101
|
Al-Azzam S, Ding Y, Liu J, Pandya P, Ting JP, Afshar S. Peptides to combat viral infectious diseases. Peptides 2020; 134:170402. [PMID: 32889022 PMCID: PMC7462603 DOI: 10.1016/j.peptides.2020.170402] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 08/24/2020] [Accepted: 08/28/2020] [Indexed: 12/14/2022]
Abstract
Viral infectious diseases have resulted in millions of deaths throughout history and have created a significant public healthcare burden. Tremendous efforts have been placed by the scientific communities, health officials and government organizations to detect, treat, and prevent viral infection. However, the complicated life cycle and rapid genetic mutations of viruses demand continuous development of novel medicines with high efficacy and safety profiles. Peptides provide a promising outlook as a tool to combat the spread and re-emergence of viral infection. This article provides an overview of five viral infectious diseases with high global prevalence: influenza, chronic hepatitis B, acquired immunodeficiency syndrome, severe acute respiratory syndrome, and coronavirus disease 2019. The current and potential peptide-based therapies, vaccines, and diagnostics for each disease are discussed.
Collapse
Affiliation(s)
- Shams Al-Azzam
- Professional Scientific Services, Eurofins Lancaster Laboratories, Lancaster, PA, 17605, USA
| | - Yun Ding
- Protein Engineering, Lilly Biotechnology Center, Eli Lilly and Company, San Diego, CA, 92121, USA
| | - Jinsha Liu
- Protein Engineering, Lilly Biotechnology Center, Eli Lilly and Company, San Diego, CA, 92121, USA
| | - Priyanka Pandya
- Protein Engineering, Lilly Biotechnology Center, Eli Lilly and Company, San Diego, CA, 92121, USA
| | - Joey Paolo Ting
- Protein Engineering, Lilly Biotechnology Center, Eli Lilly and Company, San Diego, CA, 92121, USA
| | - Sepideh Afshar
- Protein Engineering, Lilly Biotechnology Center, Eli Lilly and Company, San Diego, CA, 92121, USA.
| |
Collapse
|
102
|
Pseudotyping Lentiviral Vectors: When the Clothes Make the Virus. Viruses 2020; 12:v12111311. [PMID: 33207797 PMCID: PMC7697029 DOI: 10.3390/v12111311] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 11/10/2020] [Accepted: 11/11/2020] [Indexed: 12/12/2022] Open
Abstract
Delivering transgenes to human cells through transduction with viral vectors constitutes one of the most encouraging approaches in gene therapy. Lentivirus-derived vectors are among the most promising vectors for these approaches. When the genetic modification of the cell must be performed in vivo, efficient specific transduction of the cell targets of the therapy in the absence of off-targeting constitutes the Holy Grail of gene therapy. For viral therapy, this is largely determined by the characteristics of the surface proteins carried by the vector. In this regard, an important property of lentiviral vectors is the possibility of being pseudotyped by envelopes of other viruses, widening the panel of proteins with which they can be armed. Here, we discuss how this is achieved at the molecular level and what the properties and the potentialities of the different envelope proteins that can be used for pseudotyping these vectors are.
Collapse
|
103
|
Schneeberger EM, Halper M, Palasser M, Heel SV, Vušurović J, Plangger R, Juen M, Kreutz C, Breuker K. Native mass spectrometry reveals the initial binding events of HIV-1 rev to RRE stem II RNA. Nat Commun 2020; 11:5750. [PMID: 33188169 PMCID: PMC7666190 DOI: 10.1038/s41467-020-19144-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 09/29/2020] [Indexed: 11/24/2022] Open
Abstract
Nuclear export complexes composed of rev response element (RRE) ribonucleic acid (RNA) and multiple molecules of rev protein are promising targets for the development of therapeutic strategies against human immunodeficiency virus type 1 (HIV-1), but their assembly remains poorly understood. Using native mass spectrometry, we show here that rev initially binds to the upper stem of RRE IIB, from where it is relayed to binding sites that allow for rev dimerization. The newly discovered binding region implies initial rev recognition by nucleotides that are not part of the internal loop of RRE stem IIB RNA, which was previously identified as the preferred binding region. Our study highlights the unique capability of native mass spectrometry to separately study the binding interfaces of RNA/protein complexes of different stoichiometry, and provides a detailed understanding of the mechanism of RRE/rev association with implications for the rational design of potential drugs against HIV-1 infection.
Collapse
Affiliation(s)
- Eva-Maria Schneeberger
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80/82, 6020, Innsbruck, Austria
- Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Matthias Halper
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80/82, 6020, Innsbruck, Austria
| | - Michael Palasser
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80/82, 6020, Innsbruck, Austria
| | - Sarah Viola Heel
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80/82, 6020, Innsbruck, Austria
| | - Jovana Vušurović
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80/82, 6020, Innsbruck, Austria
| | - Raphael Plangger
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80/82, 6020, Innsbruck, Austria
| | - Michael Juen
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80/82, 6020, Innsbruck, Austria
- Roche Diagnostics GmbH, 82377, Penzberg, Germany
| | - Christoph Kreutz
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80/82, 6020, Innsbruck, Austria
| | - Kathrin Breuker
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80/82, 6020, Innsbruck, Austria.
| |
Collapse
|
104
|
Yang Y, Liu W, Hu D, Su R, Ji M, Huang Y, Shereen MA, Xu X, Luo Z, Zhang Q, Liu F, Wu K, Liu Y, Wu J. HIV-1 Nef Interacts with LMP7 To Attenuate Immunoproteasome Formation and Major Histocompatibility Complex Class I Antigen Presentation. mBio 2020; 11:e02221-19. [PMID: 33109760 PMCID: PMC7593969 DOI: 10.1128/mbio.02221-19] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 09/21/2020] [Indexed: 01/03/2023] Open
Abstract
The proteasome is a major protein degradation machinery with essential and diverse biological functions. Upon induction by cytokines, proteasome subunits β1, β2, and β5 are replaced by β1i/LMP2, β2i/MECL-1, and β5i/LMP7, resulting in the formation of an immunoproteasome (iProteasome). iProteasome-degraded products are loaded onto the major histocompatibility complex class I (MHC-I), regulating immune responses and inducing cytotoxic T lymphocytes (CTLs). Human immunodeficiency virus type 1 (HIV-1) is the causal agent of AIDS. HIV-1-specific CTLs represent a critical immune mechanism limiting viral replication. HIV-1 negative regulatory factor (Nef) counteracts host immunity, particularly the response involving MHC-I/CTL. This study identifies a distinct mechanism by which Nef facilitates immune evasion via suppressing the function of iProteasome and MHC-I. Nef interacts with LMP7 on the endoplasmic reticulum (ER), downregulating the incorporation of LMP7 into iProteasome and thereby attenuating its formation. Moreover, Nef represses the iProteasome function of protein degradation, MHC-I trafficking, and antigen presentation.IMPORTANCE The ubiquitin-proteasome system (UPS) is essential for the degradation of damaged proteins, which takes place in the proteasome. Upon activation by cytokines, the catalytic subunits of the proteasome are replaced by distinct isoforms resulting in the formation of an immunoproteasome (iProteasome). iProteasome generates peptides used by major histocompatibility complex class I (MHC-I) for antigen presentation and is essential for immune responses. HIV-1 is the causative agent of AIDS, and HIV-1-specific cytotoxic T lymphocytes (CTLs) provide immune responses limiting viral replication. This study identifies a distinct mechanism by which HIV-1 promotes immune evasion. The viral protein negative regulatory factor (Nef) interacts with a component of iProteasome, LMP7, attenuating iProteasome formation and protein degradation function, and thus repressing the MHC-I antigen presentation activity of MHC-I. Therefore, HIV-1 targets LMP7 to inhibit iProteasome activation, and LMP7 may be used as the target for the development of anti-HIV-1/AIDS therapy.
Collapse
Affiliation(s)
- Yang Yang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Weiyong Liu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Dan Hu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Rui Su
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Man Ji
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Yuqing Huang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Muhammad Adnan Shereen
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Xiaodi Xu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Zhen Luo
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou, China
| | - Qi Zhang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Fang Liu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Kailang Wu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Yingle Liu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou, China
| | - Jianguo Wu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou, China
| |
Collapse
|
105
|
Kardani K, Basimi P, Fekri M, Bolhassani A. Antiviral therapy for the sexually transmitted viruses: recent updates on vaccine development. Expert Rev Clin Pharmacol 2020; 13:1001-1046. [PMID: 32838584 DOI: 10.1080/17512433.2020.1814743] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION The sexually transmitted infections (STIs) caused by viruses including human T cell leukemia virus type-1 (HTLV-1), human immunodeficiency virus-1 (HIV-1), human simplex virus-2 (HSV-2), hepatitis C virus (HCV), hepatitis B virus (HBV), and human papillomavirus (HPV) are major public health issues. These infections can cause cancer or result in long-term health problems. Due to high prevalence of STIs, a safe and effective vaccine is required to overcome these fatal viruses. AREAS COVERED This review includes a comprehensive overview of the literatures relevant to vaccine development against the sexually transmitted viruses (STVs) using PubMed and Sciencedirect electronic search engines. Herein, we discuss the efforts directed toward development of effective vaccines using different laboratory animal models including mice, guinea pig or non-human primates in preclinical trials, and human in clinical trials with different phases. EXPERT OPINION There is no effective FDA approved vaccine against the sexually transmitted viruses (STVs) except for HBV and HPV as prophylactic vaccines. Many attempts are underway to develop vaccines against these viruses. There are several approaches for improving prophylactic or therapeutic vaccines such as heterologous prime/boost immunization, delivery system, administration route, adjuvants, etc. In this line, further studies can be helpful for understanding the immunobiology of STVs in human. Moreover, development of more relevant animal models is a worthy goal to induce effective immune responses in humans.
Collapse
Affiliation(s)
- Kimia Kardani
- Department of Hepatitis and AIDS, Pasteur Institute of Iran , Tehran, Iran
| | - Parya Basimi
- Department of Hepatitis and AIDS, Pasteur Institute of Iran , Tehran, Iran
| | - Mehrshad Fekri
- Department of Hepatitis and AIDS, Pasteur Institute of Iran , Tehran, Iran
| | - Azam Bolhassani
- Department of Hepatitis and AIDS, Pasteur Institute of Iran , Tehran, Iran
| |
Collapse
|
106
|
Langer S, Yin X, Diaz A, Portillo AJ, Gordon DE, Rogers UH, Marlett JM, Krogan NJ, Young JAT, Pache L, Chanda SK. The E3 Ubiquitin-Protein Ligase Cullin 3 Regulates HIV-1 Transcription. Cells 2020; 9:E2010. [PMID: 32882949 PMCID: PMC7564853 DOI: 10.3390/cells9092010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 08/28/2020] [Indexed: 12/31/2022] Open
Abstract
The infectious life cycle of the human immunodeficiency virus type 1 (HIV-1) is characterized by an ongoing battle between a compendium of cellular proteins that either promote or oppose viral replication. On the one hand, HIV-1 utilizes dependency factors to support and sustain infection and complete the viral life cycle. On the other hand, both inducible and constitutively expressed host factors mediate efficient and functionally diverse antiviral processes that counteract an infection. To shed light into the complex interplay between HIV-1 and cellular proteins, we previously performed a targeted siRNA screen to identify and characterize novel regulators of viral replication and identified Cullin 3 (Cul3) as a previously undescribed factor that negatively regulates HIV-1 replication. Cul3 is a component of E3-ubiquitin ligase complexes that target substrates for ubiquitin-dependent proteasomal degradation. In the present study, we show that Cul3 is expressed in HIV-1 target cells, such as CD4+ T cells, monocytes, and macrophages and depletion of Cul3 using siRNA or CRISPR/Cas9 increases HIV-1 infection in immortalized cells and primary CD4+ T cells. Conversely, overexpression of Cul3 reduces HIV-1 infection in single replication cycle assays. Importantly, the antiviral effect of Cul3 was mapped to the transcriptional stage of the viral life cycle, an effect which is independent of its role in regulating the G1/S cell cycle transition. Using isogenic viruses that only differ in their promotor region, we find that the NF-κB/NFAT transcription factor binding sites in the LTR are essential for Cul3-dependent regulation of viral gene expression. Although Cul3 effectively suppresses viral gene expression, HIV-1 does not appear to antagonize the antiviral function of Cul3 by targeting it for degradation. Taken together, these results indicate that Cul3 is a negative regulator of HIV-1 transcription which governs productive viral replication in infected cells.
Collapse
Affiliation(s)
- Simon Langer
- Immunity and Pathogenesis Program, Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA; (S.L.); (X.Y.); (A.J.P.); (U.H.R.)
