101
|
Ma T, Ma L, Wei R, Xu L, Ma Y, Chen Z, Dang J, Ma S, Li S. Physiology, Biochemistry, and Transcriptomics Jointly Reveal the Phytotoxicity Mechanism of Acetochlor on Pisum sativum L. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2024; 43:2005-2019. [PMID: 38988284 DOI: 10.1002/etc.5936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/10/2024] [Accepted: 05/23/2024] [Indexed: 07/12/2024]
Abstract
Acetochlor, as a commonly used pre-emergent herbicide, can be toxic to crops and affect production if used improperly. However, the toxic mechanism of acetochlor on plants is not fully understood. The present study used a combination of transcriptomic analysis and physiological measurements to investigate the effects of short-term (15-day) exposure to different concentrations of acetochlor (1, 10, 20 mg/kg) on the morphology, physiology, and transcriptional levels of pea seedlings, aiming to elucidate the toxic response and resistance mechanisms in pea seedlings under herbicide stress. The results showed that the toxicity of acetochlor to pea seedlings was dose-dependent, manifested as dwarfing and stem base browning with increasing concentrations, especially at 10 mg/kg and above. Analysis of the antioxidant system showed that from the 1 mg/kg treatment, malondialdehyde, superoxide dismutase, peroxidase, and glutathione peroxidase in peas increased with increasing concentrations of acetochlor, indicating oxidative damage. Analysis of the glutathione (GSH) metabolism system showed that under 10 mg/kg treatment, the GSH content of pea plants significantly increased, and GSH transferase activity and gene expression were significantly induced, indicating a detoxification response in plants. Transcriptomic analysis showed that after acetochlor treatment, differentially expressed genes in peas were significantly enriched in the phenylpropane metabolic pathway, and the levels of key metabolites (flavonoids and lignin) were increased. In addition, we found that acetochlor-induced dwarfing of pea seedlings may be related to gibberellin signal transduction. Environ Toxicol Chem 2024;43:2005-2019. © 2024 SETAC.
Collapse
Affiliation(s)
- Tingfeng Ma
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, People's Republic of China
| | - Lei Ma
- Agronomy College, Gansu Agricultural University, Lanzhou, People's Republic of China
| | - Ruonan Wei
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, People's Republic of China
| | - Ling Xu
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, People's Republic of China
| | - Yantong Ma
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, People's Republic of China
| | - Zhen Chen
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, People's Republic of China
| | - Junhong Dang
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, People's Republic of China
| | - Shaoying Ma
- Laboratory and Practice Base Management Center, Gansu Agricultural University, Lanzhou, People's Republic of China
| | - Sheng Li
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, People's Republic of China
- Agronomy College, Gansu Agricultural University, Lanzhou, People's Republic of China
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, People's Republic of China
| |
Collapse
|
102
|
Wamhoff D, Gündel A, Wagner S, Ortleb S, Borisjuk L, Winkelmann T. Anatomical limitations in adventitious root formation revealed by magnetic resonance imaging, infrared spectroscopy, and histology of rose genotypes with contrasting rooting phenotypes. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:4784-4801. [PMID: 38606898 PMCID: PMC11350080 DOI: 10.1093/jxb/erae158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 04/11/2024] [Indexed: 04/13/2024]
Abstract
Adventitious root (AR) formation is one of the most important developmental processes in vegetative propagation. Although genotypic differences in rose rooting ability are well known, the causal factors are not well understood. The rooting of two contrasting genotypes, 'Herzogin Friederike' and 'Mariatheresia', was compared following a multiscale approach. Using magnetic resonance imaging, we non-invasively monitored the inner structure of stem cuttings during initiation and progression of AR formation for the first time. Spatially resolved Fourier-transform infrared spectroscopy characterized the chemical composition of the tissues involved in AR formation. The results were validated through light microscopy and complemented by immunolabelling. The outcome demonstrated similarity of both genotypes in root primordia formation, which did not result in root protrusion through the shoot cortex in the difficult-to-root genotype 'Mariatheresia'. The biochemical composition of the contrasting genotypes highlighted main differences in cell wall-associated components. Further spectroscopic analysis of 15 contrasting rose genotypes confirmed the biochemical differences between easy- and difficult-to-root groups. Collectively, our data indicate that it is not the lack of root primordia limiting AR formation in these rose genotypes, but the firmness of the outer stem tissue and/or cell wall modifications that pose a mechanical barrier and prevent root extension and protrusion.
Collapse
Affiliation(s)
- David Wamhoff
- Institute of Horticultural Production Systems, Section Woody Plant and Propagation Physiology, Leibniz Universität Hannover, Hannover, Germany
| | - André Gündel
- Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466 Seeland-Gatersleben, Germany
- Stockholm University, Department of Ecology, Environment and Plant Sciences, Svante Arrhenius Väg 21 A Frescati Backe Stockholm SE-106 91, Sweden
| | - Steffen Wagner
- Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466 Seeland-Gatersleben, Germany
| | - Stefan Ortleb
- Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466 Seeland-Gatersleben, Germany
| | - Ljudmilla Borisjuk
- Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466 Seeland-Gatersleben, Germany
| | - Traud Winkelmann
- Institute of Horticultural Production Systems, Section Woody Plant and Propagation Physiology, Leibniz Universität Hannover, Hannover, Germany
| |
Collapse
|
103
|
Flinkstrom Z, Bryson S, Candry P, Winkler MKH. Metagenomic clustering links specific metabolic functions to globally relevant ecosystems. mSystems 2024; 9:e0057324. [PMID: 38980052 PMCID: PMC11334424 DOI: 10.1128/msystems.00573-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 06/12/2024] [Indexed: 07/10/2024] Open
Abstract
Metagenomic sequencing has advanced our understanding of biogeochemical processes by providing an unprecedented view into the microbial composition of different ecosystems. While the amount of metagenomic data has grown rapidly, simple-to-use methods to analyze and compare across studies have lagged behind. Thus, tools expressing the metabolic traits of a community are needed to broaden the utility of existing data. Gene abundance profiles are a relatively low-dimensional embedding of a metagenome's functional potential and are, thus, tractable for comparison across many samples. Here, we compare the abundance of KEGG Ortholog Groups (KOs) from 6,539 metagenomes from the Joint Genome Institute's Integrated Microbial Genomes and Metagenomes (JGI IMG/M) database. We find that samples cluster into terrestrial, aquatic, and anaerobic ecosystems with marker KOs reflecting adaptations to these environments. For instance, functional clusters were differentiated by the metabolism of antibiotics, photosynthesis, methanogenesis, and surprisingly GC content. Using this functional gene approach, we reveal the broad-scale patterns shaping microbial communities and demonstrate the utility of ortholog abundance profiles for representing a rapidly expanding body of metagenomic data. IMPORTANCE Metagenomics, or the sequencing of DNA from complex microbiomes, provides a view into the microbial composition of different environments. Metagenome databases were created to compile sequencing data across studies, but it remains challenging to compare and gain insight from these large data sets. Consequently, there is a need to develop accessible approaches to extract knowledge across metagenomes. The abundance of different orthologs (i.e., genes that perform a similar function across species) provides a simplified representation of a metagenome's metabolic potential that can easily be compared with others. In this study, we cluster the ortholog abundance profiles of thousands of metagenomes from diverse environments and uncover the traits that distinguish them. This work provides a simple to use framework for functional comparison and advances our understanding of how the environment shapes microbial communities.
Collapse
Affiliation(s)
- Zachary Flinkstrom
- Department of Civil and Environmental Engineering, University of Washington, Seattle, Washington, USA
| | | | - Pieter Candry
- Department of Civil and Environmental Engineering, University of Washington, Seattle, Washington, USA
- Laboratory of Systems & Synthetic Biology, Wageningen University & Research, Wageningen, Netherlands
| | - Mari-Karoliina H. Winkler
- Department of Civil and Environmental Engineering, University of Washington, Seattle, Washington, USA
| |
Collapse
|
104
|
Yao L, Wang R, Yoo CG, Zhang Y, Meng X, Liu W, Ragauskas AJ, Yang H. Visualization of lignification in flax stem cell walls with novel click-compatible monolignol analogs. FRONTIERS IN PLANT SCIENCE 2024; 15:1423072. [PMID: 39224856 PMCID: PMC11366659 DOI: 10.3389/fpls.2024.1423072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 07/22/2024] [Indexed: 09/04/2024]
Abstract
Introduction As an essential part of plant cell walls, lignin provides mechanical support for plant growth, enhances water transport, and helps to defend against pathogens. As the most abundant natural aromatic-based renewable resource on earth, its biosynthesis has always been a research focus, and it is still currently under study. Methods In this study, the p-coumaryl alcohol analog (HALK) and the coniferyl alcohol analog (GALK) containing an alkyne group at the ortho position were synthesized and applied to lignification in vivo and in vitro. The incorporation of these novel lignin monomers was observed via fluorescence imaging. Results and Discussion It was found that the two monolignol analogs could be incorporated in dehydrogenated polymers (DHPs) in vitro and in flax cell walls in vivo. The results showed that as the cultivation time and precursor concentration varied, the deposition of H and G-type lignin exhibited differences in deposition mode. At the subcellular scale, the deposited lignin first appears in the cell corner and the middle lamella, and then gradually appears on the cell walls. Furthermore, lignin was also found in bast fiber. It was demonstrated that these new molecules could provide high-resolution localization of lignin during polymerization.
Collapse
Affiliation(s)
- Lan Yao
- Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education and Hubei Province), College of Bioengineering, Hubei University of Technology, Wuhan, China
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, Hubei University of Technology, Wuhan, China
| | - Rui Wang
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, Hubei University of Technology, Wuhan, China
| | - Chang Geun Yoo
- Department of Chemical Engineering, State University of New York College of Environmental Science and Forestry, Syracuse, NY, United States
| | - Yuhang Zhang
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, Hubei University of Technology, Wuhan, China
| | - Xianzhi Meng
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong, China
| | - Wei Liu
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, Hubei University of Technology, Wuhan, China
| | - Arthur J. Ragauskas
- Department of Chemical and Biomolecular Engineering, University of Tennessee Knoxville, Knoxville, TN, United States
- Joint Institute for Biological Sciences, Biosciences Division, Oak Ridge National Laboratory (ORNL), Oak Ridge, TN, United States
- Department of Forestry, Wildlife, and Fisheries, Center for Renewable Carbon, The University of Tennessee Knoxville, Institute of Agriculture, Knoxville, TN, United States
| | - Haitao Yang
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, Hubei University of Technology, Wuhan, China
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong, China
| |
Collapse
|
105
|
Liu W, Cui J, Ran C, Zhang Y, Liang J, Shao X, Zhang Q, Geng Y, Guo L. Paclobutrazol Enhanced Stem Lodging Resistance of Direct-Seeded Rice by Affecting Basal Internode Development. PLANTS (BASEL, SWITZERLAND) 2024; 13:2289. [PMID: 39204725 PMCID: PMC11359414 DOI: 10.3390/plants13162289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/04/2024] [Accepted: 08/13/2024] [Indexed: 09/04/2024]
Abstract
The objectives of this study were to explore the mechanism of stem mechanical strength in direct-seeded rice (DSR) as affected by paclobutrazol, especially its related endogenous hormone and cell wall component changes in culm tissue and response to the application of paclobutrazol. Field experiments were conducted in Changchun County, Jilin Province, China, by using two japonica rice varieties, Jiyujing and Jijing305, with soaking seeds in paclobutrazol at concentrations of (0 mg L-1, S0; 50 mg L-1; S1; 100 mg L-1; S2; 150 mg L-1, S3; 200 mg L-1, S4) in 2021 and 2022. The results suggest that the application of paclobutrazol increased the grain yield and reduced the lodging rate of DSR. Compared with the S0 treatments, soaking the seeds in paclobutrazol treatments rapidly shortened the length of the basal internode by decreasing the endogenous indole acetic acid (IAA) and gibberellin A3 (GA3) contents in culm tissue. The larger breaking strength (M) was attributed to a higher section modulus (SM) and bending stress (BS). The higher mechanical tissue thickness in culm tissue under paclobutrazol treatments, which was raised by higher endogenous zeatin and zeatin riboside (Z+ZR) content in culm tissue, increased the culm diameter, culm wall thickness, and section modulus (SM) of the internode. Compared with the S0 treatments, soaking the seeds in paclobutrazol treatments increased the cellulose content, lignin content, activities of lignin-related enzymes, and expression of key genes in lignin biosynthesis, as well as resulted in a higher bending stress (BS) to enhance the culm breaking strength (M).
Collapse
Affiliation(s)
- Weiyang Liu
- Agronomy College, Jilin Provincial Laboratory of Crop Germplasm Resources Jilin Agricultural University, Changchun 130118, China; (W.L.); (J.C.); (C.R.); (Y.Z.); (J.L.); (X.S.); (Q.Z.)
| | - Jiehao Cui
- Agronomy College, Jilin Provincial Laboratory of Crop Germplasm Resources Jilin Agricultural University, Changchun 130118, China; (W.L.); (J.C.); (C.R.); (Y.Z.); (J.L.); (X.S.); (Q.Z.)
| | - Cheng Ran
- Agronomy College, Jilin Provincial Laboratory of Crop Germplasm Resources Jilin Agricultural University, Changchun 130118, China; (W.L.); (J.C.); (C.R.); (Y.Z.); (J.L.); (X.S.); (Q.Z.)
- Heyuan Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Heyuan 517000, China
| | - Yuchen Zhang
- Agronomy College, Jilin Provincial Laboratory of Crop Germplasm Resources Jilin Agricultural University, Changchun 130118, China; (W.L.); (J.C.); (C.R.); (Y.Z.); (J.L.); (X.S.); (Q.Z.)
| | - Jianuo Liang
- Agronomy College, Jilin Provincial Laboratory of Crop Germplasm Resources Jilin Agricultural University, Changchun 130118, China; (W.L.); (J.C.); (C.R.); (Y.Z.); (J.L.); (X.S.); (Q.Z.)
| | - Xiwen Shao
- Agronomy College, Jilin Provincial Laboratory of Crop Germplasm Resources Jilin Agricultural University, Changchun 130118, China; (W.L.); (J.C.); (C.R.); (Y.Z.); (J.L.); (X.S.); (Q.Z.)
- National Crop Variety Approval and Characterization Station, Jilin Agricultural University, Changchun 130118, China
| | - Qiang Zhang
- Agronomy College, Jilin Provincial Laboratory of Crop Germplasm Resources Jilin Agricultural University, Changchun 130118, China; (W.L.); (J.C.); (C.R.); (Y.Z.); (J.L.); (X.S.); (Q.Z.)
| | - Yanqiu Geng
- Agronomy College, Jilin Provincial Laboratory of Crop Germplasm Resources Jilin Agricultural University, Changchun 130118, China; (W.L.); (J.C.); (C.R.); (Y.Z.); (J.L.); (X.S.); (Q.Z.)
- National Crop Variety Approval and Characterization Station, Jilin Agricultural University, Changchun 130118, China
| | - Liying Guo
- Agronomy College, Jilin Provincial Laboratory of Crop Germplasm Resources Jilin Agricultural University, Changchun 130118, China; (W.L.); (J.C.); (C.R.); (Y.Z.); (J.L.); (X.S.); (Q.Z.)
- National Crop Variety Approval and Characterization Station, Jilin Agricultural University, Changchun 130118, China
| |
Collapse
|
106
|
Bryan G, Winichayakul S, Roberts N. Nutritional enhancement of animal feed and forage crops via genetic modification. J R Soc N Z 2024; 55:327-342. [PMID: 39677377 PMCID: PMC11639070 DOI: 10.1080/03036758.2024.2387136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 07/25/2024] [Indexed: 12/17/2024]
Abstract
Introducing beneficial productivity and nutritional traits into food, feed and forage crops utilising the tools of biotechnology can lead to improvements via genetic modification that cannot be achieved by traditional plant breeding. The timelines and costs are significant, and the regulatory hurdles can lead to some promising traits failing to be commercialised. These challenges mean that large commodity crops are the primary beneficiaries of biotechnology. New Zealand being primarily a grazing pastoral agricultural market and small in international terms, faces greater challenges. The species used in pastoral agriculture have relatively small seed markets and therefore limited investment for genetic improvement. The nutritional quality of feed and forages both in composition and in energy density per ha has a major influence on animal productivity and the environmental impacts of agriculture. Through government and private industry support, AgResearch has developed novel approaches to improve plant photosynthesis, energy density, and nutritional quality that has applications in crops globally. This review discusses the different challenges and solutions to improving plant nutrient density and outlines the benefits of these novel biotechnology traits in animal forage and feed crops.
