101
|
Huang S, Braun HP, Gawryluk RMR, Millar AH. Mitochondrial complex II of plants: subunit composition, assembly, and function in respiration and signaling. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 98:405-417. [PMID: 30604579 DOI: 10.1111/tpj.14227] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 12/20/2018] [Accepted: 12/21/2018] [Indexed: 05/20/2023]
Abstract
Complex II [succinate dehydrogenase (succinate-ubiquinone oxidoreductase); EC 1.3.5.1; SDH] is the only enzyme shared by both the electron transport chain and the tricarboxylic acid (TCA) cycle in mitochondria. Complex II in plants is considered unusual because of its accessory subunits (SDH5-SDH8), in addition to the catalytic subunits of SDH found in all eukaryotes (SDH1-SDH4). Here, we review compositional and phylogenetic analysis and biochemical dissection studies to both clarify the presence and propose a role for these subunits. We also consider the wider functional and phylogenetic evidence for SDH assembly factors and the reports from plants on the control of SDH1 flavination and SDH1-SDH2 interaction. Plant complex II has been shown to influence stomatal opening, the plant defense response and reactive oxygen species-dependent stress responses. Signaling molecules such as salicyclic acid (SA) and nitric oxide (NO) are also reported to interact with the ubiquinone (UQ) binding site of SDH, influencing signaling transduction in plants. Future directions for SDH research in plants and the specific roles of its different subunits and assembly factors are suggested, including the potential for reverse electron transport to explain the succinate-dependent production of reactive oxygen species in plants and new avenues to explore the evolution of plant mitochondrial complex II and its utility.
Collapse
Affiliation(s)
- Shaobai Huang
- School of Molecular Sciences & ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, 6009, Crawley, WA, Australia
| | - Hans-Peter Braun
- Institute of Plant Genetics, Leibniz Universität Hannover, 30419, Hannover, Germany
| | | | - A Harvey Millar
- School of Molecular Sciences & ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, 6009, Crawley, WA, Australia
| |
Collapse
|
102
|
Proposal of the reverse flow model for the origin of the eukaryotic cell based on comparative analyses of Asgard archaeal metabolism. Nat Microbiol 2019; 4:1138-1148. [DOI: 10.1038/s41564-019-0406-9] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 02/08/2019] [Indexed: 11/08/2022]
|
103
|
Set KK, Sen K, Huq AHM, Agarwal R. Mitochondrial Disorders of the Nervous System: A Review. Clin Pediatr (Phila) 2019; 58:381-394. [PMID: 30607979 DOI: 10.1177/0009922818821890] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Kallol K Set
- 1 Dayton Children's Hospital, Dayton, OH, USA.,2 Wright State University Boonshoft School of Medicine, Dayton, OH, USA
| | - Kuntal Sen
- 3 Children's Hospital of Michigan, Detroit, MI, USA.,4 Wayne State University School of Medicine, Detroit, MI, USA
| | - A H M Huq
- 3 Children's Hospital of Michigan, Detroit, MI, USA.,4 Wayne State University School of Medicine, Detroit, MI, USA
| | - Rajkumar Agarwal
- 1 Dayton Children's Hospital, Dayton, OH, USA.,2 Wright State University Boonshoft School of Medicine, Dayton, OH, USA
| |
Collapse
|
104
|
Sinha S, Manoj N. Molecular evolution of proteins mediating mitochondrial fission-fusion dynamics. FEBS Lett 2019; 593:703-718. [PMID: 30861107 DOI: 10.1002/1873-3468.13356] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 03/02/2019] [Accepted: 03/07/2019] [Indexed: 01/24/2023]
Abstract
Eukaryotes employ a subset of dynamins to mediate mitochondrial fusion and fission dynamics. Here we report the molecular evolution and diversification of the dynamin-related mitochondrial proteins that drive the fission (Drp1) and the fusion processes (mitofusin and OPA1). We demonstrate that the three paralogs emerged concurrently in an early mitochondriate eukaryotic ancestor. Furthermore, multiple independent duplication events from an ancestral bifunctional fission protein gave rise to specialized fission proteins. The evolutionary history of these proteins is marked by transformations that include independent gain and loss events occurring at the levels of entire genes, specific functional domains, and intronic regions. The domain level variations primarily comprise loss-gain of lineage specific domains that are present in the terminal regions of the sequences.
Collapse
Affiliation(s)
- Sansrity Sinha
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, India
| | - Narayanan Manoj
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, India
| |
Collapse
|
105
|
Cellular Gene Expression during Hepatitis C Virus Replication as Revealed by Ribosome Profiling. Int J Mol Sci 2019; 20:ijms20061321. [PMID: 30875926 PMCID: PMC6470931 DOI: 10.3390/ijms20061321] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 03/06/2019] [Accepted: 03/12/2019] [Indexed: 12/14/2022] Open
Abstract
Background: Hepatitis C virus (HCV) infects human liver hepatocytes, often leading to liver cirrhosis and hepatocellular carcinoma (HCC). It is believed that chronic infection alters host gene expression and favors HCC development. In particular, HCV replication in Endoplasmic Reticulum (ER) derived membranes induces chronic ER stress. How HCV replication affects host mRNA translation and transcription at a genome wide level is not yet known. Methods: We used Riboseq (Ribosome Profiling) to analyze transcriptome and translatome changes in the Huh-7.5 hepatocarcinoma cell line replicating HCV for 6 days. Results: Established viral replication does not cause global changes in host gene expression—only around 30 genes are significantly differentially expressed. Upregulated genes are related to ER stress and HCV replication, and several regulated genes are known to be involved in HCC development. Some mRNAs (PPP1R15A/GADD34, DDIT3/CHOP, and TRIB3) may be subject to upstream open reading frame (uORF) mediated translation control. Transcriptional downregulation mainly affects mitochondrial respiratory chain complex core subunit genes. Conclusion: After establishing HCV replication, the lack of global changes in cellular gene expression indicates an adaptation to chronic infection, while the downregulation of mitochondrial respiratory chain genes indicates how a virus may further contribute to cancer cell-like metabolic reprogramming (“Warburg effect”) even in the hepatocellular carcinoma cells used here.
Collapse
|
106
|
Wai A, Shen C, Carta A, Dansen A, Crous PW, Hausner G. Intron-encoded ribosomal proteins and N-acetyltransferases within the mitochondrial genomes of fungi: here today, gone tomorrow? Mitochondrial DNA A DNA Mapp Seq Anal 2019; 30:573-584. [DOI: 10.1080/24701394.2019.1580272] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Alvan Wai
- Department of Microbiology, University of Manitoba, Winnipeg, Canada
| | - Chen Shen
- Department of Microbiology, University of Manitoba, Winnipeg, Canada
| | - Andrell Carta
- Department of Microbiology, University of Manitoba, Winnipeg, Canada
| | - Alexandra Dansen
- Department of Microbiology, University of Manitoba, Winnipeg, Canada
| | - Pedro W. Crous
- The Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, The Netherlands
| | - Georg Hausner
- Department of Microbiology, University of Manitoba, Winnipeg, Canada
| |
Collapse
|
107
|
Robles P, Quesada V. Transcriptional and Post-transcriptional Regulation of Organellar Gene Expression (OGE) and Its Roles in Plant Salt Tolerance. Int J Mol Sci 2019; 20:E1056. [PMID: 30823472 PMCID: PMC6429081 DOI: 10.3390/ijms20051056] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 02/21/2019] [Accepted: 02/25/2019] [Indexed: 12/26/2022] Open
Abstract
Given their endosymbiotic origin, chloroplasts and mitochondria genomes harbor only between 100 and 200 genes that encode the proteins involved in organellar gene expression (OGE), photosynthesis, and the electron transport chain. However, as the activity of these organelles also needs a few thousand proteins encoded by the nuclear genome, a close coordination of the gene expression between the nucleus and organelles must exist. In line with this, OGE regulation is crucial for plant growth and development, and is achieved mainly through post-transcriptional mechanisms performed by nuclear genes. In this way, the nucleus controls the activity of organelles and these, in turn, transmit information about their functional state to the nucleus by modulating nuclear expression according to the organelles' physiological requirements. This adjusts organelle function to plant physiological, developmental, or growth demands. Therefore, OGE must appropriately respond to both the endogenous signals and exogenous environmental cues that can jeopardize plant survival. As sessile organisms, plants have to respond to adverse conditions to acclimate and adapt to them. Salinity is a major abiotic stress that negatively affects plant development and growth, disrupts chloroplast and mitochondria function, and leads to reduced yields. Information on the effects that the disturbance of the OGE function has on plant tolerance to salinity is still quite fragmented. Nonetheless, many plant mutants which display altered responses to salinity have been characterized in recent years, and interestingly, several are affected in nuclear genes encoding organelle-localized proteins that regulate the expression of organelle genes. These results strongly support a link between OGE and plant salt tolerance, likely through retrograde signaling. Our review analyzes recent findings on the OGE functions required by plants to respond and tolerate salinity, and highlights the fundamental role that chloroplast and mitochondrion homeostasis plays in plant adaptation to salt stress.
Collapse
Affiliation(s)
- Pedro Robles
- Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, 03202 Elche, Spain.
| | - Víctor Quesada
- Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, 03202 Elche, Spain.
| |
Collapse
|
108
|
Poberezhnyi VI, Marchuk OV, Shvidyuk OS, Petrik IY, Logvinov OS. Fundamentals of the modern theory of the phenomenon of "pain" from the perspective of a systematic approach. Neurophysiological basis. Part 1: A brief presentation of key subcellular and cellular ctructural elements of the central nervous system. PAIN MEDICINE 2019. [DOI: 10.31636/pmjua.v3i4.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The phenomenon of “pain” is a psychophysiological phenomenon that is actualized in the mind of a person as a result of the systemic response of his body to certain external and internal stimuli. The heart of the corresponding mental processes is certain neurophysiological processes, which in turn are caused by a certain form of the systemic structural and functional organization of the central nervous system (CNS). Thus, the systemic structural and functional organization of the central nervous system of a person, determining the corresponding psychophysiological state in a specific time interval, determines its psycho-emotional states or reactions manifested by the pain phenomenon. The nervous system of the human body has a hierarchical structure and is a morphologically and functionally complete set of different, interconnected, nervous and structural formations. The basis of the structural formations of the nervous system is nervous tissue. It is a system of interconnected differentials of nerve cells, neuroglia and glial macrophages, providing specific functions of perception of stimulation, excitation, generation of nerve impulses and its transmission. The neuron and each of its compartments (spines, dendrites, catfish, axon) is an autonomous, plastic, active, structural formation with complex computational properties. One of them – dendrites – plays a key role in the integration and processing of information. Dendrites, due to their morphology, provide neurons with unique electrical and plastic properties and cause variations in their computational properties. The morphology of dendrites: 1) determines – a) the number and type of contacts that a particular neuron can form with other neurons; b) the complexity, diversity of its functions; c) its computational operations; 2) determines – a) variations in the computational properties of a neuron (variations of the discharges between bursts and regular forms of pulsation); b) back distribution of action potentials. Dendritic spines can form synaptic connection – one of the main factors for increasing the diversity of forms of synaptic connections of neurons. Their volume and shape can change over a short period of time, and they can rotate in space, appear and disappear by themselves. Spines play a key role in selectively changing the strength of synaptic connections during the memorization and learning process. Glial cells are active participants in diffuse transmission of nerve impulses in the brain. Astrocytes form a three-dimensional, functionally “syncytia-like” formation, inside of which there are neurons, thus causing their specific microenvironment. They and neurons are structurally and functionally interconnected, based on which their permanent interaction occurs. Oligodendrocytes provide conditions for the generation and transmission of nerve impulses along the processes of neurons and play a significant role in the processes of their excitation and inhibition. Microglial cells play an important role in the formation of the brain, especially in the formation and maintenance of synapses. Thus, the CNS should be considered as a single, functionally “syncytia-like”, structural entity. Because the three-dimensional distribution of dendritic branches in space is important for determining the type of information that goes to a neuron, it is necessary to consider the three-dimensionality of their structure when analyzing the implementation of their functions.
Collapse
|
109
|
Kraja AT, Liu C, Fetterman JL, Graff M, Have CT, Gu C, Yanek LR, Feitosa MF, Arking DE, Chasman DI, Young K, Ligthart S, Hill WD, Weiss S, Luan J, Giulianini F, Li-Gao R, Hartwig FP, Lin SJ, Wang L, Richardson TG, Yao J, Fernandez EP, Ghanbari M, Wojczynski MK, Lee WJ, Argos M, Armasu SM, Barve RA, Ryan KA, An P, Baranski TJ, Bielinski SJ, Bowden DW, Broeckel U, Christensen K, Chu AY, Corley J, Cox SR, Uitterlinden AG, Rivadeneira F, Cropp CD, Daw EW, van Heemst D, de las Fuentes L, Gao H, Tzoulaki I, Ahluwalia TS, de Mutsert R, Emery LS, Erzurumluoglu AM, Perry JA, Fu M, Forouhi NG, Gu Z, Hai Y, Harris SE, Hemani G, Hunt SC, Irvin MR, Jonsson AE, Justice AE, Kerrison ND, Larson NB, Lin KH, Love-Gregory LD, Mathias RA, Lee JH, Nauck M, Noordam R, Ong KK, Pankow J, Patki A, Pattie A, Petersmann A, Qi Q, Ribel-Madsen R, Rohde R, Sandow K, Schnurr TM, Sofer T, Starr JM, Taylor AM, Teumer A, Timpson NJ, de Haan HG, Wang Y, Weeke PE, Williams C, Wu H, Yang W, Zeng D, Witte DR, Weir BS, Wareham NJ, Vestergaard H, Turner ST, Torp-Pedersen C, Stergiakouli E, Sheu WHH, et alKraja AT, Liu C, Fetterman JL, Graff M, Have CT, Gu C, Yanek LR, Feitosa MF, Arking DE, Chasman DI, Young K, Ligthart S, Hill WD, Weiss S, Luan J, Giulianini F, Li-Gao R, Hartwig FP, Lin SJ, Wang L, Richardson TG, Yao J, Fernandez EP, Ghanbari M, Wojczynski MK, Lee WJ, Argos M, Armasu SM, Barve RA, Ryan KA, An P, Baranski TJ, Bielinski SJ, Bowden DW, Broeckel U, Christensen K, Chu AY, Corley J, Cox SR, Uitterlinden AG, Rivadeneira F, Cropp CD, Daw EW, van Heemst D, de las Fuentes L, Gao H, Tzoulaki I, Ahluwalia TS, de Mutsert R, Emery LS, Erzurumluoglu AM, Perry JA, Fu M, Forouhi NG, Gu Z, Hai Y, Harris SE, Hemani G, Hunt SC, Irvin MR, Jonsson AE, Justice AE, Kerrison ND, Larson NB, Lin KH, Love-Gregory LD, Mathias RA, Lee JH, Nauck M, Noordam R, Ong KK, Pankow J, Patki A, Pattie A, Petersmann A, Qi Q, Ribel-Madsen R, Rohde R, Sandow K, Schnurr TM, Sofer T, Starr JM, Taylor AM, Teumer A, Timpson NJ, de Haan HG, Wang Y, Weeke PE, Williams C, Wu H, Yang W, Zeng D, Witte DR, Weir BS, Wareham NJ, Vestergaard H, Turner ST, Torp-Pedersen C, Stergiakouli E, Sheu WHH, Rosendaal FR, Ikram MA, Franco OH, Ridker PM, Perls TT, Pedersen O, Nohr EA, Newman AB, Linneberg A, Langenberg C, Kilpeläinen TO, Kardia SLR, Jørgensen ME, Jørgensen T, Sørensen TIA, Homuth G, Hansen T, Goodarzi MO, Deary IJ, Christensen C, Chen YDI, Chakravarti A, Brandslund I, Bonnelykke K, Taylor KD, Wilson JG, Rodriguez S, Davies G, Horta BL, Thyagarajan B, Rao DC, Grarup N, Davila-Roman VG, Hudson G, Guo X, Arnett DK, Hayward C, Vaidya D, Mook-Kanamori DO, Tiwari HK, Levy D, Loos RJF, Dehghan A, Elliott P, Malik AN, Scott RA, Becker DM, de Andrade M, Province MA, Meigs JB, Rotter JI, North KE. Associations of Mitochondrial and Nuclear Mitochondrial Variants and Genes with Seven Metabolic Traits. Am J Hum Genet 2019; 104:112-138. [PMID: 30595373 PMCID: PMC6323610 DOI: 10.1016/j.ajhg.2018.12.001] [Show More Authors] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Accepted: 12/06/2018] [Indexed: 12/16/2022] Open
Abstract
Mitochondria (MT), the major site of cellular energy production, are under dual genetic control by 37 mitochondrial DNA (mtDNA) genes and numerous nuclear genes (MT-nDNA). In the CHARGEmtDNA+ Consortium, we studied genetic associations of mtDNA and MT-nDNA associations with body mass index (BMI), waist-hip-ratio (WHR), glucose, insulin, HOMA-B, HOMA-IR, and HbA1c. This 45-cohort collaboration comprised 70,775 (insulin) to 170,202 (BMI) pan-ancestry individuals. Validation and imputation of mtDNA variants was followed by single-variant and gene-based association testing. We report two significant common variants, one in MT-ATP6 associated (p ≤ 5E-04) with WHR and one in the D-loop with glucose. Five rare variants in MT-ATP6, MT-ND5, and MT-ND6 associated with BMI, WHR, or insulin. Gene-based meta-analysis identified MT-ND3 associated with BMI (p ≤ 1E-03). We considered 2,282 MT-nDNA candidate gene associations compiled from online summary results for our traits (20 unique studies with 31 dataset consortia's genome-wide associations [GWASs]). Of these, 109 genes associated (p ≤ 1E-06) with at least 1 of our 7 traits. We assessed regulatory features of variants in the 109 genes, cis- and trans-gene expression regulation, and performed enrichment and protein-protein interactions analyses. Of the identified mtDNA and MT-nDNA genes, 79 associated with adipose measures, 49 with glucose/insulin, 13 with risk for type 2 diabetes, and 18 with cardiovascular disease, indicating for pleiotropic effects with health implications. Additionally, 21 genes related to cholesterol, suggesting additional important roles for the genes identified. Our results suggest that mtDNA and MT-nDNA genes and variants reported make important contributions to glucose and insulin metabolism, adipocyte regulation, diabetes, and cardiovascular disease.
