101
|
Abstract
Urinary tract infections (UTIs) are among the most common of bacterial infections in humans. Although a number of Gram-negative bacteria can cause UTIs, most cases are due to infection by uropathogenic E. coli (UPEC). Genomic studies have shown that UPEC encode a number of specialized activities that allow the bacteria to initiate and maintain infections in the environment of the urinary tract. Proteomic analyses have complemented the genomic data and have documented differential patterns of protein synthesis for bacteria growing ex vivo in human urine or recovered directly from the urinary tracts of infected mice. These studies provide valuable insights into the molecular basis of UPEC pathogenesis and have aided the identification of putative vaccine targets. Despite the substantial progress that has been achieved, many future challenges remain in the application of proteomics to provide a comprehensive view of bacterial pathogenesis in both acute and chronic UTIs.
Collapse
Affiliation(s)
- Phillip Cash
- Division of Applied Medicine, University of Aberdeen, Foresterhill, Aberdeen AB32 6QX, Scotland
| |
Collapse
|
102
|
The Nod1, Nod2, and Rip2 axis contributes to host immune defense against intracellular Acinetobacter baumannii infection. Infect Immun 2013; 82:1112-22. [PMID: 24366254 DOI: 10.1128/iai.01459-13] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Acinetobacter baumannii is a major extensively drug-resistant lethal human nosocomial bacterium. However, the host innate immune mechanisms controlling A. baumannii are not well understood. Although viewed as an extracellular pathogen, A. baumannii can also invade and survive intracellularly. However, whether host innate immune pathways sensing intracellular bacteria contribute to immunity against A. baumannii is not known. Here, we provide evidence for the first time that intracellular antibacterial innate immune receptors Nod1 and Nod2, and their adaptor Rip2, play critical roles in the sensing and clearance of A. baumannii by human airway epithelial cells in vitro. A. baumannii infection upregulated Rip2 expression. Silencing of Nod1, Nod2, and Rip2 expression profoundly increased intracellular invasion and prolonged the multiplication and survival of A. baumannii in lung epithelial cells. Notably, the Nod1/2-Rip2 axis did not contribute to the control of A. baumannii infection of human macrophages, indicating that they play cell type-specific roles. The Nod1/2-Rip2 axis was needed for A. baumannii infection-induced activation of NF-κB but not mitogen-activated protein kinases. Moreover, the Nod1/2-Rip2 axis was critical to induce optimal cytokine and chemokine responses to A. baumannii infection. Mechanistic studies showed that the Nod1/2 pathway contributed to the innate control of A. baumannii infection through the production of β-defensin 2 by airway epithelial cells. This study revealed new insights into the immune control of A. baumannii and may contribute to the development of effective immune therapeutics and vaccines against A. baumannii.
Collapse
|
103
|
Miskinyte M, Sousa A, Ramiro RS, de Sousa JAM, Kotlinowski J, Caramalho I, Magalhães S, Soares MP, Gordo I. The genetic basis of Escherichia coli pathoadaptation to macrophages. PLoS Pathog 2013; 9:e1003802. [PMID: 24348252 PMCID: PMC3861542 DOI: 10.1371/journal.ppat.1003802] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Accepted: 10/14/2013] [Indexed: 12/25/2022] Open
Abstract
Antagonistic interactions are likely important driving forces of the evolutionary process underlying bacterial genome complexity and diversity. We hypothesized that the ability of evolved bacteria to escape specific components of host innate immunity, such as phagocytosis and killing by macrophages (MΦ), is a critical trait relevant in the acquisition of bacterial virulence. Here, we used a combination of experimental evolution, phenotypic characterization, genome sequencing and mathematical modeling to address how fast, and through how many adaptive steps, a commensal Escherichia coli (E. coli) acquire this virulence trait. We show that when maintained in vitro under the selective pressure of host MΦ commensal E. coli can evolve, in less than 500 generations, virulent clones that escape phagocytosis and MΦ killing in vitro, while increasing their pathogenicity in vivo, as assessed in mice. This pathoadaptive process is driven by a mechanism involving the insertion of a single transposable element into the promoter region of the E. coli yrfF gene. Moreover, transposition of the IS186 element into the promoter of Lon gene, encoding an ATP-dependent serine protease, is likely to accelerate this pathoadaptive process. Competition between clones carrying distinct beneficial mutations dominates the dynamics of the pathoadaptive process, as suggested from a mathematical model, which reproduces the observed experimental dynamics of E. coli evolution towards virulence. In conclusion, we reveal a molecular mechanism explaining how a specific component of host innate immunity can modulate microbial evolution towards pathogenicity.
Collapse
Affiliation(s)
| | - Ana Sousa
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | | | | | | | - Iris Caramalho
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
- Unidade de Imunologia Clínica, Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Lisboa, Portugal
| | - Sara Magalhães
- Centro Biologia Ambiental, Faculdade de Ciências da Universidade de Lisboa, Lisboa, Portugal
| | | | - Isabel Gordo
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
- * E-mail:
| |
Collapse
|
104
|
Horsley H, Malone-Lee J, Holland D, Tuz M, Hibbert A, Kelsey M, Kupelian A, Rohn JL. Enterococcus faecalis subverts and invades the host urothelium in patients with chronic urinary tract infection. PLoS One 2013; 8:e83637. [PMID: 24363814 PMCID: PMC3868479 DOI: 10.1371/journal.pone.0083637] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Accepted: 11/05/2013] [Indexed: 01/24/2023] Open
Abstract
Bacterial urinary tract infections (UTI) are a major growing concern worldwide.
Uropathogenic Escherichia coli has been shown to invade the
urothelium during acute UTI in mice and humans, forming intracellular reservoirs
that can evade antibiotics and the immune response, allowing recurrence at a
later date. Other bacterial species, such as Staphylococcus
saprophyticus, Klebsiella pneumonia and
Salmonella enterica have also been shown to be invasive in
acute UTI. However, the role of intracellular infection in chronic UTI causing
more subtle lower urinary tract symptoms (LUTS), a particular problem in the
elderly population, is poorly understood. Moreover, the species of bacteria
involved remains largely unknown. A previous study of a large cohort of
non-acute LUTS patients found that Enterococcus faecalis was
frequently found in urine specimens. E. faecalis accounts for a
significant proportion of chronic bladder infections worldwide, although the
invasive lifestyle of this uropathogen has yet to be reported. Here, we wanted
to explore this question in more detail. We harvested urothelial cells shed in
response to inflammation and, using advanced imaging techniques, inspected them
for signs of bacterial pathology and invasion. We found strong evidence of
intracellular E. faecalis harboured within urothelial cells
shed from the bladder of LUTS patients. Furthermore, using a culture model
system, these patient-isolated strains of E. faecalis were able
to invade a transitional carcinoma cell line. In contrast, we found no evidence
of cellular invasion by E. coli in the patient cells or the
culture model system. Our data show that E. faecalis is highly
competent to invade in this context; therefore, these results have implications
for both the diagnosis and treatment of chronic LUTS.
