Department of Gastroenterology, Zhongshan Hospital Affiliated to Xiamen University, Xiamen, Fujian, China
- Li-Xiang Zhou, BSc, is Head Nurse of Endoscopy and Associate Professor of Nursing, Department of Gastroenterology, Zhongshan Hospital Affiliated to Xiamen University, Xiamen, Fujian, China
- Jin-Shui Pan, PhD, MD, is Associate Professor of Hepatology, Department of Gastroenterology, Zhongshan Hospital Affiliated to Xiamen University, Xiamen, Fujian, China
| | - Yun-Na Tang
- Juan Feng, BSc, is Specialist Nurse of Endoscopy, Department of Gastroenterology, Zhongshan Hospital Affiliated to Xiamen University, Xiamen, Fujian, China
- Yun-Na Tang, BSc, is Specialist Nurse of Endoscopy, Department of Gastroenterology, Zhongshan Hospital Affiliated to Xiamen University, Xiamen, Fujian, China
- Li-Xiang Zhou, BSc, is Head Nurse of Endoscopy and Associate Professor of Nursing, Department of Gastroenterology, Zhongshan Hospital Affiliated to Xiamen University, Xiamen, Fujian, China
- Jin-Shui Pan, PhD, MD, is Associate Professor of Hepatology, Department of Gastroenterology, Zhongshan Hospital Affiliated to Xiamen University, Xiamen, Fujian, China
| | - Li-Xiang Zhou
- Juan Feng, BSc, is Specialist Nurse of Endoscopy, Department of Gastroenterology, Zhongshan Hospital Affiliated to Xiamen University, Xiamen, Fujian, China
- Yun-Na Tang, BSc, is Specialist Nurse of Endoscopy, Department of Gastroenterology, Zhongshan Hospital Affiliated to Xiamen University, Xiamen, Fujian, China
- Li-Xiang Zhou, BSc, is Head Nurse of Endoscopy and Associate Professor of Nursing, Department of Gastroenterology, Zhongshan Hospital Affiliated to Xiamen University, Xiamen, Fujian, China
- Jin-Shui Pan, PhD, MD, is Associate Professor of Hepatology, Department of Gastroenterology, Zhongshan Hospital Affiliated to Xiamen University, Xiamen, Fujian, China
| | - Jin-Shui Pan
- Juan Feng, BSc, is Specialist Nurse of Endoscopy, Department of Gastroenterology, Zhongshan Hospital Affiliated to Xiamen University, Xiamen, Fujian, China
- Yun-Na Tang, BSc, is Specialist Nurse of Endoscopy, Department of Gastroenterology, Zhongshan Hospital Affiliated to Xiamen University, Xiamen, Fujian, China
- Li-Xiang Zhou, BSc, is Head Nurse of Endoscopy and Associate Professor of Nursing, Department of Gastroenterology, Zhongshan Hospital Affiliated to Xiamen University, Xiamen, Fujian, China
- Jin-Shui Pan, PhD, MD, is Associate Professor of Hepatology, Department of Gastroenterology, Zhongshan Hospital Affiliated to Xiamen University, Xiamen, Fujian, China
| |
Collapse
|
120
|
The role of the microbiome in gastrointestinal inflammation. Biosci Rep 2021; 41:228872. [PMID: 34076695 PMCID: PMC8201460 DOI: 10.1042/bsr20203850] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/27/2021] [Accepted: 06/02/2021] [Indexed: 12/12/2022] Open
Abstract
The microbiome plays an important role in maintaining human health. Despite multiple factors being attributed to the shaping of the human microbiome, extrinsic factors such diet and use of medications including antibiotics appear to dominate. Mucosal surfaces, particularly in the gut, are highly adapted to be able to tolerate a large population of microorganisms whilst still being able to produce a rapid and effective immune response against infection. The intestinal microbiome is not functionally independent from the host mucosa and can, through presentation of microbe-associated molecular patterns (MAMPs) and generation of microbe-derived metabolites, fundamentally influence mucosal barrier integrity and modulate host immunity. In a healthy gut there is an abundance of beneficial bacteria that help to preserve intestinal homoeostasis, promote protective immune responses, and limit excessive inflammation. The importance of the microbiome is further highlighted during dysbiosis where a loss of this finely balanced microbial population can lead to mucosal barrier dysfunction, aberrant immune responses, and chronic inflammation that increases the risk of disease development. Improvements in our understanding of the microbiome are providing opportunities to harness members of a healthy microbiota to help reverse dysbiosis, reduce inflammation, and ultimately prevent disease progression.
Collapse
|
121
|
Varga A, Kocsis B, Sipos D, Kása P, Vigvári S, Pál S, Dembrovszky F, Farkas K, Péterfi Z. How to Apply FMT More Effectively, Conveniently and Flexible - A Comparison of FMT Methods. Front Cell Infect Microbiol 2021; 11:657320. [PMID: 34150673 PMCID: PMC8213398 DOI: 10.3389/fcimb.2021.657320] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 05/18/2021] [Indexed: 01/02/2023] Open
Abstract
Purpose Metronidazol and vancomycin were long the two best options against Clostridioides (formerly Clostridium) difficile infections (CDI). Now, the cost of new drugs such as fidaxomicin directs us towards alternative treatment options, such as faecal microbiota transplant (FMT). Its effectiveness is similar to fidaxomicin. There are questions regarding its safety, but the biggest challenges are prejudice and inconvenience. Most protocols refer to FMT applied in the form of a solution. We investigated different modalities of FMT. Methods Instead of using nasoenteric tubes or colonoscopy, we place frozen or lyophilised stool in non-coated, size “00”, hard gelatine capsules or enterosolvent, size “0” capsules. Results We found that non-coated, size “00”, hard gelatine capsules are appropriate for conducting FMT. Capsules containing lyophilised supernatant with a low number of bacteria have been proven to be non-inferior to other FMT modalities. The primary cure rate in the supernatant group was 93.75%, and 66.67% in the sediment group. The overall cure rate was 82.14%. Depending on the protocol, 4–7 capsules are sufficient per patient. Capsules can be stored for up to one year at -20°C. Conclusions FMT is a feasible alternative to antibiotic treatments in CDI. Our method makes the process flexible and less inconvenient to patients. Long storage time allows a consistent supply of capsules, while small volume and formulation make the procedure tolerable.
Collapse
Affiliation(s)
- Adorján Varga
- Department of Medical Microbiology and Immunology, University of Pécs Clinical Centre, Pécs, Hungary
| | - Béla Kocsis
- Department of Medical Microbiology and Immunology, University of Pécs Clinical Centre, Pécs, Hungary
| | - Dávid Sipos
- 1stDepartment of Internal Medicine - Department of Infectology, University of Pécs Clinical Centre, Pécs, Hungary
| | - Péter Kása
- Institute of Pharmaceutical Technology and Biopharmacy, University of Pécs Faculty of Pharmacy, Pécs, Hungary
| | - Szabolcs Vigvári
- 1stDepartment of Internal Medicine - Department of Infectology, University of Pécs Clinical Centre, Pécs, Hungary
| | - Szilárd Pál
- Institute of Pharmaceutical Technology and Biopharmacy, University of Pécs Faculty of Pharmacy, Pécs, Hungary
| | - Fanni Dembrovszky
- Institute for Translational Medicine, University of Pécs Medical School, Pécs, Hungary
| | - Kornélia Farkas
- Institute of Bioanalysis, University of Pécs Medical School, Pécs, Hungary
| | - Zoltán Péterfi
- 1stDepartment of Internal Medicine - Department of Infectology, University of Pécs Clinical Centre, Pécs, Hungary
| |
Collapse
|
122
|
Gonzales-Luna AJ, Spinler JK, Oezguen N, Khan MAW, Danhof HA, Endres BT, Alam MJ, Begum K, Lancaster C, Costa GP, Savidge TC, Hurdle JG, Britton R, Garey KW. Systems biology evaluation of refractory Clostridioides difficile infection including multiple failures of fecal microbiota transplantation. Anaerobe 2021; 70:102387. [PMID: 34044101 DOI: 10.1016/j.anaerobe.2021.102387] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 05/18/2021] [Accepted: 05/21/2021] [Indexed: 12/26/2022]
Abstract
BACKGROUND Fecal microbiota transplantation (FMT) aims to cure Clostridioides difficile infection (CDI) through reestablishing a healthy microbiome and restoring colonization resistance. Although often effective after one infusion, patients with continued microbiome disruptions may require multiple FMTs. In this N-of-1 study, we use a systems biology approach to evaluate CDI in a patient receiving chronic suppressive antibiotics with four failed FMTs over two years. METHODS Seven stool samples were obtained between 2016-18 while the patient underwent five FMTs. Stool samples were cultured for C. difficile and underwent microbial characterization and functional gene analysis using shotgun metagenomics. C. difficile isolates were characterized through ribotyping, whole genome sequencing, metabolic pathway analysis, and minimum inhibitory concentration (MIC) determinations. RESULTS Growing ten strains from each sample, the index and first four recurrent cultures were single strain ribotype F078-126, the fifth was a mixed culture of ribotypes F002 and F054, and the final culture was ribotype F002. One single nucleotide polymorphism (SNP) variant was identified in the RNA polymerase (RNAP) β-subunit RpoB in the final isolated F078-126 strain when compared to previous F078-126 isolates. This SNV was associated with metabolic shifts but phenotypic differences in fidaxomicin MIC were not observed. Microbiome differences were observed over time during vancomycin therapy and after failed FMTs. CONCLUSION This study highlights the importance of antimicrobial stewardship in patients receiving FMT. Continued antibiotics play a destructive role on a transplanted microbiome and applies selection pressure for resistance to the few antibiotics available to treat CDI.