Collapse
Affiliation(s)
- Aldi T Kraja
- Division of Statistical Genomics, Department of Genetics, Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St Louis, MO 63110, USA.
| | - Chunyu Liu
- Department of Biostatistics, Boston University School of Public Health, Boston, MA 02118, USA
| | - Jessica L Fetterman
- Evans Department of Medicine and Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA 02118, USA
| | - Mariaelisa Graff
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC 27516, USA
| | - Christian Theil Have
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2200, Denmark
| | - Charles Gu
- Division of Biostatistics, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Lisa R Yanek
- GeneSTAR Research Program, Division of General Internal Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Mary F Feitosa
- Division of Statistical Genomics, Department of Genetics, Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Dan E Arking
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Daniel I Chasman
- Division of Preventive Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA; Harvard Medical School, Boston, MA 02115, USA
| | - Kristin Young
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC 27516, USA
| | - Symen Ligthart
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam 3015 CE, the Netherlands
| | - W David Hill
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Department of Psychology, University of Edinburgh, Edinburgh EH8 9JZ, UK
| | - Stefan Weiss
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine and University of Greifswald, Greifswald 17475, Germany
| | - Jian'an Luan
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Cambridge CB2 0QQ, UK
| | - Franco Giulianini
- Division of Preventive Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Ruifang Li-Gao
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden 2333 ZA, the Netherlands
| | - Fernando P Hartwig
- Postgraduate Program in Epidemiology, Federal University of Pelotas, Pelotas 96020-220, Brazil; MRC Integrative Epidemiology Unit (IEU), Population Health Sciences, University of Bristol, Bristol BS8 2BN, UK
| | - Shiow J Lin
- Division of Statistical Genomics, Department of Genetics, Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Lihua Wang
- Division of Statistical Genomics, Department of Genetics, Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Tom G Richardson
- MRC Integrative Epidemiology Unit (IEU), Population Health Sciences, University of Bristol, Bristol BS8 2BN, UK
| | - Jie Yao
- Institute for Translational Genomics and Population Sciences, LABioMed and Department of Pediatrics, at Harbor-UCLA Medical Center, Torrance, CA 90502, USA
| | - Eliana P Fernandez
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam 3015 CE, the Netherlands
| | - Mohsen Ghanbari
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam 3015 CE, the Netherlands
| | - Mary K Wojczynski
- Division of Statistical Genomics, Department of Genetics, Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Wen-Jane Lee
- Department of Medical Research, Taichung Veterans General Hospital, Taichung 407, Taiwan; Department of Social Work, Tunghai University, Taichung 407, Taiwan
| | - Maria Argos
- Department of Epidemiology and Biostatistics, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Sebastian M Armasu
- Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, Rochester, MN 55905, USA
| | - Ruteja A Barve
- Department of Genetics, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Kathleen A Ryan
- School of Medicine, Division of Endocrinology, Diabetes and Nutrition, and Program for Personalized and Genomic Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Ping An
- Division of Statistical Genomics, Department of Genetics, Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Thomas J Baranski
- Division of Endocrinology, Metabolism and Lipid Research, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Suzette J Bielinski
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN 55905, USA
| | - Donald W Bowden
- Center for Diabetes Research, Wake Forest School of Medicine, Cincinnati, OH 45206, USA
| | - Ulrich Broeckel
- Human and Molecular Genetics Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Kaare Christensen
- The Danish Aging Research Center, University of Southern Denmark, Odense 5000, Denmark
| | - Audrey Y Chu
- Division of Preventive Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Janie Corley
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Department of Psychology, University of Edinburgh, Edinburgh EH8 9JZ, UK
| | - Simon R Cox
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Department of Psychology, University of Edinburgh, Edinburgh EH8 9JZ, UK
| | - Andre G Uitterlinden
- Department of Internal Medicine, Erasmus Medical Center, 3000 CA Rotterdam, the Netherlands
| | - Fernando Rivadeneira
- Department of Internal Medicine, Erasmus Medical Center, 3000 CA Rotterdam, the Netherlands
| | - Cheryl D Cropp
- Samford University McWhorter School of Pharmacy, Birmingham, Alabama, Translational Genomics Research Institute (TGen), Phoenix, AZ 35229, USA
| | - E Warwick Daw
- Division of Statistical Genomics, Department of Genetics, Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Diana van Heemst
- Department of Internal Medicine, Section of Gerontology and Geriatrics, Leiden University Medical Center, Leiden 2333 ZA, the Netherlands
| | - Lisa de las Fuentes
- Cardiovascular Division, Department of Medicine, Washington University School of Medicine, St Louis, MO 63110, USA
| | - He Gao
- Department of Biostatistics and Epidemiology, MRC-PHE Centre for Environment and Health, School of Public Health, Imperial College London, London W2 1PG, UK
| | - Ioanna Tzoulaki
- Department of Biostatistics and Epidemiology, MRC-PHE Centre for Environment and Health, School of Public Health, Imperial College London, London W2 1PG, UK; Department of Hygiene and Epidemiology, University of Ioannina, Ioannina 45110, Greece
| | | | - Renée de Mutsert
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden 2333 ZA, the Netherlands
| | - Leslie S Emery
- Department of Biostatistics, University of Washington, Seattle, WA 98195, USA
| | | | - James A Perry
- School of Medicine, Division of Endocrinology, Diabetes and Nutrition, and Program for Personalized and Genomic Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Mao Fu
- School of Medicine, Division of Endocrinology, Diabetes and Nutrition, and Program for Personalized and Genomic Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Nita G Forouhi
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Cambridge CB2 0QQ, UK
| | - Zhenglong Gu
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Yang Hai
- Institute for Translational Genomics and Population Sciences, LABioMed and Department of Pediatrics, at Harbor-UCLA Medical Center, Torrance, CA 90502, USA
| | - Sarah E Harris
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Centre for Genomic and Experimental Medicine, Medical Genetics Section, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Gibran Hemani
- MRC Integrative Epidemiology Unit (IEU), Population Health Sciences, University of Bristol, Bristol BS8 2BN, UK
| | - Steven C Hunt
- Department of Internal Medicine, University of Utah, Salt Lake City, UT 84132, USA; Department of Genetic Medicine, Weill Cornell Medicine, PO Box 24144, Doha, Qatar
| | - Marguerite R Irvin
- Department of Epidemiology, School of Public Health, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Anna E Jonsson
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2200, Denmark
| | - Anne E Justice
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC 27516, USA; Biomedical and Translational Informatics, Geisinger Health, Danville, PA 17822, USA
| | - Nicola D Kerrison
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Cambridge CB2 0QQ, UK
| | - Nicholas B Larson
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN 55905, USA
| | - Keng-Hung Lin
- Department of Ophthalmology, Taichung Veterans General Hospital, Taichung 407, Taiwan
| | - Latisha D Love-Gregory
- Genomics & Pathology Services, Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Rasika A Mathias
- GeneSTAR Research Program, Division of General Internal Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; GeneSTAR Research Program, Divisions of Allergy and Clinical Immunology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Joseph H Lee
- Taub Institute for Research on Alzheimer disease and the Aging Brain, Columbia University Medical Center, New York, NY 10032, USA
| | - Matthias Nauck
- Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, Greifswald 17475, Germany
| | - Raymond Noordam
- Department of Internal Medicine, Section of Gerontology and Geriatrics, Leiden University Medical Center, Leiden 2333 ZA, the Netherlands
| | - Ken K Ong
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Cambridge CB2 0QQ, UK
| | - James Pankow
- University of Minnesota School of Public Health, Division of Epidemiology and Community Health, Minneapolis, MN 55454, USA
| | - Amit Patki
- Department of Biostatistics, School of Public Health, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Alison Pattie
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Department of Psychology, University of Edinburgh, Edinburgh EH8 9JZ, UK
| | - Astrid Petersmann
- Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, Greifswald 17475, Germany
| | - Qibin Qi
- Department of Epidemiology & Population Health, Albert Einstein School of Medicine, Bronx, NY 10461, USA
| | - Rasmus Ribel-Madsen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2200, Denmark; Department of Endocrinology, Diabetes and Metabolism, Rigshospitalet, Copenhagen University Hospital, 2100 Copenhagen, Denmark; The Danish Diabetes Academy, 5000 Odense, Denmark
| | - Rebecca Rohde
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC 27516, USA
| | - Kevin Sandow
- Institute for Translational Genomics and Population Sciences, LABioMed and Department of Pediatrics, at Harbor-UCLA Medical Center, Torrance, CA 90502, USA
| | - Theresia M Schnurr
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2200, Denmark
| | - Tamar Sofer
- Department of Biostatistics, University of Washington, Seattle, WA 98195, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - John M Starr
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Department of Psychology, University of Edinburgh, Edinburgh EH8 9JZ, UK; Alzheimer Scotland Dementia Research Centre, University of Edinburgh, Edinburgh EH8 9JZ, UK
| | - Adele M Taylor
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Department of Psychology, University of Edinburgh, Edinburgh EH8 9JZ, UK
| | - Alexander Teumer
- Institute for Community Medicine, University Medicine Greifswald, 17475 Greifswald, Germany
| | - Nicholas J Timpson
- MRC Integrative Epidemiology Unit (IEU), Population Health Sciences, University of Bristol, Bristol BS8 2BN, UK
| | - Hugoline G de Haan
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden 2333 ZA, the Netherlands
| | - Yujie Wang
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC 27516, USA
| | - Peter E Weeke
- Department of Cardiology, The Heart Centre, Rigshospitalet, University of Copenhagen, Copenhagen 2100, Denmark
| | - Christine Williams
- Division of Statistical Genomics, Department of Genetics, Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Hongsheng Wu
- Computer Science and Networking, Wentworth Institute of Technology, Boston, MA 02115, USA
| | - Wei Yang
- Genome Technology Access Center, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Donglin Zeng
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Daniel R Witte
- Department of Public Health, Section of Epidemiology, Aarhus University, Denmark, Danish Diabetes Academy, Odense University Hospital, 5000 Odense, Denmark
| | - Bruce S Weir
- Department of Biostatistics, University of Washington, Seattle, WA 98195, USA
| | - Nicholas J Wareham
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Cambridge CB2 0QQ, UK
| | - Henrik Vestergaard
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2200, Denmark; Steno Diabetes Center Copenhagen, Copenhagen 2820, Denmark
| | - Stephen T Turner
- Division of Nephrology and Hypertension, Department of Cardiovascular Diseases, Mayo Clinic, Rochester, MN 55902, USA
| | - Christian Torp-Pedersen
- Department of Health Science and Technology, Aalborg University Hospital, Aalborg 9220, Denmark
| | - Evie Stergiakouli
- MRC Integrative Epidemiology Unit (IEU), Population Health Sciences, University of Bristol, Bristol BS8 2BN, UK
| | - Wayne Huey-Herng Sheu
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung 407, Taiwan; Institute of Medical Technology, National Chung-Hsing University, Taichung 402, Taiwan; School of Medicine, National Defense Medical Center, Taipei 114, Taiwan; School of Medicine, National Yang-Ming University, Taipei 112, Taiwan
| | - Frits R Rosendaal
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden 2333 ZA, the Netherlands
| | - M Arfan Ikram
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam 3015 CE, the Netherlands
| | - Oscar H Franco
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam 3015 CE, the Netherlands; Institute of Social and Preventive Medicine (ISPM), University of Bern, 3012 Bern, Switzerland
| | - Paul M Ridker
- Division of Preventive Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA; Harvard Medical School, Boston, MA 02115, USA
| | - Thomas T Perls
- Department of Medicine, Geriatrics Section, Boston University School of Medicine and Boston Medical Center, Boston, MA 02118, USA
| | - Oluf Pedersen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2200, Denmark
| | - Ellen A Nohr
- Research Unit for Gynecology and Obstetrics, Department of Clinical Research, University of Southern Denmark, 5000 Odense, Denmark
| | - Anne B Newman
- Department of Epidemiology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Allan Linneberg
- Department of Clinical Experimental Research, Rigshospitalet, Copenhagen 2200, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2200, Denmark; The Center for Clinical Research and Prevention, Bispebjerg and Frederiksberg Hospital, The Capital Region, Copenhagen 2000, Denmark
| | - Claudia Langenberg
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Cambridge CB2 0QQ, UK
| | - Tuomas O Kilpeläinen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2200, Denmark
| | - Sharon L R Kardia
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA
| | | | - Torben Jørgensen
- Research Centre for Prevention and Health, Glostrup Hospital, Glostrup 2600, Denmark; Department of Public Health, Faculty of Health Sciences, University of Copenhagen, Copenhagen 1014, Denmark; Faculty of Medicine, Aalborg University, Aalborg 9100, Denmark
| | - Thorkild I A Sørensen
- Novo Nordisk Foundation Center for Basic Metabolic Research (Section of Metabolic Genetics) and Department of Public Health (Section on Epidemiology), Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2200N, Denmark
| | - Georg Homuth
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine and University of Greifswald, Greifswald 17475, Germany
| | - Torben Hansen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2200, Denmark
| | - Mark O Goodarzi
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Ian J Deary
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Department of Psychology, University of Edinburgh, Edinburgh EH8 9JZ, UK
| | - Cramer Christensen
- Department of Internal Medicine, Section of Endocrinology, Vejle Lillebaelt Hospital, 7100 Vejle, Denmark
| | - Yii-Der Ida Chen
- Institute for Translational Genomics and Population Sciences, LABioMed and Department of Pediatrics, at Harbor-UCLA Medical Center, Torrance, CA 90502, USA
| | - Aravinda Chakravarti
- Center for Complex Disease Genomics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Ivan Brandslund
- Department of Clinical Biochemistry, Vejle Hospital, 7100 Vejle, Denmark; Institute of Regional Health Research, University of Southern Denmark, 5000 Odense C, Denmark
| | - Klaus Bonnelykke
- Copenhagen Prospective Studies on Asthma in Childhood, Copenhagen University Hospital, Gentofte & Naestved 2820, Denmark; Health Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Kent D Taylor
- Institute for Translational Genomics and Population Sciences, LABioMed and Department of Pediatrics, at Harbor-UCLA Medical Center, Torrance, CA 90502, USA
| | - James G Wilson
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Santiago Rodriguez
- MRC Integrative Epidemiology Unit (IEU), Population Health Sciences, University of Bristol, Bristol BS8 2BN, UK
| | - Gail Davies
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Department of Psychology, University of Edinburgh, Edinburgh EH8 9JZ, UK
| | - Bernardo L Horta
- Postgraduate Program in Epidemiology, Federal University of Pelotas, Pelotas 96020-220, Brazil
| | - Bharat Thyagarajan
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455, USA
| | - D C Rao
- Division of Biostatistics, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Niels Grarup
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2200, Denmark
| | - Victor G Davila-Roman
- Cardiovascular Division, Department of Medicine, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Gavin Hudson
- Wellcome Trust Centre for Mitochondrial Research, Institute of Neuroscience, Newcastle University, Newcastle upon Tyne NE1 3BZ, UK
| | - Xiuqing Guo
- Institute for Translational Genomics and Population Sciences, LABioMed and Department of Pediatrics, at Harbor-UCLA Medical Center, Torrance, CA 90502, USA
| | - Donna K Arnett
- University of Kentucky, College of Public Health, Lexington, KY 40508, USA
| | - Caroline Hayward
- MRC Human Genetics Unit, University of Edinburgh, Institute of Genetics and Molecular Medicine, Western General Hospital, Edinburgh EH4 2XU, UK
| | - Dhananjay Vaidya
- GeneSTAR Research Program, Division of General Internal Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Dennis O Mook-Kanamori
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden 2333 ZA, the Netherlands; Department of Public Health and Primary Care, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
| | - Hemant K Tiwari
- Department of Biostatistics, School of Public Health, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Daniel Levy
- The Framingham Heart Study, Framingham, MA, USA; The Population Sciences Branch, NHLBI/NIH, Bethesda, MD 20892, USA
| | - Ruth J F Loos
- Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Genetics of Obesity and Related Traits Program, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Abbas Dehghan
- Department of Biostatistics and Epidemiology, MRC-PHE Centre for Environment and Health, School of Public Health, Imperial College London, London W2 1PG, UK
| | - Paul Elliott
- Department of Biostatistics and Epidemiology, MRC-PHE Centre for Environment and Health, School of Public Health, Imperial College London, London W2 1PG, UK
| | - Afshan N Malik
- King's College London, Department of Diabetes, School of Life Course, Faculty of Life Sciences and Medicine, London SE1 1NN, UK
| | - Robert A Scott
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Cambridge CB2 0QQ, UK
| | - Diane M Becker
- GeneSTAR Research Program, Division of General Internal Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Mariza de Andrade
- Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, Rochester, MN 55905, USA
| | - Michael A Province
- Division of Statistical Genomics, Department of Genetics, Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St Louis, MO 63110, USA
| | - James B Meigs
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA; Division of General Internal Medicine, Massachusetts General Hospital, Boston 02114, MA, USA; Program in Medical and Population Genetics, Broad Institute, Boston, MA 02142, USA
| | - Jerome I Rotter
- Institute for Translational Genomics and Population Sciences, LABioMed and Department of Pediatrics, at Harbor-UCLA Medical Center, Torrance, CA 90502, USA
| | - Kari E North
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC 27516, USA.