Collapse
Affiliation(s)
- Gregory Bryan
- AgResearch Limited, Grasslands Research Centre, Palmerston North, New Zealand
| | | | - Nick Roberts
- AgResearch Limited, Grasslands Research Centre, Palmerston North, New Zealand
| |
Collapse
|
107
|
Liu J, Lv Y, Li M, Wu Y, Li B, Wang C, Tao Q. Peroxidase in plant defense: Novel insights for cadmium accumulation in rice (Oryza sativa L.). JOURNAL OF HAZARDOUS MATERIALS 2024; 474:134826. [PMID: 38852248 DOI: 10.1016/j.jhazmat.2024.134826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/28/2024] [Accepted: 06/03/2024] [Indexed: 06/11/2024]
Abstract
Phenylpropanoid biosynthesis plays crucial roles in the adaptation to cadmium (Cd) stress. Nevertheless, few reports have dabbled in physiological mechanisms of such super pathway regulating Cd accumulation in plants. Herein, by integrating transcriptomic, histological and molecular biology approaches, the present study dedicated to clarify molecular mechanism on how rice adapt to Cd stress via phenylpropanoid biosynthesis. Our analysis identified that the enhancement of phenylpropanoid biosynthesis was as a key response to Cd stress. Intriguingly, POD occupied a significant part in this process, with the number of POD related genes accounted for 26/29 of all upregulated genes in phenylpropanoid biosynthesis. We further used SHAM (salicylhydroxamic acid, the POD inhibitor) to validate that POD exhibited a negative correlation with the Cd accumulation in rice tissues, and proposed two intrinsic molecular mechanisms on POD in contributing to Cd detoxification. One strategy was that POD promoted the formation of lignin and CSs both in endodermis and exodermis for intercepting Cd influx. In detail, inhibited POD induced by external addition of SHAM decreased the content of lignin by 50.98-66.65 % and delayed percentage of the DTIP-CS to root length by 39.17-104.51 %. The other strategy was expression of transporter genes involved in Cd uptake, including OsIRT1, OsIRT2, OsZIP1 and OsZIP, negatively regulated by POD. In a word, our findings firstly draws a direct link between POD activity and the Cd accumulation, which is imperative for the breeding of rice with low-Cd-accumulating capacity in the future.
Collapse
Affiliation(s)
- Jiahui Liu
- College of Resources, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Yunxuan Lv
- College of Resources, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Meng Li
- College of Resources, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Yingjie Wu
- College of Resources, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Bing Li
- College of Resources, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Changquan Wang
- College of Resources, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
| | - Qi Tao
- College of Resources, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
| |
Collapse
|
108
|
Xue JS, Feng YF, Zhang MQ, Xu QL, Xu YM, Shi JQ, Liu LF, Wu XF, Wang S, Yang ZN. The regulatory mechanism of rapid lignification for timely anther dehiscence. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:1788-1800. [PMID: 38888227 DOI: 10.1111/jipb.13715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 05/16/2024] [Indexed: 06/20/2024]
Abstract
Anther dehiscence is a crucial event in plant reproduction, tightly regulated and dependent on the lignification of the anther endothecium. In this study, we investigated the rapid lignification process that ensures timely anther dehiscence in Arabidopsis. Our findings reveal that endothecium lignification can be divided into two distinct phases. During Phase I, lignin precursors are synthesized without polymerization, while Phase II involves simultaneous synthesis of lignin precursors and polymerization. The transcription factors MYB26, NST1/2, and ARF17 specifically regulate the pathway responsible for the synthesis and polymerization of lignin monomers in Phase II. MYB26-NST1/2 is the key regulatory pathway responsible for endothecium lignification, while ARF17 facilitates this process by interacting with MYB26. Interestingly, our results demonstrate that the lignification of the endothecium, which occurs within approximately 26 h, is much faster than that of the vascular tissue. These findings provide valuable insights into the regulation mechanism of rapid lignification in the endothecium, which enables timely anther dehiscence and successful pollen release during plant reproduction.
Collapse
Affiliation(s)
- Jing-Shi Xue
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Yi-Feng Feng
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Ming-Qi Zhang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Qin-Lin Xu
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Ya-Min Xu
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Jun-Qin Shi
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Li-Fang Liu
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Xiao-Feng Wu
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Shui Wang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Zhong-Nan Yang
- Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| |
Collapse
|
109
|
Reyes DC, Ma Z, Romero JJ. The Antimicrobial Properties of Technical Lignins and Their Derivatives-A Review. Polymers (Basel) 2024; 16:2181. [PMID: 39125207 PMCID: PMC11314680 DOI: 10.3390/polym16152181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/19/2024] [Accepted: 07/27/2024] [Indexed: 08/12/2024] Open
Abstract
Lignin represents one of the most abundant plant-derived polymers. It is mostly present in the cell wall, and its primary role is to provide mechanical support to the plant. Chemical processes during wood-pulping yield diverse technical lignins with distinct characteristics. Due to their complex and variable nature, technical lignins are often undervalued and are mainly used as burning fuel in mills. However, various technical lignins have been shown to possess antimicrobial properties. Consequently, there is an increasing interest in understanding the properties and conditions that underlie their antimicrobial characteristics and how we can utilize them for practical applications. This review, for the first time, comprehensively summarized the antimicrobial activities of technical lignins and their potential antimicrobial applications.
Collapse
Affiliation(s)
- Diana Carolina Reyes
- Animal and Veterinary Sciences, University of Maine, Orono, ME 04469, USA;
- Animal Science, Cornell University, Ithaca, NY 14850, USA
| | - Zhengxin Ma
- Molecular and Biomedical Sciences, University of Maine, Orono, ME 04469, USA;
| | - Juan Jose Romero
- Animal and Veterinary Sciences, University of Maine, Orono, ME 04469, USA;
| |
Collapse
|
110
|
Nakanishi K, Li H, Ichino T, Tatsumi K, Osakabe K, Watanabe B, Shimomura K, Yazaki K. Peroxisomal 4-coumaroyl-CoA ligases participate in shikonin production in Lithospermum erythrorhizon. PLANT PHYSIOLOGY 2024; 195:2843-2859. [PMID: 38478427 DOI: 10.1093/plphys/kiae157] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 02/18/2024] [Indexed: 08/02/2024]
Abstract
4-Coumaroyl-CoA ligase (4CL) is a key enzyme in the phenylpropanoid pathway, which is involved in the biosynthesis of various specialized metabolites such as flavonoids, coumarins, lignans, and lignin. Plants have several 4CLs showing divergence in sequence: Class I 4CLs involved in lignin metabolism, Class II 4CLs associated with flavonoid metabolism, and atypical 4CLs and 4CL-like proteins of unknown function. Shikonin, a Boraginaceae-specific specialized metabolite in red gromwell (Lithospermum erythrorhizon), is biosynthesized from p-hydroxybenzoic acid, and the involvement of 4CL in its biosynthesis has long been debated. In this study, we demonstrated the requirement of 4CL for shikonin biosynthesis using a 4CL-specific inhibitor. In silico analysis of the L. erythrorhizon genome revealed the presence of at least 8 4CL genes, among which the expression of 3 (Le4CL3, Le4CL4, and Le4CL5) showed a positive association with shikonin production. Phylogenetic analysis indicated that Le4CL5 belongs to Class I 4CLs, while Le4CL3 and Le4CL4 belong to clades that are distant from Class I and Class II. Interestingly, both Le4CL3 and Le4CL4 have peroxisome targeting signal 1 in their C-terminal region, and subcellular localization analysis revealed that both localize to the peroxisome. We targeted each of the 3 Le4CL genes by CRISPR/Cas9-mediated mutagenesis and observed remarkably lower shikonin production in Le4CL3-ge and Le4CL4-ge genome-edited lines compared with the vector control. We, therefore, conclude that peroxisomal Le4CL3 and Le4CL4 are responsible for shikonin production and propose a model for metabolite-specific 4CL distribution in L. erythrorhizon.
Collapse
Affiliation(s)
- Kohei Nakanishi
- Research Institute for Sustainable Humanosphere, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Hao Li
- Research Institute for Sustainable Humanosphere, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Takuji Ichino
- Research Institute for Sustainable Humanosphere, Kyoto University, Uji, Kyoto 611-0011, Japan
- Laboratory of Medicinal Cell Biology, Kobe Pharmaceutical University, Kobe, Hyogo 658-8558, Japan
| | - Kanade Tatsumi
- Research Institute for Sustainable Humanosphere, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Keishi Osakabe
- Graduate School of Technology, Industrial and Social Science, Tokushima University, Tokushima, Tokushima 770-8503, Japan
| | - Bunta Watanabe
- Chemistry Laboratory, The Jikei University School of Medicine, Chofu, Tokyo 182-8570, Japan
| | - Koichiro Shimomura
- Graduate School of Life Science, Toyo University, 1-1-1 Izumino, Itakura, Ora, Gunma 374-0193, Japan
| | - Kazufumi Yazaki
- Research Institute for Sustainable Humanosphere, Kyoto University, Uji, Kyoto 611-0011, Japan
| |
Collapse
|
111
|
Vanhevel Y, De Moor A, Muylle H, Vanholme R, Boerjan W. Breeding for improved digestibility and processing of lignocellulosic biomass in Zea mays. FRONTIERS IN PLANT SCIENCE 2024; 15:1419796. [PMID: 39129761 PMCID: PMC11310149 DOI: 10.3389/fpls.2024.1419796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 06/10/2024] [Indexed: 08/13/2024]
Abstract
Forage maize is a versatile crop extensively utilized for animal nutrition in agriculture and holds promise as a valuable resource for the production of fermentable sugars in the biorefinery sector. Within this context, the carbohydrate fraction of the lignocellulosic biomass undergoes deconstruction during ruminal digestion and the saccharification process. However, the cell wall's natural resistance towards enzymatic degradation poses a significant challenge during both processes. This so-called biomass recalcitrance is primarily attributed to the presence of lignin and ferulates in the cell walls. Consequently, maize varieties with a reduced lignin or ferulate content or an altered lignin composition can have important beneficial effects on cell wall digestibility. Considerable efforts in genetic improvement have been dedicated towards enhancing cell wall digestibility, benefiting agriculture, the biorefinery sector and the environment. In part I of this paper, we review conventional and advanced breeding methods used in the genetic improvement of maize germplasm. In part II, we zoom in on maize mutants with altered lignin for improved digestibility and biomass processing.
Collapse
Affiliation(s)
- Yasmine Vanhevel
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Astrid De Moor
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Hilde Muylle
- Plant Sciences Unit, Institute for Agricultural and Fisheries Research, Melle, Belgium
| | - Ruben Vanholme
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Wout Boerjan
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
| |
Collapse
|
112
|
Unda F, de Vries L, Karlen SD, Rainbow J, Zhang C, Bartley LE, Kim H, Ralph J, Mansfield SD. Enhancing monolignol ferulate conjugate levels in poplar lignin via OsFMT1. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2024; 17:97. [PMID: 39003470 PMCID: PMC11246582 DOI: 10.1186/s13068-024-02544-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 06/25/2024] [Indexed: 07/15/2024]
Abstract
BACKGROUND The phenolic polymer lignin is one of the primary chemical constituents of the plant secondary cell wall. Due to the inherent plasticity of lignin biosynthesis, several phenolic monomers have been shown to be incorporated into the polymer, as long as the monomer can undergo radicalization so it can participate in coupling reactions. In this study, we significantly enhance the level of incorporation of monolignol ferulate conjugates into the lignin polymer to improve the digestibility of lignocellulosic biomass. RESULTS Overexpression of a rice Feruloyl-CoA Monolignol Transferase (FMT), OsFMT1, in hybrid poplar (Populus alba x grandidentata) produced transgenic trees clearly displaying increased cell wall-bound ester-linked ferulate, p-hydroxybenzoate, and p-coumarate, all of which are in the lignin cell wall fraction, as shown by NMR and DFRC. We also demonstrate the use of a novel UV-Vis spectroscopic technique to rapidly screen plants for the presence of both ferulate and p-hydroxybenzoate esters. Lastly we show, via saccharification assays, that the OsFMT1 transgenic p oplars have significantly improved processing efficiency compared to wild-type and Angelica sinensis-FMT-expressing poplars. CONCLUSIONS The findings demonstrate that OsFMT1 has a broad substrate specificity and a higher catalytic efficiency compared to the previously published FMT from Angelica sinensis (AsFMT). Importantly, enhanced wood processability makes OsFMT1 a promising gene to optimize the composition of lignocellulosic biomass.
Collapse
Affiliation(s)
- Faride Unda
- Department of Wood Science, Faculty of Forestry, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
- US Department of Energy (DOE) Great Lakes Bioenergy Research Center, The Wisconsin Energy Institute, University of Wisconsin-Madison, Madison, WI, 53726, USA
| | - Lisanne de Vries
- Department of Wood Science, Faculty of Forestry, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
- US Department of Energy (DOE) Great Lakes Bioenergy Research Center, The Wisconsin Energy Institute, University of Wisconsin-Madison, Madison, WI, 53726, USA
| | - Steven D Karlen
- US Department of Energy (DOE) Great Lakes Bioenergy Research Center, The Wisconsin Energy Institute, University of Wisconsin-Madison, Madison, WI, 53726, USA
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Jordan Rainbow
- Institute of Biological Chemistry, Washington State University, Pullman, WA, 99164, USA
| | - Chengcheng Zhang
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, 73019, USA
| | - Laura E Bartley
- Institute of Biological Chemistry, Washington State University, Pullman, WA, 99164, USA
| | - Hoon Kim
- US Department of Energy (DOE) Great Lakes Bioenergy Research Center, The Wisconsin Energy Institute, University of Wisconsin-Madison, Madison, WI, 53726, USA
- US Department of Agriculture (USDA), Forest Service, Forest Products Laboratory (FPL), Madison, WI, 53726, USA
| | - John Ralph
- US Department of Energy (DOE) Great Lakes Bioenergy Research Center, The Wisconsin Energy Institute, University of Wisconsin-Madison, Madison, WI, 53726, USA
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Shawn D Mansfield
- Department of Wood Science, Faculty of Forestry, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada.
- US Department of Energy (DOE) Great Lakes Bioenergy Research Center, The Wisconsin Energy Institute, University of Wisconsin-Madison, Madison, WI, 53726, USA.
- Botany Department, Faculty of Science, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada.
| |
Collapse
|
113
|
Omelyanchuk NA, Lavrekha VV, Bogomolov AG, Dolgikh VA, Sidorenko AD, Zemlyanskaya EV. Computational Reconstruction of the Transcription Factor Regulatory Network Induced by Auxin in Arabidopsis thaliana L. PLANTS (BASEL, SWITZERLAND) 2024; 13:1905. [PMID: 39065433 PMCID: PMC11280061 DOI: 10.3390/plants13141905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 07/05/2024] [Accepted: 07/06/2024] [Indexed: 07/28/2024]
Abstract
In plant hormone signaling, transcription factor regulatory networks (TFRNs), which link the master transcription factors to the biological processes under their control, remain insufficiently characterized despite their crucial function. Here, we identify a TFRN involved in the response to the key plant hormone auxin and define its impact on auxin-driven biological processes. To reconstruct the TFRN, we developed a three-step procedure, which is based on the integrated analysis of differentially expressed gene lists and a representative collection of transcription factor binding profiles. Its implementation is available as a part of the CisCross web server. With the new method, we distinguished two transcription factor subnetworks. The first operates before auxin treatment and is switched off upon hormone application, the second is switched on by the hormone. Moreover, we characterized the functioning of the auxin-regulated TFRN in control of chlorophyll and lignin biosynthesis, abscisic acid signaling, and ribosome biogenesis.
Collapse
Affiliation(s)
- Nadya A. Omelyanchuk
- Department of Systems Biology, Institute of Cytology and Genetics SB RAS, 630090 Novosibirsk, Russia; (N.A.O.); (V.V.L.); (A.G.B.); (V.A.D.); (A.D.S.)
| | - Viktoriya V. Lavrekha
- Department of Systems Biology, Institute of Cytology and Genetics SB RAS, 630090 Novosibirsk, Russia; (N.A.O.); (V.V.L.); (A.G.B.); (V.A.D.); (A.D.S.)
- Department of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Anton G. Bogomolov
- Department of Systems Biology, Institute of Cytology and Genetics SB RAS, 630090 Novosibirsk, Russia; (N.A.O.); (V.V.L.); (A.G.B.); (V.A.D.); (A.D.S.)
| | - Vladislav A. Dolgikh
- Department of Systems Biology, Institute of Cytology and Genetics SB RAS, 630090 Novosibirsk, Russia; (N.A.O.); (V.V.L.); (A.G.B.); (V.A.D.); (A.D.S.)
- Department of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Aleksandra D. Sidorenko
- Department of Systems Biology, Institute of Cytology and Genetics SB RAS, 630090 Novosibirsk, Russia; (N.A.O.); (V.V.L.); (A.G.B.); (V.A.D.); (A.D.S.)
- Department of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Elena V. Zemlyanskaya
- Department of Systems Biology, Institute of Cytology and Genetics SB RAS, 630090 Novosibirsk, Russia; (N.A.O.); (V.V.L.); (A.G.B.); (V.A.D.); (A.D.S.)