Collapse
|
123
|
Ghani R, Mullish BH, McDonald JAK, Ghazy A, Williams HRT, Brannigan ET, Mookerjee S, Satta G, Gilchrist M, Duncan N, Corbett R, Innes AJ, Pavlů J, Thursz MR, Davies F, Marchesi JR. Disease Prevention Not Decolonization: A Model for Fecal Microbiota Transplantation in Patients Colonized With Multidrug-resistant Organisms. Clin Infect Dis 2021; 72:1444-1447. [PMID: 32681643 PMCID: PMC8075030 DOI: 10.1093/cid/ciaa948] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 08/04/2020] [Indexed: 12/24/2022] Open
Abstract
Fecal microbiota transplantation (FMT) yields variable intestinal decolonization results for multidrug-resistant organisms (MDROs). This study showed significant reductions in antibiotic duration, bacteremia, and length of stay in 20 patients colonized/infected with MDRO receiving FMT (compared with pre-FMT history, and a matched group not receiving FMT), despite modest decolonization rates.
Collapse
Affiliation(s)
- Rohma Ghani
- Division of Digestive Diseases, Department of Metabolism, Digestion, and Reproduction, Imperial College London, London, United Kingdom
- Department of Infection, Imperial College Healthcare NHS Trust, London, United Kingdom
| | - Benjamin H Mullish
- Division of Digestive Diseases, Department of Metabolism, Digestion, and Reproduction, Imperial College London, London, United Kingdom
- Department of Gastroenterology and Hepatology, St Mary’s Hospital, Imperial College Healthcare NHS Trust, London, United Kingdom
| | - Julie A K McDonald
- Division of Digestive Diseases, Department of Metabolism, Digestion, and Reproduction, Imperial College London, London, United Kingdom
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, United Kingdom
| | - Anan Ghazy
- Department of Infection, Imperial College Healthcare NHS Trust, London, United Kingdom
| | - Horace R T Williams
- Division of Digestive Diseases, Department of Metabolism, Digestion, and Reproduction, Imperial College London, London, United Kingdom
- Department of Gastroenterology and Hepatology, St Mary’s Hospital, Imperial College Healthcare NHS Trust, London, United Kingdom
| | - Eimear T Brannigan
- Department of Infection, Imperial College Healthcare NHS Trust, London, United Kingdom
| | - Siddharth Mookerjee
- Department of Infection, Imperial College Healthcare NHS Trust, London, United Kingdom
| | - Giovanni Satta
- Department of Infection, Imperial College Healthcare NHS Trust, London, United Kingdom
| | - Mark Gilchrist
- Department of Infection, Imperial College Healthcare NHS Trust, London, United Kingdom
| | - Neill Duncan
- Department of Renal Medicine, Hammersmith Hospital, Imperial College Healthcare NHS Trust, London, United Kingdom
| | - Richard Corbett
- Department of Renal Medicine, Hammersmith Hospital, Imperial College Healthcare NHS Trust, London, United Kingdom
| | - Andrew J Innes
- Centre for Haematology, Imperial College London, and Hammersmith Hospital, Imperial College London NHS Trust, London, United Kingdom
| | - Jiří Pavlů
- Centre for Haematology, Imperial College London, and Hammersmith Hospital, Imperial College London NHS Trust, London, United Kingdom
| | - Mark R Thursz
- Division of Digestive Diseases, Department of Metabolism, Digestion, and Reproduction, Imperial College London, London, United Kingdom
- Department of Gastroenterology and Hepatology, St Mary’s Hospital, Imperial College Healthcare NHS Trust, London, United Kingdom
| | - Frances Davies
- Department of Infection, Imperial College Healthcare NHS Trust, London, United Kingdom
| | - Julian R Marchesi
- Division of Digestive Diseases, Department of Metabolism, Digestion, and Reproduction, Imperial College London, London, United Kingdom
- School of Biosciences, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
124
|
Croci S, D’Apolito LI, Gasperi V, Catani MV, Savini I. Dietary Strategies for Management of Metabolic Syndrome: Role of Gut Microbiota Metabolites. Nutrients 2021; 13:nu13051389. [PMID: 33919016 PMCID: PMC8142993 DOI: 10.3390/nu13051389] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 04/15/2021] [Accepted: 04/16/2021] [Indexed: 12/21/2022] Open
Abstract
Metabolic syndrome (MetS) is a complex pathophysiological state with incidence similar to that of a global epidemic and represents a risk factor for the onset of chronic non-communicable degenerative diseases (NCDDs), including cardiovascular disease (CVD), type 2 diabetes mellitus, chronic kidney disease, and some types of cancer. A plethora of literature data suggest the potential role of gut microbiota in interfering with the host metabolism, thus influencing several MetS risk factors. Perturbation of the gut microbiota’s composition and activity, a condition known as dysbiosis, is involved in the etiopathogenesis of multiple chronic diseases. Recent studies have shown that some micro-organism-derived metabolites (including trimethylamine N-oxide (TMAO), lipopolysaccharide (LPS) of Gram-negative bacteria, indoxyl sulfate and p-cresol sulfate) induce subclinical inflammatory processes involved in MetS. Gut microbiota’s taxonomic species or abundance are modified by many factors, including diet, lifestyle and medications. The main purpose of this review is to highlight the correlation between different dietary strategies and changes in gut microbiota metabolites. We mainly focus on the validity/inadequacy of specific dietary patterns to reduce inflammatory processes, including leaky gut and subsequent endotoxemia. We also describe the chance of probiotic supplementation to interact with the immune system and limit negative consequences associated with MetS.
Collapse
Affiliation(s)
| | | | - Valeria Gasperi
- Correspondence: (V.G.); (M.V.C.); Tel.: +39-06-72596465 (V.G. & M.V.C.)
| | | | | |
Collapse
|
125
|
Yang J, Wu J, Li Y, Zhang Y, Cho WC, Ju X, van Schothorst EM, Zheng Y. Gut bacteria formation and influencing factors. FEMS Microbiol Ecol 2021; 97:6168382. [PMID: 33705527 DOI: 10.1093/femsec/fiab043] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 03/09/2021] [Indexed: 12/11/2022] Open
Abstract
The gut microbiota plays an important role in human health. In modern life, with the improvement of living conditions, the intake of high-sugar and high-fat diets as well as the large-scale use of antibacterial drugs have an extensive impact on the gut microbiota, even leading to gut microbiota-orchestrating disorders. This review discusses the effects of various factors, including geographic location, age, diet, antibacterial drugs, psychological situation and exercise on gut bacteria, which helps us profoundly to understand the significance of gut bacteria to human health and to find effective solutions to prevent or treat related diseases.
