101
|
Oganesyan V, Damschroder MM, Cook KE, Li Q, Gao C, Wu H, Dall'Acqua WF. Structural insights into neonatal Fc receptor-based recycling mechanisms. J Biol Chem 2014; 289:7812-24. [PMID: 24469444 DOI: 10.1074/jbc.m113.537563] [Citation(s) in RCA: 188] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We report the three-dimensional structure of human neonatal Fc receptor (FcRn) bound concurrently to its two known ligands. More particularly, we solved the crystal structure of the complex between human FcRn, wild-type human serum albumin (HSA), and a human Fc engineered for improved pharmacokinetics properties (Fc-YTE). The crystal structure of human FcRn bound to wild-type HSA alone is also presented. HSA domain III exhibits an extensive interface of contact with FcRn, whereas domain I plays a lesser role. A molecular explanation for the HSA recycling mechanism is provided with the identification of FcRn His(161) as the only potential direct contributor to the corresponding pH-dependent process. At last, this study also allows an accurate structural definition of residues considered for decades as important to the human IgG/FcRn interaction and reveals Fc His(310) as a significant contributor to pH-dependent binding. Finally, we explain various structural mechanisms by which several Fc mutations (including YTE) result in increased human IgG binding to FcRn. Our study provides an unprecedented relevant understanding of the molecular basis of human Fc interaction with human FcRn.
Collapse
Affiliation(s)
- Vaheh Oganesyan
- From the Department of Antibody Discovery and Protein Engineering, MedImmune, Gaithersburg, Maryland 20878
| | | | | | | | | | | | | |
Collapse
|
102
|
Bowman CJ, Breslin WJ, Connor AV, Martin PL, Moffat GJ, Sivaraman L, Tornesi MB, Chivers S. Placental Transfer of Fc-Containing Biopharmaceuticals across Species, an Industry Survey Analysis. ACTA ACUST UNITED AC 2014; 98:459-85. [DOI: 10.1002/bdrb.21089] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Accepted: 11/15/2013] [Indexed: 12/16/2022]
Affiliation(s)
| | | | | | | | | | - Lakshmi Sivaraman
- Bristol-Myers Squibb Company Research and Development; New Brunswick New Jersey
| | | | - Simon Chivers
- Novartis Institute for Biomedical Research; Basel Switzerland
| |
Collapse
|
103
|
van der Burg M, Weemaes CM, Cunningham-Rundles C. Isotype Defects. STIEHM'S IMMUNE DEFICIENCIES 2014:389-408. [DOI: 10.1016/b978-0-12-405546-9.00016-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
104
|
Abstract
Most biological activities of antibodies depend on their ability to engage Receptors for the Fc portion of immunoglobulins (FcRs) on a variety of cell types. As FcRs can trigger positive and negative signals, as these signals control several biological activities in individual cells, as FcRs are expressed by many cells of hematopoietic origin, mostly of the myeloid lineage, as these cells express various combinations of FcRs, and as FcR-expressing cells have different functional repertoires, antibodies can exert a wide spectrum of biological activities. Like B and T Cell Receptors (BCRs and TCRs), FcRs are bona fide immunoreceptors. Unlike BCRs and TCRs, however, FcRs are immunoreceptors with an adaptive specificity for antigen, with an adaptive affinity for antibodies, with an adaptive structure and with an adaptive signaling. They induce adaptive biological responses that depend on their tissue distribution and on FcR-expressing cells that are selected locally by antibodies. They critically determine health and disease. They are thus exquisitely adaptive therapeutic tools.
Collapse
Affiliation(s)
| | - Falk Nimmerjahn
- Department of Biology, Institute of Genetics, University of Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
105
|
Sommer JM, Moore N, McGuffie-Valentine B, Bardan S, Buyue Y, Kamphaus GD, Konkle BA, Pierce GF. Comparative field study evaluating the activity of recombinant factor VIII Fc fusion protein in plasma samples at clinical haemostasis laboratories. Haemophilia 2013; 20:294-300. [PMID: 24261554 PMCID: PMC4216409 DOI: 10.1111/hae.12296] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/07/2013] [Indexed: 11/29/2022]
Abstract
Discrepancies exist for some of the modified coagulation factors when assayed with different one-stage clotting and chromogenic substrate assay reagents. The aim of this study was to evaluate the performance of a recombinant factor VIII Fc fusion protein (rFVIIIFc), currently in clinical development for the treatment of severe haemophilia A, in a variety of one-stage clotting and chromogenic substrate assays in clinical haemostasis laboratories. Haemophilic plasma samples spiked with rFVIIIFc or Advate® at 0.05, 0.20 or 0.80 IU mL−1 were tested by 30 laboratories using their routine procedures and plasma standards. Data were evaluated for intra- and inter-laboratory variation, accuracy and possible rFVIIIFc-specific assay discrepancies. For the one-stage assay, mean recovery was 95% to 100% of expected for both Advate® and rFVIIIFc at 0.8 IU mL−1. Intra-laboratory percent coefficient of variance (CV) ranged from 6.3% to 7.8% for Advate®, and 6.0% to 10.3% for rFVIIIFc. Inter-laboratory CV ranged from 10% for Advate® and 16% for rFVIIIFc at 0.8 IU mL−1, to over 30% at 0.05 IU mL−1 for both products. For the chromogenic substrate assay, the average FVIII recovery was 107% ± 5% and 124% ± 8% of label potency across the three concentrations of Advate® and rFVIIIFc, respectively. Plasma rFVIIIFc levels can be monitored by either the one-stage or the chromogenic substrate assay routinely performed in clinical laboratories without the need for a product-specific rFVIIIFc laboratory standard. Accuracy by the one-stage assay was comparable to that of Advate®, while marginally higher results may be observed for rFVIIIFc when using the chromogenic assay.
Collapse
Affiliation(s)
- J M Sommer
- Biogen Idec Hemophilia, Cambridge, MA, USA
| | | | | | | | | | | | | | | |
Collapse
|
106
|
Amancha PK, Hong JJ, Rogers K, Ansari AA, Villinger F. In vivo blockade of the programmed cell death-1 pathway using soluble recombinant PD-1-Fc enhances CD4+ and CD8+ T cell responses but has limited clinical benefit. THE JOURNAL OF IMMUNOLOGY 2013; 191:6060-70. [PMID: 24227774 DOI: 10.4049/jimmunol.1302044] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The programmed cell death-1 (PD-1)/programmed cell death ligand-1 pathway has been shown to limit cell-mediated effector functions during chronic viral infections impeding clearance of pathogens. As a strategy to reverse this exhaustion and increase T cell polyfunctionality, PD-1 ligands were blocked in vivo using a recombinant macaque PD-1 fused to a macaque Ig-Fc (rPD-1-Fc) in SIVmac239-infected rhesus macaques during the early chronic phase of infection, either alone or in combination with antiretroviral therapy. In vitro blockade showed improvement of Ag-specific CD4(+) and CD8(+) T cells from monkeys chronically infected with SIV. Of note, a prolonged 5-d blockade in culture was beneficial for both gag-specific CD4(+) and CD8(+) T cells based on proliferation and dual cytokine production. Although the in vivo administration of rPD-1-Fc induced enhanced SIV-specific CD4 and CD8 T cell proliferation both in the blood and gut, it failed to alter plasma viremia. However, rPD-1-Fc administration in the context of antiretroviral therapy interruption induced a significant delay of viral load rebound. In addition, rPD-1-Fc administration in MamuA*001(+) monkeys led to both an increase in the frequencies and Ki67 expression of GagCM9(+) CD8(+) T cells in the blood and rectal mucosa and polyfunctionality of GagCM9(+) CD8(+) T cells in blood. In conclusion, however, our data suggest that PD-1/programmed cell death ligand-1 blockade using soluble rPD-1-Fc instead of anti-PD-1 mAb, although effective in rescuing the effector function of SIV-specific CD4(+) and CD8(+) T cells during the early chronic phase of infection, has limited clinical benefit.
Collapse
Affiliation(s)
- Praveen K Amancha
- Division of Pathology, Yerkes National Primate Research Center, Atlanta, GA 30329
| | | | | | | | | |
Collapse
|
107
|
Brunke C, Lohse S, Derer S, Peipp M, Boross P, Kellner C, Beyer T, Dechant M, Royle L, Liew LP, Leusen JHW, Valerius T. Effect of a tail piece cysteine deletion on biochemical and functional properties of an epidermal growth factor receptor-directed IgA2m(1) antibody. MAbs 2013; 5:936-45. [PMID: 24492345 PMCID: PMC3896607 DOI: 10.4161/mabs.26396] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Revised: 09/04/2013] [Accepted: 09/06/2013] [Indexed: 02/06/2023] Open
Abstract
Antibodies of human IgA isotype are critical components of the mucosal immune system, but little is known about their immunotherapeutic potential. Compared with IgG antibodies, IgA molecules carry a C-terminal tail piece extension of 18 amino acids with a free cysteine at position 471. This cysteine is required for the formation of dimeric IgA antibodies, but may impair molecular characteristics of monomeric IgA antibodies as therapeutic reagents. Thus, we generated and characterized a d471-mutated antibody against the epidermal growth factor receptor (EGFR) and compared it to its respective IgA2m(1) wild type antibody. Both wild type and mutated IgA antibodies demonstrated similar EGFR binding and were similarly efficient in inhibiting EGF binding and in blocking EGF-mediated cell proliferation. Recruitment of Fc-mediated effector functions like antibody-dependent cell-mediated cytotoxicity by monocytes, macrophages or PMN was similar, but the d471-mutated IgA exhibited different biochemical properties compared with wild type antibody. As expected, mutated IgA did not form stable dimers in the presence of human joining (J)-chain, but we also observed reduced levels of dimeric aggregates in the absence of J-chain. Furthermore, glycoprofiling revealed different glycosylation patterns for both antibodies, including considerably less mannosylation of d471-mutated antibodies. Overall, our results demonstrate that the deletion of the C-terminal cysteine of IgA2 did not affect the investigated effector functions compared with wild type antibody, but it improved biochemical properties of an IgA2m(1) antibody against EGFR, and may thereby assist in exploring the immunotherapeutic potential of recombinant IgA antibodies.