- Department of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| |
Collapse
|
114
|
Zhao X, Zhao Y, Zeng QY, Liu CJ. Cytochrome b5 diversity in green lineages preceded the evolution of syringyl lignin biosynthesis. THE PLANT CELL 2024; 36:2709-2728. [PMID: 38657101 PMCID: PMC11218783 DOI: 10.1093/plcell/koae120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 03/27/2024] [Accepted: 03/27/2024] [Indexed: 04/26/2024]
Abstract
Lignin production marked a milestone in vascular plant evolution, and the emergence of syringyl (S) lignin is lineage specific. S-lignin biosynthesis in angiosperms, mediated by ferulate 5-hydroxylase (F5H, CYP84A1), has been considered a recent evolutionary event. F5H uniquely requires the cytochrome b5 protein CB5D as an obligatory redox partner for catalysis. However, it remains unclear how CB5D functionality originated and whether it coevolved with F5H. We reveal here the ancient evolution of CB5D-type function supporting F5H-catalyzed S-lignin biosynthesis. CB5D emerged in charophyte algae, the closest relatives of land plants, and is conserved and proliferated in embryophytes, especially in angiosperms, suggesting functional diversification of the CB5 family before terrestrialization. A sequence motif containing acidic amino residues in Helix 5 of the CB5 heme-binding domain contributes to the retention of CB5D function in land plants but not in algae. Notably, CB5s in the S-lignin-producing lycophyte Selaginella lack these residues, resulting in no CB5D-type function. An independently evolved S-lignin biosynthetic F5H (CYP788A1) in Selaginella relies on NADPH-dependent cytochrome P450 reductase as sole redox partner, distinct from angiosperms. These results suggest that angiosperm F5Hs coopted the ancient CB5D, forming a modern cytochrome P450 monooxygenase system for aromatic ring meta-hydroxylation, enabling the reemergence of S-lignin biosynthesis in angiosperms.
Collapse
Affiliation(s)
- Xianhai Zhao
- Biology Department, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Yunjun Zhao
- Biology Department, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Qing-yin Zeng
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry and Northeast Forestry University, Beijing 100091, China
| | - Chang-Jun Liu
- Biology Department, Brookhaven National Laboratory, Upton, NY 11973, USA
| |
Collapse
|
115
|
Deng S, Pan L, Ke T, Liang J, Zhang R, Chen H, Tang M, Hu W. Rhizophagus Irregularis regulates flavonoids metabolism in paper mulberry roots under cadmium stress. MYCORRHIZA 2024; 34:317-339. [PMID: 38836935 DOI: 10.1007/s00572-024-01155-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 05/26/2024] [Indexed: 06/06/2024]
Abstract
Broussonetia papyrifera is widely found in cadmium (Cd) contaminated areas, with an inherent enhanced flavonoids metabolism and inhibited lignin biosynthesis, colonized by lots of symbiotic fungi, such as arbuscular mycorrhizal fungi (AMF). However, the physiological and molecular mechanisms by which Rhizophagus irregularis, an AM fungus, regulates flavonoids and lignin in B. papyrifera under Cd stress remain unclear. Here, a pot experiment of B. papyrifera inoculated and non-inoculated with R. irregularis under Cd stress was carried out. We determined flavonoids and lignin concentrations in B. papyrifera roots by LC-MS and GC-MS, respectively, and measured the transcriptional levels of flavonoids- or lignin-related genes in B. papyrifera roots, aiming to ascertain the key components of flavonoids or lignin, and key genes regulated by R. irregularis in response to Cd stress. Without R. irregularis, the concentrations of eriodictyol, quercetin and myricetin were significantly increased under Cd stress. The concentrations of eriodictyol and genistein were significantly increased by R. irregularis, while the concentration of rutin was significantly decreased. Total lignin and lignin monomer had no alteration under Cd stress or with R. irregularis inoculation. As for flavonoids- or lignin-related genes, 26 genes were co-regulated by Cd stress and R. irregularis. Among these genes, BpC4H2, BpCHS8 and BpCHI5 were strongly positively associated with eriodictyol, indicating that these three genes participate in eriodictyol biosynthesis and were involved in R. irregularis assisting B. papyrifera to cope with Cd stress. This lays a foundation for further research revealing molecular mechanisms by which R. irregularis regulates flavonoids synthesis to enhance tolerance of B. papyrifera to Cd stress.
Collapse
Affiliation(s)
- Shuiqing Deng
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Lan Pan
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Tong Ke
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Jingwei Liang
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Rongjing Zhang
- College of Life Science, South China Agricultural University, Guangzhou, 510642, China
| | - Hui Chen
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Ming Tang
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China.
| | - Wentao Hu
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
116
|
Cai Z, Huang W, Zhong J, Jin J, Wu D, Chen K. Methyl jasmonate-loaded composite biofilm sustainably alleviates chilling lignification of loquat fruit during postharvest storage. Food Chem 2024; 444:138602. [PMID: 38310778 DOI: 10.1016/j.foodchem.2024.138602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/24/2024] [Accepted: 01/25/2024] [Indexed: 02/06/2024]
Abstract
In this work, the MeJA-loaded gelatin/pullulan/chitosan composite biofilm was prepared to inhibit the chilling lignification of the loquat fruit during storage at 0 °C. The firmness and lignin content were decreased by 89 % and 81.77 % after MeJA-loaded biofilm treatment. Malondialdehyde (MDA) production was almost completely suppressed and chilling injury of loquat fruit was significantly reduced. Enzyme activity results show that the biofilm alleviated chilling lignification mainly by inhibiting peroxidase (POD) activity in the phenylpropanoid pathway (PCCs = 0.715, with lignin content). Also, the conventional MeJA vapor treatment only alleviated lignification on day 3, but the biofilm treatment had a better and more sustained effect throughout the whole storage due to its sustained release ability. Besides, the biofilm had good mechanical properties, transparency and water vapor transmission rate. This work indicates that loading preservatives into biofilms has a promising application prospect for inhibiting the postharvest quality deterioration of fruit and vegetables.
Collapse
Affiliation(s)
- Zihan Cai
- College of Agriculture and Biotechnology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Hangzhou 310058, PR China.
| | - Weinan Huang
- College of Agriculture and Biotechnology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Hangzhou 310058, PR China; Zhejiang University Zhongyuan Institute, Zhengzhou 450000, PR China.
| | - Jiahao Zhong
- College of Agriculture and Biotechnology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Hangzhou 310058, PR China.
| | - Jiayue Jin
- College of Agriculture and Biotechnology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Hangzhou 310058, PR China.
| | - Di Wu
- College of Agriculture and Biotechnology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Hangzhou 310058, PR China; Zhejiang University Zhongyuan Institute, Zhengzhou 450000, PR China.
| | - Kunsong Chen
- College of Agriculture and Biotechnology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Hangzhou 310058, PR China.
| |
Collapse
|
117
|
Pérez-de-Lis G, Richard B, Quilès F, Deveau A, Adikurnia IK, Rathgeber CBK. Multimodal imaging analysis in silver fir reveals coordination in cellulose and lignin deposition. PLANT PHYSIOLOGY 2024; 195:2428-2442. [PMID: 38590143 PMCID: PMC11213250 DOI: 10.1093/plphys/kiae203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 03/18/2024] [Accepted: 03/18/2024] [Indexed: 04/10/2024]
Abstract
Despite lignin being a key component of wood, the dynamics of tracheid lignification are generally overlooked in xylogenesis studies, which hampers our understanding of environmental drivers and blurs the interpretation of isotopic and anatomical signals stored in tree rings. Here, we analyzed cell wall formation in silver fir (Abies alba Mill.) tracheids to determine if cell wall lignification lags behind secondary wall deposition. For this purpose, we applied a multimodal imaging approach combining transmitted light microscopy (TLM), confocal laser scanning microscopy (CLSM), and confocal Raman microspectroscopy (RMS) on anatomical sections of wood microcores collected in northeast France on 11 dates during the 2010 growing season. Wood autofluorescence after laser excitation at 405 and 488 nm associated with the RMS scattering of lignin and cellulose, respectively, which allowed identification of lignifying cells (cells showing lignified and nonlignified wall fractions at the same time) in CLSM images. The number of lignifying cells in CLSM images mirrored the number of wall-thickening birefringent cells in polarized TLM images, revealing highly synchronized kinetics for wall thickening and lignification (similar timings and durations at the cell level). CLSM images and RMS chemical maps revealed a substantial incorporation of lignin into the wall at early stages of secondary wall deposition. Our results show that most of the cellulose and lignin contained in the cell wall undergo concurrent periods of deposition. This suggests a strong synchronization between cellulose and lignin-related features in conifer tree-ring records, as they originated over highly overlapped time frames.
Collapse
Affiliation(s)
- Gonzalo Pérez-de-Lis
- BIOAPLIC, Departamento de Botánica, Universidade de Santiago de Compostela, EPSE, Campus Terra, 27002 Lugo, Spain
- Université de Lorraine, AgroParisTech, INRAE, SILVA, F-54000 Nancy, France
| | - Béatrice Richard
- Université de Lorraine, AgroParisTech, INRAE, SILVA, F-54000 Nancy, France
| | | | - Aurélie Deveau
- Université de Lorraine, INRAE, IAM, F-54000 Nancy, France
| | | | | |
Collapse
|
118
|
Umezawa T. Metabolic engineering of Oryza sativa for lignin augmentation and structural simplification. PLANT BIOTECHNOLOGY (TOKYO, JAPAN) 2024; 41:89-101. [PMID: 39463768 PMCID: PMC11500570 DOI: 10.5511/plantbiotechnology.24.0131a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 01/31/2024] [Indexed: 10/29/2024]
Abstract
The sustainable production and utilization of lignocellulose biomass are indispensable for establishing sustainable societies. Trees and large-sized grasses are the major sources of lignocellulose biomass, while large-sized grasses greatly surpass trees in terms of lignocellulose biomass productivity. With an overall aim to improve lignocellulose usability, it is important to increase the lignin content and simplify lignin structures in biomass plants via lignin metabolic engineering. Rice (Oryza sativa) is not only a representative and important grass crop, but also is a model for large-sized grasses in biotechnology. This review outlines progress in lignin metabolic engineering in grasses, mainly rice, including characterization of the lignocellulose properties, the augmentation of lignin content and the simplification of lignin structures. These findings have broad applicability for the metabolic engineering of lignin in large-sized grass biomass plants.
Collapse
Affiliation(s)
- Toshiaki Umezawa
- Research Institute for Sustainable Humanosphere, Kyoto University
| |
Collapse
|
119
|
Wang S, Wang X, Yue L, Li H, Zhu L, Dong Z, Long Y. Genome-Wide Identification and Characterization of Lignin Synthesis Genes in Maize. Int J Mol Sci 2024; 25:6710. [PMID: 38928419 PMCID: PMC11203529 DOI: 10.3390/ijms25126710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/13/2024] [Accepted: 05/23/2024] [Indexed: 06/28/2024] Open
Abstract
Lignin is a crucial substance in the formation of the secondary cell wall in plants. It is widely distributed in various plant tissues and plays a significant role in various biological processes. However, the number of copies, characteristics, and expression patterns of genes involved in lignin biosynthesis in maize are not fully understood. In this study, bioinformatic analysis and gene expression analysis were used to discover the lignin synthetic genes, and two representative maize inbred lines were used for stem strength phenotypic analysis and gene identification. Finally, 10 gene families harboring 117 related genes involved in the lignin synthesis pathway were retrieved in the maize genome. These genes have a high number of copies and are typically clustered on chromosomes. By examining the lignin content of stems and the expression patterns of stem-specific genes in two representative maize inbred lines, we identified three potential stem lodging resistance genes and their interactions with transcription factors. This study provides a foundation for further research on the regulation of lignin biosynthesis and maize lodging resistance genes.
Collapse
Affiliation(s)
| | | | | | | | | | - Zhenying Dong
- Zhongzhi International Institute of Agricultural Biosciences, Research Institute of Biology and Agriculture, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China; (S.W.); (X.W.); (L.Y.); (H.L.); (L.Z.)
| | - Yan Long
- Zhongzhi International Institute of Agricultural Biosciences, Research Institute of Biology and Agriculture, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China; (S.W.); (X.W.); (L.Y.); (H.L.); (L.Z.)
| |
Collapse
|
120
|
Fujimaki S, Sakamoto S, Shimada S, Kino K, Furuya T. Engineering a coenzyme-independent dioxygenase for one-step production of vanillin from ferulic acid. Appl Environ Microbiol 2024; 90:e0023324. [PMID: 38727223 PMCID: PMC11218615 DOI: 10.1128/aem.00233-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 04/15/2024] [Indexed: 06/19/2024] Open
Abstract
Vanillin is one of the world's most important flavor and fragrance compounds used in foods and cosmetics. In plants, vanillin is reportedly biosynthesized from ferulic acid via the hydratase/lyase-type enzyme VpVAN. However, in biotechnological and biocatalytic applications, the use of VpVAN limits the production of vanillin. Although microbial enzymes are helpful as substitutes for plant enzymes, synthesizing vanillin from ferulic acid in one step using microbial enzymes remains a challenge. Here, we developed a single enzyme that catalyzes vanillin production from ferulic acid in a coenzyme-independent manner via the rational design of a microbial dioxygenase in the carotenoid cleavage oxygenase family using computational simulations. This enzyme acquired catalytic activity toward ferulic acid by introducing mutations into the active center to increase its affinity for ferulic acid. We found that the single enzyme can catalyze not only the production of vanillin from ferulic acid but also the synthesis of other aldehydes from p-coumaric acid, sinapinic acid, and coniferyl alcohol. These results indicate that the approach used in this study can greatly expand the range of substrates available for the dioxygenase family of enzymes. The engineered enzyme enables efficient production of vanillin and other value-added aldehydes from renewable lignin-derived compounds. IMPORTANCE The final step of vanillin biosynthesis in plants is reportedly catalyzed by the enzyme VpVAN. Prior to our study, VpVAN was the only reported enzyme that directly converts ferulic acid to vanillin. However, as many characteristics of VpVAN remain unknown, this enzyme is not yet suitable for biocatalytic applications. We show that an enzyme that converts ferulic acid to vanillin in one step could be constructed by modifying a microbial dioxygenase-type enzyme. The engineered enzyme is of biotechnological importance as a tool for the production of vanillin and related compounds via biocatalytic processes and metabolic engineering. The results of this study may also provide useful insights for understanding vanillin biosynthesis in plants.
Collapse
Affiliation(s)
- Shizuka Fujimaki
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, Chiba, Japan
| | - Satsuki Sakamoto
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, Chiba, Japan
| | - Shota Shimada
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, Chiba, Japan
| | - Kuniki Kino
- Department of Applied Chemistry, Faculty of Science and Engineering, Waseda University, Tokyo, Japan
| | - Toshiki Furuya
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, Chiba, Japan
| |
Collapse
|
121
|
Wei J, Liu X, Li C, Yang Y, Song C, Chen Y, Ciren Q, Jiang C, Li Q. Identification and Characterization of Hibiscus mutabilis Varieties Resistant to Bemisia tabaci and Their Resistance Mechanisms. INSECTS 2024; 15:454. [PMID: 38921168 PMCID: PMC11203673 DOI: 10.3390/insects15060454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 06/07/2024] [Accepted: 06/11/2024] [Indexed: 06/27/2024]
Abstract
Hibiscus mutabilis, the city flower of Chengdu, is culturally significant and has nutritional and medicinal benefits. However, frequent infestations of Bemisia tabaci have caused economic losses. This study aimed to identify insect-resistant H. mutabilis varieties. Over two years, varieties like Jinqiusong, Zuiyun, and Zuifurong showed moderate to high resistance based on reproductive indices. Assessments of antixenosis and developmental impacts revealed that adult B. tabaci exhibited low selectivity toward these resistant varieties, indicating a strong repellent effect. Gas chromatography-mass spectrometry analysis identified volatile organic compounds, such as alcohols, alkanes, and terpenes. Notably, 2-ethylhexanol and 6-methylheptanol exhibited repellent properties. Using nontargeted metabolomics, this study compared the metabolite profiles of the insect-resistant variety Jinqiusong (JQS), moderately resistant Bairihuacai (BRHC), and highly susceptible Chongbanbai (CBB) post B. tabaci infestation. Fifteen key metabolites were linked to resistance, emphasizing the phenylpropanoid biosynthesis pathway as crucial in defense. These findings offer a theoretical foundation for breeding insect-resistant H. mutabilis varieties and developing eco-friendly strategies against B. tabaci infestations.