Collapse
Affiliation(s)
- Harry Horsley
- Centre for Clinical Science and Technology, Research Department of
Clinical Physiology, Division of Medicine, University College London, London,
United Kingdom
| | - James Malone-Lee
- Centre for Clinical Science and Technology, Research Department of
Clinical Physiology, Division of Medicine, University College London, London,
United Kingdom
| | - David Holland
- Centre for Clinical Science and Technology, Research Department of
Clinical Physiology, Division of Medicine, University College London, London,
United Kingdom
| | - Madeleine Tuz
- Centre for Clinical Science and Technology, Research Department of
Clinical Physiology, Division of Medicine, University College London, London,
United Kingdom
| | - Andrew Hibbert
- Imaging Suite, Royal Veterinary College, London, United
Kingdom
| | - Michael Kelsey
- Department of Microbiology, The Whittington Hospital NHS Trust, London,
United Kingdom
| | - Anthony Kupelian
- Centre for Clinical Science and Technology, Research Department of
Clinical Physiology, Division of Medicine, University College London, London,
United Kingdom
| | - Jennifer L. Rohn
- Centre for Clinical Science and Technology, Research Department of
Clinical Physiology, Division of Medicine, University College London, London,
United Kingdom
- * E-mail:
| |
Collapse
|
105
|
Chen SL, Wu M, Henderson JP, Hooton TM, Hibbing ME, Hultgren SJ, Gordon JI. Genomic diversity and fitness of E. coli strains recovered from the intestinal and urinary tracts of women with recurrent urinary tract infection. Sci Transl Med 2013; 5:184ra60. [PMID: 23658245 DOI: 10.1126/scitranslmed.3005497] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Urinary tract infections (UTIs) are common in women, and recurrence is a major clinical problem. Most UTIs are caused by uropathogenic Escherichia coli (UPEC). UPEC are generally thought to migrate from the gut to the bladder to cause UTI. UPEC form specialized intracellular bacterial communities in the bladder urothelium as part of a pathogenic mechanism to establish a foothold during acute stages of infection. Evolutionarily, such a specific adaptation to the bladder environment would be predicted to result in decreased fitness in other habitats, such as the gut. To examine this prediction, we characterized 45 E. coli strains isolated from the feces and urine of four otherwise healthy women with recurrent UTI. Multilocus sequence typing and whole genome sequencing revealed that two patients maintained a clonal population in both these body habitats throughout their recurrent UTIs, whereas the other two exhibited a wholesale shift in the dominant UPEC strain colonizing both sites. In vivo competition studies in mouse models, using isolates taken from one of the patients with a wholesale population shift, revealed that the strain that dominated her last UTI episode had increased fitness in both the gut and the bladder relative to the strain that dominated in preceding episodes. Increased fitness correlated with differences in the strains' gene repertoires and carbohydrate and amino acid utilization profiles. Thus, UPEC appear capable of persisting in both the gut and urinary tract without a fitness trade-off, emphasizing the need to widen our consideration of potential reservoirs for strains causing recurrent UTI.
Collapse
Affiliation(s)
- Swaine L Chen
- Center for Genome Sciences and Systems Biology, Washington University, St. Louis, MO 63108, USA
| | | | | | | | | | | | | |
Collapse
|
106
|
Hernández-Jiménez E, del Campo R, Toledano V, Vallejo-Cremades MT, Muñoz A, Largo C, Arnalich F, García-Rio F, Cubillos-Zapata C, López-Collazo E. Biofilm vs. planktonic bacterial mode of growth: Which do human macrophages prefer? Biochem Biophys Res Commun 2013; 441:947-52. [DOI: 10.1016/j.bbrc.2013.11.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Accepted: 11/01/2013] [Indexed: 12/15/2022]
|
107
|
Becknell B, Spencer JD, Carpenter AR, Chen X, Singh A, Ploeger S, Kline J, Ellsworth P, Li B, Proksch E, Schwaderer AL, Hains DS, Justice SS, McHugh KM. Expression and antimicrobial function of beta-defensin 1 in the lower urinary tract. PLoS One 2013; 8:e77714. [PMID: 24204930 PMCID: PMC3804605 DOI: 10.1371/journal.pone.0077714] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Accepted: 09/12/2013] [Indexed: 12/03/2022] Open
Abstract
Beta defensins (BDs) are cationic peptides with antimicrobial activity that defend epithelial surfaces including the skin, gastrointestinal, and respiratory tracts. However, BD expression and function in the urinary tract are incompletely characterized. The purpose of this study was to describe Beta Defensin-1 (BD-1) expression in the lower urinary tract, regulation by cystitis, and antimicrobial activity toward uropathogenic Escherichia coli (UPEC) in vivo. Human DEFB1 and orthologous mouse Defb1 mRNA are detectable in bladder and ureter homogenates, and human BD-1 protein localizes to the urothelium. To determine the relevance of BD-1 to lower urinary tract defense in vivo, we evaluated clearance of UPEC by Defb1 knockout (Defb1-/-) mice. At 6, 18, and 48 hours following transurethral UPEC inoculation, no significant differences were observed in bacterial burden in bladders or kidneys of Defb1-/- and wild type C57BL/6 mice. In wild type mice, bladder Defb1 mRNA levels decreased as early as two hours post-infection and reached a nadir by six hours. RT-PCR profiling of BDs identified expression of Defb3 and Defb14 mRNA in murine bladder and ureter, which encode for mBD-3 and mBD-14 protein, respectively. MBD-14 protein expression was observed in bladder urothelium following UPEC infection, and both mBD-3 and mBD-14 displayed dose-dependent bactericidal activity toward UPEC in vitro. Thus, whereas mBD-1 deficiency does not alter bladder UPEC burden in vivo, we have identified mBD-3 and mBD-14 as potential mediators of mucosal immunity in the lower urinary tract.
Collapse
Affiliation(s)
- Brian Becknell
- Section of Nephrology, Nationwide Children’s Hospital, Columbus, Ohio, United States of America
- Center for Clinical and Translational Research, The Research Institute at Nationwide Children’s Hospital, Columbus, Ohio, United States of America
| | - John David Spencer
- Section of Nephrology, Nationwide Children’s Hospital, Columbus, Ohio, United States of America
- Center for Clinical and Translational Research, The Research Institute at Nationwide Children’s Hospital, Columbus, Ohio, United States of America
| | - Ashley R. Carpenter
- Biomedical Sciences Graduate Program, The Ohio State University College of Medicine, Columbus, Ohio, United States of America
- Center for Molecular and Human Genetics, The Research Institute at Nationwide Children’s Hospital, Columbus, Ohio, United States of America
| | - Xi Chen
- Center for Clinical and Translational Research, The Research Institute at Nationwide Children’s Hospital, Columbus, Ohio, United States of America
| | - Aspinder Singh
- The Ohio State University College of Medicine, Columbus, Ohio, United States of America
| | - Suzanne Ploeger
- The Ohio State University College of Medicine, Columbus, Ohio, United States of America
| | - Jennifer Kline
- Center for Clinical and Translational Research, The Research Institute at Nationwide Children’s Hospital, Columbus, Ohio, United States of America
| | - Patrick Ellsworth
- Department of Internal Medicine and Pediatrics, University of Rochester, Rochester, New York, United States of America
| | - Birong Li
- Center for Microbial Pathogenesis, The Research Institute at Nationwide Children’s Hospital, Columbus, Ohio, United States of America
| | | | - Andrew L. Schwaderer
- Section of Nephrology, Nationwide Children’s Hospital, Columbus, Ohio, United States of America
- Center for Clinical and Translational Research, The Research Institute at Nationwide Children’s Hospital, Columbus, Ohio, United States of America
| | - David S. Hains
- Section of Nephrology, Nationwide Children’s Hospital, Columbus, Ohio, United States of America
- Center for Clinical and Translational Research, The Research Institute at Nationwide Children’s Hospital, Columbus, Ohio, United States of America
| | - Sheryl S. Justice
- Center for Microbial Pathogenesis, The Research Institute at Nationwide Children’s Hospital, Columbus, Ohio, United States of America
- * E-mail: (SSJ); (KMM)
| | - Kirk M. McHugh
- Center for Molecular and Human Genetics, The Research Institute at Nationwide Children’s Hospital, Columbus, Ohio, United States of America
- * E-mail: (SSJ); (KMM)
| |
Collapse
|
108
|
Silverman JA, Schreiber HL, Hooton TM, Hultgren SJ. From physiology to pharmacy: developments in the pathogenesis and treatment of recurrent urinary tract infections. Curr Urol Rep 2013; 14:448-56. [PMID: 23832844 PMCID: PMC3797163 DOI: 10.1007/s11934-013-0354-5] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Urinary tract infections (UTIs) are common, and over half of women report having had at least one in their lifetime. Nearly a third of these women experience recurrent UTI episodes, but the mechanisms of these recurrences are not fully elucidated. Frequent use of antimicrobials for treatment and prevention of UTIs and other infections has contributed to the evolution of multidrug-resistant microorganisms globally. This is a looming worldwide crisis that has created an urgent need for novel strategies for the treatment and prevention of UTIs. Furthering our understanding of the mechanisms of recurrent UTIs, from both host and bacterial perspectives, will be paramount in developing targeted management strategies. In this review, we discuss recent findings regarding recurrent UTIs in women, including progress in our understanding of the mechanisms of recurrence as well as emerging treatments.