| |
Collapse
|
110
|
Yehudai D, Liyanage SU, Hurren R, Rizoska B, Albertella M, Gronda M, Jeyaraju DV, Wang X, Barghout SH, MacLean N, Siriwardena TP, Jitkova Y, Targett-Adams P, Schimmer AD. The thymidine dideoxynucleoside analog, alovudine, inhibits the mitochondrial DNA polymerase γ, impairs oxidative phosphorylation and promotes monocytic differentiation in acute myeloid leukemia. Haematologica 2018; 104:963-972. [PMID: 30573504 PMCID: PMC6518883 DOI: 10.3324/haematol.2018.195172] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 12/17/2018] [Indexed: 12/23/2022] Open
Abstract
Mitochondrial DNA encodes 13 proteins that comprise components of the respiratory chain that maintain oxidative phosphorylation. The replication of mitochondrial DNA is performed by the sole mitochondrial DNA polymerase γ. As acute myeloid leukemia (AML) cells and stem cells have an increased reliance on oxidative phosphorylation, we sought to evaluate polymerase γ inhibitors in AML. The thymidine dideoxynucleoside analog, alovudine, is an inhibitor of polymerase γ. In AML cells, alovudine depleted mitochondrial DNA, reduced mitochondrial encoded proteins, decreased basal oxygen consumption, and decreased cell proliferation and viability. To evaluate the effects of polymerase γ inhibition with alovudine in vivo, mice were xenografted with OCI-AML2 cells and then treated with alovudine. Systemic administration of alovudine reduced leukemic growth without evidence of toxicity and decreased levels of mitochondrial DNA in the leukemic cells. We also showed that alovudine increased the monocytic differentiation of AML cells. Genetic knockdown and other chemical inhibitors of polymerase γ also promoted AML differentiation, but the effects on AML differentiation were independent of reductions in oxidative phosphorylation or respiratory chain proteins. Thus, we have identified a novel mechanism by which mitochondria regulate AML fate and differentiation independent of oxidative phosphorylation. Moreover, we highlight polymerase γ inhibitors, such as alovudine, as novel therapeutic agents for AML.
Collapse
Affiliation(s)
- Dana Yehudai
- Princess Margaret Cancer Centre, University Health Network, ON, Canada.,Medivir AB, Huddinge, Sweden
| | | | - Rose Hurren
- Princess Margaret Cancer Centre, University Health Network, ON, Canada
| | | | - Mark Albertella
- Princess Margaret Cancer Centre, University Health Network, ON, Canada
| | - Marcela Gronda
- Princess Margaret Cancer Centre, University Health Network, ON, Canada
| | - Danny V Jeyaraju
- Princess Margaret Cancer Centre, University Health Network, ON, Canada
| | - Xiaoming Wang
- Princess Margaret Cancer Centre, University Health Network, ON, Canada
| | - Samir H Barghout
- Princess Margaret Cancer Centre, University Health Network, ON, Canada
| | - Neil MacLean
- Princess Margaret Cancer Centre, University Health Network, ON, Canada
| | | | - Yulia Jitkova
- Princess Margaret Cancer Centre, University Health Network, ON, Canada
| | | | - Aaron D Schimmer
- Princess Margaret Cancer Centre, University Health Network, ON, Canada
| |
Collapse
|
111
|
Zein R, Selting W, Hamblin MR. Review of light parameters and photobiomodulation efficacy: dive into complexity. JOURNAL OF BIOMEDICAL OPTICS 2018; 23:1-17. [PMID: 30550048 PMCID: PMC8355782 DOI: 10.1117/1.jbo.23.12.120901] [Citation(s) in RCA: 193] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 11/14/2018] [Indexed: 05/09/2023]
Abstract
Photobiomodulation (PBM) therapy, previously known as low-level laser therapy, was discovered more than 50 years ago, yet there is still no agreement on the parameters and protocols for its clinical application. Some groups have recommended the use of a power density less than 100 mW/cm2 and an energy density of 4 to 10 J/cm2 at the level of the target tissue. Others recommend as much as 50 J/cm2 at the tissue surface. The wide range of parameters that can be applied (wavelength, energy, fluence, power, irradiance, pulse mode, treatment duration, and repetition) in some cases has led to contradictory results. In our review, we attempt to evaluate the range of effective and ineffective parameters in PBM. Studies in vitro with cultured cells or in vivo with different tissues were divided into those with higher numbers of mitochondria (muscle, brain, heart, nerve) or lower numbers of mitochondria (skin, tendon, cartilage). Graphs were plotted of energy density against power density. Although the results showed a high degree of variability, cells/tissues with high numbers of mitochondria tended to respond to lower doses of light than those with lower number of mitochondria. Ineffective studies in cells with high mitochondrial activity appeared to be more often due to over-dosing than to under-dosing.
Collapse
Affiliation(s)
- Randa Zein
- University of Genoa, Department of Surgical Science and Integrated Diagnostics, Genoa, Italy
| | - Wayne Selting
- University of Genoa, Department of Surgical Science and Integrated Diagnostics, Genoa, Italy
| | - Michael R. Hamblin
- Massachusetts General Hospital, Wellman Center for Photomedicine, Boston, Massachusetts, United States
- Harvard Medical School, Department of Dermatology, Boston, Massachusetts, United States
- Harvard-MIT Division of Health Sciences and Technology, Cambridge, Massachusetts, United States
| |
Collapse
|
112
|
Sharma M, Bennewitz B, Klösgen RB. Rather rule than exception? How to evaluate the relevance of dual protein targeting to mitochondria and chloroplasts. PHOTOSYNTHESIS RESEARCH 2018; 138:335-343. [PMID: 29946965 DOI: 10.1007/s11120-018-0543-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 06/20/2018] [Indexed: 05/11/2023]
Abstract
Dual targeting of a nuclearly encoded protein into two different cell organelles is an exceptional event in eukaryotic cells. Yet, the frequency of such dual targeting is remarkably high in case of mitochondria and chloroplasts, the two endosymbiotic organelles of plant cells. In most instances, it is mediated by "ambiguous" transit peptides, which recognize both organelles as the target. A number of different approaches including in silico, in organello as well as both transient and stable in vivo assays are established to determine the targeting specificity of such transit peptides. In this review, we will describe and compare these approaches and discuss the potential role of this unusual targeting process. Furthermore, we will present a hypothetical scenario how dual targeting might have arisen during evolution.
Collapse
Affiliation(s)
- Mayank Sharma
- Institute of Biology - Plant Physiology, Martin Luther University Halle-Wittenberg, Weinbergweg 10, 06120, Halle/Saale, Germany
| | - Bationa Bennewitz
- Institute of Biology - Plant Physiology, Martin Luther University Halle-Wittenberg, Weinbergweg 10, 06120, Halle/Saale, Germany
| | - Ralf Bernd Klösgen
- Institute of Biology - Plant Physiology, Martin Luther University Halle-Wittenberg, Weinbergweg 10, 06120, Halle/Saale, Germany.
| |
Collapse
|
113
|
Valach M, Léveillé-Kunst A, Gray MW, Burger G. Respiratory chain Complex I of unparalleled divergence in diplonemids. J Biol Chem 2018; 293:16043-16056. [PMID: 30166340 DOI: 10.1074/jbc.ra118.005326] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Indexed: 12/14/2022] Open
Abstract
Mitochondrial genes of Euglenozoa (Kinetoplastida, Diplonemea, and Euglenida) are notorious for being barely recognizable, raising the question of whether such divergent genes actually code for functional proteins. Here we demonstrate the translation and identify the function of five previously unassigned y genes encoded by mitochondrial DNA (mtDNA) of diplonemids. As is the rule in diplonemid mitochondria, y genes are fragmented, with gene pieces transcribed separately and then trans-spliced to form contiguous mRNAs. Further, y transcripts undergo massive RNA editing, including uridine insertions that generate up to 16-residue-long phenylalanine tracts, a feature otherwise absent from conserved mitochondrial proteins. By protein sequence analyses, MS, and enzymatic assays in Diplonema papillatum, we show that these y genes encode the subunits Nad2, -3, -4L, -6, and -9 of the respiratory chain Complex I (CI; NADH:ubiquinone oxidoreductase). The few conserved residues of these proteins are essentially those involved in proton pumping across the inner mitochondrial membrane and in coupling ubiquinone reduction to proton pumping (Nad2, -3, -4L, and -6) and in interactions with subunits containing electron-transporting Fe-S clusters (Nad9). Thus, in diplonemids, 10 CI subunits are mtDNA-encoded. Further, MS of D. papillatum CI allowed identification of 26 conventional and 15 putative diplonemid-specific nucleus-encoded components. Most conventional accessory subunits are well-conserved but unusually long, possibly compensating for the streamlined mtDNA-encoded components and for missing, otherwise widely distributed, conventional subunits. Finally, D. papillatum CI predominantly exists as a supercomplex I:III:IV that is exceptionally stable, making this protist an organism of choice for structural studies.
Collapse
Affiliation(s)
- Matus Valach
- From the Department of Biochemistry and Robert-Cedergren Centre for Bioinformatics and Genomics, Université de Montréal, Montreal, Quebec H3T 1J4, Canada and
| | - Alexandra Léveillé-Kunst
- From the Department of Biochemistry and Robert-Cedergren Centre for Bioinformatics and Genomics, Université de Montréal, Montreal, Quebec H3T 1J4, Canada and
| | - Michael W Gray
- the Department of Biochemistry and Molecular Biology and Centre for Comparative Genomics and Evolutionary Bioinformatics, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Gertraud Burger
- From the Department of Biochemistry and Robert-Cedergren Centre for Bioinformatics and Genomics, Université de Montréal, Montreal, Quebec H3T 1J4, Canada and
| |
Collapse
|
114
|
Liao X, Zhao Y, Kong X, Khan A, Zhou B, Liu D, Kashif MH, Chen P, Wang H, Zhou R. Complete sequence of kenaf (Hibiscus cannabinus) mitochondrial genome and comparative analysis with the mitochondrial genomes of other plants. Sci Rep 2018; 8:12714. [PMID: 30143661 PMCID: PMC6109132 DOI: 10.1038/s41598-018-30297-w] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 07/27/2018] [Indexed: 01/01/2023] Open
Abstract
Plant mitochondrial (mt) genomes are species specific due to the vast of foreign DNA migration and frequent recombination of repeated sequences. Sequencing of the mt genome of kenaf (Hibiscus cannabinus) is essential for elucidating its evolutionary characteristics. In the present study, single-molecule real-time sequencing technology (SMRT) was used to sequence the complete mt genome of kenaf. Results showed that the complete kenaf mt genome was 569,915 bp long and consisted of 62 genes, including 36 protein-coding, 3 rRNA and 23 tRNA genes. Twenty-five introns were found among nine of the 36 protein-coding genes, and five introns were trans-spliced. A comparative analysis with other plant mt genomes showed that four syntenic gene clusters were conserved in all plant mtDNAs. Fifteen chloroplast-derived fragments were strongly associated with mt genes, including the intact sequences of the chloroplast genes psaA, ndhB and rps7. According to the plant mt genome evolution analysis, some ribosomal protein genes and succinate dehydrogenase genes were frequently lost during the evolution of angiosperms. Our data suggest that the kenaf mt genome retained evolutionarily conserved characteristics. Overall, the complete sequencing of the kenaf mt genome provides additional information and enhances our better understanding of mt genomic evolution across angiosperms.
