101
|
Lv S, Jiao H, Zhong X, Qu Y, Zhang M, Wang R, Liu D. Association between sleep quality and cognitive impairment in older adults hypertensive patients in China: a case-control study. Front Public Health 2024; 12:1446781. [PMID: 39555041 PMCID: PMC11566456 DOI: 10.3389/fpubh.2024.1446781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 10/16/2024] [Indexed: 11/19/2024] Open
Abstract
Background Previous studies have found that poor sleep quality promotes the occurrence of cognitive impairment (CI), but this relationship has been rarely reported in older adults hypertensive patients. The purpose of this study was to investigate the relationship between sleep quality and CI in older adults hypertensive patients and the mediating effect of sleep quality between physical activity (PA) and CI. Methods A total of 2072 older adults hypertensive patients were included in this case-control study. Five hundred and eighteen older adults hypertensive patients with CI were matched 1:3 by age and sex to 1,554 older adults hypertensive patients with normal cognitive function. The International Physical Activity Questionnaire-Long Form, Pittsburgh Sleep Quality Index, and Mini-Mental State Examination were used to evaluate PA intensity, sleep quality, and cognitive function in older adults hypertensive patients. Multivariate logistic regression and the mediation package in R Language were used to analyze the relationship between sleep quality and CI and the mediating effect of sleep quality between PA intensity and CI in older adults hypertensive patients. Results After adjusting for all confounding factors, sleep quality was positively correlated with CI in older adults hypertensive patients (OR = 2.565, 95%CI: 1.958-3.360, p < 0.001), and this relationship also existed in the older adults hypertensive patients with education levels of primary school and below and junior high school and above (OR = 2.468, 95%CI: 1.754-3.473, p < 0.001; OR = 2.385, 95%CI: 1.367-4.161, p = 0.002). In addition, sleep quality mediated part of the mediating effect between PA intensity and CI in older adults hypertensive patients (Za*Zb: - 17.19339; 95%CI: -0.37312, -0.04194). Conclusion Poor sleep quality was associated with the occurrence of CI in older adults hypertensive patients, and this relationship also existed in older adults hypertensive patients with education levels of primary school and below and junior high school and above.
Collapse
Affiliation(s)
- Shunxin Lv
- The First Clinical Medical School, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Huachen Jiao
- Department of Cardiology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Xia Zhong
- Institute of Child and Adolescent Health, School of Public Health, Peking University, Beijing, China
| | - Ying Qu
- The First Clinical Medical School, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Mengdi Zhang
- The First Clinical Medical School, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Rui Wang
- The First Clinical Medical School, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Donghai Liu
- School of Laboratory Animal & Shandong Laboratory Animal Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| |
Collapse
|
102
|
Yadav P, Nasir F, Sivanandam TM. Neuroprotective effect of vitamin B 12 supplementation on cognitive functions and neuronal morphology at different time intervals after traumatic brain injury in male Swiss albino mice. Neurochem Int 2024; 180:105869. [PMID: 39332530 DOI: 10.1016/j.neuint.2024.105869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/20/2024] [Accepted: 09/24/2024] [Indexed: 09/29/2024]
Abstract
Traumatic brain injury is a highly irreversible process that consists of primary as well as secondary injury which develops and progresses over months to years, leading to cognitive dysfunctions. Vitamin B12 received considerable interest due to its potential therapeutic properties. The pathways of vitamin B12 are closely related to neuronal survival but its effects on the pathophysiology of injury with respect to cognition is a relatively unexplored area of research. In this study, we investigated, the effect of vitamin B12 and its involvement in neuroprotection on TBI-induced pathophysiology in male Swiss albino mice. Our findings suggested that vitamin B12 supplementation improves TBI-mediated neurological impairments, spatial and recognition memory, and anxiety-like behavior. Furthermore, the oxidative stress was reduced by declined homocysteine level with vitamin B12 supplementation validating declined expression of astrocytes and TBI biomarkers. The studies on neuronal morphology revealed that vitamin B12 supplementation increases the dendritic arborization and density of mushroom and filopodia-shaped spines and further increases the expression of synaptic plasticity-related genes and proteins. Taken together, our findings reveal that, supplementation of vitamin B12 restored the TBI-induced downregulation of dendritic arborization, and spine density which ultimately increases synaptic plasticity, cell survival, and recovery of cognitive dysfunctions.
Collapse
Affiliation(s)
- Priyanka Yadav
- Biochemistry and Molecular Biology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005, India.
| | - Farheen Nasir
- Biochemistry and Molecular Biology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005, India.
| | - Thamil Mani Sivanandam
- Biochemistry and Molecular Biology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
103
|
Moreira DC, Mikkelsen M, Robinson GW. Current Landscape of NTRK Inhibition for Pediatric CNS Tumors. CNS Drugs 2024; 38:841-849. [PMID: 39278868 DOI: 10.1007/s40263-024-01121-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/19/2024] [Indexed: 09/18/2024]
Abstract
Over the last decade, as molecular platforms have permitted the characterization of the genomic landscape of pediatric central nervous system (CNS) tumors, pediatric neuro-oncology has dramatically transformed. NTRK fusions are oncogenic driver alterations that have been found in a multitude of tumor types, including pediatric CNS tumors. In recent years, NTRK inhibitors have emerged as a promising class of targeted therapies for pediatric CNS tumors with NTRK gene fusions. The use of larotrectinib and entrectinib in the relapsed setting for pediatric CNS tumors has resulted in rapid and robust responses in an important fraction of patients. These agents are well tolerated, although close to 20% of patients have spontaneous bone fractures. Given the existing data for patients with relapsed disease, clinical trials using NTRK inhibitors in the upfront setting is the next natural progression of efficacy testing and many are currently underway. There are still several challenges that need to be addressed to optimize the use of NTRK inhibitors and identify the patients with NTRK fusion-positive CNS tumors who are most likely to benefit from them. As these agents are more broadly used, resistance will become a more pervasive issue and strategies will need to be determined for this scenario. This article summarizes the current status of NTRK inhibitors for pediatric CNS tumors and discusses the opportunities and challenges of their expanding use in the future.
Collapse
Affiliation(s)
- Daniel C Moreira
- Department of Oncology, St. Jude Children's Children Research Hospital, 262 Danny Thomas Pl, Memphis, TN, 38105, USA
- Department of Global Pediatric Medicine, St. Jude Children's Children Research Hospital, Memphis, TN, USA
| | - Margit Mikkelsen
- Department of Oncology, St. Jude Children's Children Research Hospital, 262 Danny Thomas Pl, Memphis, TN, 38105, USA
| | - Giles W Robinson
- Department of Oncology, St. Jude Children's Children Research Hospital, 262 Danny Thomas Pl, Memphis, TN, 38105, USA.
| |
Collapse
|
104
|
Karlström V, Sagredo E, Planells J, Welinder C, Jungfleisch J, Barrera-Conde A, Engfors L, Daniel C, Gebauer F, Visa N, Öhman M. ADAR3 modulates neuronal differentiation and regulates mRNA stability and translation. Nucleic Acids Res 2024; 52:12021-12038. [PMID: 39217468 PMCID: PMC11514483 DOI: 10.1093/nar/gkae753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 08/20/2024] [Indexed: 09/04/2024] Open
Abstract
ADAR3 is a catalytically inactive member of the family of adenosine deaminases acting on RNA (ADARs). Here we have investigated its function in the context of the developing mouse brain. The expression of ADAR3 gradually increases throughout embryogenesis and drops after birth. Using primary cortical neurons, we show that ADAR3 is only expressed in a subpopulation of in vitro differentiated neurons, which suggests specific functions rather than being a general regulator of ADAR editing in the brain. The analysis of the ADAR3 interactome suggested a role in mRNA stability and translation, and we show that expression of ADAR3 in a neuronal cell line that is otherwise ADAR3-negative changes the expression and stability of a large number of mRNAs. Notably, we show that ADAR3 associates with polysomes and inhibits translation. We propose that ADAR3 binds to target mRNAs and stabilizes them in non-productive polysome complexes. Interestingly, the expression of ADAR3 downregulates genes related to neuronal differentiation and inhibits neurofilament outgrowth in vitro. In summary, we propose that ADAR3 negatively regulates neuronal differentiation, and that it does so by regulating mRNA stability and translation in an editing-independent manner.
Collapse
Affiliation(s)
- Victor Karlström
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Svante Arrhenius väg 20C, Stockholm SE-106 91, Sweden
| | - Eduardo A Sagredo
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Svante Arrhenius väg 20C, Stockholm SE-106 91, Sweden
| | - Jordi Planells
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Svante Arrhenius väg 20C, Stockholm SE-106 91, Sweden
| | - Charlotte Welinder
- Mass Spectrometry, Clinical Sciences, Lund University, Lund SE-221 84, Sweden
| | - Jennifer Jungfleisch
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, ES-08003 Barcelona, Spain
| | - Andrea Barrera-Conde
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, ES-08003 Barcelona, Spain
| | - Linus Engfors
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Svante Arrhenius väg 20C, Stockholm SE-106 91, Sweden
| | - Chammiran Daniel
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Svante Arrhenius väg 20C, Stockholm SE-106 91, Sweden
| | - Fátima Gebauer
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, ES-08003 Barcelona, Spain
- Universitat Pompeu Fabra (UPF), ES-08003 Barcelona, Spain
| | - Neus Visa
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Svante Arrhenius väg 20C, Stockholm SE-106 91, Sweden
| | - Marie Öhman
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Svante Arrhenius väg 20C, Stockholm SE-106 91, Sweden
| |
Collapse
|
105
|
Sinkiewicz-Darol E, Łubiech K, Adamczyk I. Influence of Lactation Stage on Content of Neurotrophic Factors, Leptin, and Insulin in Human Milk. Molecules 2024; 29:4973. [PMID: 39459341 PMCID: PMC11510558 DOI: 10.3390/molecules29204973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/16/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024] Open
Abstract
Human milk comprehensively meets the nutritional needs of a child, providing not only structural and energy components but also various bioactive factors. Among these, neurotrophic factors and hormones involved in metabolic processes deserve special attention. Studies using enzyme-linked immunosorbent assays compared the content of neurotrophic factors-CNTF, NT-3, and NGF-and hormones, leptin and insulin, in two groups of breast milk samples: early lactation (1-3 months) and extended lactation (>6 months, up to 12 months). The results indicated changes in leptin and insulin levels as the lactation period extended. NGF, leptin, and insulin were present in milk samples from both study groups, with leptin and insulin levels being higher in the early lactation group. CNTF and NT-3 were not detected in any of the samples from either study group. The analyses confirmed that human milk from women who breastfeed for extended periods remains a source of biologically active components and macronutrients that support a child's development and health.
Collapse
Affiliation(s)
- Elena Sinkiewicz-Darol
- Department of Physiology and Toxicology, Faculty of Biological Sciences, Kazimierz Wielki University, Chodkiewicza 30 St., 85-064 Bydgoszcz, Poland; (K.Ł.); (I.A.)
- Human Milk Bank, Ludwik Rydygier Provincial Polyclinical Hospital in Torun, St. Josef 53-59 St., 87-100 Torun, Poland
| | - Katarzyna Łubiech
- Department of Physiology and Toxicology, Faculty of Biological Sciences, Kazimierz Wielki University, Chodkiewicza 30 St., 85-064 Bydgoszcz, Poland; (K.Ł.); (I.A.)
| | - Iwona Adamczyk
- Department of Physiology and Toxicology, Faculty of Biological Sciences, Kazimierz Wielki University, Chodkiewicza 30 St., 85-064 Bydgoszcz, Poland; (K.Ł.); (I.A.)