Collapse
Affiliation(s)
- Jennifer A. Silverman
- Department of Molecular Microbiology and Microbial Pathogenesis; Center for Women's Infectious Disease Research Washington University School of Medicine Saint Louis, MO 63110
| | - Henry L. Schreiber
- Department of Molecular Microbiology and Microbial Pathogenesis; Center for Women's Infectious Disease Research Washington University School of Medicine Saint Louis, MO 63110
| | - Thomas M. Hooton
- Department of Medicine, University of Miami Miller School of Medicine, Miami, FL 33136
| | - Scott J. Hultgren
- Corresponding author: 660 South Euclid Avenue, Campus Box 8230, Phone: 314-362-6772, Fax: 314-362-1998,
| |
Collapse
|
109
|
Labbaf S, Horsley H, Chang MW, Stride E, Malone-Lee J, Edirisinghe M, Rohn JL. An encapsulated drug delivery system for recalcitrant urinary tract infection. J R Soc Interface 2013; 10:20130747. [PMID: 24068180 DOI: 10.1098/rsif.2013.0747] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
One of the hallmarks of urinary tract infection, a serious global disease, is its tendency to recur. Uropathogenic bacteria can invade cells lining the bladder, where they form longer-term intracellular reservoirs shielded from antibiotics, re-emerging at a later date to initiate flare-ups. In these cases, only lengthy systemic antibiotic treatment can eradicate all the reservoirs. Yet, long courses of antibiotics are not ideal, as they can lead to side effects and an increase in antibiotic resistance. Moreover, most antibiotics lose some potency by the time they reach the bladder, and many cannot permeate cells, so they cannot access intracellular reservoirs. Here, using coaxial electrohydrodynamic forming, we developed novel core-shell capsules containing antibiotics as a prototype for a future product that could be infused directly into the bladder. Gentamicin was encapsulated in a polymeric carrier (polymethylsilsesquioxane) and these capsules killed Enterococcus faecalis, a common chronic uropathogen, in vitro in a dose-responsive, slow-release manner. Capsules containing a fluorescent tracer dye in place of gentamicin penetrated human bladder cells and released their dye cargo with no apparent toxicity, confirming their ability to successfully permeate cells. These results suggest that such antibiotic capsules could prove useful in the treatment of recalcitrant UTI.
Collapse
Affiliation(s)
- Sheyda Labbaf
- Department of Mechanical Engineering, University College London, , London, UK
| | | | | | | | | | | | | |
Collapse
|
110
|
Tapiainen T, Hanni AM, Salo J, Ikäheimo I, Uhari M. Escherichia coli biofilm formation and recurrences of urinary tract infections in children. Eur J Clin Microbiol Infect Dis 2013; 33:111-5. [DOI: 10.1007/s10096-013-1935-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Accepted: 07/18/2013] [Indexed: 05/27/2023]
|
111
|
Totsika M, Kostakioti M, Hannan TJ, Upton M, Beatson SA, Janetka JW, Hultgren SJ, Schembri MA. A FimH inhibitor prevents acute bladder infection and treats chronic cystitis caused by multidrug-resistant uropathogenic Escherichia coli ST131. J Infect Dis 2013; 208:921-8. [PMID: 23737602 DOI: 10.1093/infdis/jit245] [Citation(s) in RCA: 100] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Escherichia coli O25b:H4-ST131 represents a predominant clone of multidrug-resistant uropathogens currently circulating worldwide in hospitals and the community. Urinary tract infections (UTIs) caused by E. coli ST131 are typically associated with limited treatment options and are often recurrent. METHODS Using established mouse models of acute and chronic UTI, we mapped the pathogenic trajectory of the reference E. coli ST131 UTI isolate, strain EC958. RESULTS We demonstrated that E. coli EC958 can invade bladder epithelial cells and form intracellular bacterial communities early during acute UTI. Moreover, E. coli EC958 persisted in the bladder and established chronic UTI. Prophylactic antibiotic administration failed to prevent E. coli EC958-mediated UTI. However, 1 oral dose of a small-molecular-weight compound that inhibits FimH, the type 1 fimbriae adhesin, significantly reduced bacterial colonization of the bladder and prevented acute UTI. Treatment of chronically infected mice with the same FimH inhibitor lowered their bladder bacterial burden by >1000-fold. CONCLUSIONS In this study, we provide novel insight into the pathogenic mechanisms used by the globally disseminated E. coli ST131 clone during acute and chronic UTI and establish the potential of FimH inhibitors as an alternative treatment against multidrug-resistant E. coli.
Collapse
Affiliation(s)
- Makrina Totsika
- Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, Australia
| | | | | | | | | | | | | | | |
Collapse
|
112
|
Spectrum of bacterial colonization associated with urothelial cells from patients with chronic lower urinary tract symptoms. J Clin Microbiol 2013; 51:2054-62. [PMID: 23596238 DOI: 10.1128/jcm.03314-12] [Citation(s) in RCA: 173] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Chronic lower urinary tract symptoms (LUTS), such as urgency and incontinence, are common, especially among the elderly, but their etiology is often obscure. Recent studies of acute urinary tract infections implicated invasion by Escherichia coli into the cytoplasm of urothelial cells, with persistence of long-term bacterial reservoirs, but the role of infection in chronic LUTS is unknown. We conducted a large prospective study with eligible patients with LUTS and controls over a 3-year period, comparing routine urine cultures of planktonic bacteria with cultures of shed urothelial cells concentrated in centrifuged urinary sediments. This comparison revealed large numbers of bacteria undetected by routine cultures. Next, we typed the bacterial species cultured from patient and control sediments under both aerobic and anaerobic conditions, and we found that the two groups had complex but significantly distinct profiles of bacteria associated with their shed bladder epithelial cells. Strikingly, E. coli, the organism most responsible for acute urinary tract infections, was not the only or even the main offending pathogen in this more-chronic condition. Antibiotic protection assays with shed patient cells and in vitro infection studies using patient-derived strains in cell culture suggested that LUTS-associated bacteria are within or extremely closely associated with shed epithelial cells, which explains how routine cultures might fail to detect them. These data have strong implications for the need to rethink our common diagnoses and treatments of chronic urinary tract symptoms.
Collapse
|
113
|
Grant SS, Hung DT. Persistent bacterial infections, antibiotic tolerance, and the oxidative stress response. Virulence 2013; 4:273-83. [PMID: 23563389 PMCID: PMC3710330 DOI: 10.4161/viru.23987] [Citation(s) in RCA: 232] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Certain bacterial pathogens are able to evade the host immune system and persist within the human host. The consequences of persistent bacterial infections potentially include increased morbidity and mortality from the infection itself as well as an increased risk of dissemination of disease. Eradication of persistent infections is difficult, often requiring prolonged or repeated courses of antibiotics. During persistent infections, a population or subpopulation of bacteria exists that is refractory to traditional antibiotics, possibly in a non-replicating or metabolically altered state. This review highlights the clinical significance of persistent infections and discusses different in vitro models used to investigate the altered physiology of bacteria during persistent infections. We specifically focus on recent work establishing increased protection against oxidative stress as a key element of the altered physiologic state across different in vitro models and pathogens.