Collapse
Affiliation(s)
- Jing Yang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, CAAS, 1 Xujiaping, Chengguan District, Lanzhou 730046, China
| | - Jin'en Wu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, CAAS, 1 Xujiaping, Chengguan District, Lanzhou 730046, China
| | - Yating Li
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, CAAS, 1 Xujiaping, Chengguan District, Lanzhou 730046, China
| | - Yong'e Zhang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, CAAS, 1 Xujiaping, Chengguan District, Lanzhou 730046, China
| | - William C Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, 30 Gascoigne Road, Hong Kong SAR 999077, China
| | - Xianghong Ju
- Department of Veterinary Medicine, College of Agriculture, Guangdong Ocean University, 1 Haida Road, Mazhang District, 524088, China
| | - Evert M van Schothorst
- Human and Animal Physiology, Wageningen University, De Elst 1, Wageningen 6708WD, The Netherlands
| | - Yadong Zheng
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, CAAS, 1 Xujiaping, Chengguan District, Lanzhou 730046, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, 88 Daxuenan Road, Yangzhou 225009, China
| |
Collapse
|
126
|
Sturov NV, Popov SV, Zhukov VA. Modern approaches to the correction of the gut microbiota. MEDITSINSKIY SOVET = MEDICAL COUNCIL 2021:136-143. [DOI: 10.21518/2079-701x-2021-4-136-143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
The article presents modern data on the formation, structure, functions and possibilities of correction of the gut microbiota. The gut microbiota is a collection of living organisms that inhabit the human intestine and form a complex microecological system that performs many functions. It is known that the composition and state of the gut microbiota is influenced by both environmental factors, such as diet and lifestyle, and the human body, including genetic predisposition. A violation in this system (dysbiosis) can provoke the development of a number of diseases and pathological conditions, in which the correction of the gut microbiota may be a promising therapeutic strategy. The most common methods of correcting dysbiosis are dieting, the use of pro-and prebiotics, and fecal microbiota transplantation. The diet affects the qualitative and quantitative composition and functions of the gut microbiota, the activity of its individual representatives. Probiotics are used to modulate, preserve the gut microbiota in dysbiosis, as well as to prevent its development. Fecal microbiota transplantation is performed by transferring the microbiota from a healthy donor. This method is one of the most effective ways to treat Clostridium difficile infection. This review article also presents the results of fecal microbiota transplantation in patients with inflammatory bowel disease and hepatic encephalopathy. It is shown that after transplantation, there is a rapid change in the composition of the gut microbiota, which becomes similar to the microbiota of a healthy donor. Each of these methods of correction demonstrates a different degree of influence on the gut microbiota, and their therapeutic effectiveness depends on the direct characteristics of the methods used, as well as the specific disease and requires further study.
Collapse
|
127
|
Chen J, Zaman A, Ramakrishna B, Olesen SW. Stool Banking for Fecal Microbiota Transplantation: Methods and Operations at a Large Stool Bank. Front Cell Infect Microbiol 2021; 11:622949. [PMID: 33937092 PMCID: PMC8082449 DOI: 10.3389/fcimb.2021.622949] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 03/22/2021] [Indexed: 12/15/2022] Open
Abstract
Objectives Fecal microbiota transplantation (FMT) is a recommended therapy for recurrent Clostridioides difficile infection and is being investigated as a potential therapy for dozens of microbiota-mediated indications. Stool banks centralize FMT donor screening and FMT material preparation with the goal of expanding access to FMT material while simultaneously improving its safety, quality, and convenience. Although there are published consensuses on donor screening guidelines, there are few reports about the implementation of those guidelines in functioning stool banks. Methods To help inform consensus standards with data gathered from real-world settings and, in turn, to improve patient care, here we describe the general methodology used in 2018 by OpenBiome, a large stool bank, and its outputs in that year. Results In 2018, the stool bank received 7,536 stool donations from 210 donors, a daily average of 20.6 donations, and processed 4,271 of those donations into FMT preparations. The median time a screened and enrolled stool donor actively donated stool was 5.8 months. The median time between the manufacture of an FMT preparation and its shipment to a hospital or physician was 8.9 months. Half of the stool bank's partner hospitals and physicians ordered an average of 0.75 or fewer FMT preparations per month. Conclusions Further knowledge sharing should help inform refinements of stool banking guidelines and best practices.
Collapse
|
128
|
Abstract
Tuberculosis (TB) remains an infectious disease of global significance and a
leading cause of death in low- and middle-income countries. Significant effort
has been directed towards understanding Mycobacterium
tuberculosis genomics, virulence, and pathophysiology within the
framework of Koch postulates. More recently, the advent of “-omics” approaches
has broadened our appreciation of how “commensal” microbes have coevolved with
their host and have a central role in shaping health and susceptibility to
disease. It is now clear that there is a diverse repertoire of interactions
between the microbiota and host immune responses that can either sustain or
disrupt homeostasis. In the context of the global efforts to combatting TB, such
findings and knowledge have raised important questions: Does microbiome
composition indicate or determine susceptibility or resistance to
M. tuberculosis infection? Is the
development of active disease or latent infection upon M.
tuberculosis exposure influenced by the microbiome? Does
microbiome composition influence TB therapy outcome and risk of reinfection with
M. tuberculosis? Can the microbiome be
actively managed to reduce risk of M.
tuberculosis infection or recurrence of TB? Here, we
explore these questions with a particular focus on microbiome-immune
interactions that may affect TB susceptibility, manifestation and progression,
the long-term implications of anti-TB therapy, as well as the potential of the
host microbiome as target for clinical manipulation.
Collapse
Affiliation(s)
- Giorgia Mori
- The University of Queensland Diamantina Institute, Faculty
of Medicine, The University of Queensland, Brisbane, Australia
| | - Mark Morrison
- The University of Queensland Diamantina Institute, Faculty
of Medicine, The University of Queensland, Brisbane, Australia
| | - Antje Blumenthal
- The University of Queensland Diamantina Institute, Faculty
of Medicine, The University of Queensland, Brisbane, Australia
- * E-mail:
| |
Collapse
|
129
|
Usefulness of Fecal Calprotectin in the Management of Patients with Toxigenic Clostridioides difficile. J Clin Med 2021; 10:jcm10081627. [PMID: 33921309 PMCID: PMC8069209 DOI: 10.3390/jcm10081627] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 03/29/2021] [Accepted: 04/07/2021] [Indexed: 12/17/2022] Open
Abstract
The availability of highly sensitive molecular tests for the detection of Clostridioides difficile in feces leads to overtreatment of patients who are probably only colonized. In this prospective study, the usefulness of fecal calprotectin (fCP) is evaluated in a cohort of patients with detection of toxigenic C. difficile in feces. Patients were classified by an infectious diseases consultant blinded to fCP results into three groups-group I, presumed Clostridioides difficile infection (CDI); group II, doubtful but treated CDI; and group III, presumed C. difficile colonization or self-limited CDI not needing treatment. One hundred and thirty-four patients were included. The median fCP concentrations were 410 (138-815) μg/g in group I, 188 (57-524) μg/g in group II, and 51 (26-97) μg/g in group III (26 cases); p < 0.05 for all comparisons. In forty-five out of 134 cases (33.5%), the fCP concentrations were below 100 µg/g. In conclusion, fCP is low in most patients who do not need treatment against C. difficile, and should be investigated as a potentially useful test in the management of patients with detected toxigenic C. difficile.
Collapse
|
130
|
Quraishi MN, Shabir S, Manzoor SE, Green CA, Sharma N, Beggs AD, Iqbal TH. The journey towards safely restarting faecal microbiota transplantation services in the UK during the COVID-19 era. THE LANCET. MICROBE 2021; 2:e133-e134. [PMID: 33655227 PMCID: PMC7906665 DOI: 10.1016/s2666-5247(21)00036-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Mohammed Nabil Quraishi
- University of Birmingham Microbiome Treatment Centre, Birmingham, UK
- University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
- Institute of Cancer and Genomic Sciences, University of Birmingham, UK
| | - Sahida Shabir
- University of Birmingham Microbiome Treatment Centre, Birmingham, UK
| | - Susan E Manzoor
- University of Birmingham Microbiome Treatment Centre, Birmingham, UK
| | - Christopher A Green
- University of Birmingham Microbiome Treatment Centre, Birmingham, UK
- University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
- Institute of Microbiology and Infection, University of Birmingham, UK
| | - Naveen Sharma
- University of Birmingham Microbiome Treatment Centre, Birmingham, UK
- University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Andrew D Beggs
- University of Birmingham Microbiome Treatment Centre, Birmingham, UK
- University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
- Institute of Cancer and Genomic Sciences, University of Birmingham, UK
| | - Tariq H Iqbal
- University of Birmingham Microbiome Treatment Centre, Birmingham, UK
- University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
- Institute of Microbiology and Infection, University of Birmingham, UK
| |
Collapse
|
131
|
Abstract
Fecal microbiota transplantation (FMT) has been recommended in clinical guidelines for the treatment of recurrent Clostridioides difficile infection (CDI). However, it is considered investigational by most regulatory agencies. As the adoption of FMT has increased from a small group of CDI experts alone to more widespread use, there has been a corresponding increase in concern regarding potential risk. FMT is largely considered a safe procedure although risks described range from mild gastrointestinal symptoms to serious infection. Currently, there is variability in how "FMT" is characterized specifically regarding testing approach, which, in turn, impacts the risk profile. This has been highlighted by the rare cases of multidrug-resistant organisms, Shiga toxin-producing Escherichia and enteropathogenic E. coli, recently reported, where these organisms were not screened. These cases have prompted additional screening mandates from the US Food and Drug Administration (FDA), which has maintained its policy of enforcement discretion for the use of FMT for CDI not responding to standard therapy. Here, we examine the evolving risk landscape of FMT.
