101
|
Chen Z, He X. Application of third-generation sequencing in cancer research. MEDICAL REVIEW (BERLIN, GERMANY) 2021; 1:150-171. [PMID: 37724303 PMCID: PMC10388785 DOI: 10.1515/mr-2021-0013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 08/09/2021] [Indexed: 09/20/2023]
Abstract
In the past several years, nanopore sequencing technology from Oxford Nanopore Technologies (ONT) and single-molecule real-time (SMRT) sequencing technology from Pacific BioSciences (PacBio) have become available to researchers and are currently being tested for cancer research. These methods offer many advantages over most widely used high-throughput short-read sequencing approaches and allow the comprehensive analysis of transcriptomes by identifying full-length splice isoforms and several other posttranscriptional events. In addition, these platforms enable structural variation characterization at a previously unparalleled resolution and direct detection of epigenetic marks in native DNA and RNA. Here, we present a comprehensive summary of important applications of these technologies in cancer research, including the identification of complex structure variants, alternatively spliced isoforms, fusion transcript events, and exogenous RNA. Furthermore, we discuss the impact of the newly developed nanopore direct RNA sequencing (RNA-Seq) approach in advancing epitranscriptome research in cancer. Although the unique challenges still present for these new single-molecule long-read methods, they will unravel many aspects of cancer genome complexity in unprecedented ways and present an encouraging outlook for continued application in an increasing number of different cancer research settings.
Collapse
Affiliation(s)
- Zhiao Chen
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xianghuo He
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, China
| |
Collapse
|
102
|
Sammallahti H, Kokkola A, Rezasoltani S, Ghanbari R, Asadzadeh Aghdaei H, Knuutila S, Puolakkainen P, Sarhadi VK. Microbiota Alterations and Their Association with Oncogenomic Changes in Pancreatic Cancer Patients. Int J Mol Sci 2021; 22:12978. [PMID: 34884776 PMCID: PMC8658013 DOI: 10.3390/ijms222312978] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 11/23/2021] [Accepted: 11/25/2021] [Indexed: 02/06/2023] Open
Abstract
Pancreatic cancer (PC) is an aggressive disease with a high mortality and poor prognosis. The human microbiome is a key factor in many malignancies, having the ability to alter host metabolism and immune responses and participate in tumorigenesis. Gut microbes have an influence on physiological functions of the healthy pancreas and are themselves controlled by pancreatic secretions. An altered oral microbiota may colonize the pancreas and cause local inflammation by the action of its metabolites, which may lead to carcinogenesis. The mechanisms behind dysbiosis and PC development are not completely clear. Herein, we review the complex interactions between PC tumorigenesis and the microbiota, and especially the question, whether and how an altered microbiota induces oncogenomic changes, or vice versa, whether cancer mutations have an impact on microbiota composition. In addition, the role of the microbiota in drug efficacy in PC chemo- and immunotherapies is discussed. Possible future scenarios are the intentional manipulation of the gut microbiota in combination with therapy or the utilization of microbial profiles for the noninvasive screening and monitoring of PC.
Collapse
Affiliation(s)
- Heidelinde Sammallahti
- Department of Pathology, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland;
- Department of Surgery, Abdominal Center, Helsinki University Hospital and University of Helsinki, 00290 Helsinki, Finland; (A.K.); (P.P.)
| | - Arto Kokkola
- Department of Surgery, Abdominal Center, Helsinki University Hospital and University of Helsinki, 00290 Helsinki, Finland; (A.K.); (P.P.)
| | - Sama Rezasoltani
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran P.O. Box 1985717411, Iran;
| | - Reza Ghanbari
- Digestive Oncology Research Center, Digestive Diseases Research Institute, Tehran University of Medical Science, Tehran P.O. Box 1411713135, Iran;
| | - Hamid Asadzadeh Aghdaei
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran P.O. Box 1985717411, Iran;
| | - Sakari Knuutila
- Department of Pathology, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland;
| | - Pauli Puolakkainen
- Department of Surgery, Abdominal Center, Helsinki University Hospital and University of Helsinki, 00290 Helsinki, Finland; (A.K.); (P.P.)
| | - Virinder Kaur Sarhadi
- Department of Oral and Maxillofacial Diseases, Helsinki University Hospital and University of Helsinki, 00290 Helsinki, Finland;
| |
Collapse
|
103
|
Daniluk J, Daniluk U, Rogalski P, Dabrowski A, Swidnicka-Siergiejko A. Microbiome-Friend or Foe of Pancreatic Cancer? J Clin Med 2021; 10:5624. [PMID: 34884327 PMCID: PMC8658245 DOI: 10.3390/jcm10235624] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 11/15/2021] [Accepted: 11/27/2021] [Indexed: 12/12/2022] Open
Abstract
Pancreatic ductal adenocarcinoma is one of the deadliest human neoplasms. Despite the development of new surgical and adjuvant therapies, the prognosis remains very poor, with the overall survival rate not exceeding 9%. There is now increasing evidence that the human microbiome, which is involved in many physiological functions, including the regulation of metabolic processes and the modulation of the immune system, is possibly linked to pancreatic oncogenesis. However, the exact mechanisms of action are poorly understood. Our review summarizes the current understanding of how the microbiome affects pancreatic cancer development and progression. We discuss potential pathways of microbe translocation to the pancreas, as well as the mechanism of their action. We describe the role of the microbiome as a potential marker of pancreatic cancer diagnosis, progression, and survival. Finally, we discuss the possibilities of modifying the microbiome to improve treatment effectiveness for this deadly disease.
Collapse
Affiliation(s)
- Jaroslaw Daniluk
- Department of Gastroenterology and Internal Medicine, Medical University of Bialystok, 15-276 Bialystok, Poland; (P.R.); (A.D.); (A.S.-S.)
| | - Urszula Daniluk
- Department of Pediatrics, Gastroenterology, Hepatology, Nutrition and Allergology, Medical University of Bialystok, 15-274 Bialystok, Poland;
| | - Pawel Rogalski
- Department of Gastroenterology and Internal Medicine, Medical University of Bialystok, 15-276 Bialystok, Poland; (P.R.); (A.D.); (A.S.-S.)
| | - Andrzej Dabrowski
- Department of Gastroenterology and Internal Medicine, Medical University of Bialystok, 15-276 Bialystok, Poland; (P.R.); (A.D.); (A.S.-S.)
| | - Agnieszka Swidnicka-Siergiejko
- Department of Gastroenterology and Internal Medicine, Medical University of Bialystok, 15-276 Bialystok, Poland; (P.R.); (A.D.); (A.S.-S.)
| |
Collapse
|
104
|
Oral health and gastrointestinal neoplasia: Narrative review. Cir Esp 2021; 99:716-723. [PMID: 34776408 DOI: 10.1016/j.cireng.2021.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 05/12/2021] [Indexed: 11/20/2022]
Abstract
The oral cavity represents the gateway to the complex digestive system, so the knowledge of the exact mechanisms that link them is vitally important. Recently, oral and dental pathologies have been studied as potential risk factors for pathologies linked to lifestyle habits. Therefore, it could be considered as an interesting preventive way. We conducted a narrative review with a thorough bibliographic search on MEDLINE and SCOPUS, including international studies related to oral healthcare and gastrointestinal neoplasms, published between 2015 and 2020. The primary aim of this revision is to analyze the association between oral healthcare and carcinogenic gastrointestinal processes, providing a possible future preventive strategy for dental care. Moreover, we intend to raise awareness about the importance of oral healthcare as a new paradigm and study variable in the global health care system.
Collapse
|
105
|
Liao G, Wu J, Peng X, Li Y, Tang L, Xu X, Deng D, Zhou X. Visualized analysis of trends and hotspots in global oral microbiome research: A bibliometric study. MedComm (Beijing) 2021; 1:351-361. [PMID: 34766127 PMCID: PMC8491219 DOI: 10.1002/mco2.47] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 11/19/2020] [Accepted: 11/20/2020] [Indexed: 02/05/2023] Open
Abstract
The oral microbiome contains numerous bacteria, which directly or indirectly participate in various human functions and continuously exchange signals and substances with the human body, significantly affecting human life cycle, health, and disease. This study aimed to conduct bibliometric studies on the scientific outputs of global oral microbiome research by Citespace software. The data were obtained from the Thomson Reuters' Web of Science Core Collection (WoSCC), from the first relevant literature published until December 31st, 2019, and a total of 2225 articles and reviews were identified. The top country and institutions are the United States and Harvard University. Keywords analysis showed that periodontal disease, oral microbes, and dental plaque are research hotspots. The burst word analysis indicates that early childhood caries, squamous cell carcinoma, gut microbiome, Helicobacter pylori, Candida albicans, and dysbiosis are likely to become the research hotspots of the next era. We also recommend the use of knowledge mapping methods to track specific knowledge areas efficiently and objectively regularly, which can accurately identify hotspots and frontiers and provide valuable information for practitioners in the field, including related scientists, students, journals, and editors.
Collapse
Affiliation(s)
- Ga Liao
- State Key Laboratory of Oral Diseases National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology Sichuan University Chengdu China.,Medical Big Data Center Sichuan University Chengdu China.,Department of Information Management Department of Stomatology Informatics, West China Hospital of Stomatology Sichuan University Chengdu China
| | - Jinyun Wu
- State Key Laboratory of Oral Diseases National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology Sichuan University Chengdu China.,Department of Cariology and Endodontics, West China Hospital of Stomatology Sichuan University Chengdu China
| | - Xian Peng
- State Key Laboratory of Oral Diseases National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology Sichuan University Chengdu China
| | - Yuqing Li
- State Key Laboratory of Oral Diseases National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology Sichuan University Chengdu China
| | - Li Tang
- State Key Laboratory of Oral Diseases National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology Sichuan University Chengdu China.,Department of Cariology and Endodontics, West China Hospital of Stomatology Sichuan University Chengdu China
| | - Xin Xu
- State Key Laboratory of Oral Diseases National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology Sichuan University Chengdu China.,Department of Cariology and Endodontics, West China Hospital of Stomatology Sichuan University Chengdu China
| | - Dongmei Deng
- Department of Preventive Dentistry, Academic Center for Dentistry Amsterdam (ACTA) University of Amsterdam and VU University Amsterdam Amsterdam Netherlands
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology Sichuan University Chengdu China.,Department of Cariology and Endodontics, West China Hospital of Stomatology Sichuan University Chengdu China
| |
Collapse
|
106
|
Abstract
The incidence of pancreatic incidentalomas (PIs) detected in otherwise asymptomatic patients is growing with the increasing quality and use of advanced imaging techniques. PI can present as isolated main pancreatic duct dilation or as a solid or cystic lesion. Although historically thought to be relatively rare, PIs are rather common, particularly cystic lesions of the pancreas, which can be detected in up to 49% of the general population. With the poor prognosis of pancreatic cancer, PIs are an opportunity for prevention and early diagnosis, but when managed poorly, they can also lead to overtreatment and unnecessary morbidity. The management of PI should begin with a dedicated pancreas protocol computed tomography (CT) scan or magnetic resonance imaging (MRI) to accurately characterize duct size, lesion characteristics and establish an accurate baseline for subsequent follow up. Diagnosis and subsequent management depends on the extent of main duct dilation and solid versus cystic appearance. Solid lesions are highly concerning for malignancy. Cystic lesions can be further categorized as intraductal papillary mucinous neoplasms of the pancreas (IPMNs) or mucinous cystic neoplasms (MCNs), both of which harbour malignant potential, or as serous cystic neoplasms (SCNs) that are benign. In this paper, we summarize the major challenges related to PI and present pragmatic suggestions for management.
Collapse
Affiliation(s)
- Marco Del Chiaro
- Division of Surgical Oncology, Department of Surgery, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Robert J Torphy
- Division of Surgical Oncology, Department of Surgery, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Richard D Schulick
- Division of Surgical Oncology, Department of Surgery, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
107
|
Li S, Su B, He QS, Wu H, Zhang T. Alterations in the oral microbiome in HIV infection: causes, effects and potential interventions. Chin Med J (Engl) 2021; 134:2788-2798. [PMID: 34670249 PMCID: PMC8667981 DOI: 10.1097/cm9.0000000000001825] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Indexed: 12/02/2022] Open
Abstract
ABSTRACT A massive depletion of CD4+ T lymphocytes has been described in early and acute human immunodeficiency virus (HIV) infection, leading to an imbalance between the human microbiome and immune responses. In recent years, a growing interest in the alterations in gut microbiota in HIV infection has led to many studies; however, only few studies have been conducted to explore the importance of oral microbiome in HIV-infected individuals. Evidence has indicated the dysbiosis of oral microbiota in people living with HIV (PLWH). Potential mechanisms might be related to the immunodeficiency in the oral cavity of HIV-infected individuals, including changes in secretory components such as reduced levels of enzymes and proteins in saliva and altered cellular components involved in the reduction and dysfunction of innate and adaptive immune cells. As a result, disrupted oral immunity in HIV-infected individuals leads to an imbalance between the oral microbiome and local immune responses, which may contribute to the development of HIV-related diseases and HIV-associated non-acquired immunodeficiency syndrome comorbidities. Although the introduction of antiretroviral therapy (ART) has led to a significant decrease in occurrence of the opportunistic oral infections in HIV-infected individuals, the dysbiosis in oral microbiome persists. Furthermore, several studies with the aim to investigate the ability of probiotics to regulate the dysbiosis of oral microbiota in HIV-infected individuals are ongoing. However, the effects of ART and probiotics on oral microbiome in HIV-infected individuals remain unclear. In this article, we review the composition of the oral microbiome in healthy and HIV-infected individuals and the possible effect of oral microbiome on HIV-associated oral diseases. We also discuss how ART and probiotics influence the oral microbiome in HIV infection. We believe that a deeper understanding of composition and function of the oral microbiome is critical for the development of effective preventive and therapeutic strategies for HIV infection.