- Human Milk Bank, Ludwik Rydygier Provincial Polyclinical Hospital in Torun, St. Josef 53-59 St., 87-100 Torun, Poland
| |
Collapse
|
106
|
Hoyt KR, Horning P, Georgette Ang P, Karelina K, Obrietan K. Ribosomal S6 kinase signaling regulates neuronal viability during development and confers resistance to excitotoxic cell death in mature neurons. Neuroscience 2024; 558:1-10. [PMID: 39137868 DOI: 10.1016/j.neuroscience.2024.08.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 08/08/2024] [Indexed: 08/15/2024]
Abstract
The Ribosomal S6 Kinase (RSK) family of serine/threonine kinases function as key downstream effectors of the MAPK signaling cascade. In the nervous system, RSK signaling plays crucial roles in neuronal development and contributes to activity-dependent neuronal plasticity. This study examined the role of RSK signaling in cell viability during neuronal development and in neuroprotection in the mature nervous system. Using neuronal cell-culture-based profiling, we found that suppressing RSK signaling led to significant cell death in developing primary neuronal cultures. To this end, treatment with the RSK inhibitors BiD1870 or SL0101 on the first day of culturing resulted in over 80% cell death. In contrast, more mature cultures showed attenuated cell death upon RSK inhibition. Inhibition of RSK signaling during early neuronal development also disrupted neurite outgrowth and cell growth. In maturing hippocampal explant cultures, treatment with BiD1870 had minimal effects on cell viability, but led to a striking augmentation of NMDA-induced cell death. Finally, we used the endothelin 1 (ET-1) model of ischemia to examine the neuroprotective effects of RSK signaling in the mature hippocampus in vivo. Notably, in the absence of RSK inhibition, the granule cell layer (GCL) was resistant to the effects of ET-1; However, disruption of RSK signaling (via the microinjection of BiD1870) prior to ET-1 injection triggered cell death within the GCL, thus indicating a neuroprotective role for RSK signaling in the mature nervous system. Together these data reveal distinct, developmentally-defined, roles for RSK signaling in the nervous system.
Collapse
Affiliation(s)
- Kari R Hoyt
- Division of Pharmaceutics and Pharmacology, Ohio State University, Columbus, OH, USA.
| | - Paul Horning
- Department of Neuroscience, Ohio State University, Columbus, OH, USA; Division of Pharmaceutics and Pharmacology, Ohio State University, Columbus, OH, USA
| | - Pia Georgette Ang
- Division of Pharmaceutics and Pharmacology, Ohio State University, Columbus, OH, USA
| | - Kate Karelina
- Department of Neuroscience, Ohio State University, Columbus, OH, USA
| | - Karl Obrietan
- Department of Neuroscience, Ohio State University, Columbus, OH, USA.
| |
Collapse
|
107
|
Abraham O, Ben-Dor S, Goliand I, Haffner-Krausz R, Colaiuta SP, Kovalenko A, Yaron A. Siah3 acts as a physiological mitophagy suppressor that facilitates axonal degeneration. Sci Signal 2024; 17:eadn5805. [PMID: 39378286 DOI: 10.1126/scisignal.adn5805] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 08/27/2024] [Indexed: 10/10/2024]
Abstract
Mitophagy eliminates dysfunctional mitochondria, and defects in this cellular housekeeping mechanism are implicated in various age-related diseases. Here, we found that mitophagy suppression by the protein Siah3 promoted developmental axonal remodeling in mice. Siah3-deficient mice displayed increased peripheral sensory innervation. Cultured Siah3-deficient sensory neurons exhibited delays in both axonal degeneration and caspase-3 activation in response to withdrawal of nerve growth factor. Mechanistically, Siah3 was transcriptionally induced by the loss of trophic support and formed a complex with the cytosolic E3 ubiquitin ligase parkin, a core component of mitophagy, in transfected cells. Axons of Siah3-deficient neurons mounted profound mitophagy upon initiation of degeneration but not under basal conditions. Neurons lacking both Siah3 and parkin did not exhibit the delay in trophic deprivation-induced axonal degeneration or the induction of axonal mitophagy that was seen in Siah3-deficient neurons. Our findings reveal that mitophagy regulation acts as a gatekeeper of a physiological axon elimination program.
Collapse
Affiliation(s)
- Omer Abraham
- Department of Biomolecular Sciences and Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot 761000, Israel
| | - Shifra Ben-Dor
- Bioinformatics Unit, Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot 761000, Israel
| | - Inna Goliand
- Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot 761000, Israel
| | - Rebecca Haffner-Krausz
- Department of Veterinary Resources, Weizmann Institute of Science, Rehovot 761000, Israel
| | | | - Andrew Kovalenko
- Department of Biomolecular Sciences and Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot 761000, Israel
| | - Avraham Yaron
- Department of Biomolecular Sciences and Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot 761000, Israel
| |
Collapse
|
108
|
Qin Q, Lu S, Guo Z, Li Z, Fu Q, Wang X, Wu T, Sun Y, Liu N, Zhang H, Zhao D, Cheng M. Discovery of novel indazole derivatives as second-generation TRK inhibitors. Eur J Med Chem 2024; 276:116640. [PMID: 39033612 DOI: 10.1016/j.ejmech.2024.116640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/28/2024] [Accepted: 06/28/2024] [Indexed: 07/23/2024]
Abstract
NTRK gene fusion leads to the activation of downstream signaling pathways, which is a oncogenic driver in various cancers. NTRK fusion-positive cancers can be treated with the first-generation TRK inhibitors, larotrectinib and entrectinib. Unfortunately, the patients eventually face the dilemma of no drugs available as the emergence of certain resistance mutations. The development of efficient and broad-spectrum second-generation TRK inhibitors is still of great significance. Here, we analyzed the binding modes of compounds 6, 10 with TRKA protein, respectively, a series of novel indazole TRK inhibitors were designed and synthesized using molecular hybridization strategy. Among them, the optimal compound B31 showed strong antiproliferative activities against Km-12, Ba/F3-TRKAG595R, and Ba/F3-TRKAG667C cell lines with IC50 values of 0.3, 4.7, and 9.9 nM, respectively. And the inhibitory effect against TRKAG667C (IC50 = 9.9 nM) was better than that of selitrectinib (IC50 = 113.1 nM). Further, compound B31 exhibited moderate kinase selectivity and excellent plasma stability (t1/2 > 480 min). In vivo pharmacokinetic studies in Sprague-Dawley rats showed that B31 had acceptable pharmacokinetic properties.
Collapse
Affiliation(s)
- Qiaohua Qin
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, PR China
| | - Shuyu Lu
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, PR China
| | - Zhiqiang Guo
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, PR China
| | - Zhuo Li
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, PR China
| | - Qinglin Fu
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, PR China
| | - Xin Wang
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, PR China
| | - Tianxiao Wu
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, PR China
| | - Yixiang Sun
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, PR China
| | - Nian Liu
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, PR China
| | - Haoyu Zhang
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, PR China
| | - Dongmei Zhao
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, PR China.
| | - Maosheng Cheng
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, PR China
| |
Collapse
|
109
|
Fonseca-Gomes J, Costa-Coelho T, Ferreira-Manso M, Inteiro-Oliveira S, Vaz SH, Alemãn-Serrano N, Atalaia-Barbacena H, Ribeiro-Rodrigues L, Ramalho RM, Pinto R, Vicente Miranda H, Tanqueiro SR, de Almeida-Borlido C, Ramalho MJ, Miranda-Lourenço C, Belo RF, Ferreira CB, Neves V, Rombo DM, Viais R, Umemori J, Martins IC, Jerónimo-Santos A, Caetano A, Manso N, Mäkinen P, Marttinen M, Takalo M, Bremang M, Pike I, Haapasalo A, Loureiro JA, Pereira MC, Santos NC, Outeiro TF, Castanho MARB, Fernandes A, Hiltunen M, Duarte CB, Castrén E, de Mendonça A, Sebastião AM, Rodrigues TM, Diógenes MJ. A small TAT-TrkB peptide prevents BDNF receptor cleavage and restores synaptic physiology in Alzheimer's disease. Mol Ther 2024; 32:3372-3401. [PMID: 39205389 PMCID: PMC11489560 DOI: 10.1016/j.ymthe.2024.08.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 08/01/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024] Open
Abstract
In Alzheimer's disease (AD), amyloid β (Aβ)-triggered cleavage of TrkB-FL impairs brain-derived neurotrophic factor (BDNF) signaling, thereby compromising neuronal survival, differentiation, and synaptic transmission and plasticity. Using cerebrospinal fluid and postmortem human brain samples, we show that TrkB-FL cleavage occurs from the early stages of the disease and increases as a function of pathology severity. To explore the therapeutic potential of this disease mechanism, we designed small TAT-fused peptides and screened their ability to prevent TrkB-FL receptor cleavage. Among these, a TAT-TrkB peptide with a lysine-lysine linker prevented TrkB-FL cleavage both in vitro and in vivo and rescued synaptic deficits induced by oligomeric Aβ in hippocampal slices. Furthermore, this TAT-TrkB peptide improved the cognitive performance, ameliorated synaptic plasticity deficits and prevented Tau pathology progression in vivo in the 5XFAD mouse model of AD. No evidence of liver or kidney toxicity was found. We provide proof-of-concept evidence for the efficacy and safety of this therapeutic strategy and anticipate that this TAT-TrkB peptide has the potential to be a disease-modifying drug that can prevent and/or reverse cognitive deficits in patients with AD.
Collapse
Affiliation(s)
- João Fonseca-Gomes
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal; Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal
| | - Tiago Costa-Coelho
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal; Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal; Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, 1649-003 Lisbon, Portugal
| | - Mafalda Ferreira-Manso
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal; Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal; Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, 1649-003 Lisbon, Portugal; Department of Pharmaceutical Sciences and Medicines, Faculdade de Farmácia, Universidade de Lisboa, 1649-003 Lisbon, Portugal
| | - Sara Inteiro-Oliveira
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal; Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal
| | - Sandra H Vaz
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal; Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal
| | - Nuno Alemãn-Serrano
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal; Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal
| | - Henrique Atalaia-Barbacena
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal; Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal
| | - Leonor Ribeiro-Rodrigues
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal; Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal
| | - Rita M Ramalho
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal; Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal
| | - Rui Pinto
- Laboratory of Systems Integration Pharmacology, Clinical, and Regulatory Science, Research Institute for Medicines (iMED.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, 1649-003 Lisbon, Portugal; Dr. Joaquim Chaves Laboratório de Análises Clínicas, 2790-224 Carnaxide, Portugal
| | - Hugo Vicente Miranda
- iNOVA4Health, NOVA Medical School, NMS, Universidade NOVA de Lisboa, 1169-056 Lisbon, Portugal
| | - Sara R Tanqueiro
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal; Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal
| | - Carolina de Almeida-Borlido
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal; Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal
| | - Maria João Ramalho
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology, and Energy, Faculty of Engineering, University of Porto, 4200-465 Porto, Portugal; ALiCE-Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, 4200-465 Porto, Portugal
| | - Catarina Miranda-Lourenço
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal; Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal
| | - Rita F Belo
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal; Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal
| | - Catarina B Ferreira
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal; Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal
| | - Vera Neves
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal
| | - Diogo M Rombo
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal; Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal
| | - Ricardo Viais
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal; Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal
| | - Juzoh Umemori
- Gene and Cell Technology, A.I. Virtanen Institute, University of Eastern Finland, Neulaniementie 2, 70211 Kuopio, Finland
| | - Ivo C Martins
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal
| | - André Jerónimo-Santos
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal; Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal
| | - António Caetano
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal; Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal
| | - Nuno Manso
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal
| | - Petra Mäkinen
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland
| | - Mikael Marttinen
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland; Structural and Computational Biology, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Mari Takalo
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland
| | - Michael Bremang
- Proteome Sciences, Coveham House, Downside Bridge Road, KT11 3EP Cobham, UK
| | - Ian Pike
- Proteome Sciences, Coveham House, Downside Bridge Road, KT11 3EP Cobham, UK
| | - Annakaisa Haapasalo
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211 Kuopio, Finland
| | - Joana A Loureiro
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology, and Energy, Faculty of Engineering, University of Porto, 4200-465 Porto, Portugal; ALiCE-Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, 4200-465 Porto, Portugal
| | - Maria Carmo Pereira
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology, and Energy, Faculty of Engineering, University of Porto, 4200-465 Porto, Portugal; ALiCE-Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, 4200-465 Porto, Portugal
| | - Nuno C Santos
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal
| | - Tiago F Outeiro
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, 37073 Göttingen, Germany; Max Planck Institute for Experimental Medicine, 37075 Göttingen, Germany; Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, UK; German Center for Neurodegenerative Diseases (DZNE), 37075 Göttingen, Germany
| | - Miguel A R B Castanho
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal
| | - Adelaide Fernandes
- Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, 1649-003 Lisbon, Portugal; Department of Pharmaceutical Sciences and Medicines, Faculdade de Farmácia, Universidade de Lisboa, 1649-003 Lisbon, Portugal
| | - Mikko Hiltunen
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland
| | - Carlos B Duarte
- CNC - Center for Neuroscience and Cell Biology and Department of Life Sciences, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Eero Castrén
- Neuroscience Center, University of Helsinki, 00014 Helsinki, Finland
| | - Alexandre de Mendonça
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal
| | - Ana M Sebastião
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal; Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal
| | - Tiago M Rodrigues
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal; Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal.