Collapse
|
132
|
Gweon TG, Na SY. Next Generation Fecal Microbiota Transplantation. Clin Endosc 2021; 54:152-156. [PMID: 33761228 PMCID: PMC8039740 DOI: 10.5946/ce.2021.053] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 02/24/2021] [Indexed: 12/15/2022] Open
Abstract
Fecal microbiota transplantation (FMT) is considered as an effective treatment for Clostridioides difficile infection. However, the precise mechanism of FMT is yet to be determined. Human stool consists of the gut microbiota, bacterial debris, and metabolic products. Of these, the intestinal microbiota is the most important factor that exerts therapeutic efficacy in FMT. Fresh donor stool, blended with normal saline, has been employed for traditional FMT. Nevertheless, stool processing is a major impediment in FMT. Frozen stool and capsule formulations have similar efficacy to that of fresh stool. In addition, several novel stool products have been identified. A stool bank that provides stool products with pre-screened donor stool has been established to help physicians and thereby facilitate FMT. Recent next-generation sequencing techniques have been key in facilitating the detailed analysis of the microbiota and gut environment of individual donors and recipients.
Collapse
Affiliation(s)
- Tae-Geun Gweon
- Division of Gastroenterology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea.,Division of Gastroenterology, Department of Internal Medicine, Bucheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Bucheon, Korea
| | - Soo-Young Na
- Division of Gastroenterology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea.,Division of Gastroenterology, Department of Internal Medicine, Incheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Incheon, Korea
| |
Collapse
|
133
|
Guilfoyle J, Considine J, Bouchoucha SL. Faecal microbiota transplantation and the patient experience: A systematic review. J Clin Nurs 2021; 30:1236-1252. [PMID: 33377562 DOI: 10.1111/jocn.15625] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 11/17/2020] [Accepted: 12/19/2020] [Indexed: 12/14/2022]
Abstract
AIM To review and synthesise the literature examining the patients' experience of faecal microbiota transplantation. BACKGROUND Faecal microbiota transplantation is a common treatment for many conditions, including Clostridium Difficile infections. Patients' experience of treatments is an important influence on clinical decision-making and treatment adherence. DESIGN The PRISMA guidelines guided this systematic review. The review was registered with PROSPERO [CRD42020140446]. METHOD A search of Cumulative Index of Nursing and Allied Health Literature, Medline and Embase was conducted for studies published in English and French up to June 2020. Risk of bias was examined using Critical Appraisal Skills Program tools, and quality appraisal was performed independently by three reviewers. Primary outcome of interest was the patient experience of faecal microbiota transplantation. Data were synthesised using a narrative approach. RESULTS The search identified 3316 citations, and 12 studies were included. Methodological quality of studies was moderate to low quality. Few studies have accurately explored the patients' experience of faecal microbiota transplantation: most focus on clinical outcomes or hypothetical scenarios regarding the patients' perspectives of faecal microbiota transplantation. Only one study was identified where the sole focus was the patients' experience of faecal microbiota transplantation. Patient's experience of faecal microbiota transplantation was diverse and complex with physiological and psychological components dependent on the patient's medical condition, the administration method and the efficacy. CONCLUSION Patients did not find faecal microbiota transplantation unappealing; however, patients equally reported the procedural experience was unpleasant. Limited results and low quality evidence suggest that further evaluation of the patient experience of faecal microbiota transplantation would be beneficial. RELEVANCE TO CLINICAL PRACTICE Identifying the patients' experience of faecal microbiota transplantation may inform recommendations regarding alternate treatment therapies and enable opportunities to provide quality care for patients that require faecal microbiota transplantation.
Collapse
Affiliation(s)
- Jessica Guilfoyle
- School of Nursing and Midwifery, Deakin University, Geelong, Vic., Australia
| | - Julie Considine
- School of Nursing and Midwifery, Deakin University, Geelong, Vic., Australia.,Centre for Quality and Patient Safety Research in the Institute for Health Transformation, Deakin University, Geelong, Vic., Australia.,Centre for Quality and Patient Safety-Eastern Health Partnership, Box Hill, Vic., Australia
| | - Stéphane L Bouchoucha
- School of Nursing and Midwifery, Deakin University, Geelong, Vic., Australia.,Centre for Quality and Patient Safety Research in the Institute for Health Transformation, Deakin University, Geelong, Vic., Australia
| |
Collapse
|
134
|
Keller JJ, Ooijevaar RE, Hvas CL, Terveer EM, Lieberknecht SC, Högenauer C, Arkkila P, Sokol H, Gridnyev O, Mégraud F, Kump PK, Nakov R, Goldenberg SD, Satokari R, Tkatch S, Sanguinetti M, Cammarota G, Dorofeev A, Gubska O, Laniro G, Mattila E, Arasaradnam RP, Sarin SK, Sood A, Putignani L, Alric L, Baunwall SMD, Kupcinskas J, Link A, Goorhuis AG, Verspaget HW, Ponsioen C, Hold GL, Tilg H, Kassam Z, Kuijper EJ, Gasbarrini A, Mulder CJJ, Williams HRT, Vehreschild MJGT. A standardised model for stool banking for faecal microbiota transplantation: a consensus report from a multidisciplinary UEG working group. United European Gastroenterol J 2021; 9:229-247. [PMID: 33151137 PMCID: PMC8259288 DOI: 10.1177/2050640620967898] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 09/27/2020] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Faecal microbiota transplantation is an emerging therapeutic option, particularly for the treatment of recurrent Clostridioides difficile infection. Stool banks that organise recruitment and screening of faeces donors are being embedded within the regulatory frameworks described in the European Union Tissue and Cells Directive and the technical guide to the quality and safety of tissue and cells for human application, published by the European Council. OBJECTIVE Several European and international consensus statements concerning faecal microbiota transplantation have been issued. While these documents provide overall guidance, we aim to provide a detailed description of all processes that relate to the collection, handling and clinical application of human donor stool in this document. METHODS Collaborative subgroups of experts on stool banking drafted concepts for all domains pertaining to stool banking. During a working group meeting in the United European Gastroenterology Week 2019 in Barcelona, these concepts were discussed and finalised to be included in our overall guidance document about faecal microbiota transplantation. RESULTS A guidance document for all domains pertaining to stool banking was created. This document includes standard operating manuals for several processes involved with stool banking, such as handling of donor material, storage and donor screening. CONCLUSION The implementation of faecal microbiota transplantation by stool banks in concordance with our guidance document will enable quality assurance and guarantee the availability of donor faeces preparations for patients.
Collapse
|
135
|
Park SY, Seo GS. Fecal Microbiota Transplantation: Is It Safe? Clin Endosc 2021; 54:157-160. [PMID: 33827154 PMCID: PMC8039753 DOI: 10.5946/ce.2021.072] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/11/2021] [Accepted: 03/12/2021] [Indexed: 12/22/2022] Open
Abstract
Fecal microbiota transplantation (FMT) is an accepted procedure for the management of recurrent Clostridioides difficile infections. FMT is generally considered safe and well-tolerated - even in high-risk patients. Most short-term risks are mild and known to be associated with delivery methods. Long-term side effects have not been established, and no signs of harm have been found to date. However, causality for several microbiome-associated diseases has to be established. Even though FMT is generally considered safe with strict donor screening, serious adverse events have been recently associated with the FMT product from the stool bank, where screening for multi-drug resistant organisms is not included in protocols. Here, we discuss the adverse events associated with FMT and safety issues.