Collapse
Affiliation(s)
- Shuang Li
- Beijing Key Laboratory for HIV/AIDS Research, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Bin Su
- Beijing Key Laboratory for HIV/AIDS Research, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Qiu-Shui He
- Institute of Biomedicine, Research Center for Infections and Immunity, University of Turku, Turku 20520, Finland
| | - Hao Wu
- Beijing Key Laboratory for HIV/AIDS Research, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Tong Zhang
- Beijing Key Laboratory for HIV/AIDS Research, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| |
Collapse
|
108
|
Basu M, Philipp LM, Baines JF, Sebens S. The Microbiome Tumor Axis: How the Microbiome Could Contribute to Clonal Heterogeneity and Disease Outcome in Pancreatic Cancer. Front Oncol 2021; 11:740606. [PMID: 34631577 PMCID: PMC8495218 DOI: 10.3389/fonc.2021.740606] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 09/08/2021] [Indexed: 12/13/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most malignant cancers. It is characterized by a poor prognosis with a 5-year survival rate of only around 10% and an ongoing increase in death rate. Due to the lack of early and specific symptoms, most patients are diagnosed at an advanced or even metastasized stage, essentially limiting curative treatment options. However, even curative resection of the primary tumor and adjuvant therapy often fails to provide a long-term survival benefit. One reason for this dismal situation can be seen in the evolution of therapy resistances. Furthermore, PDAC is characterized by high intratumor heterogeneity, pointing towards an abundance of cancer stem cells (CSCs), which are regarded as essential for tumor initiation and drug resistance. Additionally, it was shown that the gut microbiome is altered in PDAC patients, promotes Epithelial-Mesenchymal-Transition (EMT), determines responses towards chemotherapy, and affects survival in PDAC patients. Given the established links between CSCs and EMT as well as drug resistance, and the emerging role of the microbiome in PDAC, we postulate that the composition of the microbiome of PDAC patients is a critical determinant for the abundance and plasticity of CSC populations and thus tumor heterogeneity in PDAC. Unravelling this complex interplay might pave the way for novel treatment strategies.
Collapse
Affiliation(s)
- Meghna Basu
- Max Planck Institute for Evolutionary Biology, Plön, Germany.,Section of Evolutionary Medicine, Institute of Experimental Medicine, Kiel University, Kiel, Germany
| | - Lisa-Marie Philipp
- Institute for Experimental Cancer Research, University Hospital Schleswig-Holstein (UKSH) Campus Kiel, Kiel University, Kiel, Germany
| | - John F Baines
- Max Planck Institute for Evolutionary Biology, Plön, Germany.,Section of Evolutionary Medicine, Institute of Experimental Medicine, Kiel University, Kiel, Germany
| | - Susanne Sebens
- Institute for Experimental Cancer Research, University Hospital Schleswig-Holstein (UKSH) Campus Kiel, Kiel University, Kiel, Germany
| |
Collapse
|
109
|
Sedghi L, DiMassa V, Harrington A, Lynch SV, Kapila YL. The oral microbiome: Role of key organisms and complex networks in oral health and disease. Periodontol 2000 2021; 87:107-131. [PMID: 34463991 PMCID: PMC8457218 DOI: 10.1111/prd.12393] [Citation(s) in RCA: 320] [Impact Index Per Article: 80.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
States of oral health and disease reflect the compositional and functional capacities of, as well as the interspecies interactions within, the oral microbiota. The oral cavity exists as a highly dynamic microbial environment that harbors many distinct substrata and microenvironments that house diverse microbial communities. Specific to the oral cavity, the nonshedding dental surfaces facilitate the development of highly complex polymicrobial biofilm communities, characterized not only by the distinct microbes comprising them, but cumulatively by their activities. Adding to this complexity, the oral cavity faces near-constant environmental challenges, including those from host diet, salivary flow, masticatory forces, and introduction of exogenous microbes. The composition of the oral microbiome is shaped throughout life by factors including host genetics, maternal transmission, as well as environmental factors, such as dietary habits, oral hygiene practice, medications, and systemic factors. This dynamic ecosystem presents opportunities for oral microbial dysbiosis and the development of dental and periodontal diseases. The application of both in vitro and culture-independent approaches has broadened the mechanistic understandings of complex polymicrobial communities within the oral cavity, as well as the environmental, local, and systemic underpinnings that influence the dynamics of the oral microbiome. Here, we review the present knowledge and current understanding of microbial communities within the oral cavity and the influences and challenges upon this system that encourage homeostasis or provoke microbiome perturbation, and thus contribute to states of oral health or disease.
Collapse
Affiliation(s)
- Lea Sedghi
- Department of Orofacial SciencesSchool of DentistryUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Vincent DiMassa
- Department of MedicineUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Anthony Harrington
- Department of MedicineUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Susan V. Lynch
- Department of MedicineUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Yvonne L. Kapila
- Department of Orofacial SciencesSchool of DentistryUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| |
Collapse
|
110
|
Wandmacher AM, Mehdorn AS, Sebens S. The Heterogeneity of the Tumor Microenvironment as Essential Determinant of Development, Progression and Therapy Response of Pancreatic Cancer. Cancers (Basel) 2021; 13:4932. [PMID: 34638420 PMCID: PMC8508450 DOI: 10.3390/cancers13194932] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/14/2021] [Accepted: 09/14/2021] [Indexed: 12/15/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is commonly diagnosed at advanced stages and most anti-cancer therapies have failed to substantially improve prognosis of PDAC patients. As a result, PDAC is still one of the deadliest tumors. Tumor heterogeneity, manifesting at multiple levels, provides a conclusive explanation for divergent survival times and therapy responses of PDAC patients. Besides tumor cell heterogeneity, PDAC is characterized by a pronounced inflammatory stroma comprising various non-neoplastic cells such as myofibroblasts, endothelial cells and different leukocyte populations which enrich in the tumor microenvironment (TME) during pancreatic tumorigenesis. Thus, the stromal compartment also displays a high temporal and spatial heterogeneity accounting for diverse effects on the development, progression and therapy responses of PDAC. Adding to this heterogeneity and the impact of the TME, the microbiome of PDAC patients is considerably altered. Understanding this multi-level heterogeneity and considering it for the development of novel therapeutic concepts might finally improve the dismal situation of PDAC patients. Here, we outline the current knowledge on PDAC cell heterogeneity focusing on different stromal cell populations and outline their impact on PDAC progression and therapy resistance. Based on this information, we propose some novel concepts for treatment of PDAC patients.
Collapse
Affiliation(s)
| | - Anna Maxi Wandmacher
- Department of Internal Medicine II, University Hospital Schleswig-Holstein Campus Kiel, Arnold-Heller-Str. 3, 24105 Kiel, Germany;
| | - Anne-Sophie Mehdorn
- Department of General, Visceral, Thoracic, Transplantation and Pediatric Surgery, University Hospital Schleswig-Holstein Campus Kiel, Arnold-Heller-Str. 3, Building C, 24105 Kiel, Germany;
| | - Susanne Sebens
- Institute for Experimental Cancer Research, Kiel University and University Hospital Schleswig-Holstein Campus Kiel, Arnold-Heller-Str. 3, Building U30 Entrance 1, 24105 Kiel, Germany
| |
Collapse
|
111
|
Brandi G, Turroni S, McAllister F, Frega G. The Human Microbiomes in Pancreatic Cancer: Towards Evidence-Based Manipulation Strategies? Int J Mol Sci 2021; 22:9914. [PMID: 34576078 PMCID: PMC8471697 DOI: 10.3390/ijms22189914] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/09/2021] [Accepted: 09/10/2021] [Indexed: 02/07/2023] Open
Abstract
Recent pieces of evidence have emerged on the relevance of microorganisms in modulating responses to anticancer treatments and reshaping the tumor-immune microenvironment. On the one hand, many studies have addressed the role of the gut microbiota, providing interesting correlative findings with respect to etiopathogenesis and treatment responses. On the other hand, intra-tumoral bacteria are being recognized as intrinsic and essential components of the cancer microenvironment, able to promote a plethora of tumor-related aspects from cancer growth to resistance to chemotherapy. These elements will be probably more and more valuable in the coming years in early diagnosis and risk stratification. Furthermore, microbial-targeted intervention strategies may be used as adjuvants to current therapies to improve therapeutic responses and overall survival. This review focuses on new insights and therapeutic approaches that are dawning against pancreatic cancer: a neoplasm that arises in a central metabolic "hub" interfaced between the gut and the host.
Collapse
Affiliation(s)
- Giovanni Brandi
- Department of Experimental, Diagnostic and Specialty Medicine, Sant’Orsola-Malpighi Hospital, University of Bologna, 40138 Bologna, Italy
- Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | - Silvia Turroni
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy;
| | - Florencia McAllister
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Giorgio Frega
- Department of Experimental, Diagnostic and Specialty Medicine, Sant’Orsola-Malpighi Hospital, University of Bologna, 40138 Bologna, Italy
- Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| |
Collapse
|
112
|
Chen X, Liu F, Xue Q, Weng X, Xu F. Metastatic pancreatic cancer: Mechanisms and detection (Review). Oncol Rep 2021; 46:231. [PMID: 34498718 PMCID: PMC8444192 DOI: 10.3892/or.2021.8182] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 08/19/2021] [Indexed: 12/13/2022] Open
Abstract
Pancreatic cancer (PC) is a lethal malignancy. Its prevalence rate remains low but continues to grow each year. Among all stages of PC, metastatic PC is defined as late-stage (stage IV) PC and has an even higher fatality rate. Patients with PC do not have any specific clinical manifestations. Most cases are inoperable at the time-point of diagnosis. Prognosis is also poor even with curative-intent surgery. Complications during surgery, postoperative pancreatic fistula and recurrence with metastatic foci make the management of metastatic PC difficult. While extensive efforts were made to improve survival outcomes, further elucidation of the molecular mechanisms of metastasis poses a formidable challenge. The present review provided an overview of the mechanisms of metastatic PC, summarizing currently known signaling pathways (e.g. epithelial-mesenchymal transition, NF-κB and KRAS), imaging that may be utilized for early detection and biomarkers (e.g. carbohydrate antigen 19-9, prostate cancer-associated transcript-1, F-box/LRR-repeat protein 7 and tumor stroma), giving insight into promising therapeutic targets.
Collapse
Affiliation(s)
- Xiangling Chen
- Department of Public Health, Chengdu Medical College, Chengdu, Sichuan 610500, P.R. China
| | - Fangfang Liu
- Department of Art, Art College, Southwest Minzu University, Chengdu, Sichuan 610041, P.R. China
| | - Qingping Xue
- Department of Public Health, Chengdu Medical College, Chengdu, Sichuan 610500, P.R. China
| | - Xiechuan Weng
- Department of Neuroscience, Beijing Institute of Basic Medical Sciences, Beijing 100850, P.R. China
| | - Fan Xu
- Department of Public Health, Chengdu Medical College, Chengdu, Sichuan 610500, P.R. China
| |
Collapse
|
113
|
Kabwe M, Dashper S, Bachrach G, Tucci J. Bacteriophage manipulation of the microbiome associated with tumour microenvironments-can this improve cancer therapeutic response? FEMS Microbiol Rev 2021; 45:6188389. [PMID: 33765142 DOI: 10.1093/femsre/fuab017] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 03/21/2021] [Indexed: 12/11/2022] Open
Abstract
Some cancer treatment failures have been attributed to the tumour microbiota, with implications that microbiota manipulation may improve treatment efficacy. While antibiotics have been used to control bacterial growth, their dysbiotic effects on the microbiome, failure to penetrate biofilms and decreased efficacy due to increasing antimicrobial resistance by bacteria, suggest alternatives are needed. Bacteriophages may provide a precise means for targeting oncobacteria whose relative abundance is increased in tumour tissue microbiomes. Fusobacterium, Streptococcus, Peptostreptococcus, Prevotella, Parvimonas, and Treponema species are prevalent in tumour tissue microbiomes of some cancers. They may promote cancer growth by dampening immunity, stimulating release of proinflammatory cytokines, and directly interacting with cancer cells to stimulate proliferation. Lytic bacteriophages against some of these oncobacteria have been isolated and characterised. The search continues for others. The possibility exists for their testing as adjuncts to complement existing therapies. In this review, we highlight the role of oncobacteria, specifically those whose relative abundance in the intra-tumour microbiome is increased, and discuss the potential for bacteriophages against these micro-organisms to augment existing cancer therapies. The capacity for bacteriophages to modulate immunity and kill specific bacteria makes them suitable candidates to manipulate the tumour microbiome and negate the effects of these oncobacteria.