Collapse
Affiliation(s)
- Christina Brunke
- Division of Stem Cell Transplantation and Immunotherapy, II; Department of Internal Medicine; Christian-Albrechts-University, Kiel, Germany
| | - Stefan Lohse
- Division of Stem Cell Transplantation and Immunotherapy, II; Department of Internal Medicine; Christian-Albrechts-University, Kiel, Germany
| | - Stefanie Derer
- Division of Stem Cell Transplantation and Immunotherapy, II; Department of Internal Medicine; Christian-Albrechts-University, Kiel, Germany
| | - Matthias Peipp
- Division of Stem Cell Transplantation and Immunotherapy, II; Department of Internal Medicine; Christian-Albrechts-University, Kiel, Germany
| | - Peter Boross
- Department of Immunology; Laboratory for Immunotherapy; University Medical Center Utrecht; Utrecht, the Netherlands
| | - Christian Kellner
- Division of Stem Cell Transplantation and Immunotherapy, II; Department of Internal Medicine; Christian-Albrechts-University, Kiel, Germany
| | - Thomas Beyer
- Department of Internal Medicine IV, Nephrology and Hypertension; Christian-Albrechts-University, Kiel, Germany
| | - Michael Dechant
- Department of Internal Medicine IV, Nephrology and Hypertension; Christian-Albrechts-University, Kiel, Germany
| | - Louise Royle
- Ludger Ltd; Culham Science Centre; Oxford, United Kingdom
| | - Li Phing Liew
- Ludger Ltd; Culham Science Centre; Oxford, United Kingdom
| | - Jeanette HW Leusen
- Department of Immunology; Laboratory for Immunotherapy; University Medical Center Utrecht; Utrecht, the Netherlands
| | - Thomas Valerius
- Division of Stem Cell Transplantation and Immunotherapy, II; Department of Internal Medicine; Christian-Albrechts-University, Kiel, Germany
| |
Collapse
|
108
|
Ng CM, Loyet KM, Iyer S, Fielder PJ, Deng R. Modeling approach to investigate the effect of neonatal Fc receptor binding affinity and anti-therapeutic antibody on the pharmacokinetic of humanized monoclonal anti-tumor necrosis factor-α IgG antibody in cynomolgus monkey. Eur J Pharm Sci 2013; 51:51-8. [PMID: 23999033 DOI: 10.1016/j.ejps.2013.08.033] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2013] [Revised: 07/08/2013] [Accepted: 08/21/2013] [Indexed: 01/17/2023]
Abstract
PURPOSE Several neonatal Fc receptor (FcRn) variants of an anti-tumor necrosis factor (TNF)-α humanized monoclonal IgG antibodies (mAbs) were developed but the effect of their differential FcRn binding affinities on pharmacokinetic (PK) behavior were difficult to be definitively measured in vivo due to formation of anti-therapeutic antibody (ATA). A semi-mechanistic model was developed to investigate the quantitative relationship between the FcRn binding affinity and PK of mAbs in cynomolgus monkey with the presence of ATA. METHODS PK and ATA data from cynomolgus monkeys which received a single intravenous dose of adalimumab, wild-type or two FcRn variant (N434H and N434A) anti-TNF-α mAbs were included in the analysis. Likelihood-based censored data handling method was used to include many PK observations with BQL values for model development. A fully integrated PK-ATA model was developed and used to fit simultaneously to the PK/ATA data. RESULTS AND CONCLUSIONS The PK and ATA time-profiles and effect of FcRn-binding affinity on PK of mAbs were well described by the model and the parameters were estimated with good precision. The model was used successfully to construct quantitative relationships between FcRn binding affinity and PK of anti-TNF-α mAbs in the presence of the ATA-mediated elimination and interferences.
Collapse
Affiliation(s)
- Chee M Ng
- Clinical Pharmacology and Therapeutic, Children Hospital of Philadelphia, PA, United States; School of Medicine, University of Pennsylvania, Philadelphia, PA, United States.
| | | | | | | | | |
Collapse
|
109
|
Tailoring immunoglobulin Fc for highly potent and serum-stable therapeutic antibodies. BIOTECHNOL BIOPROC E 2013. [DOI: 10.1007/s12257-012-0711-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
110
|
Shapiro A. Development of long-acting recombinant FVIII and FIX Fc fusion proteins for the management of hemophilia. Expert Opin Biol Ther 2013; 13:1287-97. [DOI: 10.1517/14712598.2013.819339] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
111
|
Malek A. Role of IgG antibodies in association with placental function and immunologic diseases in human pregnancy. Expert Rev Clin Immunol 2013; 9:235-49. [PMID: 23445198 DOI: 10.1586/eci.12.99] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
During human pregnancy, the maternal immune system develops and changes, providing protection for the growing placenta and fetus. These protective changes provide mechanisms allowing two genetically different individuals to interact with each other without allograft rejection. In addition to normal pregnancy, some pregnancies may develop under immunologic diseases, during which specific monitoring and medical treatments are essential. The aim of this current review is to provide information regarding the development of human placental function during pregnancy, the immunology of human pregnancy and the role of the placenta in providing the fetal tissue with antibodies (IgG and its subclasses 1-4), which are required for the passive immunization of the newborn. In addition, the available methods for the determination of placental function will be explored. Furthermore, immunologic diseases observed during pregnancy and the possible therapies for these diseases will be assessed.
Collapse
Affiliation(s)
- Antoine Malek
- Department of Obstetrics, University Hospital Zurich, Research Division, Frauenklinikstrasse 10, 8091 Zurich, Switzerland.
| |
Collapse
|
112
|
An inactivated cell culture Japanese encephalitis vaccine (JE-ADVAX) formulated with delta inulin adjuvant provides robust heterologous protection against West Nile encephalitis via cross-protective memory B cells and neutralizing antibody. J Virol 2013; 87:10324-33. [PMID: 23864620 DOI: 10.1128/jvi.00480-13] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
West Nile virus (WNV), currently the cause of a serious U.S. epidemic, is a mosquito-borne flavivirus and member of the Japanese encephalitis (JE) serocomplex. There is currently no approved human WNV vaccine, and treatment options remain limited, resulting in significant mortality and morbidity from human infection. Given the availability of approved human JE vaccines, this study asked whether the JE-ADVAX vaccine, which contains an inactivated cell culture JE virus antigen formulated with Advax delta inulin adjuvant, could provide heterologous protection against WNV infection in wild-type and β2-microglobulin-deficient (β2m(-/-)) murine models. Mice immunized twice or even once with JE-ADVAX were protected against lethal WNV challenge even when mice had low or absent serum cross-neutralizing WNV titers prior to challenge. Similarly, β2m(-/-) mice immunized with JE-ADVAX were protected against lethal WNV challenge in the absence of CD8(+) T cells and prechallenge WNV antibody titers. Protection against WNV could be adoptively transferred to naive mice by memory B cells from JE-ADVAX-immunized animals. Hence, in addition to increasing serum cross-neutralizing antibody titers, JE-ADVAX induced a memory B-cell population able to provide heterologous protection against WNV challenge. Heterologous protection was reduced when JE vaccine antigen was administered alone without Advax, confirming the importance of the adjuvant to induction of cross-protective immunity. In the absence of an approved human WNV vaccine, JE-ADVAX could provide an alternative approach for control of a major human WNV epidemic.
Collapse
|
113
|
Proetzel G, Roopenian DC. Humanized FcRn mouse models for evaluating pharmacokinetics of human IgG antibodies. Methods 2013; 65:148-53. [PMID: 23867339 DOI: 10.1016/j.ymeth.2013.07.005] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Revised: 06/29/2013] [Accepted: 07/02/2013] [Indexed: 12/22/2022] Open
Abstract
A key element for the successful development of novel therapeutic antibodies is to fully understand their pharmacokinetic and pharmacodynamic behavior before performing clinical trials. While many in vitro modeling approaches exist, these simply cannot substitute for data obtained from appropriate animal models. It was established quite early that the unusual long serum half-life of immunoglobulin G's (IgGs) and Fc domains are due to their rescue and recycling by the neonatal Fc receptor (FcRn). The diverse roles of FcRn became apparent after isolation and cloning. Interesting are the significant species differences between rodent and human FcRn reactivity, rendering wild type rodents an inadequate model for studying IgG serum half-life. With the advance of genetic engineering mouse models have been established expressing human FcRn, and lacking mouse FcRn protein. These models have become highly relevant tools for serum half-life analysis of Fc-containing compounds.
Collapse
|
114
|
Pharmacokinetics, pharmacodynamics and physiologically-based pharmacokinetic modelling of monoclonal antibodies. Clin Pharmacokinet 2013; 52:83-124. [PMID: 23299465 DOI: 10.1007/s40262-012-0027-4] [Citation(s) in RCA: 165] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Development of monoclonal antibodies (mAbs) and their functional derivatives represents a growing segment of the development pipeline in the pharmaceutical industry. More than 25 mAbs and derivatives have been approved for a variety of therapeutic applications. In addition, around 500 mAbs and derivatives are currently in different stages of development. mAbs are considered to be large molecule therapeutics (in general, they are 2-3 orders of magnitude larger than small chemical molecule therapeutics), but they are not just big chemicals. These compounds demonstrate much more complex pharmacokinetic and pharmacodynamic behaviour than small molecules. Because of their large size and relatively poor membrane permeability and instability in the conditions of the gastrointestinal tract, parenteral administration is the most usual route of administration. The rate and extent of mAb distribution is very slow and depends on extravasation in tissue, distribution within the particular tissue, and degradation. Elimination primarily happens via catabolism to peptides and amino acids. Although not definitive, work has been published to define the human tissues mainly involved in the elimination of mAbs, and it seems that many cells throughout the body are involved. mAbs can be targeted against many soluble or membrane-bound targets, thus these compounds may act by a variety of mechanisms to achieve their pharmacological effect. mAbs targeting soluble antigen generally exhibit linear elimination, whereas those targeting membrane-bound antigen often exhibit non-linear elimination, mainly due to target-mediated drug disposition (TMDD). The high-affinity interaction of mAbs and their derivatives with the pharmacological target can often result in non-linear pharmacokinetics. Because of species differences (particularly due to differences in target affinity and abundance) in the pharmacokinetics and pharmacodynamics of mAbs, pharmacokinetic/pharmacodynamic modelling of mAbs has been used routinely to expedite the development of mAbs and their derivatives and has been utilized to help in the selection of appropriate dose regimens. Although modelling approaches have helped to explain variability in both pharmacokinetic and pharmacodynamic properties of these drugs, there is a clear need for more complex models to improve understanding of pharmacokinetic processes and pharmacodynamic interactions of mAbs with the immune system. There are different approaches applied to physiologically based pharmacokinetic (PBPK) modelling of mAbs and important differences between the models developed. Some key additional features that need to be accounted for in PBPK models of mAbs are neonatal Fc receptor (FcRn; an important salvage mechanism for antibodies) binding, TMDD and lymph flow. Several models have been described incorporating some or all of these features and the use of PBPK models are expected to expand over the next few years.
Collapse
|
115
|
Yates NL, Stacey AR, Nolen TL, Vandergrift NA, Moody MA, Montefiori DC, Weinhold KJ, Blattner WA, Borrow P, Shattock R, Cohen MS, Haynes BF, Tomaras GD. HIV-1 gp41 envelope IgA is frequently elicited after transmission but has an initial short response half-life. Mucosal Immunol 2013; 6:692-703. [PMID: 23299618 PMCID: PMC3663876 DOI: 10.1038/mi.2012.107] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Prevention of HIV-1 transmission at mucosal surfaces will likely require durable pre-existing mucosal anti-HIV-1 antibodies (Abs). Defining the ontogeny, specificities and potentially protective nature of the initial mucosal virus-specific B-cell response will be critical for understanding how to induce protective Ab responses by vaccination. Genital fluids from patients within the earliest stages of acute HIV-1 infection (Fiebig I-VI) were examined for multiple anti-HIV specificities. Gp41 (but not gp120) Env immunoglobulin (Ig)A Abs were frequently elicited in both plasma and mucosal fluids within the first weeks of transmission. However, shortly after induction, these initial mucosal gp41 Env IgA Abs rapidly declined with a t(½) of ∼2.7 days. B-cell-activating factor belonging to the TNF family (BAFF) was elevated immediately preceding the appearance of gp41 Abs, likely contributing to an initial T-independent Ab response. HIV-1 transmission frequently elicits mucosal HIV-1 envelope-specific IgA responses targeted to gp41 that have a short half-life.