Collapse
Affiliation(s)
- Seon-Young Park
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju, Korea
| | - Geom Seog Seo
- Department of Internal Medicine, Digestive Disease Research Institute, Wonkwang University College of Medicine, Iksan, Korea
| |
Collapse
|
136
|
Wu W, Shen N, Luo L, Deng Z, Chen J, Tao Y, Mo X, Cao Q. Fecal microbiota transplantation before hematopoietic stem cell transplantation in a pediatric case of chronic diarrhea with a FOXP3 mutation. Pediatr Neonatol 2021; 62:172-180. [PMID: 33358585 DOI: 10.1016/j.pedneo.2020.11.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 08/23/2020] [Accepted: 11/27/2020] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Immune dysregulation, polyendocrinopathy, enteropathy, X-linked (IPEX) syndrome is a rare disorder caused by mutation of the forkhead box protein 3 (FOXP3) gene, often leading to intractable and life-threatening diarrhea. Fecal microbiota transplantation (FMT), has been regarded in recent years as an available approach to reconstruct disrupted gut microbiome and successfully used to attenuates diarrhea induced by different underlying diseases. Therefore, FMT may have curative potential on the symptoms of enteropathy in patients with IPEX syndrome. METHODS Physical and laboratory examinations were performed, and clinical data were collected. FMT was administered via frozen fecal microbial solution, and the fecal microbiota composition was analyzed using 16S rDNA sequencing before and after FMT. RESULTS The patient was diagnosed with IPEX syndrome with a mutation detected in the FOXP3 gene, which was identified as c.767T > C (p.M256T). He presented with recurrent watery diarrhea and respiratory infections after birth and developed a significant failure to thrive. Disturbances in the gut microbiota composition and marked decreased bacterial diversity were observed to be involved in the persistent and refractory diarrhea. After receiving FMT treatment, the patient responded with remission of the diarrhea without apparent side effects. His stool output significantly decreased, corresponding to increased microbial diversity and modification of his microbiota composition. The patient finally achieved full recovery after hematopoietic stem cell transplantation (HSCT). CONCLUSION Our data suggest an association between the gut microbiota and clinical symptoms of patient with IPEX syndrome and demonstrate FMT as an alternative therapy for severe diarrhea unresponsive to routine therapy in these patients.
Collapse
Affiliation(s)
- Wenyan Wu
- Department of Infectious Diseases, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Nan Shen
- Department of Infectious Diseases, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lijuan Luo
- Department of Infectious Diseases, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhaohui Deng
- Department of Gastroenterology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jing Chen
- Department of Hematology/Oncology, Shanghai Children's Medical Center, Shanghai Jiao Tong University, Shanghai, China
| | - Yue Tao
- The Laboratory of Pediatric Infectious Diseases, Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Xi Mo
- The Laboratory of Pediatric Infectious Diseases, Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Qing Cao
- The Laboratory of Pediatric Infectious Diseases, Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
137
|
Żebrowska P, Łaczmańska I, Łaczmański Ł. Future Directions in Reducing Gastrointestinal Disorders in Children With ASD Using Fecal Microbiota Transplantation. Front Cell Infect Microbiol 2021; 11:630052. [PMID: 33718277 PMCID: PMC7952982 DOI: 10.3389/fcimb.2021.630052] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 01/22/2021] [Indexed: 12/16/2022] Open
Abstract
Research on the use of fecal microbiota transplantation (FMT) in the treatment of disorders related to digestive system ailments in children with autism spectrum disorders (ASDs) is a new attempt in a therapeutic approach. There are very little scientific evidences available on this emerging alternative method. However, it appears to be interesting not only because of its primary outcome, relieving the gastrointestinal (GI) symptoms, but also secondary therapeutic effect of alleviating autistic behavioral symptoms. FMT seems to be also promising method in the treatment of another group of pediatric patients, children with inflammatory bowel disease (IBD). The aim of this study is to discuss the potential use of FMT and modified protocols (MTT, microbiota transfer therapy) in the treatment of GI disorders in ASD children supported by reports on another disease, IBD concerning pediatric patients. Due to the few reports of the use of FMT in the treatment of children, these two patients groups were selected, although suffering from distant health conditions: neurodevelopmental disorder and gastrointestinal tract diseases, because of the the fact that they seem related in aspects of the presence of GI symptoms, disturbed intestinal microbiota, unexplained etiology of the condition and age range of patients. Although the outcomes for all are promising, this type of therapy is still an under-researched topic, studies in the group of pediatric patients are sparse, also there is a high risk of transmission of infectious and noninfectious elements during the procedure and no long-term effects on global health are known. For those reasons all obtained results should be taken with a great caution. However, in the context of future therapeutic directions for GI observed in neurodevelopmental disorders and neurodegenerative diseases, the topic seems worthy of attention.
Collapse
Affiliation(s)
- Paulina Żebrowska
- Laboratory of Genomics and Bioinformatics, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | | | - Łukasz Łaczmański
- Laboratory of Genomics and Bioinformatics, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| |
Collapse
|
138
|
Jain T, Sharma P, Are AC, Vickers SM, Dudeja V. New Insights Into the Cancer-Microbiome-Immune Axis: Decrypting a Decade of Discoveries. Front Immunol 2021; 12:622064. [PMID: 33708214 PMCID: PMC7940198 DOI: 10.3389/fimmu.2021.622064] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 01/11/2021] [Indexed: 12/13/2022] Open
Abstract
The past decade has witnessed groundbreaking advances in the field of microbiome research. An area where immense implications of the microbiome have been demonstrated is tumor biology. The microbiome affects tumor initiation and progression through direct effects on the tumor cells and indirectly through manipulation of the immune system. It can also determine response to cancer therapies and predict disease progression and survival. Modulation of the microbiome can be harnessed to potentiate the efficacy of immunotherapies and decrease their toxicity. In this review, we comprehensively dissect recent evidence regarding the interaction of the microbiome and anti-tumor immune machinery and outline the critical questions which need to be addressed as we further explore this dynamic colloquy.
Collapse
Affiliation(s)
| | | | | | - Selwyn M. Vickers
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Vikas Dudeja
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
139
|
Liu J, Xu Y, Jiang B. Novel Insights Into Pathogenesis and Therapeutic Strategies of Hepatic Encephalopathy, From the Gut Microbiota Perspective. Front Cell Infect Microbiol 2021; 11:586427. [PMID: 33692964 PMCID: PMC7937792 DOI: 10.3389/fcimb.2021.586427] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 01/08/2021] [Indexed: 01/10/2023] Open
Abstract
Since the 1950s, gradual changes in the gut microbiota of patients with hepatic encephalopathy have been observed. Previous research has indicated potential associations between the gut and brain, and the gut microbiota is becoming a hot topic in research on diseases of the nervous system. However, for the past few decades, studies of hepatic encephalopathy have been restricted to controlling the gut microbiota during macroscopic manipulation, such as probiotic intervention, while its clinical use remains controversial, and the cellular mechanisms underlying this condition are still poorly understood. This thesis seeks to comprehensively understand and explain the role of gut microbiota in hepatic encephalopathy as well as analyze the effects of intervention by regulating the gut microbiota. Evidence is presented that shows that dysbiosis of the gut microbiota is the primary pathological driver of hepatic encephalopathy and impacts pathologic progression via complex regulatory networks. As a result, suggestions were identified for future mechanistic research and improvements in therapeutic strategies for hepatic encephalopathy.
Collapse
Affiliation(s)
- Jiachen Liu
- Xiangya Medical College of Central South University, Changsha, China
| | - Yantao Xu
- Xiangya Medical College of Central South University, Changsha, China
| | - Bimei Jiang
- Department of Pathophysiology, Sepsis Translational Medicine Key Laboratory of Hunan Province, Xiangya School of Medicine, Central South University, Changsha, China
| |
Collapse
|
140
|
Shabbir U, Arshad MS, Sameen A, Oh DH. Crosstalk between Gut and Brain in Alzheimer's Disease: The Role of Gut Microbiota Modulation Strategies. Nutrients 2021; 13:690. [PMID: 33669988 PMCID: PMC7924846 DOI: 10.3390/nu13020690] [Citation(s) in RCA: 114] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/12/2021] [Accepted: 02/17/2021] [Indexed: 02/06/2023] Open
Abstract
The gut microbiota (GM) represents a diverse and dynamic population of microorganisms and about 100 trillion symbiotic microbial cells that dwell in the gastrointestinal tract. Studies suggest that the GM can influence the health of the host, and several factors can modify the GM composition, such as diet, drug intake, lifestyle, and geographical locations. Gut dysbiosis can affect brain immune homeostasis through the microbiota-gut-brain axis and can play a key role in the pathogenesis of neurodegenerative diseases, including dementia and Alzheimer's disease (AD). The relationship between gut dysbiosis and AD is still elusive, but emerging evidence suggests that it can enhance the secretion of lipopolysaccharides and amyloids that may disturb intestinal permeability and the blood-brain barrier. In addition, it can promote the hallmarks of AD, such as oxidative stress, neuroinflammation, amyloid-beta formation, insulin resistance, and ultimately the causation of neural death. Poor dietary habits and aging, along with inflammatory responses due to dysbiosis, may contribute to the pathogenesis of AD. Thus, GM modulation through diet, probiotics, or fecal microbiota transplantation could represent potential therapeutics in AD. In this review, we discuss the role of GM dysbiosis in AD and potential therapeutic strategies to modulate GM in AD.