Collapse
Affiliation(s)
- Xiaofang Liao
- College of Life Sciences and Technology, Guangxi University, Nanning, 530005, China
- Key Laboratory of Plant Genetic and Breeding, College of Agriculture, Guangxi University, Nanning, 530005, China
- Cash Crop Institute of Guangxi Academy of Agricultural Sciences, Nanning, 530007, China
| | - Yanhong Zhao
- Cash Crop Institute of Guangxi Academy of Agricultural Sciences, Nanning, 530007, China
| | - Xiangjun Kong
- Key Laboratory of Plant Genetic and Breeding, College of Agriculture, Guangxi University, Nanning, 530005, China
| | - Aziz Khan
- Key Laboratory of Plant Genetic and Breeding, College of Agriculture, Guangxi University, Nanning, 530005, China
| | - Bujin Zhou
- Key Laboratory of Plant Genetic and Breeding, College of Agriculture, Guangxi University, Nanning, 530005, China
| | - Dongmei Liu
- Key Laboratory of Plant-Microbe Interactions, Department of Life Science and Food, Shangqiu Normal University, Shangqiu, 476000, China
| | - Muhammad Haneef Kashif
- Key Laboratory of Plant Genetic and Breeding, College of Agriculture, Guangxi University, Nanning, 530005, China
| | - Peng Chen
- Key Laboratory of Plant Genetic and Breeding, College of Agriculture, Guangxi University, Nanning, 530005, China
| | - Hong Wang
- Department of Biochemistry, University of Saskatchewan, Saskatoon, SK, S7N5E5, Canada
| | - Ruiyang Zhou
- Key Laboratory of Plant Genetic and Breeding, College of Agriculture, Guangxi University, Nanning, 530005, China.
| |
Collapse
|
115
|
Bondarenko NI, Nassonova ES, Mijanovic O, Glotova AA, Kamyshatskaya OG, Kudryavtsev AA, Masharsky AE, Polev DE, Smirnov AV. Mitochondrial Genome of Vannella croatica (Amoebozoa, Discosea, Vannellida). J Eukaryot Microbiol 2018; 65:820-827. [PMID: 29655313 DOI: 10.1111/jeu.12523] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 04/02/2018] [Accepted: 04/02/2018] [Indexed: 11/30/2022]
Abstract
Mitochondrial genome sequence of Vannella croatica (Amoebozoa, Discosea, Vannellida) was obtained using pulse-field gel electrophoretic isolation of the circular mitochondrial DNA, followed by the next-generation sequencing. The mitochondrial DNA of this species has the length of 28,933 bp and contains 12 protein-coding genes, two ribosomal RNAs, and 16 transfer RNAs. Vannella croatica mitochondrial genome is relatively short compared to other known amoebozoan mitochondrial genomes but is rather gene-rich and contains significant number of open reading frames.
Collapse
Affiliation(s)
- Natalya I Bondarenko
- Department of Invertebrate Zoology, Faculty of Biology, St. Petersburg State University, Universitetskaya nab. 7/9, St. Petersburg, 199034, Russia
| | - Elena S Nassonova
- Department of Invertebrate Zoology, Faculty of Biology, St. Petersburg State University, Universitetskaya nab. 7/9, St. Petersburg, 199034, Russia.,Laboratory of Cytology of Unicellular Organisms, Institute of Cytology RAS, Tikhoretsky ave. 4, St. Petersburg, 194064, Russia
| | - Olja Mijanovic
- Department of Invertebrate Zoology, Faculty of Biology, St. Petersburg State University, Universitetskaya nab. 7/9, St. Petersburg, 199034, Russia
| | - Anna A Glotova
- Department of Invertebrate Zoology, Faculty of Biology, St. Petersburg State University, Universitetskaya nab. 7/9, St. Petersburg, 199034, Russia
| | - Oksana G Kamyshatskaya
- Department of Invertebrate Zoology, Faculty of Biology, St. Petersburg State University, Universitetskaya nab. 7/9, St. Petersburg, 199034, Russia
| | - Alexander A Kudryavtsev
- Department of Invertebrate Zoology, Faculty of Biology, St. Petersburg State University, Universitetskaya nab. 7/9, St. Petersburg, 199034, Russia.,Laboratory of Parasitic Worms and Protistology, Zoological Institute RAS, Universitetskaya nab. 1, St. Petersburg, 199034, Russia
| | - Alexey E Masharsky
- Core Facility Center "Development of Molecular and Cell Technologies", St. Petersburg State University, Botanicheskaya str. 17, Stary Peterhof, St. Petersburg, 198504, Russia
| | - Dmitrii E Polev
- Core Facility Center "Development of Molecular and Cell Technologies", St. Petersburg State University, Botanicheskaya str. 17, Stary Peterhof, St. Petersburg, 198504, Russia
| | - Alexey V Smirnov
- Department of Invertebrate Zoology, Faculty of Biology, St. Petersburg State University, Universitetskaya nab. 7/9, St. Petersburg, 199034, Russia
| |
Collapse
|
116
|
Radzvilavicius AL, Blackstone NW. The evolution of individuality revisited. Biol Rev Camb Philos Soc 2018; 93:1620-1633. [DOI: 10.1111/brv.12412] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2017] [Revised: 02/21/2018] [Accepted: 02/28/2018] [Indexed: 12/28/2022]
Affiliation(s)
| | - Neil W. Blackstone
- Department of Biological Sciences; Northern Illinois University; DeKalb IL 60115 U.S.A
| |
Collapse
|
117
|
A complete logical approach to resolve the evolution and dynamics of mitochondrial genome in bilaterians. PLoS One 2018; 13:e0194334. [PMID: 29547666 PMCID: PMC5856267 DOI: 10.1371/journal.pone.0194334] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 03/01/2018] [Indexed: 01/12/2023] Open
Abstract
Investigating how recombination might modify gene order during the evolution has become a routine part of mitochondrial genome analysis. A new method of genomic maps analysis based on formal logic is described. The purpose of this method is to 1) use mitochondrial gene order of current taxa as datasets 2) calculate rearrangements between all mitochondrial gene orders and 3) reconstruct phylogenetic relationships according to these calculated rearrangements within a tree under the assumption of maximum parsimony. Unlike existing methods mainly based on the probabilistic approach, the main strength of this new approach is that it calculates all the exact tree solutions with completeness and provides logical consequences as highly robust results. Moreover, this method infers all possible hypothetical ancestors and reconstructs character states for all internal nodes of the trees. We started by testing our method using the deuterostomes as a study case. Then, with sponges as an outgroup, we investigated the evolutionary history of mitochondrial genomes of 47 bilaterian phyla and emphasised the peculiar case of chaetognaths. This pilot work showed that the use of formal logic in a hypothetico-deductive background such as phylogeny (where experimental testing of hypotheses is impossible) is very promising to explore mitochondrial gene order in deuterostomes and should be applied to many other bilaterian clades.
Collapse
|
118
|
Fex M, Nicholas LM, Vishnu N, Medina A, Sharoyko VV, Nicholls DG, Spégel P, Mulder H. The pathogenetic role of β-cell mitochondria in type 2 diabetes. J Endocrinol 2018; 236:R145-R159. [PMID: 29431147 DOI: 10.1530/joe-17-0367] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 01/15/2018] [Indexed: 12/17/2022]
Abstract
Mitochondrial metabolism is a major determinant of insulin secretion from pancreatic β-cells. Type 2 diabetes evolves when β-cells fail to release appropriate amounts of insulin in response to glucose. This results in hyperglycemia and metabolic dysregulation. Evidence has recently been mounting that mitochondrial dysfunction plays an important role in these processes. Monogenic dysfunction of mitochondria is a rare condition but causes a type 2 diabetes-like syndrome owing to β-cell failure. Here, we describe novel advances in research on mitochondrial dysfunction in the β-cell in type 2 diabetes, with a focus on human studies. Relevant studies in animal and cell models of the disease are described. Transcriptional and translational regulation in mitochondria are particularly emphasized. The role of metabolic enzymes and pathways and their impact on β-cell function in type 2 diabetes pathophysiology are discussed. The role of genetic variation in mitochondrial function leading to type 2 diabetes is highlighted. We argue that alterations in mitochondria may be a culprit in the pathogenetic processes culminating in type 2 diabetes.
Collapse
Affiliation(s)
- Malin Fex
- Department of Clinical Sciences in MalmöUnit of Molecular Metabolism, Lund University Diabetes Centre, Clinical Research Center, Malmö University Hospital, Lund University, Malmö, Sweden
| | - Lisa M Nicholas
- Department of Clinical Sciences in MalmöUnit of Molecular Metabolism, Lund University Diabetes Centre, Clinical Research Center, Malmö University Hospital, Lund University, Malmö, Sweden
| | - Neelanjan Vishnu
- Department of Clinical Sciences in MalmöUnit of Molecular Metabolism, Lund University Diabetes Centre, Clinical Research Center, Malmö University Hospital, Lund University, Malmö, Sweden
| | - Anya Medina
- Department of Clinical Sciences in MalmöUnit of Molecular Metabolism, Lund University Diabetes Centre, Clinical Research Center, Malmö University Hospital, Lund University, Malmö, Sweden
| | - Vladimir V Sharoyko
- Department of Clinical Sciences in MalmöUnit of Molecular Metabolism, Lund University Diabetes Centre, Clinical Research Center, Malmö University Hospital, Lund University, Malmö, Sweden
| | - David G Nicholls
- Department of Clinical Sciences in MalmöUnit of Molecular Metabolism, Lund University Diabetes Centre, Clinical Research Center, Malmö University Hospital, Lund University, Malmö, Sweden
| | - Peter Spégel
- Department of Clinical Sciences in MalmöUnit of Molecular Metabolism, Lund University Diabetes Centre, Clinical Research Center, Malmö University Hospital, Lund University, Malmö, Sweden
- Department of ChemistryCenter for Analysis and Synthesis, Lund University, Sweden
| | - Hindrik Mulder
- Department of Clinical Sciences in MalmöUnit of Molecular Metabolism, Lund University Diabetes Centre, Clinical Research Center, Malmö University Hospital, Lund University, Malmö, Sweden
| |
Collapse
|
119
|
Zhou Z, Liu Y, Li M, Gu JD. Two or three domains: a new view of tree of life in the genomics era. Appl Microbiol Biotechnol 2018; 102:3049-3058. [PMID: 29484479 DOI: 10.1007/s00253-018-8831-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 01/30/2018] [Accepted: 02/01/2018] [Indexed: 12/26/2022]
Abstract
The deep phylogenetic topology of tree of life is in the center of a long-time dispute. The Woeseian three-domain tree theory, with the Eukarya evolving as a sister clade to Archaea, competes with the two-domain tree theory (the eocyte tree), with the Eukarya branched within Archaea. Revealed by the ongoing debate over the last three decades, sophisticated and proper phylogenetic methods should necessarily be paid with more emphasis, especially these are focusing on the compositional heterogeneity of sites and lineages, and the heterotachy issue. The newly emerging archaeal lineages with numerous eukaryotic-like features, such as membrane trafficking and cellular compartmentalization, are phylogenetically the closest to eukaryotes currently. These findings highlight the evolutionary history from an ancient archaeon to a more complex archaeon with protoeukaryotic-like features and complex cellular structures, thus providing clues to understand eukaryogenesis process. The increasing repertoire of precise genomic contents provides great advantages on understanding the deep phylogeny of tree of life and ancient evolutionary events on Eukarya branching process.
Collapse
Affiliation(s)
- Zhichao Zhou
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, People's Republic of China.,Laboratory of Environmental Microbiology and Toxicology, School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, Hong Kong, People's Republic of China
| | - Yang Liu
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, People's Republic of China.,Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, People's Republic of China
| | - Meng Li
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, People's Republic of China.
| | - Ji-Dong Gu
- Laboratory of Environmental Microbiology and Toxicology, School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, Hong Kong, People's Republic of China
| |
Collapse
|
120
|
The complete mitochondrial genome of Vannella simplex (Amoebozoa, Discosea, Vannellida). Eur J Protistol 2018; 63:83-95. [PMID: 29502046 DOI: 10.1016/j.ejop.2018.01.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 01/19/2018] [Accepted: 01/28/2018] [Indexed: 11/22/2022]
Abstract
Vannella simplex (Amoebozoa, Discosea, Vannellida) is one of the commonest freshwater free-living lobose amoebae, known from many locations worldwide. In the present study, we describe the complete mitochondrial genome of this species. The circular mitochondrial DNA of V. simplex has 34,145öbp in length and contains 27 protein-coding genes, 2 ribosomal RNAs, 16 transfer RNAs and 4 open reading frames. Mitochondiral genome of V. simplex is one of the most gene compact due to overlapping genes and reduced intergenic space. It has much in common with its closest relative, mitochondrial genome of V. croatica GenBank number MF508648. In the same time, both of them show considerable differences in length and in gene order from the next close relative - that of Neoparamoeba pemaquidensis KX611830 (deposited as Paramoeba) and even more - from other sequenced amoebozoan mitochondrial genomes. The present study confirms the opinion that the level of synteny between the mitochondrial genomes across the entire Amoebozoa clade is low. More or less considerable similarity yet was found only between members of the same clade of the genera or family level, but hardly - among more distant lineages.
Collapse
|
121
|
A tRNA's fate is decided at its 3' end: Collaborative actions of CCA-adding enzyme and RNases involved in tRNA processing and degradation. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2018; 1861:433-441. [PMID: 29374586 DOI: 10.1016/j.bbagrm.2018.01.012] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 01/15/2018] [Accepted: 01/19/2018] [Indexed: 02/07/2023]
Abstract
tRNAs are key players in translation and are additionally involved in a wide range of distinct cellular processes. The vital importance of tRNAs becomes evident in numerous diseases that are linked to defective tRNA molecules. It is therefore not surprising that the structural intactness of tRNAs is continuously scrutinized and defective tRNAs are eliminated. In this process, erroneous tRNAs are tagged with single-stranded RNA sequences that are recognized by degrading exonucleases. Recent discoveries have revealed that the CCA-adding enzyme - actually responsible for the de novo synthesis of the 3'-CCA end - plays an indispensable role in tRNA quality control by incorporating a second CCA triplet that is recognized as a degradation tag. In this review, we give an update on the latest findings regarding tRNA quality control that turns out to represent an interplay of the CCA-adding enzyme and RNases involved in tRNA degradation and maturation. In particular, the RNase-induced turnover of the CCA end is now recognized as a trigger for the CCA-adding enzyme to repeatedly scrutinize the structural intactness of a tRNA. This article is part of a Special Issue entitled: SI: Regulation of tRNA synthesis and modification in physiological conditions and disease edited by Dr. Boguta Magdalena.