Collapse
Affiliation(s)
- Juan Wei
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China; (J.W.); (C.S.)
| | - Xiaoli Liu
- Chengdu Botanical Garden (Chengdu Park Urban Plant Science Research Institute), Chengdu 610083, China; (X.L.)
| | - Chan Li
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China; (J.W.); (C.S.)
| | - Yuanzhao Yang
- Chengdu Botanical Garden (Chengdu Park Urban Plant Science Research Institute), Chengdu 610083, China; (X.L.)
| | - Cancan Song
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China; (J.W.); (C.S.)
| | - Yihao Chen
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China; (J.W.); (C.S.)
| | - Qiongda Ciren
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China; (J.W.); (C.S.)
| | - Chunxian Jiang
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China; (J.W.); (C.S.)
| | - Qing Li
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China; (J.W.); (C.S.)
| |
Collapse
|
122
|
Xu Y, Liu L, Jia M, Teng K, Mu N, Guo Y, Liu M, Wu J, Teng W, Huang L, Fan X, Yue Y. Transcriptomic and physiological analysis provide new insight into seed shattering mechanism in Pennisetum alopecuroides 'Liqiu'. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:157. [PMID: 38861001 DOI: 10.1007/s00122-024-04655-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 05/21/2024] [Indexed: 06/12/2024]
Abstract
KEY MESSAGE Through the histological, physiological, and transcriptome-level identification of the abscission zone of Pennisetum alopecuroides 'Liqiu', we explored the structure and the genes related to seed shattering, ultimately revealing the regulatory network of seed shattering in P. alopecuroides. Pennisetum alopecuroides is one of the most representative ornamental grass species of Pennisetum genus. It has unique inflorescence, elegant appearance, and strong stress tolerance. However, the shattering of seeds not only reduces the ornamental effect, but also hinders the seed production. In order to understand the potential mechanisms of seed shattering in P. alopecuroides, we conducted morphological, histological, physiological, and transcriptomic analyses on P. alopecuroides cv. 'Liqiu'. According to histological findings, the seed shattering of 'Liqiu' was determined by the abscission zone at the base of the pedicel. Correlation analysis showed that seed shattering was significantly correlated with cellulase, lignin, auxin, gibberellin, cytokinin and jasmonic acid. Through a combination of histological and physiological analyses, we observed the accumulation of cellulase and lignin during 'Liqiu' seed abscission. We used PacBio full-length transcriptome sequencing (SMRT) combined with next-generation sequencing (NGS) transcriptome technology to improve the transcriptome data of 'Liqiu'. Transcriptomics further identified many differential genes involved in cellulase, lignin and plant hormone-related pathways. This study will provide new insights into the research on the shattering mechanism of P. alopecuroides.
Collapse
Affiliation(s)
- Yue Xu
- Institute of Grassland, Flower and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, People's Republic of China
- College of Grassland Science and Technology, Sichuan Agriculture University, Chengdu, 610000, People's Republic of China
| | - Lingyun Liu
- Institute of Grassland, Flower and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, People's Republic of China
| | - Ming Jia
- Institute of Grassland, Flower and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, People's Republic of China
| | - Ke Teng
- Institute of Grassland, Flower and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, People's Republic of China
| | - Na Mu
- Institute of Grassland, Flower and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, People's Republic of China
| | - Yidi Guo
- Institute of Grassland, Flower and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, People's Republic of China
| | - Muye Liu
- Institute of Grassland, Flower and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, People's Republic of China
| | - Juying Wu
- Institute of Grassland, Flower and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, People's Republic of China
| | - Wenjun Teng
- Institute of Grassland, Flower and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, People's Republic of China
| | - Linkai Huang
- College of Grassland Science and Technology, Sichuan Agriculture University, Chengdu, 610000, People's Republic of China
| | - Xifeng Fan
- Institute of Grassland, Flower and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, People's Republic of China.
| | - Yuesen Yue
- Institute of Grassland, Flower and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, People's Republic of China.
| |
Collapse
|
123
|
Nishimoto T, Takagi K, Aoki D, Fukushima K, Matsushita Y. Bonding of Lignin and Coniferyl Alcohol by a Redox Shuttle of Low-Molecular-Weight Lignols in Enzymatic Oxidative Dehydrogenative Polymerization. Biomacromolecules 2024; 25:3620-3627. [PMID: 38806062 DOI: 10.1021/acs.biomac.4c00230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
Lignin is an aromatic polymer that constitutes plant cell walls. The polymerization of lignin proceeds by radical coupling, and this process requires radicalization of the phenolic end of lignin by enzymes. However, due to the steric hindrance between enzymes, lignin, and polysaccharides, the direct oxidation of the phenolic end of lignin by the enzyme would be difficult, and the details of the growth of lignin are still unknown. In this study, enzymatic dehydrogenative polymerization experiments were conducted using coniferyl alcohol (CA) and the deuterium-labeled lignin model compound (D-LM) under a noncontact condition in which horseradish peroxidase cannot directly oxidize D-LM due to separation by a dialysis membrane. Analysis of deuterium-labeled degraded compounds obtained by a combination of methylation and thioacidolysis revealed the formation of the bond between the phenolic end of D-LM and CA, suggesting that membrane-permeable, low-molecular-weight lignols functioned as a redox shuttle mediator.
Collapse
Affiliation(s)
- Taiki Nishimoto
- Institute of Agriculture, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan
| | - Kyoka Takagi
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - Dan Aoki
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - Kazuhiko Fukushima
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - Yasuyuki Matsushita
- Institute of Agriculture, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan
| |
Collapse
|
124
|
Laosatit K, Amkul K, Lin Y, Yuan X, Chen X, Somta P. Two genes encoding caffeoyl coenzyme A O-methyltransferase 1 (CCoAOMT1) are candidate genes for physical seed dormancy in cowpea (Vigna unguiculata (L.) Walp.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:146. [PMID: 38834825 DOI: 10.1007/s00122-024-04653-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 05/17/2024] [Indexed: 06/06/2024]
Abstract
KEY MESSAGE The major QTL Sdp1.1+ controlling seed dormancy in cowpea was finely mapped, and two CCoAOMT1 genes were identified as candidate genes for the dormancy. Seed dormancy in wild cowpea may be useful in breeding cultivated cowpea with pre-harvest sprouting resistance. A previous study identified a major quantitative trait locus (QTL) for seed dormancy, Sdp1.1+ , using the population of the cross between cultivated cowpea 'JP81610' and wild cowpea 'JP89083.' However, the molecular basis of seed dormancy in cowpea is not yet known. In this study, we aimed to finely map the locus Sdp1.1+ and identify candidate gene(s) for it. Germination tests demonstrated that the seed coat is the major factor controlling seed dormancy in the wild cowpea JP89083. Microscopic observations revealed that wild cowpea seeds, unlike cultivated cowpea seeds, possessed a palisade cuticle layer. Fine mapping using a large F2 population of the cross JP81610 × JP89083 grown in Thailand revealed a single QTL, Sdp1.1+ , controlling seed dormancy. The Sdp1.1+ was confirmed using a small F2 population of the same cross grown in Japan. The Sdp1.1+ was mapped to a 37.34-Kb region containing three genes. Two closely linked genes, Vigun03g278900 (VuCCoAOMT1a) and Vigun03g290000 (VuCCoAOMT1b), located 4.844 Kb apart were considered as candidate genes for seed dormancy. The two genes encoded caffeoyl coenzyme A O-methyltransferase 1 (CCoAOMT1). DNA sequencing and alignment of VuCCoAOMT1a and VuCCoAOMT1b between JP89083 and JP81610 revealed a single nucleotide polymorphism (SNP) causing an amino acid change in VuCCoAOMT1a and several SNPs leading to six amino acid changes in VuCCoAOMT1b. Altogether, these results indicate that VuCCoAOMT1a and VuCCoAOMT1b are candidate genes controlling physical seed dormancy in the wild cowpea JP89083.
Collapse
Affiliation(s)
- Kularb Laosatit
- Department of Agronomy, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University, Nakhon Pathom, Thailand
| | - Kitiya Amkul
- Department of Agronomy, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University, Nakhon Pathom, Thailand
| | - Yun Lin
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Xingxing Yuan
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Xin Chen
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, China.
| | - Prakit Somta
- Department of Agronomy, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University, Nakhon Pathom, Thailand.
| |
Collapse
|
125
|
Liu H, Fang H, Zhang G, Li J, Zhang X, Li Y. De novo transcriptome profiling reveals the patterns of gene expression in plum fruits with bud mutations. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2024; 30:909-919. [PMID: 38974351 PMCID: PMC11222343 DOI: 10.1007/s12298-024-01472-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 06/05/2024] [Accepted: 06/10/2024] [Indexed: 07/09/2024]
Abstract
Bud mutation is a common technique for plant breeding and can provide a large number of breeding materials. Through traditional breeding methods, we obtained a plum plant with bud mutations (named "By") from an original plum variety (named "B"). The ripening period of "By" fruit was longer than that of "B" fruit, and its taste was better. In order to understand the characteristics of these plum varieties, we used transcriptome analysis and compared the gene expression patterns in fruits from the two cultivars. Subsequently, we identified the biological processes regulated by the differentially expressed genes (DEGs). Gene ontology (GO) analysis revealed that these DEGs were highly enriched for "single-organism cellular process" and "transferase activity". KEGG analysis demonstrated that the main pathways affected by the bud mutations were plant hormone signal transduction, starch and sucrose metabolism. The IAA, CKX, ARF, and SnRK2 genes were identified as the key regulators of plant hormone signal transduction. Meanwhile, TPP, the beta-glucosidase (EC3.2.1.21) gene, and UGT72E were identified as candidate DEGs affecting secondary metabolite synthesis. The transcriptome sequencing (RNA-seq) data were also validated using RT-qPCR experiments. The transcriptome analysis demonstrated that plant hormones play a significant role in extending the maturity period of plum fruit, with IAA, CKX, ARF, and SnRK2 serving as the key regulators of this process. Further, TPP, beta-glucosidase (EC3.2.1.21), and UGT72E appeared to mediate the synthesis of various soluble secondary metabolites, contributing to the aroma of plum fruits. The expression of BAG6 was upregulated in "B" as the fruit matured, but it was downregulated in "By". This indicated that "B" may have stronger resistance, especially fungal resistance. Supplementary Information The online version contains supplementary material available at 10.1007/s12298-024-01472-3.
Collapse
Affiliation(s)
- Huiyan Liu
- Ningxia Key Laboratory for Food Microbial-Applications Technology and Safety Control, School of Food Science and Engineering, Ningxia University, Yinchuan, 750021 Ningxia China
| | - Haitian Fang
- Ningxia Key Laboratory for Food Microbial-Applications Technology and Safety Control, School of Food Science and Engineering, Ningxia University, Yinchuan, 750021 Ningxia China
| | - Guangdi Zhang
- Ningxia Key Laboratory for Food Microbial-Applications Technology and Safety Control, School of Food Science and Engineering, Ningxia University, Yinchuan, 750021 Ningxia China
- Ningxia Facility Horticulture Engineering Technology Center, Yinchuan, 750021 Ningxia China
- Technological Innovation Center of Horticulture, Ningxia University), Ningxia Hui Autonomous Region, Yinchuan, 750021 Ningxia China
| | - Jianshe Li
- Ningxia Key Laboratory for Food Microbial-Applications Technology and Safety Control, School of Food Science and Engineering, Ningxia University, Yinchuan, 750021 Ningxia China
- Ningxia Facility Horticulture Engineering Technology Center, Yinchuan, 750021 Ningxia China
- Technological Innovation Center of Horticulture, Ningxia University), Ningxia Hui Autonomous Region, Yinchuan, 750021 Ningxia China
| | - Xiangjun Zhang
- School of Life Science, Ningxia University, Yinchuan, 750021 Ningxia China
| | - Yu Li
- Technological Innovation Center of Horticulture, Ningxia University), Ningxia Hui Autonomous Region, Yinchuan, 750021 Ningxia China
| |
Collapse
|
126
|
Sánchez-Ruiz MI, Santillana E, Linde D, Romero A, Martínez AT, Ruiz-Dueñas FJ. Structure-function characterization of two enzymes from novel subfamilies of manganese peroxidases secreted by the lignocellulose-degrading Agaricales fungi Agrocybe pediades and Cyathus striatus. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2024; 17:74. [PMID: 38824538 PMCID: PMC11144326 DOI: 10.1186/s13068-024-02517-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 05/11/2024] [Indexed: 06/03/2024]
Abstract
BACKGROUND Manganese peroxidases (MnPs) are, together with lignin peroxidases and versatile peroxidases, key elements of the enzymatic machineries secreted by white-rot fungi to degrade lignin, thus providing access to cellulose and hemicellulose in plant cell walls. A recent genomic analysis of 52 Agaricomycetes species revealed the existence of novel MnP subfamilies differing in the amino-acid residues that constitute the manganese oxidation site. Following this in silico analysis, a comprehensive structure-function study is needed to understand how these enzymes work and contribute to transform the lignin macromolecule. RESULTS Two MnPs belonging to the subfamilies recently classified as MnP-DGD and MnP-ESD-referred to as Ape-MnP1 and Cst-MnP1, respectively-were identified as the primary peroxidases secreted by the Agaricales species Agrocybe pediades and Cyathus striatus when growing on lignocellulosic substrates. Following heterologous expression and in vitro activation, their biochemical characterization confirmed that these enzymes are active MnPs. However, crystal structure and mutagenesis studies revealed manganese coordination spheres different from those expected after their initial classification. Specifically, a glutamine residue (Gln333) in the C-terminal tail of Ape-MnP1 was found to be involved in manganese binding, along with Asp35 and Asp177, while Cst-MnP1 counts only two amino acids (Glu36 and Asp176), instead of three, to function as a MnP. These findings led to the renaming of these subfamilies as MnP-DDQ and MnP-ED and to re-evaluate their evolutionary origin. Both enzymes were also able to directly oxidize lignin-derived phenolic compounds, as seen for other short MnPs. Importantly, size-exclusion chromatography analyses showed that both enzymes cause changes in polymeric lignin in the presence of manganese, suggesting their relevance in lignocellulose transformation. CONCLUSIONS Understanding the mechanisms used by basidiomycetes to degrade lignin is of particular relevance to comprehend carbon cycle in nature and to design biotechnological tools for the industrial use of plant biomass. Here, we provide the first structure-function characterization of two novel MnP subfamilies present in Agaricales mushrooms, elucidating the main residues involved in catalysis and demonstrating their ability to modify the lignin macromolecule.
Collapse
Affiliation(s)
- María Isabel Sánchez-Ruiz
- Centro de Investigaciones Biológicas Margarita Salas (CIB), CSIC, Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - Elena Santillana
- Centro de Investigaciones Biológicas Margarita Salas (CIB), CSIC, Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - Dolores Linde
- Centro de Investigaciones Biológicas Margarita Salas (CIB), CSIC, Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - Antonio Romero
- Centro de Investigaciones Biológicas Margarita Salas (CIB), CSIC, Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - Angel T Martínez
- Centro de Investigaciones Biológicas Margarita Salas (CIB), CSIC, Ramiro de Maeztu 9, 28040, Madrid, Spain
| | | |
Collapse
|
127
|
Sun N, Wang Y, Kang J, Hao H, Liu X, Yang Y, Jiang X, Gai Y. Exploring the role of the LkABCG36 transporter in lignin accumulation. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 343:112059. [PMID: 38458573 DOI: 10.1016/j.plantsci.2024.112059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 02/29/2024] [Accepted: 03/04/2024] [Indexed: 03/10/2024]
Abstract
Lignin is a complex biopolymer formed through the condensation of three monomeric precursors known as monolignols. However, the mechanism underlying lignin precursor transport remains elusive, with uncertainty over whether it occurs through passive diffusion or an active energized process. ATP-binding cassette 36 (ABCG36) plays important roles in abiotic stress resistance. In this study, we investigated the transport functions of LkABCG36 (Larix kaempferi) for lignin precursors and the potential effects of LkABCG36 overexpression in plants. LkABCG36 enhanced the ability of tobacco (Nicotiana tabacum) bright yellow-2 (BY-2) cells to resist monolignol alcohol stress. Furthermore, LkABCG36 overexpression promoted lignin deposition in tobacco plant stem tissue. To understand the underlying mechanism, we measured the BY-2 cell ability to export lignin monomers and the uptake of monolignol precursors in inside-out (inverted) plasma membrane vesicles. We found that the transport of coniferyl and sinapyl alcohols is an ATP-dependent process. Our data suggest that LkABCG36 contributes to lignin accumulation in tobacco stem tissues through a mechanism involving the active transport of lignin precursors to the cell wall. These findings shed light on the lignin biosynthesis process, with important implications for enhancing lignin deposition in plants, potentially leading to improved stress tolerance and biomass production.