Collapse
Affiliation(s)
- Umair Shabbir
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon 24341, Korea;
| | - Muhammad Sajid Arshad
- Department of Food Science, Faculty of Life Sciences, Government College University, Faisalabad 38000, Pakistan;
| | - Aysha Sameen
- National Institute of Food Science and Technology, Faculty of Food, Nutrition and Home Sciences, University of Agriculture, Faisalabad 38000, Pakistan;
| | - Deog-Hwan Oh
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon 24341, Korea;
| |
Collapse
|
141
|
Iakupova AA, Abdulkhakov SR, Safin AG, Alieva IM, Oslopova JV, Abdulkhakov RA. [Fecal microbiota transplantation: donor selection criteria, storage and preparation of biomaterials (review of current recommendations)]. TERAPEVT ARKH 2021; 93:215-221. [PMID: 36286640 DOI: 10.26442/00403660.2021.02.200615] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 04/06/2021] [Indexed: 12/12/2022]
Abstract
Fecal microbiota transplantation is a treatment method based on the introduction of donated fecal material to the recipient in order to restore the damaged composition of the intestinal microbiota. This review summarizes existing data on indications for fecal microbiota transplantation, recommendations for donor selection, processing and storage of donor biomaterial.
Collapse
Affiliation(s)
| | - S R Abdulkhakov
- Kazan (Volga Region) Federal University
- Kazan State Medical University
| | - A G Safin
- Kazan (Volga Region) Federal University
| | | | | | | |
Collapse
|
142
|
Imdad A, Minkoff NZ, Tanner-Smith EE, Zackular JP, Acra S, Nicholson MR. Fecal microbiota transplantation for the treatment of recurrent Clostridioides difficile
( Clostridium difficile
). Hippokratia 2021. [DOI: 10.1002/14651858.cd013871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Aamer Imdad
- Department of Pediatrics, Division of Pediatric Gastroenterology, Hepatology and Nutrition; SUNY Upstate Medical University; Syracuse NY USA
| | - Nathan Zev Minkoff
- Pediatric Gastroenterology, Hepatology and Nutrition; University of Rochester Medical Center; Rochester NY USA
| | - Emily E Tanner-Smith
- Counseling Psychology and Human Services; University of Oregon; Eugene Oregon USA
| | - Joseph P Zackular
- Department of Pathology and Laboratory Medicine; University of Pennsylvania; Philadelphia PA USA
| | - Sari Acra
- Department of Pediatrics, D. Brent Polk Division of Gastroenterology, Hepatology and Nutrition; Vanderbilt University School of Medicine; Nashville TN USA
| | - Maribeth R Nicholson
- Department of Pediatrics, D. Brent Polk Division of Gastroenterology, Hepatology and Nutrition; Vanderbilt University School of Medicine; Nashville TN USA
| |
Collapse
|
143
|
Liwinski T, Leshem A, Elinav E. Breakthroughs and Bottlenecks in Microbiome Research. Trends Mol Med 2021; 27:298-301. [PMID: 33563544 DOI: 10.1016/j.molmed.2021.01.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 01/10/2021] [Accepted: 01/11/2021] [Indexed: 01/01/2023]
Abstract
Over the past 15 years, the research community has witnessed unprecedented progress in microbiome research. We review this increasing knowledge and first attempts of its clinical application, and also limitations and challenges faced by the research community, in mechanistically understanding host-microbiome interactions and integrating these insights into clinical practice.
Collapse
Affiliation(s)
- Timur Liwinski
- Immunology Department, Weizmann Institute of Science, Rehovot, 7610001, Israel; 1st Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Avner Leshem
- Immunology Department, Weizmann Institute of Science, Rehovot, 7610001, Israel; Department of Surgery, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Eran Elinav
- Immunology Department, Weizmann Institute of Science, Rehovot, 7610001, Israel; Cancer-Microbiome Division Deutsches Krebsforschungszentrum (DKFZ), Neuenheimer Feld 280, 69120 Heidelberg, Germany.
| |
Collapse
|
144
|
Fang H, Fu L, Li X, Lu C, Su Y, Xiong K, Zhang L. Long-term efficacy and safety of monotherapy with a single fresh fecal microbiota transplant for recurrent active ulcerative colitis: a prospective randomized pilot study. Microb Cell Fact 2021; 20:18. [PMID: 33468164 PMCID: PMC7816432 DOI: 10.1186/s12934-021-01513-6] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 01/07/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND To assess the long-term safety and efficacy of monotherapy with a single fresh fecal microbiota transplant (FMT) for recurrent ulcerative colitis (UC). RESULTS Twenty-six eligible patients were enrolled, and 6 patients were excluded. Ultimately, 20 patients were randomized to the FMT group (n = 10) and the control group (n = 10); 80% were females (F/M = 16/4), the mean age was 48 ± 14 years, and the mean duration was 6.4 ± 8.2 years. The mean length of post-FMT follow-up was 19.1 ± 10.1 months (6-38). No statistically significant differences in baseline demographic or clinical characteristics were found between the groups. Ninety percent of patients in the FMT group and 50% of patients in the control group met the primary endpoint at week 8. The Mayo score was significantly decreased compared with that of the control group (n = 10) when reassessed at week 4 (P = 0.001) and week 8 (P = 0.019) after FMT; there was no significant difference 6 months after treatment. The median remission time was 24 months (95% CI 68.26-131.7%) in both the FMT (range 6-38 months) and control groups (range 7-35 months), with no significant difference (P = 0.895). Participants tolerated FMT treatment, and no adverse events occurred during long-term follow-up, with one treatment-related significant adverse event (EBV infection) occurring within 2 weeks after FMT. Stool microbiota composition analysis indicated improved gut microbiota diversity after FMT, with expansion of stool-donor taxa. Bacteroidetes, Firmicutes and Proteobacteria were the dominant bacterial phyla of the gut microbiota in active UC patients. The relative abundance of Bacteroidetes decreased and that of Proteobacteria increased significantly in active UC patients compared with donors, while Firmicutes showed no significant changes. A single fresh FMT could effectively reconstruct the gut microbiota composition in patients with active UC and maintain stability, with increased Bacteroidetes and decreased Proteobacteria abundance. FMT significantly reduced the relative abundance of Escherichia and increased the relative abundance of Prevotella at the genus level. Pyruvate metabolism, glyoxylate and dicarboxylate metabolism, and pantothenate and CoA biosynthesis showed significant differences after transplantation. CONCLUSIONS Monotherapy with a single fresh FMT is an effective and safe strategy to induce long-term remission without drugs in patients with active UC and may be an alternative induction therapy for recurrent UC or even primary UC.
Collapse
Affiliation(s)
- Haiming Fang
- Department of Gastroenterology and Hepatology, Second Hospital of Anhui Medical University, Hefei, China.
- Center for Gut Microbiota Research, Second Hospital of Anhui Medical University, Hefei, China.