- Boehringer Ingelheim Pharma GmbH & Co. KG, 55216 Ingelheim am Rhein, Germany
| | - Xin Yin
- Immunity and Pathogenesis Program, Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA; (S.L.); (X.Y.); (A.J.P.); (U.H.R.)
| | - Arturo Diaz
- Department of Biology, La Sierra University, Riverside, CA 92515, USA;
- The Nomis Center for Immunobiology and Microbial Pathogenesis, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA;
| | - Alex J. Portillo
- Immunity and Pathogenesis Program, Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA; (S.L.); (X.Y.); (A.J.P.); (U.H.R.)
- Atara Biotherapeutics, Inc., Thousand Oaks, CA 91320, USA
| | - David E. Gordon
- Department of Cellular & Molecular Pharmacology, University of California, San Francisco, CA 94143, USA; (D.E.G.); (N.J.K.)
- Gladstone Institutes, San Francisco, CA 94158, USA
- Quantitative Biosciences Institute (QBI), San Francisco, CA 94158, USA
| | - Umu H. Rogers
- Immunity and Pathogenesis Program, Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA; (S.L.); (X.Y.); (A.J.P.); (U.H.R.)
- UC San Diego School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - John M. Marlett
- The Nomis Center for Immunobiology and Microbial Pathogenesis, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA;
| | - Nevan J. Krogan
- Department of Cellular & Molecular Pharmacology, University of California, San Francisco, CA 94143, USA; (D.E.G.); (N.J.K.)
- Gladstone Institutes, San Francisco, CA 94158, USA
- Quantitative Biosciences Institute (QBI), San Francisco, CA 94158, USA
| | - John A. T. Young
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, 4070 Basel, Switzerland;
| | - Lars Pache
- Immunity and Pathogenesis Program, Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA; (S.L.); (X.Y.); (A.J.P.); (U.H.R.)
| | - Sumit K. Chanda
- Immunity and Pathogenesis Program, Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA; (S.L.); (X.Y.); (A.J.P.); (U.H.R.)
| |
Collapse
|
107
|
Liu DE, Yan X, An J, Ma J, Gao H. Construction of traceable cucurbit[7]uril-based virus-mimicking quaternary complexes with aggregation-induced emission for efficient gene transfection. J Mater Chem B 2020; 8:7475-7482. [PMID: 32667015 DOI: 10.1039/d0tb01180k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Construction of an efficient cationic gene delivery system with low cytotoxicity, high transfection efficacy, as well as gene tracking function remains a major challenge in gene therapy. Fabrication of simple and reversible nanocomplexes based on host-guest interaction provides an opportunity to construct stimuli-responsive intelligent supramolecular systems. Inspired by the hierarchical structure of viruses, a novel virus-mimicking PG/CB/TPE/DNA gene delivery system is developed via a multistep noncovalent self-assembly process between pDNA and the preformed PG/CB/TPE complexes based on the host-guest interaction between cucurbit[7]uril (CB[7]) and the protonated diamine group in the poly(glycidyl methacrylate)s derivative (PG), as well as the electrostatic interaction between para-carboxyl functionalized tetraphenylethylene (TPE) and cationic PG. The developed efficient multifunctional gene delivery system exhibits stimuli responsive characteristics and aggregation-induced emission phenomena, thereby enabling gene delivery pH responsiveness and traceability. Moreover, the introduction of TPE and CB[7] endows the self-assembled PG/CB/TPE/DNA complexes with virus-mimicking architecture and properties such as low cytotoxicity, high stability, excellent endosomal escape, and efficient transfection, which are expected to be used as a promising gene delivery system.
Collapse
Affiliation(s)
- De-E Liu
- School of Material Science and Engineering, School of Chemistry and Chemical Engineering, Tianjin Key Laboratory of Drug Targeting and Bioimaging, Tianjin Enterprise Key Laboratory for Application Research of Hyaluronic Acid, Tianjin University of Technology, Tianjin 300384, P. R. China.
| | | | | | | | | |
Collapse
|
108
|
Hokello J, Sharma AL, Tyagi M. Efficient Non-Epigenetic Activation of HIV Latency through the T-Cell Receptor Signalosome. Viruses 2020; 12:v12080868. [PMID: 32784426 PMCID: PMC7472175 DOI: 10.3390/v12080868] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/05/2020] [Accepted: 08/06/2020] [Indexed: 12/14/2022] Open
Abstract
Human immunodeficiency virus type-1 (HIV-1) can either undergo a lytic pathway to cause productive systemic infections or enter a latent state in which the integrated provirus remains transcriptionally silent for decades. The ability to latently infect T-cells enables HIV-1 to establish persistent infections in resting memory CD4+ T-lymphocytes which become reactivated following the disruption or cessation of intensive drug therapy. The maintenance of viral latency occurs through epigenetic and non-epigenetic mechanisms. Epigenetic mechanisms of HIV latency regulation involve the deacetylation and methylation of histone proteins within nucleosome 1 (nuc-1) at the viral long terminal repeats (LTR) such that the inhibition of histone deacetyltransferase and histone lysine methyltransferase activities, respectively, reactivates HIV from latency. Non-epigenetic mechanisms involve the nuclear restriction of critical cellular transcription factors such as nuclear factor-kappa beta (NF-κB) or nuclear factor of activated T-cells (NFAT) which activate transcription from the viral LTR, limiting the nuclear levels of the viral transcription transactivator protein Tat and its cellular co-factor positive transcription elongation factor b (P-TEFb), which together regulate HIV transcriptional elongation. In this article, we review how T-cell receptor (TCR) activation efficiently induces NF-κB, NFAT, and activator protein 1 (AP-1) transcription factors through multiple signal pathways and how these factors efficiently regulate HIV LTR transcription through the non-epigenetic mechanism. We further discuss how elongation factor P-TEFb, induced through an extracellular signal-regulated kinase (ERK)-dependent mechanism, regulates HIV transcriptional elongation before new Tat is synthesized and the role of AP-1 in the modulation of HIV transcriptional elongation through functional synergy with NF-κB. Furthermore, we discuss how TCR signaling induces critical post-translational modifications of the cyclin-dependent kinase 9 (CDK9) subunit of P-TEFb which enhances interactions between P-TEFb and the viral Tat protein and the resultant enhancement of HIV transcriptional elongation.
Collapse
Affiliation(s)
- Joseph Hokello
- Department of Basic Science, Faculty of Science and Technology, Kampala International University-Western Campus, P.O Box 71, Bushenyi, Uganda;
| | | | - Mudit Tyagi
- Center for Translational Medicine, Thomas Jefferson University, 1020 Locust Street, Philadelphia, PA 19107, USA;
- Correspondence:
| |
Collapse
|
109
|
Strauss M, O'Donovan B, Ma Y, Xiao Z, Lin S, Bardo MT, Ortinski PI, McLaughlin JP, Zhu J. [ 3H]Dopamine Uptake through the Dopamine and Norepinephrine Transporters is Decreased in the Prefrontal Cortex of Transgenic Mice Expressing HIV-1 Transactivator of Transcription Protein. J Pharmacol Exp Ther 2020; 374:241-251. [PMID: 32461322 PMCID: PMC7366287 DOI: 10.1124/jpet.120.266023] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 05/21/2020] [Indexed: 01/16/2023] Open
Abstract
Dysregulation of dopamine neurotransmission has been linked to the development of human immunodeficiency virus (HIV)-associated neurocognitive disorder (HAND). To investigate the mechanisms underlying this phenomenon, this study used an inducible HIV-1 transactivator of transcription (Tat) transgenic (iTat-tg) mouse model, which demonstrates brain-specific Tat expression induced by administration of doxycycline. We found that induction of Tat expression in the iTat-tg mice for either 7 or 14 days resulted in a decrease (∼30%) in the V max of [3H]dopamine uptake via both the dopamine transporter (DAT) and norepinephrine transporter (NET) in the prefrontal cortex (PFC), which was comparable to the magnitude (∼35%) of the decrease in B max for [3H]WIN 35,428 and [3H]nisoxetine binding to DAT and NET, respectively. The decreased V max was not accompanied by a reduction of total or plasma membrane expression of DAT and NET. Consistent with the decreased V max for DAT and NET in the PFC, the current study also found an increase in the tissue content of DA and dihydroxyphenylacetic acid in the PFC of iTat-tg mice after 7 days' administration of doxycycline. Electrophysiological recordings in layer V pyramidal neurons of the prelimbic cortex from iTat-tg mice found a significant reduction in action potential firing, which was not sensitive to selective inhibitors for DAT and NET, respectively. These findings provide a molecular basis for using the iTat-tg mouse model in the studies of NeuroHIV. Determining the mechanistic basis underlying the interaction between Tat and DAT/NET may reveal novel therapeutic possibilities for preventing the increase in comorbid conditions as well as HAND. SIGNIFICANCE STATEMENT: Human immunodeficiency virus (HIV)-1 infection disrupts dopaminergic neurotransmission, leading to HIV-associated neurocognitive disorders (HANDs). Based on our in vitro and in vivo studies, dopamine uptake via both dopamine and norepinephrine transporters is decreased in the prefrontal cortex of HIV-1 Tat transgenic mice, which is consistent with the increased dopamine and dihydroxyphenylacetic acid contents in this brain region. Thus, these plasma membrane transporters are an important potential target for therapeutic intervention for patients with HAND.
Collapse
Affiliation(s)
- Matthew Strauss
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy (M.S., Y.M., Z.X., S.L., J.Z.) and Department of Physiology, Pharmacology and Neuroscience, School of Medicine (B.O.), University of South Carolina, Columbia, South Carolina; Departments of Psychology (M.B.) and Neuroscience (P.O.), University of Kentucky, Lexington, Kentucky; and Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, Florida (J.M.)
| | - Bernadette O'Donovan
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy (M.S., Y.M., Z.X., S.L., J.Z.) and Department of Physiology, Pharmacology and Neuroscience, School of Medicine (B.O.), University of South Carolina, Columbia, South Carolina; Departments of Psychology (M.B.) and Neuroscience (P.O.), University of Kentucky, Lexington, Kentucky; and Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, Florida (J.M.)
| | - Yizhi Ma
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy (M.S., Y.M., Z.X., S.L., J.Z.) and Department of Physiology, Pharmacology and Neuroscience, School of Medicine (B.O.), University of South Carolina, Columbia, South Carolina; Departments of Psychology (M.B.) and Neuroscience (P.O.), University of Kentucky, Lexington, Kentucky; and Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, Florida (J.M.)
| | - Ziyu Xiao
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy (M.S., Y.M., Z.X., S.L., J.Z.) and Department of Physiology, Pharmacology and Neuroscience, School of Medicine (B.O.), University of South Carolina, Columbia, South Carolina; Departments of Psychology (M.B.) and Neuroscience (P.O.), University of Kentucky, Lexington, Kentucky; and Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, Florida (J.M.)
| | - Steven Lin
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy (M.S., Y.M., Z.X., S.L., J.Z.) and Department of Physiology, Pharmacology and Neuroscience, School of Medicine (B.O.), University of South Carolina, Columbia, South Carolina; Departments of Psychology (M.B.) and Neuroscience (P.O.), University of Kentucky, Lexington, Kentucky; and Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, Florida (J.M.)
| | - Michael T Bardo
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy (M.S., Y.M., Z.X., S.L., J.Z.) and Department of Physiology, Pharmacology and Neuroscience, School of Medicine (B.O.), University of South Carolina, Columbia, South Carolina; Departments of Psychology (M.B.) and Neuroscience (P.O.), University of Kentucky, Lexington, Kentucky; and Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, Florida (J.M.)
| | - Pavel I Ortinski
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy (M.S., Y.M., Z.X., S.L., J.Z.) and Department of Physiology, Pharmacology and Neuroscience, School of Medicine (B.O.), University of South Carolina, Columbia, South Carolina; Departments of Psychology (M.B.) and Neuroscience (P.O.), University of Kentucky, Lexington, Kentucky; and Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, Florida (J.M.)
| | - Jay P McLaughlin
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy (M.S., Y.M., Z.X., S.L., J.Z.) and Department of Physiology, Pharmacology and Neuroscience, School of Medicine (B.O.), University of South Carolina, Columbia, South Carolina; Departments of Psychology (M.B.) and Neuroscience (P.O.), University of Kentucky, Lexington, Kentucky; and Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, Florida (J.M.)
| | - Jun Zhu
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy (M.S., Y.M., Z.X., S.L., J.Z.) and Department of Physiology, Pharmacology and Neuroscience, School of Medicine (B.O.), University of South Carolina, Columbia, South Carolina; Departments of Psychology (M.B.) and Neuroscience (P.O.), University of Kentucky, Lexington, Kentucky; and Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, Florida (J.M.)