Collapse
Affiliation(s)
- Nan Sun
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Yuqian Wang
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Jiaqi Kang
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Haifei Hao
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Xiao Liu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yongqing Yang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Xiangning Jiang
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; National Engineering Laboratory for Tree Breeding, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of Chinese Forestry Administration, Beijing 100083, China
| | - Ying Gai
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; National Engineering Laboratory for Tree Breeding, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of Chinese Forestry Administration, Beijing 100083, China.
| |
Collapse
|
128
|
Elschner T, Geissler A, Adam J, Joseph Y, Fischer S. Biomimetic Dehydrogenation of Non-Conventional Lignin Monomers on Cellulose Ferulate Interfaces. Macromol Biosci 2024; 24:e2300556. [PMID: 38459913 DOI: 10.1002/mabi.202300556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 03/04/2024] [Indexed: 03/11/2024]
Abstract
Cellulose ferulate, synthesized by Mitsunobu reaction, is shaped into thin films and also used as an aqueous dispersion to perform artificial lignin polymerization on anchor groups. This biomimetic approach is carried out in a Quartz crystal microbalance with a dissipation monitoring (QCM-D) device to enable online monitoring of the dehydrogenation, applying H2O2 and adsorbed horseradish peroxidase (HRP). The systematic use of phenylpropanoids with different oxidation states, i.e., ferulic acid, coniferyl aldehyde, coniferyl alcohol, and eugenol allowed to conclude structure-property relationships. Both the deposited material, as well as the surface roughness increased with the hydrophobicity of the monomers. Beyond surface characterizations, py-GC-MS, HSQC NMR spectroscopy and Size exclusion chromatography (SEC) measurements revealed the linkage types β-β, β-5, 5-5, and β-O-4, as well as the oligomeric character of the dehydrogenation products. All samples possessed an antibacterial activity against B. subtilis and can be used in the field of antimicrobial biomaterials.
Collapse
Affiliation(s)
- Thomas Elschner
- Institute of Plant and Wood Chemistry, Technische Universität Dresden, Pienner Str. 19, 01737, Tharandt, Germany
| | - Andreas Geissler
- Laboratory of Macromolecular and Paper Chemistry, Technical University Darmstadt, Peter-Grünberg-Str. 8, 64287, Darmstadt, Germany
| | - Jörg Adam
- Institute of Electronic and Sensor Materials, TU Bergakademie Freiberg, Gustav-Zeuner-Str. 3, 09599, Freiberg, Germany
| | - Yvonne Joseph
- Institute of Electronic and Sensor Materials, TU Bergakademie Freiberg, Gustav-Zeuner-Str. 3, 09599, Freiberg, Germany
| | - Steffen Fischer
- Institute of Plant and Wood Chemistry, Technische Universität Dresden, Pienner Str. 19, 01737, Tharandt, Germany
| |
Collapse
|
129
|
Xue B, Duan W, Gong L, Zhu D, Li X, Li X, Liang YK. The OsDIR55 gene increases salt tolerance by altering the root diffusion barrier. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:1550-1568. [PMID: 38412303 DOI: 10.1111/tpj.16696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 01/30/2024] [Accepted: 02/07/2024] [Indexed: 02/29/2024]
Abstract
The increased soil salinity is becoming a major challenge to produce more crops and feed the growing population of the world. In this study, we demonstrated that overexpression of OsDIR55 gene enhances rice salt tolerance by altering the root diffusion barrier. OsDIR55 is broadly expressed in all examined tissues and organs with the maximum expression levels at lignified regions in rice roots. Salt stress upregulates the expression of OsDIR55 gene in an abscisic acid (ABA)-dependent manner. Loss-function and overexpression of OsDIR55 compromised and improved the development of CS and root diffusion barrier, manifested with the decreased and increased width of CS, respectively, and ultimately affected the permeability of the apoplastic diffusion barrier in roots. OsDIR55 deficiency resulted in Na+ accumulation, ionic imbalance, and growth arrest, whereas overexpression of OsDIR55 enhances salinity tolerance and provides an overall benefit to plant growth and yield potential. Collectively, we propose that OsDIR55 is crucial for ions balance control and salt stress tolerance through regulating lignification-mediated root barrier modifications in rice.
Collapse
Affiliation(s)
- Baoping Xue
- State Key Laboratory of Hybrid Rice, Department of Plant Sciences, College of Life Sciences, Wuhan University, Wuhan, 430072, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Wen Duan
- State Key Laboratory of Hybrid Rice, Department of Plant Sciences, College of Life Sciences, Wuhan University, Wuhan, 430072, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Luping Gong
- State Key Laboratory of Hybrid Rice, Department of Plant Sciences, College of Life Sciences, Wuhan University, Wuhan, 430072, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Dongmei Zhu
- State Key Laboratory of Hybrid Rice, Department of Plant Sciences, College of Life Sciences, Wuhan University, Wuhan, 430072, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Xueying Li
- State Key Laboratory of Hybrid Rice, Department of Plant Sciences, College of Life Sciences, Wuhan University, Wuhan, 430072, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Xuemei Li
- State Key Laboratory of Hybrid Rice, Department of Plant Sciences, College of Life Sciences, Wuhan University, Wuhan, 430072, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Yun-Kuan Liang
- State Key Laboratory of Hybrid Rice, Department of Plant Sciences, College of Life Sciences, Wuhan University, Wuhan, 430072, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| |
Collapse
|
130
|
Li XY, Li ZF, Zhang XL, Yang MQ, Wu PQ, Huang MJ, Huang HQ. Adaptation mechanism of three Impatiens species to different habitats based on stem morphology, lignin and MYB4 gene. BMC PLANT BIOLOGY 2024; 24:453. [PMID: 38789944 PMCID: PMC11127381 DOI: 10.1186/s12870-024-05115-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024]
Abstract
BACKGROUND Impatiens is an important genus with rich species of garden plants, and its distribution is extremely extensive, which is reflected in its diverse ecological environment. However, the specific mechanisms of Impatiens' adaptation to various environments and the mechanism related to lignin remain unclear. RESULTS Three representative Impatiens species,Impatiens chlorosepala (wet, low degree of lignification), Impatiens uliginosa (aquatic, moderate degree of lignification) and Impatiens rubrostriata (terrestrial, high degree of lignification), were selected and analyzed for their anatomical structures, lignin content and composition, and lignin-related gene expression. There are significant differences in anatomical parameters among the stems of three Impatiens species, and the anatomical structure is consistent with the determination results of lignin content. Furthermore, the thickness of the xylem and cell walls, as well as the ratio of cell wall thickness to stem diameter have a strong correlation with lignin content. The anatomical structure and degree of lignification in Impatiens can be attributed to the plant's growth environment, morphology, and growth rate. Our analysis of lignin-related genes revealed a negative correlation between the MYB4 gene and lignin content. The MYB4 gene may control the lignin synthesis in Impatiens by controlling the structural genes involved in the lignin synthesis pathway, such as HCT, C3H, and COMT. Nonetheless, the regulation pathway differs between species of Impatiens. CONCLUSIONS This study demonstrated consistency between the stem anatomy of Impatiens and the results obtained from lignin content and composition analyses. It is speculated that MYB4 negatively regulates the lignin synthesis in the stems of three Impatiens species by regulating the expression of structural genes, and its regulation mechanism appears to vary across different Impatiens species. This study analyses the variations among different Impatiens plants in diverse habitats, and can guide further molecular investigations of lignin biosynthesis in Impatiens.
Collapse
Affiliation(s)
- Xin-Yi Li
- Southwest Forestry University, College of Landscape Architecture and Horticulture Sciences, Southwest Research Center for Engineering Technology of Landscape Architecture (State Forestry and Grassland Administration), Yunnan Engineering Research Center for Functional Flower Resources and Industrialization, Research and Development Center of Landscape Plants and Horticulture Flowers, Kunming, Yunnan, 650224, China
| | - Ze-Feng Li
- Southwest Forestry University, College of Landscape Architecture and Horticulture Sciences, Southwest Research Center for Engineering Technology of Landscape Architecture (State Forestry and Grassland Administration), Yunnan Engineering Research Center for Functional Flower Resources and Industrialization, Research and Development Center of Landscape Plants and Horticulture Flowers, Kunming, Yunnan, 650224, China
| | - Xiao-Li Zhang
- Southwest Forestry University, College of Landscape Architecture and Horticulture Sciences, Southwest Research Center for Engineering Technology of Landscape Architecture (State Forestry and Grassland Administration), Yunnan Engineering Research Center for Functional Flower Resources and Industrialization, Research and Development Center of Landscape Plants and Horticulture Flowers, Kunming, Yunnan, 650224, China
| | - Meng-Qing Yang
- Southwest Forestry University, College of Landscape Architecture and Horticulture Sciences, Southwest Research Center for Engineering Technology of Landscape Architecture (State Forestry and Grassland Administration), Yunnan Engineering Research Center for Functional Flower Resources and Industrialization, Research and Development Center of Landscape Plants and Horticulture Flowers, Kunming, Yunnan, 650224, China
| | - Pei-Qing Wu
- Southwest Forestry University, College of Landscape Architecture and Horticulture Sciences, Southwest Research Center for Engineering Technology of Landscape Architecture (State Forestry and Grassland Administration), Yunnan Engineering Research Center for Functional Flower Resources and Industrialization, Research and Development Center of Landscape Plants and Horticulture Flowers, Kunming, Yunnan, 650224, China
| | - Mei-Juan Huang
- Southwest Forestry University, College of Landscape Architecture and Horticulture Sciences, Southwest Research Center for Engineering Technology of Landscape Architecture (State Forestry and Grassland Administration), Yunnan Engineering Research Center for Functional Flower Resources and Industrialization, Research and Development Center of Landscape Plants and Horticulture Flowers, Kunming, Yunnan, 650224, China.
| | - Hai-Quan Huang
- Southwest Forestry University, College of Landscape Architecture and Horticulture Sciences, Southwest Research Center for Engineering Technology of Landscape Architecture (State Forestry and Grassland Administration), Yunnan Engineering Research Center for Functional Flower Resources and Industrialization, Research and Development Center of Landscape Plants and Horticulture Flowers, Kunming, Yunnan, 650224, China.
| |
Collapse
|
131
|
Sun T, Wang Y, Wu X, Wang Y, Yang A, Ye J. Pinus thunbergii Parl. Somatic Plants' Resistance to Bursaphelenchus xylophilus Depends on Pathogen-Induced Differential Transcriptomic Responses. Int J Mol Sci 2024; 25:5156. [PMID: 38791195 PMCID: PMC11121521 DOI: 10.3390/ijms25105156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/28/2024] [Accepted: 04/30/2024] [Indexed: 05/26/2024] Open
Abstract
Pinus thunbergii Parl. is an economically and medicinally important plant, as well as a world-renowned horticultural species of the Pinus genus. Pine wilt disease is a dangerous condition that affects P. thunbergii. However, understanding of the genetics underlying resistance to this disease is poor. Our findings reveal that P. thunbergii's resistance mechanism is based on differential transcriptome responses generated by the early presence of the pathogen Bursaphelenchus xylophilus, also known as the pine wood nematode. A transcriptome analysis (RNA-seq) was performed to examine gene expression in shoot tissues from resistant and susceptible P. thunbergii trees. RNA samples were collected from the shoots of inoculated pines throughout the infection phases by the virulent Bursaphelenchus xylophilus AMA3 strain. The photosynthesis and plant-pathogen interaction pathways were significantly enriched in the first and third days after infection. Flavonoid biosynthesis was induced in response to late infestation (7 and 14 days post-infestation). Calmodulin, RBOH, HLC protein, RPS, PR1, and genes implicated in phytohormone crosstalk (e.g., SGT1, MYC2, PP2C, and ERF1) showed significant alterations between resistant and susceptible trees. Furthermore, salicylic acid was found to aid pine wood nematodes tolerate adverse conditions and boost reproduction, which may be significant for pine wood nematode colonization within pines. These findings provide new insights into how host defenses overcame pine wood nematode infection in the early stage, which could potentially contribute to the development of novel strategies for the control of pine wilt disease.
Collapse
Affiliation(s)
- Tingyu Sun
- College of Forestry, Nanjing Forestry University, Nanjing 210037, China; (T.S.)
| | - Yahui Wang
- State Key Laboratory of Horticultural Crop Germplasm Resources Creation, Utilization of Ministry of Agriculture and Rural Affairs, Institute of Horticulture Research, Anhui Academy of Agricultural Sciences, Hefei 230041, China
| | - Xiaoqin Wu
- College of Forestry, Nanjing Forestry University, Nanjing 210037, China; (T.S.)
- Collaborative Innovation Center of Sustainable Forestry in Southern China, Nanjing 210037, China
| | - Yang Wang
- Institude of Forest Pest Control, Jiangxi Academy of Forestry, Nanchang 330032, China
| | - Aixia Yang
- College of Forestry, Nanjing Forestry University, Nanjing 210037, China; (T.S.)
| | - Jianren Ye
- College of Forestry, Nanjing Forestry University, Nanjing 210037, China; (T.S.)
- Collaborative Innovation Center of Sustainable Forestry in Southern China, Nanjing 210037, China
| |
Collapse
|
132
|
Zhang S, Zhu H, Wang L, Zhang Y, Cen H, Xu T. Effects of Selenium on the Lignin Deposition Pattern and Stem Mechanical Properties of Alfalfa ( Medicago sativa L.). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:9923-9936. [PMID: 38629800 DOI: 10.1021/acs.jafc.3c06684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
Lignin provides structural support to plants; however, it reduces their utilization rate. According to our previous studies, selenium (Se) reduces lignin accumulation in alfalfa, but the specific mechanism involved remains unclear. Therefore, at the seedling stage, four root irrigation treatments using 2.5, 50, and 5 μmol/L sodium selenite (S-RI), selenomethionine (SS-RI), Se nanoparticles (SSS-RI), and deionized water (CK-RI) were performed. At the branching stage, four treatments of foliar spraying with the three Se fertilizers described above at a concentration of 0.5 mmol/L (S-FS, SS-FS, and SSS-FS) and deionized water (CK-FS) were administered. The results revealed that all Se treatments chiefly reduced the level of deposition of syringyl (S) lignin in the first internode of alfalfa stems. SS-FS and SSS-FS treatments mainly reduced the deposition of S and guaiacyl (G) lignins in the sixth internode of alfalfa stems, respectively, while S-FS treatment only slightly reduced the deposition of G lignin. S, SS, and SSS-RI treatments reduced the level of deposition of S and G lignins in the sixth internode of alfalfa stems. Se application increased plant height, stem diameter, epidermis (cortex) thickness, primary xylem vessel number (diameter), and pith diameter of alfalfa but decreased primary xylem area and pith parenchyma cell wall thickness of the first internode, and SS(SSS)-FS treatment reduced the mechanical strength of alfalfa stems. Therefore, Se application could decrease lignin accumulation by regulating the organizational structure parameters of alfalfa stems and the deposition pattern of the lignin monomers.
Collapse
Affiliation(s)
- Shimin Zhang
- College of Grassland Science, Shanxi Agricultural University, Taigu, Shanxi 030801, People's Republic of China
| | - Huisen Zhu
- College of Grassland Science, Shanxi Agricultural University, Taigu, Shanxi 030801, People's Republic of China
| | - Lei Wang
- College of Grassland Science, Shanxi Agricultural University, Taigu, Shanxi 030801, People's Republic of China
| | - Yupeng Zhang
- College of Grassland Science, Shanxi Agricultural University, Taigu, Shanxi 030801, People's Republic of China
| | - Huifang Cen
- College of Grassland Science, Shanxi Agricultural University, Taigu, Shanxi 030801, People's Republic of China
| | - Tao Xu
- College of Grassland Science, Shanxi Agricultural University, Taigu, Shanxi 030801, People's Republic of China
| |
Collapse
|
133
|
Lim-Hing S, Gandhi KJK, Villari C. The role of Manganese in tree defenses against pests and pathogens. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 210:108641. [PMID: 38663267 DOI: 10.1016/j.plaphy.2024.108641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 03/25/2024] [Accepted: 04/17/2024] [Indexed: 05/12/2024]
Abstract
Manganese (Mn) deficiency is a widespread occurrence across different landscapes, including agricultural systems and managed forests, and causes interruptions in the normal metabolic functioning of plants. The microelement is well-characterized for its role in the oxygen-evolving complex in photosystem II and maintenance of photosynthetic structures. Mn is also required for a variety of enzymatic reactions in secondary metabolism, which play a crucial role in defense strategies for trees. Despite the strong relationship between Mn availability and the biosynthesis of defense-related compounds, there are few studies addressing how Mn deficiency can impact tree defense mechanisms and the ensuing ecological patterns and processes. Understanding this relationship and highlighting the potentially deleterious effects of Mn deficiency in trees can also inform silvicultural and management decisions to build more robust forests. In this review, we address this relationship, focusing on forest trees. We describe Mn availability in forest soils, characterize the known impacts of Mn deficiency in plant susceptibility, and discuss the relationship between Mn and defense-related compounds by secondary metabolite class. In our review, we find several lines of evidence that low Mn availability is linked with lowered or altered secondary metabolite activity. Additionally, we compile documented instances where Mn limitation has altered the defense capabilities of the host plant and propose potential ecological repercussions when studies are not available. Ultimately, this review aims to highlight the importance of untangling the effects of Mn limitation on the ecophysiology of plants, with a focus on forest trees in both managed and natural stands.