Collapse
|
122
|
Coba de la Peña T, Fedorova E, Pueyo JJ, Lucas MM. The Symbiosome: Legume and Rhizobia Co-evolution toward a Nitrogen-Fixing Organelle? FRONTIERS IN PLANT SCIENCE 2018; 8:2229. [PMID: 29403508 PMCID: PMC5786577 DOI: 10.3389/fpls.2017.02229] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 12/19/2017] [Indexed: 05/21/2023]
Abstract
In legume nodules, symbiosomes containing endosymbiotic rhizobial bacteria act as temporary plant organelles that are responsible for nitrogen fixation, these bacteria develop mutual metabolic dependence with the host legume. In most legumes, the rhizobia infect post-mitotic cells that have lost their ability to divide, although in some nodules cells do maintain their mitotic capacity after infection. Here, we review what is currently known about legume symbiosomes from an evolutionary and developmental perspective, and in the context of the different interactions between diazotroph bacteria and eukaryotes. As a result, it can be concluded that the symbiosome possesses organelle-like characteristics due to its metabolic behavior, the composite origin and differentiation of its membrane, the retargeting of host cell proteins, the control of microsymbiont proliferation and differentiation by the host legume, and the cytoskeletal dynamics and symbiosome segregation during the division of rhizobia-infected cells. Different degrees of symbiosome evolution can be defined, specifically in relation to rhizobial infection and to the different types of nodule. Thus, our current understanding of the symbiosome suggests that it might be considered a nitrogen-fixing link in organelle evolution and that the distinct types of legume symbiosomes could represent different evolutionary stages toward the generation of a nitrogen-fixing organelle.
Collapse
Affiliation(s)
- Teodoro Coba de la Peña
- Instituto de Ciencias Agrarias ICA-CSIC, Madrid, Spain
- Centro de Estudios Avanzados en Zonas Áridas (CEAZA), La Serena, Chile
| | - Elena Fedorova
- Instituto de Ciencias Agrarias ICA-CSIC, Madrid, Spain
- K. A. Timiryazev Institute of Plant Physiology, Russian Academy of Science, Moscow, Russia
| | - José J Pueyo
- Instituto de Ciencias Agrarias ICA-CSIC, Madrid, Spain
| | | |
Collapse
|
123
|
El-Hattab AW, Wang J, Dai H, Almannai M, Staufner C, Alfadhel M, Gambello MJ, Prasun P, Raza S, Lyons HJ, Afqi M, Saleh MAM, Faqeih EA, Alzaidan HI, Alshenqiti A, Flore LA, Hertecant J, Sacharow S, Barbouth DS, Murayama K, Shah AA, Lin HC, Wong LJC. MPV17-related mitochondrial DNA maintenance defect: New cases and review of clinical, biochemical, and molecular aspects. Hum Mutat 2018; 39:461-470. [PMID: 29282788 DOI: 10.1002/humu.23387] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 12/04/2017] [Accepted: 12/15/2017] [Indexed: 02/02/2023]
Abstract
Mitochondrial DNA (mtDNA) maintenance defects are a group of diseases caused by deficiency of proteins involved in mtDNA synthesis, mitochondrial nucleotide supply, or mitochondrial dynamics. One of the mtDNA maintenance proteins is MPV17, which is a mitochondrial inner membrane protein involved in importing deoxynucleotides into the mitochondria. In 2006, pathogenic variants in MPV17 were first reported to cause infantile-onset hepatocerebral mtDNA depletion syndrome and Navajo neurohepatopathy. To date, 75 individuals with MPV17-related mtDNA maintenance defect have been reported with 39 different MPV17 pathogenic variants. In this report, we present an additional 25 affected individuals with nine novel MPV17 pathogenic variants. We summarize the clinical features of all 100 affected individuals and review the total 48 MPV17 pathogenic variants. The vast majority of affected individuals presented with an early-onset encephalohepatopathic disease characterized by hepatic and neurological manifestations, failure to thrive, lactic acidemia, and mtDNA depletion detected mainly in liver tissue. Rarely, MPV17 deficiency can cause a late-onset neuromyopathic disease characterized by myopathy and peripheral neuropathy with no or minimal liver involvement. Approximately half of the MPV17 pathogenic variants are missense. A genotype with biallelic missense variants, in particular homozygous p.R50Q, p.P98L, and p.R41Q, can carry a relatively better prognosis.
Collapse
Affiliation(s)
- Ayman W El-Hattab
- Division of Clinical Genetics and Metabolic Disorders, Pediatric Department, Tawam Hospital, Al-Ain, United Arab Emirates
| | - Julia Wang
- Medical Scientist Training Program and Program in Developmental Biology, Baylor College of Medicine, Houston, Texas
| | - Hongzheng Dai
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | - Mohammed Almannai
- Section of Medical Genetics, King Fahad Medical City, Children's Specialist Hospital, Riyadh, Saudi Arabia
| | - Christian Staufner
- Division of Neuropediatrics and Metabolic Medicine, Department of General Pediatrics, University Hospital Heidelberg, Heidelberg, Germany
| | - Majid Alfadhel
- King Abdullah International Medical Research Centre, King Saud bin Abdulaziz University for Health Sciences, Division of Genetics, Department of Pediatrics, King Abdulaziz Medical City, Ministry of National Guard-Health Affairs (NGHA), Riyadh, Saudi Arabia
| | - Michael J Gambello
- Division of Medical Genetics, Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia
| | - Pankaj Prasun
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Saleem Raza
- Department of Pediatrics, St John Hospital and Medical Center and Wayne State University School of Medicine, Detroit, Michigan
| | - Hernando J Lyons
- Department of Pediatrics, St John Hospital and Medical Center and Wayne State University School of Medicine, Detroit, Michigan
| | - Manal Afqi
- Section of Medical Genetics, King Fahad Medical City, Children's Specialist Hospital, Riyadh, Saudi Arabia
| | - Mohammed A M Saleh
- Section of Medical Genetics, King Fahad Medical City, Children's Specialist Hospital, Riyadh, Saudi Arabia
| | - Eissa A Faqeih
- Section of Medical Genetics, King Fahad Medical City, Children's Specialist Hospital, Riyadh, Saudi Arabia
| | - Hamad I Alzaidan
- Department of Medical Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Abduljabbar Alshenqiti
- Department of Medical Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Leigh Anne Flore
- Division of Genetic, Genomic, and Metabolic Disorders, Children's Hospital of Michigan and Wayne State University, Detroit, Michigan
| | - Jozef Hertecant
- Division of Clinical Genetics and Metabolic Disorders, Pediatric Department, Tawam Hospital, Al-Ain, United Arab Emirates
| | - Stephanie Sacharow
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, Massachusetts
| | - Deborah S Barbouth
- Division of Clinical and Translational Genetics, Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami, Miller School of Medicine, Miami, Florida
| | - Kei Murayama
- Department of Metabolism, Chiba Children's Hospital, Chiba, Japan
| | - Amit A Shah
- Division of Gastroenterology, Hepatology, and Nutrition, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Henry C Lin
- Division of Gastroenterology, Hepatology, and Nutrition, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Lee-Jun C Wong
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
124
|
Dhami MK, Hartwig T, Fukami T. Genetic basis of priority effects: insights from nectar yeast. Proc Biol Sci 2017; 283:rspb.2016.1455. [PMID: 27708148 DOI: 10.1098/rspb.2016.1455] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 09/07/2016] [Indexed: 01/15/2023] Open
Abstract
Priority effects, in which the order of species arrival dictates community assembly, can have a major influence on species diversity, but the genetic basis of priority effects remains unknown. Here, we suggest that nitrogen scavenging genes previously considered responsible for starvation avoidance may drive priority effects by causing rapid resource depletion. Using single-molecule sequencing, we de novo assembled the genome of the nectar-colonizing yeast, Metschnikowia reukaufii, across eight scaffolds and complete mitochondrion, with gap-free coverage over gene spaces. We found a high rate of tandem gene duplication in this genome, enriched for nitrogen metabolism and transport. Both high-capacity amino acid importers, GAP1 and PUT4, present as tandem gene arrays, were highly expressed in synthetic nectar and regulated by the availability and quality of amino acids. In experiments with competitive nectar yeast, Candida rancensis, amino acid addition alleviated suppression of C. rancensis by early arrival of M. reukaufii, corroborating that amino acid scavenging may contribute to priority effects. Because niche pre-emption via rapid resource depletion may underlie priority effects in a broad range of microbial, plant and animal communities, nutrient scavenging genes like the ones we considered here may be broadly relevant to understanding priority effects.
Collapse
Affiliation(s)
- Manpreet K Dhami
- Department of Biology, Stanford University, 371 Serra Mall, Stanford, CA 94305, USA
| | - Thomas Hartwig
- Department of Plant Biology, Carnegie Institution for Science, 260 Panama Street, Stanford, CA 94305, USA
| | - Tadashi Fukami
- Department of Biology, Stanford University, 371 Serra Mall, Stanford, CA 94305, USA
| |
Collapse
|
125
|
Franco MEE, López SMY, Medina R, Lucentini CG, Troncozo MI, Pastorino GN, Saparrat MCN, Balatti PA. The mitochondrial genome of the plant-pathogenic fungus Stemphylium lycopersici uncovers a dynamic structure due to repetitive and mobile elements. PLoS One 2017; 12:e0185545. [PMID: 28972995 PMCID: PMC5626475 DOI: 10.1371/journal.pone.0185545] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 09/14/2017] [Indexed: 12/23/2022] Open
Abstract
Stemphylium lycopersici (Pleosporales) is a plant-pathogenic fungus that has been associated with a broad range of plant-hosts worldwide. It is one of the causative agents of gray leaf spot disease in tomato and pepper. The aim of this work was to characterize the mitochondrial genome of S. lycopersici CIDEFI-216, to use it to trace taxonomic relationships with other fungal taxa and to get insights into the evolutionary history of this phytopathogen. The complete mitochondrial genome was assembled into a circular double-stranded DNA molecule of 75,911 bp that harbors a set of 37 protein-coding genes, 2 rRNA genes (rns and rnl) and 28 tRNA genes, which are transcribed from both sense and antisense strands. Remarkably, its gene repertoire lacks both atp8 and atp9, contains a free-standing gene for the ribosomal protein S3 (rps3) and includes 13 genes with homing endonuclease domains that are mostly located within its 15 group I introns. Strikingly, subunits 1 and 2 of cytochrome oxidase are encoded by a single continuous open reading frame (ORF). A comparative mitogenomic analysis revealed the large extent of structural rearrangements among representatives of Pleosporales, showing the plasticity of their mitochondrial genomes. Finally, an exhaustive phylogenetic analysis of the subphylum Pezizomycotina based on mitochondrial data reconstructed their relationships in concordance with several studies based on nuclear data. This is the first report of a mitochondrial genome belonging to a representative of the family Pleosporaceae.
Collapse
Affiliation(s)
- Mario Emilio Ernesto Franco
- Centro de Investigaciones de Fitopatología, Facultad de Ciencias Agrarias y Forestales, Universidad Nacional de La Plata - Comisión de Investigaciones Científicas de la Provincia de Buenos Aires, La Plata, Buenos Aires, Argentina
| | - Silvina Marianela Yanil López
- Centro de Investigaciones de Fitopatología, Facultad de Ciencias Agrarias y Forestales, Universidad Nacional de La Plata - Comisión de Investigaciones Científicas de la Provincia de Buenos Aires, La Plata, Buenos Aires, Argentina
| | - Rocio Medina
- Centro de Investigaciones de Fitopatología, Facultad de Ciencias Agrarias y Forestales, Universidad Nacional de La Plata - Comisión de Investigaciones Científicas de la Provincia de Buenos Aires, La Plata, Buenos Aires, Argentina
| | - César Gustavo Lucentini
- Centro de Investigaciones de Fitopatología, Facultad de Ciencias Agrarias y Forestales, Universidad Nacional de La Plata - Comisión de Investigaciones Científicas de la Provincia de Buenos Aires, La Plata, Buenos Aires, Argentina
| | - Maria Inés Troncozo
- Cátedra de Microbiología Agrícola, Facultad de Ciencias Agrarias y Forestales, Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina
| | - Graciela Noemí Pastorino
- Cátedra de Microbiología Agrícola, Facultad de Ciencias Agrarias y Forestales, Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina
| | - Mario Carlos Nazareno Saparrat
- Cátedra de Microbiología Agrícola, Facultad de Ciencias Agrarias y Forestales, Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina
- Instituto de Botánica Carlos Spegazzini, Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina
- Instituto de Fisiología Vegetal, Facultad de Ciencias Naturales y Museo-Facultad de Ciencias Agrarias y Forestales, Universidad Nacional de La Plata - Consejo Nacional de Investigaciones Científicas y Técnicas, La Plata, Buenos Aires, Argentina
| | - Pedro Alberto Balatti
- Centro de Investigaciones de Fitopatología, Facultad de Ciencias Agrarias y Forestales, Universidad Nacional de La Plata - Comisión de Investigaciones Científicas de la Provincia de Buenos Aires, La Plata, Buenos Aires, Argentina
- Cátedra de Microbiología Agrícola, Facultad de Ciencias Agrarias y Forestales, Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina
- * E-mail:
| |
Collapse
|
126
|
Wang C, Aubé F, Planchard N, Quadrado M, Dargel-Graffin C, Nogué F, Mireau H. The pentatricopeptide repeat protein MTSF2 stabilizes a nad1 precursor transcript and defines the 3΄ end of its 5΄-half intron. Nucleic Acids Res 2017; 45:6119-6134. [PMID: 28334831 PMCID: PMC5449624 DOI: 10.1093/nar/gkx162] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 02/28/2017] [Indexed: 12/14/2022] Open
Abstract
RNA expression in plant mitochondria implies a large number of post-transcriptional events in which transcript processing and stabilization are essential. In this study, we analyzed the function of the Arabidopsis mitochondrial stability factor 2 gene (MTSF2) and show that the encoded pentatricopeptide repeat protein is essential for the accumulation of stable nad1 mRNA. The production of mature nad1 requires the assembly of three independent RNA precursors via two trans-splicing reactions. Genetic analyses revealed that the lack of nad1 in mtsf2 mutants results from the specific destabilization of the nad1 exons 2-3 precursor transcript. We further demonstrated that MTSF2 binds to its 3΄ extremity with high affinity, suggesting a protective action by blocking exoribonuclease progression. By defining the 3΄ end of nad1 exons 2-3 precursor, MTSF2 concomitantly determines the 3΄ extremity of the first half of the trans-intron found at the end of the transcript. Therefore, binding of the MTSF2 protein to nad1 exons 2-3 precursor evolved both to stabilize the transcript and to define a 3΄ extremity compatible with the trans-splicing reaction needed to reconstitute mature nad1. We thus reveal that the range of transcripts stabilized by association with protective protein on their 3΄ end concerns also mitochondrial precursor transcripts.
Collapse
Affiliation(s)
- Chuande Wang
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, RD10, 78026 Versailles Cedex, France
- Paris-Sud University, Université Paris-Saclay, 91405 Orsay Cedex, France
- These authors contributed equally to the paper as first authors
| | - Fabien Aubé
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, RD10, 78026 Versailles Cedex, France
- These authors contributed equally to the paper as first authors
| | - Noelya Planchard
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, RD10, 78026 Versailles Cedex, France
- Paris-Sud University, Université Paris-Saclay, 91405 Orsay Cedex, France
- These authors contributed equally to the paper as first authors
| | - Martine Quadrado
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, RD10, 78026 Versailles Cedex, France
| | - Céline Dargel-Graffin
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, RD10, 78026 Versailles Cedex, France
| | - Fabien Nogué
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, RD10, 78026 Versailles Cedex, France
| | - Hakim Mireau
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, RD10, 78026 Versailles Cedex, France
- To whom correspondence should be addressed. Tel: +33 130 833 070; Fax: +33 130 833 319;
| |
Collapse
|
127
|
Abstract
Many of the most important evolutionary variations that generated phenotypic adaptations and originated novel taxa resulted from complex cellular activities affecting genome content and expression. These activities included (i) the symbiogenetic cell merger that produced the mitochondrion-bearing ancestor of all extant eukaryotes, (ii) symbiogenetic cell mergers that produced chloroplast-bearing ancestors of photosynthetic eukaryotes, and (iii) interspecific hybridizations and genome doublings that generated new species and adaptive radiations of higher plants and animals. Adaptive variations also involved horizontal DNA transfers and natural genetic engineering by mobile DNA elements to rewire regulatory networks, such as those essential to viviparous reproduction in mammals. In the most highly evolved multicellular organisms, biological complexity scales with 'non-coding' DNA content rather than with protein-coding capacity in the genome. Coincidentally, 'non-coding' RNAs rich in repetitive mobile DNA sequences function as key regulators of complex adaptive phenotypes, such as stem cell pluripotency. The intersections of cell fusion activities, horizontal DNA transfers and natural genetic engineering of Read-Write genomes provide a rich molecular and biological foundation for understanding how ecological disruptions can stimulate productive, often abrupt, evolutionary transformations.