Collapse
Affiliation(s)
- Mwila Kabwe
- Department of Pharmacy and Biomedical Sciences, La Trobe Institute for Molecular Science, La Trobe University, Sharon St. Bendigo, Victoria 3550, Australia
| | - Stuart Dashper
- Melbourne Dental School, University of Melbourne, 720 Swanston St, Parkville, Victoria 3010, Australia
| | - Gilad Bachrach
- The Institute of Dental Sciences, The Hebrew University-Hadassah School of Dental Medicine, PO Box 12272, Jerusalem 9112102, Israel
| | - Joseph Tucci
- Department of Pharmacy and Biomedical Sciences, La Trobe Institute for Molecular Science, La Trobe University, Sharon St. Bendigo, Victoria 3550, Australia
| |
Collapse
|
114
|
Kunovsky L, Dite P, Jabandziev P, Dolina J, Vaculova J, Blaho M, Bojkova M, Dvorackova J, Uvirova M, Kala Z, Trna J. Helicobacter pylori infection and other bacteria in pancreatic cancer and autoimmune pancreatitis. World J Gastrointest Oncol 2021; 13:835-844. [PMID: 34457189 PMCID: PMC8371525 DOI: 10.4251/wjgo.v13.i8.835] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 03/24/2021] [Accepted: 07/05/2021] [Indexed: 02/06/2023] Open
Abstract
Helicobacter pylori (H. pylori) is an infectious agent influencing as much as 50% of the world’s population. It is the causative agent for several diseases, most especially gastric and duodenal peptic ulcer, gastric adenocarcinoma and mucosa-associated lymphoid tissue lymphoma of the stomach. A number of other, extragastric manifestations also are associated with H. pylori infection. These include neurological disorders, such as Alzheimer’s disease, demyelinating multiple sclerosis and Parkinson’s disease. There is also evidence for a relationship between H. pylori infection and such dermatological diseases as psoriasis and rosacea as well as a connection with infection and open-angle glaucoma. Generally little is known about the relationship between H. pylori infection and diseases of the pancreas. Most evidence about H. pylori and its potential role in the development of pancreatic diseases concerns pancreatic adenocarcinoma and autoimmune forms of chronic pancreatitis. There is data (albeit not fully consistent) indicating modestly increased pancreatic cancer risk in H. pylori-positive patients. The pathogenetic mechanism of this increase is not yet fully elucidated, but several theories have been proposed. Reduction of antral D-cells in H. pylori-positive patients causes a suppression of somatostatin secretion that, in turn, stimulates increased secretin secretion. That stimulates pancreatic growth and thus increases the risk of carcinogenesis. Alternatively, H. pylori, as a part of microbiome dysbiosis and the so-called oncobiome, is proven to be associated with pancreatic adenocarcinoma development via the promotion of cellular proliferation. The role of H. pylori in the inflammation characteristic of autoimmune pancreatitis seems to be explained by a mechanism of molecular mimicry among several proteins (mostly enzymes) of H. pylori and pancreatic tissue. Patients with autoimmune pancreatitis often show positivity for antibodies against H. pylori proteins. H. pylori, as a part of microbiome dysbiosis, also is viewed as a potential trigger of autoimmune inflammation of the pancreas. It is precisely these relationships (and associated equivocal conclusions) that constitute a center of attention among pancreatologists, immunologists and pathologists. In order to obtain clear and valid results, more studies on sufficiently large cohorts of patients are needed. The topic is itself sufficiently significant to draw the interest of clinicians and inspire further systematic research. Next-generation sequencing could play an important role in investigating the microbiome as a potential diagnostic and prognostic biomarker for pancreatic cancer.
Collapse
Affiliation(s)
- Lumir Kunovsky
- Department of Surgery, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno 62500, Czech Republic
- Department of Gastroenterology and Internal Medicine, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno 62500, Czech Republic
| | - Petr Dite
- Department of Gastroenterology and Internal Medicine, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno 62500, Czech Republic
- Department of Gastroenterology and Internal Medicine, University Hospital Ostrava, Ostrava 70800, Czech Republic
- Faculty of Medicine, University of Ostrava, Ostrava 70300, Czech Republic
| | - Petr Jabandziev
- Department of Pediatrics, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno 61300, Czech Republic
- Central European Institute of Technology, Masaryk University, Brno 62500, Czech Republic
| | - Jiri Dolina
- Department of Gastroenterology and Internal Medicine, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno 62500, Czech Republic
| | - Jitka Vaculova
- Department of Gastroenterology and Internal Medicine, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno 62500, Czech Republic
| | - Martin Blaho
- Department of Gastroenterology and Internal Medicine, University Hospital Ostrava, Ostrava 70800, Czech Republic
- Faculty of Medicine, University of Ostrava, Ostrava 70300, Czech Republic
| | - Martina Bojkova
- Department of Gastroenterology and Internal Medicine, University Hospital Ostrava, Ostrava 70800, Czech Republic
- Faculty of Medicine, University of Ostrava, Ostrava 70300, Czech Republic
| | - Jana Dvorackova
- Department of Intensive Medicine, Emergency Medicine and Forensic Studies, University Hospital Ostrava, Ostrava 70800, Czech Republic
- Faculty of Medicine, University of Ostrava, Ostrava 70300, Czech Republic
| | | | - Zdenek Kala
- Department of Surgery, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno 62500, Czech Republic
| | - Jan Trna
- Department of Gastroenterology and Internal Medicine, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno 62500, Czech Republic
- Department of Gastroenterology and Digestive Endoscopy, Masaryk Memorial Cancer Institute, Brno 65653, Czech Republic
- Department of Internal Medicine, Hospital Boskovice, Boskovice 68001, Czech Republic
| |
Collapse
|
115
|
Ponath F, Tawk C, Zhu Y, Barquist L, Faber F, Vogel J. RNA landscape of the emerging cancer-associated microbe Fusobacterium nucleatum. Nat Microbiol 2021; 6:1007-1020. [PMID: 34239075 DOI: 10.1038/s41564-021-00927-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Accepted: 05/24/2021] [Indexed: 12/14/2022]
Abstract
Fusobacterium nucleatum, long known as a constituent of the oral microflora, has recently garnered renewed attention for its association with several different human cancers. The growing interest in this emerging cancer-associated bacterium contrasts with a paucity of knowledge about its basic gene expression features and physiological responses. As fusobacteria lack all established small RNA-associated proteins, post-transcriptional networks in these bacteria are also unknown. In the present study, using differential RNA-sequencing, we generate high-resolution global RNA maps for five clinically relevant fusobacterial strains-F. nucleatum subspecies nucleatum, animalis, polymorphum and vincentii, as well as F. periodonticum-for early, mid-exponential growth and early stationary phase. These data are made available in an online browser, and we use these to uncover fundamental aspects of fusobacterial gene expression architecture and a suite of non-coding RNAs. Developing a vector for functional analysis of fusobacterial genes, we discover a conserved fusobacterial oxygen-induced small RNA, FoxI, which serves as a post-transcriptional repressor of the major outer membrane porin FomA. Our findings provide a crucial step towards delineating the regulatory networks enabling F. nucleatum adaptation to different environments, which may elucidate how these bacteria colonize different compartments of the human body.
Collapse
Affiliation(s)
- Falk Ponath
- Helmholtz Institute for RNA-based Infection Research, Helmholtz Centre for Infection Research, Würzburg, Germany
| | - Caroline Tawk
- Institute for Molecular Infection Biology, University of Würzburg, Würzburg, Germany
| | - Yan Zhu
- Institute for Molecular Infection Biology, University of Würzburg, Würzburg, Germany
| | - Lars Barquist
- Helmholtz Institute for RNA-based Infection Research, Helmholtz Centre for Infection Research, Würzburg, Germany.,Faculty of Medicine, University of Würzburg, Würzburg, Germany
| | - Franziska Faber
- Institute for Molecular Infection Biology, University of Würzburg, Würzburg, Germany
| | - Jörg Vogel
- Helmholtz Institute for RNA-based Infection Research, Helmholtz Centre for Infection Research, Würzburg, Germany. .,Institute for Molecular Infection Biology, University of Würzburg, Würzburg, Germany. .,Faculty of Medicine, University of Würzburg, Würzburg, Germany.
| |
Collapse
|
116
|
Translocation of vaginal microbiota is involved in impairment and protection of uterine health. Nat Commun 2021; 12:4191. [PMID: 34234149 PMCID: PMC8263591 DOI: 10.1038/s41467-021-24516-8] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 06/18/2021] [Indexed: 02/06/2023] Open
Abstract
The vaginal and uterine microbiota play important roles in the health of the female reproductive system. However, the interactions among the microbes in these two niches and their effects on uterine health remain unclear. Here we profile the vaginal and uterine microbial samples of 145 women, and combine with deep mining of public data and animal experiments to characterize the microbial translocation in the female reproductive tract and its role in modulating uterine health. Synchronous variation and increasing convergence of the uterine and vaginal microbiome with advancing age are shown. We also find that transplanting certain strains of vaginal bacteria into the vagina of rats induces or reduces endometritis-like symptoms, and verify the damaging or protective effects of certain vaginal bacteria on endometrium. This study clarifies the interdependent relationship of vaginal bacterial translocation with uterine microecology and endometrial health, which will undoubtedly increase our understanding of female reproductive health.
Collapse
|
117
|
Sun L, Huang H, Jin Z. Application of EUS-based techniques in the evaluation of pancreatic cystic neoplasms. Endosc Ultrasound 2021; 10:230-240. [PMID: 34213426 PMCID: PMC8411565 DOI: 10.4103/eus-d-20-00216] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 03/21/2021] [Indexed: 12/04/2022] Open
Abstract
Pancreatic cystic neoplasms (PCNs) are being detected increasingly frequently due to the widespread use of high-resolution abdominal imaging modalities. Some subtypes of PCNs have the potential for malignant transformation. Therefore, accurate diagnosis of PCNs is crucial to determine whether surgical resection or surveillance is the best management strategy. However, the current cross-section imaging modalities are not accurate enough to enable definite diagnoses. In the last decade, EUS-based techniques have emerged, aiming to overcome the limitations of standard cross-section imaging modalities. These novel EUS-based techniques were primarily designed to acquire distinct images to make radiological diagnoses, collect cyst fluid to undergo biochemical or molecular analyses, and obtain tissue to conclude the pathological diagnoses. In this article, we present a comprehensive and critical review of these emerging EUS techniques for the diagnosis of PCNs, with emphasis being placed on the advantages, feasibilities, diagnostic performances, and limitations of these novel techniques.
Collapse
Affiliation(s)
- Liqi Sun
- Department of Gastroenterology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Haojie Huang
- Department of Gastroenterology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Zhendong Jin
- Department of Gastroenterology, Changhai Hospital, Second Military Medical University, Shanghai, China
| |
Collapse
|
118
|
Noguera E, Sorribas M, Admella V, Biondo S. Oral health and gastrointestinal neoplasia: Narrative review. Cir Esp 2021; 99:S0009-739X(21)00178-0. [PMID: 34144811 DOI: 10.1016/j.ciresp.2021.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/11/2021] [Accepted: 05/12/2021] [Indexed: 11/15/2022]
Abstract
The oral cavity represents the gateway to the complex digestive system, so the knowledge of the exact mechanisms that link them is vitally important. Recently, oral and dental pathologies have been studied as potential risk factors for pathologies linked to lifestyle habits. Therefore, it could be considered as an interesting preventive way. We conducted a narrative review with a thorough bibliographic search on MEDLINE and SCOPUS, including international studies related to oral healthcare and gastrointestinal neoplasms, published between 2015 and 2020. The primary aim of this revision is to analyze the association between oral healthcare and carcinogenic gastrointestinal processes, providing a possible future preventive strategy for dental care. Moreover, we intend to raise awareness about the importance of oral healthcare as a new paradigm and study variable in the global health care system.
Collapse
Affiliation(s)
- Elisabet Noguera
- Grado de Odontología, Facultad de Medicina y Ciencias de la Salud, Universidad de Barcelona, Barcelona, España
| | - María Sorribas
- Servicio de Cirugía General y Digestiva, Hospital Universitario de Bellvitge, Universidad de Barcelona, IDIBELL (Instituto de Investigación Biomédica de Bellvitge), Hospitalet de Llobregat, Barcelona, España
| | - Víctor Admella
- Servicio de Cirugía General y Digestiva, Hospital Universitario de Bellvitge, Universidad de Barcelona, IDIBELL (Instituto de Investigación Biomédica de Bellvitge), Hospitalet de Llobregat, Barcelona, España
| | - Sebastiano Biondo
- Servicio de Cirugía General y Digestiva, Hospital Universitario de Bellvitge, Universidad de Barcelona, IDIBELL (Instituto de Investigación Biomédica de Bellvitge), Hospitalet de Llobregat, Barcelona, España.
| |
Collapse
|
119
|
Walker GT, Yang G, Tsai JY, Rodriguez JL, English BC, Faber F, Souvannaseng L, Butler BP, Tsolis RM. Malaria parasite infection compromises colonization resistance to an enteric pathogen by reducing gastric acidity. SCIENCE ADVANCES 2021; 7:eabd6232. [PMID: 34193410 PMCID: PMC8245046 DOI: 10.1126/sciadv.abd6232] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 05/17/2021] [Indexed: 05/05/2023]
Abstract
Malaria parasite infection weakens colonization resistance against Salmonella enterica serovar (S.) Typhimurium. S. Typhimurium is a member of the Enterobacterales, a taxon that increases in abundance when the colonic microbiota is disrupted or when the colonic mucosa is inflamed. However, here, we show that infection of mice with Plasmodium yoelii enhances S. Typhimurium colonization by weakening host control in the upper GI tract. P. yoelii-infected mice had elevated gastric pH. Stimulation of gastric acid secretion during P. yoelii infection restored stomach acidity and colonization resistance, demonstrating that parasite-induced hypochlorhydria increases gastric survival of S. Typhimurium. Furthermore, blockade of P. yoelii-induced TNF-α signaling was sufficient to prevent elevation of gastric pH and enhance S. Typhimurium colonization during concurrent infection. Collectively, these data suggest that abundance in the fecal microbiota of facultative anaerobes, such as S. Typhimurium, can be increased by suppressing antibacterial defenses in the upper GI tract, such as gastric acid.