Collapse
Affiliation(s)
- Simone Lim-Hing
- D.B. Warnell School of Forestry and Natural Resources, University of Georgia, 180 East Green Street, Athens, 30602, Georgia, USA; Department of Plant Biology, University of Georgia, 120 Carlton Street, Athens, 30602, Georgia, USA.
| | - Kamal J K Gandhi
- D.B. Warnell School of Forestry and Natural Resources, University of Georgia, 180 East Green Street, Athens, 30602, Georgia, USA
| | - Caterina Villari
- D.B. Warnell School of Forestry and Natural Resources, University of Georgia, 180 East Green Street, Athens, 30602, Georgia, USA.
| |
Collapse
|
134
|
Yang W, Duan H, Yu K, Hou S, Kang Y, Wang X, Hao J, Liu L, Zhang Y, Luo L, Zhao Y, Zhang J, Lan C, Wang N, Zhang X, Tang J, Zhao Q, Sun Z, Zhang X. Integrative Dissection of Lignin Composition in Tartary Buckwheat Seed Hulls for Enhanced Dehulling Efficiency. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400916. [PMID: 38520733 PMCID: PMC11132045 DOI: 10.1002/advs.202400916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/03/2024] [Indexed: 03/25/2024]
Abstract
The rigid hull encasing Tartary buckwheat seeds necessitates a laborious dehulling process before flour milling, resulting in considerable nutrient loss. Investigation of lignin composition is pivotal in understanding the structural properties of tartary buckwheat seeds hulls, as lignin is key determinant of rigidity in plant cell walls, thus directly impacting the dehulling process. Here, the lignin composition of seed hulls from 274 Tartary buckwheat accessions is analyzed, unveiling a unique lignin chemotype primarily consisting of G lignin, a common feature in gymnosperms. Furthermore, the hardness of the seed hull showed a strong negative correlation with the S lignin content. Genome-wide detection of selective sweeps uncovered that genes governing the biosynthesis of S lignin, specifically two caffeic acid O-methyltransferases (COMTs) and one ferulate 5-hydroxylases, are selected during domestication. This likely contributed to the increased S lignin content and decreased hardness of seed hulls from more domesticated varieties. Genome-wide association studies identified robust associations between FtCOMT1 and the accumulation of S lignin in seed hull. Transgenic Arabidopsis comt1 plants expressing FtCOMT1 successfully reinstated S lignin content, confirming its conserved function across plant species. These findings provide valuable metabolic and genetic insights for the potential redesign of Tartary buckwheat seed hulls.
Collapse
Affiliation(s)
- Wenqi Yang
- State Key Laboratory of Crop Stress Adaptation and ImprovementHenan Joint International Laboratory for Crop Multi‐Omics ResearchSchool of Life SciencesHenan UniversityKaifeng475004China
| | - Haiyang Duan
- National Key Laboratory of Wheat and Maize Crop ScienceCollege of AgronomyHenan Agricultural UniversityZhengzhou450002China
| | - Ke Yu
- State Key Laboratory of Crop Stress Adaptation and ImprovementHenan Joint International Laboratory for Crop Multi‐Omics ResearchSchool of Life SciencesHenan UniversityKaifeng475004China
| | - Siyu Hou
- College of AgricultureShanxi Agricultural UniversityTaigu030801China
- Houji Lab of Shanxi ProvinceTaiyuan030031China
| | - Yifan Kang
- State Key Laboratory of Crop Stress Adaptation and ImprovementHenan Joint International Laboratory for Crop Multi‐Omics ResearchSchool of Life SciencesHenan UniversityKaifeng475004China
| | - Xiao Wang
- State Key Laboratory of Crop Stress Adaptation and ImprovementHenan Joint International Laboratory for Crop Multi‐Omics ResearchSchool of Life SciencesHenan UniversityKaifeng475004China
| | - Jiongyu Hao
- College of AgricultureShanxi Agricultural UniversityTaigu030801China
| | - Longlong Liu
- Center for Agricultural Genetic Resources ResearchShanxi Agricultural UniversityTaiyuan030031China
| | - Yin Zhang
- College of AgricultureShanxi Agricultural UniversityTaigu030801China
| | - Laifu Luo
- Key Laboratory of Plant Carbon Capture and CAS Center for Excellence in Molecular Plant SciencesChinese Academy of SciencesShanghai200032China
| | - Yunjun Zhao
- Key Laboratory of Plant Carbon Capture and CAS Center for Excellence in Molecular Plant SciencesChinese Academy of SciencesShanghai200032China
| | - Junli Zhang
- State Key Laboratory of Crop Stress Adaptation and ImprovementHenan Joint International Laboratory for Crop Multi‐Omics ResearchSchool of Life SciencesHenan UniversityKaifeng475004China
| | - Chen Lan
- State Key Laboratory of Crop Stress Adaptation and ImprovementHenan Joint International Laboratory for Crop Multi‐Omics ResearchSchool of Life SciencesHenan UniversityKaifeng475004China
| | - Nan Wang
- Shenzhen Key Laboratory of Synthetic GenomicsGuangdong Provincial Key Laboratory of Synthetic GenomicsKey Laboratory of Quantitative Synthetic BiologyShenzhen Institute of Synthetic BiologyShenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhen518055China
| | - Xuehai Zhang
- National Key Laboratory of Wheat and Maize Crop ScienceCollege of AgronomyHenan Agricultural UniversityZhengzhou450002China
| | - Jihua Tang
- National Key Laboratory of Wheat and Maize Crop ScienceCollege of AgronomyHenan Agricultural UniversityZhengzhou450002China
| | - Qiao Zhao
- Shenzhen Key Laboratory of Synthetic GenomicsGuangdong Provincial Key Laboratory of Synthetic GenomicsKey Laboratory of Quantitative Synthetic BiologyShenzhen Institute of Synthetic BiologyShenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhen518055China
| | - Zhaoxia Sun
- College of AgricultureShanxi Agricultural UniversityTaigu030801China
- Houji Lab of Shanxi ProvinceTaiyuan030031China
| | - Xuebin Zhang
- State Key Laboratory of Crop Stress Adaptation and ImprovementHenan Joint International Laboratory for Crop Multi‐Omics ResearchSchool of Life SciencesHenan UniversityKaifeng475004China
| |
Collapse
|
135
|
Shen W, Zhang C, Wang G, Li Y, Zhang X, Cui Y, Hu Z, Shen S, Xu X, Cao Y, Li X, Wen J, Lin J. Variation pattern in the macromolecular (cellulose, hemicelluloses, lignin) composition of cell walls in Pinus tabulaeformis tree trunks at different ages as revealed using multiple techniques. Int J Biol Macromol 2024; 268:131619. [PMID: 38692998 DOI: 10.1016/j.ijbiomac.2024.131619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 02/27/2024] [Accepted: 04/13/2024] [Indexed: 05/03/2024]
Abstract
The plant cell wall is a complex, heterogeneous structure primarily composed of cellulose, hemicelluloses, and lignin. Exploring the variations in these three macromolecules over time is crucial for understanding wood formation to enhance chemical processing and utilization. Here, we comprehensively analyzed the chemical composition of cell walls in the trunks of Pinus tabulaeformis using multiple techniques. In situ analysis showed that macromolecules accumulated gradually in the cell wall as the plant aged, and the distribution pattern of lignin was opposite that of polysaccharides, and both showed heterogenous distribution patterns. In addition, gel permeation chromatography (GPC) results revealed that the molecular weights of hemicelluloses decreased while that of lignin increased with age. Two-dimensional heteronuclear single quantum coherence nuclear magnetic resonance (2D-HSQC NMR) analysis indicated that hemicelluloses mainly comprised galactoglucomannan and arabinoglucuronoxylan, and the lignin types were mainly comprised guaiacyl (G) and p-hydroxyphenyl (H) units with three main linkage types: β-O-4, β-β, and β-5. Furthermore, the C-O bond (β-O-4) signals of lignin decreased while the C-C bonds (β-β and β-5) signals increased over time. Taken together, these findings shed light on wood formation in P. tabulaeformis and lay the foundation for enhancing the processing and use of wood and timber products.
Collapse
Affiliation(s)
- Weiwei Shen
- State Key Laboratory of Efficient Production of Forest Resources, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; Institute of Tree Development and Genome Editing, Beijing Forestry University, Beijing 100083, China; National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Chen Zhang
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
| | - Guangchao Wang
- State Key Laboratory of Efficient Production of Forest Resources, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; Institute of Tree Development and Genome Editing, Beijing Forestry University, Beijing 100083, China; National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Yujian Li
- State Key Laboratory of Efficient Production of Forest Resources, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; Institute of Tree Development and Genome Editing, Beijing Forestry University, Beijing 100083, China; National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Xi Zhang
- State Key Laboratory of Efficient Production of Forest Resources, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; Institute of Tree Development and Genome Editing, Beijing Forestry University, Beijing 100083, China; National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Yaning Cui
- State Key Laboratory of Efficient Production of Forest Resources, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; Institute of Tree Development and Genome Editing, Beijing Forestry University, Beijing 100083, China; National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Zijian Hu
- State Key Laboratory of Efficient Production of Forest Resources, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; Institute of Tree Development and Genome Editing, Beijing Forestry University, Beijing 100083, China; National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Shiya Shen
- State Key Laboratory of Efficient Production of Forest Resources, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; Institute of Tree Development and Genome Editing, Beijing Forestry University, Beijing 100083, China; National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Xiuping Xu
- Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Yuan Cao
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China
| | - Xiaojuan Li
- State Key Laboratory of Efficient Production of Forest Resources, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; Institute of Tree Development and Genome Editing, Beijing Forestry University, Beijing 100083, China; National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Jialong Wen
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China.
| | - Jinxing Lin
- State Key Laboratory of Efficient Production of Forest Resources, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; Institute of Tree Development and Genome Editing, Beijing Forestry University, Beijing 100083, China; National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
136
|
Michalak KM, Wojciechowska N, Marzec-Schmidt K, Bagniewska-Zadworna A. Conserved autophagy and diverse cell wall composition: unifying features of vascular tissues in evolutionarily distinct plants. ANNALS OF BOTANY 2024; 133:559-572. [PMID: 38324309 PMCID: PMC11037490 DOI: 10.1093/aob/mcae015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 02/02/2024] [Indexed: 02/08/2024]
Abstract
BACKGROUND AND AIMS The formation of multifunctional vascular tissues represents a significant advancement in plant evolution. Differentiation of conductive cells is specific, involving two main pathways, namely protoplast clearance and cell wall modification. In xylogenesis, autophagy is a crucial process for complete protoplast elimination in tracheary elements, whose cell wall also undergoes strong changes. Knowledge pertaining to living sieve elements, which lose most of their protoplast during phloemogenesis, remains limited. We hypothesized that autophagy plays a crucial role, not only in complete cytoplasmic clearance in xylem but also in partial degradation in phloem. Cell wall elaborations of mature sieve elements are not so extensive. These analyses performed on evolutionarily diverse model species potentially make it possible to understand phloemogenesis to an equal extent to xylogenesis. METHODS We investigated the distribution of ATG8 protein, which is an autophagy marker, and cell wall components in the roots of ferns, gymnosperms and angiosperms (monocots, dicot herbaceous plants and trees). Furthermore, we conducted a bioinformatic analysis of complete data on ATG8 isoforms for Ceratopteris richardii. KEY RESULTS The presence of ATG8 protein was confirmed in both tracheary elements and sieve elements; however, the composition of cell wall components varied considerably among vascular tissues in the selected plants. Arabinogalactan proteins and β-1,4-galactan were detected in the roots of all studied species, suggesting their potential importance in phloem formation or function. In contrast, no evolutionary pattern was observed for xyloglucan, arabinan or homogalacturonan. CONCLUSIONS Our findings indicate that the involvement of autophagy in plants is universal during the development of tracheary elements that are dead at maturity and sieve elements that remain alive. Given the conserved nature of autophagy and its function in protoplast degradation for uninterrupted flow, autophagy might have played a vital role in the development of increasingly complex biological organizations, including the formation of vascular tissues. However, different cell wall compositions of xylem and phloem in different species might indicate diverse functionality and potential for substance transport, which is crucial in plant evolution.
Collapse
Affiliation(s)
- Kornel M Michalak
- Department of General Botany, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland
| | - Natalia Wojciechowska
- Department of General Botany, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland
| | | | - Agnieszka Bagniewska-Zadworna
- Department of General Botany, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland
| |
Collapse
|
137
|
Kapich AN, Suzuki H, Hirth KC, Fernández-Fueyo E, Martínez AT, Houtman CJ, Hammel KE. The white rot basidiomycete Gelatoporia subvermispora produces fatty aldehydes that enable fungal manganese peroxidases to degrade recalcitrant lignin structures. Appl Environ Microbiol 2024; 90:e0204423. [PMID: 38483171 PMCID: PMC11022559 DOI: 10.1128/aem.02044-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 02/26/2024] [Indexed: 04/18/2024] Open
Abstract
The ability of some white rot basidiomycetes to remove lignin selectively from wood indicates that low molecular weight oxidants have a role in ligninolysis. These oxidants are likely free radicals generated by fungal peroxidases from compounds in the biodegrading wood. Past work supports a role for manganese peroxidases (MnPs) in the production of ligninolytic oxidants from fungal membrane lipids. However, the fatty acid alkylperoxyl radicals initially formed during this process are not reactive enough to attack the major structures in lignin. Here, we evaluate the hypothesis that the peroxidation of fatty aldehydes might provide a source of more reactive acylperoxyl radicals. We found that Gelatoporia subvermispora produced trans-2-nonenal, trans-2-octenal, and n-hexanal (a likely metabolite of trans-2,4-decadienal) during the incipient decay of aspen wood. Fungal fatty aldehydes supported the in vitro oxidation by MnPs of a nonphenolic lignin model dimer, and also of the monomeric model veratryl alcohol. Experiments with the latter compound showed that the reactions were partially inhibited by oxalate, the chelator that white rot fungi employ to detach Mn3+ from the MnP active site, but nevertheless proceeded at its physiological concentration of 1 mM. The addition of catalase was inhibitory, which suggests that the standard MnP catalytic cycle is involved in the oxidation of aldehydes. MnP oxidized trans-2-nonenal quantitatively to trans-2-nonenoic acid with the consumption of one O2 equivalent. The data suggest that when Mn3+ remains associated with MnP, it can oxidize aldehydes to their acyl radicals, and the latter subsequently add O2 to become ligninolytic acylperoxyl radicals.IMPORTANCEThe biodegradation of lignin by white rot fungi is essential for the natural recycling of plant biomass and has useful applications in lignocellulose bioprocessing. Although fungal peroxidases have a key role in ligninolysis, past work indicates that biodegradation is initiated by smaller, as yet unidentified oxidants that can infiltrate the substrate. Here, we present evidence that the peroxidase-catalyzed oxidation of naturally occurring fungal aldehydes may provide a source of ligninolytic free radical oxidants.
Collapse
Affiliation(s)
| | - Hideki Suzuki
- US Forest Products Laboratory, Madison, Wisconsin, USA
| | | | - Elena Fernández-Fueyo
- Centro de Investigaciones Biológicas "Margarita Salas", Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Angel T. Martínez
- Centro de Investigaciones Biológicas "Margarita Salas", Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | | | - Kenneth E. Hammel
- Department of Bacteriology, University of Wisconsin, Madison, Wisconsin, USA
| |
Collapse
|
138
|
Towle Z, Cruickshank F, Mackay CL, Clarke DJ, Horsfall LE. Utilising Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) to track the oxidation of lignin by an alkaliphilic laccase. Analyst 2024; 149:2399-2411. [PMID: 38477231 PMCID: PMC11018093 DOI: 10.1039/d4an00124a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 03/07/2024] [Indexed: 03/14/2024]
Abstract
Lignin is a complex heteroaromatic polymer which is one of the most abundant and diverse biopolymers on the planet. It comprises approximately one third of all woody plant matter, making it an attractive candidate as an alternative, renewable feedstock to petrochemicals to produce fine chemicals. However, the inherent complexity of lignin makes it difficult to analyse and characterise using common analytical techniques, proving a hindrance to the utilisation of lignin as a green chemical feedstock. Herein we outline the tracking of lignin degradation by an alkaliphilic laccase in a semi-quantitative manner using a combined chemical analysis approach using Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) to characterise shifts in chemical diversity and relative abundance of ions, and NMR to highlight changes in the structure of lignin. Specifically, an alkaliphilic laccase was used to degrade an industrially relevant lignin, with compounds such as syringaresinol being almost wholly removed (95%) after 24 hours of treatment. Structural analyses reinforced these findings, indicating a >50% loss of NMR signal relating to β-β linkages, of which syringaresinol is representative. Ultimately, this work underlines a combined analytical approach that can be used to gain a broader semi-quantitative understanding of the enzymatic activity of laccases within a complex, non-model mixture.