| | - Lian Fu
- Department of Gastroenterology and Hepatology, Second Hospital of Anhui Medical University, Hefei, China
- Center for Gut Microbiota Research, Second Hospital of Anhui Medical University, Hefei, China
| | - Xuejun Li
- Department of Gastroenterology, Second Hospital of Anhui University of Chinese Medicine, Hefei, China
| | - Chunxia Lu
- Department of Gastroenterology and Hepatology, Second Hospital of Anhui Medical University, Hefei, China
- Center for Gut Microbiota Research, Second Hospital of Anhui Medical University, Hefei, China
| | - Yuan Su
- Department of Gastroenterology and Hepatology, Second Hospital of Anhui Medical University, Hefei, China
- Center for Gut Microbiota Research, Second Hospital of Anhui Medical University, Hefei, China
| | - Kangwei Xiong
- Department of Gastroenterology and Hepatology, Second Hospital of Anhui Medical University, Hefei, China
- Center for Gut Microbiota Research, Second Hospital of Anhui Medical University, Hefei, China
| | - Lijiu Zhang
- Department of Gastroenterology and Hepatology, Second Hospital of Anhui Medical University, Hefei, China
- Center for Gut Microbiota Research, Second Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
145
|
Yoon H, Shim HI, Seol M, Shin CM, Park YS, Kim N, Lee DH. Factors Related to Outcomes of Fecal Microbiota Transplantation in Patients with Clostridioides difficile Infection. Gut Liver 2021; 15:61-69. [PMID: 32839363 PMCID: PMC7817928 DOI: 10.5009/gnl20135] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 06/08/2020] [Accepted: 06/28/2020] [Indexed: 12/17/2022] Open
Abstract
Background/Aims The aim of this study was to evaluate factors related to outcomes of fecal microbiota transplantation (FMT) in patients with Clostridioides difficile infection (CDI) and viability of frozen stock for FMT. Methods Clinical data of patients who had received FMT for CDI were prospectively collected. Next-generation 16S rRNA gene sequencing of bacteria was performed from donors' and recipients' stool. Colony-forming units (CFUs) of cultures from frozen stock solutions for FMT were measured at 0, 4, 8, 12, 24, 48 weeks after preparation of the solutions. Results In total, 25 FMT procedures were performed in 20 cases (14 fresh and 11 frozen FMT). Forty-five percent of cases involved fulminant CDI. The overall success rate was 55% after the 1st FMT and 75% after the 2nd FMT. The success rate was significantly higher in partially treated CDI than in refractory CDI (100% vs 71.4%; p=0.001). In successful cases only, the decrease in alpha-diversity in the recipient stool microbiomes was recovered after FMT to a level similar to that in donor stools. There was a significant difference in the microbiome composition in pre-FMT recipients' stool between successful and failed cases (p=0.001). The CFUs of frozen solution for FMT did not decrease for 48 weeks in both aerobic and anaerobic cultures. Conclusions FMT is highly effective in partially treated CDI but not in refractory CDI. The microbiome differs between failed and successful cases. Frozen stock for FMT is viable up to 48 weeks.
Collapse
Affiliation(s)
- Hyuk Yoon
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Hyun Ik Shim
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Mijin Seol
- R&D Center, BioBankHealing Inc., Seongnam, Korea
| | - Cheol Min Shin
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Young Soo Park
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Nayoung Kim
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea.,Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Dong Ho Lee
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea.,R&D Center, BioBankHealing Inc., Seongnam, Korea.,Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
146
|
Zhong HJ, Zeng HL, Cai YL, Zhuang YP, Liou YL, Wu Q, He XX. Washed Microbiota Transplantation Lowers Blood Pressure in Patients With Hypertension. Front Cell Infect Microbiol 2021; 11:679624. [PMID: 34458158 PMCID: PMC8385408 DOI: 10.3389/fcimb.2021.679624] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 07/20/2021] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Although transplantation of the fecal microbiota from normotensive donors has been shown to have an antihypertensive effect in hypertensive animal models, its effect on blood pressure in patients with hypertension is unclear. This study aimed to assess the effect of washed microbiota transplantation (WMT) from normotensive donors on blood pressure regulation in hypertensive patients. METHODS The clinical data of consecutive patients treated with washed microbiota transplantation (WMT) were collected retrospectively. The blood pressures of hypertensive patients before and after WMT were compared. The factors influencing the antihypertensive effect of WMT in hypertensive patients and fecal microbial composition of donors and hypertensive patients were also analyzed. RESULTS WMT exhibited an antihypertensive effect on blood pressure: the blood pressure at hospital discharge was significantly lower than that at hospital admission (change in systolic blood pressure: -5.09 ± 15.51, P = 0.009; change in diastolic blood pressure: -7.74 ± 10.42, P < 0.001). Hypertensive patients who underwent WMT via the lower gastrointestinal tract (β = -8.308, standard error = 3.856, P = 0.036) and those not taking antihypertensive drugs (β = -8.969, standard error = 4.256, P = 0.040) had a greater decrease in systolic blood pressure, and hypertensive patients not taking antihypertensive drugs also had a greater decrease in diastolic blood pressure (β = -8.637, standard error = 2.861, P = 0.004). After WMT, the Shannon Diversity Index was higher in six of eight hypertensive patients and the microbial composition of post-WMT samples tended to be closer to that of donor samples. CONCLUSION WMT had a blood pressure-lowering effect in hypertensive patients, especially in those who underwent WMT via the lower gastrointestinal tract and in those not taking antihypertensive drugs. Therefore, modulation of the gut microbiota by WMT may offer a novel approach for hypertension treatment.
Collapse
Affiliation(s)
- Hao-Jie Zhong
- Department of Gastroenterology, Research Center for Engineering Techniques of Microbiota-Targeted Therapies of Guangdong Province, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Hong-Lie Zeng
- Department of Gastroenterology, Research Center for Engineering Techniques of Microbiota-Targeted Therapies of Guangdong Province, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Ying-Li Cai
- Department of Gastroenterology, Research Center for Engineering Techniques of Microbiota-Targeted Therapies of Guangdong Province, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Yu-Pei Zhuang
- Department of Gastroenterology, Research Center for Engineering Techniques of Microbiota-Targeted Therapies of Guangdong Province, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Yu-Ligh Liou
- Department of Gastroenterology, Research Center for Engineering Techniques of Microbiota-Targeted Therapies of Guangdong Province, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
- Xiangya Medical Laboratory, Central South University, Changsha, China
| | - Qingping Wu
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
- *Correspondence: Qingping Wu, ; Xing-Xiang He,
| | - Xing-Xiang He
- Department of Gastroenterology, Research Center for Engineering Techniques of Microbiota-Targeted Therapies of Guangdong Province, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
- *Correspondence: Qingping Wu, ; Xing-Xiang He,
| |
Collapse
|
147
|
Rinott E, Youngster I, Yaskolka Meir A, Tsaban G, Zelicha H, Kaplan A, Knights D, Tuohy K, Fava F, Scholz MU, Ziv O, Rubin E, Tirosh A, Rudich A, Blüher M, Stumvoll M, Ceglarek U, Clement K, Koren O, Wang DD, Hu FB, Stampfer MJ, Shai I. Effects of Diet-Modulated Autologous Fecal Microbiota Transplantation on Weight Regain. Gastroenterology 2021; 160:158-173.e10. [PMID: 32860791 PMCID: PMC7755729 DOI: 10.1053/j.gastro.2020.08.041] [Citation(s) in RCA: 111] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 08/10/2020] [Accepted: 08/20/2020] [Indexed: 12/30/2022]
Abstract
BACKGROUND & AIMS We evaluated the efficacy and safety of diet-modulated autologous fecal microbiota transplantation (aFMT) for treatment of weight regain after the weight-loss phase. METHODS In the DIRECT PLUS (Dietary Intervention Randomized Controlled Trial Polyphenols-Unprocessed) weight-loss trial (May 2017 through July 2018), abdominally obese or dyslipidemic participants in Israel were randomly assigned to healthy dietary guidelines, Mediterranean diet, and green-Mediterranean diet weight-loss groups. All groups received free gym membership and physical activity guidelines. Both isocaloric Mediterranean groups consumed 28 g/d walnuts (+440 mg/d polyphenols provided). The green-Mediterranean dieters also consumed green tea (3-4 cups/d) and a Wolffia globosa (Mankai strain, 100 g/d) green shake (+800 mg/d polyphenols provided). After 6 months (weight-loss phase), 90 eligible participants (mean age, 52 years; mean weight loss, 8.3 kg) provided a fecal sample that was processed into aFMT by frozen, opaque, and odorless capsules. The participants were then randomly assigned to groups that received 100 capsules containing their own fecal microbiota or placebo until month 14. The primary outcome was regain of the lost weight over the expected weight-regain phase (months 6-14). Secondary outcomes were gastrointestinal symptoms, waist circumference, glycemic status, and changes in the gut microbiome, as measured by metagenomic sequencing and 16s ribosomal RNA. We validated the results in a parallel in vivo study of mice specifically fed with Mankai compared with control chow diet. RESULTS Of the 90 participants in the aFMT trial, 96% ingested at least 80 of 100 oral aFMT or placebo frozen capsules during the transplantation period. No aFMT-related adverse events or symptoms were observed. For the primary outcome, although no significant differences in weight regain were observed among the participants in the different lifestyle interventions during months 6-14 (aFMT, 30.4% vs placebo, 40.6%; P = .28), aFMT significantly attenuated weight regain in the green-Mediterranean group (aFMT, 17.1%, vs placebo, 50%; P = .02), but not in the dietary guidelines (P = .57) or Mediterranean diet (P = .64) groups (P for the interaction = .03). Accordingly, aFMT attenuated waist circumference gain (aFMT, 1.89 cm vs placebo, 5.05 cm; P = .01) and insulin rebound (aFMT, -1.46 ± 3.6 μIU/mL vs placebo, 1.64 ± 4.7 μIU/mL; P = .04) in the green-Mediterranean group but not in the dietary guidelines or Mediterranean diet (P for the interaction = .04 and .03, respectively). The green-Mediterranean diet was the only intervention to induce a significant change in microbiome composition during the weight-loss phase, and to prompt preservation of weight-loss-associated specific bacteria and microbial metabolic pathways (mainly microbial sugar transport) after the aFMT. In mice, Mankai-modulated aFMT in the weight-loss phase compared with control diet aFMT, significantly prevented weight regain and resulted in better glucose tolerance during a high-fat diet-induced regain phase (all, P < .05). CONCLUSIONS Autologous FMT, collected during the weight-loss phase and administrated in the regain phase, might preserve weight loss and glycemic control, and is associated with specific microbiome signatures. A high-polyphenols, green plant-based or Mankai diet better optimizes the microbiome for an aFMT procedure. ClinicalTrials.gov number, NCT03020186.