Collapse
Affiliation(s)
- Gregory T Walker
- Department of Medical Microbiology and Immunology, School of Medicine, University of California Davis, Davis, CA, USA
| | - Guiyan Yang
- Department of Medical Microbiology and Immunology, School of Medicine, University of California Davis, Davis, CA, USA
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Julia Y Tsai
- Department of Medical Microbiology and Immunology, School of Medicine, University of California Davis, Davis, CA, USA
- School of Veterinary Medicine, University of California Davis, Davis, CA, USA
| | - Jorge L Rodriguez
- Department of Medical Microbiology and Immunology, School of Medicine, University of California Davis, Davis, CA, USA
| | - Bevin C English
- Department of Medical Microbiology and Immunology, School of Medicine, University of California Davis, Davis, CA, USA
| | - Franziska Faber
- Department of Medical Microbiology and Immunology, School of Medicine, University of California Davis, Davis, CA, USA
- Institute for Molecular Infection Biology (IMIB), Faculty of Medicine, University of Würzburg, D-97080 Würzburg, Germany
| | - Lattha Souvannaseng
- Department of Medical Microbiology and Immunology, School of Medicine, University of California Davis, Davis, CA, USA
- Mouse Biology Program, University of California Davis, Davis, CA, USA
- Department of Pathobiology, School of Veterinary Medicine, St. George's University, Grenada, West Indies
| | - Brian P Butler
- Department of Pathobiology, School of Veterinary Medicine, St. George's University, Grenada, West Indies
| | - Renée M Tsolis
- Department of Medical Microbiology and Immunology, School of Medicine, University of California Davis, Davis, CA, USA.
| |
Collapse
|
120
|
Kim J, Lee HK. The Role of Gut Microbiota in Modulating Tumor Growth and Anticancer Agent Efficacy. Mol Cells 2021; 44:356-362. [PMID: 33972463 PMCID: PMC8175145 DOI: 10.14348/molcells.2021.0032] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/19/2021] [Accepted: 03/20/2021] [Indexed: 02/08/2023] Open
Abstract
An increasing number of studies have revealed an interaction between gut microbiota and tumors. The enrichment of specific bacteria strains in the intestines has been found to modulate tumor growth and influence the mechanisms of tumor treatment. Various bacteria are involved in modulating the effects of chemotherapeutic drugs currently used to treat patients with cancer, and they affect not only gastrointestinal tract tumors but also distant organ tumors. In addition, changes in the gut microbiota are known to be involved in the antitumor immune response as well as the modulation of the intestinal immune system. As a result, the gut microbiota plays an important role in modulating the efficacy of immune checkpoint inhibitors. Therefore, gut microbiota could be considered as an adjuvant treatment option with other cancer treatment or as another marker for predicting treatment response. In this review, we examine how gut microbiota affects cancer treatments.
Collapse
Affiliation(s)
- Jaeho Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Heung Kyu Lee
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| |
Collapse
|
121
|
Yu D, Wang T, Liang D, Mei Y, Zou W, Guo S. The Landscape of Microbial Composition and Associated Factors in Pancreatic Ductal Adenocarcinoma Using RNA-Seq Data. Front Oncol 2021; 11:651350. [PMID: 34136388 PMCID: PMC8202409 DOI: 10.3389/fonc.2021.651350] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 03/30/2021] [Indexed: 01/14/2023] Open
Abstract
Recent research studies on interrogation of the tumor microbiome (including bacteria, viruses, and fungi) have yielded important insights into the role of microbes in carcinogenesis, therapeutic responses, and resistance. Once thought to be a sterile organ, a number of studies have showed the presence of microbes within this organ in PDAC status. A microbiome–pancreas axis for PDAC (pancreatic ductal adenocarcinoma) carcinogenesis is proposed. However, the microbial composition of localized PDAC tissue is still unclear. The associations between microbiome and PDAC reported in previous studies were detected in an indirect way, which mostly used samples from stool, oral saliva, and intestinal samples. This study integrated 582 samples derived from PDAC tissues across four datasets and presented a landscape of tumor microbiome at the genus level in PDAC based on remining of RNA-Seq data. On average, there are hundreds of genera distributed in the PDAC tissue, and dozens of core microbiota were identified by PDAC tissue. The pan-microbiome of PDAC tissue was also estimated, which might surpass 2,500 genera. In addition, sampling sites (stroma vs. epithelium) and tissue source (human tissue vs. PDX) were found to have great effects on the microbial composition of PDAC tissue, but not the traditional risk factors (sex and age). It is the first study to systematically focus on exploring the microbial composition of PDAC tissue and is helpful to have a deep understanding of tumor microbiome. The identified specific taxa might be potential biomarkers for follow-up research studies.
Collapse
Affiliation(s)
- Dong Yu
- Center of Translational Medicine, Second Military Medical University, Shanghai, China.,Shanghai Key Laboratory of Cell Engineering, Shanghai, China
| | - Tengjiao Wang
- Center of Translational Medicine, Second Military Medical University, Shanghai, China.,Shanghai Key Laboratory of Cell Engineering, Shanghai, China
| | - Dong Liang
- Center of Translational Medicine, Second Military Medical University, Shanghai, China.,Shanghai Key Laboratory of Cell Engineering, Shanghai, China
| | - Yue Mei
- Center of Translational Medicine, Second Military Medical University, Shanghai, China.,Shanghai Key Laboratory of Cell Engineering, Shanghai, China
| | - Wenbin Zou
- Department of Gastroenterology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Shiwei Guo
- Department of General Surgery, Changhai Hospital, Second Military Medical University, Shanghai, China
| |
Collapse
|
122
|
Assarzadegan N, Thompson E, Salimian K, Gaida MM, Brosens LAA, Wood L, Ali SZ, Hruban RH. Pathology of intraductal papillary mucinous neoplasms. Langenbecks Arch Surg 2021; 406:2643-2655. [PMID: 34047827 DOI: 10.1007/s00423-021-02201-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 05/13/2021] [Indexed: 02/06/2023]
Abstract
BACKGROUND Intraductal papillary mucinous neoplasms (IPMNs) represent a unique opportunity to treat and prevent a curable neoplasm before it has the chance to progress to incurable cancer. This prospect, however, has to be balanced with the real risk of over treating patients with lesions that would, in fact, never progress during the life of the patient. PURPOSE Informed clinical decisions in the treatment of IPMNs are first and foremost based on a deep understanding of the pathology of these lesions. CONCLUSIONS Here we review the pathology of IPMNs, with an emphasis on the clinical relevance of the important features that characterize these lesions.
Collapse
Affiliation(s)
- Naziheh Assarzadegan
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, 600 North Wolfe Street, Baltimore, MD, 21212, USA
| | - Elizabeth Thompson
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, 600 North Wolfe Street, Baltimore, MD, 21212, USA
| | - Kevan Salimian
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, 600 North Wolfe Street, Baltimore, MD, 21212, USA
| | - Matthias M Gaida
- Institute of Pathology, University Medical Center Mainz, Mainz, Germany
| | - Lodewijk A A Brosens
- Department of Pathology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Laura Wood
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, 600 North Wolfe Street, Baltimore, MD, 21212, USA.,Department of Oncology, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, 600 North Wolfe Street, Baltimore, MD, 21212, USA
| | - Syed Z Ali
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, 600 North Wolfe Street, Baltimore, MD, 21212, USA.,Department of Oncology, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, 600 North Wolfe Street, Baltimore, MD, 21212, USA
| | - Ralph H Hruban
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, 600 North Wolfe Street, Baltimore, MD, 21212, USA. .,Department of Oncology, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, 600 North Wolfe Street, Baltimore, MD, 21212, USA.
| |
Collapse
|
123
|
Garcia Garcia de Paredes A, Gleeson FC, Rajan E, Vazquez-Sequeiros E. Current clinical and research fluid biomarkers to aid risk stratification of pancreatic cystic lesions. REVISTA ESPANOLA DE ENFERMEDADES DIGESTIVAS 2021; 113:714-720. [PMID: 33947199 DOI: 10.17235/reed.2021.7948/2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Pancreatic cystic lesions (PCL) are composed of a heterogeneous group of entities that are increasingly diagnosed, generally as incidental findings in asymptomatic patients. In conjunction with this growing incidence, the potential for malignant transformation of mucin-producing cysts makes PCL a challenging clinical conundrum for the clinician, patient, and healthcare system. Cyst characterization based on morphology is often difficult and inaccurate, therefore several intracystic fluid biomarkers have been evaluated as ancillary testing to enhance the difficult balance between sparing a patient from an unnecessary high-risk pancreatic surgery and missing the opportunity to prevent or diagnose pancreatic adenocarcinoma at an early disease stage. There are two questions that are key to guide the care of patients with PCL: 1) is it a non-mucinous cyst that does not require any follow-up? and 2) if mucinous, does the cyst harbor advanced neoplasia (high-grade dysplasia or invasive carcinoma) that requires surgical resection, or is it a low-risk lesion that will benefit from a surveillance program? The purpose of this review is to give a general and practical overview of the different cyst fluid biomarkers that have been studied to address these specific questions, from classic biochemical markers to include carcinoembryonic antigen to novel genetic and epigenetic markers, such as microRNA or intracystic bacterial DNA.
Collapse
|
124
|
Masi AC, Oppong YEA, Haugk B, Lamb CA, Sharp L, Shaw JM, Stewart CJ, Oppong KW. Endoscopic ultrasound (EUS)-guided fine needle biopsy (FNB) formalin fixed paraffin-embedded (FFPE) pancreatic tissue samples are a potential resource for microbiota analysis. Gut 2021; 70:999-1001. [PMID: 32816963 DOI: 10.1136/gutjnl-2020-322457] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Accepted: 07/15/2020] [Indexed: 12/15/2022]
Affiliation(s)
- Andrea C Masi
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Yaa E A Oppong
- Department of Infection Biology, Faculty of Infectious and Tropical Medicine, London School of Hygiene and Tropical Medicine, Keppel Street, London, UK
| | - Beate Haugk
- Department of Cellular Pathology, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Christopher A Lamb
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK.,Department of Gastroenterology, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Linda Sharp
- Population Health Sciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - James M Shaw
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Christopher J Stewart
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Kofi W Oppong
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK .,HPB Unit and Department of Gastroenterology, Newcastle upon Tyne Hospitals NHS Trust, Newcastle upon Tyne, UK
| |
Collapse
|
125
|
Park SY, Hwang BO, Lim M, Ok SH, Lee SK, Chun KS, Park KK, Hu Y, Chung WY, Song NY. Oral-Gut Microbiome Axis in Gastrointestinal Disease and Cancer. Cancers (Basel) 2021; 13:2124. [PMID: 33924899 PMCID: PMC8125773 DOI: 10.3390/cancers13092124] [Citation(s) in RCA: 111] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/05/2021] [Accepted: 03/09/2021] [Indexed: 02/07/2023] Open
Abstract
It is well-known that microbiota dysbiosis is closely associated with numerous diseases in the human body. The oral cavity and gut are the two largest microbial habitats, playing a major role in microbiome-associated diseases. Even though the oral cavity and gut are continuous regions connected through the gastrointestinal tract, the oral and gut microbiome profiles are well-segregated due to the oral-gut barrier. However, the oral microbiota can translocate to the intestinal mucosa in conditions of the oral-gut barrier dysfunction. Inversely, the gut-to-oral microbial transmission occurs as well in inter- and intrapersonal manners. Recently, it has been reported that oral and gut microbiomes interdependently regulate physiological functions and pathological processes. Oral-to-gut and gut-to-oral microbial transmissions can shape and/or reshape the microbial ecosystem in both habitats, eventually modulating pathogenesis of disease. However, the oral-gut microbial interaction in pathogenesis has been underappreciated to date. Here, we will highlight the oral-gut microbiome crosstalk and its implications in the pathogenesis of the gastrointestinal disease and cancer. Better understanding the role of the oral-gut microbiome axis in pathogenesis will be advantageous for precise diagnosis/prognosis and effective treatment.