Collapse
|
114
|
The Cpx stress response system potentiates the fitness and virulence of uropathogenic Escherichia coli. Infect Immun 2013; 81:1450-9. [PMID: 23429541 DOI: 10.1128/iai.01213-12] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Strains of uropathogenic Escherichia coli (UPEC) are the primary cause of urinary tract infections, representing one of the most widespread and successful groups of pathogens on the planet. To colonize and persist within the urinary tract, UPEC must be able to sense and respond appropriately to environmental stresses, many of which can compromise the bacterial envelope. The Cpx two-component envelope stress response system is comprised of the inner membrane histidine kinase CpxA, the cytosolic response regulator CpxR, and the periplasmic auxiliary factor CpxP. Here, by using deletion mutants along with mouse and zebrafish infection models, we show that the Cpx system is critical to the fitness and virulence of two reference UPEC strains, the cystitis isolate UTI89 and the urosepsis isolate CFT073. Specifically, deletion of the cpxRA operon impaired the ability of UTI89 to colonize the murine bladder and greatly reduced the virulence of CFT073 during both systemic and localized infections within zebrafish embryos. These defects coincided with diminished host cell invasion by UTI89 and increased sensitivity of both strains to complement-mediated killing and the aminoglycoside antibiotic amikacin. Results obtained with the cpxP deletion mutants were more complicated, indicating variable strain-dependent and niche-specific requirements for this well-conserved auxiliary factor.
Collapse
|
115
|
Donovan GT, Norton JP, Bower JM, Mulvey MA. Adenylate cyclase and the cyclic AMP receptor protein modulate stress resistance and virulence capacity of uropathogenic Escherichia coli. Infect Immun 2013; 81:249-58. [PMID: 23115037 PMCID: PMC3536135 DOI: 10.1128/iai.00796-12] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Accepted: 10/24/2012] [Indexed: 02/07/2023] Open
Abstract
In many bacteria, the second messenger cyclic AMP (cAMP) interacts with the transcription factor cAMP receptor protein (CRP), forming active cAMP-CRP complexes that can control a multitude of cellular activities, including expanded carbon source utilization, stress response pathways, and virulence. Here, we assessed the role of cAMP-CRP as a regulator of stress resistance and virulence in uropathogenic Escherichia coli (UPEC), the principal cause of urinary tract infections worldwide. Deletion of genes encoding either CRP or CyaA, the enzyme responsible for cAMP synthesis, attenuates the ability of UPEC to colonize the bladder in a mouse infection model, dependent on intact innate host defenses. UPEC mutants lacking cAMP-CRP grow normally in the presence of glucose but are unable to utilize alternate carbon sources like amino acids, the primary nutrients available to UPEC within the urinary tract. Relative to the wild-type UPEC isolate, the cyaA and crp deletion mutants are sensitive to nitrosative stress and the superoxide generator methyl viologen but remarkably resistant to hydrogen peroxide (H(2)O(2)) and acid stress. In the mutant strains, H(2)O(2) resistance correlates with elevated catalase activity attributable in part to enhanced translation of the alternate sigma factor RpoS. Acid resistance was promoted by both RpoS-independent and RpoS-dependent mechanisms, including expression of the RpoS-regulated DNA-binding ferritin-like protein Dps. We conclude that balanced input from many cAMP-CRP-responsive elements, including RpoS, is critical to the ability of UPEC to handle the nutrient limitations and severe environmental stresses present within the mammalian urinary tract.
Collapse
Affiliation(s)
- Grant T Donovan
- Division of Microbiology and Immunology, Pathology Department, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | | | | | | |
Collapse
|
116
|
Recurrent urinary tract infections caused by multidrug-resistant uropathogenic Escherichia coli: implications for diagnosis and treatment. Eur Urol 2012. [PMID: 23177082 DOI: 10.1016/j.eururo.2012.11.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
117
|
Pouwels KB, Visser ST, Hak E. Effect of pravastatin and fosinopril on recurrent urinary tract infections. J Antimicrob Chemother 2012; 68:708-14. [PMID: 23111852 DOI: 10.1093/jac/dks419] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
OBJECTIVES Recurrent urinary tract infections (UTIs) are a problem affecting both women and men. Animal experiments and in vitro studies indicate that statins might prevent recurrent UTIs. We assessed the effects of pravastatin on UTI antibiotic prescribing among adults. METHODS A post hoc analysis was conducted with data from PREVEND IT, a trial among participants randomized to receive pravastatin, fosinopril or placebo in a 2 × 2 factorial design over 4 years. Trial data were linked to the pharmacy prescription database IADB.nl. The primary outcome was the number of prescriptions with a nitrofuran derivate, a sulphonamide or trimethoprim as a proxy for UTI antibiotic prescribing. Generalized estimating equations were used to estimate the effect on the number of UTI antibiotic prescriptions. Cox regression was used to determine the effect on first and second (recurrent) UTI antibiotic prescriptions. RESULTS Of the 864 trial participants, 655 were eligible for analysis. During an average follow-up of 3.8 years, 112 (17%) participants received at least one UTI antibiotic prescription. Intention-to-treat analyses showed that pravastatin was associated with a reduced total number of UTI antibiotic prescriptions (relative risk, 0.43; 95% CI, 0.21-0.88) and occurrence of second UTI antibiotic prescriptions [hazard ratio (HR), 0.25; 95% CI, 0.08-0.77]. No significant effect on occurrence of first UTI antibiotic prescriptions was found (HR, 0.83; 95% CI, 0.57-1.20). Fosinopril was associated with an increased occurrence of first UTI antibiotic prescriptions (HR, 1.82; 95% CI, 1.16-2.88). Combination therapy with fosinopril and pravastatin did not significantly influence the number of UTI antibiotic prescriptions. CONCLUSIONS This study suggests that pravastatin can reduce the occurrence of recurrent UTIs. Larger studies among patients with recurrent UTIs are warranted.
Collapse
Affiliation(s)
- Koen B Pouwels
- Unit of PharmacoEpidemiology and PharmacoEconomics, Department of Pharmacy, University of Groningen, Groningen, The Netherlands.
| | | | | |
Collapse
|
118
|
Justice SS, Li B, Downey JS, Dabdoub SM, Brockson ME, Probst GD, Ray WC, Goodman SD. Aberrant community architecture and attenuated persistence of uropathogenic Escherichia coli in the absence of individual IHF subunits. PLoS One 2012; 7:e48349. [PMID: 23133584 PMCID: PMC3485042 DOI: 10.1371/journal.pone.0048349] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2012] [Accepted: 09/24/2012] [Indexed: 01/14/2023] Open
Abstract
Uropathogenic Escherichia coli (UPEC) utilizes a complex community-based developmental pathway for growth within superficial epithelial cells of the bladder during cystitis. Extracellular DNA (eDNA) is a common matrix component of organized bacterial communities. Integration host factor (IHF) is a heterodimeric protein that binds to double-stranded DNA and produces a hairpin bend. IHF-dependent DNA architectural changes act both intrabacterially and extrabacterially to regulate gene expression and community stability, respectively. We demonstrate that both IHF subunits are required for efficient colonization of the bladder, but are dispensable for early colonization of the kidney. The community architecture of the intracellular bacterial communities (IBCs) is quantitatively different in the absence of either IhfA or IhfB in the murine model for human urinary tract infection (UTI). Restoration of Type 1 pili by ectopic production does not restore colonization in the absence of IhfA, but partially compensates in the absence of IhfB. Furthermore, we describe a binding site for IHF that is upstream of the operon that encodes for the P-pilus. Taken together, these data suggest that both IHF and its constituent subunits (independent of the heterodimer), are able to participate in multiple aspects of the UPEC pathogenic lifestyle, and may have utility as a target for treatment of bacterial cystitis.