| |
Collapse
|
110
|
Degradation of MicroRNA miR-466d-3p by Japanese Encephalitis Virus NS3 Facilitates Viral Replication and Interleukin-1β Expression. J Virol 2020; 94:JVI.00294-20. [PMID: 32461319 DOI: 10.1128/jvi.00294-20] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 05/13/2020] [Indexed: 11/20/2022] Open
Abstract
Japanese encephalitis virus (JEV) infection alters microRNA (miRNA) expression in the central nervous system (CNS). However, the mechanism contributing to miRNA regulation in the CNS is not known. We discovered global degradation of mature miRNA in mouse brains and neuroblastoma (NA) cells after JEV infection. Integrative analysis of miRNAs and mRNAs suggested that several significantly downregulated miRNAs and their targeted mRNAs were clustered into an inflammation pathway. Transfection with miRNA 466d-3p (miR-466d-3p) decreased interleukin-1β (IL-1β) expression and inhibited JEV replication in NA cells. However, miR-466d-3p expression increased after JEV infection in the presence of cycloheximide, indicating that viral protein expression reduced miR-466d-3p expression. We generated all the JEV coding proteins and demonstrated NS3 helicase protein to be a potent miRNA suppressor. The NS3 proteins of Zika virus, West Nile virus, and dengue virus serotype 1 (DENV-1) and DENV-2 also decreased miR-466d-3p expression. Results from helicase-blocking assays and in vitro unwinding assays demonstrated that NS3 could unwind pre-miR-466d and induce miRNA dysfunction. Computational models and an RNA immunoprecipitation assay revealed arginine-rich domains of NS3 to be crucial for pre-miRNA binding and degradation of host miRNAs. Importantly, site-directed mutagenesis of conserved residues in NS3 revealed that R226G and R202W reduced the binding affinity and degradation of pre-miR-466d. These results expand the function of flavivirus helicases beyond unwinding duplex RNA to degrade pre-miRNAs. Hence, we revealed a new mechanism for NS3 in regulating miRNA pathways and promoting neuroinflammation.IMPORTANCE Host miRNAs have been reported to regulate JEV-induced inflammation in the CNS. We found that JEV infection could reduce expression of host miRNA. The helicase region of the NS3 protein bound specifically to miRNA precursors and could lead to incorrect unwinding of miRNA precursors, thereby reducing the expression of mature miRNAs. This observation led to two major findings. First, our results suggested that JEV NS3 protein induced miR-466d-3p degradation, which promoted IL-1β expression and JEV replication. Second, arginine molecules on NS3 were the main miRNA-binding sites, because we demonstrated that miRNA degradation was abolished if arginines at R226 and R202 were mutated. Our study provides new insights into the molecular mechanism of JEV and reveals several amino acid sites that could be mutated for a JEV vaccine.
Collapse
|
111
|
Himmel DM, Arnold E. Non-Nucleoside Reverse Transcriptase Inhibitors Join Forces with Integrase Inhibitors to Combat HIV. Pharmaceuticals (Basel) 2020; 13:ph13060122. [PMID: 32545407 PMCID: PMC7345359 DOI: 10.3390/ph13060122] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/05/2020] [Accepted: 06/05/2020] [Indexed: 12/17/2022] Open
Abstract
In the treatment of acquired immune deficiency syndrome (AIDS), the diarylpyrimidine (DAPY) analogs etravirine (ETR) and rilpivirine (RPV) have been widely effective against human immunodeficiency virus (HIV) variants that are resistant to other non-nucleoside reverse transcriptase inhibitors (NNRTIs). With non-inferior or improved efficacy, better safety profiles, and lower doses or pill burdens than other NNRTIs in the clinic, combination therapies including either of these two drugs have led to higher adherence than other NNRTI-containing treatments. In a separate development, HIV integrase strand transfer inhibitors (INSTIs) have shown efficacy in treating AIDS, including raltegravir (RAL), elvitegravir (EVG), cabotegravir (CAB), bictegravir (BIC), and dolutegravir (DTG). Of these, DTG and BIC perform better against a wide range of resistance mutations than other INSTIs. Nevertheless, drug-resistant combinations of mutations have begun to emerge against all DAPYs and INSTIs, attributable in part to non-adherence. New dual therapies that may promote better adherence combine ETR or RPV with an INSTI and have been safer and non-inferior to more traditional triple-drug treatments. Long-acting dual- and triple-therapies combining ETR or RPV with INSTIs are under study and may further improve adherence. Here, highly resistant emergent mutations and efficacy data on these novel treatments are reviewed. Overall, ETR or RPV, in combination with INSTIs, may be treatments of choice as long-term maintenance therapies that optimize efficacy, adherence, and safety.
Collapse
Affiliation(s)
- Daniel M. Himmel
- Himmel Sci Med Com, L.L.C., Bala Cynwyd, PA 19004, USA
- Correspondence: ; Tel.: +1-848-391-5973
| | - Eddy Arnold
- Center for Advanced Biotechnology and Medicine (CABM), Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA;
| |
Collapse
|
112
|
Khan N, Chen X, Geiger JD. Role of Divalent Cations in HIV-1 Replication and Pathogenicity. Viruses 2020; 12:E471. [PMID: 32326317 PMCID: PMC7232465 DOI: 10.3390/v12040471] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/09/2020] [Accepted: 04/18/2020] [Indexed: 12/22/2022] Open
Abstract
Divalent cations are essential for life and are fundamentally important coordinators of cellular metabolism, cell growth, host-pathogen interactions, and cell death. Specifically, for human immunodeficiency virus type-1 (HIV-1), divalent cations are required for interactions between viral and host factors that govern HIV-1 replication and pathogenicity. Homeostatic regulation of divalent cations' levels and actions appear to change as HIV-1 infection progresses and as changes occur between HIV-1 and the host. In people living with HIV-1, dietary supplementation with divalent cations may increase HIV-1 replication, whereas cation chelation may suppress HIV-1 replication and decrease disease progression. Here, we review literature on the roles of zinc (Zn2+), iron (Fe2+), manganese (Mn2+), magnesium (Mg2+), selenium (Se2+), and copper (Cu2+) in HIV-1 replication and pathogenicity, as well as evidence that divalent cation levels and actions may be targeted therapeutically in people living with HIV-1.
Collapse
Affiliation(s)
| | | | - Jonathan D. Geiger
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND 58203, USA; (N.K.); (X.C.)
| |
Collapse
|
113
|
Samadder S. Drosophila melanogaster: A Robust Tool to Study Candidate Drug against Epidemic and Pandemic Diseases. ANIMAL MODELS IN MEDICINE AND BIOLOGY 2020. [DOI: 10.5772/intechopen.90073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
114
|
Intrinsically disordered proteins of viruses: Involvement in the mechanism of cell regulation and pathogenesis. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2020; 174:1-78. [PMID: 32828463 PMCID: PMC7129803 DOI: 10.1016/bs.pmbts.2020.03.001] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Intrinsically disordered proteins (IDPs) possess the property of inherent flexibility and can be distinguished from other proteins in terms of lack of any fixed structure. Such dynamic behavior of IDPs earned the name "Dancing Proteins." The exploration of these dancing proteins in viruses has just started and crucial details such as correlation of rapid evolution, high rate of mutation and accumulation of disordered contents in viral proteome at least understood partially. In order to gain a complete understanding of this correlation, there is a need to decipher the complexity of viral mediated cell hijacking and pathogenesis in the host organism. Further there is necessity to identify the specific patterns within viral and host IDPs such as aggregation; Molecular recognition features (MoRFs) and their association to virulence, host range and rate of evolution of viruses in order to tackle the viral-mediated diseases. The current book chapter summarizes the aforementioned details and suggests the novel opportunities for further research of IDPs senses in viruses.
Collapse
|
115
|
Kardani K, Hashemi A, Bolhassani A. Comparative analysis of two HIV-1 multiepitope polypeptides for stimulation of immune responses in BALB/c mice. Mol Immunol 2020; 119:106-122. [DOI: 10.1016/j.molimm.2020.01.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 01/17/2020] [Accepted: 01/21/2020] [Indexed: 12/20/2022]
|
116
|
Ficarelli M, Antzin-Anduetza I, Hugh-White R, Firth AE, Sertkaya H, Wilson H, Neil SJD, Schulz R, Swanson CM. CpG Dinucleotides Inhibit HIV-1 Replication through Zinc Finger Antiviral Protein (ZAP)-Dependent and -Independent Mechanisms. J Virol 2020; 94:e01337-19. [PMID: 31748389 PMCID: PMC7158733 DOI: 10.1128/jvi.01337-19] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 11/06/2019] [Indexed: 02/07/2023] Open
Abstract
CpG dinucleotides are suppressed in the genomes of many vertebrate RNA viruses, including HIV-1. The cellular antiviral protein ZAP (zinc finger antiviral protein) binds CpGs and inhibits HIV-1 replication when CpGs are introduced into the viral genome. However, it is not known if ZAP-mediated restriction is the only mechanism driving CpG suppression. To determine how CpG dinucleotides affect HIV-1 replication, we increased their abundance in multiple regions of the viral genome and analyzed the effect on RNA expression, protein abundance, and infectious-virus production. We found that the antiviral effect of CpGs was not correlated with their abundance. Interestingly, CpGs inserted into some regions of the genome sensitize the virus to ZAP antiviral activity more efficiently than insertions into other regions, and this sensitivity can be modulated by interferon treatment or ZAP overexpression. Furthermore, the sensitivity of the virus to endogenous ZAP was correlated with its sensitivity to the ZAP cofactor KHNYN. Finally, we show that CpGs in some contexts can also inhibit HIV-1 replication by ZAP-independent mechanisms, and one of these is the activation of a cryptic splice site at the expense of a canonical splice site. Overall, we show that the location and sequence context of the CpG in the viral genome determines its antiviral activity.IMPORTANCE Some RNA virus genomes are suppressed in the nucleotide combination of a cytosine followed by a guanosine (CpG), indicating that they are detrimental to the virus. The antiviral protein ZAP binds viral RNA containing CpGs and prevents the virus from multiplying. However, it remains unknown how the number and position of CpGs in viral genomes affect restriction by ZAP and whether CpGs have other antiviral mechanisms. Importantly, manipulating the CpG content in viral genomes could help create new vaccines. HIV-1 shows marked CpG suppression, and by introducing CpGs into its genome, we show that ZAP efficiently targets a specific region of the viral genome, that the number of CpGs does not predict the magnitude of antiviral activity, and that CpGs can inhibit HIV-1 gene expression through a ZAP-independent mechanism. Overall, the position of CpGs in the HIV-1 genome determines the magnitude and mechanism through which they inhibit the virus.
Collapse
Affiliation(s)
- Mattia Ficarelli
- Department of Infectious Diseases, King's College London, London, United Kingdom
| | | | - Rupert Hugh-White
- Department of Medical and Molecular Genetics, King's College London, London, United Kingdom
| | - Andrew E Firth
- Division of Virology, University of Cambridge, Cambridge, United Kingdom
| | - Helin Sertkaya
- Department of Infectious Diseases, King's College London, London, United Kingdom
| | - Harry Wilson
- Department of Infectious Diseases, King's College London, London, United Kingdom
| | - Stuart J D Neil
- Department of Infectious Diseases, King's College London, London, United Kingdom
| | - Reiner Schulz
- Department of Medical and Molecular Genetics, King's College London, London, United Kingdom
| | - Chad M Swanson
- Department of Infectious Diseases, King's College London, London, United Kingdom
| |
Collapse
|
117
|
Chen S, Xu J, Liu M, Rao ALN, Zandi R, Gill SS, Mohideen U. Investigation of HIV-1 Gag binding with RNAs and lipids using Atomic Force Microscopy. PLoS One 2020; 15:e0228036. [PMID: 32015565 PMCID: PMC6996966 DOI: 10.1371/journal.pone.0228036] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Accepted: 01/06/2020] [Indexed: 11/22/2022] Open
Abstract
Atomic Force Microscopy was utilized to study the morphology of Gag, ΨRNA, and their binding complexes with lipids in a solution environment with 0.1Å vertical and 1nm lateral resolution. TARpolyA RNA was used as a RNA control. The lipid used was phospha-tidylinositol-(4,5)-bisphosphate (PI(4,5)P2). The morphology of specific complexes Gag-ΨRNA, Gag-TARpolyA RNA, Gag-PI(4,5)P2 and PI(4,5)P2-ΨRNA-Gag were studied. They were imaged on either positively or negatively charged mica substrates depending on the net charges carried. Gag and its complexes consist of monomers, dimers and tetramers, which was confirmed by gel electrophoresis. The addition of specific ΨRNA to Gag is found to increase Gag multimerization. Non-specific TARpolyA RNA was found not to lead to an increase in Gag multimerization. The addition PI(4,5)P2 to Gag increases Gag multimerization, but to a lesser extent than ΨRNA. When both ΨRNA and PI(4,5)P2 are present Gag undergoes comformational changes and an even higher degree of multimerization.