Collapse
Affiliation(s)
- Se-Young Park
- Department of Applied Life Science, The Graduate School, Yonsei University, and BK21 FOUR Project, Yonsei University College of Dentistry, Seoul 03722, Korea; (S.-Y.P.); (B.-O.H.); (S.-H.O.)
| | - Byeong-Oh Hwang
- Department of Applied Life Science, The Graduate School, Yonsei University, and BK21 FOUR Project, Yonsei University College of Dentistry, Seoul 03722, Korea; (S.-Y.P.); (B.-O.H.); (S.-H.O.)
| | - Mihwa Lim
- Department of Oral Biology, Yonsei University College of Dentistry, Seoul 03722, Korea; (M.L.); (S.-K.L.); (K.-K.P.)
| | - Seung-Ho Ok
- Department of Applied Life Science, The Graduate School, Yonsei University, and BK21 FOUR Project, Yonsei University College of Dentistry, Seoul 03722, Korea; (S.-Y.P.); (B.-O.H.); (S.-H.O.)
| | - Sun-Kyoung Lee
- Department of Oral Biology, Yonsei University College of Dentistry, Seoul 03722, Korea; (M.L.); (S.-K.L.); (K.-K.P.)
| | - Kyung-Soo Chun
- College of Pharmacy, Keimyung University, Daegu 42601, Korea;
| | - Kwang-Kyun Park
- Department of Oral Biology, Yonsei University College of Dentistry, Seoul 03722, Korea; (M.L.); (S.-K.L.); (K.-K.P.)
| | - Yinling Hu
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA;
| | - Won-Yoon Chung
- Department of Oral Biology, Oral Cancer Research Institute, and BK21 FOUR Project, Yonsei University College of Dentistry, Seoul 03722, Korea;
| | - Na-Young Song
- Department of Oral Biology, Yonsei University College of Dentistry, Seoul 03722, Korea; (M.L.); (S.-K.L.); (K.-K.P.)
| |
Collapse
|
126
|
Chandra V, McAllister F. Therapeutic potential of microbial modulation in pancreatic cancer. Gut 2021; 70:gutjnl-2019-319807. [PMID: 33906958 PMCID: PMC8292583 DOI: 10.1136/gutjnl-2019-319807] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 03/16/2021] [Accepted: 04/12/2021] [Indexed: 02/06/2023]
Affiliation(s)
- Vidhi Chandra
- Department of Clinical Cancer Prevention, Houston, Texas, USA
| | - Florencia McAllister
- Department of Clinical Cancer Prevention, Houston, Texas, USA
- Department of Gastrointestinal Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- Department of Immunology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
127
|
Wu YA, Oba A, Beaty L, Colborn KL, Rodriguez Franco S, Harnke B, Meguid C, Negrini D, Valente R, Ahrendt S, Schulick RD, Del Chiaro M. Ductal Dilatation of ≥5 mm in Intraductal Papillary Mucinous Neoplasm Should Trigger the Consideration for Pancreatectomy: A Meta-Analysis and Systematic Review of Resected Cases. Cancers (Basel) 2021; 13:cancers13092031. [PMID: 33922344 PMCID: PMC8122854 DOI: 10.3390/cancers13092031] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 04/14/2021] [Accepted: 04/19/2021] [Indexed: 12/20/2022] Open
Abstract
Simple Summary Intraductal papillary mucinous neoplasms (IPMN) are common but difficult to manage since accurate tools for diagnosing malignancy are unavailable. This study evaluates the diagnostic value of main pancreatic duct (MPD) diameter for detecting IPMN malignancy, using a meta-analysis of published data. The result suggests that malignancy is highly prevalent in IPMN with ductal dilatation of >5 mm. Abstract Intraductal papillary mucinous neoplasms (IPMN) are common but difficult to manage since accurate tools for diagnosing malignancy are unavailable. This study tests the diagnostic value of the main pancreatic duct (MPD) diameter for detecting IPMN malignancy using a meta-analysis of published data of resected IPMNs. Collected from a comprehensive literature search, the articles included in this analysis must report malignancy cases (high-grade dysplasia (HGD) and invasive carcinoma (IC)) and MPD diameter so that two MPD cut-offs could be created. The sensitivity, specificity, and odds ratios of the two cutoffs for predicting malignancy were calculated. A review of 1493 articles yielded 20 retrospective studies with 3982 resected cases. A cutoff of ≥5 mm is more sensitive than the ≥10 mm cutoff and has pooled sensitivity of 72.20% and 75.60% for classification of HGD and IC, respectively. Both MPD cutoffs of ≥5 mm and ≥10 mm were associated with malignancy (OR = 4.36 (95% CI: 2.82, 6.75) vs. OR = 3.18 (95% CI: 2.25, 4.49), respectively). The odds of HGD and IC for patients with MPD ≥5 mm were 5.66 (95% CI: 3.02, 10.62) and 7.40 (95% CI: 4.95, 11.06), respectively. OR of HGD and IC for MPD ≥10 mm cutoff were 4.36 (95% CI: 3.20, 5.93) and 4.75 (95% CI: 2.39, 9.45), respectively. IPMN with MPD of >5 mm could very likely be malignant. In selected IPMN patients, pancreatectomy should be considered when MPD is >5 mm.
Collapse
Affiliation(s)
- Y.H. Andrew Wu
- Division of Surgical Oncology, Department of Surgery, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (Y.H.A.W.); (A.O.); (L.B.); (K.L.C.); (S.R.F.); (C.M.); (D.N.); (R.V.); (S.A.); (R.D.S.)
| | - Atsushi Oba
- Division of Surgical Oncology, Department of Surgery, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (Y.H.A.W.); (A.O.); (L.B.); (K.L.C.); (S.R.F.); (C.M.); (D.N.); (R.V.); (S.A.); (R.D.S.)
- Department of Hepatobiliary and Pancreatic Surgery, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo 135-8550, Japan
| | - Laurel Beaty
- Division of Surgical Oncology, Department of Surgery, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (Y.H.A.W.); (A.O.); (L.B.); (K.L.C.); (S.R.F.); (C.M.); (D.N.); (R.V.); (S.A.); (R.D.S.)
- Department of Biostatistics and Informatics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Kathryn L. Colborn
- Division of Surgical Oncology, Department of Surgery, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (Y.H.A.W.); (A.O.); (L.B.); (K.L.C.); (S.R.F.); (C.M.); (D.N.); (R.V.); (S.A.); (R.D.S.)
- Department of Biostatistics and Informatics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Surgical Outcomes and Applied Research Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Salvador Rodriguez Franco
- Division of Surgical Oncology, Department of Surgery, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (Y.H.A.W.); (A.O.); (L.B.); (K.L.C.); (S.R.F.); (C.M.); (D.N.); (R.V.); (S.A.); (R.D.S.)
- The Heart Institute, Children’s Hospital Colorado, Aurora, CO 80045, USA
| | - Ben Harnke
- Strauss Health Sciences Library, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA;
| | - Cheryl Meguid
- Division of Surgical Oncology, Department of Surgery, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (Y.H.A.W.); (A.O.); (L.B.); (K.L.C.); (S.R.F.); (C.M.); (D.N.); (R.V.); (S.A.); (R.D.S.)
| | - Daniel Negrini
- Division of Surgical Oncology, Department of Surgery, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (Y.H.A.W.); (A.O.); (L.B.); (K.L.C.); (S.R.F.); (C.M.); (D.N.); (R.V.); (S.A.); (R.D.S.)
- Department of Anesthesiology, Federal University of the State of Rio de Janeiro, Rio de Janeiro 21941-901, Brazil
| | - Roberto Valente
- Division of Surgical Oncology, Department of Surgery, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (Y.H.A.W.); (A.O.); (L.B.); (K.L.C.); (S.R.F.); (C.M.); (D.N.); (R.V.); (S.A.); (R.D.S.)
- Department of Surgery and Perioperative Sciences, Umeå University Hospital, 907 37 Umeå, Sweden
| | - Steven Ahrendt
- Division of Surgical Oncology, Department of Surgery, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (Y.H.A.W.); (A.O.); (L.B.); (K.L.C.); (S.R.F.); (C.M.); (D.N.); (R.V.); (S.A.); (R.D.S.)
- University of Colorado Cancer Center, Aurora, CO 80045, USA
| | - Richard D. Schulick
- Division of Surgical Oncology, Department of Surgery, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (Y.H.A.W.); (A.O.); (L.B.); (K.L.C.); (S.R.F.); (C.M.); (D.N.); (R.V.); (S.A.); (R.D.S.)
- University of Colorado Cancer Center, Aurora, CO 80045, USA
| | - Marco Del Chiaro
- Division of Surgical Oncology, Department of Surgery, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (Y.H.A.W.); (A.O.); (L.B.); (K.L.C.); (S.R.F.); (C.M.); (D.N.); (R.V.); (S.A.); (R.D.S.)
- University of Colorado Cancer Center, Aurora, CO 80045, USA
- Correspondence:
| |
Collapse
|
128
|
Oral–Gut Microbiome Axis in Gastrointestinal Disease and Cancer. Cancers (Basel) 2021. [DOI: 10.3390/cancers13071748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
It is well-known that microbiota dysbiosis is closely associated with numerous diseases in the human body. The oral cavity and gut are the two largest microbial habitats, playing a major role in microbiome-associated diseases. Even though the oral cavity and gut are continuous regions connected through the gastrointestinal tract, the oral and gut microbiome profiles are well-segregated due to the oral–gut barrier. However, the oral microbiota can translocate to the intestinal mucosa in conditions of the oral–gut barrier dysfunction. Inversely, the gut-to-oral microbial transmission occurs as well in inter- and intrapersonal manners. Recently, it has been reported that oral and gut microbiomes interdependently regulate physiological functions and pathological processes. Oral-to-gut and gut-to-oral microbial transmissions can shape and/or reshape the microbial ecosystem in both habitats, eventually modulating pathogenesis of disease. However, the oral–gut microbial interaction in pathogenesis has been underappreciated to date. Here, we will highlight the oral–gut microbiome crosstalk and its implications in the pathogenesis of the gastrointestinal disease and cancer. Better understanding the role of the oral–gut microbiome axis in pathogenesis will be advantageous for precise diagnosis/prognosis and effective treatment.
Collapse
|
129
|
Tong Y, Gao H, Qi Q, Liu X, Li J, Gao J, Li P, Wang Y, Du L, Wang C. High fat diet, gut microbiome and gastrointestinal cancer. Theranostics 2021; 11:5889-5910. [PMID: 33897888 PMCID: PMC8058730 DOI: 10.7150/thno.56157] [Citation(s) in RCA: 100] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 03/09/2021] [Indexed: 12/12/2022] Open
Abstract
Gastrointestinal cancer is currently one of the main causes of cancer death, with a large number of cases and a wide range of lesioned sites. A high fat diet, as a public health problem, has been shown to be correlated with various digestive system diseases and tumors, and can accelerate the occurrence of cancer due to inflammation and altered metabolism. The gut microbiome has been the focus of research in recent years, and associated with cell damage or tumor immune microenvironment changes via direct or extra-intestinal effects; this may facilitate the occurrence and development of gastrointestinal tumors. Based on research showing that both a high fat diet and gut microbes can promote the occurrence of gastrointestinal tumors, and that a high fat diet imbalances intestinal microbes, we propose that a high fat diet drives gastrointestinal tumors by changing the composition of intestinal microbes.
Collapse
Affiliation(s)
- Yao Tong
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Huiru Gao
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Qiuchen Qi
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Xiaoyan Liu
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Juan Li
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Jie Gao
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Peilong Li
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Yunshan Wang
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Lutao Du
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Chuanxin Wang
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Shandong Engineering & Technology Research Center for Tumor Marker Detection, Jinan, Shandong, China
- Shandong Provincial Clinical Medicine Research Center for Clinical Laboratory, Jinan, Shandong, China
| |
Collapse
|
130
|
Wu ZF, Zou K, Xiang CJ, Jin ZJ, Ding HH, Xu S, Wu GN, Wang YH, Wu XY, Chen C, Yao XQ, Zhang JF, Liu FK. Helicobacter pylori infection is associated with the co-occurrence of bacteria in the oral cavity and the gastric mucosa. Helicobacter 2021; 26:e12786. [PMID: 33596339 DOI: 10.1111/hel.12786] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/18/2021] [Accepted: 01/20/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND Pathogens capable of impacting gastrointestinal tract tumor development are located in the oral cavity, but whether these oral bacteria are able to colonize the gastric mucosa in gastric cancer (GC) patients and whether Helicobacter pylori infection can influence this process remains to be established. METHODS Microbial 16S rDNA deep sequencing was conducted to characterize bacteria present in paired gastric mucosa and tongue coating samples in 27 patients with superficial gastritis (SG) and 11 GC patients. RESULTS While the overall composition of the gastric mucosa and tongue coating microbiomes differed substantially, certain bacteria were present in both of these communities. The co-occurrence of bacteria between the tongue coating and gastric mucosa differed significantly between SG and GC patients. Of the 15 most abundant shared oral bacteria genera (the core shared oral bacteria), which were associated with differences in microbiota composition between these tongue coating and gastric mucosa, three were enriched in the gastric mucosa of GC patients relative to SG patients, whereas, 12 were depleted in GC patient samples. Furthermore, the prevalence and relative abundance of these core shared oral bacteria in the gastric mucosa were also linked to H. pylori infection status, and the core shared oral bacteria were also associated with the overall composition of the gastric mucosal microbiome. CONCLUSIONS Helicobacter pylori infections are linked to the co-occurrence of bacteria in the oral microbiome and the gastric mucosal microbiome. Ectopic colonization of oral microbes may be a primary driver of H. pylori-induced gastric microbial dysbiosis in patients with GC.