Collapse
Affiliation(s)
- N L Yates
- Duke Human Vaccine Institute, Duke University, Durham, North Carolina, USA,Department of Medicine, Duke University, Durham, North Carolina, USA
| | - A R Stacey
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - T L Nolen
- Research Triangle Institute, Research Triangle Park, North Carolina, USA
| | - N A Vandergrift
- Duke Human Vaccine Institute, Duke University, Durham, North Carolina, USA,Department of Medicine, Duke University, Durham, North Carolina, USA
| | - M A Moody
- Duke Human Vaccine Institute, Duke University, Durham, North Carolina, USA,Department of Pediatrics, Duke University, Durham, North Carolina, USA
| | - D C Montefiori
- Duke Human Vaccine Institute, Duke University, Durham, North Carolina, USA,Department of Surgery, Duke University, Durham, North Carolina, USA
| | - K J Weinhold
- Duke Human Vaccine Institute, Duke University, Durham, North Carolina, USA,Department of Surgery, Duke University, Durham, North Carolina, USA,Department of Immunology, Duke University, Durham, North Carolina, USA
| | - W A Blattner
- Department of Medicine, Institute of Human Virology Epidemiology Division, University of Maryland, Baltimore, Maryland, USA
| | - P Borrow
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - R Shattock
- Department of Medicine, Imperial College, London, UK
| | - M S Cohen
- Institute for Global Health and Infectious Diseases, University of North Carolina, Chapel Hill, North Carolina, USA
| | - B F Haynes
- Duke Human Vaccine Institute, Duke University, Durham, North Carolina, USA,Department of Medicine, Duke University, Durham, North Carolina, USA,Department of Immunology, Duke University, Durham, North Carolina, USA
| | - G D Tomaras
- Duke Human Vaccine Institute, Duke University, Durham, North Carolina, USA,Department of Surgery, Duke University, Durham, North Carolina, USA,Department of Immunology, Duke University, Durham, North Carolina, USA,Department of Molecular Genetics and Microbiology, Duke University, Durham, North Carolina, USA,()
| |
Collapse
|
116
|
Roberts BV, Susano I, Gipson DS, Trachtman H, Joy MS. Contribution of renal and non-renal clearance on increased total clearance of adalimumab in glomerular disease. J Clin Pharmacol 2013; 53:919-24. [PMID: 23813330 DOI: 10.1002/jcph.121] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2013] [Accepted: 05/29/2013] [Indexed: 11/09/2022]
Abstract
The contribution of renal and non-renal clearance toward targeted concentrations and/or effects of therapeutic proteins in nephrotic patients are unknown. This study dissected the contribution of clearance pathways to adalimumab elimination in patients with focal segmental glomerulosclerosis (FSGS). Urine was collected from seven patients treated with adalimumab. Renal clearance (ClR ) was measured and non-renal clearance (ClNR ) was calculated as the difference between total clearance and ClR . Differences in cumulative amount in urine, ClR, and ClNR between study weeks 1 and 16 and relationships between proteinuria (protein:creatinine ratio (Up/c)), and ClR and ClNR were evaluated. Up to 13% of the adalimumab dose was lost in urine. ClNR contributed more than ClR to enhanced total clearance. There was a nonlinear relationship between Up/c and ClR (R(2) 0.7059); an increase in ClR beginning at Up/c of 12 mg/mg [slope 1.755, (C.I. -7.825 to 11.34)]. There was a linear relationship between Up/c and ClNR (R(2) 0.5039); for every one unit increase in Up/c, ClNR would increase by 3.5 mL/hr (P = 0.01). Both ClR and ClNR contribute to enhanced total clearance of adalimumab in glomerular disease secondary to FSGS. Additional research is needed to identify mechanisms for the increased ClNR pathways.
Collapse
Affiliation(s)
- Brittney V Roberts
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Aurora, Colorado 80045, USA
| | | | | | | | | |
Collapse
|
117
|
Swami R, Shahiwala A. Impact of physiochemical properties on pharmacokinetics of protein therapeutics. Eur J Drug Metab Pharmacokinet 2013; 38:231-9. [PMID: 23584976 DOI: 10.1007/s13318-013-0126-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Accepted: 03/20/2013] [Indexed: 01/15/2023]
Abstract
Physicochemical properties, such as molecular weight, size, partition coefficient, acid dissociation constant and solubility have a great impact on pharmacokinetics of traditional small molecule drugs and substantially used in development of small drugs. However, predicting pharmacokinetic fate (absorption, distribution, metabolism and elimination) of protein therapeutics from their physicochemical parameters is extremely difficult due to the macromolecular nature of therapeutic proteins and peptides. Their structural complexity and immunogenicity are other contributing factors that determine their biological fate. Therefore, to develop generalized strategies concerning development of therapeutic proteins and peptides are highly challenging. However, reviewing the literature, authors found that physiochemical properties, such as molecular weight, charge and structural modification are having great impact on pharmacokinetics of protein therapeutics and an attempt is made to provide the major findings in this manuscript. This manuscript will serve to provide some bases for developing protein therapeutics with desired pharmacokinetic profile.
Collapse
Affiliation(s)
- Rajan Swami
- , House no. 1089, Sector 20 B, Chandigarh, 160020, India,
| | | |
Collapse
|
118
|
Murai A, Murota R, Doi K, Yoshida T, Aoyama H, Kobayashi M, Horio F. Avian IgY is selectively incorporated into the egg yolks of oocytes by discriminating Fc amino acid residues located on the Cυ3/Cυ4 interface. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2013; 39:378-387. [PMID: 23276880 DOI: 10.1016/j.dci.2012.12.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Revised: 12/03/2012] [Accepted: 12/03/2012] [Indexed: 06/01/2023]
Abstract
In avian species, maternal IgY is selectively incorporated into the egg yolks of maturing oocytes, but the relevance of receptor-mediated uptake is unclear. Here we investigated the critical amino acid residues of IgY required for egg yolk transport by conducting mutational analyses of selected residues located along the Cυ3 and Cυ4 domains of chicken IgY. Recombinant wild-type IgY-Fc (WT) and its mutants were synthesized, and their uptakes into the egg yolks of quail were determined. Among the 17 amino acid residues located on the Cυ3/Cυ4 interface, the substitution of Y363 at the Cυ3 domain to alanine abolished the IgY-Fc uptake into egg yolks. The comprehensive substitution of Y363 with other amino acids revealed that the residue at 363 needs to be allocated with aromatic amino acids to maintain the high transport ability. The deglycosylation of the N-linked carbohydrate chain by substituting N407 at the Cυ3 domain with alanine also caused a marked reduction of IgY-Fc uptake. The microscopic detection of the injected WT and Y363A mutant in ovarian follicles showed that the WT was concentrically accumulated in yolk granules, whereas the Y363A mutant was hardly accumulated in yolk granules, but it had infiltrated into the granulosa cell layer, suggesting that a major hurdle disturbing the infiltration of the Y363A mutant lies on the inside of the granulosa cell layer. The identification of important amino acid residues required for efficient IgY transport enhances our understanding of the molecular mechanisms underlying IgY transport through a specific IgY receptor in ovarian follicles.
Collapse
Affiliation(s)
- Atsushi Murai
- Department of Applied Molecular Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan.
| | | | | | | | | | | | | |
Collapse
|
119
|
Lux A, Yu X, Scanlan CN, Nimmerjahn F. Impact of immune complex size and glycosylation on IgG binding to human FcγRs. THE JOURNAL OF IMMUNOLOGY 2013; 190:4315-23. [PMID: 23509345 DOI: 10.4049/jimmunol.1200501] [Citation(s) in RCA: 225] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
IgG molecules are widely used as therapeutic agents either in the form of intact Abs or as Fc fusion proteins. Although efficient binding of the IgG Fc fragment to cellular FcγRs may be essential to achieve a high cytolytic activity, it may be advantageous for other applications to limit or abolish this interaction. Genetic or biochemical approaches have been used to generate these non-FcγR-binding IgG variants. By using soluble versions of FcγRs and monomeric versions of these altered IgG molecules, it was demonstrated that these IgG variants no longer bind to FcγRs. Importantly, however, these assays do not reflect the physiologic interaction of IgG with low-affinity cellular FcγRs occurring in the form of multimeric immune complexes. In this study, we investigated how the size of an immune complex can affect the interaction of normal and various versions of potentially non-FcγR-binding IgG variants with cellular FcγRs. We show that neither the D265A mutation nor EndoS treatment resulting in IgG molecules with only one N-acetylglucosamine and a fucose residue was fully able to abolish the interaction of all IgG subclasses with cellular FcγRs, suggesting that IgG subclass-specific strategies are essential to fully interfere with human FcγR binding.
Collapse
Affiliation(s)
- Anja Lux
- Department of Biology, University of Erlangen-Nuremberg, 91058 Erlangen, Germany
| | | | | | | |
Collapse
|
120
|
Garnier R, Boulinier T, Gandon S. Evolution of the temporal persistence of immune protection. Biol Lett 2013; 9:20130017. [PMID: 23485875 DOI: 10.1098/rsbl.2013.0017] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The evolution of resistance to parasites has been the focus of numerous theoretical studies and several mechanisms, ranging from innate to acquired immune responses, have been considered. Life-history theory predicts that long-lived species should invest more resources into maintenance and immunity than short-lived species. Here, we provide further theoretical and empirical support for this hypothesis. First, an analysis of the evolution of the persistence of immune protection in a theoretical framework accounting for maternal transfer of immunity reveals that longer-lived hosts are expected to invest in more persistent intragenerational and transgenerational immune responses. Controlling for phylogenetic structure and for the confounding effect of catabolic activity, we further showed that immunoglobulin half-life and longevity are positively correlated in mammal species. Our study confirms that persistence of immunity has evolved as part of elaborate anti-parasitic defence strategies.
Collapse
Affiliation(s)
- Romain Garnier
- Centre d'Ecologie Fonctionnelle et Evolutive, UMR CNRS 5175, Montpellier, France.
| | | | | |
Collapse
|
121
|
JE-ADVAX vaccine protection against Japanese encephalitis virus mediated by memory B cells in the absence of CD8(+) T cells and pre-exposure neutralizing antibody. J Virol 2013; 87:4395-402. [PMID: 23388724 DOI: 10.1128/jvi.03144-12] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
JE-ADVAX is a new, delta inulin-adjuvanted, Japanese encephalitis (JE) candidate vaccine with a strong safety profile and potent immunogenicity that confers efficient immune protection not only against JE virus but also against related neurotropic flaviviruses such as West Nile virus. In this study, we investigated the immunological mechanism of protection by JE-ADVAX vaccine using knockout mice deficient in B cells or CD8(+) T cells and poor persistence of neutralizing antibody or by adoptive transfer of immune splenocyte subpopulations. We show that memory B cells induced by JE-ADVAX provide long-lived protection against JE even in the absence of detectable pre-exposure serum neutralizing antibodies and without the requirement of CD8(+) T cells. Upon virus encounter, these vaccine-induced memory B cells were rapidly triggered to produce neutralizing antibodies that then protected immunized mice from morbidity and mortality. The findings suggest that the extent of the B-cell memory compartment might be a better immunological correlate for clinical efficacy of JE vaccines than the currently recommended measure of serum neutralizing antibody. This may explain the paradox where JE protection is observed in some subjects even in the absence of detectable serum neutralizing antibody. Our investigation also established the suitability of a novel flavivirus challenge model (β(2)-microglobulin-knockout mice) for studies of the role of B-cell memory responses in vaccine protection.