| | - Maria José Diógenes
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal; Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal.
| |
Collapse
|
110
|
Mirzahosseini G, Ishrat T. Modulation of p75 neurotrophin receptor mitigates brain damage following ischemic stroke in mice. Neural Regen Res 2024; 19:2093-2094. [PMID: 38488534 PMCID: PMC11034603 DOI: 10.4103/1673-5374.392860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/18/2023] [Accepted: 12/06/2023] [Indexed: 04/24/2024] Open
Affiliation(s)
- Golnoush Mirzahosseini
- Department of Anatomy and Neurobiology, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN, USA
- Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN, USA
| | - Tauheed Ishrat
- Department of Anatomy and Neurobiology, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN, USA
- Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN, USA
- Neuroscience Institute, The University of Tennessee Health Science Center, Memphis, TN, USA
| |
Collapse
|
111
|
Ebrahimi P, Davoudi E, Sadeghian R, Zadeh AZ, Razmi E, Heidari R, Morowvat MH, Sadeghian I. In vivo and ex vivo gene therapy for neurodegenerative diseases: a promise for disease modification. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:7501-7530. [PMID: 38775852 DOI: 10.1007/s00210-024-03141-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 05/01/2024] [Indexed: 10/04/2024]
Abstract
Neurodegenerative diseases (NDDs), including AD, PD, HD, and ALS, represent a growing public health concern linked to aging and lifestyle factors, characterized by progressive nervous system damage leading to motor and cognitive deficits. Current therapeutics offer only symptomatic management, highlighting the urgent need for disease-modifying treatments. Gene therapy has emerged as a promising approach, targeting the underlying pathology of diseases with diverse strategies including gene replacement, gene silencing, and gene editing. This innovative therapeutic approach involves introducing functional genetic material to combat disease mechanisms, potentially offering long-term efficacy and disease modification. With advancements in genomics, structural biology, and gene editing tools such as CRISPR/Cas9, gene therapy holds significant promise for addressing the root causes of NDDs. Significant progress in preclinical and clinical studies has demonstrated the potential of in vivo and ex vivo gene therapy to treat various NDDs, offering a versatile and precise approach in comparison to conventional treatments. The current review describes various gene therapy approaches employed in preclinical and clinical studies for the treatment of NDDs, including AD, PD, HD, and ALS, and addresses some of the key translational challenges in this therapeutic approach.
Collapse
Affiliation(s)
- Pouya Ebrahimi
- Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Elham Davoudi
- Department of Biomedical and Nutritional Sciences, University of Massachusetts Lowell, Lowell, MA, USA
| | | | - Amin Zaki Zadeh
- Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Emran Razmi
- Arak University of Medical Sciences, Arak, Iran
| | - Reza Heidari
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Hossein Morowvat
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Issa Sadeghian
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
112
|
Giesler LP, Mychasiuk R, Shultz SR, McDonald SJ. BDNF: New Views of an Old Player in Traumatic Brain Injury. Neuroscientist 2024; 30:560-573. [PMID: 37067029 PMCID: PMC11423547 DOI: 10.1177/10738584231164918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
Traumatic brain injury is a common health problem affecting millions of people each year. BDNF has been investigated in the context of traumatic brain injury due to its crucial role in maintaining brain homeostasis. Val66Met is a functional single-nucleotide polymorphism that results in a valine-to-methionine amino acid substitution at codon 66 in the BDNF prodomain, which ultimately reduces secretion of BDNF. Here, we review experimental animal models as well as clinical studies investigating the role of the Val66Met single-nucleotide polymorphism in traumatic brain injury outcomes, including cognitive function, motor function, neuropsychiatric symptoms, and nociception. We also review studies investigating the role of BDNF on traumatic brain injury pathophysiology as well as circulating BDNF as a biomarker of traumatic brain injury.
Collapse
Affiliation(s)
| | - Richelle Mychasiuk
- Department of Neuroscience, Monash University, Melbourne, Australia
- Department of Neurology, The Alfred Hospital, Melbourne, Australia
| | - Sandy R. Shultz
- Department of Neuroscience, Monash University, Melbourne, Australia
- Department of Neurology, The Alfred Hospital, Melbourne, Australia
| | - Stuart J. McDonald
- Department of Neuroscience, Monash University, Melbourne, Australia
- Department of Neurology, The Alfred Hospital, Melbourne, Australia
| |
Collapse
|
113
|
Leung WKC, Yau SY, Yang Y, Kwok AWL, Wong EML, Cheung JKM, Shum EWC, Lam SC, Suen LKP. Effects of exercise interventions on brain-derived neurotrophic factor levels in overweight and obesity: A systematic review and meta-analysis. J Exerc Sci Fit 2024; 22:278-287. [PMID: 38618555 PMCID: PMC11015502 DOI: 10.1016/j.jesf.2024.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 04/02/2024] [Accepted: 04/02/2024] [Indexed: 04/16/2024] Open
Abstract
Background /Objective. An explosion in global obesity epidemic poses threats to the healthcare system by provoking risks of many debilitating diseases, including cognitive dysfunction. Physical activity has been shown to alleviate the deleterious effects of obesity-associated cognitive deficits across the lifespan. Given the strong neuroprotective role of brain-derived neurotrophic factor (BDNF) and exercise training as a known modulator for its elevation, this systematic review sought to examine the strength of the association between exercise and BDNF levels in healthy people with overweight and obesity. Methods Six electronic databases (PubMed, MEDLINE, EMBASE, Web of Science, Ovid Nursing Database, and SPORTDiscus) were searched from their inceptions through December 2022. The primary outcome of interest was BDNF levels. Interventional studies (randomized and quasi-experimental) with English full text available were included. Risk of bias of the included studies was assessed using the Physiotherapy Evidence Database Scale. Data were extracted for meta-analyses by random-effects models. Results Thirteen studies (n = 750), of which 69.2% (9/13) had low risk of bias, were included. In the meta-analysis, exercise interventions had no significant effect on resting BDNF levels (standardized mean difference: -0.30, 95% CI -0.80 to 0.21, P = 0.25). Subgroup analyses also indicated no effects of age and types of control groups being compared on moderating the association. Conclusion To further inform the role of BDNF in obesity-related cognitive functioning, rigorous studies with larger samples of participants and raw data available were imperatively deserved.
Collapse
Affiliation(s)
- Wilson KC. Leung
- School of Nursing, Tung Wah College, 16/F, Ma Kam Chan Memorial Building, 31 Wylie Road, Kowloon, Hong Kong SAR, China
- Department of Sports Science and Physical Education, Faculty of Education, The Chinese University of Hong Kong, New Territories, Hong Kong SAR, China
| | - Suk-yu Yau
- Department of Rehabilitation Sciences, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - Yijian Yang
- Department of Sports Science and Physical Education, Faculty of Education, The Chinese University of Hong Kong, New Territories, Hong Kong SAR, China
| | - Anthony WL. Kwok
- School of Medical and Health Sciences, Tung Wah College, 10/F, Ma Kam Chan Memorial Building, 31 Wylie Road, Kowloon, Hong Kong SAR, China
| | - Eliza ML. Wong
- School of Nursing, Tung Wah College, 16/F, Ma Kam Chan Memorial Building, 31 Wylie Road, Kowloon, Hong Kong SAR, China
| | - Jasmine KM. Cheung
- School of Nursing, Tung Wah College, 16/F, Ma Kam Chan Memorial Building, 31 Wylie Road, Kowloon, Hong Kong SAR, China
| | - Edward WC. Shum
- School of Nursing, Tung Wah College, 16/F, Ma Kam Chan Memorial Building, 31 Wylie Road, Kowloon, Hong Kong SAR, China
| | - Simon C. Lam
- School of Nursing, Tung Wah College, 16/F, Ma Kam Chan Memorial Building, 31 Wylie Road, Kowloon, Hong Kong SAR, China
| | - Lorna KP. Suen
- School of Nursing, Tung Wah College, 16/F, Ma Kam Chan Memorial Building, 31 Wylie Road, Kowloon, Hong Kong SAR, China
| |
Collapse
|
114
|
Tigner TJ, Dampf G, Tucker A, Huang YC, Jagrit V, Clevenger AJ, Mohapatra A, Raghavan SA, Dulin JN, Alge DL. Clickable Granular Hydrogel Scaffolds for Delivery of Neural Progenitor Cells to Sites of Spinal Cord Injury. Adv Healthc Mater 2024; 13:e2303912. [PMID: 38470994 PMCID: PMC11390979 DOI: 10.1002/adhm.202303912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 02/27/2024] [Indexed: 03/14/2024]
Abstract
Spinal cord injury (SCI) is a serious condition with limited treatment options. Neural progenitor cell (NPC) transplantation is a promising treatment option, and the identification of novel biomaterial scaffolds that support NPC engraftment and therapeutic activity is a top research priority. The objective of this study is to evaluate in situ assembled poly (ethylene glycol) (PEG)-based granular hydrogels for NPC delivery in a murine model of SCI. Microgel precursors are synthesized by using thiol-norbornene click chemistry to react four-armed PEG-amide-norbornene with enzymatically degradable and cell adhesive peptides. Unreacted norbornene groups are utilized for in situ assembly into scaffolds using a PEG-di-tetrazine linker. The granular hydrogel scaffolds exhibit good biocompatibility and do not adversely affect the inflammatory response after SCI. Moreover, when used to deliver NPCs, the granular hydrogel scaffolds supported NPC engraftment, do not adversely affect the immune response to the NPC grafts, and successfully support graft differentiation toward neuronal or astrocytic lineages as well as axonal extension into the host tissue. Collectively, these data establish PEG-based granular hydrogel scaffolds as a suitable biomaterial platform for NPC delivery and justify further testing, particularly in the context of more severe SCI.