Collapse
Affiliation(s)
- Zhen-Feng Wu
- Department of Surgical Oncology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Kun Zou
- Department of Surgical Oncology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Chun-Jie Xiang
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Zhao-Jia Jin
- Department of Surgical Oncology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Hai-Hua Ding
- Department of Surgical Oncology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Shuo Xu
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Guan-Nan Wu
- Department of Surgical Oncology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Yao-Hui Wang
- Department of Pathology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Xiao-Yu Wu
- Department of Surgical Oncology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Che Chen
- Department of Surgical Oncology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Xue-Quan Yao
- Department of Surgical Oncology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Jun-Feng Zhang
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Fu-Kun Liu
- Department of Surgical Oncology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
131
|
Kabwe M, Meehan-Andrews T, Ku H, Petrovski S, Batinovic S, Chan HT, Tucci J. Lytic Bacteriophage EFA1 Modulates HCT116 Colon Cancer Cell Growth and Upregulates ROS Production in an Enterococcus faecalis Co-culture System. Front Microbiol 2021; 12:650849. [PMID: 33868210 PMCID: PMC8044584 DOI: 10.3389/fmicb.2021.650849] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 03/08/2021] [Indexed: 12/12/2022] Open
Abstract
Enterococcus faecalis is an opportunistic pathogen in the gut microbiota that’s associated with a range of difficult to treat nosocomial infections. It is also known to be associated with some colorectal cancers. Its resistance to a range of antibiotics and capacity to form biofilms increase its virulence. Unlike antibiotics, bacteriophages are capable of disrupting biofilms which are key in the pathogenesis of diseases such as UTIs and some cancers. In this study, bacteriophage EFA1, lytic against E. faecalis, was isolated and its genome fully sequenced and analyzed in silico. Electron microscopy images revealed EFA1 to be a Siphovirus. The bacteriophage was functionally assessed and shown to disrupt E. faecalis biofilms as well as modulate the growth stimulatory effects of E. faecalis in a HCT116 colon cancer cell co-culture system, possibly via the effects of ROS. The potential exists for further testing of bacteriophage EFA1 in these systems as well as in vivo models.
Collapse
Affiliation(s)
- Mwila Kabwe
- Department of Pharmacy and Biomedical Sciences, La Trobe Institute for Molecular Science, La Trobe University, Bendigo, VIC, Australia
| | - Terri Meehan-Andrews
- Department of Pharmacy and Biomedical Sciences, La Trobe Institute for Molecular Science, La Trobe University, Bendigo, VIC, Australia
| | - Heng Ku
- Department of Pharmacy and Biomedical Sciences, La Trobe Institute for Molecular Science, La Trobe University, Bendigo, VIC, Australia
| | - Steve Petrovski
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Melbourne, VIC, Australia
| | - Steven Batinovic
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Melbourne, VIC, Australia
| | - Hiu Tat Chan
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Melbourne, VIC, Australia.,Department of Microbiology, Royal Melbourne Hospital, Melbourne, VIC, Australia
| | - Joseph Tucci
- Department of Pharmacy and Biomedical Sciences, La Trobe Institute for Molecular Science, La Trobe University, Bendigo, VIC, Australia
| |
Collapse
|
132
|
Yang J, Zhou X, Liu X, Ling Z, Ji F. Role of the Gastric Microbiome in Gastric Cancer: From Carcinogenesis to Treatment. Front Microbiol 2021; 12:641322. [PMID: 33790881 PMCID: PMC8005548 DOI: 10.3389/fmicb.2021.641322] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 02/22/2021] [Indexed: 01/10/2023] Open
Abstract
The development of sequencing technology has expanded our knowledge of the human gastric microbiome, which is now known to play a critical role in the maintenance of homeostasis, while alterations in microbial community composition can promote the development of gastric diseases. Recently, carcinogenic effects of gastric microbiome have received increased attention. Gastric cancer (GC) is one of the most common malignancies worldwide with a high mortality rate. Helicobacter pylori is a well-recognized risk factor for GC. More than half of the global population is infected with H. pylori, which can modulate the acidity of the stomach to alter the gastric microbiome profile, leading to H. pylori-associated diseases. Moreover, there is increasing evidence that bacteria other than H. pylori and their metabolites also contribute to gastric carcinogenesis. Therefore, clarifying the contribution of the gastric microbiome to the development and progression of GC can lead to improvements in prevention, diagnosis, and treatment. In this review, we discuss the current state of knowledge regarding changes in the microbial composition of the stomach caused by H. pylori infection, the carcinogenic effects of H. pylori and non-H. pylori bacteria in GC, as well as the potential therapeutic role of gastric microbiome in H. pylori infection and GC.
Collapse
Affiliation(s)
- Jinpu Yang
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xinxin Zhou
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaosun Liu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zongxin Ling
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Feng Ji
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
133
|
Morgell A, Reisz JA, Ateeb Z, Davanian H, Reinsbach SE, Halimi A, Gaiser R, Valente R, Arnelo U, Del Chiaro M, Chen MS, D'Alessandro A. Metabolic Characterization of Plasma and Cyst Fluid from Cystic Precursors to Pancreatic Cancer Patients Reveal Metabolic Signatures of Bacterial Infection. J Proteome Res 2021; 20:2725-2738. [PMID: 33720736 DOI: 10.1021/acs.jproteome.1c00018] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Pancreatic cancer is the seventh leading cause of cancer-related death worldwide, with a 5 year survival rate as low as 9%. One factor complicating the management of pancreatic cancer is the lack of reliable tools for early diagnosis. While up to 50% of the adult population has been shown to develop precancerous pancreatic cysts, limited and insufficient approaches are currently available to determine whether a cyst is going to progress into pancreatic cancer. Recently, we used metabolomics approaches to identify candidate markers of disease progression in patients diagnosed with intraductal papillary mucinous neoplasms (IPMNs) undergoing pancreatic resection. Here, we enrolled an independent cohort to verify the candidate markers from our previous study with orthogonal quantitative methods in plasma and cyst fluid from serous cystic neoplasm and IPMN (either low- or high-grade dysplasia or pancreatic ductal adenocarcinoma). We thus validated these markers with absolute quantitative methods through the auxilium of stable isotope-labeled internal standards in a new independent cohort. Finally, we identified novel markers of IPMN status and disease progression-including amino acids, carboxylic acids, conjugated bile acids, free and carnitine-conjugated fatty acids, purine oxidation products, and trimethylamine-oxide. We show that the levels of these metabolites of potential bacterial origin correlated with the degree of bacterial enrichment in the cyst, as determined by 16S RNA. Overall, our findings are interesting per se, owing to the validation of previous markers and identification of novel small molecule signatures of IPMN and disease progression. In addition, our findings further fuel the provoking debate as to whether bacterial infections may represent an etiological contributor to the development and severity of the disease in pancreatic cancer, in like fashion to other cancers (e.g., Helicobacter pylori and gastric cancer).
Collapse
Affiliation(s)
- Ann Morgell
- Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm 17177, Sweden
| | - Julie A Reisz
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver - Anschutz Medical Campus, Aurora 80045, Colorado, United States
| | - Zeeshan Ateeb
- Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm 17177, Sweden
| | - Haleh Davanian
- Department of Dental Medicine, Karolinska Institutet, Stockholm 17177, Sweden
| | - Susanne E Reinsbach
- Department of Biology and Biological Engineering, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Chalmers University of Technology, Gothenburg 40530 Sweden
| | - Asif Halimi
- Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm 17177, Sweden.,Department of Surgical and Perioperative Sciences, Surgery, Umeå University, Umeå 90187 Sweden
| | - Rogier Gaiser
- Department of Dental Medicine, Karolinska Institutet, Stockholm 17177, Sweden
| | - Roberto Valente
- Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm 17177, Sweden.,Department of Surgical and Perioperative Sciences, Surgery, Umeå University, Umeå 90187 Sweden
| | - Urban Arnelo
- Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm 17177, Sweden.,Department of Surgical and Perioperative Sciences, Surgery, Umeå University, Umeå 90187 Sweden
| | - Marco Del Chiaro
- Department of Surgery, University of Colorado Denver - Anschutz Medical Campus, Aurora 80045, Colorado, United States
| | | | - Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver - Anschutz Medical Campus, Aurora 80045, Colorado, United States
| |
Collapse
|
134
|
Pancreatic Cancer Meets Human Microbiota: Close Encounters of the Third Kind. Cancers (Basel) 2021; 13:cancers13061231. [PMID: 33799784 PMCID: PMC7998494 DOI: 10.3390/cancers13061231] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/26/2021] [Accepted: 03/07/2021] [Indexed: 12/15/2022] Open
Abstract
Simple Summary The microorganisms colonizing the epithelial surfaces of the human body, called microbiota, have been shown to influence the initiation, progression and response to therapy of many solid tumors, including pancreatic ductal adenocarcinoma, the most prominent form of pancreatic cancer. Here, we summarize the current knowledge about the influence of oral, gut and intratumoral microbiota on pancreatic ductal adenocarcinoma development and chemoresistance. Abstract Pancreatic ductal adenocarcinoma (PDAC) remains one of the most lethal types of cancer with a dismal prognosis. The five-year survival rate has not changed significantly in over 40 years. Current first-line treatments only offer a modest increase in overall survival in unselected populations, and there is an urgent need to personalize treatment in this aggressive disease and develop new therapeutic strategies. Evolving evidence suggests that the human microbiome impacts cancerogenesis and cancer resistance to therapy. The mechanism of action and interaction of microbiome and PDAC is still under investigation. Direct and indirect effects have been proposed, and the use of several microbiome signatures as predictive and prognostic biomarkers for pancreatic cancer are opening new therapeutic horizons. In this review, we provide an overview for the clinicians of studies describing the influence and associations of oral, gastrointestinal and intratumoral microbiota on PDAC development, progression and resistance to therapy and the potential use of microbiota as a diagnostic, prognostic and predictive biomarker for PDAC.
Collapse
|
135
|
Tijeras-Raballand A, Hilmi M, Astorgues-Xerri L, Nicolle R, Bièche I, Neuzillet C. Microbiome and pancreatic ductal adenocarcinoma. Clin Res Hepatol Gastroenterol 2021; 45:101589. [PMID: 33607375 DOI: 10.1016/j.clinre.2020.101589] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 11/24/2020] [Indexed: 02/07/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) incidence and related-deaths are increasing worldwide. PDAC is characterized by poor prognosis due to late diagnosis, high metastatic capacity and resistance to therapy. This is partially due to its specific microenvironment, where the stroma is prominent over tumor cells. Besides the oral and gut microbiota, the intratumor microbiome, i.e. the bacterial and fungal microorganisms present within the tumor, was recently introduced as a new partner of the tumor microenvironment of PDAC modulating pancreatic carcinogenesis, intratumor immune infiltrates, and response to chemotherapy. In this review, we propose an overview of current knowledge about the roles of bacteria and fungi in PDAC development and biology, and discuss potential therapeutic implications.
Collapse
Affiliation(s)
| | - Marc Hilmi
- OncoMEGA, Lamorlaye, France; Medical Oncology Department, Curie Institute, Versailles Saint-Quentin University (UVQ), Paris Saclay University, Saint-Cloud, France
| | | | - Rémy Nicolle
- OncoMEGA, Lamorlaye, France; Carte d'Identité des Tumeurs (Tumors Identity Card), La Ligue Contre le Cancer, Paris, France
| | - Ivan Bièche
- Pharmacogenomic Unit, Genetic Department, Curie Institute, Paris, France
| | - Cindy Neuzillet
- OncoMEGA, Lamorlaye, France; Medical Oncology Department, Curie Institute, Versailles Saint-Quentin University (UVQ), Paris Saclay University, Saint-Cloud, France.
| |
Collapse
|
136
|
Dong T, Zhao F, Yuan K, Zhu X, Wang N, Xia F, Lu Y, Huang Z. Association Between Serum Thyroid-Stimulating Hormone Levels and Salivary Microbiome Shifts. Front Cell Infect Microbiol 2021; 11:603291. [PMID: 33718264 PMCID: PMC7952758 DOI: 10.3389/fcimb.2021.603291] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Accepted: 01/11/2021] [Indexed: 01/10/2023] Open
Abstract
High serum thyroid-stimulating hormone (TSH) levels are linked to many metabolic disorders, but the effects of TSH levels on the oral microbiota are still largely unknown. This study aimed to explore the association between the salivary microbiome in adults and serum TSH levels. Saliva and fasting blood samples were obtained from a health census conducted in Southeast China. All participants were divided according to serum TSH levels. The microbial genetic profiles and changes were acquired by 16S rDNA sequencing and bioinformatics analysis. Relevant anthropometric and biochemical measurements such as insulin resistance, blood lipids, and body composition were evaluated with laboratory tests and physical examinations. The salivary microbiome in individuals with higher TSH level showed significantly higher taxa diversity. Principal coordinates analysis and partial least squares discriminant analysis showed distinct clustering in the Abnormal and Normal Groups (Adonis, P=0.0320). Granulicatella was identified as a discriminative genus for comparison of the two groups. Fasting serum insulin, Homeostatic Model Assessment for Insulin Resistance, and hemoglobin A1 were elevated in the Abnormal Group (P<0.05), showing the presence of insulin resistance in individuals with abnormal higher serum TSH levels. Distance-based redundancy analysis revealed the association of this distinctive difference with salivary microbiome. In conclusion, shifts in microbial profile were observed in the saliva of individuals with different serum TSH levels, and insulin resistance may play an important role in the biochemical and microbial alteration.