Collapse
Affiliation(s)
- Sheryl S. Justice
- Center for Microbial Pathogenesis, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio, United States of America
- Department of Pediatrics and Urology, The Ohio State University College of Medicine, Columbus, Ohio, United States of America
- * E-mail: (SJ); (SDG)
| | - Birong Li
- Center for Microbial Pathogenesis, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio, United States of America
| | - Jennifer S. Downey
- Division of Biomedical Sciences, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, California, United States of America
| | - Shareef M. Dabdoub
- Center for Microbial Pathogenesis, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio, United States of America
| | - M. Elizabeth Brockson
- Center for Microbial Pathogenesis, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio, United States of America
| | - G. Duane Probst
- Center for Microbial Pathogenesis, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio, United States of America
| | - William C. Ray
- Battelle Center for Mathematical Medicine, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio, United States of America
| | - Steven D. Goodman
- Division of Biomedical Sciences, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, California, United States of America
- * E-mail: (SJ); (SDG)
| |
Collapse
|
119
|
Affiliation(s)
- Ine Jorgensen
- Department of Pediatrics, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Patrick C. Seed
- Department of Pediatrics, Duke University Medical Center, Durham, North Carolina, United States of America
- Department of Microbiology and Molecular Genetics, Duke University Medical Center, Durham, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
120
|
Similarity and divergence of phylogenies, antimicrobial susceptibilities, and virulence factor profiles of Escherichia coli isolates causing recurrent urinary tract infections that persist or result from reinfection. J Clin Microbiol 2012; 50:4002-7. [PMID: 23035197 DOI: 10.1128/jcm.02086-12] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In order to obtain a better molecular understanding of recurrent urinary tract infection (RUTI), we collected 75 cases with repeatedly occurring uncomplicated UTI. The genetic relationships among uropathogenic Escherichia coli (UPEC) isolates were analyzed by pulsed-field gel electrophoresis. While 39 (52%) of the RUTI cases were defined as "persistence" of the same strain as the primary infecting strain, 36 (48%) were characterized by "reinfection" with a new strain that is different from the primary strain. We then examined the antimicrobial susceptibilities and phylogenetic backgrounds of 39 persistence and 86 reinfection UPEC isolates, and screened 44 virulence factor (VF) genes. We found that isolates had significant differences in the following: placement in phylogenetic group B2 (41% versus 21%; P = 0.0193) and the presence of adhesin genes iha (49% versus 28%; P = 0.0233) and papG allele I' (51% versus 24%; P = 0.003), iron uptake genes fyuA (85% versus 58%; P = 0.0037), irp-2 (87% versus 65%; P = 0.0109), and iutA (87% versus 58%; P = 0.0014), and an aggregate VF score (median, 11 versus 9; P = 0.0030). In addition, 41% of persistence strains harbored three adhesin genes simultaneously, whereas 22% of reinfection isolates did (P = 0.0289). Moreover, 59% versus 29% (P = 0.0014) of persistence and reinfection isolates contained seven types of iron uptake genes. Taken together, the antimicrobial susceptibilities of UPEC isolates had little effect on the RUTI. Compared with reinfection strains, persistence UPEC isolates exhibited higher VF scores and carried more VF genes than may be involved in the development and progression of RUTI.
Collapse
|
121
|
YbcL of uropathogenic Escherichia coli suppresses transepithelial neutrophil migration. Infect Immun 2012; 80:4123-32. [PMID: 22966043 DOI: 10.1128/iai.00801-12] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Uropathogenic Escherichia coli (UPEC) strains suppress the acute inflammatory response in the urinary tract to ensure access to the intracellular uroepithelial niche that supports the propagation of infection. Our understanding of this initial cross talk between host and pathogen is incomplete. Here we report the identification of a previously uncharacterized periplasmic protein, YbcL, encoded by UPEC that contributes to immune modulation in the urinary tract by suppressing acute neutrophil migration. In contrast to wild-type UPEC, an isogenic strain lacking ybcL expression (UTI89 ΔybcL) failed to suppress transepithelial polymorphonuclear leukocyte (PMN) migration in vitro, a defect complemented by expressing ybcL episomally. YbcL homologs are present in many E. coli genomes; expression of the YbcL variant encoded by nonpathogenic E. coli K-12 strain MG1655 (YbcL(MG)) failed to complement the UTI89 ΔybcL defect, whereas expression of the UPEC YbcL variant (YbcL(UTI)) in MG1655 conferred the capacity for suppressing PMN migration. This phenotypic difference was due to a single amino acid difference (V78T) between the two YbcL homologs, and a majority of clinical UPEC strains examined were found to encode the suppressive YbcL variant. Purified YbcL(UTI) protein suppressed PMN migration in response to live or killed MG1655, and YbcL(UTI) was detected in the supernatant during UPEC infection of bladder epithelial cells or PMNs. Lastly, early PMN influx to murine bladder tissue was augmented upon in vivo infection with UTI89 ΔybcL compared with wild-type UPEC. Our findings demonstrate a role for UPEC YbcL in suppression of the innate immune response during urinary tract infection.
Collapse
|
122
|
Horvath DJ, Dabdoub SM, Li B, Vanderbrink BA, Justice SS. New paradigms of urinary tract infections: Implications for patient management. Indian J Urol 2012; 28:154-8. [PMID: 22919128 PMCID: PMC3424889 DOI: 10.4103/0970-1591.98455] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Urinary tract infections (UTIs) represent one of the most commonly acquired diseases among the general population as well as hospital in-patients, yet remain difficult to effectively and consistently treat. High rates of recurrence, anatomic abnormalities, and functional disturbances of the urinary tract all contribute to the difficulty in management of these infections. However, recent advances reveal important molecular and genetic factors that contribute to bacterial invasion and persistence in the urinary tract, particularly for the most common causative agent, uropathogenic Escherichia coli. Recent studies using animal models of experimental UTIs have recently provided mechanistic insight into the clinical observations that question the effectiveness of antibiotic therapy in treatment. Ultimately, continuing research will be necessary to identify the best targets for effective treatment of this costly and widespread infectious disease.
Collapse
Affiliation(s)
- Dennis J Horvath
- Center for Microbial Pathogenesis, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio
| | | | | | | | | |
Collapse
|
123
|
Atg16L1 deficiency confers protection from uropathogenic Escherichia coli infection in vivo. Proc Natl Acad Sci U S A 2012; 109:11008-13. [PMID: 22715292 DOI: 10.1073/pnas.1203952109] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Urinary tract infection (UTI), a frequent and important disease in humans, is primarily caused by uropathogenic Escherichia coli (UPEC). UPEC forms acute cytoplasmic biofilms within superficial urothelial cells and can persist by establishing membrane-enclosed latent reservoirs to seed recurrent UTI. The host responds with an influx of innate immune cells and shedding of infected epithelial cells. The autophagy gene ATG16L1 has a commonly occurring mutation that is associated with inflammatory disease and intestinal cell abnormalities in mice and humans. Here, we show that Atg16L1-deficient mice (Atg16L1(HM)) cleared bacteriuria more rapidly and thoroughly than controls and showed rapid epithelial recovery. Atg16L1 deficiency was associated with a potent proinflammatory cytokine response with increased recruitment of monocytes and neutrophils to infected bladders. Chimeric and genetic studies showed that Atg16L1(HM) hematopoietic cells alone could increase clearance and that Atg16L1-deficient innate immune cells were required and sufficient for enhanced bacteriuric clearance. We also show that Atg16L1-deficient mice exhibit cell-autonomous architectural aberrations of superficial urothelial cells, including increases in multivesicular bodies, lysosomes, and expression of the UPEC receptor Up1a. Finally, we show that Atg16L1(HM) epithelial cells contained a significantly reduced number of latent reservoirs. Together, our results show that Atg16L1 deficiency confers protection in vivo to the host against both acute and latent UPEC infection, suggest that deficiency in a key autophagy protein can be protective against infection in an animal model of one of the most common diseases of women worldwide, and may have significant clinical implications for understanding the etiology of recurrent UTIs.