Collapse
Affiliation(s)
- Shaolong Chen
- Department of Physics & Astronomy, University of California, Riverside, California, United States of America
| | - Jun Xu
- Department of Physics & Astronomy, University of California, Riverside, California, United States of America
| | - Mingyue Liu
- Department of Physics & Astronomy, University of California, Riverside, California, United States of America
| | - A. L. N. Rao
- Department of Plant Pathology & Microbiology, University of California, Riverside, California, United States of America
| | - Roya Zandi
- Department of Physics & Astronomy, University of California, Riverside, California, United States of America
| | - Sarjeet S. Gill
- Department of Cell Biology & Neuroscience, University of California, Riverside, California, United States of America
| | - Umar Mohideen
- Department of Physics & Astronomy, University of California, Riverside, California, United States of America
- * E-mail:
| |
Collapse
|
118
|
Singh A, Verma AS, Kumar V. HIV and antiretroviral drugs. Anim Biotechnol 2020. [DOI: 10.1016/b978-0-12-811710-1.00009-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
119
|
Abstract
AIDS is one of the most dreaded diseases of the twenty-first century caused by human immunodeficiency virus (HIV). Recently, there are reports which show decline in new infections due to better access to anti-retroviral drugs. Still on a daily basis, ~2356 new HIV infections are being reported globally. New treatments and anti-HIV drugs are being continuously developed with the aim to control and cure AIDS. The anti-HIV drugs that are in use usually target HIV entry and replication inside the host cells. However, these drugs are only partially effective in slowing the rate of HIV replication. Nevertheless, the virus manages to replicate at much slower rates even when anti-retroviral treatment is ongoing. The HIV seropositives who are on anti-retroviral treatment for long periods of time are now developing different kinds of other complications including neuroAIDS. The latest development in HIV therapy is a novel kind of bone marrow transplantation from donors who have a homozygous mutation in CCR5 gene.
Collapse
Affiliation(s)
| | - S. M. Paul Khurana
- Amity University of Biotechnology, Amity University Haryana, Gurgaon, India
| |
Collapse
|
120
|
HIV-1 Latency and Latency Reversal: Does Subtype Matter? Viruses 2019; 11:v11121104. [PMID: 31795223 PMCID: PMC6950696 DOI: 10.3390/v11121104] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 11/22/2019] [Accepted: 11/27/2019] [Indexed: 02/06/2023] Open
Abstract
Cells that are latently infected with HIV-1 preclude an HIV-1 cure, as antiretroviral therapy does not target this latent population. HIV-1 is highly genetically diverse, with over 10 subtypes and numerous recombinant forms circulating worldwide. In spite of this vast diversity, much of our understanding of latency and latency reversal is largely based on subtype B viruses. As such, most of the development of cure strategies targeting HIV-1 are solely based on subtype B. It is currently assumed that subtype does not influence the establishment or reactivation of latent viruses. However, this has not been conclusively proven one way or the other. A better understanding of the factors that influence HIV-1 latency in all viral subtypes will help develop therapeutic strategies that can be applied worldwide. Here, we review the latest literature on subtype-specific factors that affect viral replication, pathogenesis, and, most importantly, latency and its reversal.
Collapse
|
121
|
Pabis M, Corsini L, Vincendeau M, Tripsianes K, Gibson TJ, Brack-Werner R, Sattler M. Modulation of HIV-1 gene expression by binding of a ULM motif in the Rev protein to UHM-containing splicing factors. Nucleic Acids Res 2019; 47:4859-4871. [PMID: 30892606 PMCID: PMC6511859 DOI: 10.1093/nar/gkz185] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 03/04/2019] [Accepted: 03/18/2019] [Indexed: 12/01/2022] Open
Abstract
The HIV-1 protein Rev is essential for virus replication and ensures the expression of partially spliced and unspliced transcripts. We identified a ULM (UHM ligand motif) motif in the Arginine-Rich Motif (ARM) of the Rev protein. ULMs (UHM ligand motif) mediate protein interactions during spliceosome assembly by binding to UHM (U2AF homology motifs) domains. Using NMR, biophysical methods and crystallography we show that the Rev ULM binds to the UHMs of U2AF65 and SPF45. The highly conserved Trp45 in the Rev ULM is crucial for UHM binding in vitro, for Rev co-precipitation with U2AF65 in human cells and for proper processing of HIV transcripts. Thus, Rev-ULM interactions with UHM splicing factors contribute to the regulation of HIV-1 transcript processing, also at the splicing level. The Rev ULM is an example of viral mimicry of host short linear motifs that enables the virus to interfere with the host molecular machinery.
Collapse
Affiliation(s)
- Marta Pabis
- Institute of Structural Biology, Helmholtz Zentrum München, Neuherberg 85 764, Germany.,Center for Integrated Protein Science Munich, Department Chemie, TU München, Garching 85748, Germany
| | - Lorenzo Corsini
- Institute of Structural Biology, Helmholtz Zentrum München, Neuherberg 85 764, Germany.,Center for Integrated Protein Science Munich, Department Chemie, TU München, Garching 85748, Germany
| | - Michelle Vincendeau
- Institute of Virology, Helmholtz Zentrum München, Neuherberg 85 764, Germany.,Research Unit Cellular Signal Integration, Helmholtz Zentrum München, Neuherberg, 85 764, Germany
| | - Konstantinos Tripsianes
- CEITEC - Central European Institute of Technology, Masaryk University, Brno 62 500, Czech Republic
| | | | - Ruth Brack-Werner
- Institute of Virology, Helmholtz Zentrum München, Neuherberg 85 764, Germany
| | - Michael Sattler
- Institute of Structural Biology, Helmholtz Zentrum München, Neuherberg 85 764, Germany.,Center for Integrated Protein Science Munich, Department Chemie, TU München, Garching 85748, Germany
| |
Collapse
|
122
|
The Capsid Protein of Hepatitis E Virus Inhibits Interferon Induction via Its N-terminal Arginine-Rich Motif. Viruses 2019; 11:v11111050. [PMID: 31717991 PMCID: PMC6928999 DOI: 10.3390/v11111050] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 11/07/2019] [Indexed: 12/28/2022] Open
Abstract
Hepatitis E virus (HEV) causes predominantly acute and self-limiting hepatitis. However, in HEV-infected pregnant women, the case fatality rate because of fulminant hepatitis can be up to 30%. HEV infection is zoonotic for some genotypes. The HEV genome contains three open reading frames: ORF1 encodes the non-structural polyprotein involved in viral RNA replication; ORF2 encodes the capsid protein; ORF3 encodes a small multifunctional protein. Interferons (IFNs) play a significant role in the early stage of the host antiviral response. In this study, we discovered that the capsid protein antagonizes IFN induction. Mechanistically, the capsid protein blocked the phosphorylation of IFN regulatory factor 3 (IRF3) via interaction with the multiprotein complex consisting of mitochondrial antiviral-signaling protein (MAVS), TANK-binding kinase 1 (TBK1), and IRF3. The N-terminal domain of the capsid protein was found to be responsible for the inhibition of IRF3 activation. Further study showed that the arginine-rich-motif in the N-terminal domain is indispensable for the inhibition as mutations of any of the arginine residues abolished the blockage of IRF3 phosphorylation. These results provide further insight into HEV interference with the host innate immunity.
Collapse
|
123
|
Voshavar C. Protease Inhibitors for the Treatment of HIV/AIDS: Recent Advances and Future Challenges. Curr Top Med Chem 2019; 19:1571-1598. [PMID: 31237209 DOI: 10.2174/1568026619666190619115243] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Revised: 05/22/2019] [Accepted: 05/27/2019] [Indexed: 02/07/2023]
Abstract
Acquired Immunodeficiency Syndrome (AIDS) is a chronic disease characterized by multiple life-threatening illnesses caused by a retro-virus, Human Immunodeficiency Virus (HIV). HIV infection slowly destroys the immune system and increases the risk of various other infections and diseases. Although, there is no immediate cure for HIV infection/AIDS, several drugs targeting various cruxes of HIV infection are used to slow down the progress of the disease and to boost the immune system. One of the key therapeutic strategies is Highly Active Antiretroviral Therapy (HAART) or ' AIDS cocktail' in a general sense, which is a customized combination of anti-retroviral drugs designed to combat the HIV infection. Since HAART's inception in 1995, this treatment was found to be effective in improving the life expectancy of HIV patients over two decades. Among various classes of HAART treatment regimen, Protease Inhibitors (PIs) are known to be widely used as a major component and found to be effective in treating HIV infection/AIDS. For the past several years, a variety of protease inhibitors have been reported. This review outlines the drug design strategies of PIs, chemical and pharmacological characteristics of some mechanism-based inhibitors, summarizes the recent developments in small molecule based drug discovery with HIV protease as a drug target. Further discussed are the pharmacology, PI drug resistance on HIV PR, adverse effects of HIV PIs and challenges/impediments in the successful application of HIV PIs as an important class of drugs in HAART regimen for the effective treatment of AIDS.
Collapse
Affiliation(s)
- Chandrashekhar Voshavar
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, United States
| |
Collapse
|
124
|
Kardani K, Hashemi A, Bolhassani A. Comparison of HIV-1 Vif and Vpu accessory proteins for delivery of polyepitope constructs harboring Nef, Gp160 and P24 using various cell penetrating peptides. PLoS One 2019; 14:e0223844. [PMID: 31671105 PMCID: PMC6822742 DOI: 10.1371/journal.pone.0223844] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Accepted: 09/30/2019] [Indexed: 02/06/2023] Open
Abstract
To develop an effective therapeutic vaccine against HIV-1, prediction of the most conserved epitopes derived from major proteins using bioinformatics tools is an alternative achievement. The epitope-driven vaccines against variable pathogens represented successful results. Hence, to overcome this hyper-variable virus, we designed the highly conserved and immunodominant peptide epitopes. Two servers were used to predict peptide-MHC-I binding affinity including NetMHCpan4.0 and Syfpeithi servers. The NetMHCIIpan3.2 server was utilized for MHC-II binding affinity. Then, we determined immunogenicity scores and allergenicity by the IEDB immunogenicity predictor and Algpred, respectively. Next, for estimation of toxicity and population coverage, ToxinPred server and IEDB population coverage tool were applied. After that, the MHC-peptide binding was investigated by GalexyPepDock peptide-protein flexible docking server. Finally, two different DNA and peptide constructs containing Nef-Vif-Gp160-P24 and Nef-Vpu-Gp160-P24 were prepared and complexed with four various cell penetrating peptides (CPPs) for delivery into mammalian cells (MPG and HR9 CPPs for DNA delivery, and CyLoP-1 and LDP-NLS CPPs for protein delivery). Our results indicated that the designed DNA and peptide constructs could form non-covalent stable nanoparticles at certain ratios as observed by scanning electron microscope (SEM) and Zetasizer. The flow cytometry results obtained from in vitro transfection of the nanoparticles into HEK-293T cell lines showed that the percentage of GFP expressing cells was about 38.38 ± 1.34%, 25.36% ± 0.30, 54.95% ± 0.84, and 25.11% ± 0.36 for MPG/pEGFP-nef-vif-gp160-p24, MPG/pEGFP-nef-vpu-gp160-p24, HR9/pEGFP-nef-vif-gp160-p24 and HR9/pEGFP-nef-vpu-gp160-p24, respectively. Thus, these data showed that the DNA construct harboring nef-vif-gp160-p24 multi-epitope gene had higher efficiency than the DNA construct harboring nef-vpu-gp160-p24 multi-epitope gene to penetrate into the cells. Moreover, delivery of the recombinant Nef-Vif-Gp160-P24 and Nef-Vpu-Gp160-P24 polyepitope peptides in HEK-293T cells was confirmed as a single band about 32 kDa using western blot analysis. Although, both DNA and peptide constructs could be successfully transported by a variety of CPPs into the cells, but the difference between them in transfection rate will influence the levels of immune responses for development of therapeutic vaccines.