Collapse
|
122
|
Kliwinski C, Cooper PR, Perkinson R, Mabus JR, Tam SH, Wilkinson TM, Giles-Komar J, Scallon B, Powers GD, Hornby PJ. Contribution of FcRn binding to intestinal uptake of IgG in suckling rat pups and human FcRn-transgenic mice. Am J Physiol Gastrointest Liver Physiol 2013; 304:G262-70. [PMID: 23220220 DOI: 10.1152/ajpgi.00340.2012] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Immunoglobulin G (IgG) is transcytosed across intestinal epithelial cells of suckling mammals by the neonatal Fc receptor (FcRn); however, the contribution of FcRn vs. FcRn-independent uptake to serum IgG levels had not been determined in either rat pups or human (h)FcRn-expressing mice (Tg276 and Tg32). In isoflurane-anesthetized rodents, serum levels were determined after regional intestinal delivery of human monoclonal antibodies (hIgG) with either wild-type (WT) Fc sequences or variants engineered for different FcRn binding affinities. Detection of full-length hIgG was by immunoassay; intestinal hFcRn and hIgG localization was by immunocytochemistry. High (μg/ml) serum levels of hIgG were detected after proximal intestinal delivery (0.1-10 mg/kg) in 2-wk-old rats. Human FcRn was visualized in epithelial cells of Tg276 mice, but low serum hIgG levels (<10 ng/ml) were obtained. In rat pups, intraintestinal hIgG1 WT administration resulted in dose-related and saturable uptake, whereas uptake of a low FcRn-binding affinity variant was nonsaturable. There were no differences in hIgG levels from systemic and hepatic portal vein serum samples, and intense hIgG immunostaining was noted in villi enterocytes and within lymphatic lacteal-like vessels. This study demonstrated that FcRn-mediated uptake in rat pups accounted for ~80% of serum hIgG levels and that IgG enters the circulation via the lymph and not the hepatic portal vein. The remaining uptake though the immature intestine is nonreceptor mediated. Intestinal epithelial cell hFcRn expression occurred in Tg276 mice, but receptor-mediated transport of IgG was not observed. The suckling rat pup intestine is a mechanistic model of FcRn-IgG-mediated transcytosis.
Collapse
Affiliation(s)
- C Kliwinski
- Biologics Toxicology, Biotechnology Center of Excellence, Janssen Pharmaceutical Companies of Johnson & Johnson, Radnor, PA 19087, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
123
|
Netirojjanakul C, Witus LS, Behrens CR, Weng CH, Iavarone AT, Francis MB. Synthetically modified Fc domains as building blocks for immunotherapy applications. Chem Sci 2013. [DOI: 10.1039/c2sc21365f] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
124
|
|
125
|
Shapiro AD. Long-lasting recombinant factor VIII proteins for hemophilia A. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2013; 2013:37-43. [PMID: 24319160 DOI: 10.1182/asheducation-2013.1.37] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
In the past 50 years, the lifespan of an individual affected with severe hemophilia A has increased from a mere 20 years to near that of the general unaffected population. These advances are the result of and parallel advances in the development and manufacture of replacement therapies. We are now poised to witness further technologic leaps with the development of longer-lasting replacement therapies, some of which are likely to be approved for market shortly. Prophylactic therapy is currently the standard of care for young children with severe hemophilia A, yet requires frequent infusion to achieve optimal results. Longer-lasting products will transform our ability to deliver prophylaxis, especially in very young children. Longer-lasting replacement therapies will require changes to our current treatment plans including those for acute bleeding, prophylaxis, surgical interventions, and even perhaps immunotolerance induction. Ongoing observation will be required to determine the full clinical impact of this new class of products.
Collapse
Affiliation(s)
- Amy D Shapiro
- 1Indiana Hemophilia and Thrombosis Center, Indianapolis, IN; and
| |
Collapse
|
126
|
Stark A, Vachkova E, Wellnitz O, Bruckmaier R, Baumrucker C. Colostrogenesis: candidate genes for IgG1 transcytosis mechanisms in primary bovine mammary epithelial cells. J Anim Physiol Anim Nutr (Berl) 2012; 97:1114-24. [PMID: 23279563 DOI: 10.1111/jpn.12021] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2012] [Accepted: 11/02/2012] [Indexed: 12/22/2022]
Abstract
Bovine colostrogenesis is distinguished by the specific transfer of IgG1 from the blood to mammary secretions. The process has been shown to be initiated by hormones and occurs during the last weeks of pregnancy when steroid concentrations of estradiol (E2 ) and progesterone (P4 ) are highly elevated. Rodent intestinal uptake of immunoglobulin G is mediated by a receptor termed Fc fragment of IgG, Receptor, Transporter, alpha (FcGRT) and supported by light chain Beta-2-Microglobulin (β2M). We hypothesized that steroid hormone treatments (E2 and P4 ) of bovine mammary epithelial cells in vitro would induce up-regulation of IgG1 transcytosis candidate gene mRNA expression suggesting involvement in IgG1 transcytosis. Two different primary bovine mammary epithelial cell cultures were cultured on plastic and rat tail collagen and treated with hormonal combinations (steroids/lactogenic hormones). Evaluated mRNA components were bLactoferrin (bLf: a control), bFcGRT, β2M, and various small GTPases; the latter components are reported to direct endosomal movements in eukaryotic cells. All tested transcytosis components showed strong expression of mRNA in the cells. Expression of bFcGRT, bRab25 and bRhoB were significantly up-regulated (p < 0.05) by steroid hormones. bRab25 and bRhoB showed increased expression by steroid treatments, but also with lactogenic hormones. Analysis for the oestrogen receptor (ER) mRNA was mostly negative, but 25% of the cultures tested exhibited weak expression, while the progesterone receptor (PR) mRNA was always detected. bRab25 and bRhoB and likely bFcGRT are potential candidate genes for IgG1 transcytosis in bovine mammary cells.
Collapse
Affiliation(s)
- A Stark
- Veterinary Physiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | | | | | | | | |
Collapse
|
127
|
Cabrera R, Lin X, Ashwell M, Moeser A, Odle J. Early postnatal kinetics of colostral immunoglobulin G absorption in fed and fasted piglets and developmental expression of the intestinal immunoglobulin G receptor. J Anim Sci 2012; 91:211-8. [PMID: 23048136 DOI: 10.2527/jas.2011-4426] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The transport of IgG across the epithelial barrier and into the circulation is achieved in part by the neonatal Fc receptor (FcRn), and this provides passive immunity to the neonate. The objective of this study was to determine the effect of time and feeding state on IgG absorption, intestinal morphology, and expression of IgG receptors in the first 24 h postbirth. Twenty newborn pigs were obtained immediately after birth and fitted with umbilical arterial catheters. Colostrum was manually collected from 12 lactating sows and centrifuged to produce defatted colostrum. Piglets were orally gavaged with 32 mL defatted colostrum per kilogram of BW (given in 2 doses 1 h apart) either at birth (0 h) or at 12 h postbirth under either fed (milk replacer) or fasted (saline solution) condition (n=5 per treatment). A fifth reference group (n=5) was euthanized at birth. Blood was collected every hour for the first 2 h immediately after the catheter was inserted and then every 4 h until 12 h (i.e., 0, 1, 2, 4, 8, and 12 h) for the treatment in which the defatted colostrum was given right after birth. For the treatment gavaged at 12 h postbirth, the sampling schedule was at 12, 13, 14, 16, 20, and 24 h. At 12 h postgavage, pigs were euthanized and jejunum tissues were collected for measurement of villi height, width, crypt depth, and gene expression of FcRn and β2-microglobulin (β2M) via reverse transcription PCR. Pig serum IgG concentration was determined by radial immunodiffusion. Data were analyzed according to a 2×2 factorial arrangement of treatments (0 h-fed, 0 h-fasted, 12 h-fed, and 12 h-fasted). There was no interaction between the time (age) of offering defatted colostrum (0 vs. 12 h) and nutritional state (fed vs. fasted) for any of the measurements, and there were no differences between fed and fasted pigs. Serum IgG concentrations increased progressively with time. Piglets offered defatted colostrum at 0 h had greater (P<0.05) overall IgG absorption and greater (P<0.05) villi height than those offered defatted colostrum at 12 h postbirth. Abundance of mRNA of FcRn and β2M were normalized to glyceraldehyde-3-phosphate dehydrogenase. Abundance of FcRn transcript was lower (P=0.006) in pigs euthanized at birth compared with those euthanized at 12 h of age. In conclusion, the effects of delayed offering of defatted colostrum and age-dependent changes in IgG receptor were modest over the first 24 h of life.
Collapse
Affiliation(s)
- R Cabrera
- Laboratory of Developmental Nutrition, Department of Animal Science, North Carolina State University, Raleigh, NC 27695, USA
| | | | | | | | | |
Collapse
|
128
|
Crosstalk between Platelets and the Immune System: Old Systems with New Discoveries. Adv Hematol 2012; 2012:384685. [PMID: 23008717 PMCID: PMC3447344 DOI: 10.1155/2012/384685] [Citation(s) in RCA: 174] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Accepted: 08/15/2012] [Indexed: 11/17/2022] Open
Abstract
Platelets are small anucleate cells circulating in the blood. It has been recognized for more than 100 years that platelet adhesion and aggregation at the site of vascular injury are critical events in hemostasis and thrombosis; however, recent studies demonstrated that, in addition to these classic roles, platelets also have important functions in inflammation and the immune response. Platelets contain many proinflammatory molecules and cytokines (e.g., P-selectin, CD40L, IL-1β, etc.), which support leukocyte trafficking, modulate immunoglobulin class switch, and germinal center formation. Platelets express several functional Toll-like receptors (TLRs), such as TLR-2, TLR-4, and TLR-9, which may potentially link innate immunity with thrombosis. Interestingly, platelets also contain multiple anti-inflammatory molecules and cytokines (e.g., transforming growth factor-β and thrombospondin-1). Emerging evidence also suggests that platelets are involved in lymphatic vessel development by directly interacting with lymphatic endothelial cells through C-type lectin-like receptor 2. Besides the active contributions of platelets to the immune system, platelets are passively targeted in several immune-mediated diseases, such as autoimmune thrombocytopenia, infection-associated thrombocytopenia, and fetal and neonatal alloimmune thrombocytopenia. These data suggest that platelets are important immune cells and may contribute to innate and adaptive immunity under both physiological and pathological conditions.
Collapse
|
129
|
Human antibodies can cross guinea pig placenta and bind its neonatal Fc Receptor: implications for studying immune prophylaxis and therapy during pregnancy. Clin Dev Immunol 2012; 2012:538701. [PMID: 22991567 PMCID: PMC3444053 DOI: 10.1155/2012/538701] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Revised: 07/10/2012] [Accepted: 07/11/2012] [Indexed: 12/20/2022]
Abstract
Despite increased use of monoclonal and polyclonal antibody therapies, including during pregnancy, there is little data on appropriate animal models that could humanely be used to understand determinants of protection and to evaluate safety of these biologics in the mother and the developing fetus. Here, we demonstrate that pregnant guinea pigs can transport human IgG transplacentally at the end of pregnancy. We also observe that human IgG binds to an engineered soluble variant of the guinea pig neonatal Fc receptor in vitro in a manner similar to that demonstrated for the human variant, suggesting that this transplacental transport mirrors the receptor-based mechanism seen in humans. Using an intravenous antihepatitis B-specific immune globulin preparation as an example, we show that this transport results in neutralizing activity in the mother and the newborn that would potentially be prophylactic against hepatitis B viral infection. These preliminary data lay the groundwork for introducing pregnant guinea pigs as an appropriate model for the evaluation of antibody therapies and advancing the health of women and neonates.