Collapse
Affiliation(s)
- Ting Dong
- Department of Endodontics, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University, School of Medicine, Shanghai, China.,National Clinical Research Center for Oral Diseases, Shanghai, China.,Shanghai Key Laboratory of Stomatology, Shanghai, China.,Shanghai Research Institute of Stomatology, Shanghai, China
| | - Fen Zhao
- Department of Endodontics, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University, School of Medicine, Shanghai, China.,National Clinical Research Center for Oral Diseases, Shanghai, China.,Shanghai Key Laboratory of Stomatology, Shanghai, China.,Shanghai Research Institute of Stomatology, Shanghai, China
| | - Keyong Yuan
- Department of Endodontics, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University, School of Medicine, Shanghai, China.,National Clinical Research Center for Oral Diseases, Shanghai, China.,Shanghai Key Laboratory of Stomatology, Shanghai, China.,Shanghai Research Institute of Stomatology, Shanghai, China
| | - Xiaohan Zhu
- Department of Endodontics, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University, School of Medicine, Shanghai, China.,National Clinical Research Center for Oral Diseases, Shanghai, China.,Shanghai Key Laboratory of Stomatology, Shanghai, China.,Shanghai Research Institute of Stomatology, Shanghai, China
| | - Ningjian Wang
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fangzhen Xia
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yingli Lu
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhengwei Huang
- Department of Endodontics, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University, School of Medicine, Shanghai, China.,National Clinical Research Center for Oral Diseases, Shanghai, China.,Shanghai Key Laboratory of Stomatology, Shanghai, China.,Shanghai Research Institute of Stomatology, Shanghai, China
| |
Collapse
|
137
|
Jain T, Sharma P, Are AC, Vickers SM, Dudeja V. New Insights Into the Cancer-Microbiome-Immune Axis: Decrypting a Decade of Discoveries. Front Immunol 2021; 12:622064. [PMID: 33708214 PMCID: PMC7940198 DOI: 10.3389/fimmu.2021.622064] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 01/11/2021] [Indexed: 12/13/2022] Open
Abstract
The past decade has witnessed groundbreaking advances in the field of microbiome research. An area where immense implications of the microbiome have been demonstrated is tumor biology. The microbiome affects tumor initiation and progression through direct effects on the tumor cells and indirectly through manipulation of the immune system. It can also determine response to cancer therapies and predict disease progression and survival. Modulation of the microbiome can be harnessed to potentiate the efficacy of immunotherapies and decrease their toxicity. In this review, we comprehensively dissect recent evidence regarding the interaction of the microbiome and anti-tumor immune machinery and outline the critical questions which need to be addressed as we further explore this dynamic colloquy.
Collapse
Affiliation(s)
| | | | | | - Selwyn M. Vickers
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Vikas Dudeja
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
138
|
Chung M, Zhao N, Meier R, Koestler DC, Wu G, del Castillo E, Paster BJ, Charpentier K, Izard J, Kelsey KT, Michaud DS. Comparisons of oral, intestinal, and pancreatic bacterial microbiomes in patients with pancreatic cancer and other gastrointestinal diseases. J Oral Microbiol 2021; 13:1887680. [PMID: 33628398 PMCID: PMC7889162 DOI: 10.1080/20002297.2021.1887680] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 01/14/2021] [Accepted: 02/04/2021] [Indexed: 12/14/2022] Open
Abstract
Background: Oral microbiota is believed to play important roles in systemic diseases, including cancer. Methods: We collected oral samples (tongue, buccal, supragingival, and saliva) and pancreatic tissue or intestinal samples from 52 subjects, and characterized 16S rRNA genes using high-throughput DNA sequencing. Results: Bray-Curtis plot showed clear separations between bacterial communities in the oral cavity and those in intestinal and pancreatic tissue samples. PERMANOVA tests indicated that bacterial communities from buccal samples were similar to supragingival and saliva samples, and pancreatic duct samples were similar to pancreatic tumor samples, but all other samples were significantly different from each other. A total of 73 unique Amplicon Sequence Variants (ASVs) were shared between oral and pancreatic or intestinal samples. Only four ASVs showed significant concordance, and two specific bacterial species (Gemella morbillorum and Fusobacterium nucleatum subsp. vincentii) showed consistent presence or absence patterns between oral and intestinal or pancreatic samples, after adjusting for within-subject correlation and disease status. Lastly, microbial co-abundance analyses showed distinct strain-level cluster patterns among microbiome members in buccal, saliva, duodenum, jejunum, and pancreatic tumor samples. Conclusions: Our findings indicate that oral, intestinal, and pancreatic bacterial microbiomes overlap but exhibit distinct co-abundance patterns in patients with pancreatic cancer and other gastrointestinal diseases.
Collapse
Affiliation(s)
- Mei Chung
- Department of Public Health and Community Medicine, School of Medicine, Tufts University, Boston, MA, USA
| | - Naisi Zhao
- Department of Public Health and Community Medicine, School of Medicine, Tufts University, Boston, MA, USA
| | - Richard Meier
- Department of Biostatistics, University of Kansas Medical Center, Kansas City, KS, USA
| | - Devin C. Koestler
- Department of Biostatistics, University of Kansas Medical Center, Kansas City, KS, USA
- University of Kansas Cancer Center, The University of Kansas Medical Center, Kansas City, KS, USA
| | - Guojun Wu
- Department of Biochemistry and Microbiology, Center for Nutrition, Microbiome and Health, New Jersey Institute for Food, Nutrition and Health, Rutgers University, New Brunswick, NJ, USA
| | | | - Bruce J. Paster
- Department of Microbiology, The Forsyth Institute, Cambridge, MA, USA
- Department of Oral Medicine, Infection & Immunity, Harvard School of Dental Medicine, Boston, MA, USA
| | | | - Jacques Izard
- Department of Food Science and Technology, University of Nebraska, Lincoln, NE, USA
- Fred and Pamela Buffet Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
| | - Karl T. Kelsey
- Center for Environmental Health and Technology, Brown University, Providence, RI, USA
| | - Dominique S. Michaud
- Department of Public Health and Community Medicine, School of Medicine, Tufts University, Boston, MA, USA
| |
Collapse
|
139
|
Abstract
ABSTRACT Microorganisms can help maintain homeostasis in humans by providing nutrition, maintaining hormone balance, and regulating inflammatory responses. In the case of imbalances, these microbes can cause various diseases, even malignancy. Pancreatic cancer (PC) is characterized by high tumor invasiveness, distant metastasis, and insensitivity to traditional chemotherapeutic drugs, and it is confirmed that PC is closely related to microorganisms. Recently, most studies based on clinical samples or case reports discussed the positive or negative relationships between microorganisms and PC. However, the specific mechanisms are blurry, especially the involved immunological pathways, and the roles of beneficial flora have usually been ignored. We reviewed studies published through September 2020 as identified using PubMed, MEDLINE, and Web of Science. We mainly introduced the traits of oral, gastrointestinal, and intratumoral microbes in PC and summarized the roles of these microbes in tumorigenesis and tumoral development through immunological pathways, in addition to illustrating the relationships between metabolic diseases with PC by microorganism. In addition, we identified microorganisms as biomarkers for early diagnosis and immunotherapy. This review will be significant for greater understanding the effect of microorganisms in PC and provide more meaningful guidance for future clinical applications.
Collapse
Affiliation(s)
- Xin Wei
- From the Department of Hepatobiliary and Pancreatic Surgery, The Second Hospital of Jilin University, Changchun
| | - Chunlei Mei
- Institute of Reproductive Health, Huazhong University of Science and Technology, Wuhan, China
| | - Xixi Li
- From the Department of Hepatobiliary and Pancreatic Surgery, The Second Hospital of Jilin University, Changchun
| | - Yingjun Xie
- From the Department of Hepatobiliary and Pancreatic Surgery, The Second Hospital of Jilin University, Changchun
| |
Collapse
|
140
|
Dong J, Gao HL, Wang WQ, Yu XJ, Liu L. Bidirectional and dynamic interaction between the microbiota and therapeutic resistance in pancreatic cancer. Biochim Biophys Acta Rev Cancer 2021; 1875:188484. [PMID: 33246025 DOI: 10.1016/j.bbcan.2020.188484] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 11/06/2020] [Accepted: 11/19/2020] [Indexed: 12/12/2022]
Abstract
Pancreatic ductal adenocarcinoma is one of the most lethal malignancies and is known for its high resistance and low response to treatment. Cancer treatments can reshape the microbiota and in turn, the microbiota influences the therapeutic efficacy by regulating immune response and metabolism. This crosstalk is bidirectional, heterogeneous, and dynamic. In this review, we elaborated on the interactions between the microbiota and therapeutic resistance in pancreatic ductal adenocarcinoma. Regulating the microbiota in pancreatic tumor microenvironment may not only generate direct anti-cancer but also synergistic effects with other treatments, providing new directions in cancer therapy.
Collapse
Affiliation(s)
- Jia Dong
- Department of Pancreatic Surgery, Shanghai Cancer Centre, Fudan University, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China; Shanghai Pancreatic Cancer Institute, Shanghai, China; Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - He-Li Gao
- Department of Pancreatic Surgery, Shanghai Cancer Centre, Fudan University, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China; Shanghai Pancreatic Cancer Institute, Shanghai, China; Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Wen-Quan Wang
- Department of Pancreatic Surgery, Shanghai Cancer Centre, Fudan University, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China; Shanghai Pancreatic Cancer Institute, Shanghai, China; Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Xian-Jun Yu
- Department of Pancreatic Surgery, Shanghai Cancer Centre, Fudan University, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China; Shanghai Pancreatic Cancer Institute, Shanghai, China; Pancreatic Cancer Institute, Fudan University, Shanghai, China.
| | - Liang Liu
- Department of Pancreatic Surgery, Shanghai Cancer Centre, Fudan University, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China; Shanghai Pancreatic Cancer Institute, Shanghai, China; Pancreatic Cancer Institute, Fudan University, Shanghai, China.
| |
Collapse
|
141
|
Badgeley A, Anwar H, Modi K, Murphy P, Lakshmikuttyamma A. Effect of probiotics and gut microbiota on anti-cancer drugs: Mechanistic perspectives. Biochim Biophys Acta Rev Cancer 2020; 1875:188494. [PMID: 33346129 DOI: 10.1016/j.bbcan.2020.188494] [Citation(s) in RCA: 117] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 12/11/2020] [Accepted: 12/13/2020] [Indexed: 02/07/2023]
Abstract
Bacteria present in probiotics, particularly the common Lactobacillus and Bifidobacterium microbes, have been found to induce anti-cancer action by enhancing cancer cell apoptosis and protecting against oxidative stress. Probiotics supplements also decrease the cancer-producing microorganism Fusobacterium. Studies have demonstrated that gut microbiota modifies the effect of chemo/radiation therapy. Gut microbes not only enhance the action of chemotherapy drugs but also reduce the side effects of these medications. Additionally, gut microbes reduce immunotherapy toxicity, in particular, the presence of Bacteroidetes or Bifidobacterium decreases the development of colitis by ipilimumab therapy. Probiotics supplements containing Bifidobacterium also reduce chemotherapy-induced mucositis and radiation-induced diarrhea. This review focused on elucidating the mechanism behind the anti-cancer action of Bifidobacterium species. Available studies have revealed Bifidobacterium species decrease cancer cell proliferation via the inhibition of growth factor signaling as well as inducing mitochondrial-mediated apoptosis. Moreover, Bifidobacterium species reduce the adverse effects of chemo/immuno/radiation therapy by inhibiting proinflammatory cytokines. Further clinical studies are needed to identify the powerful and suitable Bifidobacterium strain for the development of adjuvant therapy to support chemo/immuno/radiation therapy.
Collapse
Affiliation(s)
- Aja Badgeley
- Department of Pharmaceutical Sciences, Jefferson College of Pharmacy, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Hina Anwar
- Department of Pharmaceutical Sciences, Jefferson College of Pharmacy, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Karan Modi
- Department of Pharmaceutical Sciences, Jefferson College of Pharmacy, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Paige Murphy
- Department of Pharmaceutical Sciences, Jefferson College of Pharmacy, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Ashakumary Lakshmikuttyamma
- Department of Pharmaceutical Sciences, Jefferson College of Pharmacy, Thomas Jefferson University, Philadelphia, PA 19107, USA.
| |
Collapse
|
142
|
The Emerging Role of Microbiota and Microbiome in Pancreatic Ductal Adenocarcinoma. Biomedicines 2020; 8:biomedicines8120565. [PMID: 33287196 PMCID: PMC7761686 DOI: 10.3390/biomedicines8120565] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 11/27/2020] [Accepted: 12/02/2020] [Indexed: 12/12/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive malignant tumors due to the absence of biomarkers for early-stage detection and poor response to therapy. Since mounting evidence supports the role of microbiota composition in tumorigenesis and cancer treatment, the link between microbiome and PDAC has been described. In this review, we summarize the current knowledge regarding the impact of the gut and oral microbiome on the risk of PDAC development. Microenvironment-driven therapy and immune system interactions are also discussed. More importantly, we provide an overview of the clinical trials evaluating the microbiota role in the risk, prognosis, and treatment of patients suffering from PDAC and solid tumors. According to the research findings, immune tolerance might result from the microbiota-derived remodeling of pancreatic tumor microenvironment. Thus, microbiome profiling and targeting represent the potential trend to enhance antitumor immunity and improve the efficacy of PDAC treatment.
Collapse
|
143
|
Celardo I, Melino G, Amelio I. Commensal microbes and p53 in cancer progression. Biol Direct 2020; 15:25. [PMID: 33213502 PMCID: PMC7678320 DOI: 10.1186/s13062-020-00281-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 11/12/2020] [Indexed: 02/07/2023] Open
Abstract
Aetiogenesis of cancer has not been fully determined. Recent advances have clearly defined a role for microenvironmental factors in cancer progression and initiation; in this context, microbiome has recently emerged with a number of reported correlative and causative links implicating alterations of commensal microbes in tumorigenesis. Bacteria appear to have the potential to directly alter physiological pathways of host cells and in specific circumstances, such as the mutation of the tumour suppressive factor p53, they can also directly switch the function of a gene from oncosuppressive to oncogenic. In this minireview, we report a number of examples on how commensal microbes alter the host cell biology, affecting the oncogenic process. We then discuss more in detail how interaction with the gut microbiome can affect the function of p53 mutant in the intestinal tumorigenesis.