Collapse
Affiliation(s)
- James A Shapiro
- Department of Biochemistry and Molecular Biology, University of Chicago, GCISW123B, 979 E. 57th Street, Chicago, IL 60637, USA
| |
Collapse
|
128
|
Bohnsack MT, Sloan KE. The mitochondrial epitranscriptome: the roles of RNA modifications in mitochondrial translation and human disease. Cell Mol Life Sci 2017; 75:241-260. [PMID: 28752201 PMCID: PMC5756263 DOI: 10.1007/s00018-017-2598-6] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2017] [Revised: 07/08/2017] [Accepted: 07/17/2017] [Indexed: 11/28/2022]
Abstract
Mitochondrial protein synthesis is essential for the production of components of the oxidative phosphorylation system. RNA modifications in the mammalian mitochondrial translation apparatus play key roles in facilitating mitochondrial gene expression as they enable decoding of the non-conventional genetic code by a minimal set of tRNAs, and efficient and accurate protein synthesis by the mitoribosome. Intriguingly, recent transcriptome-wide analyses have also revealed modifications in mitochondrial mRNAs, suggesting that the concept of dynamic regulation of gene expression by the modified RNAs (the “epitranscriptome”) extends to mitochondria. Furthermore, it has emerged that defects in RNA modification, arising from either mt-DNA mutations or mutations in nuclear-encoded mitochondrial modification enzymes, underlie multiple mitochondrial diseases. Concomitant advances in the identification of the mitochondrial RNA modification machinery and recent structural views of the mitochondrial translation apparatus now allow the molecular basis of such mitochondrial diseases to be understood on a mechanistic level.
Collapse
Affiliation(s)
- Markus T Bohnsack
- Department of Molecular Biology, University Medical Center Göttingen, Humboldtallee 23, 37073, Göttingen, Germany.
- Göttingen Centre for Molecular Biosciences, University of Göttingen, Justus-von-Liebig-Weg 11, 37077, Göttingen, Germany.
| | - Katherine E Sloan
- Department of Molecular Biology, University Medical Center Göttingen, Humboldtallee 23, 37073, Göttingen, Germany.
| |
Collapse
|
129
|
Abstract
Predation, in the broad sense of an organism killing another organism for nutritional purposes, is probably as old as life itself and has originated many times during the history of life. Although little of the beginnings is caught in the fossil record, observations in the rock record and theoretical considerations suggest that predation played a crucial role in some of the major transitions in evolution. The origin of eukaryotic cells, poorly constrained to about 2.7 Ga by geochemical evidence, was most likely the ultimate result of predation among prokaryotes. Multicellularity (or syncytiality), as a means of acquiring larger size, is visible in the fossil record soon after 2 Ga and is likely to have been mainly a response to selective pressure from predation among protists. The appearance of mobile predators on bacteria and protists may date back as far as 2 Ga or it may be not much older than the Cambrian explosion, or about 600 Ma. The combined indications from the decline of stromatolites and the diversification of acritarchs, however, suggest that such predation may have begun around 1 Ga. The Cambrian explosion, culminating around 550 Ma, represents the transition from simple, mostly microbial, ecosystems to ones with complex food webs and second- and higher-order consumers. Macrophagous predators were involved from the beginning, but it is not clear whether they originated in the plankton or in the benthos. Although predation was a decisive selective force in the Cambrian explosion, it was a shaper rather than a trigger of this evolutionary event.
Collapse
|
130
|
Ozsvari B, Fiorillo M, Bonuccelli G, Cappello AR, Frattaruolo L, Sotgia F, Trowbridge R, Foster R, Lisanti MP. Mitoriboscins: Mitochondrial-based therapeutics targeting cancer stem cells (CSCs), bacteria and pathogenic yeast. Oncotarget 2017; 8:67457-67472. [PMID: 28978045 PMCID: PMC5620185 DOI: 10.18632/oncotarget.19084] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2017] [Accepted: 05/17/2017] [Indexed: 12/26/2022] Open
Abstract
The "endo-symbiotic theory of mitochondrial evolution" states that mitochondrial organelles evolved from engulfed aerobic bacteria, after millions of years of symbiosis and adaptation. Here, we have exploited this premise to design new antibiotics and novel anti-cancer therapies, using a convergent approach. First, virtual high-throughput screening (vHTS) and computational chemistry were used to identify novel compounds binding to the 3D structure of the mammalian mitochondrial ribosome. The resulting library of ∼880 compounds was then subjected to phenotypic drug screening on human cancer cells, to identify which compounds functionally induce ATP-depletion, which is characteristic of mitochondrial inhibition. Notably, the top ten "hit" compounds define four new classes of mitochondrial inhibitors. Next, we further validated that these novel mitochondrial inhibitors metabolically target mitochondrial respiration in cancer cells and effectively inhibit the propagation of cancer stem-like cells in vitro. Finally, we show that these mitochondrial inhibitors possess broad-spectrum antibiotic activity, preventing the growth of both gram-positive and gram-negative bacteria, as well as C. albicans - a pathogenic yeast. Remarkably, these novel antibiotics also were effective against methicillin-resistant Staphylococcus aureus (MRSA). Thus, this simple, yet systematic, approach to the discovery of mitochondrial ribosome inhibitors could provide a plethora of anti-microbials and anti-cancer therapies, to target drug-resistance that is characteristic of both i) tumor recurrence and ii) infectious disease. In summary, we have successfully used vHTS combined with phenotypic drug screening of human cancer cells to identify several new classes of broad-spectrum antibiotics that target both bacteria and pathogenic yeast. We propose the new term "mitoriboscins" to describe these novel mitochondrial-related antibiotics. Thus far, we have identified four different classes of mitoriboscins, such as: 1) mitoribocyclines, 2) mitoribomycins, 3) mitoribosporins and 4) mitoribofloxins. However, we broadly define mitoriboscins as any small molecule(s) or peptide(s) that bind to the mitoribosome (large or small subunits) and, as a consequence, inhibit mitochondrial function, i.e., mitoribosome inhibitors.
Collapse
Affiliation(s)
- Bela Ozsvari
- Translational Medicine, School of Environment & Life Sciences, University of Salford, Greater Manchester, UK.,The Paterson Institute, University of Manchester, Withington, UK
| | - Marco Fiorillo
- Translational Medicine, School of Environment & Life Sciences, University of Salford, Greater Manchester, UK.,The Paterson Institute, University of Manchester, Withington, UK.,The Department of Pharmacy, Health and Nutritional Sciences, The University of Calabria, Cosenza, Italy
| | - Gloria Bonuccelli
- Translational Medicine, School of Environment & Life Sciences, University of Salford, Greater Manchester, UK.,The Paterson Institute, University of Manchester, Withington, UK
| | - Anna Rita Cappello
- The Department of Pharmacy, Health and Nutritional Sciences, The University of Calabria, Cosenza, Italy
| | - Luca Frattaruolo
- The Department of Pharmacy, Health and Nutritional Sciences, The University of Calabria, Cosenza, Italy
| | - Federica Sotgia
- Translational Medicine, School of Environment & Life Sciences, University of Salford, Greater Manchester, UK.,The Paterson Institute, University of Manchester, Withington, UK
| | - Rachel Trowbridge
- School of Chemistry, Faculty of Mathematics and Physical Sciences, University of Leeds, West Yorkshire, UK
| | - Richard Foster
- Astbury Centre for Structural Molecular Biology, University of Leeds, West Yorkshire, UK.,School of Chemistry, Faculty of Mathematics and Physical Sciences, University of Leeds, West Yorkshire, UK
| | - Michael P Lisanti
- Translational Medicine, School of Environment & Life Sciences, University of Salford, Greater Manchester, UK.,The Paterson Institute, University of Manchester, Withington, UK
| |
Collapse
|
131
|
Satjarak A, Burns JA, Kim E, Graham LE. Complete mitochondrial genomes of prasinophyte algae Pyramimonas parkeae and Cymbomonas tetramitiformis. JOURNAL OF PHYCOLOGY 2017; 53:601-615. [PMID: 28191642 DOI: 10.1111/jpy.12521] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 01/09/2017] [Indexed: 06/06/2023]
Abstract
Mitochondria are archetypal eukaryotic organelles that were acquired by endosymbiosis of an ancient species of alpha-proteobacteria by the last eukaryotic common ancestor. The genetic information contained within the mitochondrial genome has been an important source of information for resolving relationships among eukaryotic taxa. In this study, we utilized mitochondrial and chloroplast genomes to explore relationships among prasinophytes. Prasinophytes are represented by diverse early-diverging green algae whose physical structures and genomes have the potential to elucidate the traits of the last common ancestor of the Viridiplantae (or Chloroplastida). We constructed de novo mitochondrial genomes for two prasinophyte algal species, Pyramimonas parkeae and Cymbomonas tetramitiformis, representing the prasinophyte clade. Comparisons of genome structure and gene order between these species and to those of other prasinophytes revealed that the mitochondrial genomes of P. parkeae and C. tetramitiformis are more similar to each other than to other prasinophytes, consistent with other molecular inferences of the close relationship between these two species. Phylogenetic analyses using the inferred amino acid sequences of mitochondrial and chloroplast protein-coding genes resolved a clade consisting of P. parkeae and C. tetramitiformis; and this group (representing the prasinophyte clade I) branched with the clade II, consistent with previous studies based on the use of nuclear gene markers.
Collapse
Affiliation(s)
- Anchittha Satjarak
- Department of Botany, University of Wisconsin-Madison, 430 Lincoln drive, Madison, Wisconsin, USA
| | - John A Burns
- Division of Invertebrate Zoology and Sackler Institute for Comparative Genomics, American Museum of Natural History, Central Park West at 79th Street, New York, New York, USA
| | - Eunsoo Kim
- Division of Invertebrate Zoology and Sackler Institute for Comparative Genomics, American Museum of Natural History, Central Park West at 79th Street, New York, New York, USA
| | - Linda E Graham
- Department of Botany, University of Wisconsin-Madison, 430 Lincoln drive, Madison, Wisconsin, USA
| |
Collapse
|
132
|
Park S, Ruhlman TA, Weng ML, Hajrah NH, Sabir JS, Jansen RK. Contrasting Patterns of Nucleotide Substitution Rates Provide Insight into Dynamic Evolution of Plastid and Mitochondrial Genomes of Geranium. Genome Biol Evol 2017; 9:1766-1780. [PMID: 28854633 PMCID: PMC5570028 DOI: 10.1093/gbe/evx124] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/03/2017] [Indexed: 12/25/2022] Open
Abstract
Geraniaceae have emerged as a model system for investigating the causes and consequences of variation in plastid and mitochondrial genomes. Incredible structural variation in plastid genomes (plastomes) and highly accelerated evolutionary rates have been reported in selected lineages and functional groups of genes in both plastomes and mitochondrial genomes (mitogenomes), and these phenomena have been implicated in cytonuclear incompatibility. Previous organelle genome studies have included limited sampling of Geranium, the largest genus in the family with over 400 species. This study reports on rates and patterns of nucleotide substitutions in plastomes and mitogenomes of 17 species of Geranium and representatives of other Geraniaceae. As detected across other angiosperms, substitution rates in the plastome are 3.5 times higher than the mitogenome in most Geranium. However, in the branch leading to Geranium brycei/Geranium incanum mitochondrial genes experienced significantly higher dN and dS than plastid genes, a pattern that has only been detected in one other angiosperm. Furthermore, rate accelerations differ in the two organelle genomes with plastomes having increased dN and mitogenomes with increased dS. In the Geranium phaeum/Geranium reflexum clade, duplicate copies of clpP and rpoA genes that experienced asymmetric rate divergence were detected in the single copy region of the plastome. In the case of rpoA, the branch leading to G. phaeum/G. reflexum experienced positive selection or relaxation of purifying selection. Finally, the evolution of acetyl-CoA carboxylase is unusual in Geraniaceae because it is only the second angiosperm family where both prokaryotic and eukaryotic ACCases functionally coexist in the plastid.
Collapse
Affiliation(s)
- Seongjun Park
- Department of Integrative Biology, University of Texas at Austin
| | | | - Mao-Lun Weng
- Department of Integrative Biology, University of Texas at Austin
- Department of Biology and Microbiology, South Dakota State University
| | - Nahid H. Hajrah
- Genomic and Biotechnology Research Group, Department of Biological Science, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Jamal S.M. Sabir
- Genomic and Biotechnology Research Group, Department of Biological Science, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Robert K. Jansen
- Department of Integrative Biology, University of Texas at Austin
- Genomic and Biotechnology Research Group, Department of Biological Science, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
133
|
Mulder H. Transcribing β-cell mitochondria in health and disease. Mol Metab 2017; 6:1040-1051. [PMID: 28951827 PMCID: PMC5605719 DOI: 10.1016/j.molmet.2017.05.014] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 05/13/2017] [Accepted: 05/22/2017] [Indexed: 12/17/2022] Open
Abstract
Background The recent genome-wide association studies (GWAS) of Type 2 Diabetes (T2D) have identified the pancreatic β-cell as the culprit in the pathogenesis of the disease. Mitochondrial metabolism plays a crucial role in the processes controlling release of insulin and β-cell mass. This notion implies that mechanisms controlling mitochondrial function have the potential to play a decisive pathogenetic role in T2D. Scope of the review This article reviews studies demonstrating that there is indeed mitochondrial dysfunction in islets in T2D, and that GWAS have identified a variant in the gene encoding transcription factor B1 mitochondrial (TFB1M), predisposing to T2D due to mitochondrial dysfunction and impaired insulin secretion. Mechanistic studies of the nature of this pathogenetic link, as well as of other mitochondrial transcription factors, are described. Major conclusions Based on this, it is argued that transcription and translation in mitochondria are critical processes determining mitochondrial function in β-cells in health and disease.