Collapse
|
130
|
Tian Z, Zhang X. Progress on research of chicken IgY antibody-FcRY receptor combination and transfer. J Recept Signal Transduct Res 2012; 32:231-7. [DOI: 10.3109/10799893.2012.703207] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
131
|
Schaefer JV, Plückthun A. Transfer of engineered biophysical properties between different antibody formats and expression systems. Protein Eng Des Sel 2012; 25:485-506. [PMID: 22763265 DOI: 10.1093/protein/gzs039] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Recombinant antibodies and their derivatives are receiving ever increasing attention for many applications. Nevertheless, they differ widely in biophysical properties, from stable monomers to metastable aggregation-prone mixtures of oligomers. Previous work from our laboratory presented the combination of structure-based analysis with family consensus alignments as being able to improve the properties of immunoglobulin variable domains. We had identified a series of mutations in the variable domains that greatly influenced both the stability and the expression level of single-chain Fv (scFv) fragments produced in the periplasm of Escherichia coli. We now investigated whether these effects are transferable to Fab fragments and immunoglobulin G (IgG) produced in bacteria, Pichia pastoris, and mammalian cells. Taken together, our data indicate that engineered mutations can increase functional expression levels only for periplasmic expression in prokaryotes. In contrast, stability against thermal and denaturant-induced unfolding is improved by the same mutations in all formats tested, including scFv, Fab and IgG, independent of the expression system. The mutations in V(H) also influenced the structural homogeneity of full-length IgG, and the reducibility of the distant C(H)1-C(L) inter-chain disulfide bond. These results confirm the potential of structure-based protein engineering in the context of full-length IgGs and the transferability of stability improvements discovered with smaller antibody fragments.
Collapse
Affiliation(s)
- Jonas V Schaefer
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | | |
Collapse
|
132
|
Liu XY, Pop LM, Schindler J, Vitetta ES. Immunotoxins constructed with chimeric, short-lived anti-CD22 monoclonal antibodies induce less vascular leak without loss of cytotoxicity. MAbs 2012; 4:57-68. [PMID: 22327430 DOI: 10.4161/mabs.4.1.18348] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
An immunotoxin (IT) constructed with RFB4, a murine anti-CD22 monoclonal antibody, and the "deglycosylated" A chain of ricin has shown activity at safe doses in patients with non-Hodgkin lymphoma and in children with acute lymphoblastic leukemia. The dose limiting toxicity is vascular leak syndrome (VLS), which appears to be due to a unique amino acid motif in the ricin toxin A (RTA) chain that damages vascular endothelial cells. We mutated recombinant (r) RTA to disable this site, but await testing of the IT prepared with this mutant RTA in humans. Another possible approach to reducing IT-induced VLS is to shorten the half-life of the IT in vivo. We previously constructed a mouse-human chimeric RFB4 by grafting the variable genes of RFB4 onto the human IgG1k constant regions. Here, we report the expansion of our panel of mutant chimeric RFB4s (mcRFB4s) that lack the ability to bind to the neonatal Fc receptor (FcRn). In comparison with cRFB4, which had a T1/2 of 263 h, the mcRFB4s had T1/2s ranging from 39 to 106 h. ITs were constructed with these mcRFB4s and rRTA. The mcRFB4-RTA ITs retained their cytotoxicity in vitro and had shorter half lives than the parental cRFB4-RTA IT. In addition, the mcRFB4 IT with the shortest T1/2 induced less pulmonary vascular leak in mice, which we have postulated is a surrogate marker for VLS in humans.
Collapse
Affiliation(s)
- Xiao-yun Liu
- The Cancer Immunobiology Center, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, USA
| | | | | | | |
Collapse
|
133
|
Pascal V, Laffleur B, Debin A, Cuvillier A, van Egmond M, Drocourt D, Imbertie L, Pangault C, Tarte K, Tiraby G, Cogné M. Anti-CD20 IgA can protect mice against lymphoma development: evaluation of the direct impact of IgA and cytotoxic effector recruitment on CD20 target cells. Haematologica 2012; 97:1686-94. [PMID: 22689689 DOI: 10.3324/haematol.2011.061408] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND While most antibody-based therapies use IgG because of their well-known biological properties, some functional limitations of these antibodies call for the development of derivatives with other therapeutic functions. Although less abundant than IgG in serum, IgA is the most abundantly produced Ig class in humans. Besides the specific targeting of its dimeric form to mucosal areas, IgA was shown to recruit polymorphonuclear neutrophils against certain targets more efficiently than does IgG1. DESIGN AND METHODS In this study, we investigated the various pathways by which anti-tumor effects can be mediated by anti-CD20 IgA against lymphoma cells. RESULTS We found that polymeric human IgA was significantly more effective than human IgG1 in mediating direct killing or growth inhibition of target cells in the absence of complement. We also demonstrated that this direct killing was able to indirectly induce the classical pathway of the complement cascade although to a lesser extent than direct recruitment of complement by IgG. Recruitment of the alternative complement pathway by specific IgA was also observed. In addition to activating complement for lysis of lymphoma cell lines or primary cells from patients with lymphoma, we showed that monomeric anti-CD20 IgA can effectively protect mice against tumor development in a passive immunization strategy and we demonstrated that this protective effect may be enhanced in mice expressing the human FcαRI receptor on their neutrophils. CONCLUSIONS We show that anti-CD20 IgA antibodies have original therapeutic properties against lymphoma cells, with strong direct effects, ability to recruit neutrophils for cell cytotoxicity and even recruitment of complement, although largely through an indirect way.
Collapse
Affiliation(s)
- Virginie Pascal
- Université de Limoges, France; CNRS, Laboratoire d'Immunologie, Limoges, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
134
|
Lohse S, Brunke C, Derer S, Peipp M, Boross P, Kellner C, Beyer T, Dechant M, van der Winkel JGJ, Leusen JHW, Valerius T. Characterization of a mutated IgA2 antibody of the m(1) allotype against the epidermal growth factor receptor for the recruitment of monocytes and macrophages. J Biol Chem 2012; 287:25139-50. [PMID: 22679018 DOI: 10.1074/jbc.m112.353060] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
IgA antibodies constitute an important part of the mucosal immune system, but their immunotherapeutic potential remains rather unexplored, in part due to biotechnological issues. For example, the IgA2m(1) allotype carries an unusual heavy and light chain pairing, which may confer production and stability concerns. Here, we report the generation and the biochemical and functional characterization of a P221R-mutated IgA2m(1) antibody against the epidermal growth factor receptor (EGFR). Compared with wild type, the mutated antibody demonstrated heavy chains covalently linked to light chains in monomeric as well as in joining (J)-chain containing dimeric IgA. Functional studies with wild type and mutated IgA2m(1) revealed similar binding to EGFR and direct effector functions such as EGFR down-modulation and growth inhibition. Furthermore, both IgA molecules triggered similar levels of indirect tumor cell killing such as antibody-dependent cell-mediated cytotoxicity (ADCC) by isolated monocytes, activated polymorphonuclear cells, and human whole blood. Interestingly, the dimeric IgA antibodies demonstrated higher efficiency in direct as well as in indirect effector mechanisms compared with their respective monomeric forms. Both wild type and mutated antibody triggered effective FcαRI-mediated tumor cell killing by macrophages already at low effector to target cell ratios. Interestingly, also polarized macrophages mediated significant IgA2-mediated ADCC. M2 macrophages, which have been described as promoting tumor growth and progression, may convert to ADCC-mediating effector cells in the presence of EGFR-directed antibodies. In conclusion, these results provide further insight into the immunotherapeutic potential of recombinant IgA antibodies for tumor immunotherapy and suggest macrophages as an additional effector cell population.
Collapse
Affiliation(s)
- Stefan Lohse
- Division of Stem Cell Transplantation and Immunotherapy, Department of Internal Medicine II, Christian-Albrechts-University, Schittenhelmstrasse 12, 24105 Kiel, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
135
|
Development of anti-infectives using phage display: biological agents against bacteria, viruses, and parasites. Antimicrob Agents Chemother 2012; 56:4569-82. [PMID: 22664969 DOI: 10.1128/aac.00567-12] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The vast majority of anti-infective therapeutics on the market or in development are small molecules; however, there is now a nascent pipeline of biological agents in development. Until recently, phage display technologies were used mainly to produce monoclonal antibodies (MAbs) targeted against cancer or inflammatory disease targets. Patent disputes impeded broad use of these methods and contributed to the dearth of candidates in the clinic during the 1990s. Today, however, phage display is recognized as a powerful tool for selecting novel peptides and antibodies that can bind to a wide range of antigens, ranging from whole cells to proteins and lipid targets. In this review, we highlight research that exploits phage display technology as a means of discovering novel therapeutics against infectious diseases, with a focus on antimicrobial peptides and antibodies in clinical or preclinical development. We discuss the different strategies and methods used to derive, select, and develop anti-infectives from phage display libraries and then highlight case studies of drug candidates in the process of development and commercialization. Advances in screening, manufacturing, and humanization technologies now mean that phage display can make a significant contribution in the fight against clinically important pathogens.
Collapse
|
136
|
Schwache D, Müller-Newen G. Receptor fusion proteins for the inhibition of cytokines. Eur J Cell Biol 2012; 91:428-34. [DOI: 10.1016/j.ejcb.2011.07.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2011] [Revised: 07/28/2011] [Accepted: 07/28/2011] [Indexed: 12/13/2022] Open
|
137
|
Vugmeyster Y, Xu X, Theil FP, Khawli LA, Leach MW. Pharmacokinetics and toxicology of therapeutic proteins: Advances and challenges. World J Biol Chem 2012; 3:73-92. [PMID: 22558487 PMCID: PMC3342576 DOI: 10.4331/wjbc.v3.i4.73] [Citation(s) in RCA: 175] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2011] [Revised: 01/18/2012] [Accepted: 01/25/2012] [Indexed: 02/05/2023] Open
Abstract
Significant progress has been made in understanding pharmacokinetics (PK), pharmacodynamics (PD), as well as toxicity profiles of therapeutic proteins in animals and humans, which have been in commercial development for more than three decades. However, in the PK arena, many fundamental questions remain to be resolved. Investigative and bioanalytical tools need to be established to improve the translation of PK data from animals to humans, and from in vitro assays to in vivo readouts, which would ultimately lead to a higher success rate in drug development. In toxicology, it is known, in general, what studies are needed to safely develop therapeutic proteins, and what studies do not provide relevant information. One of the major complicating factors in nonclinical and clinical programs for therapeutic proteins is the impact of immunogenicity. In this review, we will highlight the emerging science and technology, as well as the challenges around the pharmacokinetic- and safety-related issues in drug development of mAbs and other therapeutic proteins.