Collapse
Affiliation(s)
- Ivana Celardo
- MRC Toxicology Unit, University of Cambridge, Cambridge, UK
| | - Gerry Melino
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, Rome, Italy
| | - Ivano Amelio
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, Rome, Italy.
- School of Life Sciences, University of Nottingham, Nottingham, UK.
| |
Collapse
|
144
|
The microbiome, genetics, and gastrointestinal neoplasms: the evolving field of molecular pathological epidemiology to analyze the tumor-immune-microbiome interaction. Hum Genet 2020; 140:725-746. [PMID: 33180176 DOI: 10.1007/s00439-020-02235-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 10/23/2020] [Indexed: 02/06/2023]
Abstract
Metagenomic studies using next-generation sequencing technologies have revealed rich human intestinal microbiome, which likely influence host immunity and health conditions including cancer. Evidence indicates a biological link between altered microbiome and cancers in the digestive system. Escherichia coli and Bacteroides fragilis have been found to be enriched in colorectal mucosal tissues from patients with familial adenomatous polyposis that is caused by germline APC mutations. In addition, recent studies have found enrichment of certain oral bacteria, viruses, and fungi in tumor tissue and fecal specimens from patients with gastrointestinal cancer. An integrative approach is required to elucidate the role of microorganisms in the pathogenic process of gastrointestinal cancers, which develop through the accumulation of somatic genetic and epigenetic alterations in neoplastic cells, influenced by host genetic variations, immunity, microbiome, and environmental exposures. The transdisciplinary field of molecular pathological epidemiology (MPE) offers research frameworks to link germline genetics and environmental factors (including diet, lifestyle, and pharmacological factors) to pathologic phenotypes. The integration of microbiology into the MPE model (microbiology-MPE) can contribute to better understanding of the interactive role of environment, tumor cells, immune cells, and microbiome in various diseases. We review major clinical and experimental studies on the microbiome, and describe emerging evidence from the microbiology-MPE research in gastrointestinal cancers. Together with basic experimental research, this new research paradigm can help us to develop new prevention and treatment strategies for gastrointestinal cancers through targeting of the microbiome.
Collapse
|
145
|
Richardson M, Ren J, Rubinstein MR, Taylor JA, Friedman RA, Shen B, Han YW. Analysis of 16S rRNA genes reveals reduced Fusobacterial community diversity when translocating from saliva to GI sites. Gut Microbes 2020; 12:1-13. [PMID: 33054632 PMCID: PMC7577115 DOI: 10.1080/19490976.2020.1814120] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 07/22/2020] [Accepted: 08/17/2020] [Indexed: 02/03/2023] Open
Abstract
Fusobacterium nucleatum is a Gram-negative oral commensal anaerobe which has been increasingly implicated in various gastrointestinal (GI) disorders, including inflammatory bowel disease, appendicitis, GI cancers. The oral cavity harbors a diverse group of Fusobacterium, and it is postulated that F. nucleatum in the GI tract originate from the mouth. It is not known, however, if all oral Fusobacterium translocate to the GI sites with equal efficiencies. Therefore, we amplified 16S rRNA genes of F. nucleatum and F. periodonticum, two closely related oral species from matched saliva, gastric aspirates, and colon or ileal pouch aspirates of three patients with inflammatory bowel disease (IBD) and three healthy controls, and saliva alone from seven patients with either active IBD or IBD in remission. The 16S rRNA gene amplicons were cloned, and the DNA sequences determined by Sanger sequencing. The results demonstrate that fusobacterial community composition differs more significantly between the oral and GI sites than between different individuals. The oral communities demonstrate the highest level of variation and have the richest pool of unique sequences, with certain nodes/strains enriched in the GI tract and others diminished during translocation. The gastric and colon/pouch communities exhibit reduced diversity and are more closely related, possibly due to selective pressure in the GI tract. This study elucidates selective translocation of oral fusobacteria to the GI tract. Identification of specific transmissible clones will facilitate risk assessment for developing Fusobacterium-implicated GI disorders.
Collapse
Affiliation(s)
- Miles Richardson
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Jihui Ren
- Division of Periodontics, College of Dental Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Mara Roxana Rubinstein
- Division of Periodontics, College of Dental Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Jamila A. Taylor
- Division of Periodontics, College of Dental Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Richard A. Friedman
- Department of Biomedical Informatics, Vagelos College of Physicians & Surgeons, Columbia University Irving Medical Center, New York, NY, USA
- Biomedical Informatics Shared Resource, Herbert Irving Comprehensive Cancer Center, Vagelos Columbia University Irving Medical Center, New York, NY, USA
| | - Bo Shen
- Department of Gastroenterology and Hepatology, Cleveland Clinic, Cleveland, OH, USA
| | - Yiping W. Han
- Division of Periodontics, College of Dental Medicine, Columbia University Irving Medical Center, New York, NY, USA
- Department of Microbiology, Vagelos College of Physicians & Surgeons, Columbia University Irving Medical Center, New York, NY, USA
- Department of Microbiology, Columbia University Irving Medical Center, New York, NY, USA
- Herbert Irving Comprehensive Medical Center, Columbia University Irving Medical Center, New York, NY, USA
- Institute of Human Nutrition, Columbia University Irving Medicine Center, New York, NY, USA
| |
Collapse
|
146
|
Morgell A, Reisz JA, Ateeb Z, Davanian H, Reinsbach SE, Halimi A, Gaiser R, Valente R, Arnelo U, Chiaro MD, Sällberg Chen M, D'Alessandro A. Metabolic characterization of plasma and cyst fluid from cystic precursors to pancreatic cancer patients reveal metabolic signatures of bacterial infection. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2020:2020.11.03.20225524. [PMID: 33173899 PMCID: PMC7654893 DOI: 10.1101/2020.11.03.20225524] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
UNLABELLED Pancreatic cancer is the seventh leading cause of cancer-related death worldwide, with a 5-year survival rate as low as 9%. One factor complicating the management of pancreatic cancer is the lack of reliable tools for early diagnosis. While up to 50% of the adult population has been shown to develop precancerous pancreatic cysts, limited and insufficient approaches are currently available to determine whether a cyst is going to progress into pancreatic cancer. Recently, we used metabolomics approaches to identify candidate markers of disease progression in patients diagnosed with intraductal papillary mucinous neoplasms (IPMNs) undergoing pancreatic resection. Here we enrolled an independent cohort to verify the candidate markers from our previous study with orthogonal quantitative methods in plasma and cyst fluid from serous cystic neoplasm and IPMN (either low- or high-grade dysplasia or pancreatic ductal adenocarcinoma). We thus validated these markers with absolute quantitative methods through the auxilium of stable isotope-labelled internal standards in a new independent cohort. Finally, we identified novel markers of IPMN status and disease progression - including amino acids, carboxylic acids, conjugated bile acids, free and carnitine-conjugated fatty acids, purine oxidation products and TMAO. We show that the levels of these metabolites of potential bacterial origin correlated with the degree of bacterial enrichment in the cyst, as determined by 16S RNA. Overall, our findings are interesting per se, owing to the validation of previous markers and identification of novel small molecule signatures of IPMN and disease progression. In addition, our findings further fuel the provoking debate as to whether bacterial infections may represent an etiological contributor to the development and severity of the disease in pancreatic cancer, in like fashion to other cancers (e.g., Helicobacter pylori and gastric cancer). KEY POINTS We identified and quantified novel markers of IPMN cyst status and pancreatic cancer disease progression - including amino acids, carboxylic acids, conjugated bile acids, free and carnitine-conjugated fatty acids, purine oxidation products and TMAO.We show that the levels of these metabolites of potential bacterial origin correlated with the degree of bacterial enrichment in the cyst, as determined by 16S RNA.
Collapse
|
147
|
Parida S, Sharma D. The Microbiome and Cancer: Creating Friendly Neighborhoods and Removing the Foes Within. Cancer Res 2020; 81:790-800. [PMID: 33148661 DOI: 10.1158/0008-5472.can-20-2629] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 10/01/2020] [Accepted: 10/28/2020] [Indexed: 11/16/2022]
Abstract
The human body is colonized by the microbial cells that are estimated to be as abundant as human cells, yet their genome is roughly 100 times the human genome, providing significantly more genetic diversity. The past decade has observed an explosion of interest in examining the existence of microbiota in the human body and understanding its role in various diseases including inflammatory bowel disease, neurologic diseases, cardiovascular disorders, and cancer. Many studies have demonstrated differential community composition between normal tissue and cancerous tissue, paving the way for investigations focused on deciphering the cause-and-effect relationships between specific microbes and initiation and progression of various cancers. Also, evolving are the strategies to alter tumor-associated dysbiosis and move it toward eubiosis with holistic approaches to change the entire neighborhood or to neutralize pathogenic strains. In this review, we discuss important pathogenic bacteria and the underlying mechanisms by which they affect cancer progression. We summarize key microbiota alterations observed in multiple tumor niches, their association with clinical stages, and their potential use in cancer diagnosis and management. Finally, we discuss microbiota-based therapeutic approaches.
Collapse
Affiliation(s)
- Sheetal Parida
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Dipali Sharma
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
148
|
Pancreatic Diseases and Microbiota: A Literature Review and Future Perspectives. J Clin Med 2020; 9:jcm9113535. [PMID: 33139601 PMCID: PMC7692447 DOI: 10.3390/jcm9113535] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 10/28/2020] [Accepted: 10/30/2020] [Indexed: 12/12/2022] Open
Abstract
Gut microbiota represent an interesting worldwide research area. Several studies confirm that microbiota has a key role in human diseases, both intestinal (such as inflammatory bowel disease, celiac disease, intestinal infectious diseases, irritable bowel syndrome) and extra intestinal disorders (such as autism, multiple sclerosis, rheumatologic diseases). Nowadays, it is possible to manipulate microbiota by administering prebiotics, probiotics or synbiotics, through fecal microbiota transplantation in selected cases. In this scenario, pancreatic disorders might be influenced by gut microbiota and this relationship could be an innovative and inspiring field of research. However, data are still scarce and controversial. Microbiota manipulation could represent an important therapeutic strategy in the pancreatic diseases, in addition to standard therapies. In this review, we analyze current knowledge about correlation between gut microbiota and pancreatic diseases, by discussing on the one hand existing data and on the other hand future possible perspectives.
Collapse
|
149
|
Li P, Shu Y, Gu Y. The potential role of bacteria in pancreatic cancer: a systematic review. Carcinogenesis 2020; 41:397-404. [PMID: 32034405 DOI: 10.1093/carcin/bgaa013] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 01/18/2020] [Accepted: 02/06/2020] [Indexed: 02/06/2023] Open
Abstract
Pancreatic cancer is a lethal and devastating disease in the worldwide. Recognized risk factors for pancreatic cancer include cigarette smoking, obesity, type II diabetes and chronic pancreatitis. Other factors such as variant ABO blood type and Helicobacter pylori may also play an important role in pancreatic carcinogenesis. Recently, growing evidence suggests that the association between bacteria and pancreatic cancer is positive and related immune/inflammation activation and increased nitrosamine exposure may be its potential mechanism. Interestingly, it is debatable whether the relationship of bacteria and pancreatic cancer is causative, reactive or parallel and future studies are in progress. Here we review recent progress in pancreatic cancer and its related bacteria.
Collapse
Affiliation(s)
- Ping Li
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Yongqian Shu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Yanhong Gu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| |
Collapse
|
150
|
Cheng WY, Wu CY, Yu J. The role of gut microbiota in cancer treatment: friend or foe? Gut 2020; 69:1867-1876. [PMID: 32759302 PMCID: PMC7497589 DOI: 10.1136/gutjnl-2020-321153] [Citation(s) in RCA: 217] [Impact Index Per Article: 43.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 07/02/2020] [Accepted: 07/06/2020] [Indexed: 12/11/2022]
Abstract
The gut microbiota has been implicated in cancer and shown to modulate anticancer drug efficacy. Altered gut microbiota is associated with resistance to chemo drugs or immune checkpoint inhibitors (ICIs), whereas supplementation of distinct bacterial species restores responses to the anticancer drugs. Accumulating evidence has revealed the potential of modulating the gut microbiota to enhance the efficacy of anticancer drugs. Regardless of the valuable findings by preclinical models and clinical data of patients with cancer, a more thorough understanding of the interactions of the microbiota with cancer therapy helps researchers identify novel strategy for cancer prevention, stratify patients for more effective treatment and reduce treatment complication. In this review, we discuss the scientific evidence on the role of gut microbiota in cancer treatment, and highlight the latest knowledge and technologies leveraged to target specific bacteria that contribute to tumourigenesis. First, we provide an overview of the role of the gut microbiota in cancer, establishing the links between bacteria, inflammation and cancer treatment. Second, we highlight the mechanisms used by distinct bacterial species to modulate cancer growth, immune responses, as well as the efficacy of chemotherapeutic drugs and ICIs. Third, we demonstrate various approaches to modulate the gut microbiota and their potential in translational research. Finally, we discuss the limitations of current microbiome research in the context of cancer treatment, ongoing efforts to overcome these challenges and future perspectives.
Collapse
Affiliation(s)
- Wing Yin Cheng
- State Key Laboratory of Digestive Disease, Institute of Digestive Disease and The Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Chun-Ying Wu
- Division of Translational Research, Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan; Institute of Biomedical Bioinformatics and School of Medicine, National Yang-Ming University, Taipei, Taiwan; College of Public Health and Graduate Institute of Clinical Medicine, China Medical University, Taichung, Taiwan
| | - Jun Yu
- State Key Laboratory of Digestive Disease, Institute of Digestive Disease and The Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|