Collapse
|
124
|
Silva MT, Pestana NTS. The in vivo extracellular life of facultative intracellular bacterial parasites: role in pathogenesis. Immunobiology 2012; 218:325-37. [PMID: 22795971 DOI: 10.1016/j.imbio.2012.05.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2012] [Revised: 03/23/2012] [Accepted: 05/16/2012] [Indexed: 01/14/2023]
Abstract
Classically labeled facultative intracellular pathogens are characterized by the ability to have an intracellular phase in the host, which is required for pathogenicity, while capable of extracellular growth in vitro. The ability of these bacteria to replicate in cell-free conditions is usually assessed by culture in artificial bacteriological media. However, the extracellular growth ability of these pathogens may also be expressed by a phase of extracellular infection in the natural setting of the host with pathologic consequences, an ability that adds to the pathogenic potential of the infectious agent. This infective capability to grow in the extracellular sites of the host represents an additional virulence attribute of those pathogens which may lead to severe outcomes. Here we discuss examples of infectious diseases where the in vivo infective extracellular life is well documented, including infections by Francisella tularensis, Yersinia pestis, Burkholderia pseudomallei, Burkholderia cenocepacia, Salmonella enterica serovar Typhimurium and Edwardsiella tarda. The occurrence of a phase of systemic dissemination with extracellular multiplication during progressive infections by facultative intracellular bacterial pathogens has been underappreciated, with most studies exclusively centered on the intracellular phase of the infections. The investigation of the occurrence of a dual lifestyle in the host among bacterial pathogens in general should be extended and likely will reveal more cases of infectious diseases with a dual infective intracellular/extracellular pattern.
Collapse
Affiliation(s)
- Manuel T Silva
- Institute for Molecular and Cell Biology, University of Porto, Porto, Portugal
| | | |
Collapse
|
125
|
Möller J, Luehmann T, Hall H, Vogel V. The race to the pole: how high-aspect ratio shape and heterogeneous environments limit phagocytosis of filamentous Escherichia coli bacteria by macrophages. NANO LETTERS 2012; 12:2901-2905. [PMID: 22591454 DOI: 10.1021/nl3004896] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
While bioengineers ask how the shape of diagnostic and therapeutic particles impacts their pharmacological efficiency, biodistribution, and toxicity, microbiologists suggested that morphological adaptations enable pathogens to perhaps evade the immune response. Here, a shape-dependent process is described that limits phagocytosis of filamentous Escherichia coli bacteria by macrophages: successful uptake requires access to one of the terminal bacterial filament poles. By exploiting micropatterned surfaces, we further demonstrate that microenvironmental heterogeneities can slow or inhibit phagocytosis. A comparison to existing literature reveals a common shape-controlled uptake mechanism for both high-aspect ratio filamentous bacteria and engineered particles.
Collapse
Affiliation(s)
- Jens Möller
- Laboratory for Biologically Oriented Materials, Department of Health Sciences and Technology, ETH Zurich, CH-8093 Zurich, Switzerland
| | | | | | | |
Collapse
|
126
|
Decreased expression of type 1 fimbriae by a pst mutant of uropathogenic Escherichia coli reduces urinary tract infection. Infect Immun 2012; 80:2802-15. [PMID: 22665376 DOI: 10.1128/iai.00162-12] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The pstSCAB-phoU operon encodes the phosphate-specific transport system (Pst). Loss of Pst constitutively activates the Pho regulon and decreases bacterial virulence. However, specific mechanisms underlying decreased bacterial virulence through inactivation of Pst are poorly understood. In uropathogenic Escherichia coli (UPEC) strain CFT073, inactivation of pst decreased urinary tract colonization in CBA/J mice. The pst mutant was deficient in production of type 1 fimbriae and showed decreased expression of the fimA structural gene which correlated with differential expression of the fimB, fimE, ipuA, and ipbA genes, encoding recombinases, mediating inversion of the fim promoter. The role of fim downregulation in attenuation of the pst mutant was confirmed using a fim phase-locked-on derivative, which demonstrated a significant gain in virulence. In addition, the pst mutant was less able to invade human bladder epithelial cells. Since type 1 fimbriae contribute to UPEC virulence by promoting colonization and invasion of bladder cells, the reduced bladder colonization by the pst mutant is predominantly attributed to downregulation of these fimbriae. Elucidation of mechanisms mediating the control of type 1 fimbriae through activation of the Pho regulon in UPEC may open new avenues for therapeutics or prophylactics against urinary tract infections.
Collapse
|
127
|
Distinguishing the contribution of type 1 pili from that of other QseB-misregulated factors when QseC is absent during urinary tract infection. Infect Immun 2012; 80:2826-34. [PMID: 22665375 DOI: 10.1128/iai.00283-12] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Urinary tract infections (UTI), primarily caused by uropathogenic Escherichia coli (UPEC), are one of the leading bacterial infections due to their high frequency and rate of recurrence. Both type 1 pilus adhesive organelles (fim) and the QseC sensor kinase have been implicated in UPEC virulence during UTI and have been individually reported to be promising drug targets. Deletion of qseC leads to pleiotropic effects due to unregulated activation of the cognate response regulator QseB, influencing conserved metabolic processes and diminishing expression of virulence genes, including type 1 pili. Here, we discern the type 1 pilus-dependent and -independent effects that contribute to the virulence attenuation of a UPEC qseC deletion mutant in a murine model of experimental UTI. We show that although a ΔqseC mutant restored for type 1 pilus expression regains the ability to colonize the host and initiate acute infection up to 16 h postinfection, it is rapidly outcompeted during acute infection when coinoculated with a wild-type strain. As a result, this strain has a diminished capacity to establish chronic infection. A prophylactic oral dose of a FimH small-molecular-weight antagonist (ZFH-02056) further reduced the ability of the qseC mutant to establish chronic infection. Thus, loss of QseC significantly enhances the efficacy of ZFH-02056. Collectively, our work indicates that type 1 pili and QseC become critical in different infection stages, and that dual targeting of these factors has an additive effect on ablating UPEC virulence.
Collapse
|
128
|
Abstract
During acute cystitis, uropathogenic Escherichia coli (UPEC) induce bladder epithelial cell exfoliation, which eliminates infected cells and promotes UPEC dissemination. Dhakal and Mulvey (2012) uncover the mechanism that induces this exfoliation and reintroduce the pore-forming toxin, hemolysin, as an effector that surprisingly targets multiple host pathways to facilitate infection.
Collapse
Affiliation(s)
- Sheryl S Justice
- Center for Microbial Pathogenesis, The Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA.
| | | |
Collapse
|
129
|
Noll-Hussong M, Autenrieth M, Pokorny D, Herberger S, Huber D. The subject, its biology, and the chronic recurrent cystitis. Case Rep Psychiatry 2012; 2012:601705. [PMID: 22934220 PMCID: PMC3420663 DOI: 10.1155/2012/601705] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2011] [Accepted: 02/02/2012] [Indexed: 01/29/2023] Open
Abstract
Functional disorders in urology are troubling for both patients and physicians. Moreover, advances in recent research promise to provide biological insights into psycho-neuro-endocrino-immunological pathways that are one important facet of chronic urogenital inflammations. We present a case of a middle-aged woman with long-lasting recurrent cystitis for which especially a psychosomatic approach helped to understand and cure the disorder. Altogether, as practitioners treat subjects, not illnesses, a biopsychosocial understanding of human disease should be taken into account in cases of chronic recurrent cystitis.