Collapse
Affiliation(s)
- Kimia Kardani
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Atieh Hashemi
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Azam Bolhassani
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
125
|
Abstract
RNA viruses encode the information required to usurp cellular metabolism and gene regulation and to enable their own replication in two ways: in the linear sequence of their RNA genomes and in higher-order structures that form when the genomic RNA strand folds back on itself. Application of high-resolution SHAPE (selective 2'-hydroxyl acylation analyzed by primer extension) structure probing to viral RNA genomes has identified numerous new regulatory elements, defined new principles by which viral RNAs interact with the cellular host and evade host immune responses, and revealed relationships between virus evolution and RNA structure. This review summarizes our current understanding of genome structure-function interrelationships for RNA viruses, as informed by SHAPE structure probing, and outlines opportunities for future studies.
Collapse
Affiliation(s)
- Mark A Boerneke
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599-3290, USA; , ,
| | - Jeffrey E Ehrhardt
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599-3290, USA; , ,
| | - Kevin M Weeks
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599-3290, USA; , ,
| |
Collapse
|
126
|
Discovery of 2-isoxazol-3-yl-acetamide analogues as heat shock protein 90 (HSP90) inhibitors with significant anti-HIV activity. Eur J Med Chem 2019; 183:111699. [PMID: 31561045 DOI: 10.1016/j.ejmech.2019.111699] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Revised: 09/11/2019] [Accepted: 09/12/2019] [Indexed: 12/17/2022]
Abstract
The recent burst of explorations on heat shock protein 90 (HSP90) in virus research supports its emergence as a promising target to overcome the drawbacks of current antiviral therapeutic regimen. In continuation of our efforts towards the discovery of novel anti-retroviral molecules, we designed, synthesized fifteen novels 2-isoxazol-3-yl-acetamide based compounds (2a-o) followed by analysis of their anti-HIV activity and cytotoxicity studies. 2a-b, 2e, 2j, and 2l-m were found to be active with inhibitory potentials >80% at their highest non-cytotoxic concentration (HNC). Further characterization of anti-HIV activity of these molecules suggests that 2l has ∼3.5 fold better therapeutic index than AUY922, the second generation HSP90 inhibitor. The anti-HIV activity of 2l is a cell type, virus isolate and viral load independent phenomena. Interestingly, 2l does not significantly modulate viral enzymes like Reverse Transcriptase (RT), Integrase (IN) and Protease (PR) as compared to their known inhibitors in a cell free in vitro assay system at its HNC. Further, 2l mediated inhibition of HSP90 attenuates HIV-1 LTR driven gene expression. Taken together, structural rationale, modeling studies and characterization of biological activities suggest that this novel scaffold can attenuate HIV-1 replication significantly within the host and thus opens a new horizon to develop novel anti-HIV therapeutic candidates.
Collapse
|
127
|
Toro-Ascuy D, Rojas-Araya B, García-de-Gracia F, Rojas-Fuentes C, Pereira-Montecinos C, Gaete-Argel A, Valiente-Echeverría F, Ohlmann T, Soto-Rifo R. A Rev-CBP80-eIF4AI complex drives Gag synthesis from the HIV-1 unspliced mRNA. Nucleic Acids Res 2019; 46:11539-11552. [PMID: 30239828 PMCID: PMC6265489 DOI: 10.1093/nar/gky851] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 09/12/2018] [Indexed: 12/15/2022] Open
Abstract
Gag synthesis from the full-length unspliced mRNA is critical for the production of the viral progeny during human immunodeficiency virus type-1 (HIV-1) replication. While most spliced mRNAs follow the canonical gene expression pathway in which the recruitment of the nuclear cap-binding complex (CBC) and the exon junction complex (EJC) largely stimulates the rates of nuclear export and translation, the unspliced mRNA relies on the viral protein Rev to reach the cytoplasm and recruit the host translational machinery. Here, we confirm that Rev ensures high levels of Gag synthesis by driving nuclear export and translation of the unspliced mRNA. These functions of Rev are supported by the CBC subunit CBP80, which binds Rev and the unspliced mRNA in the nucleus and the cytoplasm. We also demonstrate that Rev interacts with the DEAD-box RNA helicase eIF4AI, which translocates to the nucleus and cooperates with the viral protein to promote Gag synthesis. Finally, we show that the Rev/RRE axis is important for the assembly of a CBP80-eIF4AI complex onto the unspliced mRNA. Together, our results provide further evidence towards the understanding of the molecular mechanisms by which Rev drives Gag synthesis from the unspliced mRNA during HIV-1 replication.
Collapse
Affiliation(s)
- Daniela Toro-Ascuy
- Laboratory of Molecular and Cellular Virology, Virology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Bárbara Rojas-Araya
- Laboratory of Molecular and Cellular Virology, Virology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Francisco García-de-Gracia
- Laboratory of Molecular and Cellular Virology, Virology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Cecilia Rojas-Fuentes
- Laboratory of Molecular and Cellular Virology, Virology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Camila Pereira-Montecinos
- Laboratory of Molecular and Cellular Virology, Virology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Aracelly Gaete-Argel
- Laboratory of Molecular and Cellular Virology, Virology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Fernando Valiente-Echeverría
- Laboratory of Molecular and Cellular Virology, Virology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Théophile Ohlmann
- INSERM U1111, CIRI, Lyon F-69364, France.,Ecole Normale Supérieure de Lyon, Lyon F-69364, France
| | - Ricardo Soto-Rifo
- Laboratory of Molecular and Cellular Virology, Virology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| |
Collapse
|
128
|
CD4- and Time-Dependent Susceptibility of HIV-1-Infected Cells to Antibody-Dependent Cellular Cytotoxicity. J Virol 2019; 93:JVI.01901-18. [PMID: 30842324 DOI: 10.1128/jvi.01901-18] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 02/24/2019] [Indexed: 12/24/2022] Open
Abstract
HIV-1-specific antibody-dependent cellular cytotoxicity (ADCC) antibodies within HIV-1-positive (HIV-1+) individuals predominantly target CD4-induced (CD4i) epitopes on HIV-1 envelope glycoprotein (Env). These CD4i epitopes are usually concealed on the surface of infected cells due to CD4 downregulation by the HIV-1 accessory proteins Nef and Vpu. We hypothesized that early-stage infected cells in the process of downregulating CD4 could be more susceptible to ADCC than late-stage infected cells that have fully downregulated CD4. There was significantly higher binding of antibodies within plasma from HIV-1-infected individuals to early-stage infected cells expressing intermediate levels of CD4 (CD4-intermediate cells) than in late-stage infected cells expressing low levels of CD4 (CD4-low cells). However, we noted that HIV-1-uninfected bystander cells and HIV-1-infected cells, at various stages of downregulating CD4, were all susceptible to NK cell-mediated ADCC. Importantly, we observed that the cytolysis of bystander cells and early infected cells in this culture system was driven by sensitization of target cells by inoculum-derived HIV-1 Env or virions. This phenomenon provided Env to target cells prior to de novo Env expression, resulting in artifactual ADCC measurements. Future studies should take into consideration the inherent caveats of in vitro infection systems and develop improved models to address the potential role for ADCC against cells with nascent HIV-1 infection.IMPORTANCE An increasing body of evidence suggests that ADCC contributes to protection against HIV-1 acquisition and slower HIV-1 disease progression. Targeting cells early during the infection cycle would be most effective in limiting virus production and spread. We hypothesized that there could be a time-dependent susceptibility of HIV-1-infected cells to ADCC in regard to CD4 expression. We observed NK cell-mediated ADCC of HIV-1-infected cells at multiple stages of CD4 downregulation. Importantly, ADCC of early infected cells appeared to be driven by a previously unappreciated problem of soluble Env and virions from the viral inoculum sensitizing uninfected cells to ADCC prior to de novo Env expression. These results have implications for studies examining ADCC against cells with nascent HIV-1 infection.
Collapse
|
129
|
Jackson PEH, Huang J, Sharma M, Rasmussen SK, Hammarskjold ML, Rekosh D. A novel retroviral vector system to analyze expression from mRNA with retained introns using fluorescent proteins and flow cytometry. Sci Rep 2019; 9:6467. [PMID: 31015546 PMCID: PMC6478720 DOI: 10.1038/s41598-019-42914-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 04/11/2019] [Indexed: 12/16/2022] Open
Abstract
The ability to overcome cellular restrictions that exist for the export and translation of mRNAs with retained introns is a requirement for the replication of retroviruses and also for the expression of many mRNA isoforms transcribed from cellular genes. In some cases, RNA structures have been identified in the mRNA that directly interact with cellular factors to promote the export and expression of isoforms with retained introns. In other cases, a viral protein is also required to act as an adapter. In this report we describe a novel vector system that allows measurement of the ability of cis- and trans-acting factors to promote the export and translation of mRNAs with retained introns. One reporter vector used in this system is derived from an HIV proviral clone engineered to express two different fluorescent proteins from spliced and unspliced transcripts. The ratio of fluorescent signals is a measurement of the efficiency of export and translation. A second vector utilizes a third fluorescent protein to measure the expression of viral export proteins that interact with some of the export elements. Both vectors can be packaged into viral particles and be used to transduce cells, allowing expression at physiological levels from the integrated vector.
Collapse
Affiliation(s)
- Patrick E H Jackson
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia, Charlottesville, Virginia, USA
- Myles H. Thaler Center for HIV and Human Retrovirus Research, University of Virginia, Charlottesville, Virginia, USA
| | - Jing Huang
- Myles H. Thaler Center for HIV and Human Retrovirus Research, University of Virginia, Charlottesville, Virginia, USA
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, Virginia, USA
| | - Monika Sharma
- Myles H. Thaler Center for HIV and Human Retrovirus Research, University of Virginia, Charlottesville, Virginia, USA
- Department of Surgery, University of Virginia, Charlottesville, Virginia, USA
| | - Sara K Rasmussen
- Myles H. Thaler Center for HIV and Human Retrovirus Research, University of Virginia, Charlottesville, Virginia, USA
- Department of Surgery, University of Virginia, Charlottesville, Virginia, USA
| | - Marie-Louise Hammarskjold
- Myles H. Thaler Center for HIV and Human Retrovirus Research, University of Virginia, Charlottesville, Virginia, USA
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, Virginia, USA
| | - David Rekosh
- Myles H. Thaler Center for HIV and Human Retrovirus Research, University of Virginia, Charlottesville, Virginia, USA.
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, Virginia, USA.
| |
Collapse
|
130
|
Ahmed I, Akram Z, Iqbal HMN, Munn AL. The regulation of Endosomal Sorting Complex Required for Transport and accessory proteins in multivesicular body sorting and enveloped viral budding - An overview. Int J Biol Macromol 2019; 127:1-11. [PMID: 30615963 DOI: 10.1016/j.ijbiomac.2019.01.015] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 01/03/2019] [Accepted: 01/03/2019] [Indexed: 02/07/2023]
Abstract
ESCRT (Endosomal Sorting Complex Required for Transport) machinery drives different cellular processes such as endosomal sorting, organelle biogenesis, vesicular trafficking, maintenance of plasma membrane integrity, membrane fission during cytokinesis and enveloped virus budding. The normal cycle of assembly and disassembly of some ESCRT complexes at the membrane requires the AAA-ATPase vacuolar protein sorting 4 (Vps4p). A number of ESCRT proteins are hijacked by clinically significant enveloped viruses including Ebola, and Human Immunodeficiency Virus (HIV) to enable enveloped virus budding and Vps4p provides energy for the disassembly/recycling of these ESCRT proteins. Several years ago, the failure of the terminal budding process of HIV following Vps4 protein inhibition was published; although at that time a detailed understanding of the molecular players was missing. However, later it was acknowledged that the ESCRT machinery has a role in enveloped virus budding from cells due to its role in the multivesicular body (MVB) sorting pathway. The MVB sorting pathway facilitates several cellular activities in uninfected cells, such as the down-regulation of signaling through cell surface receptors as well as the process of viral budding from infected host cells. In this review, we focus on summarising the functional organisation of ESCRT proteins at the membrane and the role of ESCRT machinery and Vps4p during MVB sorting and enveloped viral budding.