Collapse
Affiliation(s)
- Thomas J Tigner
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, 77843-3120, USA
| | - Gabrielle Dampf
- Department of Biology, Texas A&M University, College Station, TX, 77843-3258, USA
| | - Ashley Tucker
- Department of Biology, Texas A&M University, College Station, TX, 77843-3258, USA
| | - Yu-Chi Huang
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, 77843-3120, USA
| | - Vipin Jagrit
- Department of Biology, Texas A&M University, College Station, TX, 77843-3258, USA
| | - Abigail J Clevenger
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, 77843-3120, USA
| | - Arpita Mohapatra
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, 77843-3120, USA
| | - Shreya A Raghavan
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, 77843-3120, USA
| | - Jennifer N Dulin
- Department of Biology, Texas A&M University, College Station, TX, 77843-3258, USA
- Texas A&M Institute for Neuroscience, Texas A&M University, College Station, TX, 77843-3474, USA
| | - Daniel L Alge
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, 77843-3120, USA
- Department of Materials Science and Engineering, Texas A&M University, College Station, TX, 77843-3003, USA
| |
Collapse
|
115
|
Sadanandan J, Sathyanesan M, Newton SS. Aging alters the expression of trophic factors and tight junction proteins in the mouse choroid plexus. Fluids Barriers CNS 2024; 21:77. [PMID: 39334352 PMCID: PMC11438291 DOI: 10.1186/s12987-024-00574-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 09/04/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND The choroid plexus (CP) is an understudied tissue in the central nervous system and is primarily implicated in cerebrospinal fluid (CSF) production. CP also produces numerous neurotrophic factors (NTF) which circulate to different brain regions. Regulation of NTFs in the CP during natural aging is largely unknown. Here, we investigated the age and gender-specific transcription of NTFs along with the changes in the tight junctional proteins (TJPs) and the water channel protein Aquaporin (AQP1). METHODS Male and female mice were used for our study. Age-related transcriptional changes were analyzed using quantitative PCR at three different time points: mature adult, middle-aged, and aged. Transcriptional changes during aging were further confirmed with digital droplet PCR. Additionally, we used immunohistochemical analysis (IHC) for the evaluation of in vivo protein expression. We further investigated the cellular phenotype of these NTFS, TJP, and water channel proteins in the mouse CP by co-labeling them with the classical vascular marker, Isolectin B4, and epithelial cell marker, Plectin. RESULTS Aging significantly altered NTF gene expression in the CP. Brain-derived neurotrophic factor (BDNF), Midkine (MDK), VGF, Insulin-like growth factor (IGF1), IGF2, Klotho (KL), Erythropoietin (EPO), and its receptor (EPOR) were reduced in the aged CP of males and females. Vascular endothelial growth factor (VEGF) transcription was gender-specific; in males, gene expression was unchanged in the aged CP, while females showed an age-dependent reduction. Age-dependent changes in VEGF localization were evident, from vasculature to epithelial cells. IGF2 and klotho localized in the basolateral membrane of the CP and showed an age-dependent reduction in epithelial cells. Water channel protein AQP1 localized in the tip of epithelial cells and showed an age-related reduction in mRNA and protein levels. TJP's JAM, CLAUDIN1, CLAUDIN2 and CLAUDIN5 were reduced in aged mice. CONCLUSIONS Our study highlights transcriptional level changes in the CP during aging. The age-related transcriptional changes exhibit similarities as well as gene-specific differences in the CP of males and females. Altered transcription of the water channel protein AQP1 and TJPs could be involved in reduced CSF production during aging. Importantly, reduction in the neurotrophic factors and longevity factor Klotho can play a role in regulating brain aging.
Collapse
Affiliation(s)
- Jayanarayanan Sadanandan
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD, 57069, USA
| | - Monica Sathyanesan
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD, 57069, USA
| | - Samuel S Newton
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD, 57069, USA.
| |
Collapse
|
116
|
Chang X, He Y, Liu Y, Fei J, Qin X, Song B, Yu Q, Shi M, Guo D, Hui L, Chen J, Wang A, Xu T, He J, Zhang Y, Zhu Z. Serum brain derived neurotrophic factor levels and post-stroke depression in ischemic stroke patients. J Affect Disord 2024; 361:341-347. [PMID: 38897298 DOI: 10.1016/j.jad.2024.06.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 06/04/2024] [Accepted: 06/15/2024] [Indexed: 06/21/2024]
Abstract
BACKGROUND Brain-derived neurotrophic factor (BDNF) is crucial for neuronal survival and may be implicated in the pathophysiological process of depression. This study aimed to prospectively investigate the association between serum BDNF and post-stroke depression (PSD) at 3 months in a multicenter cohort study. METHODS A total of 611 ischemic stroke patients with serum BDNF measurements from the China Antihypertensive Trial in Acute Ischemic Stroke were included in this analysis. We used the 24-item Hamilton Depression Rating Scale to assess depression status at 3 months after ischemic stroke, and PSD was defined as a score of ≥8. RESULTS Baseline serum BDNF was inversely associated with the risk of depression after ischemic stroke. The multivariable-adjusted odds ratio of PSD for the highest tertile of BDNF was 0.53 (95 % confidence interval, 0.34-0.82; P for trend = 0.004) compared with the lowest tertile. Multivariable-adjusted spline regression model also showed a linear does-response association between serum BDNF levels and PSD at 3 months (P for linearity = 0.006). In addition, adding serum BDNF to conventional risk factors significantly improved the risk reclassification of PSD (net reclassification improvement: 16.98 %, P = 0.039; integrated discrimination index: 0.93 %, P = 0.026). LIMITATIONS All patients in this study were Chinese, so our findings should be applied to other populations cautiously. CONCLUSIONS Higher serum BDNF levels at baseline were significantly associated with a decreased risk of PSD at 3 months, suggesting that BDNF might be a valuable predictive biomarker and potential therapeutic target for PSD among ischemic stroke patients.
Collapse
Affiliation(s)
- Xinyue Chang
- Department of Epidemiology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Major Chronic Non-communicable Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou, China
| | - Yu He
- Department of Epidemiology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Major Chronic Non-communicable Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou, China
| | - Yi Liu
- Department of Epidemiology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Major Chronic Non-communicable Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou, China
| | - Jiawen Fei
- Department of Epidemiology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Major Chronic Non-communicable Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou, China
| | - Xiaoli Qin
- Department of Epidemiology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Major Chronic Non-communicable Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou, China
| | - Beiping Song
- Department of Epidemiology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Major Chronic Non-communicable Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou, China
| | - Quan Yu
- Department of Epidemiology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Major Chronic Non-communicable Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou, China
| | - Mengyao Shi
- Department of Epidemiology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Major Chronic Non-communicable Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou, China; Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA, United States of America
| | - Daoxia Guo
- Department of Epidemiology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Major Chronic Non-communicable Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou, China
| | - Li Hui
- Research Center of Biological Psychiatry, The Affiliated Guangji Hospital of Soochow University, Suzhou, China
| | - Jing Chen
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA, United States of America; Department of Medicine, Tulane University School of Medicine, New Orleans, LA, USA
| | - Aili Wang
- Department of Epidemiology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Major Chronic Non-communicable Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou, China
| | - Tan Xu
- Department of Epidemiology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Major Chronic Non-communicable Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou, China
| | - Jiang He
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA, United States of America; Department of Medicine, Tulane University School of Medicine, New Orleans, LA, USA
| | - Yonghong Zhang
- Department of Epidemiology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Major Chronic Non-communicable Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou, China
| | - Zhengbao Zhu
- Department of Epidemiology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Major Chronic Non-communicable Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou, China; Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA, United States of America.
| |
Collapse
|
117
|
Pokharel PV, Newchurch AM, Overby SC, Spease CA, Darzi LG, Kraemer BR. LM11a-31 Inhibits p75 Neurotrophin Receptor (p75 NTR ) Cleavage and is Neuroprotective in a Cell Culture Model of Parkinson's Disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.10.612299. [PMID: 39314373 PMCID: PMC11419115 DOI: 10.1101/2024.09.10.612299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
The p75 Neurotrophin Receptor (p75 NTR ) is a multifunctional transmembrane protein that mediates neuronal responses to pathological conditions in specific regions of the nervous system. In many biological contexts, p75 NTR signaling is initiated through sequential cleavage of the receptor by α- and γ-secretases, which releases receptor fragments for downstream signaling. Our previous work demonstrated that proteolytic processing of p75 NTR in this manner is stimulated by oxidative stress in Lund Human Mesencephalic (LUHMES) cells, a dopaminergic neuronal cell line derived from human mesencephalic tissue. Considering the vulnerability of dopaminergic neurons in the ventral mesencephalon to oxidative stress and neurodegeneration associated with Parkinson's disease (PD), we investigated the role of this signaling cascade in neurodegeneration and explored cellular processes that govern oxidative stress-induced p75 NTR signaling. In the present study, we provide evidence that oxidative stress induces cleavage of p75 NTR by promoting c-Jun N-terminal Kinase (JNK)-dependent internalization of p75 NTR from the cell surface. This activation of p75 NTR signaling is counteracted by tropomyosin-related kinase (Trk) receptor signaling; however, oxidative stress leads to Trk receptor downregulation, thereby enhancing p75 NTR processing. Importantly, we demonstrate that this pathway can be inhibited by LM11a-31, a small molecule modulator of p75 NTR , thereby conferring protection against neurodegeneration. Treatment with LM11a-31 significantly reduced p75 NTR cleavage and neuronal death associated with oxidative stress. These findings reveal novel mechanisms underlying activation of p75 NTR in response to oxidative stress, underscore a key role for p75 NTR in dopaminergic neurodegeneration, and highlight p75 NTR as a potential therapeutic target for reducing neurodegeneration in PD.
Collapse
|
118
|
Fursa GA, Andretsova SS, Shishkina VS, Voronova AD, Karsuntseva EK, Chadin AV, Reshetov IV, Stepanova OV, Chekhonin VP. The Use of Neurotrophic Factors as a Promising Strategy for the Treatment of Neurodegenerative Diseases (Review). Bull Exp Biol Med 2024:10.1007/s10517-024-06218-5. [PMID: 39266924 DOI: 10.1007/s10517-024-06218-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Indexed: 09/14/2024]
Abstract
The review considers the use of exogenous neurotrophic factors in the treatment of neurodegenerative diseases, such as Alzheimer's disease, Parkinson's disease, multiple sclerosis, and others. This group of diseases is associated with the death of neurons and dysfunction of the nervous tissue. Currently, there is no effective therapy for neurodegenerative diseases, and their treatment remains a serious problem of modern medicine. A promising strategy is the use of exogenous neurotrophic factors. Targeted delivery of these factors to the nervous tissue can improve survival of neurons during the development of neurodegenerative processes and ensure neuroplasticity. There are methods of direct injection of neurotrophic factors into the nervous tissue, delivery using viral vectors, as well as the use of gene cell products. The effectiveness of these approaches has been studied in numerous experimental works and in a number of clinical trials. Further research in this area could provide the basis for the creation of an alternative treatment for neurodegenerative diseases.
Collapse
Affiliation(s)
- G A Fursa
- V. Serbsky National Medical Research Centre for Psychiatry and Narcology, Ministry of Health of the Russian Federation, Moscow, Russia.
- Pirogov Russian National Research Medical University, Moscow, Russia.
- National Medical Research Centre of Cardiology named after academician E. I. Chazov, Ministry of Health of the Russian Federation, Moscow, Russia.
| | - S S Andretsova
- V. Serbsky National Medical Research Centre for Psychiatry and Narcology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - V S Shishkina
- V. Serbsky National Medical Research Centre for Psychiatry and Narcology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - A D Voronova
- V. Serbsky National Medical Research Centre for Psychiatry and Narcology, Ministry of Health of the Russian Federation, Moscow, Russia
- National Medical Research Centre of Cardiology named after academician E. I. Chazov, Ministry of Health of the Russian Federation, Moscow, Russia
| | - E K Karsuntseva
- V. Serbsky National Medical Research Centre for Psychiatry and Narcology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - A V Chadin
- V. Serbsky National Medical Research Centre for Psychiatry and Narcology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - I V Reshetov
- University Clinical Hospital No. 1, I. M. Sechenov First Moscow State Medical University, Ministry of Health of the Russian Federation (Sechenov University), Moscow, Russia
- Academy of Postgraduate Education, Federal Research and Clinical Center of Specialized Types of Health Care and Medical Technology of the Federal Medical and Biological Agency, Moscow, Russia
| | - O V Stepanova
- V. Serbsky National Medical Research Centre for Psychiatry and Narcology, Ministry of Health of the Russian Federation, Moscow, Russia
- National Medical Research Centre of Cardiology named after academician E. I. Chazov, Ministry of Health of the Russian Federation, Moscow, Russia
| | - V P Chekhonin
- V. Serbsky National Medical Research Centre for Psychiatry and Narcology, Ministry of Health of the Russian Federation, Moscow, Russia
- Pirogov Russian National Research Medical University, Moscow, Russia
| |
Collapse
|
119
|
Tang S, Xing W, Yan J, Wang L, Li Z, Wang Y, Gu N, Sun X. TREM2 alleviates long-term cognitive dysfunction after subarachnoid hemorrhage in mice by attenuating hippocampal neuroinflammation via PI3K/Akt signaling pathway. Brain Res 2024; 1846:149235. [PMID: 39270995 DOI: 10.1016/j.brainres.2024.149235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 09/03/2024] [Accepted: 09/08/2024] [Indexed: 09/15/2024]
Abstract
Subarachnoid hemorrhage (SAH) often leads to long-term cognitive deficits in patients, particularly due to injury to brain regions such as the hippocampus. This study aims to investigate the role of the triggering receptor expressed on myeloid cells 2 (TREM2) in mitigating hippocampal injury and associated cognitive impairments following SAH. To explore the protective effects of TREM2, we utilized the TREM2 agonist COG1410 to upregulate TREM2 expression and employed TREM2 knockout (KO) mice to verify the necessity of TREM2 for this protective role. The study further examined the involvement of the PI3K/Akt signaling pathway in TREM2-mediated neuroprotection. Our findings indicate that the upregulation of TREM2 significantly alleviated long-term cognitive deficits and promoted the recovery of hippocampal neural activity post-SAH. The neuroprotective effects were linked to reduced microglial activation and decreased secretion of inflammatory factors within the hippocampus. In contrast, TREM2 KO mice did not exhibit these protective effects. Furthermore, inhibition of the PI3K/Akt pathway also diminished these protective effects of TREM2 upregulation and worsened cognitive outcomes. In conclusion, TREM2 upregulation mitigates long-term cognitive dysfunction following SAH by attenuating hippocampal neuroinflammation via the PI3K/Akt signaling pathway. These findings suggest that TREM2 could be a potential therapeutic target for improving cognitive outcomes after SAH.