Collapse
Affiliation(s)
- Michael Noll-Hussong
- Clinic for Psychosomatic Medicine and Psychotherapy, University of Ulm, Am Hochstraess 8, 89081 Ulm, Germany
- Klinik und Poliklinik fuer Psychosomatische Medizin und Psychotherapie, Technische Universitaet Muenchen, Langerstrasse 3, 81675 Muenchen, Germany
| | - Michael Autenrieth
- Urologische Klinik und Poliklinik des Klinikums rechts der Isar, Technische Universitaet Muenchen, Ismaninger Strasse 22, 81675 Muenchen, Germany
| | - Dan Pokorny
- Clinic for Psychosomatic Medicine and Psychotherapy, University of Ulm, Am Hochstraess 8, 89081 Ulm, Germany
| | - Simone Herberger
- Klinik fuer Psychosomatische Medizin und Psychotherapie, Klinikum Harlaching, Staedtisches Klinikum Muenchen, Sanatoriumsplatz 2, 81545 Muenchen, Germany
| | - Dorothea Huber
- Klinik fuer Psychosomatische Medizin und Psychotherapie, Klinikum Harlaching, Staedtisches Klinikum Muenchen, Sanatoriumsplatz 2, 81545 Muenchen, Germany
- International Psychoanalytic University Berlin, Stromstrasse 3, 10555 Berlin, Germany
| |
Collapse
|
130
|
Bolton M, Horvath DJ, Li B, Cortado H, Newsom D, White P, Partida-Sanchez S, Justice SS. Intrauterine growth restriction is a direct consequence of localized maternal uropathogenic Escherichia coli cystitis. PLoS One 2012; 7:e33897. [PMID: 22470490 PMCID: PMC3309957 DOI: 10.1371/journal.pone.0033897] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2011] [Accepted: 02/18/2012] [Indexed: 12/24/2022] Open
Abstract
Despite the continually increasing rates of adverse perinatal outcomes across the globe, the molecular mechanisms that underlie adverse perinatal outcomes are not completely understood. Clinical studies report that 10% of pregnant women will experience a urinary tract infection (UTI) and there is an association of UTIs with adverse perinatal outcomes. We introduced bacterial cystitis into successfully outbred female mice at gestational day 14 to follow pregnancy outcomes and immunological responses to determine the mechanisms that underlie UTI-mediated adverse outcomes. Outbred fetuses from mothers experiencing localized cystitis displayed intrauterine growth restriction (20–80%) as early as 48 hours post-infection and throughout the remainder of normal gestation. Robust infiltration of cellular innate immune effectors was observed in the uteroplacental tissue following introduction of UTI despite absence of viable bacteria. The magnitude of serum proinflammatory cytokines is elevated in the maternal serum during UTI. This study demonstrates that a localized infection can dramatically impact the immunological status as well as the function of non-infected distal organs and tissues. This model can be used as a platform to determine the mechanism(s) by which proinflammatory changes occur between non-contiguous genitourinary organs
Collapse
Affiliation(s)
- Michael Bolton
- Section of Infectious Diseases, Department of Pediatrics, Nationwide Children's Hospital, Columbus, Ohio, United States of America
- Center for Microbial Pathogenesis, Research Institute at Nationwide Children's Hospital, Columbus, Ohio, United States of America
| | - Dennis J. Horvath
- Center for Microbial Pathogenesis, Research Institute at Nationwide Children's Hospital, Columbus, Ohio, United States of America
| | - Birong Li
- Center for Microbial Pathogenesis, Research Institute at Nationwide Children's Hospital, Columbus, Ohio, United States of America
| | - Hanna Cortado
- Center for Microbial Pathogenesis, Research Institute at Nationwide Children's Hospital, Columbus, Ohio, United States of America
| | - David Newsom
- Center for Microbial Pathogenesis, Research Institute at Nationwide Children's Hospital, Columbus, Ohio, United States of America
| | - Peter White
- Center for Microbial Pathogenesis, Research Institute at Nationwide Children's Hospital, Columbus, Ohio, United States of America
- The Department of Pediatrics and the Center for Microbial Interface Biology, The Ohio State University School of Medicine, Columbus, Ohio, United States of America
| | - Santiago Partida-Sanchez
- Center for Microbial Pathogenesis, Research Institute at Nationwide Children's Hospital, Columbus, Ohio, United States of America
- The Department of Pediatrics and the Center for Microbial Interface Biology, The Ohio State University School of Medicine, Columbus, Ohio, United States of America
- * E-mail: (SP); (SJ)
| | - Sheryl S. Justice
- Center for Microbial Pathogenesis, Research Institute at Nationwide Children's Hospital, Columbus, Ohio, United States of America
- The Department of Pediatrics and the Center for Microbial Interface Biology, The Ohio State University School of Medicine, Columbus, Ohio, United States of America
- The Division of Urology, The Ohio State University School of Medicine, Columbus, Ohio, United States of America
- * E-mail: (SP); (SJ)
| |
Collapse
|
131
|
Silva MT. Classical labeling of bacterial pathogens according to their lifestyle in the host: inconsistencies and alternatives. Front Microbiol 2012; 3:71. [PMID: 22393329 PMCID: PMC3289908 DOI: 10.3389/fmicb.2012.00071] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2012] [Accepted: 02/11/2012] [Indexed: 02/05/2023] Open
Abstract
An ample understanding of the complex interactions between host and pathogen will improve our ability to develop new prophylactic and therapeutic measures against infection. Precise classification of infectious agents in regards to their infective lifestyles in the host and corresponding pathogenic implications are required because clear concepts are essential to plan fruitful research. Classically, pathogenic bacteria are classified as extracellular, facultative intracellular, and obligate intracellular. In my opinion, this classification is inadequate because, as concluded from data here discussed, it is based on inconsistencies and hyper-valorizes the capacity of the infectious agent replicate in vitro in cell-free media. For a microbial pathogen, what matters is whether intra- or extracellularity is in the context of the in vivo life and in association with pathogenicity. When living as a pathogen in association with its host, what is relevant in microbiological terms is not the ability to grow in artificial cell-free bacteriological media or in environmental niches but whether the intracellular infectious agent, besides the phase of intracellular growth which is behind its label, also is able to live extracellularly in the natural settings of the extracellular territories of their hosts. To eliminate the inconsistencies associated with the classical labeling of bacterial pathogens, I propose that bacterial pathogens be labeled exclusive extracellular, dual intracellular/extracellular and exclusive intracellular based on their infective lifestyle in the host, not in the ability to grow in artificial bacteriological media.
Collapse
Affiliation(s)
- Manuel T Silva
- Institute for Molecular and Cell Biology, University of Porto Porto, Portugal
| |
Collapse
|
132
|
Escherichia coli uropathogenesis in vitro: invasion, cellular escape, and secondary infection analyzed in a human bladder cell infection model. Infect Immun 2012; 80:1858-67. [PMID: 22354025 DOI: 10.1128/iai.06075-11] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Uropathogenic Escherichia coli (UPEC) strains are capable of invading bladder epithelial cells (BECs) on the bladder luminal surface. Based primarily on studies in mouse models, invasion is proposed to trigger an intracellular uropathogenic cascade involving intracellular bacterial proliferation followed by escape of elongated, filamentous bacteria from colonized BECs. UPEC filaments on the mouse bladder epithelium are able to revert to rod-shaped bacteria, which are believed to invade neighboring cells to initiate new rounds of intracellular colonization. So far, however, these late-stage infection events have not been replicated in vitro. We have established an in vitro model of human bladder cell infection by the use of a flow chamber (FC)-based culture system, which allows investigation of steps subsequent to initial invasion. Short-term bacterial colonization on the FC-BEC layer led to intracellular colonization. Exposing invaded BECs to a flow of urine, i.e., establishing conditions similar to those faced by UPEC reemerging on the bladder luminal surface, led to outgrowth of filamentous bacteria similar to what has been reported to occur in mice. These filaments were capable of reverting to rods that could invade other BECs. Hence, under growth conditions established to resemble those present in vivo, the elements of the proposed uropathogenic cascade were inducible in a human BEC model system. Here, we describe the model and show how these characteristics are reproduced in vitro.