Collapse
Affiliation(s)
- Ishtiaq Ahmed
- School of Medical Science, Menzies Health Institute Queensland, Griffith University (Gold Coast campus), Parklands Drive, Southport, QLD 4222, Australia.
| | - Zain Akram
- School of Medical Science, Menzies Health Institute Queensland, Griffith University (Gold Coast campus), Parklands Drive, Southport, QLD 4222, Australia
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey, N. L. CP 64849, Mexico
| | - Alan L Munn
- School of Medical Science, Menzies Health Institute Queensland, Griffith University (Gold Coast campus), Parklands Drive, Southport, QLD 4222, Australia.
| |
Collapse
|
131
|
Fatin M, Rahim Ruslinda A, Gopinath SC, Arshad MM, Hashim U, Lakshmipriya T, Tang TH, Kamarulzaman A. Co-ordinated split aptamer assembly and disassembly on Gold nanoparticle for functional detection of HIV-1 tat. Process Biochem 2019. [DOI: 10.1016/j.procbio.2018.12.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
132
|
Leporati A, Gupta S, Bolotin E, Castillo G, Alfaro J, Gottikh MB, Bogdanov AA. Antiretroviral Hydrophobic Core Graft-Copolymer Nanoparticles: The Effectiveness against Mutant HIV-1 Strains and in Vivo Distribution after Topical Application. Pharm Res 2019; 36:73. [PMID: 30919089 DOI: 10.1007/s11095-019-2604-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 03/05/2019] [Indexed: 11/25/2022]
Abstract
PURPOSE Developing and testing of microbicides for pre-exposure prophylaxis and post-exposure protection from HIV are on the list of major HIV/AIDS research priorities. To improve solubility and bioavailability of highly potent anti-retroviral drugs, we explored the use of a nanoparticle (NP) for formulating a combination of two water-insoluble HIV inhibitors. METHODS The combination of a non-nucleoside HIV reverse transcriptase inhibitor (NNRTI), Efavirenz (EFV), and an inhibitor of HIV integrase, Elvitegravir (ELV) was stabilized with a graft copolymer of methoxypolyethylene glycol-polylysine with a hydrophobic core (HC) composed of fatty acids (HC-PGC). Formulations were tested in TZM-bl cells infected either with wild-type HIV-1IIIB, or drug-resistant HIV-1 strains. In vivo testing of double-labeled NP formulations was performed in female rats after a topical intravaginal administration using SPECT/CT imaging and fluorescence microscopy. RESULTS We observed a formation of stable 23-30 nm NP with very low cytotoxicity when EFV and ELV were combined with HC-PGC at a 1:10 weight ratio. For NP containing ELV and EFV (at 1:1 by weight) we observed a remarkable improvement of EC50 of EFV by 20 times in the case of A17 strain. In vivo imaging and biodistribution showed in vivo presence of NP components at 24 and 48 h after administration, respectively. CONCLUSIONS insoluble orthogonal inhibitors of HIV-1 life cycle may be formulated into the non-aggregating ultrasmall NP which are highly efficient against NNRTI-resistant HIV-1 variant.
Collapse
Affiliation(s)
- Anita Leporati
- Laboratory of Molecular Imaging Probes, Department of Radiology, University of Massachusetts Medical School, S6-434, 55 Lake Ave North, Worcester, MA, 01655, USA
| | - Suresh Gupta
- Laboratory of Molecular Imaging Probes, Department of Radiology, University of Massachusetts Medical School, S6-434, 55 Lake Ave North, Worcester, MA, 01655, USA
| | - Elijah Bolotin
- PharmaIn Corp, 11812 North Creek Parkway N. Suite 10, Bothell, Washington, USA
| | - Gerardo Castillo
- PharmaIn Corp, 11812 North Creek Parkway N. Suite 10, Bothell, Washington, USA
| | - Joshua Alfaro
- PharmaIn Corp, 11812 North Creek Parkway N. Suite 10, Bothell, Washington, USA
| | - Marina B Gottikh
- A.N. Belozersky Institute of Physico-Chemical Biology and Department of Chemistry, Moscow State University, Moscow, Russia
| | - Alexei A Bogdanov
- Laboratory of Molecular Imaging Probes, Department of Radiology, University of Massachusetts Medical School, S6-434, 55 Lake Ave North, Worcester, MA, 01655, USA. .,Department of Bioengineering and Bioinformatics, Moscow State University, Moscow, Russia. .,Laboratory of Molecular Imaging, A. N. Bach Institute of Biochemistry, Federal Research Center "Fundamentals of Biotechnology", Russian Academy of Sciences, Laboratory of Molecular Imaging, Moscow, Russia.
| |
Collapse
|
133
|
Chokkar N, Kalra S, Chauhan M, Kumar R. A Review on Quinoline Derived Scaffolds as Anti-HIV Agents. Mini Rev Med Chem 2019; 19:510-526. [PMID: 30338737 DOI: 10.2174/1389557518666181018163448] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Revised: 09/02/2018] [Accepted: 09/04/2018] [Indexed: 12/19/2022]
Abstract
After restricting the proliferation of CD4+T cells, Human Immunodeficiency Virus (HIV), infection persists at a very fast rate causing Acquired Immunodeficiency Syndrome (AIDS). This demands the vigorous need of suitable anti-HIV agents, as existing medicines do not provide a complete cure and exhibit drawbacks like toxicities, drug resistance, side-effects, etc. Even the introduction of Highly Active Antiretroviral Therapy (HAART) failed to combat HIV/AIDS completely. The major breakthrough in anti-HIV discovery was marked with the discovery of raltegravir in 2007, the first integrase (IN) inhibitor. Thereafter, the discovery of elvitegravir, a quinolone derivative emerged as the potent HIV-IN inhibitor. Though many more classes of different drugs that act as anti-HIV have been identified, some of which are under clinical trials, but the recent serious focus is still laid on quinoline and its analogues. In this review, we have covered all the quinoline-based derivatives that inhibit various targets and are potential anti-HIV agents in various phases of the drug discovery.
Collapse
Affiliation(s)
- Nisha Chokkar
- Department of Pharmaceutical Sciences and Natural Products, School of Basic and Applied Sciences, Central University of Punjab, Bathinda, 151001, India
| | - Sourav Kalra
- Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda, 151001, India
| | - Monika Chauhan
- Department of Pharmaceutical Sciences and Natural Products, School of Basic and Applied Sciences, Central University of Punjab, Bathinda, 151001, India
| | - Raj Kumar
- Department of Pharmaceutical Sciences and Natural Products, School of Basic and Applied Sciences, Central University of Punjab, Bathinda, 151001, India
| |
Collapse
|
134
|
Sun WL, Quizon PM, Yuan Y, Strauss MJ, McCain R, Zhan CG, Zhu J. Mutational effects of human dopamine transporter at tyrosine88, lysine92, and histidine547 on basal and HIV-1 Tat-inhibited dopamine transport. Sci Rep 2019; 9:3843. [PMID: 30846720 PMCID: PMC6405875 DOI: 10.1038/s41598-019-39872-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 12/12/2018] [Indexed: 01/06/2023] Open
Abstract
Dysregulation of dopaminergic system induced by HIV-1 Tat protein-mediated direct inhibition of the dopamine transporter (DAT) has been implicated as a mediating factor of HIV-1 associated neurocognitive disorders. We have reported that single point mutations on human DAT (hDAT) at tyrosine88 (Y88F), lysine92 (K92M), and histidine547 (H547A) differentially regulate basal dopamine uptake but diminish Tat-induced inhibition of dopamine uptake by changing dopamine transport process. This study evaluated the effects of double (Y88F/H547A) and triple (Y88F/K92M/H547A) mutations on basal dopamine uptake, Tat-induced inhibition of DAT function, and dynamic transport process. Compared to wild-type hDAT, the Vmax values of [3H]Dopamine uptake were increased by 96% in Y88F/H547A but decreased by 97% in Y88F/K92M/H547A. [3H]WIN35,428 binding sites were not altered in Y88F/H547A but decreased in Y88F/K92M/H547A. Y88F/H547A mutant attenuated Tat-induced inhibition of dopamine uptake observed in wild-type hDAT. Y88F/H547A displayed an attenuation of zinc-augmented [3H]WIN35,428 binding, increased basal dopamine efflux, and reduced amphetamine-induced dopamine efflux, indicating this mutant alters transporter conformational transitions. These findings further demonstrate that both tyrosine88 and histidine547 on hDAT play a key role in stabilizing basal dopamine transport and Tat-DAT integration. This study provides mechanistic insights into developing small molecules to block multiple sites in DAT for Tat binding.
Collapse
Affiliation(s)
- Wei-Lun Sun
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, USA
| | - Pamela M Quizon
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, USA
| | - Yaxia Yuan
- Molecular Modeling and Biopharmaceutical Center, University of Kentucky, Lexington, KY, USA
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY, USA
| | - Matthew J Strauss
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, USA
| | - Richard McCain
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, USA
| | - Chang-Guo Zhan
- Molecular Modeling and Biopharmaceutical Center, University of Kentucky, Lexington, KY, USA
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY, USA
| | - Jun Zhu
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, USA.
| |
Collapse
|
135
|
Abdel-Hakeem MS. Viruses Teaching Immunology: Role of LCMV Model and Human Viral Infections in Immunological Discoveries. Viruses 2019; 11:E106. [PMID: 30691215 PMCID: PMC6410308 DOI: 10.3390/v11020106] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 01/24/2019] [Accepted: 01/25/2019] [Indexed: 12/16/2022] Open
Abstract
Virology has played an essential role in deciphering many immunological phenomena, thus shaping our current understanding of the immune system. Animal models of viral infection and human viral infections were both important tools for immunological discoveries. This review discusses two immunological breakthroughs originally identified with the help of the lymphocytic choriomeningitis virus (LCMV) model; immunological restriction by major histocompatibility complex and immunotherapy using checkpoint blockade. In addition, we discuss related discoveries such as development of tetramers, viral escape mutation, and the phenomenon of T-cell exhaustion.
Collapse
Affiliation(s)
- Mohamed S Abdel-Hakeem
- Penn Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Kasr El-Aini, Cairo 11562, Egypt.
| |
Collapse
|
136
|
Olgun HB, Tasyurek HM, Sanlioglu AD, Sanlioglu S. High-Titer Production of HIV-Based Lentiviral Vectors in Roller Bottles for Gene and Cell Therapy. Methods Mol Biol 2019; 1879:323-345. [PMID: 29797007 DOI: 10.1007/7651_2018_150] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Lentiviral vectors are becoming preferred vectors of choice for clinical gene therapy trials due to their safety, efficacy, and the long-term gene expression they provide. Although the efficacy of lentiviral vectors is mainly predetermined by the therapeutic genes they carry, they must be produced at high titers to exert therapeutic benefit for in vivo applications. Thus, there is need for practical, robust, and scalable viral vector production methods applicable to any laboratory setting. Here, we describe a practical lentiviral production technique in roller bottles yielding high-titer third-generation lentiviral vectors useful for in vivo gene transfer applications. CaPO4-mediated transient transfection protocol involving the use of a transfer vector and three different packaging plasmids is employed to generate lentivectors in roller bottles. Following clearance of cellular debris via low-speed centrifugation and filtration, virus is concentrated by high-speed ultracentrifugation over sucrose cushion.
Collapse
Affiliation(s)
- Hazal Banu Olgun
- Human Gene and Cell Therapy Center of Akdeniz University Hospitals, Antalya, Turkey
| | - Hale M Tasyurek
- Human Gene and Cell Therapy Center of Akdeniz University Hospitals, Antalya, Turkey
| | | | - Salih Sanlioglu
- Human Gene and Cell Therapy Center of Akdeniz University Hospitals, Antalya, Turkey.
| |
Collapse
|
137
|
Kunihara T, Hayashi Y, Arai M. Conformational diversity in the intrinsically disordered HIV-1 Tat protein induced by zinc and pH. Biochem Biophys Res Commun 2018; 509:564-569. [PMID: 30600181 DOI: 10.1016/j.bbrc.2018.12.126] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Revised: 12/15/2018] [Accepted: 12/17/2018] [Indexed: 11/30/2022]
Abstract
Human immunodeficiency virus type-1 (HIV-1) transactivator of transcription (Tat) is an intrinsically disordered protein that exerts multiple functions, including activation of HIV-1 replication and induction of T-cell apoptosis and cytokine secretion via zinc binding and cellular uptake by endocytosis. However, the effects of zinc and endosomal low pH on the structure of isolated Tat protein are poorly understood. Here, we purified a monomeric zinc-bound Tat and studied its structure and acid denaturation by circular dichroism, NMR, and small-angle X-ray scattering. We found that at pH 7, the zinc-bound Tat was in a pre-molten globule state; it exhibited largely disordered conformations with residual helices and was slightly more compact than the fully unfolded states that were observed at pH 4 or in the zinc-free form. Moreover, acid-induced unfolding transitions in secondary structure and molecular size occurred at different pH ranges, indicating the presence of an expanded and helical intermediate at pH ∼6. Taken together, the extent of structural disorder in the intrinsically disordered Tat protein is highly sensitive to zinc and pH, suggesting that zinc binding and pH affect Tat structures and thereby control the versatile functions of Tat.