Collapse
Affiliation(s)
- Shuang Tang
- Department of Neurosurgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Cerebrovascular Disease Center, Suining Central Hospital, Suining, Chongqing, China
| | - Wenli Xing
- Department of Neurosurgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Cerebrovascular Disease Center, Suining Central Hospital, Suining, Chongqing, China
| | - Jin Yan
- Department of Neurosurgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Lin Wang
- Department of Neurosurgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Department of Neurosurgery, Nanchong Central Hospital, The Second Clinical Medical College of North Sichuan Medical College, Nanchong, China
| | - Zhao Li
- Department of Neurosurgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Department of Neurosurgery, Chengdu Integrated TCM & Western Medicine Hospital, Chengdu, China
| | - Yingwen Wang
- Department of Neurosurgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Nina Gu
- Department of Neurosurgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaochuan Sun
- Department of Neurosurgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
120
|
Di Carlo E, Sorrentino C. The multifaceted role of the stroma in the healthy prostate and prostate cancer. J Transl Med 2024; 22:825. [PMID: 39238004 PMCID: PMC11378418 DOI: 10.1186/s12967-024-05564-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 08/01/2024] [Indexed: 09/07/2024] Open
Abstract
Prostate cancer (PC) is an age-related disease and represents, after lung cancer, the second cause of cancer death in males worldwide. Mortality is due to the metastatic disease, which mainly involves the bones, lungs, and liver. In the last 20 years, the incidence of metastatic PC has increased in Western Countries, and a further increase is expected in the near future, due to the population ageing. Current treatment options, including state of the art cancer immunotherapy, need to be more effective to achieve long-term disease control. The most significant anatomical barrier to overcome to improve the effectiveness of current and newly designed drug strategies consists of the prostatic stroma, in particular the fibroblasts and the extracellular matrix, which are the most abundant components of both the normal and tumor prostatic microenvironment. By weaving a complex communication network with the glandular epithelium, the immune cells, the microbiota, the endothelium, and the nerves, in the healthy prostatic microenvironment, the fibroblasts and the extracellular matrix support organ development and homeostasis. However, during inflammation, ageing and prostate tumorigenesis, they undergo dramatic phenotypic and genotypic changes, which impact on tumor growth and progression and on the development of therapy resistance. Here, we focus on the characteristics and functions of the prostate associated fibroblasts and of the extracellular matrix in health and cancer. We emphasize their roles in shaping tumor behavior and the feasibility of manipulating and/or targeting these stromal components to overcome the limitations of current treatments and to improve precision medicine's chances of success.
Collapse
Affiliation(s)
- Emma Di Carlo
- Department of Medicine and Sciences of Aging, "G. d'Annunzio" University of Chieti- Pescara, Via dei Vestini, Chieti, 66100, Italy.
- Anatomic Pathology and Immuno-Oncology Unit, Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, Via L. Polacchi 11, Chieti, 66100, Italy.
| | - Carlo Sorrentino
- Department of Medicine and Sciences of Aging, "G. d'Annunzio" University of Chieti- Pescara, Via dei Vestini, Chieti, 66100, Italy
- Anatomic Pathology and Immuno-Oncology Unit, Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, Via L. Polacchi 11, Chieti, 66100, Italy
| |
Collapse
|
121
|
Zota I, Chanoumidou K, Gravanis A, Charalampopoulos I. Stimulating myelin restoration with BDNF: a promising therapeutic approach for Alzheimer's disease. Front Cell Neurosci 2024; 18:1422130. [PMID: 39285941 PMCID: PMC11402763 DOI: 10.3389/fncel.2024.1422130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 08/12/2024] [Indexed: 09/19/2024] Open
Abstract
Alzheimer's Disease (AD) is a chronic neurodegenerative disorder constituting the most common form of dementia (60%-70% of cases). Although AD presents majorly a neurodegenerative pathology, recent clinical evidence highlights myelin impairment as a key factor in disease pathogenesis. The lack of preventive or restorative treatment is emphasizing the need to develop novel therapeutic approaches targeting to the causes of the disease. Recent studies in animals and patients have highlighted the loss of myelination of the neuronal axons as an extremely aggravating factor in AD, in addition to the formation of amyloid plaques and neurofibrillary tangles that are to date the main pathological hallmarks of the disease. Myelin breakdown represents an early stage event in AD. However, it is still unclear whether myelin loss is attributed only to exogenous factors like inflammatory processes of the tissue or to impaired oligodendrogenesis as well. Neurotrophic factors are well established protective molecules under many pathological conditions of the neural tissue, contributing also to proper myelination. Due to their inability to be used as drugs, many research efforts are focused on substituting neurotrophic activity with small molecules. Our research team has recently developed novel micromolecular synthetic neurotrophin mimetics (MNTs), selectively acting on neurotrophin receptors, and thus offering a unique opportunity for innovative therapies against neurodegenerative diseases. These small sized, lipophilic molecules address the underlying biological effect of these diseases (neuroprotective action), but also they exert significant neurogenic actions inducing neuronal replacement of the disease areas. One of the significant neurotrophin molecules in the Central Nervous System is Brain-Derived-Neurotrophin-Factor (BDNF). BDNF is a neurotrophin that not only supports neuroprotection and adult neurogenesis, but also mediates pro-myelinating effects in the CNS. BDNF binds with high-affinity on the TrkB neurotrophin receptor and enhances myelination by increasing the density of oligodendrocyte progenitor cells (OPCs) and playing an important role in CNS myelination. Conclusively, in the present review, we discuss the myelin pathophysiology in Alzheimer's Diseases, as well as the role of neurotrophins, and specifically BDNF, in myelin maintenance and restoration, revealing its valuable therapeutic potential against AD.
Collapse
Affiliation(s)
- Ioanna Zota
- Department of Pharmacology, Medical School, University of Crete, Heraklion, Greece
- Institute of Molecular Biology and Biotechnology, Foundation of Research and Technology-Hellas (IMBB-FORTH), Heraklion, Greece
| | - Konstantina Chanoumidou
- Department of Pharmacology, Medical School, University of Crete, Heraklion, Greece
- Institute of Molecular Biology and Biotechnology, Foundation of Research and Technology-Hellas (IMBB-FORTH), Heraklion, Greece
| | - Achille Gravanis
- Department of Pharmacology, Medical School, University of Crete, Heraklion, Greece
- Institute of Molecular Biology and Biotechnology, Foundation of Research and Technology-Hellas (IMBB-FORTH), Heraklion, Greece
| | - Ioannis Charalampopoulos
- Department of Pharmacology, Medical School, University of Crete, Heraklion, Greece
- Institute of Molecular Biology and Biotechnology, Foundation of Research and Technology-Hellas (IMBB-FORTH), Heraklion, Greece
| |
Collapse
|
122
|
Napoli D, Orsini N, Salamone G, Calvello MA, Capsoni S, Cattaneo A, Strettoi E. Human NGF "Painless" Ocular Delivery for Retinitis Pigmentosa: An In Vivo Study. eNeuro 2024; 11:ENEURO.0096-24.2024. [PMID: 39293937 PMCID: PMC11412101 DOI: 10.1523/eneuro.0096-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/29/2024] [Accepted: 06/03/2024] [Indexed: 09/20/2024] Open
Abstract
Retinitis pigmentosa (RP) is a family of genetically heterogeneous diseases still without a cure. Despite the causative genetic mutation typically not expressed in cone photoreceptors, these cells inevitably degenerate following the primary death of rods, causing blindness. The reasons for the "bystander" degeneration of cones are presently unknown but decrement of survival factors, oxidative stress, and inflammation all play a role. Targeting these generalized biological processes represents a strategy to develop mutation-agnostic therapies for saving vision in large populations of RP individuals. A classical method to support neuronal survival is by employing neurotrophic factors, such as NGF. This study uses painless human NGF (hNGFp), a TrkA receptor-biased variant of the native molecule with lower affinity for nociceptors and limited activity as a pain inducer; the molecule has identical neurotrophic power of the native form but a reduced affinity for the p75NTR receptors, known to trigger apoptosis. hNGFp has a recognized activity on brain microglial cells, which are induced to a phenotype switch from a highly activated to a more homeostatic configuration. hNGFp was administered to RP-like mice in vivo with the aim of decreasing retinal inflammation and also providing retinal neuroprotection. However, the ability of this treatment to counteract the bystander degeneration of cones remained limited.
Collapse
Affiliation(s)
- Debora Napoli
- CNR Neuroscience Institute, Pisa 56124, Italy
- Regional Doctorate School in Neuroscience, University of Florence, Italy
| | - Noemi Orsini
- CNR Neuroscience Institute, Pisa 56124, Italy
- Regional Doctorate School in Neuroscience, University of Florence, Italy
| | | | | | - Simona Capsoni
- Section of Human Physiology, Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara 44121, Italy
| | - Antonino Cattaneo
- Bio@SNS Laboratory of Biology, Scuola Normale Superiore, Pisa, Italy
- Rita Levi-Montalcini European Brain Research Institute (EBRI), Roma 00161, Italy
| | | |
Collapse
|
123
|
Asuquo J, Blavo C, Bhatta R. Secretory Carcinoma of the Philtrum of the Upper Lip: A Case Study. Cureus 2024; 16:e68823. [PMID: 39371716 PMCID: PMC11456339 DOI: 10.7759/cureus.68823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/04/2024] [Indexed: 10/08/2024] Open
Abstract
The parotid, submandibular, and sublingual salivary glands are the major salivary glands in the mouth. Cancers that arise in these glands are relatively uncommon, usually benign, and rarely metastasize. We present a unique case of a 17-year-old male diagnosed with high-grade secretory carcinoma of the salivary gland that was generally asymptomatic except for a persistent rash. The patient reported no significant past medical, family, or social history. A multidisciplinary team efficiently diagnosed and treated the cancer with histopathology, MRI, tumor excision, lymphadenectomy, and adjuvant treatment. Despite the rarity of the cancer, which was found in a high-grade regionally advanced disease, in an uncharacteristically young patient, the patient was effectively treated with adjuvant chemoradiotherapy without treatment-related complications.