Collapse
Key Words
- AMPK, AMP-dependent protein kinase
- ATGL, adipocyte triglyceride lipase
- COX, Cytochrome c oxidase
- CYTB, Cytochrome b
- ERR-α, Estrogen-related receptor-α
- Expression quantitative trait locus (eQTL)
- GDH, Glutamate dehydrogenase
- GSIS, Glucose-stimulated insulin secretion
- GWAS, Genome-wide association study
- Genome-wide association study (GWAS)
- HSL, Hormone-sensitive lipase
- ICDc, Cytosolic isocitrate dehydrogenase
- Insulin secretion
- Islets
- KATP, ATP-dependent K+-channel
- MTERF, Mitochondrial transcription termination factor
- Mitochondria
- ND, NADH dehydrogenase
- NRF, Nuclear respiratory factor
- NSUN4, NOP2/Sun RNA methyltransferase family member 4
- OXPHOS, Oxidative phosphorylation
- PC, Pyruvate carboxylase
- PDH, pyruvate dehydrogenase
- PGC, Peroxisome proliferator-activated receptor-γ co-activator
- POLRMT, Mitochondrial RNA polymerase
- POLγ, DNA polymerase-γ
- PPARγ, Peroxisome proliferator-activated receptor-γ
- PRC, PGC1-related coactivator
- SENP1, Sentrin/SUMO-specific protease-1
- SNP, Single Nucleotide Polymorphism
- SUR1, Sulphonylurea receptor-1
- T2D, Type 2 Diabetes
- TCA, Tricarboxylic acid
- TEFM, Mitochondrial transcription elongation factor
- TFAM, Transcription factor A mitochondrial
- TFB1M, Transcription factor B1 mitochondrial
- TFB2M, Transcription factor B2 mitochondrial
- eQTL, Expression quantitative trait locus
- β-Cell
Collapse
Affiliation(s)
- Hindrik Mulder
- Unit of Molecular Metabolism, Lund University Diabetes Centre, Malmö, Sweden
| |
Collapse
|
134
|
Tissue- and Condition-Specific Isoforms of Mammalian Cytochrome c Oxidase Subunits: From Function to Human Disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:1534056. [PMID: 28593021 PMCID: PMC5448071 DOI: 10.1155/2017/1534056] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 03/29/2017] [Indexed: 01/05/2023]
Abstract
Cytochrome c oxidase (COX) is the terminal enzyme of the electron transport chain and catalyzes the transfer of electrons from cytochrome c to oxygen. COX consists of 14 subunits, three and eleven encoded, respectively, by the mitochondrial and nuclear DNA. Tissue- and condition-specific isoforms have only been reported for COX but not for the other oxidative phosphorylation complexes, suggesting a fundamental requirement to fine-tune and regulate the essentially irreversible reaction catalyzed by COX. This article briefly discusses the assembly of COX in mammals and then reviews the functions of the six nuclear-encoded COX subunits that are expressed as isoforms in specialized tissues including those of the liver, heart and skeletal muscle, lung, and testes: COX IV-1, COX IV-2, NDUFA4, NDUFA4L2, COX VIaL, COX VIaH, COX VIb-1, COX VIb-2, COX VIIaH, COX VIIaL, COX VIIaR, COX VIIIH/L, and COX VIII-3. We propose a model in which the isoforms mediate the interconnected regulation of COX by (1) adjusting basal enzyme activity to mitochondrial capacity of a given tissue; (2) allosteric regulation to adjust energy production to need; (3) altering proton pumping efficiency under certain conditions, contributing to thermogenesis; (4) providing a platform for tissue-specific signaling; (5) stabilizing the COX dimer; and (6) modulating supercomplex formation.
Collapse
|
135
|
Skeletal Muscle Nucleo-Mitochondrial Crosstalk in Obesity and Type 2 Diabetes. Int J Mol Sci 2017; 18:ijms18040831. [PMID: 28420087 PMCID: PMC5412415 DOI: 10.3390/ijms18040831] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 04/01/2017] [Accepted: 04/08/2017] [Indexed: 12/15/2022] Open
Abstract
Skeletal muscle mitochondrial dysfunction, evidenced by incomplete beta oxidation and accumulation of fatty acid intermediates in the form of long and medium chain acylcarnitines, may contribute to ectopic lipid deposition and insulin resistance during high fat diet (HFD)-induced obesity. The present review discusses the roles of anterograde and retrograde communication in nucleo-mitochondrial crosstalk that determines skeletal muscle mitochondrial adaptations, specifically alterations in mitochondrial number and function in relation to obesity and insulin resistance. Special emphasis is placed on the effects of high fat diet (HFD) feeding on expression of nuclear-encoded mitochondrial genes (NEMGs) nuclear receptor factor 1 (NRF-1) and 2 (NRF-2) and peroxisome proliferator receptor gamma coactivator 1 alpha (PGC-1α) in the onset and progression of insulin resistance during obesity and how HFD-induced alterations in NEMG expression affect skeletal muscle mitochondrial adaptations in relation to beta oxidation of fatty acids. Finally, the potential ability of acylcarnitines or fatty acid intermediates resulting from mitochondrial beta oxidation to act as retrograde signals in nucleo-mitochondrial crosstalk is reviewed and discussed.
Collapse
|
136
|
El-Hattab AW, Craigen WJ, Scaglia F. Mitochondrial DNA maintenance defects. Biochim Biophys Acta Mol Basis Dis 2017; 1863:1539-1555. [PMID: 28215579 DOI: 10.1016/j.bbadis.2017.02.017] [Citation(s) in RCA: 208] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 01/31/2017] [Accepted: 02/14/2017] [Indexed: 01/12/2023]
Abstract
The maintenance of mitochondrial DNA (mtDNA) depends on a number of nuclear gene-encoded proteins including a battery of enzymes forming the replisome needed to synthesize mtDNA. These enzymes need to be in balanced quantities to function properly that is in part achieved by exchanging intramitochondrial contents through mitochondrial fusion. In addition, mtDNA synthesis requires a balanced supply of nucleotides that is achieved by nucleotide recycling inside the mitochondria and import from the cytosol. Mitochondrial DNA maintenance defects (MDMDs) are a group of diseases caused by pathogenic variants in the nuclear genes involved in mtDNA maintenance resulting in impaired mtDNA synthesis leading to quantitative (mtDNA depletion) and qualitative (multiple mtDNA deletions) defects in mtDNA. Defective mtDNA leads to organ dysfunction due to insufficient mtDNA-encoded protein synthesis, resulting in an inadequate energy production to meet the needs of affected organs. MDMDs are inherited as autosomal recessive or dominant traits, and are associated with a broad phenotypic spectrum ranging from mild adult-onset ophthalmoplegia to severe infantile fatal hepatic failure. To date, pathogenic variants in 20 nuclear genes known to be crucial for mtDNA maintenance have been linked to MDMDs, including genes encoding enzymes of mtDNA replication machinery (POLG, POLG2, TWNK, TFAM, RNASEH1, MGME1, and DNA2), genes encoding proteins that function in maintaining a balanced mitochondrial nucleotide pool (TK2, DGUOK, SUCLG1, SUCLA2, ABAT, RRM2B, TYMP, SLC25A4, AGK, and MPV17), and genes encoding proteins involved in mitochondrial fusion (OPA1, MFN2, and FBXL4).
Collapse
Affiliation(s)
- Ayman W El-Hattab
- Division of Clinical Genetics and Metabolic Disorders, Pediatrics Department, Tawam Hospital, Al-Ain, United Arab Emirates
| | - William J Craigen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.
| | - Fernando Scaglia
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
137
|
Evolution and inheritance of animal mitochondrial DNA: rules and exceptions. ACTA ACUST UNITED AC 2017; 24:2. [PMID: 28164041 PMCID: PMC5282644 DOI: 10.1186/s40709-017-0060-4] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 01/10/2017] [Indexed: 12/17/2022]
Abstract
Mitochondrial DNA (mtDNA) has been studied intensely for “its own” merit. Its role for the function of the cell and the organism remains a fertile field, its origin and evolution is an indispensable part of the evolution of life and its interaction with the nuclear DNA is among the most important cases of genome synergism and co-evolution. Also, mtDNA was proven one of the most useful tools in population genetics and molecular phylogenetics. In this article we focus on animal mtDNA and discuss briefly how our views about its structure, function and transmission have changed, how these changes affect the information we have accumulated through its use in the fields of phylogeny and population structure and what are the most important questions that remain open for future research.
Collapse
|
138
|
Grayburn WS, Hudspeth DSS, Gane MK, Hudspeth MES. The mitochondrial genome of Saprolegnia ferax: organization, gene content and nucleotide sequence. Mycologia 2017. [DOI: 10.1080/15572536.2005.11832898] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
139
|
Salomaki ED, Lane CE. Red Algal Mitochondrial Genomes Are More Complete than Previously Reported. Genome Biol Evol 2017; 9:48-63. [PMID: 28175279 PMCID: PMC5381584 DOI: 10.1093/gbe/evw267] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/07/2016] [Indexed: 12/21/2022] Open
Abstract
The enslavement of an alpha-proteobacterial endosymbiont by the last common eukaryotic ancestor resulted in large-scale gene transfer of endosymbiont genes to the host nucleus as the endosymbiont transitioned into the mitochondrion. Mitochondrial genomes have experienced widespread gene loss and genome reduction within eukaryotes and DNA sequencing has revealed that most of these gene losses occurred early in eukaryotic lineage diversification. On a broad scale, more recent modifications to organelle genomes appear to be conserved and phylogenetically informative. The first red algal mitochondrial genome was sequenced more than 20 years ago, and an additional 29 Florideophyceae mitochondria have been added over the past decade. A total of 32 genes have been described to have been missing or considered non-functional pseudogenes from these Florideophyceae mitochondria. These losses have been attributed to endosymbiotic gene transfer or the evolution of a parasitic life strategy. Here we sequenced the mitochondrial genomes from the red algal parasite Choreocolax polysiphoniae and its host Vertebrata lanosa and found them to be complete and conserved in structure with other Florideophyceae mitochondria. This result led us to resequence the previously published parasite Gracilariophila oryzoides and its host Gracilariopsis andersonii, as well as reevaluate reported gene losses from published Florideophyceae mitochondria. Multiple independent losses of rpl20 and a single loss of rps11 can be verified. However by reannotating published data and resequencing specimens when possible, we were able to identify the majority of genes that have been reported as lost or pseudogenes from Florideophyceae mitochondria.
Collapse
|
140
|
Ellenberger S, Burmester A, Wöstemeyer J. The fate of mitochondria after infection of the Mucoralean fungus Absidia glauca by the fusion parasite Parasitella parasitica: comparison of mitochondrial genomes in zygomycetes. Mitochondrial DNA A DNA Mapp Seq Anal 2016; 29:113-120. [PMID: 28034347 DOI: 10.1080/24701394.2016.1248432] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Absidia glauca and Parasitella parasitica constitute a versatile experimental system for studying horizontal gene transfer between a mucoralean host and its fusion parasite. The A. glauca chondriome has a length of approximately 63 kb and a GC content of 28%. The chondriome of P. parasitica is larger, 83 kb, and contains 31% GC base pairs. These mtDNAs contain the standard fungal mitochondrial gene set, small and large subunit rRNAs, plus ribonuclease P RNA. Comparing zygomycete chondriomes reveals an unusually high number of homing endonuclease genes in P. parasitica, substantiating the mobility of intron elements independent of host-parasite interactions.
Collapse
Affiliation(s)
- Sabrina Ellenberger
- a Chair for General Microbiology and Microbe Genetics , Friedrich Schiller University Jena , Jena , Germany
| | - Anke Burmester
- a Chair for General Microbiology and Microbe Genetics , Friedrich Schiller University Jena , Jena , Germany
| | - Johannes Wöstemeyer
- a Chair for General Microbiology and Microbe Genetics , Friedrich Schiller University Jena , Jena , Germany
| |
Collapse
|
141
|
Kruszewski J, Golik P. Pentatricopeptide Motifs in the N-Terminal Extension Domain of Yeast Mitochondrial RNA Polymerase Rpo41p Are Not Essential for Its Function. BIOCHEMISTRY. BIOKHIMIIA 2016; 81:1101-1110. [PMID: 27908235 DOI: 10.1134/s0006297916100084] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The core mitochondrial RNA polymerase is a single-subunit enzyme that in yeast Saccharomyces cerevisiae is encoded by the nuclear RPO41 gene. It is an evolutionary descendant of the bacteriophage RNA polymerases, but it includes an additional unconserved N-terminal extension (NTE) domain that is unique to the organellar enzymes. This domain mediates interactions between the polymerase and accessory regulatory factors, such as yeast Sls1p and Nam1p. Previous studies demonstrated that deletion of the entire NTE domain results only in a temperature-dependent respiratory deficiency. Several sequences related to the pentatricopeptide (PPR) motifs were identified in silico in Rpo41p, three of which are located in the NTE domain. PPR repeat proteins are a large family of organellar RNA-binding factors, mostly involved in posttranscriptional gene expression mechanisms. To study their function, we analyzed the phenotype of strains bearing Rpo41p variants where each of these motifs was deleted. We found that deletion of any of the three PPR motifs in the NTE domain does not affect respiratory growth at normal temperature, and it results in a moderate decrease in mtDNA stability. Steady-state levels of COX1 and COX2 mRNAs are also moderately affected. Only the deletion of the second motif results in a partial respiratory deficiency, manifested only at elevated temperature. Our results thus indicate that the PPR motifs do not play an essential role in the function of the NTE domain of the mitochondrial RNA polymerase.
Collapse
Affiliation(s)
- J Kruszewski
- University of Warsaw, Institute of Genetics and Biotechnology, Faculty of Biology, Warsaw, 02-106, Poland.
| | | |
Collapse
|
142
|
Strassert JFH, Tikhonenkov DV, Pombert JF, Kolisko M, Tai V, Mylnikov AP, Keeling PJ. Moramonas marocensis gen. nov., sp. nov.: a jakobid flagellate isolated from desert soil with a bacteria-like, but bloated mitochondrial genome. Open Biol 2016; 6:150239. [PMID: 26887409 PMCID: PMC4772810 DOI: 10.1098/rsob.150239] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
A new jakobid genus has been isolated from Moroccan desert soil. The cyst-forming protist Moramonas marocensis gen. nov., sp. nov. has two anteriorly inserted flagella of which one points to the posterior cell pole accompanying the ventral feeding groove and is equipped with a dorsal vane-a feature typical for the Jakobida. It further shows a flagellar root system consisting of singlet microtubular root, left root (R1), right root (R2) and typical fibres associated with R1 and R2. The affiliation of M. marocensis to the Jakobida was confirmed by molecular phylogenetic analyses of the SSU rRNA gene, five nuclear genes and 66 mitochondrial protein-coding genes. The mitochondrial genome has the high number of genes typical for jakobids, and bacterial features, such as the four-subunit RNA polymerase and Shine-Dalgarno sequences upstream of the coding regions of several genes. The M. marocensis mitochondrial genome encodes a similar number of genes as other jakobids, but is unique in its very large genome size (greater than 264 kbp), which is three to four times higher than that of any other jakobid species investigated yet. This increase seems to be due to a massive expansion in non-coding DNA, creating a bloated genome like those of plant mitochondria.
Collapse
Affiliation(s)
- Jürgen F H Strassert
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada
| | - Denis V Tikhonenkov
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada Institute for Biology of Inland Waters, Russian Academy of Sciences, Borok, Yaroslavl Region, Russia
| | | | - Martin Kolisko
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada
| | - Vera Tai
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada
| | - Alexander P Mylnikov
- Institute for Biology of Inland Waters, Russian Academy of Sciences, Borok, Yaroslavl Region, Russia
| | - Patrick J Keeling
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
143
|
Analysis of the Complete Mitochondrial Genome Sequence of the Diploid Cotton Gossypium raimondii by Comparative Genomics Approaches. BIOMED RESEARCH INTERNATIONAL 2016; 2016:5040598. [PMID: 27847816 PMCID: PMC5099484 DOI: 10.1155/2016/5040598] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 09/26/2016] [Indexed: 11/17/2022]
Abstract
Cotton is one of the most important economic crops and the primary source of natural fiber and is an important protein source for animal feed. The complete nuclear and chloroplast (cp) genome sequences of G. raimondii are already available but not mitochondria. Here, we assembled the complete mitochondrial (mt) DNA sequence of G. raimondii into a circular genome of length of 676,078 bp and performed comparative analyses with other higher plants. The genome contains 39 protein-coding genes, 6 rRNA genes, and 25 tRNA genes. We also identified four larger repeats (63.9 kb, 10.6 kb, 9.1 kb, and 2.5 kb) in this mt genome, which may be active in intramolecular recombination in the evolution of cotton. Strikingly, nearly all of the G. raimondii mt genome has been transferred to nucleus on Chr1, and the transfer event must be very recent. Phylogenetic analysis reveals that G. raimondii, as a member of Malvaceae, is much closer to another cotton (G. barbadense) than other rosids, and the clade formed by two Gossypium species is sister to Brassicales. The G. raimondii mt genome may provide a crucial foundation for evolutionary analysis, molecular biology, and cytoplasmic male sterility in cotton and other higher plants.