Collapse
Affiliation(s)
- Tomoko Kunihara
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo, 153-8902, Japan
| | - Yuuki Hayashi
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo, 153-8902, Japan
| | - Munehito Arai
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo, 153-8902, Japan; Department of Physics, Graduate School of Science, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo, 153-8902, Japan.
| |
Collapse
|
138
|
Focus on Translation Initiation of the HIV-1 mRNAs. Int J Mol Sci 2018; 20:ijms20010101. [PMID: 30597859 PMCID: PMC6337239 DOI: 10.3390/ijms20010101] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 12/21/2018] [Accepted: 12/22/2018] [Indexed: 01/04/2023] Open
Abstract
To replicate and disseminate, viruses need to manipulate and modify the cellular machinery for their own benefit. We are interested in translation, which is one of the key steps of gene expression and viruses that have developed several strategies to hijack the ribosomal complex. The type 1 human immunodeficiency virus is a good paradigm to understand the great diversity of translational control. Indeed, scanning, leaky scanning, internal ribosome entry sites, and adenosine methylation are used by ribosomes to translate spliced and unspliced HIV-1 mRNAs, and some require specific cellular factors, such as the DDX3 helicase, that mediate mRNA export and translation. In addition, some viral and cellular proteins, including the HIV-1 Tat protein, also regulate protein synthesis through targeting the protein kinase PKR, which once activated, is able to phosphorylate the eukaryotic translation initiation factor eIF2α, which results in the inhibition of cellular mRNAs translation. Finally, the infection alters the integrity of several cellular proteins, including initiation factors, that directly or indirectly regulates translation events. In this review, we will provide a global overview of the current situation of how the HIV-1 mRNAs interact with the host cellular environment to produce viral proteins.
Collapse
|
139
|
Mona Sadat L, Seyed Mehdi S, Amitis R. HIV-1 Immune evasion: The main obstacle toward a successful vaccine. ACTA ACUST UNITED AC 2018. [DOI: 10.29328/journal.aaai.1001013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
140
|
Vieira CB, Praça YR, Bentes KLDS, Santiago PB, Silva SMM, Silva GDS, Motta FN, Bastos IMD, de Santana JM, de Araújo CN. Triatomines: Trypanosomatids, Bacteria, and Viruses Potential Vectors? Front Cell Infect Microbiol 2018; 8:405. [PMID: 30505806 PMCID: PMC6250844 DOI: 10.3389/fcimb.2018.00405] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 10/29/2018] [Indexed: 12/17/2022] Open
Abstract
Triatominae bugs are the vectors of Chagas disease, a major concern to public health especially in Latin America, where vector-borne Chagas disease has undergone resurgence due mainly to diminished triatomine control in many endemic municipalities. Although the majority of Triatominae species occurs in the Americas, species belonging to the genus Linshcosteus occur in India, and species belonging to the Triatoma rubrofasciata complex have been also identified in Africa, the Middle East, South-East Asia, and in the Western Pacific. Not all of Triatominae species have been found to be infected with Trypanosoma cruzi, but the possibility of establishing vector transmission to areas where Chagas disease was previously non-endemic has increased with global population mobility. Additionally, the worldwide distribution of triatomines is concerning, as they are able to enter in contact and harbor other pathogens, leading us to wonder if they would have competence and capacity to transmit them to humans during the bite or after successful blood feeding, spreading other infectious diseases. In this review, we searched the literature for infectious agents transmitted to humans by Triatominae. There are reports suggesting that triatomines may be competent vectors for pathogens such as Serratia marcescens, Bartonella, and Mycobacterium leprae, and that triatomine infection with other microrganisms may interfere with triatomine-T. cruzi interactions, altering their competence and possibly their capacity to transmit Chagas disease.
Collapse
Affiliation(s)
- Caroline Barreto Vieira
- Programa de Pós-Graduação em Ciências Médicas, Faculdade de Medicina, Universidade de Brasília, Brasília, Brazil
| | - Yanna Reis Praça
- Programa de Pós-Graduação em Ciências Médicas, Faculdade de Medicina, Universidade de Brasília, Brasília, Brazil
| | - Kaio Luís da Silva Bentes
- Laboratório de Interação Patógeno-Hospedeiro, Instituto de Ciências Biológicas, Departamento de Biologia Celular, Universidade de Brasília, Brasília, Brazil
| | - Paula Beatriz Santiago
- Laboratório de Interação Patógeno-Hospedeiro, Instituto de Ciências Biológicas, Departamento de Biologia Celular, Universidade de Brasília, Brasília, Brazil
| | - Sofia Marcelino Martins Silva
- Laboratório de Interação Patógeno-Hospedeiro, Instituto de Ciências Biológicas, Departamento de Biologia Celular, Universidade de Brasília, Brasília, Brazil
| | - Gabriel dos Santos Silva
- Laboratório de Interação Patógeno-Hospedeiro, Instituto de Ciências Biológicas, Departamento de Biologia Celular, Universidade de Brasília, Brasília, Brazil
| | - Flávia Nader Motta
- Laboratório de Interação Patógeno-Hospedeiro, Instituto de Ciências Biológicas, Departamento de Biologia Celular, Universidade de Brasília, Brasília, Brazil
- Faculdade de Ceilândia, Universidade de Brasília, Brasília, Brazil
| | - Izabela Marques Dourado Bastos
- Laboratório de Interação Patógeno-Hospedeiro, Instituto de Ciências Biológicas, Departamento de Biologia Celular, Universidade de Brasília, Brasília, Brazil
| | - Jaime Martins de Santana
- Laboratório de Interação Patógeno-Hospedeiro, Instituto de Ciências Biológicas, Departamento de Biologia Celular, Universidade de Brasília, Brasília, Brazil
| | - Carla Nunes de Araújo
- Laboratório de Interação Patógeno-Hospedeiro, Instituto de Ciências Biológicas, Departamento de Biologia Celular, Universidade de Brasília, Brasília, Brazil
- Faculdade de Ceilândia, Universidade de Brasília, Brasília, Brazil
| |
Collapse
|
141
|
Musyoka T, Tastan Bishop Ö, Lobb K, Moses V. The determination of CHARMM force field parameters for the Mg2+ containing HIV-1 integrase. Chem Phys Lett 2018. [DOI: 10.1016/j.cplett.2018.09.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
142
|
Tokarev A, Creegan M, Eller MA, Roederer M, Bolton DL. Single-cell Quantitation of mRNA and Surface Protein Expression in Simian Immunodeficiency Virus-infected CD4+ T Cells Isolated from Rhesus macaques. J Vis Exp 2018. [PMID: 30320741 DOI: 10.3791/57776] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Single-cell analysis is an important tool for dissecting heterogeneous populations of cells. The identification and isolation of rare cells can be difficult. To overcome this challenge, a methodology combining indexed flow cytometry and high-throughput multiplexed quantitative polymerase chain reaction (qPCR) was developed. The objective was to identify and characterize simian immunodeficiency virus (SIV)-infected cells present within rhesus macaques. Through quantitation of surface protein by fluorescence-activated cell sorting (FACS) and mRNA by qPCR, virus-infected cells are identified by viral gene expression, which is combined with host gene and protein measurements to create a multidimensional profile. We term the approach, targeted Single-Cell Proteo-transcriptional Evaluation, or tSCEPTRE. To perform the method, viable cells are stained with fluorescent antibodies specific for surface markers used for FACS isolation of a cell subset and/or downstream phenotypic analysis. Single cells are sorted followed by immediate lysis, multiplex reverse transcription (RT), PCR pre-amplification, and high throughput qPCR of up to 96 transcripts. FACS measurements are recorded at the time of sorting and subsequently linked to the gene expression data by well position to create a combined protein and transcriptional profile. To study SIV-infected cells directly ex vivo, cells were identified by qPCR detection of multiple viral RNA species. The combination of viral transcripts and the quantity of each provide a framework for classifying cells into distinct stages of the viral life cycle (e.g., productive versus non-productive). Moreover, tSCEPTRE of SIV+ cells were compared to uninfected cells isolated from the same specimen to assess differentially expressed host genes and proteins. The analysis revealed previously unappreciated viral RNA expression heterogeneity among infected cells as well as in vivo SIV-mediated post-transcriptional gene regulation with single-cell resolution. The tSCEPTRE method is relevant for the analysis of any cell population amenable to identification by expression of surface protein marker(s), host or pathogen gene(s), or combinations thereof.
Collapse
Affiliation(s)
- Andrey Tokarev
- US Military HIV Research Program, Henry M. Jackson Foundation, Walter Reed Army Institute of Research
| | - Matthew Creegan
- US Military HIV Research Program, Henry M. Jackson Foundation, Walter Reed Army Institute of Research
| | - Michael A Eller
- US Military HIV Research Program, Henry M. Jackson Foundation, Walter Reed Army Institute of Research
| | | | - Diane L Bolton
- US Military HIV Research Program, Henry M. Jackson Foundation, Walter Reed Army Institute of Research;
| |
Collapse
|
143
|
Sneha P, Panda PK, Gharemirshamlu FR, Bamdad K, Balaji S. Structural discordance in HIV-1 Vpu from brain isolate alarms amyloid fibril forming behavior- a computational perspective. J Theor Biol 2018; 451:35-45. [PMID: 29705491 DOI: 10.1016/j.jtbi.2018.04.033] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 02/14/2018] [Accepted: 04/25/2018] [Indexed: 11/15/2022]
Abstract
HIV-1 being the most widespread type worldwide, its accounts for almost 95% of all infections including HIV associated dementia (HAD) that triggers neurological dysfunction and neurodegeneration in patients. The common features associated with HAD and other neurodegenerative diseases are accumulation of amyloid plaques, neuronal loss and deterioration of cognitive abilities, amongst which amyloid fibrillation is considered to be a hallmark. The success of effective therapeutics lies in the understanding of mechanisms leading to neurotoxicity. Few viral proteins like gp-120 are known to be involved in aggregation and enhancement of viral infectivity while comprehending the neurotoxic role of some other proteins is still underway. In the current study, amyloidogenic potential of HIV-1 Vpu protein from brain isolate is investigated through computational approaches. The aggregation propensity of brain derived HIV-1 Vpu was assessed by several amyloid prediction servers that projected the region 4-35 to be amyloidogenic. The protein structure was modeled and subjected to 70 ns molecular dynamics (MD) simulation to investigate the transformation of α-helical conformation of the predicted aggregate region into β-sheet, proposing the protein's ability to initiate fibril formation that is central to amyloidogenic proteins. The structural features of brain derived HIV-1 Vpu were consistent with the in silico amyloid prediction results that depicts the conformational change in the region 8-28 of which residues Ala8, Ile9, Val10, Ala19, Ile20 and Val21 constitutes β-sheet formation. The α-helix/β-sheet discordance of the predicted region was reflected in the simulation study highlighting the possible structural transition associated with HIV-1 Vpu protein of brain isolate.
Collapse
Affiliation(s)
- Patil Sneha
- School of Biotechnology and Bioinformatics, D.Y. Patil deemed to be University, CBD Belapur, Sector 15, Navi Mumbai, Maharashtra 400614, India; Research and Development Centre, Bharathiar University, Coimbatore 641046 India
| | - Pritam Kumar Panda
- School of Biotechnology and Bioinformatics, D.Y. Patil deemed to be University, CBD Belapur, Sector 15, Navi Mumbai, Maharashtra 400614, India
| | | | - Kourosh Bamdad
- Faculty of Science(,) Payame Noor University, 19395-4697 Iran
| | - Seetharaman Balaji
- Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, 576104 Karnataka, India.
| |
Collapse
|
144
|
Hossain D, Ferreira Barbosa JA, Cohen ÉA, Tsang WY. HIV-1 Vpr hijacks EDD-DYRK2-DDB1 DCAF1 to disrupt centrosome homeostasis. J Biol Chem 2018; 293:9448-9460. [PMID: 29724823 PMCID: PMC6005440 DOI: 10.1074/jbc.ra117.001444] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 04/17/2018] [Indexed: 11/06/2022] Open
Abstract
Viruses exploit the host cell machinery for their own profit. To evade innate immune sensing and promote viral replication, HIV type 1 (HIV-1) subverts DNA repair regulatory proteins and induces G2/M arrest. The preintegration complex of HIV-1 is known to traffic along microtubules and accumulate near the microtubule-organizing center. The centrosome is the major microtubule-organizing center in most eukaryotic cells, but precisely how HIV-1 impinges on centrosome biology remains poorly understood. We report here that the HIV-1 accessory protein viral protein R (Vpr) localized to the centrosome through binding to DCAF1, forming a complex with the ubiquitin ligase EDD-DYRK2-DDB1DCAF1 and Cep78, a resident centrosomal protein previously shown to inhibit EDD-DYRK2-DDB1DCAF1 Vpr did not affect ubiquitination of Cep78. Rather, it enhanced ubiquitination of an EDD-DYRK2-DDB1DCAF1 substrate, CP110, leading to its degradation, an effect that could be overcome by Cep78 expression. The down-regulation of CP110 and elongation of centrioles provoked by Vpr were independent of G2/M arrest. Infection of T lymphocytes with HIV-1, but not with HIV-1 lacking Vpr, promoted CP110 degradation and centriole elongation. Elongated centrioles recruited more γ-tubulin to the centrosome, resulting in increased microtubule nucleation. Our results suggest that Vpr is targeted to the centrosome where it hijacks a ubiquitin ligase, disrupting organelle homeostasis, which may contribute to HIV-1 pathogenesis.