Collapse
Affiliation(s)
- Jessica Asuquo
- Department of Clinical Education, Nova Southeastern University Dr. Kiran C. Patel College of Osteopathic Medicine, Davie, USA
| | - Cyril Blavo
- Department of Preclinical Education, Nova Southeastern University Dr. Kiran C. Patel College of Osteopathic Medicine, Davie, USA
| | - Rabi Bhatta
- Internal Medicine, Southwest Healthcare Medical Education Consortium, Temecula, USA
| |
Collapse
|
124
|
Anyachor CP, Orish CN, Ezejiofor AN, Cirovic A, Cirovic A, Dooka BD, Ezealisiji K, Orisakwe OE. Silica nanoparticles (SiNPs) derived from melon seed husk ameliorate Ni/Al mixture-mediated cognitive impairment in rats. J Med Life 2024; 17:856-867. [PMID: 39628974 PMCID: PMC11611061 DOI: 10.25122/jml-2024-0019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 03/29/2024] [Indexed: 12/06/2024] Open
Abstract
This study evaluated the protective effects of silica nanoparticles (SiNPs) derived from melon seed husk ash against the neurotoxic effects of common environmental pollutants, aluminum (Al), nickel (Ni), and their combination in Wistar rats. Ninety-one male Sprague Dawley rats (220-250 g; 6-8 weeks old) were divided into 13 experimental groups. Key findings revealed that exposure to nickel, aluminum, or their combination significantly impaired spatial learning and memory, as evidenced by prolonged latency periods in treated rats. Treatment with SiNPs from melon seed husks reduced these latency periods. Increased Ni and Al levels in the frontal cortex after Ni/Al mixture exposure were mitigated by SiNPs. SiNPs also countered the reduction in iron levels caused by exposure to nickel, aluminum, and the mixture of nickel and aluminum. Moreover, SiNPs ameliorated oxidative stress by reducing MDA levels and increasing antioxidant enzyme activities. SiNPs treatment caused improved nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF) levels and reversed elevated Aβ-42 and cyclooxygenase-2 levels, highlighting their potential neuroprotective effects. Our results demonstrated the neuroprotective effects of SiNPs from melon seed husks by attenuating metal-induced oxidative stress and inflammation, though they did not enhance cortical cholinergic activity in rats.
Collapse
Affiliation(s)
- Chidinma Promise Anyachor
- African Centre of Excellence for Public Health and Toxicological Research (ACE-PUTOR), University of Port Harcourt, Choba, Port Harcourt, Nigeria
| | - Chinna Nneka Orish
- Department of Anatomy, Faculty of Basic Medical Sciences, College of Health Sciences, University of Port Harcourt, Choba, Port Harcourt, Nigeria
| | - Anthonet Ndidi Ezejiofor
- African Centre of Excellence for Public Health and Toxicological Research (ACE-PUTOR), University of Port Harcourt, Choba, Port Harcourt, Nigeria
| | - Ana Cirovic
- Faculty of Medicine, University of Belgrade, Institute of Anatomy, Belgrade, Serbia
| | - Aleksandar Cirovic
- Faculty of Medicine, University of Belgrade, Institute of Anatomy, Belgrade, Serbia
| | - Baridoo Donatus Dooka
- African Centre of Excellence for Public Health and Toxicological Research (ACE-PUTOR), University of Port Harcourt, Choba, Port Harcourt, Nigeria
| | - Kenneth Ezealisiji
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Port Harcourt, Choba, Port Harcourt, Nigeria
| | - Orish Ebere Orisakwe
- African Centre of Excellence for Public Health and Toxicological Research (ACE-PUTOR), University of Port Harcourt, Choba, Port Harcourt, Nigeria
- Advanced Research Centre, European University of Lefke, Lefke, Northern Cyprus
| |
Collapse
|
125
|
Yen S, Wang Y, Liao LD. Exploring the translational impact of type 1 diabetes on cerebral neurovascular function through ECoG-LSCI. APL Bioeng 2024; 8:036108. [PMID: 39139674 PMCID: PMC11321817 DOI: 10.1063/5.0193267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 07/22/2024] [Indexed: 08/15/2024] Open
Abstract
Type 1 diabetes mellitus (T1DM) can result in complications such as retinopathy, nephropathy, and peripheral neuropathy, which can lead to brain dysfunction. In this study, we investigated the effects of T1DM on cerebral neurovascular function in mice. Streptozotocin (STZ) is known to induce T1DM in animals; thus, we used an STZ-induced diabetes model to evaluate the effects of hyperglycemia on brain morphology and neurovascular tissue. Neurovascular coupling is the connection between neuronal activity and cerebral blood flow that maintains brain function. The ECoG-LSCI technique combines electrocorticography (ECoG) and laser speckle contrast imaging (LSCI) to detect cortical spreading depression (CSD) as a marker of neurovascular coupling and measure corresponding neurovascular function. Our results suggested that in the STZ group, hyperglycemia affected excitatory neurotransmission and metabolism, leading to reductions in intercellular signaling, somatosensory evoked potential (SSEP) amplitudes, and CSD transmission rates. Western blot data further revealed that brain-derived neurotrophic factor (BDNF) and neuronal nuclear antigen levels were reduced in the STZ group. Abnormalities in glucose metabolism in the brain and increased phosphorylation of AKT and GSK3 are hypothesized to be responsible for these decreases. Overall, this study highlights the importance of glucose metabolism in normal brain physiology and demonstrates that hyperglycemia disrupts neurovascular coupling and affects cerebral neurovascular function and that the degree of CSD is positively correlated with the extent of brain tissue damage. Further research is essential to gain a complete understanding of the related mechanisms and the implications of these findings.
Collapse
Affiliation(s)
- Shaoyu Yen
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, 35, Keyan Road, Zhunan, Miaoli County 35053, Taiwan
| | - Yuhling Wang
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, 35, Keyan Road, Zhunan, Miaoli County 35053, Taiwan
| | - Lun-De Liao
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, 35, Keyan Road, Zhunan, Miaoli County 35053, Taiwan
| |
Collapse
|
126
|
Skv M, Abraham SM, Eshwari O, Golla K, Jhelum P, Maity S, Komal P. Tremendous Fidelity of Vitamin D3 in Age-related Neurological Disorders. Mol Neurobiol 2024; 61:7211-7238. [PMID: 38372958 DOI: 10.1007/s12035-024-03989-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 01/23/2024] [Indexed: 02/20/2024]
Abstract
Vitamin D3 (VD) is a secosteroid hormone and shows a pleiotropic effect in brain-related disorders where it regulates redox imbalance, inflammation, apoptosis, energy production, and growth factor synthesis. Vitamin D3's active metabolic form, 1,25-dihydroxy Vitamin D3 (1,25(OH)2D3 or calcitriol), is a known regulator of several genes involved in neuroplasticity, neuroprotection, neurotropism, and neuroinflammation. Multiple studies suggest that VD deficiency can be proposed as a risk factor for the development of several age-related neurological disorders. The evidence for low serum levels of 25-hydroxy Vitamin D3 (25(OH)D3 or calcidiol), the major circulating form of VD, is associated with an increased risk of Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), dementia, and cognitive impairment. Despite decades of evidence on low VD association with neurological disorders, the precise molecular mechanism behind its beneficial effect remains controversial. Here, we will be delving into the neurobiological importance of VD and discuss its benefits in different neuropsychiatric disorders. The focus will be on AD, PD, and HD as they share some common clinical, pathological, and epidemiological features. The central focus will be on the different attributes of VD in the aspect of its anti-oxidative, anti-inflammatory, anti-apoptotic, anti-cholinesterase activity, and psychotropic effect in different neurodegenerative diseases.
Collapse
Affiliation(s)
- Manjari Skv
- Department of Biological Sciences, Birla Institute of Technology and Science-Pilani (BITS-Pilani) Hyderabad campus, Shameerpet-Mandal, Hyderabad, Telangana, India
| | - Sharon Mariam Abraham
- Department of Biological Sciences, Birla Institute of Technology and Science-Pilani (BITS-Pilani) Hyderabad campus, Shameerpet-Mandal, Hyderabad, Telangana, India
| | - Omalur Eshwari
- Department of Biological Sciences, Birla Institute of Technology and Science-Pilani (BITS-Pilani) Hyderabad campus, Shameerpet-Mandal, Hyderabad, Telangana, India
| | - Kishore Golla
- Department of Biological Sciences, Birla Institute of Technology and Science-Pilani (BITS-Pilani) Hyderabad campus, Shameerpet-Mandal, Hyderabad, Telangana, India
| | - Priya Jhelum
- Centre for Research in Neuroscience and Brain Program, The Research Instituteof the, McGill University Health Centre , Montreal, QC, Canada
| | - Shuvadeep Maity
- Department of Biological Sciences, Birla Institute of Technology and Science-Pilani (BITS-Pilani) Hyderabad campus, Shameerpet-Mandal, Hyderabad, Telangana, India
| | - Pragya Komal
- Department of Biological Sciences, Birla Institute of Technology and Science-Pilani (BITS-Pilani) Hyderabad campus, Shameerpet-Mandal, Hyderabad, Telangana, India.
| |
Collapse
|
127
|
Yoon SH, Song WS, Chung G, Kim SJ, Kim MH. Activity in the dorsal hippocampus-mPFC circuit modulates stress-coping strategies during inescapable stress. Exp Mol Med 2024; 56:1921-1935. [PMID: 39218973 PMCID: PMC11447212 DOI: 10.1038/s12276-024-01294-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/20/2024] [Accepted: 06/06/2024] [Indexed: 09/04/2024] Open
Abstract
Anatomical connectivity and lesion-deficit studies have shown that the dorsal and ventral hippocampi contribute to cognitive and emotional processes, respectively. However, the role of the dorsal hippocampus (dHP) in emotional or stress-related behaviors remains unclear. Here, we showed that neuronal activity in the dHP affects stress-coping behaviors in mice via excitatory projections to the medial prefrontal cortex (mPFC). The antidepressant ketamine rapidly induced c-Fos expression in both the dorsal and ventral hippocampi. The suppression of GABAergic transmission in the dHP-induced molecular changes similar to those induced by ketamine administration, including eukaryotic elongation factor 2 (eEF2) dephosphorylation, brain-derived neurotrophic factor (BDNF) elevation, and extracellular signal-regulated kinase (ERK) phosphorylation. These synaptic and molecular changes in the dHP induced a reduction in the immobility time of the mice in the tail-suspension and forced swim tests without affecting anxiety-related behavior. Conversely, pharmacological and chemogenetic potentiation of inhibitory neurotransmission in the dHP CA1 region induced passive coping behaviors during the tests. Transneuronal tracing and electrophysiology revealed monosynaptic excitatory connections between dHP CA1 neurons and mPFC neurons. Optogenetic stimulation of dHP CA1 neurons in freely behaving mice produced c-Fos induction and spike firing in the mPFC neurons. Chemogenetic activation of the dHP-recipient mPFC neurons reversed the passive coping behaviors induced by suppression of dHP CA1 neuronal activity. Collectively, these results indicate that neuronal activity in the dHP modulates stress-coping strategies to inescapable stress and contributes to the antidepressant effects of ketamine via the dHP-mPFC circuit.
Collapse
Affiliation(s)
- Sang Ho Yoon
- Department of Physiology and Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Korea
- Neuroscience Research Institute, Seoul National University Medical Research Center, Seoul, 03080, Korea
- Department of Anatomy & Neurobiology, University of California Irvine, Irvine, CA, 92697, USA
| | - Woo Seok Song
- Department of Physiology and Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Korea
- Neuroscience Research Institute, Seoul National University Medical Research Center, Seoul, 03080, Korea
| | - Geehoon Chung
- Department of Physiology and Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Korea
- Neuroscience Research Institute, Seoul National University Medical Research Center, Seoul, 03080, Korea
- Department of Physiology, College of Korean Medicine, Kyung Hee University, Seoul, 02447, Korea
| | - Sang Jeong Kim
- Department of Physiology and Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Korea
- Neuroscience Research Institute, Seoul National University Medical Research Center, Seoul, 03080, Korea
| | - Myoung-Hwan Kim
- Department of Physiology and Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Korea.
- Neuroscience Research Institute, Seoul National University Medical Research Center, Seoul, 03080, Korea.