Collapse
|
144
|
Complete Sequence and Analysis of Coconut Palm (Cocos nucifera) Mitochondrial Genome. PLoS One 2016; 11:e0163990. [PMID: 27736909 PMCID: PMC5063475 DOI: 10.1371/journal.pone.0163990] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 09/19/2016] [Indexed: 11/19/2022] Open
Abstract
Coconut (Cocos nucifera L.), a member of the palm family (Arecaceae), is one of the most economically important crops in tropics, serving as an important source of food, drink, fuel, medicine, and construction material. Here we report an assembly of the coconut (C. nucifera, Oman local Tall cultivar) mitochondrial (mt) genome based on next-generation sequencing data. This genome, 678,653bp in length and 45.5% in GC content, encodes 72 proteins, 9 pseudogenes, 23 tRNAs, and 3 ribosomal RNAs. Within the assembly, we find that the chloroplast (cp) derived regions account for 5.07% of the total assembly length, including 13 proteins, 2 pseudogenes, and 11 tRNAs. The mt genome has a relatively large fraction of repeat content (17.26%), including both forward (tandem) and inverted (palindromic) repeats. Sequence variation analysis shows that the Ti/Tv ratio of the mt genome is lower as compared to that of the nuclear genome and neutral expectation. By combining public RNA-Seq data for coconut, we identify 734 RNA editing sites supported by at least two datasets. In summary, our data provides the second complete mt genome sequence in the family Arecaceae, essential for further investigations on mitochondrial biology of seed plants.
Collapse
|
145
|
Shipley JR, Campbell P, Searle JB, Pasch B. Asymmetric energetic costs in reciprocal-cross hybrids between carnivorous mice (Onychomys). ACTA ACUST UNITED AC 2016; 219:3803-3809. [PMID: 27688051 DOI: 10.1242/jeb.148890] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 09/25/2016] [Indexed: 01/07/2023]
Abstract
Aerobic respiration is a fundamental physiological trait dependent on coordinated interactions between gene products of the mitochondrial and nuclear genomes. Mitonuclear mismatch in interspecific hybrids may contribute to reproductive isolation by inducing reduced viability (or even complete inviability) due to increased metabolic costs. However, few studies have tested for effects of mitonuclear mismatch on respiration at the whole-organism level. We explored how hybridization affects metabolic rate in closely related species of grasshopper mice (genus Onychomys) to better understand the role of metabolic costs in reproductive isolation. We measured metabolic rate across a range of temperatures to calculate basal metabolic rate (BMR) and cold-induced metabolic rate (MRc) in O. leucogaster, O. torridus and O. arenicola, and in reciprocal F1 hybrids between the latter two species. Within the genus, we found a negative correlation between mass-specific BMR and body mass. Although O. arenicola was smaller than O. torridus, hybrids from both directions of the cross resembled O. arenicola in body mass. In contrast, hybrid BMR was strongly influenced by the direction of the cross: reciprocal F1 hybrids were different from each other but indistinguishable from the maternal species. In addition, MRc was not significantly different between hybrids and either parental species. These patterns indicate that metabolic costs are not increased in Onychomys F1 hybrids and, while exposure of incompatibilities in F2 hybrids cannot be ruled out, suggest that mitonuclear mismatch does not act as a primary barrier to gene flow. Maternal matching of BMR is suggestive of a strong effect of mitochondrial genotype on metabolism in hybrids. Together, our findings provide insight into the metabolic consequences of hybridization, a topic that is understudied in mammals.
Collapse
Affiliation(s)
- J Ryan Shipley
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY 14853, USA
| | - Polly Campbell
- Department of Integrative Biology, Oklahoma State University, Stillwater, OK 74078, USA
| | - Jeremy B Searle
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY 14853, USA
| | - Bret Pasch
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY 14853, USA .,Bioacoustics Research Program, Cornell Lab of Ornithology, Cornell University, Ithaca, NY 14850, USA.,Macaulay Library, Cornell Lab of Ornithology, Cornell University, Ithaca, NY 14850, USA.,Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
146
|
Koonin EV. Origin of eukaryotes from within archaea, archaeal eukaryome and bursts of gene gain: eukaryogenesis just made easier? Philos Trans R Soc Lond B Biol Sci 2016; 370:20140333. [PMID: 26323764 PMCID: PMC4571572 DOI: 10.1098/rstb.2014.0333] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The origin of eukaryotes is a fundamental, forbidding evolutionary puzzle. Comparative genomic analysis clearly shows that the last eukaryotic common ancestor (LECA) possessed most of the signature complex features of modern eukaryotic cells, in particular the mitochondria, the endomembrane system including the nucleus, an advanced cytoskeleton and the ubiquitin network. Numerous duplications of ancestral genes, e.g. DNA polymerases, RNA polymerases and proteasome subunits, also can be traced back to the LECA. Thus, the LECA was not a primitive organism and its emergence must have resulted from extensive evolution towards cellular complexity. However, the scenario of eukaryogenesis, and in particular the relationship between endosymbiosis and the origin of eukaryotes, is far from being clear. Four recent developments provide new clues to the likely routes of eukaryogenesis. First, evolutionary reconstructions suggest complex ancestors for most of the major groups of archaea, with the subsequent evolution dominated by gene loss. Second, homologues of signature eukaryotic proteins, such as actin and tubulin that form the core of the cytoskeleton or the ubiquitin system, have been detected in diverse archaea. The discovery of this ‘dispersed eukaryome’ implies that the archaeal ancestor of eukaryotes was a complex cell that might have been capable of a primitive form of phagocytosis and thus conducive to endosymbiont capture. Third, phylogenomic analyses converge on the origin of most eukaryotic genes of archaeal descent from within the archaeal evolutionary tree, specifically, the TACK superphylum. Fourth, evidence has been presented that the origin of the major archaeal phyla involved massive acquisition of bacterial genes. Taken together, these findings make the symbiogenetic scenario for the origin of eukaryotes considerably more plausible and the origin of the organizational complexity of eukaryotic cells more readily explainable than they appeared until recently.
Collapse
Affiliation(s)
- Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| |
Collapse
|
147
|
Goodwin SB, McCorison CB, Cavaletto JR, Culley DE, LaButti K, Baker SE, Grigoriev IV. The mitochondrial genome of the ethanol-metabolizing, wine cellar mold Zasmidium cellare is the smallest for a filamentous ascomycete. Fungal Biol 2016; 120:961-974. [PMID: 27521628 DOI: 10.1016/j.funbio.2016.05.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 03/31/2016] [Accepted: 05/07/2016] [Indexed: 01/26/2023]
Abstract
Fungi in the class Dothideomycetes often live in extreme environments or have unusual physiology. One of these, the wine cellar mold Zasmidium cellare, produces thick curtains of mycelia in cellars with high humidity, and its ability to metabolize volatile organic compounds is thought to improve air quality. Whether these abilities have affected its mitochondrial genome is not known. To fill this gap, the circular-mapping mitochondrial genome of Z. cellare was sequenced and, at only 23 743 bp, is the smallest reported for a filamentous fungus. Genes were encoded on both strands with a single change of direction, different from most other fungi but consistent with the Dothideomycetes. Other than its small size, the only unusual feature of the Z. cellare mitochondrial genome was two copies of a 110-bp sequence that were duplicated, inverted and separated by approximately 1 kb. This inverted-repeat sequence confused the assembly program but appears to have no functional significance. The small size of the Z. cellare mitochondrial genome was due to slightly smaller genes, lack of introns and non-essential genes, reduced intergenic spacers and very few ORFs relative to other fungi rather than a loss of essential genes. Whether this reduction facilitates its unusual biology remains unknown.
Collapse
Affiliation(s)
- Stephen B Goodwin
- USDA, Agricultural Research Service, Crop Production and Pest Control Research Unit, 915 West State Street, Purdue University, West Lafayette, IN 47907-2054, USA.
| | - Cassandra B McCorison
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907-2054, USA
| | - Jessica R Cavaletto
- USDA, Agricultural Research Service, Crop Production and Pest Control Research Unit, 915 West State Street, Purdue University, West Lafayette, IN 47907-2054, USA
| | - David E Culley
- Chemical and Biological Process Development Group, Pacific Northwest National Laboratory, 902 Battelle Boulevard, P.O. Box 999, MSIN P8-60, Richland, WA 99352, USA
| | - Kurt LaButti
- U.S. Department of Energy Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA 94598, USA
| | - Scott E Baker
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, 3335 Innovation Blvd, Richland, WA 99354, USA
| | - Igor V Grigoriev
- U.S. Department of Energy Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA 94598, USA
| |
Collapse
|
148
|
El-Hattab AW, Scaglia F. Mitochondrial cytopathies. Cell Calcium 2016; 60:199-206. [PMID: 26996063 DOI: 10.1016/j.ceca.2016.03.003] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Revised: 03/01/2016] [Accepted: 03/02/2016] [Indexed: 01/05/2023]
Abstract
Mitochondria are found in all nucleated human cells and perform a variety of essential functions, including the generation of cellular energy. Most of mitochondrial proteins are encoded by the nuclear DNA (nDNA) whereas a very small fraction is encoded by the mitochondrial DNA (mtDNA). Mutations in mtDNA or mitochondria-related nDNA genes can result in mitochondrial dysfunction which leads to a wide range of cellular perturbations including aberrant calcium homeostasis, excessive reactive oxygen species production, dysregulated apoptosis, and insufficient energy generation to meet the needs of various organs, particularly those with high energy demand. Impaired mitochondrial function in various tissues and organs results in the multi-organ manifestations of mitochondrial diseases including epilepsy, intellectual disability, skeletal and cardiac myopathies, hepatopathies, endocrinopathies, and nephropathies. Defects in nDNA genes can be inherited in an autosomal or X-linked manners, whereas, mtDNA is maternally inherited. Mitochondrial diseases can result from mutations of nDNA genes encoding subunits of the electron transport chain complexes or their assembly factors, proteins associated with the mitochondrial import or networking, mitochondrial translation factors, or proteins involved in mtDNA maintenance. MtDNA defects can be either point mutations or rearrangements. The diagnosis of mitochondrial disorders can be challenging in many cases and is based on clinical recognition, biochemical screening, histopathological studies, functional studies, and molecular genetic testing. Currently, there are no satisfactory therapies available for mitochondrial disorders that significantly alter the course of the disease. Therapeutic options include symptomatic treatment, cofactor supplementation, and exercise.
Collapse
Affiliation(s)
- Ayman W El-Hattab
- Division of Clinical Genetics and Metabolic Disorders, Pediatrics Department, Tawam Hospital, Al-Ain, United Arab Emirates
| | - Fernando Scaglia
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
149
|
Shamseldin HE, Smith LL, Kentab A, Alkhalidi H, Summers B, Alsedairy H, Xiong Y, Gupta VA, Alkuraya FS. Mutation of the mitochondrial carrier SLC25A42 causes a novel form of mitochondrial myopathy in humans. Hum Genet 2016; 135:21-30. [PMID: 26541337 PMCID: PMC4900140 DOI: 10.1007/s00439-015-1608-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 10/24/2015] [Indexed: 01/08/2023]
Abstract
Myopathies are heterogeneous disorders characterized clinically by weakness and hypotonia, usually in the absence of gross dystrophic changes. Mitochondrial dysfunction is a frequent cause of myopathy. We report a simplex case born to consanguineous parents who presented with muscle weakness, lactic acidosis, and muscle changes suggestive of mitochondrial dysfunction. Combined autozygome and exome analysis revealed a missense variant in the SLC25A42 gene, which encodes an inner mitochondrial membrane protein that imports coenzyme A into the mitochondrial matrix. Zebrafish slc25a42 knockdown morphants display severe muscle disorganization and weakness. Importantly, these features are rescued by normal human SLC25A42 RNA, but not by RNA harboring the patient's variant. Our data support a potentially causal link between SLC25A42 mutation and mitochondrial myopathy in humans.
Collapse
Affiliation(s)
- Hanan E Shamseldin
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Laura L Smith
- Division of Genetics and Genomics, The Manton Center for Orphan Disease Research, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Amal Kentab
- Department of Pediatrics, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Hisham Alkhalidi
- Department of Pathology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Brady Summers
- Department of Molecular Biophysics & Biochemistry 260 Whitney Avenue P.O. Box 208114. New Haven, CT, USA
| | - Haifa Alsedairy
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Yong Xiong
- Department of Molecular Biophysics & Biochemistry 260 Whitney Avenue P.O. Box 208114. New Haven, CT, USA
| | - Vandana A Gupta
- Division of Genetics and Genomics, The Manton Center for Orphan Disease Research, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Fowzan S Alkuraya
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
- Department of Anatomy and Cell Biology, College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| |
Collapse
|
150
|
Oliveira MRD, Nabavi SF, Daglia M, Rastrelli L, Nabavi SM. Epigallocatechin gallate and mitochondria-A story of life and death. Pharmacol Res 2015; 104:70-85. [PMID: 26731017 DOI: 10.1016/j.phrs.2015.12.027] [Citation(s) in RCA: 122] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 12/20/2015] [Accepted: 12/23/2015] [Indexed: 01/05/2023]
Abstract
Epigallocatechin gallate (EGCG) is a flavonoid belonging to the chemical class of falvan-3-ols (catechins) esterified with gallic acid. It is the main catechin found in green tea (Camellia sinensis L.) accounting for about 50% of its total polyphenols. Extensive research performed in recent years has revealed that green tea demonstrates a wide range of positive biological activities against serious chronic diseases such as cardiovascular and neurodegenerative pathologies, cancer, metabolic syndrome and type 2 diabetes. These protective properties can be traced back to the potent antioxidant and anti-inflammatory activities of EGCG. Recent studies have suggested that it may exert its beneficial effects by modulating mitochondrial functions impacting mitochondrial biogenesis, bioenergetic control (ATP production and anabolism), alteration of the cell cycle, and mitochondria-related apoptosis. This review evaluates recent evidence on the ability of EGCG to exert critical influence on the above mentioned pathways.
Collapse
Affiliation(s)
- Marcos Roberto de Oliveira
- Department of Chemistry, ICET, Federal University of Mato Grosso (UFMT), Av. Fernando Corrêa da Costa, 2367, CEP 78060-900 Cuiabá, MT, Brazil.
| | - Seyed Fazel Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Maria Daglia
- Department of Drug Sciences, Medicinal Chemistry and Pharmaceutical Technology Section, University of Pavia, Italy
| | - Luca Rastrelli
- Dipartimento di Farmacia, University of Salerno, via Giovanni Paolo II, 84084 Fisciano, Italy
| | - Seyed Mohammad Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|