Collapse
Affiliation(s)
- Yulia Vugmeyster
- Yulia Vugmeyster, Department of Pharmacokinetics, Dynamics, and Metabolism, Pfizer Inc., Andover, MA 01810, United States
| | | | | | | | | |
Collapse
|
138
|
Dumont JA, Liu T, Low SC, Zhang X, Kamphaus G, Sakorafas P, Fraley C, Drager D, Reidy T, McCue J, Franck HWG, Merricks EP, Nichols TC, Bitonti AJ, Pierce GF, Jiang H. Prolonged activity of a recombinant factor VIII-Fc fusion protein in hemophilia A mice and dogs. Blood 2012; 119:3024-30. [PMID: 22246033 PMCID: PMC3953019 DOI: 10.1182/blood-2011-08-367813] [Citation(s) in RCA: 120] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2011] [Accepted: 12/21/2011] [Indexed: 01/16/2023] Open
Abstract
Despite proven benefits, prophylactic treatment for hemophilia A is hampered by the short half-life of factor VIII. A recombinant factor VIII-Fc fusion protein (rFVIIIFc) was constructed to determine the potential for reduced frequency of dosing. rFVIIIFc has an ∼ 2-fold longer half-life than rFVIII in hemophilia A (HemA) mice and dogs. The extension of rFVIIIFc half-life requires interaction of Fc with the neonatal Fc receptor (FcRn). In FcRn knockout mice, the extension of rFVIIIFc half-life is abrogated, and is restored in human FcRn transgenic mice. The Fc fusion has no impact on FVIII-specific activity. rFVIIIFc has comparable acute efficacy as rFVIII in treating tail clip injury in HemA mice, and fully corrects whole blood clotting time (WBCT) in HemA dogs immediately after dosing. Furthermore, consistent with prolonged half-life, rFVIIIFc shows 2-fold longer prophylactic efficacy in protecting HemA mice from tail vein transection bleeding induced 24-48 hours after dosing. In HemA dogs, rFVIIIFc also sustains partial correction of WBCT 1.5- to 2-fold longer than rFVIII. rFVIIIFc was well tolerated in both species. Thus, the rescue of FVIII by Fc fusion to provide prolonged protection presents a novel pathway for FVIII catabolism, and warrants further investigation.
Collapse
Affiliation(s)
- Jennifer A Dumont
- Research and Development, Biogen Idec Hemophilia, Waltham, MA 02451, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
139
|
Böhm S, Schwab I, Lux A, Nimmerjahn F. The role of sialic acid as a modulator of the anti-inflammatory activity of IgG. Semin Immunopathol 2012; 34:443-53. [PMID: 22437760 DOI: 10.1007/s00281-012-0308-x] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2011] [Accepted: 03/05/2012] [Indexed: 12/24/2022]
Abstract
Immunoglobulin G (IgG) molecules can have two completely opposing activities. They can be very potent pro-inflammatory mediators on the one hand, directing the effector functions of the innate immune system towards infected cells, tumor cells or healthy tissues in the case of autoimmune diseases. On the other hand, a mixture of IgG molecules purified from the blood of ten thousands of healthy donors is used as an anti-inflammatory treatment for many autoimmune diseases since several decades. It has become evident only recently that certain residues in the sugar moiety attached to the IgG constant fragment can dramatically alter the pro- and anti-inflammatory activities of IgG. This review will focus on sialic acid residues as a modulator of the anti-inflammatory activity and provide an overview of situations where serum IgG glycosylation and sialylation is altered and which molecular and cellular pathways may be involved in this immunomodulatory pathway.
Collapse
Affiliation(s)
- Sybille Böhm
- Institute of Genetics, Department of Biology, University of Erlangen-Nuremberg, Erlangen, Germany
| | | | | | | |
Collapse
|
140
|
Christianson GJ, Sun VZ, Akilesh S, Pesavento E, Proetzel G, Roopenian DC. Monoclonal antibodies directed against human FcRn and their applications. MAbs 2012; 4:208-16. [PMID: 22453095 DOI: 10.4161/mabs.4.2.19397] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The MHC class I-like Fc receptor (FcRn) is an intracellular trafficking Fc receptor that is uniquely responsible for the extended serum half-life of antibodies of the IgG subclass and their ability to transport across cellular barriers. By performing these functions, FcRn affects numerous facets of antibody biology and pathobiology. Its critical role in controlling IgG pharmacokinetics has been leveraged for the design of therapeutic antibodies and related biologics. FcRn also traffics serum albumin and is responsible for the enhanced pharmacokinetic properties of albumin-conjugated therapeutics. The understanding of FcRn and its therapeutic applications has been limited by a paucity of reliable serological reagents against human FcRn. Here, we describe the properties of a new panel of highly specific monoclonal antibodies (mAbs) directed against human FcRn with diverse epitope specificities. We show that this antibody panel can be used to study the tissue expression pattern of human FcRn, to selectively block IgG and serum albumin binding to human FcRn in vitro and to inhibit FcRn function in vivo. This mAb panel provides a powerful resource for probing the biology of human FcRn and for the evaluation of therapeutic FcRn blockade strategies.
Collapse
Affiliation(s)
| | | | - Shreeram Akilesh
- The Jackson Laboratory; Bar Harbor, ME USA; Current address: Barnes-Jewish Hospital; St. Louis, MO USA
| | - Emanuele Pesavento
- The Jackson Laboratory; Bar Harbor, ME USA; Current address: VIB Department of Molecular and Cellular Interactions; Laboratory for Cellular and Molecular Immunology; Vrije Universiteit; Brussels, Belgium
| | | | | |
Collapse
|
141
|
Pascal V, Laffleur B, Cogné M. Class-specific effector functions of therapeutic antibodies. Methods Mol Biol 2012; 901:295-317. [PMID: 22723109 DOI: 10.1007/978-1-61779-931-0_19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Physiology usually combines polyclonal antibodies of multiple classes in a single humoral response. Beyond their common ability to bind antigens, these various classes of human immunoglobulins carry specific functions which can each serve specific goals. In many cases, the function of a monoclonal therapeutic antibody may thus be modulated according to the class of its constant domains. Depending on the immunoglobulin class, different functional assays will be used in order to evaluate the functional activity of a monoclonal antibody.
Collapse
Affiliation(s)
- Virginie Pascal
- CNRS UMR6101, Contrôle des Réponses Immunes B et Lymphoproliférations, Université de Limoges, Limoges, France
| | | | | |
Collapse
|
142
|
Wu B, Johnson J, Soto M, Ponce M, Calamba D, Sun YN. Investigation of the mechanism of clearance of AMG 386, a selective angiopoietin-1/2 neutralizing peptibody, in splenectomized, nephrectomized, and FcRn knockout rodent models. Pharm Res 2011; 29:1057-65. [PMID: 22189693 PMCID: PMC3296951 DOI: 10.1007/s11095-011-0650-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Accepted: 12/05/2011] [Indexed: 12/11/2022]
Abstract
Purpose To investigate the mechanisms of clearance of AMG 386, an investigational recombinant peptide-Fc fusion protein (peptibody) that blocks tumor angiogenesis by neutralizing the interaction between angiopoietin-1 and -2 and the Tie2 receptor. Methods The role of the neonatal Fc receptor (FcRn) in AMG 386 clearance was assessed in wild-type and FcRn-knockout mice; the roles of the spleen and kidneys were assessed in splenectomized and 5/6th nephrectomized rats, respectively, compared with sham-operated rats. Animals were administered AMG 386 as a single intravenous dose of 3 or 10 mg/kg. Blood samples for pharmacokinetic analysis were collected periodically throughout a 504-hour postdose period. Results Compared with wild-type mice, AMG 386 clearance in FcRn-knockout mice was 18-fold faster at the 3-mg/kg dose (FcRn knockout, 13.2 mL/h/kg; wild-type, 0.728 mL/h/kg) and 14-fold faster at the 10-mg/kg dose (FcRn knockout, 10.7 mL/h/kg; wild-type, 0.777 mL/h/kg). Clearance in nephrectomized rats was slower than in sham-operated rats at both the 3-mg/kg dose (nephrectomized, 1.23 mL/h/kg; sham-operated, 1.75 mL/h/kg) and the 10-mg/kg dose (nephrectomized, 1.14 mL/h/kg; sham-operated, 1.65 mL/h/kg). Splenectomy had no apparent effect on the pharmacokinetics of AMG 386. Conclusions The FcRn is integral to maintaining circulating levels of AMG 386 in mice. Renal clearance contributed approximately 30% to total AMG 386 clearance in rats.
Collapse
Affiliation(s)
- Benjamin Wu
- Department of Pharmacokinetics & Drug Metabolism, Amgen Inc., One Amgen Center Drive, Mailstop 28-3-B, Thousand Oaks, California, USA
| | | | | | | | | | | |
Collapse
|
143
|
Triguero A, Cabrera G, Rodríguez M, Soto J, Zamora Y, Pérez M, Wormald MR, Cremata JA. Differential N-glycosylation of a monoclonal antibody expressed in tobacco leaves with and without endoplasmic reticulum retention signal apparently induces similar in vivo stability in mice. PLANT BIOTECHNOLOGY JOURNAL 2011; 9:1120-30. [PMID: 21819534 DOI: 10.1111/j.1467-7652.2011.00638.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Plant cells are able to perform most of the post-translational modifications that are required by recombinant proteins to achieve adequate bioactivity and pharmacokinetics. However, regarding N-glycosylation the processing of plant N-glycans in the Golgi apparatus displays major differences when compared with that of mammalian cells. These differences in N-glycosylation are expected to influence serum clearance rate of plant-derived monoclonal antibodies. The monoclonal antibody against the hepatitis B virus surface antigen expressed in Nicotiana tabacum leaves without KDEL endoplasmic reticulum (ER) retention signal (CB.Hep1(-)KDEL) and with a KDEL (Lys-Asp-Glu-Leu) fused to both IgG light and heavy chains (CB.Hep1(+)KDEL) were tested for in vivo stability in mice. Full characterization of N-glycosylation and aggregate formation in each monoclonal antibody batch was determined. The mouse counterpart (CB.Hep1) was used as control. Both (CB.Hep1(-)KDEL) and (CB.Hep1(+)KDEL) showed a faster initial clearance rate (first 24 h) compared with the analogous murine antibody while the terminal phase was similar in the three antibodies. Despite the differences between CB.Hep1(+)KDEL and CB.Hep1(-)KDEL N-glycans, the in vivo elimination in mice was indistinguishable from each other and higher than the murine monoclonal antibody. Molecular modelling confirmed that N-glycans linked to plantibodies were oriented away from the interdomain region, increasing the accessibility of the potential glycan epitopes by glycoprotein receptors that might be responsible for the difference in stability of these molecules.