Collapse
Affiliation(s)
- Ehud Rinott
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Ilan Youngster
- Pediatric Division and Center for Microbiome Research, Shamir Medical Center, Be'er Ya'akov, Israel; Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel.
| | - Anat Yaskolka Meir
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Gal Tsaban
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Hila Zelicha
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Alon Kaplan
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Dan Knights
- BioTechnology Institute, University of Minnesota, St Paul, Minnesota; Department of Computer Science and Engineering, University of Minnesota, Minneapolis, Minnesota
| | - Kieran Tuohy
- Department of Food Quality and Nutrition, Research and Innovation Centre, Fondazione Edmund Mach, Trento, Italy
| | - Francesca Fava
- Department of Food Quality and Nutrition, Research and Innovation Centre, Fondazione Edmund Mach, Trento, Italy
| | - Matthias Uwe Scholz
- Department of Food Quality and Nutrition, Research and Innovation Centre, Fondazione Edmund Mach, Trento, Italy
| | - Oren Ziv
- Azrieli Faculty of Medicine, Bar Ilan University, Safed, Israel
| | - Elad Rubin
- Azrieli Faculty of Medicine, Bar Ilan University, Safed, Israel
| | - Amir Tirosh
- Division of Endocrinology, Diabetes and Metabolism, Sheba Medical Center, Tel-Hashomer, Israel; Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel; Division of Endocrinology, Diabetes, and Hypertension, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Assaf Rudich
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | | | | | - Uta Ceglarek
- Department of Medicine, University of Leipzig, German
| | - Karine Clement
- Sorbonne University/Inserm, NutriOmics Research Unit, Nutrition Department, Pitié-Salpêtrière Hospital, Assistance-Publique Hopitaux de Paris, Paris, France
| | - Omry Koren
- Azrieli Faculty of Medicine, Bar Ilan University, Safed, Israel
| | - Dong D Wang
- Harvard T.H. Chan School of Public Health, Cambridge, Massachusetts
| | - Frank B Hu
- Harvard T.H. Chan School of Public Health, Cambridge, Massachusetts; Channing Division of Network Medicine, Department of Medicine, Harvard Medical School and Brigham and Women's Hospital, Boston, Massachusetts
| | - Meir J Stampfer
- Harvard T.H. Chan School of Public Health, Cambridge, Massachusetts; Channing Division of Network Medicine, Department of Medicine, Harvard Medical School and Brigham and Women's Hospital, Boston, Massachusetts
| | - Iris Shai
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel; Harvard T.H. Chan School of Public Health, Cambridge, Massachusetts.
| |
Collapse
|
148
|
Fecal microbiota transplantation in hepatic encephalopathy : a review of the current evidence and future perspectives. Acta Gastroenterol Belg 2021; 84:87-90. [PMID: 33639698 DOI: 10.51821/84.1.884] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Hepatic encephalopathy (HE) is a leading cause of hospitalization and morbimortality in advanced cirrhosis with limited therapeutic options available. Given the paramount role of gut microbiota in HE, and the efficacy of fecal microbiota transplantation (FMT) in other diseases, this review intends to summarize the evidence supporting the safety, efficacy and future perspectives of FMT in HE. Current evidence, despite being scarce, points towards FMT being a safe, effective and tolerable procedure in HE. Some unanswered questions remain about the optimal dose, the administration route, the long term effects and the selection of the optimal donor. Future trials, some of which are already underway, will provide us additional evidence and hopefully the necessary answers.
Collapse
|
149
|
Burmeister AR, Hansen E, Cunningham JJ, Rego EH, Turner PE, Weitz JS, Hochberg ME. Fighting microbial pathogens by integrating host ecosystem interactions and evolution. Bioessays 2020; 43:e2000272. [PMID: 33377530 DOI: 10.1002/bies.202000272] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 11/22/2020] [Accepted: 11/30/2020] [Indexed: 12/19/2022]
Abstract
Successful therapies to combat microbial diseases and cancers require incorporating ecological and evolutionary principles. Drawing upon the fields of ecology and evolutionary biology, we present a systems-based approach in which host and disease-causing factors are considered as part of a complex network of interactions, analogous to studies of "classical" ecosystems. Centering this approach around empirical examples of disease treatment, we present evidence that successful therapies invariably engage multiple interactions with other components of the host ecosystem. Many of these factors interact nonlinearly to yield synergistic benefits and curative outcomes. We argue that these synergies and nonlinear feedbacks must be leveraged to improve the study of pathogenesis in situ and to develop more effective therapies. An eco-evolutionary systems perspective has surprising and important consequences, and we use it to articulate areas of high research priority for improving treatment strategies.
Collapse
Affiliation(s)
- Alita R Burmeister
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut, USA.,BEACON Center for the Study of Evolution in Action, Michigan State University, East Lansing, Michigan, USA
| | - Elsa Hansen
- Department of Biology, Center for Infectious Disease Dynamics, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Jessica J Cunningham
- Department of Integrated Mathematical Oncology, Moffitt Cancer Center & Research Institute, Tampa, Florida, USA
| | - E Hesper Rego
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Paul E Turner
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut, USA.,BEACON Center for the Study of Evolution in Action, Michigan State University, East Lansing, Michigan, USA.,Program in Microbiology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Joshua S Weitz
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA.,School of Physics, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Michael E Hochberg
- Institute of Evolutionary Sciences, University of Montpellier, Montpellier, France.,Santa Fe Institute, Santa Fe, New Mexico, USA
| |
Collapse
|
150
|
Kopper JJ, Alexander TL, Kogan CJ, Berreta AR, Burbick CR. In Vitro Evaluation of the Effect of Storage at -20°C and Proximal Gastrointestinal Conditions on Viability of Equine Fecal Microbiota Transplant. J Equine Vet Sci 2020; 98:103360. [PMID: 33663713 DOI: 10.1016/j.jevs.2020.103360] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 12/04/2020] [Accepted: 12/07/2020] [Indexed: 11/18/2022]
Abstract
Fecal microbiota transplant (FMT), a technique used to restore normal intestinal microbial communities, has been successful in treating humans with Clostridioides difficile colitis. Subsequently, FMT is being used in veterinary patients with suspected intestinal dysbiosis. Unfortunately, little data are available regarding best practices for FMT in horses. The objective of this study was to evaluate the effects of storing manure prepared for equine FMT (MP-FMT) at -20°C for up to 4 weeks and passage through a simulated proximal gastrointestinal (GI) tract on the viability of MP-FMT. The results of this study indicate that storage at -20°C for greater than 1 week and exposure to conditions consistent with the proximal GI tract significantly decreased viability of the microbial population, with gram-negative enteric bacteria most significantly impacted. This preliminary evaluation indicates that further work is necessary to determine best practices to preserve the viability MP-FMT in horses.
Collapse
Affiliation(s)
- Jamie J Kopper
- Department of Veterinary Clinical Sciences, Washington State University, Pullman, WA.
| | - Trevor L Alexander
- Washington Animal Disease Diagnostic Laboratory, Washington State University, Pullman, WA
| | - Clark J Kogan
- Center for Interdisciplinary Statistical Education and Research, Washington State University, Pullman, WA
| | - Ana R Berreta
- Department of Veterinary Clinical Sciences, Washington State University, Pullman, WA
| | - Claire R Burbick
- Washington Animal Disease Diagnostic Laboratory, Washington State University, Pullman, WA; Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA
| |
Collapse
|