- Seoul National University Bundang Hospital, Seongnam, Gyeonggi, 13620, Korea.
| |
Collapse
|
128
|
Shi M, Li Z, Tang Z, Zhou H, Huang X, Wei Y, Li X, Li X, Shi H, Qin D. Exploring the pathogenesis and treatment of PSD from the perspective of gut microbiota. Brain Res Bull 2024; 215:111022. [PMID: 38936669 DOI: 10.1016/j.brainresbull.2024.111022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/30/2024] [Accepted: 06/24/2024] [Indexed: 06/29/2024]
Abstract
Post-stroke depression (PSD) is a psychological disease that can occur following a stroke and is associated with serious consequences. Research on the pathogenesis and treatment of PSD is still in the infancy stage. Patients with PSD often exhibit gastrointestinal symptoms; therefore the role of gut microbiota in the pathophysiology and potential treatment effects of PSD has become a hot topic of research. In this review, describe the research on the pathogenesis and therapy of PSD. We also describe how the gut microbiota influences neurotransmitters, the endocrine system, energy metabolism, and the immune system. It was proposed that the gut microbiota is involved in the pathogenesis and treatment of PSD through the regulation of neurotransmitter levels, vagal signaling, hypothalamic-pituitary-adrenal axis activation and inhibition, hormone secretion and release, in addition to immunity and inflammation.
Collapse
Affiliation(s)
- Mingqin Shi
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming Yunnan, China.
| | - Zhenmin Li
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming Yunnan, China.
| | - Zhengxiu Tang
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming Yunnan, China.
| | - Haimei Zhou
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming Yunnan, China.
| | - Xiaoyi Huang
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming Yunnan, China.
| | - Yuanyuan Wei
- First Clinical Medical College, Yunnan University of Chinese Medicine, Kunming Yunnan, China.
| | - Xinyao Li
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming Yunnan, China.
| | - Xiahuang Li
- The People's Hospital of Mengzi, The Affiliated Hospital of Yunnan University of Chinese Medicine, Mengzi Honghe, China.
| | - Hongling Shi
- Department of Rehabilitation Medicine, The Third People's Hospital of Yunnan Province, Kunming Yunnan, China.
| | - Dongdong Qin
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming Yunnan, China.
| |
Collapse
|
129
|
Wei X, Browning JL, Olsen ML. Neuron and astrocyte specific 5mC and 5hmC signatures of BDNF's receptor, TrkB. Front Mol Neurosci 2024; 17:1463437. [PMID: 39268252 PMCID: PMC11390696 DOI: 10.3389/fnmol.2024.1463437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 08/16/2024] [Indexed: 09/15/2024] Open
Abstract
Brain derived neurotrophic factor (BDNF) is the most studied trophic factor in the central nervous system (CNS), and its role in the maturation of neurons, including synapse development and maintenance has been investigated intensely for over three decades. The primary receptor for BDNF is the tropomyosin receptor kinase B (TrkB), which is broadly expressed as two primary isoforms in the brain; the full length TrkB (TrkB.FL) receptor, expressed mainly in neurons and the truncated TrkB (TrkB.T1) receptor. We recently demonstrated that TrkB.T1 is predominately expressed in astrocytes, and appears critical for astrocyte morphological maturation. Given the critical role of BDNF/TrkB pathway in healthy brain development and mature CNS function, we aimed to identify molecular underpinnings of cell-type specific expression of each TrkB isoform. Using Nanopore sequencing which enables direct, long read sequencing of native DNA, we profiled DNA methylation patterns of the entire TrkB gene, Ntrk2, in both neurons and astrocytes. Here, we identified robust differences in cell-type specific isoform expression associated with significantly different methylation patterns of the Ntrk2 gene in each cell type. Notably, astrocytes demonstrated lower 5mC methylation, and higher 5hmC across the entire gene when compared to neurons, including differentially methylated sites (DMSs) found in regions flanking the unique TrkB.T1 protein coding sequence (CDS). These data suggest DNA methylation patterns may provide instruction for isoform specific TrkB expression across unique CNS cell types.
Collapse
Affiliation(s)
- Xiaoran Wei
- Biomedical and Veterinary Sciences Graduate Program, Virginia Tech, Blacksburg, VA, United States
- School of Neuroscience, Virginia Tech, Blacksburg, VA, United States
| | - Jack L. Browning
- School of Neuroscience, Virginia Tech, Blacksburg, VA, United States
- Genetics, Bioinformatics and Computational Biology Graduate Program, Virginia Tech, Blacksburg, VA, United States
| | - Michelle L. Olsen
- School of Neuroscience, Virginia Tech, Blacksburg, VA, United States
| |
Collapse
|
130
|
Molska M, Mruczyk K, Cisek-Woźniak A, Prokopowicz W, Szydełko P, Jakuszewska Z, Marzec K, Trocholepsza M. The Influence of Intestinal Microbiota on BDNF Levels. Nutrients 2024; 16:2891. [PMID: 39275207 PMCID: PMC11397622 DOI: 10.3390/nu16172891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/24/2024] [Accepted: 08/26/2024] [Indexed: 09/16/2024] Open
Abstract
The regulation of neurogenesis, the complex process of producing and differentiating new brain tissue cells, is influenced by a complex interaction of internal and external factors. Over the past decade, extensive research has been conducted on neurotrophins and their key role in adult neurogenesis, as well as their impact on diseases such as depression. Among neurotrophins, the brain-derived neurotrophic factor (BDNF) has been the subject of comprehensive studies on adult neurogenesis, and scientific evidence supports its necessity for neurogenesis in the subventricular zone of the hippocampus. A novel area of research is the emerging role of gut microbiota as a significant contributor to neurogenesis and neurotrophin production. Studies have shown that reduced BDNF levels can lead to mood disorders, which are observed in intestinal dysbiosis, characterized by an imbalance in the composition and quantity of the intestinal microbiota. There is evidence in the literature that there is a link between brain function and gut microbiota. Physical activity, and especially the regularity and intensity of exercise, is important in relation to the level of BDNF and the intestinal microbiota. Probiotics, prebiotics and physical activity may have a positive effect on the intestinal microbiota, and therefore also on the level of the brain-derived neurotrophic factor.
Collapse
Affiliation(s)
- Marta Molska
- Department of Dietetics, Faculty of Physical Culture in Gorzow Wlkp., Poznan University of Physical Education, Estkowskiego 13, 66-400 Gorzow Wielkopolski, Poland; (K.M.); (A.C.-W.); (P.S.); (Z.J.); (K.M.); (M.T.)
| | - Kinga Mruczyk
- Department of Dietetics, Faculty of Physical Culture in Gorzow Wlkp., Poznan University of Physical Education, Estkowskiego 13, 66-400 Gorzow Wielkopolski, Poland; (K.M.); (A.C.-W.); (P.S.); (Z.J.); (K.M.); (M.T.)
| | - Angelika Cisek-Woźniak
- Department of Dietetics, Faculty of Physical Culture in Gorzow Wlkp., Poznan University of Physical Education, Estkowskiego 13, 66-400 Gorzow Wielkopolski, Poland; (K.M.); (A.C.-W.); (P.S.); (Z.J.); (K.M.); (M.T.)
| | - Wojciech Prokopowicz
- GSP Clinic Limited Liability Company, Kostrzyńska Street 12, 66-400 Gorzow Wielkopolski, Poland;
| | - Patrycja Szydełko
- Department of Dietetics, Faculty of Physical Culture in Gorzow Wlkp., Poznan University of Physical Education, Estkowskiego 13, 66-400 Gorzow Wielkopolski, Poland; (K.M.); (A.C.-W.); (P.S.); (Z.J.); (K.M.); (M.T.)
| | - Zuzanna Jakuszewska
- Department of Dietetics, Faculty of Physical Culture in Gorzow Wlkp., Poznan University of Physical Education, Estkowskiego 13, 66-400 Gorzow Wielkopolski, Poland; (K.M.); (A.C.-W.); (P.S.); (Z.J.); (K.M.); (M.T.)
| | - Karolina Marzec
- Department of Dietetics, Faculty of Physical Culture in Gorzow Wlkp., Poznan University of Physical Education, Estkowskiego 13, 66-400 Gorzow Wielkopolski, Poland; (K.M.); (A.C.-W.); (P.S.); (Z.J.); (K.M.); (M.T.)
| | - Martyna Trocholepsza
- Department of Dietetics, Faculty of Physical Culture in Gorzow Wlkp., Poznan University of Physical Education, Estkowskiego 13, 66-400 Gorzow Wielkopolski, Poland; (K.M.); (A.C.-W.); (P.S.); (Z.J.); (K.M.); (M.T.)
| |
Collapse
|
131
|
Camarini R, Marianno P, Costa BY, Palombo P, Noto AR. Environmental enrichment and complementary clinical interventions as therapeutic approaches for alcohol use disorder in animal models and humans. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2024; 178:323-354. [PMID: 39523059 DOI: 10.1016/bs.irn.2024.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Alcohol use disorder (AUD) is a multifactorial disorder arising from a complex interplay of various genetic, environmental, psychological, and social factors. Environmental factors influence alcohol misuse and can lead to AUD. While stress plays a crucial role in the onset and progression of this disorder, environmental enrichment (EE) also influences ethanol-induced behavioral and neurobiological responses. These alterations include reduced ethanol consumption, diminished operant self-administration, attenuated behavioral sensitization, and enhanced conditioned place preference. EE exerts modulatory effects on multiple neurobiological processes, such as the brain-derived neurotrophic factor/TrkB signaling pathway, the oxytocinergic system, and the hypothalamic-pituitary-adrenal axis. EE, which includes stimulating activities to counteract ethanol effects in animal studies, has parallels in human intervention that have shown potential benefits. Physical activity, cognitive behavioral therapy, and meditation, alongside techniques involving cognitive stimulation, social interaction, and recreational activities, may lead to more effective therapeutic outcomes in treatments of AUD.
Collapse
Affiliation(s)
- Rosana Camarini
- Department of Pharmacology, Institute of Biomedical Sciences, Universidade de Sao Paulo, São Paulo, Brazil.
| | - Priscila Marianno
- Department of Pharmacology, Institute of Biomedical Sciences, Universidade de Sao Paulo, São Paulo, Brazil
| | - Beatriz Yamada Costa
- Department of Pharmacology, Institute of Biomedical Sciences, Universidade de Sao Paulo, São Paulo, Brazil
| | - Paola Palombo
- Department of Psychobiology, Universidade Federal de Sao Paulo, São Paulo, Brazil
| | - Ana Regina Noto
- Department of Psychobiology, Universidade Federal de Sao Paulo, São Paulo, Brazil
| |
Collapse
|
132
|
Eckardt N, Sinke C, Bleich S, Lichtinghagen R, Zedler M. Investigation of the relationship between neuroplasticity and grapheme-color synesthesia. Front Neurosci 2024; 18:1434309. [PMID: 39224579 PMCID: PMC11366591 DOI: 10.3389/fnins.2024.1434309] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 07/31/2024] [Indexed: 09/04/2024] Open
Abstract
Grapheme-color synesthesia is a normal and healthy variation of human perception. It is characterized by the association of letters or numbers with color perceptions. The etiology of synesthesia is not yet fully understood. Theories include hyperconnectivity in the brain, cross-activation of adjacent or functionally proximate sensory areas of the brain, or various models of lack of inhibitory function in the brain. The growth factor brain-derived neurotrophic (BDNF) plays an important role in the development of neurons, neuronal pathways, and synapses, as well as in the protection of existing neurons in both the central and peripheral nervous systems. ELISA methods were used to compare BDNF serum concentrations between healthy test subjects with and without grapheme-color synesthesia to establish a connection between concentration and the occurrence of synesthesia. The results showed that grapheme-color synesthetes had an increased BDNF serum level compared to the matched control group. Increased levels of BDNF can enhance the brain's ability to adapt to changing environmental conditions, injuries, or experiences, resulting in positive effects. It is discussed whether the integration of sensory information is associated with or results from increased neuroplasticity. The parallels between neurodegeneration and brain regeneration lead to the conclusion that synesthesia, in the sense of an advanced state of consciousness, is in some cases a more differentiated development of the brain rather than a relic of early childhood.