Collapse
Affiliation(s)
- Ada Triguero
- Department of Carbohydrate Chemistry, Center for Genetic Engineering and Biotechnology, Havana, Cuba
| | | | | | | | | | | | | | | |
Collapse
|
144
|
Nordstrom JL, Gorlatov S, Zhang W, Yang Y, Huang L, Burke S, Li H, Ciccarone V, Zhang T, Stavenhagen J, Koenig S, Stewart SJ, Moore PA, Johnson S, Bonvini E. Anti-tumor activity and toxicokinetics analysis of MGAH22, an anti-HER2 monoclonal antibody with enhanced Fcγ receptor binding properties. Breast Cancer Res 2011; 13:R123. [PMID: 22129105 PMCID: PMC3326565 DOI: 10.1186/bcr3069] [Citation(s) in RCA: 191] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2011] [Revised: 07/20/2011] [Accepted: 11/30/2011] [Indexed: 12/30/2022] Open
Abstract
INTRODUCTION Response to trastuzumab in metastatic breast cancer correlates with expression of the high binding variant (158V) of the activating Fcγ receptor IIIA (CD16A). We engineered MGAH22, a chimeric anti-HER2 monoclonal antibody with specificity and affinity similar to trastuzumab, with an Fc domain engineered for increased binding to both alleles of human CD16A. METHODS MGAH22 was compared to an identical anti-HER2 mAb except for a wild type Fc domain. Antibody-dependent cell cytotoxicity (ADCC) assays were performed with HER2-expressing cancer cells as targets and human PBMC or purified NK cells as effectors. Xenograft studies were conducted in mice with wild type murine FcγRs; in mice lacking murine CD16; or in mice lacking murine CD16 but transgenic for human CD16A-158F, the low-binding variant. The latter model reproduces the differential binding between wild type and the Fc-optimized mAb for human CD16A. The JIMT-1 human breast tumor line, derived from a patient that progressed on trastuzumab therapy, was used in these studies. Single and repeat dose toxicology studies with MGAH22 administered intravenously at high dose were conducted in cynomolgus monkeys. RESULTS The optimized Fc domain confers enhanced ADCC against all HER2-positive tumor cells tested, including cells resistant to trastuzumab's anti-proliferative activity or expressing low HER2 levels. The greatest improvement occurs with effector cells isolated from donors homozygous or heterozygous for CD16A-158F, the low-binding allele. MGAH22 demonstrates increased activity against HER2-expressing tumors in mice transgenic for human CD16A-158F. In single and repeat-dose toxicology studies in cynomolgus monkeys, a species with a HER2 expression pattern comparable to that in humans and Fcγ receptors that exhibit enhanced binding to the optimized Fc domain, MGAH22 was well tolerated at all doses tested (15-150 mg/kg) and exhibited pharmacokinetic parameters similar to that of other anti-HER2 antibodies. Induction of cytokine release by MGAH22 in vivo or in vitro was similar to that induced by the corresponding wild type mAb or trastuzumab. CONCLUSIONS The data support the clinical development of MGAH22, which may have utility in patients with low HER2 expressing tumors or carrying the CD16A low-binding allele.
Collapse
|
145
|
New insights in mucosal vaccine development. Vaccine 2011; 30:142-54. [PMID: 22085556 DOI: 10.1016/j.vaccine.2011.11.003] [Citation(s) in RCA: 156] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2011] [Revised: 10/25/2011] [Accepted: 11/01/2011] [Indexed: 12/30/2022]
Abstract
Mucosal surfaces are the major entrance for infectious pathogens and therefore mucosal immune responses serve as a first line of defence. Most current immunization procedures are obtained by parenteral injection and only few vaccines are administered by mucosal route, because of its low efficiency. However, targeting of mucosal compartments to induce protective immunity at both mucosal sites and systemic level represents a great challenge. Major efforts are made to develop new mucosal candidate vaccines by selecting appropriate antigens with high immunogenicity, designing new mucosal routes of administration and selecting immune-stimulatory adjuvant molecules. The aim of mucosal vaccines is to induce broad potent protective immunity by specific neutralizing antibodies at mucosal surfaces and by induction of cellular immunity. Moreover, an efficient mucosal vaccine would make immunization procedures easier and be better suited for mass administration. This review focuses on contemporary developments of mucosal vaccination approaches using different routes of administration.
Collapse
|
146
|
Li C, Piran S, Chen P, Lang S, Zarpellon A, Jin JW, Zhu G, Reheman A, van der Wal DE, Simpson EK, Ni R, Gross PL, Ware J, Ruggeri ZM, Freedman J, Ni H. The maternal immune response to fetal platelet GPIbα causes frequent miscarriage in mice that can be prevented by intravenous IgG and anti-FcRn therapies. J Clin Invest 2011; 121:4537-47. [PMID: 22019589 PMCID: PMC3204841 DOI: 10.1172/jci57850] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2011] [Accepted: 08/26/2011] [Indexed: 11/17/2022] Open
Abstract
Fetal and neonatal immune thrombocytopenia (FNIT) is a severe bleeding disorder caused by maternal antibody-mediated destruction of fetal/neonatal platelets. It is the most common cause of severe thrombocytopenia in neonates, but the frequency of FNIT-related miscarriage is unknown, and the mechanism(s) underlying fetal mortality have not been explored. Furthermore, although platelet αIIbβ3 integrin and GPIbα are the major antibody targets in immune thrombocytopenia, the reported incidence of anti-GPIbα-mediated FNIT is rare. Here, we developed mouse models of FNIT mediated by antibodies specific for GPIbα and β3 integrin and compared their pathogenesis. We found, unexpectedly, that miscarriage occurred in the majority of pregnancies in our model of anti-GPIbα-mediated FNIT, which was far more frequent than in anti-β3-mediated FNIT. Dams with anti-GPIbα antibodies exhibited extensive fibrin deposition and apoptosis/necrosis in their placentas, which severely impaired placental function. Furthermore, anti-GPIbα (but not anti-β3) antiserum activated platelets and enhanced fibrin formation in vitro and thrombus formation in vivo. Importantly, treatment with either intravenous IgG or a monoclonal antibody specific for the neonatal Fc receptor efficiently prevented anti-GPIbα-mediated FNIT. Thus, the maternal immune response to fetal GPIbα causes what we believe to be a previously unidentified, nonclassical FNIT (i.e., spontaneous miscarriage but not neonatal bleeding) in mice. These results suggest that a similar pathology may have masked the severity and frequency of human anti-GPIbα-mediated FNIT, but also point to possible therapeutic interventions.
Collapse
MESH Headings
- Abortion, Spontaneous/etiology
- Abortion, Spontaneous/immunology
- Abortion, Spontaneous/prevention & control
- Animals
- Blood Platelets/immunology
- Disease Models, Animal
- Female
- Histocompatibility Antigens Class I/immunology
- Histocompatibility, Maternal-Fetal/immunology
- Humans
- Immunoglobulins, Intravenous/therapeutic use
- Integrin beta3/genetics
- Integrin beta3/immunology
- Mice
- Mice, Inbred BALB C
- Mice, Knockout
- Platelet Glycoprotein GPIb-IX Complex/genetics
- Platelet Glycoprotein GPIb-IX Complex/immunology
- Pregnancy
- Receptors, Fc/antagonists & inhibitors
- Receptors, Fc/immunology
- Thrombocytopenia, Neonatal Alloimmune/etiology
- Thrombocytopenia, Neonatal Alloimmune/immunology
Collapse
Affiliation(s)
- Conglei Li
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada.
Toronto Platelet Immunobiology Group and Department of Laboratory Medicine, Keenan Research Centre in the Li Ka Shing Knowledge Institute of St. Michael’s Hospital, Toronto, Ontario, Canada.
Canadian Blood Services, Toronto, Ontario, Canada.
Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California, USA.
Department of Medicine, McMaster University, Hamilton, Ontario, Canada.
Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA.
Department of Medicine and
Department of Physiology, University of Toronto, Ontario, Canada
| | - Siavash Piran
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada.
Toronto Platelet Immunobiology Group and Department of Laboratory Medicine, Keenan Research Centre in the Li Ka Shing Knowledge Institute of St. Michael’s Hospital, Toronto, Ontario, Canada.
Canadian Blood Services, Toronto, Ontario, Canada.
Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California, USA.
Department of Medicine, McMaster University, Hamilton, Ontario, Canada.
Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA.
Department of Medicine and
Department of Physiology, University of Toronto, Ontario, Canada
| | - Pingguo Chen
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada.
Toronto Platelet Immunobiology Group and Department of Laboratory Medicine, Keenan Research Centre in the Li Ka Shing Knowledge Institute of St. Michael’s Hospital, Toronto, Ontario, Canada.
Canadian Blood Services, Toronto, Ontario, Canada.
Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California, USA.
Department of Medicine, McMaster University, Hamilton, Ontario, Canada.
Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA.
Department of Medicine and
Department of Physiology, University of Toronto, Ontario, Canada
| | - Sean Lang
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada.
Toronto Platelet Immunobiology Group and Department of Laboratory Medicine, Keenan Research Centre in the Li Ka Shing Knowledge Institute of St. Michael’s Hospital, Toronto, Ontario, Canada.
Canadian Blood Services, Toronto, Ontario, Canada.
Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California, USA.
Department of Medicine, McMaster University, Hamilton, Ontario, Canada.
Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA.
Department of Medicine and
Department of Physiology, University of Toronto, Ontario, Canada
| | - Alessandro Zarpellon
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada.
Toronto Platelet Immunobiology Group and Department of Laboratory Medicine, Keenan Research Centre in the Li Ka Shing Knowledge Institute of St. Michael’s Hospital, Toronto, Ontario, Canada.
Canadian Blood Services, Toronto, Ontario, Canada.
Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California, USA.
Department of Medicine, McMaster University, Hamilton, Ontario, Canada.
Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA.
Department of Medicine and
Department of Physiology, University of Toronto, Ontario, Canada
| | - Joseph W. Jin
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada.
Toronto Platelet Immunobiology Group and Department of Laboratory Medicine, Keenan Research Centre in the Li Ka Shing Knowledge Institute of St. Michael’s Hospital, Toronto, Ontario, Canada.
Canadian Blood Services, Toronto, Ontario, Canada.
Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California, USA.
Department of Medicine, McMaster University, Hamilton, Ontario, Canada.
Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA.
Department of Medicine and
Department of Physiology, University of Toronto, Ontario, Canada
| | - Guangheng Zhu
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada.
Toronto Platelet Immunobiology Group and Department of Laboratory Medicine, Keenan Research Centre in the Li Ka Shing Knowledge Institute of St. Michael’s Hospital, Toronto, Ontario, Canada.
Canadian Blood Services, Toronto, Ontario, Canada.
Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California, USA.
Department of Medicine, McMaster University, Hamilton, Ontario, Canada.
Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA.
Department of Medicine and
Department of Physiology, University of Toronto, Ontario, Canada
| | - Adili Reheman
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada.
Toronto Platelet Immunobiology Group and Department of Laboratory Medicine, Keenan Research Centre in the Li Ka Shing Knowledge Institute of St. Michael’s Hospital, Toronto, Ontario, Canada.
Canadian Blood Services, Toronto, Ontario, Canada.
Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California, USA.
Department of Medicine, McMaster University, Hamilton, Ontario, Canada.
Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA.
Department of Medicine and
Department of Physiology, University of Toronto, Ontario, Canada
| | - Dianne E. van der Wal
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada.
Toronto Platelet Immunobiology Group and Department of Laboratory Medicine, Keenan Research Centre in the Li Ka Shing Knowledge Institute of St. Michael’s Hospital, Toronto, Ontario, Canada.
Canadian Blood Services, Toronto, Ontario, Canada.
Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California, USA.
Department of Medicine, McMaster University, Hamilton, Ontario, Canada.
Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA.
Department of Medicine and
Department of Physiology, University of Toronto, Ontario, Canada
| | - Elisa K. Simpson
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada.
Toronto Platelet Immunobiology Group and Department of Laboratory Medicine, Keenan Research Centre in the Li Ka Shing Knowledge Institute of St. Michael’s Hospital, Toronto, Ontario, Canada.
Canadian Blood Services, Toronto, Ontario, Canada.
Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California, USA.