Collapse
|
133
|
Bokil NJ, Totsika M, Carey AJ, Stacey KJ, Hancock V, Saunders BM, Ravasi T, Ulett GC, Schembri MA, Sweet MJ. Intramacrophage survival of uropathogenic Escherichia coli: Differences between diverse clinical isolates and between mouse and human macrophages. Immunobiology 2011; 216:1164-71. [DOI: 10.1016/j.imbio.2011.05.011] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Accepted: 05/16/2011] [Indexed: 10/18/2022]
|
134
|
Abstract
PURPOSE OF REVIEW To highlight observations that have suggested the need for changing the conventional approach to the evaluation and management of urinary tract infections (UTIs) and vesicoureteral reflux in children and examine new alternative approaches to prevention of UTI and renal scarring based on research into host-pathogen interaction. RECENT FINDINGS Recent studies have questioned the traditional approach of using prophylactic antibiotics to prevent recurrence of UTI and development of renal scarring in children with vesicoureteral reflux. Ongoing research on host-pathogen interactions reveals a promising capability to analyze virulence factors in bacteria causing UTIs in children, identify highly virulent bacteria capable of causing pyelonephritis and renal injury, and to selectively target the gastrointestinal reservoirs of these bacteria for elimination using probiotics. SUMMARY Promising experimental studies correlating bacterial virulence with pattern of UTI and identification and characterization of a newly available probiotic capable of eradicating uropathogenic bacteria make targeted probiotic prevention of renal injury-inducing UTIs a potential therapeutic reality.
Collapse
|
135
|
Storm DW, Koff SA, Horvath DJ, Li B, Justice SS. In vitro analysis of the bactericidal activity of Escherichia coli Nissle 1917 against pediatric uropathogens. J Urol 2011; 186:1678-83. [PMID: 21855931 DOI: 10.1016/j.juro.2011.04.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2010] [Indexed: 11/16/2022]
Abstract
PURPOSE The usefulness of prophylactic antibiotics to prevent recurrent urinary tract infections in children was recently questioned. Some groups have attempted to use probiotics, most commonly lactobacillus, to prevent recurrent infections by altering the intestinal bacterial reservoir with variable results. Mutaflor® is a possible alternative probiotic in which the active agent is Nissle 1917. Nissle 1917 is a commensal Escherichia coli strain that eradicates pathogenic bacteria from the gastrointestinal tract. Due to its ability to alter the intestinal biome we hypothesized that Mutaflor may have the potential to prevent recurrent urinary tract infections. Thus, we used an in vitro assay to analyze the effectiveness of Nissle 1917 for eradicating pediatric uropathogens. MATERIALS AND METHODS We established a collection of 43 bacterial pediatric uropathogens. With each isolate a microcin-type assay was performed to determine the effectiveness of Nissle 1917 on bacterial growth inhibition and competitive overgrowth. RESULTS Nissle 1917 adversely affected the growth of 34 of the 43 isolates (79%) isolates. It inhibited the growth of 21 isolates and overgrew 13. The percent of species adversely affected by Nissle 1917 was 40% for Pseudomonas, 50% for E. coli, Enterococcus and Staphylococcus, 100% for Klebsiella and Enterobacter, and 0% for Citrobacter and Serratia. CONCLUSIONS Nissle 1917, the active agent in Mutaflor, inhibited or out competed most bacterial isolates. These mechanisms could be used in vivo to eradicate uropathogens from the gastrointestinal tract. Further study is needed to determine whether Mutaflor can prevent recurrent urinary tract infections in children.
Collapse
Affiliation(s)
- Douglas W Storm
- Department of Urology, Naval Medical Center, San Diego, California 92134-5000, USA.
| | | | | | | | | |
Collapse
|
136
|
Hadjifrangiskou M, Kostakioti M, Chen SL, Henderson JP, Greene SE, Hultgren SJ. A central metabolic circuit controlled by QseC in pathogenic Escherichia coli. Mol Microbiol 2011; 80:1516-29. [PMID: 21542868 DOI: 10.1111/j.1365-2958.2011.07660.x] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The QseC sensor kinase regulates virulence in multiple Gram-negative pathogens, by controlling the activity of the QseB response regulator. We have previously shown that qseC deletion interferes with dephosphorylation of QseB thus unleashing what appears to be an uncontrolled positive feedback loop stimulating increased QseB levels. Deletion of QseC downregulates virulence gene expression and attenuates enterohaemorrhagic and uropathogenic Escherichia coli (EHEC and UPEC), Salmonella typhimurium, and Francisella tularensis. Given that these pathogens employ different infection strategies and virulence factors, we used genome-wide approaches to better understand the role of the QseBC interplay in pathogenesis. We found that deletion of qseC results in misregulation of nucleotide, amino acid, and carbon metabolism. Comparable metabolic changes are seen in EHEC ΔqseC, suggesting that deletion of qseC confers similar pleiotropic effects in these two different pathogens. Disruption of representative metabolic enzymes phenocopied UPEC ΔqseC in vivo and resulted in virulence factor downregulation. We thus propose that in the absence of QseC, the constitutively active QseB leads to pleiotropic effects, impairing bacterial metabolism, and thereby attenuating virulence. These findings provide a basis for the development of antimicrobials targeting the phosphatase activity of QseC, as a means to attenuate a wide range of QseC-bearing pathogens.
Collapse
Affiliation(s)
- Maria Hadjifrangiskou
- Department of Molecular Microbiology and Microbial Pathogenesis, Washington University in Saint Louis School of Medicine, 660 S Euclid, St Louis, MO 63110-1010, USA
| | | | | | | | | | | |
Collapse
|
137
|
Gyles CL. Relevance in pathogenesis research. Vet Microbiol 2011; 153:2-12. [PMID: 21592684 DOI: 10.1016/j.vetmic.2011.04.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2010] [Revised: 04/09/2011] [Accepted: 04/13/2011] [Indexed: 01/28/2023]
Abstract
Research on pathogenesis of bacterial diseases involves exploration of the intricate and complex interactions among pathogen, host, and environment. Host-parasite-environment interactions that were relatively simple were the first to be understood. They include intoxications in which ingestion of a powerful bacterial toxin was sufficient to cause disease. In more complex cases bacteria occupy a variety of niches in the host and attack at an opportune time. Some bacterial pathogens have a brief encounter with the host; others are long-term guests. This variety of relationships involves a wide range of strategies for survival and transmission of bacterial pathogens. Molecular genetics, genomics and proteomics have facilitated understanding of the pathogens and hosts. Massive information often results from such studies and determining the relevance of the data is frequently a challenge. In vitro studies often attempt to simulate one or two critical aspects of the environment, such as temperature, pH, and iron concentration, that may provide clues as to what goes on in the host. These studies sometimes identify critical bacterial virulence factors but regulation of bacterial virulence and host response is complex and often not well understood. Pathogenesis is a process of continuous change in which timing and degree of gene expression are critical and are highly regulated by the environment. It is impossible to get the full picture without the use of natural or experimental infections, although experimental infections involve ethical and economic considerations which may act as a deterrent.
Collapse
Affiliation(s)
- Carlton L Gyles
- Department of Pathobiology, University of Guelph, Guelph, Ontario, N1G 2W1 Canada.
| |
Collapse
|