Collapse
Affiliation(s)
- Zak Towle
- Institute of Quantitative Biology, Biochemistry and Biotechnology, School of Biological Sciences, University of Edinburgh, Roger Land Building, King's Buildings, Edinburgh, EH9 3FF, UK.
| | - Faye Cruickshank
- EaStCHEM School of Chemistry, University of Edinburgh, Joseph Black Building, David Brewster Road, Edinburgh EH9 3FJ, UK.
| | - C Logan Mackay
- EaStCHEM School of Chemistry, University of Edinburgh, Joseph Black Building, David Brewster Road, Edinburgh EH9 3FJ, UK.
| | - David J Clarke
- EaStCHEM School of Chemistry, University of Edinburgh, Joseph Black Building, David Brewster Road, Edinburgh EH9 3FJ, UK.
| | - Louise E Horsfall
- Institute of Quantitative Biology, Biochemistry and Biotechnology, School of Biological Sciences, University of Edinburgh, Roger Land Building, King's Buildings, Edinburgh, EH9 3FF, UK.
| |
Collapse
|
139
|
Khan RJ, Guan J, Lau CY, Zhuang H, Rehman S, Leu SY. Monolignol Potential and Insights into Direct Depolymerization of Fruit and Nutshell Remains for High Value Sustainable Aromatics. CHEMSUSCHEM 2024; 17:e202301306. [PMID: 38078500 DOI: 10.1002/cssc.202301306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/16/2023] [Accepted: 12/08/2023] [Indexed: 01/19/2024]
Abstract
The inedible parts of nuts and stone fruits are low-cost and lignin-rich feedstock for more sustainable production of aromatic chemicals in comparison with the agricultural and forestry residues. However, the depolymerization performances on food-related biomass remains unclear, owing to the broad physicochemical variations from the edible parts of the fruits and plant species. In this study, the monomer production potentials of ten major fruit and nutshell biomass were investigated with comprehensive numerical information derived from instrumental analysis, such as plant cell wall chemical compositions, syringyl/guaiacyl (S/G ratios, and contents of lignin substructure linkages (β-O-4, β-β, β-5). A standardized one-pot reductive catalytic fractionation (RCF) process was applied to benchmark the monomer yields, and the results were statistically analyzed. Among all the tested biomass, mango endocarp provided the highest monolignol yields of 37.1 % per dry substrates. Positive S-lignin (70-84 %) resulted in higher monomer yield mainly due to more cleavable β-O-4 linkages and less condensed C-C linkages. Strong positive relationships were identified between β-O-4 and S-lignin and between β-5 and G-lignin. The analytical, numerical, and experimental results of this study shed lights to process design of lignin-first biorefinery in food-processing industries and waste management works.
Collapse
Affiliation(s)
- Rabia J Khan
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong
| | - Jianyu Guan
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong
| | - Chun Y Lau
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong
| | - Huichuan Zhuang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong
| | - Shazia Rehman
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong
| | - Shao-Yuan Leu
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong
- Research Centre for Resources Engineering towards Carbon Neutrality (RCRE), The Hong Kong Polytechnic University, Hong Kong
- Research Institute for Future Food (RiFood), The Hong Kong Polytechnic University, Hong Kong, 3400-8322
| |
Collapse
|
140
|
Zexer N, Diehn S, Elbaum R. Deposition of silica in sorghum root endodermis modifies the chemistry of associated lignin. FRONTIERS IN PLANT SCIENCE 2024; 15:1370479. [PMID: 38633454 PMCID: PMC11021652 DOI: 10.3389/fpls.2024.1370479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 03/05/2024] [Indexed: 04/19/2024]
Abstract
Silica aggregates at the endodermis of sorghum roots. Aggregation follows a spotted pattern of locally deposited lignin at the inner tangential cell walls. Autofluorescence microscopy suggests that non-silicified (-Si) lignin spots are composed of two distinct concentric regions of varied composition. To highlight variations in lignin chemistry, we used Raman microspectroscopy to map the endodermal cell wall and silica aggregation sites in sorghum roots grown hydroponically with or without Si amendment. In +Si samples, the aggregate center was characterized by typical lignin monomer bands surrounded by lignin with a low level of polymerization. Farther from the spot, polysaccharide concentration increased and soluble silicic acid was detected in addition to silica bands. In -Si samples, the main band at the spot center was assigned to lignin radicals and highly polymerized lignin. Both +Si and -Si loci were enriched by aromatic carbonyls. We propose that at silica aggregation sites, carbonyl rich lignin monomers are locally exported to the apoplast. These monomers are radicalized and polymerized into short lignin polymers. In the presence of silicic acid, bonds typically involved in lignin extension, bind to silanols and nucleate silica aggregates near the monomer extrusion loci. This process inhibits further polymerization of lignin. In -Si samples, the monomers diffuse farther in the wall and crosslink with cell wall polymers, forming a ring of dense lignified cell wall around their export sites.
Collapse
Affiliation(s)
- Nerya Zexer
- Department of Biology, The Pennsylvania State University, University Park, PA, United States
| | - Sabrina Diehn
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Rivka Elbaum
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot, Israel
| |
Collapse
|
141
|
He W, Chai Q, Zhao C, Yu A, Fan Z, Yin W, Hu F, Fan H, Sun Y, Wang F. Blue light regulated lignin and cellulose content of soybean petioles and stems under low light intensity. FUNCTIONAL PLANT BIOLOGY : FPB 2024; 51:FP23091. [PMID: 38669458 DOI: 10.1071/fp23091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 02/10/2024] [Indexed: 04/28/2024]
Abstract
To improve light harvest and plant structural support under low light intensity, it is useful to investigate the effects of different ratios of blue light on petiole and stem growth. Two true leaves of soybean seedlings were exposed to a total light intensity of 200μmolm-2 s-1 , presented as either white light or three levels of blue light (40μmolm-2 s-1 , 67μmolm-2 s-1 and 100μmolm-2 s-1 ) for 15days. Soybean petioles under the low blue light treatment upregulated expression of genes relating to lignin metabolism, enhancing lignin content compared with the white light treatment. The low blue light treatment had high petiole length, increased plant height and improved petiole strength arising from high lignin content, thus significantly increasing leaf dry weight relative to the white light treatment. Compared with white light, the treatment with the highest blue light ratio reduced plant height and enhanced plant support through increased cellulose and hemicellulose content in the stem. Under low light intensity, 20% blue light enhanced petiole length and strength to improve photosynthate biomass; whereas 50% blue light lowered plants' centre of gravity, preventing lodging and conserving carbohydrate allocation.
Collapse
Affiliation(s)
- Wei He
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, People's Republic of China
| | - Qiang Chai
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, People's Republic of China; and College of Agronomy, Gansu Agricultural University, Lanzhou 730070, People's Republic of China
| | - Cai Zhao
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, People's Republic of China
| | - Aizhong Yu
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, People's Republic of China; and College of Agronomy, Gansu Agricultural University, Lanzhou 730070, People's Republic of China
| | - Zhilong Fan
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, People's Republic of China; and College of Agronomy, Gansu Agricultural University, Lanzhou 730070, People's Republic of China
| | - Wen Yin
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, People's Republic of China; and College of Agronomy, Gansu Agricultural University, Lanzhou 730070, People's Republic of China
| | - Falong Hu
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, People's Republic of China; and College of Agronomy, Gansu Agricultural University, Lanzhou 730070, People's Republic of China
| | - Hong Fan
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, People's Republic of China
| | - Yali Sun
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, People's Republic of China
| | - Feng Wang
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, People's Republic of China; and College of Agronomy, Gansu Agricultural University, Lanzhou 730070, People's Republic of China
| |
Collapse
|
142
|
Gopal MR, Kunjapur AM. Harnessing biocatalysis to achieve selective functional group interconversion of monomers. Curr Opin Biotechnol 2024; 86:103093. [PMID: 38417202 DOI: 10.1016/j.copbio.2024.103093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 01/28/2024] [Accepted: 02/01/2024] [Indexed: 03/01/2024]
Abstract
Polymeric materials are ubiquitous to modern life. However, reliance of petroleum for polymeric building blocks is not sustainable. The synthesis of macromolecules from recalcitrant polymer waste feedstocks, such as plastic waste and lignocellulosic biomass, presents an opportunity to bypass the use of petroleum-based feedstocks. However, the deconstruction and transformation of these alternative feedstocks remained limited until recently. Herein, we highlight examples of monomers liberated from the deconstruction of recalcitrant polymers, and more extensively, we showcase the state-of-the-art in biocatalytic technologies that are enabling synthesis of diverse upcycled monomeric starting materials for a wide variety of macromolecules. Overall, this review emphasizes the importance of functional group interconversion as a promising strategy by which biocatalysis can aid the diversification and upcycling of monomers.
Collapse
Affiliation(s)
- Madan R Gopal
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE, USA; Center for Plastics Innovation, University of Delaware, Newark, DE, USA
| | - Aditya M Kunjapur
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE, USA; Center for Plastics Innovation, University of Delaware, Newark, DE, USA.
| |
Collapse
|
143
|
Xing F, Zhang L, Ge W, Fan H, Tian C, Meng F. Comparative transcriptome analysis reveals the importance of phenylpropanoid biosynthesis for the induced resistance of 84K poplar to anthracnose. BMC Genomics 2024; 25:306. [PMID: 38519923 PMCID: PMC10960379 DOI: 10.1186/s12864-024-10209-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 03/11/2024] [Indexed: 03/25/2024] Open
Abstract
BACKGROUND Poplar anthracnose, which is one of the most important tree diseases, is primarily caused by Colletotrichum gloeosporioides, which has been detected in poplar plantations in China and is responsible for serious economic losses. The characteristics of 84K poplar that have made it one of the typical woody model plants used for investigating stress resistance include its rapid growth, simple reproduction, and adaptability. RESULTS In this study, we found that the resistance of 84K poplar to anthracnose varied considerably depending on how the samples were inoculated of the two seedlings in each tissue culture bottle, one (84K-Cg) was inoculated for 6 days, whereas the 84K-DCg samples were another seedling inoculated at the 6th day and incubated for another 6 days under the same conditions. It was showed that the average anthracnose spot diameter on 84K-Cg and 84K-DCg leaves was 1.23 ± 0.0577 cm and 0.67 ± 0.1154 cm, respectively. Based on the transcriptome sequencing analysis, it was indicated that the upregulated phenylpropanoid biosynthesis-related genes in 84K poplar infected with C. gloeosporioides, including genes encoding PAL, C4H, 4CL, HCT, CCR, COMT, F5H, and CAD, are also involved in other KEGG pathways (i.e., flavonoid biosynthesis and phenylalanine metabolism). The expression levels of these genes were lowest in 84K-Cg and highest in 84K-DCg. CONCLUSIONS It was found that PAL-related genes may be crucial for the induced resistance of 84K poplar to anthracnose, which enriched in the phenylpropanoid biosynthesis. These results will provide the basis for future research conducted to verify the contribution of phenylpropanoid biosynthesis to induced resistance and explore plant immune resistance-related signals that may regulate plant defense capabilities, which may provide valuable insights relevant to the development of effective and environmentally friendly methods for controlling poplar anthracnose.
Collapse
Affiliation(s)
- Fei Xing
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, College of Forestry, Beijing Forestry University, 100083, Beijing, China
- Beijing Key Laboratory for Forest Pest Control, College of Forestry, Beijing Forestry University, 100083, Beijing, China
| | - Linxuan Zhang
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, College of Forestry, Beijing Forestry University, 100083, Beijing, China
- Beijing Key Laboratory for Forest Pest Control, College of Forestry, Beijing Forestry University, 100083, Beijing, China
| | - Wei Ge
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, College of Forestry, Beijing Forestry University, 100083, Beijing, China
- Beijing Key Laboratory for Forest Pest Control, College of Forestry, Beijing Forestry University, 100083, Beijing, China
| | - Haixia Fan
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, College of Forestry, Beijing Forestry University, 100083, Beijing, China
- Beijing Key Laboratory for Forest Pest Control, College of Forestry, Beijing Forestry University, 100083, Beijing, China
| | - Chengming Tian
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, College of Forestry, Beijing Forestry University, 100083, Beijing, China
- Beijing Key Laboratory for Forest Pest Control, College of Forestry, Beijing Forestry University, 100083, Beijing, China
| | - Fanli Meng
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, College of Forestry, Beijing Forestry University, 100083, Beijing, China.
- Beijing Key Laboratory for Forest Pest Control, College of Forestry, Beijing Forestry University, 100083, Beijing, China.
| |
Collapse
|
144
|
Bregado JL, Secchi AR, Tavares FW. A density functional theory study on interactions in water-bridged dimeric complexes of lignin. Phys Chem Chem Phys 2024; 26:9234-9252. [PMID: 38444363 DOI: 10.1039/d4cp00312h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
Lignin is the main plant cell wall component responsible for recalcitrance in the process of lignocellulosic biomass conversion into biofuels. The recalcitrance and insolubility of lignin in different reaction media are due in part to the hydrogen bonds and π interactions that hold syringyl (S) and guaiacyl (G) units together and promote the formation of stable water-bridged dimeric complexes (WBDCs): S⋯G and S⋯S, in native lignin. The current understanding of how each type of interaction influences the stability of these complexes within lignin native cell walls is still limited. Here, we found by DFT calculations that hydrogen bonding is more dominant than π-stacking interaction between aromatic rings of WBDCs. Although there is a stronger interaction of hydrogen bonds between subunits and water and higher π-stacking interaction in the S⋯S complex compared to the S⋯G complex, the former complex is less thermodynamically stable than the latter due to the entropic contribution coming from the methoxy substituents in the S-unit. Our results demonstrate that the methoxylation degree of lignin units does not significantly influence the structural geometries of WBDCs; if anything, an enhanced dispersion interaction between ring aromatics results in quasi-sandwich geometries as found in "coiled" lignin structures in the xylem tissue of wood. In the same way as that with ionic liquids, polar solvents can dissolve S-lignin by favorable interactions with the aliphatic hydroxyl group in the α-position as the key site or the aromatic hydroxyl group as the secondary site.
Collapse
Affiliation(s)
- Jurgen Lange Bregado
- Chemical Engineering Program, COPPE, Universidade Federal do Rio de Janeiro, Cidade Universitária, Rio de Janeiro, CP: 21941-914, Brazil.
| | - Argimiro R Secchi
- Chemical Engineering Program, COPPE, Universidade Federal do Rio de Janeiro, Cidade Universitária, Rio de Janeiro, CP: 21941-914, Brazil.
- Chemical and Biochemical Process Engineering Program, Escola de Química, Universidade Federal do Rio de Janeiro, Cidade Universitária, Rio de Janeiro, CP: 21941-909, Brazil
| | - Frederico W Tavares
- Chemical Engineering Program, COPPE, Universidade Federal do Rio de Janeiro, Cidade Universitária, Rio de Janeiro, CP: 21941-914, Brazil.
- Chemical and Biochemical Process Engineering Program, Escola de Química, Universidade Federal do Rio de Janeiro, Cidade Universitária, Rio de Janeiro, CP: 21941-909, Brazil
| |
Collapse
|
145
|
Wolf ME, Lalande AT, Newman BL, Bleem AC, Palumbo CT, Beckham GT, Eltis LD. The catabolism of lignin-derived p-methoxylated aromatic compounds by Rhodococcus jostii RHA1. Appl Environ Microbiol 2024; 90:e0215523. [PMID: 38380926 PMCID: PMC10952524 DOI: 10.1128/aem.02155-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 01/23/2024] [Indexed: 02/22/2024] Open
Abstract
Emergent strategies to valorize lignin, an abundant but underutilized aromatic biopolymer, include tandem processes that integrate chemical depolymerization and biological catalysis. To date, aromatic monomers from C-O bond cleavage of lignin have been converted to bioproducts, but the presence of recalcitrant C-C bonds in lignin limits the product yield. A promising chemocatalytic strategy that overcomes this limitation involves phenol methyl protection and autoxidation. Incorporating this into a tandem process requires microbial cell factories able to transform the p-methoxylated products in the resulting methylated lignin stream. In this study, we assessed the ability of Rhodococcus jostii RHA1 to catabolize the major aromatic products in a methylated lignin stream and elucidated the pathways responsible for this catabolism. RHA1 grew on a methylated pine lignin stream, catabolizing the major aromatic monomers: p-methoxybenzoate (p-MBA), veratrate, and veratraldehyde. Bioinformatic analyses suggested that a cytochrome P450, PbdA, and its cognate reductase, PbdB, are involved in p-MBA catabolism. Gene deletion studies established that both pbdA and pbdB are essential for growth on p-MBA and several derivatives. Furthermore, a deletion mutant of a candidate p-hydroxybenzoate (p-HBA) hydroxylase, ΔpobA, did not grow on p-HBA. Veratraldehyde and veratrate catabolism required both vanillin dehydrogenase (Vdh) and vanillate O-demethylase (VanAB), revealing previously unknown roles of these enzymes. Finally, a ΔpcaL strain grew on neither p-MBA nor veratrate, indicating they are catabolized through the β-ketoadipate pathway. This study expands our understanding of the bacterial catabolism of aromatic compounds and facilitates the development of biocatalysts for lignin valorization.IMPORTANCELignin, an abundant aromatic polymer found in plant biomass, is a promising renewable replacement for fossil fuels as a feedstock for the chemical industry. Strategies for upgrading lignin include processes that couple the catalytic fractionation of biomass and biocatalytic transformation of the resulting aromatic compounds with a microbial cell factory. Engineering microbial cell factories for this biocatalysis requires characterization of bacterial pathways involved in catabolizing lignin-derived aromatic compounds. This study identifies new pathways for lignin-derived aromatic degradation in Rhodococcus, a genus of bacteria well suited for biocatalysis. Additionally, we describe previously unknown activities of characterized enzymes on lignin-derived compounds, expanding their utility. This work advances the development of strategies to replace fossil fuel-based feedstocks with sustainable alternatives.