Department of Medicine, McMaster University, Hamilton, Ontario, Canada.
Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA.
Department of Medicine and
Department of Physiology, University of Toronto, Ontario, Canada
| | - Ran Ni
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada.
Toronto Platelet Immunobiology Group and Department of Laboratory Medicine, Keenan Research Centre in the Li Ka Shing Knowledge Institute of St. Michael’s Hospital, Toronto, Ontario, Canada.
Canadian Blood Services, Toronto, Ontario, Canada.
Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California, USA.
Department of Medicine, McMaster University, Hamilton, Ontario, Canada.
Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA.
Department of Medicine and
Department of Physiology, University of Toronto, Ontario, Canada
| | - Peter L. Gross
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada.
Toronto Platelet Immunobiology Group and Department of Laboratory Medicine, Keenan Research Centre in the Li Ka Shing Knowledge Institute of St. Michael’s Hospital, Toronto, Ontario, Canada.
Canadian Blood Services, Toronto, Ontario, Canada.
Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California, USA.
Department of Medicine, McMaster University, Hamilton, Ontario, Canada.
Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA.
Department of Medicine and
Department of Physiology, University of Toronto, Ontario, Canada
| | - Jerry Ware
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada.
Toronto Platelet Immunobiology Group and Department of Laboratory Medicine, Keenan Research Centre in the Li Ka Shing Knowledge Institute of St. Michael’s Hospital, Toronto, Ontario, Canada.
Canadian Blood Services, Toronto, Ontario, Canada.
Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California, USA.
Department of Medicine, McMaster University, Hamilton, Ontario, Canada.
Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA.
Department of Medicine and
Department of Physiology, University of Toronto, Ontario, Canada
| | - Zaverio M. Ruggeri
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada.
Toronto Platelet Immunobiology Group and Department of Laboratory Medicine, Keenan Research Centre in the Li Ka Shing Knowledge Institute of St. Michael’s Hospital, Toronto, Ontario, Canada.
Canadian Blood Services, Toronto, Ontario, Canada.
Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California, USA.
Department of Medicine, McMaster University, Hamilton, Ontario, Canada.
Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA.
Department of Medicine and
Department of Physiology, University of Toronto, Ontario, Canada
| | - John Freedman
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada.
Toronto Platelet Immunobiology Group and Department of Laboratory Medicine, Keenan Research Centre in the Li Ka Shing Knowledge Institute of St. Michael’s Hospital, Toronto, Ontario, Canada.
Canadian Blood Services, Toronto, Ontario, Canada.
Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California, USA.
Department of Medicine, McMaster University, Hamilton, Ontario, Canada.
Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA.
Department of Medicine and
Department of Physiology, University of Toronto, Ontario, Canada
| | - Heyu Ni
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada.
Toronto Platelet Immunobiology Group and Department of Laboratory Medicine, Keenan Research Centre in the Li Ka Shing Knowledge Institute of St. Michael’s Hospital, Toronto, Ontario, Canada.
Canadian Blood Services, Toronto, Ontario, Canada.
Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California, USA.
Department of Medicine, McMaster University, Hamilton, Ontario, Canada.
Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA.
Department of Medicine and
Department of Physiology, University of Toronto, Ontario, Canada
| |
Collapse
|
147
|
Cianga C, Cianga P, Plamadeala P, Amalinei C. Nonclassical major histocompatibility complex I-like Fc neonatal receptor (FcRn) expression in neonatal human tissues. Hum Immunol 2011; 72:1176-87. [PMID: 21978715 DOI: 10.1016/j.humimm.2011.08.020] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2011] [Revised: 08/16/2011] [Accepted: 08/25/2011] [Indexed: 11/17/2022]
Abstract
The neonatal Fc receptor (FcRn) was demonstrated to play a role both in the recycling and thus the protection of immunoglobulin G (IgG) from catabolism and in the maternal-fetal transfer of IgG. The expression of this particular receptor was evidenced in a variety of cell types, but the endothelial cell was considered the main cell able to perform both recycling and IgG catabolism. Based on preliminary data obtained in adult human mammary glands and skin, this study focused on a number of neonatal human tissues, targeting FcRn expression mainly in epithelial versus endothelial cells. Our results demonstrate that in most of the investigated tissues, the neonatal Fc receptor is not detectable in the endothelial cells lining the capillaries, whereas most epithelial cells are positive. We could also observe the receptor's expression in most macrophages, smooth muscle cells, and neurons. Taken together, these data suggest that the main sites of IgG catabolism might in fact be other than endothelial cells in human neonates.
Collapse
Affiliation(s)
- Corina Cianga
- Department of Immunology, Gr T Popa University of Medicine and Pharmacy, and Laboratory of Immunology and Genetics, Sf. Spiridon Hospital, Iasi, Romania
| | | | | | | |
Collapse
|
148
|
Im SJ, Yang SI, Yang SH, Choi DH, Choi SY, Kim HS, Jang DS, Jin KS, Chung YK, Kim SH, Paik SH, Park YC, Chung MK, Kim YB, Han KH, Choi KY, Sung YC. Natural form of noncytolytic flexible human Fc as a long-acting carrier of agonistic ligand, erythropoietin. PLoS One 2011; 6:e24574. [PMID: 21957455 PMCID: PMC3174958 DOI: 10.1371/journal.pone.0024574] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2011] [Accepted: 08/14/2011] [Indexed: 12/27/2022] Open
Abstract
Human IgG1 Fc has been widely used as a bioconjugate, but exhibits shortcomings, such as antibody- and complement-mediated cytotoxicity as well as decreased bioactivity, when applied to agonistic proteins. Here, we constructed a nonimmunogenic, noncytolytic and flexible hybrid Fc (hyFc) consisting of IgD and IgG4, and tested its function using erythropoietin (EPO) conjugate, EPO-hyFc. Despite low amino acid homology (20.5%) between IgD Fc and IgG4 Fc, EPO-hyFc retained “Y-shaped” structure and repeated intravenous administrations of EPO-hyFc into monkeys did not generate EPO-hyFc-specific antibody responses. Furthermore, EPO-hyFc could not bind to FcγR I and C1q in contrast to EPO-IgG1 Fc. In addition, EPO-hyFc exhibited better in vitro bioactivity and in vivo bioactivity in rats than EPO-IgG1 Fc, presumably due to the high flexibility of IgD. Moreover, the mean serum half-life of EPO-hyFc(H), a high sialic acid content form of EPO-hyFc, was approximately 2-fold longer than that of the heavily glycosylated EPO, darbepoetin alfa, in rats. More importantly, subcutaneous injection of EPO-hyFc(H) not only induced a significantly greater elevation of serum hemoglobin levels than darbepoetin alfa in both normal rats and cisplatin-induced anemic rats, but also displayed a delayed time to maximal serum level and twice final area-under-the-curve (AUClast). Taken together, hyFc might be a more attractive Fc conjugate for agonistic proteins/peptides than IgG1 Fc due to its capability to elongate their half-lives without inducing host effector functions and hindering bioactivity of fused molecules. Additionally, a head-to-head comparison demonstrated that hyFc-fusion strategy more effectively improved the in vivo bioactivity of EPO than the hyperglycosylation approach.
Collapse
Affiliation(s)
- Se Jin Im
- Division of Molecular and Life Sciences, POSTECH, Pohang, Republic of Korea
| | - Sang In Yang
- Research Institute, Genexine Co., Seongnam, Republic of Korea
| | - Se Hwan Yang
- Research Institute, Genexine Co., Seongnam, Republic of Korea
| | - Dong Hoon Choi
- Division of Molecular and Life Sciences, POSTECH, Pohang, Republic of Korea
| | - So Young Choi
- Research Institute, Genexine Co., Seongnam, Republic of Korea
| | - Hea Sook Kim
- Research Institute, Genexine Co., Seongnam, Republic of Korea
| | - Do Soo Jang
- Research Institute, Genexine Co., Seongnam, Republic of Korea
| | - Kyeong Sik Jin
- Pohang Accelerator Laboratory, POSTECH, Pohang, Republic of Korea
| | - Yo-Kyung Chung
- Central Research Institute, Green Cross Co., Yongin, Republic of Korea
| | - Seung-Hee Kim
- Central Research Institute, Green Cross Co., Yongin, Republic of Korea
| | - Sang Hoon Paik
- Central Research Institute, Green Cross Co., Yongin, Republic of Korea
| | - Yoo Chang Park
- Central Research Institute, Green Cross Co., Yongin, Republic of Korea
| | - Moon Koo Chung
- Korea Institute of Toxicology, Korea Research Institute of Chemical Technology, Daejon, Republic of Korea
| | - Yong Bum Kim
- Korea Institute of Toxicology, Korea Research Institute of Chemical Technology, Daejon, Republic of Korea
| | - Kang-Hyun Han
- Korea Institute of Toxicology, Korea Research Institute of Chemical Technology, Daejon, Republic of Korea
| | - Kwan Yong Choi
- Division of Molecular and Life Sciences, POSTECH, Pohang, Republic of Korea
| | - Young Chul Sung
- Division of Molecular and Life Sciences, POSTECH, Pohang, Republic of Korea
- Research Institute, Genexine Co., Seongnam, Republic of Korea
- * E-mail:
| |
Collapse
|
149
|
Wang W, Lu P, Fang Y, Hamuro L, Pittman T, Carr B, Hochman J, Prueksaritanont T. Monoclonal antibodies with identical Fc sequences can bind to FcRn differentially with pharmacokinetic consequences. Drug Metab Dispos 2011; 39:1469-77. [PMID: 21610128 DOI: 10.1124/dmd.111.039453] [Citation(s) in RCA: 138] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The neonatal Fc receptor (FcRn) is a key determinant of IgG homeostasis. It binds to the Fc domain of IgG in a strictly pH-dependent manner and protects IgG from lysosomal degradation. The impact of FcRn salvage pathway on IgG monoclonal antibody (mAb) pharmacokinetics (PK) has been well established. In this report, a set of mAbs with wild-type human Fc sequences but different Fab domains were used to examine the potential impact of Fab domain on in vitro FcRn binding and in vivo PK. We were surprised to find that mAbs with the same wild-type human Fc sequences but different Fab domains were shown to bind FcRn with considerable differences in both the binding at acidic pH and the dissociation at neutral pH, suggesting that the Fab domain may also have an impact on FcRn interaction. For these mAbs, no relationship between the FcRn binding affinity at acidic pH and in vivo PK was found. Instead, an apparent correlation between the in vitro FcRn dissociation at neutral pH and the in vivo PK in human FcRn mice, nonhuman primates and humans was observed. Our results suggested that the Fab domain of mAbs can affect their interaction with FcRn and thus their pharmacokinetic properties and that in vitro FcRn binding/dissociation assays can be a useful screening tool for pharmacokinetic assessment of mAbs with wild-type Fc sequences.
Collapse
Affiliation(s)
- Weirong Wang
- Department of Drug Metabolism and Pharmacokinetics, Merck Sharp and Dohme Corp., West Point, PA 19486, USA.
| | | | | | | | | | | | | | | |
Collapse
|
150
|
Whole-Molecule Antibody Engineering: Generation of a High-Affinity Anti-IL-6 Antibody with Extended Pharmacokinetics. J Mol Biol 2011; 411:791-807. [DOI: 10.1016/j.jmb.2011.06.031] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2011] [Accepted: 06/16/2011] [Indexed: 11/22/2022]
|