Collapse
Affiliation(s)
- Delowar Hossain
- From the Institut de recherches cliniques de Montréal, Montreal, Quebec H2W 1R7, Canada
- the Division of Experimental Medicine, McGill University, Montreal, Quebec H4A 3J1, Canada
| | | | - Éric A Cohen
- From the Institut de recherches cliniques de Montréal, Montreal, Quebec H2W 1R7, Canada
- the Division of Experimental Medicine, McGill University, Montreal, Quebec H4A 3J1, Canada
- the Department of Microbiology, Infectiology, and Immunology, Université de Montréal, Montreal, Quebec H3C 3J7, Canada, and
| | - William Y Tsang
- From the Institut de recherches cliniques de Montréal, Montreal, Quebec H2W 1R7, Canada,
- the Division of Experimental Medicine, McGill University, Montreal, Quebec H4A 3J1, Canada
- the Department of Pathology and Cell Biology, Université de Montréal, Montreal, Quebec H3C 3J7, Canada
| |
Collapse
|
145
|
Cavalieri V, Baiamonte E, Lo Iacono M. Non-Primate Lentiviral Vectors and Their Applications in Gene Therapy for Ocular Disorders. Viruses 2018; 10:E316. [PMID: 29890733 PMCID: PMC6024700 DOI: 10.3390/v10060316] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 06/06/2018] [Accepted: 06/07/2018] [Indexed: 12/18/2022] Open
Abstract
Lentiviruses have a number of molecular features in common, starting with the ability to integrate their genetic material into the genome of non-dividing infected cells. A peculiar property of non-primate lentiviruses consists in their incapability to infect and induce diseases in humans, thus providing the main rationale for deriving biologically safe lentiviral vectors for gene therapy applications. In this review, we first give an overview of non-primate lentiviruses, highlighting their common and distinctive molecular characteristics together with key concepts in the molecular biology of lentiviruses. We next examine the bioengineering strategies leading to the conversion of lentiviruses into recombinant lentiviral vectors, discussing their potential clinical applications in ophthalmological research. Finally, we highlight the invaluable role of animal organisms, including the emerging zebrafish model, in ocular gene therapy based on non-primate lentiviral vectors and in ophthalmology research and vision science in general.
Collapse
Affiliation(s)
- Vincenzo Cavalieri
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze Edificio 16, 90128 Palermo, Italy.
- Advanced Technologies Network (ATeN) Center, University of Palermo, Viale delle Scienze Edificio 18, 90128 Palermo, Italy.
| | - Elena Baiamonte
- Campus of Haematology Franco e Piera Cutino, Villa Sofia-Cervello Hospital, 90146 Palermo, Italy.
| | - Melania Lo Iacono
- Campus of Haematology Franco e Piera Cutino, Villa Sofia-Cervello Hospital, 90146 Palermo, Italy.
| |
Collapse
|
146
|
Viral peptides-MHC interaction: Binding probability and distance from human peptides. J Immunol Methods 2018; 459:35-43. [PMID: 29800577 DOI: 10.1016/j.jim.2018.05.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 03/26/2018] [Accepted: 05/09/2018] [Indexed: 11/23/2022]
Abstract
Identification of peptides binding to MHC class I complex can play a crucial role in retrieving potential targets able to trigger an immune response. Affinity binding of viral peptides can be estimated through effective computational methods that in the most of cases are based on machine learning approach. Achieving a better insight into peptide features that impact on the affinity binding rate is a challenging issue. In the present work we focused on 9-mer peptides of Human immunodeficiency virus type 1 and Human herpes simplex virus 1, studying their binding to MHC class I. Viral 9-mers were partitioned into different classes, where each class is characterized by how far (in terms of mutation steps) the peptides belonging to that class are from human 9-mers. Viral 9-mers were partitioned in different classes, based on the number of mutation steps they are far from human 9-mers. We showed that the overall binding probability significantly differs among classes, and it typically increases as the distance, computed in terms of number of mutation steps from the human set of 9-mers, increases. The binding probability is particularly high when considering viral 9-mers that are far from all human 9-mers more than three mutation steps. A further evidence, providing significance to those special viral peptides and suggesting a potential role they can play, comes from the analysis of their distribution along viral genomes, as it revealed they are not randomly located, but they preferentially occur in specific genes.
Collapse
|
147
|
Jiang Y, Chai L, Fasae MB, Bai Y. The role of HIV Tat protein in HIV-related cardiovascular diseases. J Transl Med 2018; 16:121. [PMID: 29739413 PMCID: PMC5941636 DOI: 10.1186/s12967-018-1500-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 04/30/2018] [Indexed: 02/06/2023] Open
Abstract
The human immunodeficiency virus (HIV) is a major global public health issue. HIV-related cardiovascular disease remains a leading cause of morbidity and mortality in HIV positive patients. HIV Tat is a regulatory protein encoded by tat gene of HIV-1, which not only promotes the transcription of HIV, but it is also involved in the pathogenesis of HIV-related complications. This review is aimed at summarizing the current understanding of Tat in HIV-related cardiovascular diseases.
Collapse
Affiliation(s)
- Yanan Jiang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine- Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China.,Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China
| | - Lu Chai
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine- Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Moyondafoluwa Blessing Fasae
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine- Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Yunlong Bai
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine- Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China. .,Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China.
| |
Collapse
|
148
|
Takata MA, Soll SJ, Emery A, Blanco-Melo D, Swanstrom R, Bieniasz PD. Global synonymous mutagenesis identifies cis-acting RNA elements that regulate HIV-1 splicing and replication. PLoS Pathog 2018; 14:e1006824. [PMID: 29377940 PMCID: PMC5805364 DOI: 10.1371/journal.ppat.1006824] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 02/08/2018] [Accepted: 12/16/2017] [Indexed: 01/22/2023] Open
Abstract
The ~9.5 kilobase HIV-1 genome contains RNA sequences and structures that control many aspects of viral replication, including transcription, splicing, nuclear export, translation, packaging and reverse transcription. Nonetheless, chemical probing and other approaches suggest that the HIV-1 genome may contain many more RNA secondary structures of unknown importance and function. To determine whether there are additional, undiscovered cis-acting RNA elements in the HIV-1 genome that are important for viral replication, we undertook a global silent mutagenesis experiment. Sixteen mutant proviruses containing clusters of ~50 to ~200 synonymous mutations covering nearly the entire HIV-1 protein coding sequence were designed and synthesized. Analyses of these mutant viruses resulted in their division into three phenotypic groups. Group 1 mutants exhibited near wild-type replication, Group 2 mutants exhibited replication defects accompanied by perturbed RNA splicing, and Group 3 mutants had replication defects in the absence of obvious splicing perturbation. The three phenotypes were caused by mutations that exhibited a clear regional bias in their distribution along the viral genome, and those that caused replication defects all caused reductions in the level of unspliced RNA. We characterized in detail the underlying defects for Group 2 mutants. Second-site revertants that enabled viral replication could be derived for Group 2 mutants, and generally contained point mutations that reduced the utilization of proximal splice sites. Mapping of the changes responsible for splicing perturbations in Group 2 viruses revealed the presence of several RNA sequences that apparently suppressed the use of cryptic or canonical splice sites. Some sequences that affected splicing were diffusely distributed, while others could be mapped to discrete elements, proximal or distal to the affected splice site(s). Overall, our data indicate complex negative regulation of HIV-1 splicing by RNA elements in various regions of the HIV-1 genome that enable balanced splicing and viral replication. In addition to encoding viral proteins, the HIV-1 genome contains sequence elements that act at the level of RNA to enable replication. We undertook an experiment to discover new RNA elements that act in this way by altering nearly the entire coding sequence of the viral genome so as to change the RNA sequence without changing protein sequences. This experiment uncovered two classes of defective mutants. One class had profound defects in RNA splicing, the other had no obvious defects in splicing. Through an analysis of the splicing-defective mutants, we found several previously RNA sequences in the viral genome that affected splicing, enabling a nearly complete catalogue of signals that regulate HIV-1 alternative splicing in infected cells to be derived. Because these newly described sequences lack sequence motifs that are known to bind to canonical splicing-regulatory proteins, they may function through novel mechanisms.
Collapse
Affiliation(s)
- Matthew A. Takata
- Laboratory of Retrovirology, The Rockefeller University, New York, New York, United States of America
| | - Steven J. Soll
- Laboratory of Retrovirology, The Rockefeller University, New York, New York, United States of America
- Howard Hughes Medical Institute, The Rockefeller University, New York, New York, United States of America
| | - Ann Emery
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Daniel Blanco-Melo
- Laboratory of Retrovirology, The Rockefeller University, New York, New York, United States of America
| | - Ronald Swanstrom
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Paul D. Bieniasz
- Laboratory of Retrovirology, The Rockefeller University, New York, New York, United States of America
- Howard Hughes Medical Institute, The Rockefeller University, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
149
|
Angelbello AJ, Chen JL, Childs-Disney JL, Zhang P, Wang ZF, Disney MD. Using Genome Sequence to Enable the Design of Medicines and Chemical Probes. Chem Rev 2018; 118:1599-1663. [PMID: 29322778 DOI: 10.1021/acs.chemrev.7b00504] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Rapid progress in genome sequencing technology has put us firmly into a postgenomic era. A key challenge in biomedical research is harnessing genome sequence to fulfill the promise of personalized medicine. This Review describes how genome sequencing has enabled the identification of disease-causing biomolecules and how these data have been converted into chemical probes of function, preclinical lead modalities, and ultimately U.S. Food and Drug Administration (FDA)-approved drugs. In particular, we focus on the use of oligonucleotide-based modalities to target disease-causing RNAs; small molecules that target DNA, RNA, or protein; the rational repurposing of known therapeutic modalities; and the advantages of pharmacogenetics. Lastly, we discuss the remaining challenges and opportunities in the direct utilization of genome sequence to enable design of medicines.
Collapse
Affiliation(s)
- Alicia J Angelbello
- Departments of Chemistry and Neuroscience, The Scripps Research Institute , 130 Scripps Way, Jupiter, Florida 33458, United States
| | - Jonathan L Chen
- Departments of Chemistry and Neuroscience, The Scripps Research Institute , 130 Scripps Way, Jupiter, Florida 33458, United States
| | - Jessica L Childs-Disney
- Departments of Chemistry and Neuroscience, The Scripps Research Institute , 130 Scripps Way, Jupiter, Florida 33458, United States
| | - Peiyuan Zhang
- Departments of Chemistry and Neuroscience, The Scripps Research Institute , 130 Scripps Way, Jupiter, Florida 33458, United States
| | - Zi-Fu Wang
- Departments of Chemistry and Neuroscience, The Scripps Research Institute , 130 Scripps Way, Jupiter, Florida 33458, United States
| | - Matthew D Disney
- Departments of Chemistry and Neuroscience, The Scripps Research Institute , 130 Scripps Way, Jupiter, Florida 33458, United States
| |
Collapse
|
150
|
Abstract
While luminescent reporter gene assays allow for a rapid and relatively interference free assessment of the activation state of a luminescent reporter, fluorescent reporters do not. They suffer from artifacts such as compound fluorescence and cellular debris which makes the assessment of whole well fluorescence signals difficult. However, the use of high-content screening allows for the isolation of individual cells, segmentation and thus enables the screener to utilize fluorescent reporters to assess the activation state of such a high-content reporter on a cell by cell level, thus minimizing artifacts. Here we discuss the use of such a high-content reporter that enables screening for compounds useful for HIV reactivation on Jurkat cells with high-content screening.
Collapse
Affiliation(s)
- Erica Cook
- Lead Discovery and Optimization, Bristol Myers Squibb, Pennington, NJ, USA
| | - Jeffrey Hermes
- Screening and Translational Enzymology, Roche, Basel, Canton of Basel-Stadt, Switzerland
| | - Jing Li
- Screening & Protein Sciences, Merck Research Labs, Merck & Co., Inc., North Wales, PA, USA
| | - Matthew Tudor
- Screening & Protein Sciences, Merck Research Labs, Merck & Co., Inc., North Wales, PA, USA.
| |
Collapse
|