Collapse
Affiliation(s)
- Megan E. Wolf
- Department of Microbiology and Immunology, Life Sciences Institute, The University of British Columbia, Vancouver, Canada
| | - Anne T. Lalande
- Department of Microbiology and Immunology, Life Sciences Institute, The University of British Columbia, Vancouver, Canada
| | - Brianne L. Newman
- Department of Microbiology and Immunology, Life Sciences Institute, The University of British Columbia, Vancouver, Canada
| | - Alissa C. Bleem
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, Colorado, USA
| | - Chad T. Palumbo
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, Colorado, USA
| | - Gregg T. Beckham
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, Colorado, USA
| | - Lindsay D. Eltis
- Department of Microbiology and Immunology, Life Sciences Institute, The University of British Columbia, Vancouver, Canada
| |
Collapse
|
146
|
Lam LPY, Lui ACW, Bartley LE, Mikami B, Umezawa T, Lo C. Multifunctional 5-hydroxyconiferaldehyde O-methyltransferases (CAldOMTs) in plant metabolism. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:1671-1695. [PMID: 38198655 DOI: 10.1093/jxb/erae011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 01/09/2024] [Indexed: 01/12/2024]
Abstract
Lignin, flavonoids, melatonin, and stilbenes are plant specialized metabolites with diverse physiological and biological functions, supporting plant growth and conferring stress resistance. Their biosynthesis requires O-methylations catalyzed by 5-hydroxyconiferaldehyde O-methyltransferase (CAldOMT; also called caffeic acid O-methyltransferase, COMT). CAldOMT was first known for its roles in syringyl (S) lignin biosynthesis in angiosperm cell walls and later found to be multifunctional. This enzyme also catalyzes O-methylations in flavonoid, melatonin, and stilbene biosynthetic pathways. Phylogenetic analysis indicated the convergent evolution of enzymes with OMT activities towards the monolignol biosynthetic pathway intermediates in some gymnosperm species that lack S-lignin and Selaginella moellendorffii, a lycophyte which produces S-lignin. Furthermore, neofunctionalization of CAldOMTs occurred repeatedly during evolution, generating unique O-methyltransferases (OMTs) with novel catalytic activities and/or accepting novel substrates, including lignans, 1,2,3-trihydroxybenzene, and phenylpropenes. This review summarizes multiple aspects of CAldOMTs and their related proteins in plant metabolism and discusses their evolution, molecular mechanism, and roles in biorefineries, agriculture, and synthetic biology.
Collapse
Affiliation(s)
- Lydia Pui Ying Lam
- Graduate School of Engineering Science, Akita University, Tegata Gakuen-machi 1-1, Akita City, Akita 010-0852, Japan
| | - Andy C W Lui
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | - Laura E Bartley
- Institute of Biological Chemistry, Washington State University, Pullman, WA 99164, USA
| | - Bunzo Mikami
- Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | - Toshiaki Umezawa
- Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | - Clive Lo
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| |
Collapse
|
147
|
Li X, Zhao Y, He S, Meng J, Lu Y, Shi H, Liu C, Hao B, Tang Q, Zhang S, Zhang G, Luo Y, Yang S, Yang J, Fan W. Integrated metabolome and transcriptome analyses reveal the molecular mechanism underlying dynamic metabolic processes during taproot development of Panax notoginseng. BMC PLANT BIOLOGY 2024; 24:170. [PMID: 38443797 PMCID: PMC10913227 DOI: 10.1186/s12870-024-04861-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 02/23/2024] [Indexed: 03/07/2024]
Abstract
BACKGROUND Panax notoginseng (Burk) F. H. Chen is one of the most famous Chinese traditional medicinal plants. The taproot is the main organ producing triterpenoid saponins, and its development is directly linked to the quality and yield of the harvested P. notoginseng. However, the mechanisms underlying the dynamic metabolic changes occurring during taproot development of P. notoginseng are unknown. RESULTS We carried out metabolomic and transcriptomic analyses to investigate metabolites and gene expression during the development of P. notoginseng taproots. The differentially accumulated metabolites included amino acids and derivatives, nucleotides and derivatives, and lipids in 1-year-old taproots, flavonoids and terpenoids in 2- and 3-year-old taproots, and phenolic acids in 3-year-old taproots. The differentially expressed genes (DEGs) are related to phenylpropanoid biosynthesis, metabolic pathway and biosynthesis of secondary metabolites at all three developmental stages. Integrative analysis revealed that the phenylpropanoid biosynthesis pathway was involved in not only the development of but also metabolic changes in P. notoginseng taproots. Moreover, significant accumulation of triterpenoid saponins in 2- and 3-year-old taproots was highly correlated with the up-regulated expression of cytochrome P450s and uridine diphosphate-dependent glycosyltransferases genes. Additionally, a gene encoding RNase-like major storage protein was identified to play a dual role in the development of P. notoginseng taproots and their triterpenoid saponins synthesis. CONCLUSIONS These results elucidate the molecular mechanism underlying the accumulation of and change relationship between primary and secondary metabolites in P. notoginseng taproots, and provide a basis for the quality control and genetic improvement of P. notoginseng.
Collapse
Affiliation(s)
- Xuejiao Li
- State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan, The Key Laboratory of Medicinal Plant Biology of Yunnan Province, National and Local Joint Engineering Research Center on Germplasm Innovation and Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming, China
- College of Landscape and Horticulture, Yunnan Agricultural University, Kunming, 650201, China
| | - Yan Zhao
- College of Landscape and Horticulture, Yunnan Agricultural University, Kunming, 650201, China
| | - Shuilian He
- College of Landscape and Horticulture, Yunnan Agricultural University, Kunming, 650201, China
| | - Jing Meng
- College of Landscape and Horticulture, Yunnan Agricultural University, Kunming, 650201, China
| | - Yingchun Lu
- State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan, The Key Laboratory of Medicinal Plant Biology of Yunnan Province, National and Local Joint Engineering Research Center on Germplasm Innovation and Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming, China
| | - Huineng Shi
- State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan, The Key Laboratory of Medicinal Plant Biology of Yunnan Province, National and Local Joint Engineering Research Center on Germplasm Innovation and Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming, China
| | - Chunlan Liu
- State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan, The Key Laboratory of Medicinal Plant Biology of Yunnan Province, National and Local Joint Engineering Research Center on Germplasm Innovation and Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming, China
| | - Bing Hao
- State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan, The Key Laboratory of Medicinal Plant Biology of Yunnan Province, National and Local Joint Engineering Research Center on Germplasm Innovation and Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming, China
| | - Qingyan Tang
- State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan, The Key Laboratory of Medicinal Plant Biology of Yunnan Province, National and Local Joint Engineering Research Center on Germplasm Innovation and Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming, China
| | - Shuangyan Zhang
- State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan, The Key Laboratory of Medicinal Plant Biology of Yunnan Province, National and Local Joint Engineering Research Center on Germplasm Innovation and Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming, China
| | - Guanghui Zhang
- State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan, The Key Laboratory of Medicinal Plant Biology of Yunnan Province, National and Local Joint Engineering Research Center on Germplasm Innovation and Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming, China
| | - Yu Luo
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, 650201, China
| | - Shengchao Yang
- State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan, The Key Laboratory of Medicinal Plant Biology of Yunnan Province, National and Local Joint Engineering Research Center on Germplasm Innovation and Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming, China
| | - Jianli Yang
- College of Landscape and Horticulture, Yunnan Agricultural University, Kunming, 650201, China.
| | - Wei Fan
- State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan, The Key Laboratory of Medicinal Plant Biology of Yunnan Province, National and Local Joint Engineering Research Center on Germplasm Innovation and Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming, China.
- College of Landscape and Horticulture, Yunnan Agricultural University, Kunming, 650201, China.
| |
Collapse
|
148
|
Wolabu TW, Mahmood K, Chen F, Torres-Jerez I, Udvardi M, Tadege M, Cong L, Wang Z, Wen J. Mutating alfalfa COUMARATE 3-HYDROXYLASE using multiplex CRISPR/Cas9 leads to reduced lignin deposition and improved forage quality. FRONTIERS IN PLANT SCIENCE 2024; 15:1363182. [PMID: 38504900 PMCID: PMC10948404 DOI: 10.3389/fpls.2024.1363182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 02/21/2024] [Indexed: 03/21/2024]
Abstract
Alfalfa (Medicago sativa L.) forage quality is adversely affected by lignin deposition in cell walls at advanced maturity stages. Reducing lignin content through RNA interference or antisense approaches has been shown to improve alfalfa forage quality and digestibility. We employed a multiplex CRISPR/Cas9-mediated gene-editing system to reduce lignin content and alter lignin composition in alfalfa by targeting the COUMARATE 3-HYDROXYLASE (MsC3H) gene, which encodes a key enzyme in lignin biosynthesis. Four guide RNAs (gRNAs) targeting the first exon of MsC3H were designed and clustered into a tRNA-gRNA polycistronic system and introduced into tetraploid alfalfa via Agrobacterium-mediated transformation. Out of 130 transgenic lines, at least 73 lines were confirmed to contain gene-editing events in one or more alleles of MsC3H. Fifty-five lines were selected for lignin content/composition analysis. Amongst these lines, three independent tetra-allelic homozygous lines (Msc3h-013, Msc3h-121, and Msc3h-158) with different mutation events in MsC3H were characterized in detail. Homozygous mutation of MsC3H in these three lines significantly reduced the lignin content and altered lignin composition in stems. Moreover, these lines had significantly lower levels of acid detergent fiber and neutral detergent fiber as well as higher levels of total digestible nutrients, relative feed values, and in vitro true dry matter digestibility. Taken together, these results showed that CRISPR/Cas9-mediated editing of MsC3H successfully reduced shoot lignin content, improved digestibility, and nutritional values without sacrificing plant growth and biomass yield. These lines could be used in alfalfa breeding programs to generate elite transgene-free alfalfa cultivars with reduced lignin and improved forage quality.
Collapse
Affiliation(s)
- Tezera W. Wolabu
- Institute for Agricultural Bioscience, Oklahoma State University, Ardmore, OK, United States
| | - Kashif Mahmood
- Institute for Agricultural Bioscience, Oklahoma State University, Ardmore, OK, United States
| | - Fang Chen
- Center for Biotechnology and Genomics, Texas Tech University, Lubbock, TX, United States
| | - Ivone Torres-Jerez
- Institute for Agricultural Bioscience, Oklahoma State University, Ardmore, OK, United States
| | - Michael Udvardi
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, QLD, Australia
| | - Million Tadege
- Institute for Agricultural Bioscience, Oklahoma State University, Ardmore, OK, United States
| | - Lili Cong
- College of Grassland Science, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Zengyu Wang
- College of Grassland Science, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Jiangqi Wen
- Institute for Agricultural Bioscience, Oklahoma State University, Ardmore, OK, United States
| |
Collapse
|
149
|
Wang Y, Wang T, Qi S, Zhao J, Kong J, Xue Z, Sun W, Zeng W. Genome-wide identification, expression profiling, and protein interaction analysis of the CCoAOMT gene family in the tea plant (Camellia sinensis). BMC Genomics 2024; 25:238. [PMID: 38438984 PMCID: PMC10913456 DOI: 10.1186/s12864-024-09972-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 01/04/2024] [Indexed: 03/06/2024] Open
Abstract
BACKGROUND The caffeoyl-CoA-O methyltransferase (CCoAOMT) family plays a crucial role in the oxidative methylation of phenolic substances and is involved in various plant processes, including growth, development, and stress response. However, there is a limited understanding of the interactions among CCoAOMT protein members in tea plants. RESULTS In this study, we identified 10 members of the CsCCoAOMT family in the genome of Camellia sinensis (cultivar 'HuangDan'), characterized by conserved gene structures and motifs. These CsCCoAOMT members were located on six different chromosomes (1, 2, 3, 4, 6, and 14). Based on phylogenetic analysis, CsCCoAOMT can be divided into two groups: I and II. Notably, the CsCCoAOMT members of group Ia are likely to be candidate genes involved in lignin biosynthesis. Moreover, through the yeast two-hybrid (Y2H) assay, we established protein interaction networks for the CsCCoAOMT family, revealing 9 pairs of members with interaction relationships. CONCLUSIONS We identified the CCoAOMT gene family in Camellia sinensis and conducted a comprehensive analysis of their classifications, phylogenetic and synteny relationships, gene structures, protein interactions, tissue-specific expression patterns, and responses to various stresses. Our findings shed light on the evolution and composition of CsCCoAOMT. Notably, the observed interaction among CCoAOMT proteins suggests the potential formation of the O-methyltransferase (OMT) complex during the methylation modification process, expanding our understanding of the functional roles of this gene family in diverse biological processes.
Collapse
Affiliation(s)
- Yiqing Wang
- College of Horticulture, Fujian Agriculture and Forestry University, 350002, Fuzhou, China
| | - Tao Wang
- College of Horticulture, Fujian Agriculture and Forestry University, 350002, Fuzhou, China
| | - Siyu Qi
- College of Horticulture, Fujian Agriculture and Forestry University, 350002, Fuzhou, China
| | - Jiamin Zhao
- College of Horticulture, Fujian Agriculture and Forestry University, 350002, Fuzhou, China
| | - Jiumei Kong
- College of Horticulture, Fujian Agriculture and Forestry University, 350002, Fuzhou, China
| | - Zhihui Xue
- Anxi College of Tea Science, Fujian Agriculture and Forestry University, 350028, Quanzhou, China
| | - Weijiang Sun
- College of Horticulture, Fujian Agriculture and Forestry University, 350002, Fuzhou, China.
| | - Wen Zeng
- College of Horticulture, Fujian Agriculture and Forestry University, 350002, Fuzhou, China.
| |
Collapse
|
150
|
Han C, Zhang Z, Feng Z, Zhai C, Li X, Shi Y, Li X, Li M, Wang Y, Luo G, Gao X. The "depict" strategy for discovering new compounds in complex matrices: Lycibarbarspermidines as a case. J Pharm Anal 2024; 14:416-426. [PMID: 38618244 PMCID: PMC11010613 DOI: 10.1016/j.jpha.2023.10.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 10/08/2023] [Accepted: 10/19/2023] [Indexed: 04/16/2024] Open
Abstract
The comprehensive detection and identification of active ingredients in complex matrices is a crucial challenge. Liquid chromatography coupled with high-resolution mass spectrometry (LC-HRMS) is the most prominent analytical platform for the exploration of novel active compounds from complex matrices. However, the LC-HRMS-based analysis workflow suffers from several bottleneck issues, such as trace content of target compounds, limited acquisition for fragment information, and uncertainty in interpreting relevant MS2 spectra. Lycibarbarspermidines are vital antioxidant active ingredients in Lycii Fructus, while the reported structures are merely focused on dicaffeoylspermidines due to their low content. To comprehensively detect the new structures of lycibarbarspermidine derivatives, a "depict" strategy was developed in this study. First, potential new lycibarbarspermidine derivatives were designed according to the biosynthetic pathway, and a comprehensive database was established, which enlarged the coverage of lycibarbarspermidine derivatives. Second, the polarity-oriented sample preparation of potential new compounds increased the concentration of the target compounds. Third, the construction of the molecular network based on the fragmentation pathway of lycibarbarspermidine derivatives broadened the comprehensiveness of identification. Finally, the weak response signals were captured by data-dependent scanning (DDA) followed by parallel reaction monitoring (PRM), and the efficiency of acquiring MS2 fragment ions of target compounds was significantly improved. Based on the integrated strategy above, 210 lycibarbarspermidine derivatives were detected and identified from Lycii Fructus, and in particular, 170 potential new compounds were structurally characterized. The integrated strategy improved the sensitivity of detection and the coverage of low-response components, and it is expected to be a promising pipeline for discovering new compounds.
Collapse
Affiliation(s)
| | | | - Zhiyang Feng
- Department of Chinese Medicine Analysis, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Chuanjia Zhai
- Department of Chinese Medicine Analysis, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Xuejiao Li
- Department of Chinese Medicine Analysis, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Yulian Shi
- Department of Chinese Medicine Analysis, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Xiang Li
- Department of Chinese Medicine Analysis, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Miao Li
- Department of Chinese Medicine Analysis, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Ying Wang
- Department of Chinese Medicine Analysis, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Gan Luo
- Department of Chinese Medicine Analysis, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Xiaoyan Gao
- Department of Chinese Medicine Analysis, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| |
Collapse
|