Collapse
Affiliation(s)
- Nadine Eckardt
- Department for Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, Hanover, Germany
| | - Christopher Sinke
- Department of Psychiatry, Social Psychiatry and Psychotherapy, Division of Clinical Psychology & Sexual Medicine, Hannover Medical School, Hanover, Germany
| | - Stefan Bleich
- Department for Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, Hanover, Germany
| | - Ralf Lichtinghagen
- Institute of Clinical Chemistry, Hannover Medical School, Hanover, Germany
| | - Markus Zedler
- Department for Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, Hanover, Germany
| |
Collapse
|
133
|
Wang Y, Peng D, Zhang X, Chen J, Feng J, Zhang R, Mai W, Chen H, Yang Y, Huang Y, Zhang Q. PLCβ4 driven by cadmium-exposure during gestation and lactation contributes to cognitive deficits by suppressing PIP2/PLCγ1/CREB/BDNF signaling pathway in male offspring. JOURNAL OF HAZARDOUS MATERIALS 2024; 474:134756. [PMID: 38820747 DOI: 10.1016/j.jhazmat.2024.134756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 05/13/2024] [Accepted: 05/27/2024] [Indexed: 06/02/2024]
Abstract
The fetus and infants are particularly vulnerable to Cadmium (Cd) due to the immaturity of the blood-brain barrier. In utero and early life exposure to Cd is associated with cognitive deficits. Although such exposure has attracted widespread attention, its gender-specificity remains controversial, and there are no reports disclosing the underlying mechanism of gender‑specific neurotoxicity. We extensively evaluated the learning and cognitive functions and synaptic plasticity of male and female rats exposed to maternal Cd. Maternal Cd exposure induced learning and memory deficits in male offspring rats, but not in female offspring rats. PLCβ4 was identified as a critical protein, which might be related to the gender‑specific cognitive deficits in male rats. The up-regulated PLCβ4 competed with PLCγ1 to bind to PIP2, which counteracted the hydrolysis of PIP2 by PLCγ1. The decreased activation of PLCγ1 inhibited the phosphorylation of CREB to reduce BDNF transcription, which consequently resulted in the damage of hippocampal neurons and cognitive deficiency. Moreover, the low level of BDNF promoted AEP activation to induce Aβ deposition in the hippocampus. These findings highlight that PLCβ4 might be a potential target for the therapy of learning and cognitive deficits caused by Cd exposure in early life.
Collapse
Affiliation(s)
- Youjin Wang
- Department of Cell Biology & Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Dong Peng
- Department of Cell Biology & Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou 510632, China; Department of Laboratory Medicine, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Xiang Zhang
- Department of Cell Biology & Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Jiayan Chen
- Department of Cell Biology & Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Jianfeng Feng
- Department of Cell Biology & Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Runze Zhang
- Department of Cell Biology & Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Wanwen Mai
- Department of Cell Biology & Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Hongxia Chen
- Department of Cell Biology & Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou 510632, China; Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou 510632, China; National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou 510632, China
| | - Yan Yang
- Department of Cell Biology & Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou 510632, China; Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou 510632, China; National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou 510632, China
| | - Yadong Huang
- Department of Cell Biology & Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou 510632, China; Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou 510632, China; National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou 510632, China.
| | - Qihao Zhang
- Department of Cell Biology & Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou 510632, China; Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou 510632, China; National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
134
|
Cattaneo A, Begni V, Zonca V, Riva MA. Early life adversities, psychopathologies and novel pharmacological strategies. Pharmacol Ther 2024; 260:108686. [PMID: 38969307 DOI: 10.1016/j.pharmthera.2024.108686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 06/05/2024] [Accepted: 07/02/2024] [Indexed: 07/07/2024]
Abstract
Exposure to adversities during early life stages (early life adversities - ELA), ranging from pregnancy to adolescence, represents a major risk factor for the vulnerability to mental disorders. Hence, it is important to understand the molecular and functional underpinning of such relationship, in order to develop strategies aimed at reducing the psychopathologic burden associated with ELA, which may eventually lead to a significant improvement in clinical practice. In this review, we will initially recapitulate clinical and preclinical evidence supporting the link between ELA and psychopathology and we will primarily discuss the main biological mechanisms that have been described as potential mediators of the effects of ELA on the psychopathologic risk, including the role for genetic factors as well as sex differences. The knowledge emerging from these studies may be instrumental for the development of novel therapeutic strategies aimed not only at correcting the deficits that emerge from ELA exposure, but also in preventing the manifestation of a full-blown psychopathologic condition. With this respect, we will specifically focus on adolescence as a key time frame for disease onset as well as for early therapeutic intervention. We believe that incorporating clinical and preclinical research data in the context of early life adversities can be instrumental to elucidate the mechanisms contributing to the risk for psychopathology or that may promote resilience. This will ultimately allow the identification of 'at risk' individuals who may benefit from specific forms of interventions that, by interfering with disease trajectories, could result in more benign clinical outcomes.
Collapse
Affiliation(s)
- Annamaria Cattaneo
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milan, Italy; Biological Psychiatry Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Veronica Begni
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milan, Italy
| | - Valentina Zonca
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milan, Italy
| | - Marco A Riva
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milan, Italy; Biological Psychiatry Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy.
| |
Collapse
|
135
|
Cardoso SV, Fernandes SR, Tomás MT. Therapeutic Importance of Exercise in Neuroplasticity in Adults with Neurological Pathology: Systematic Review. INTERNATIONAL JOURNAL OF EXERCISE SCIENCE 2024; 17:1105-1119. [PMID: 39257645 PMCID: PMC11385284 DOI: 10.70252/vzwf7949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/15/2025]
Abstract
Neuroplasticity is an essential mechanism by which the nervous system shapes and adapts according to functional requirements. Evidence suggests that physical exercise induces a cascade of cellular processes that favours brain plasticity. The Brain Derived Neurotrophic Factor (BDNF) is a neurotrophin closely linked to neuroplasticity that can be increased due to exercise. To verify the effects of therapeutic exercise on neuroplasticity and/or peripheral BDNF levels in neurological conditions in adults, such as stroke, Parkinson's and Alzheimer's diseases and mild cognitive impairment and address its clinical relevance in the treatment of neurological dysfunctions. A systematic review was carried using PUBMED, Web of Science and Scopus databases. Inclusion criteria were: randomized controlled trials or pilot studies; humans with age > 18 yrs with neurological condition; English language; score ≥ 6 in PEDro Scale (moderate to high quality). Reviews, meta-analyses and other articles that did not meet the criteria were excluded. The PRISMA methodology was applied for studies' selection. A total of 9 studies were selected for a systematic and comprehensive analysis. According to these studies, moderate to high intensity aerobic exercise (AE), increases the level of peripheral BDNF and positively influences functional gains in neurological conditions. Larger outcomes are observed in protocols with minimum session duration of 30 minutes, frequency of 3 times/week and intervention duration of 4 weeks. Current evidence shows that moderate to high intensity AE induces neuroplasticity in neurological patients, thus being a fundamental therapeutic strategy to include in interventions aiming to repair/delay neurological dysfunctions.
Collapse
Affiliation(s)
- Sara V Cardoso
- Hospital Beatriz Ângelo, Loures, Portugal
- ESTeSL - Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa, Lisboa, Portugal
| | - Sofia R Fernandes
- ESTeSL - Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa, Lisboa, Portugal
- Instituto de Biofísica e Engenharia Biomédica, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Maria T Tomás
- ESTeSL - Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa, Lisboa, Portugal
- Health & Technology Research Center, ESTeSL - Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa, Lisboa, Portugal
| |
Collapse
|
136
|
Wu MW, Kourdougli N, Portera-Cailliau C. Network state transitions during cortical development. Nat Rev Neurosci 2024; 25:535-552. [PMID: 38783147 PMCID: PMC11825063 DOI: 10.1038/s41583-024-00824-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/01/2024] [Indexed: 05/25/2024]
Abstract
Mammalian cortical networks are active before synaptogenesis begins in earnest, before neuronal migration is complete, and well before an animal opens its eyes and begins to actively explore its surroundings. This early activity undergoes several transformations during development. The most important of these is a transition from episodic synchronous network events, which are necessary for patterning the neocortex into functionally related modules, to desynchronized activity that is computationally more powerful and efficient. Network desynchronization is perhaps the most dramatic and abrupt developmental event in an otherwise slow and gradual process of brain maturation. In this Review, we summarize what is known about the phenomenology of developmental synchronous activity in the rodent neocortex and speculate on the mechanisms that drive its eventual desynchronization. We argue that desynchronization of network activity is a fundamental step through which the cortex transitions from passive, bottom-up detection of sensory stimuli to active sensory processing with top-down modulation.
Collapse
Affiliation(s)
- Michelle W Wu
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
- Neuroscience Interdepartmental Graduate Program, University of California Los Angeles, Los Angeles, CA, USA
- UCLA-Caltech Medical Scientist Training Program, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Nazim Kourdougli
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Carlos Portera-Cailliau
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA.
- Department of Neurobiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
137
|
Zhao X, Kong Y, Ji Y, Xin X, Chen L, Chen G, Yu C. Classification models for predicting the bioactivity of pan-TRK inhibitors and SAR analysis. Mol Divers 2024; 28:2077-2097. [PMID: 37910346 DOI: 10.1007/s11030-023-10735-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 09/22/2023] [Indexed: 11/03/2023]
Abstract
Tropomyosin receptor kinases (TRKs) are important broad-spectrum anticancer targets. The oncogenic rearrangement of the NTRK gene disrupts the extracellular structural domain and epitopes for therapeutic antibodies, making small-molecule inhibitors essential for treating NTRK fusion-driven tumors. In this work, several algorithms were used to construct descriptor-based and nondescriptor-based models, and the models were evaluated by outer 10-fold cross-validation. To find a model with good generalization ability, the dataset was partitioned by random and cluster-splitting methods to construct in- and cross-domain models, respectively. Among the 48 models built, the model with the combination of the deep neural network (DNN) algorithm and extended connectivity fingerprints 4 (ECFP4) descriptors achieved excellent performance in both dataset divisions. The results indicate that the DNN algorithm has a strong generalization prediction ability, and the richness of features plays a vital role in predicting unknown spatial molecules. Additionally, we combined the clustering results and decision tree models of fingerprint descriptors to perform structure-activity relationship analysis. It was found that nitrogen-containing aromatic heterocyclic and benzo heterocyclic structures play a crucial role in enhancing the activity of TRK inhibitors.
Collapse
Affiliation(s)
- Xiaoman Zhao
- College of Life Science and Technology, Beijing University of Chemical Technology, 15 BeiSanHuan East Road, Beijing, 100029, People's Republic of China
- College of Bio engineering, No. 9 Liangshuihe 1st Street, Beijing, 100176, People's Republic of China
| | - Yue Kong
- College of Life Science and Technology, Beijing University of Chemical Technology, 15 BeiSanHuan East Road, Beijing, 100029, People's Republic of China
| | - Yueshan Ji
- College of Life Science and Technology, Beijing University of Chemical Technology, 15 BeiSanHuan East Road, Beijing, 100029, People's Republic of China
| | - Xiulan Xin
- College of Bio engineering, No. 9 Liangshuihe 1st Street, Beijing, 100176, People's Republic of China
| | - Liang Chen
- College of Bio engineering, No. 9 Liangshuihe 1st Street, Beijing, 100176, People's Republic of China
| | - Guang Chen
- College of Life Science and Technology, Beijing University of Chemical Technology, 15 BeiSanHuan East Road, Beijing, 100029, People's Republic of China
| | - Changyuan Yu
- College of Life Science and Technology, Beijing University of Chemical Technology, 15 BeiSanHuan East Road, Beijing, 100029, People's Republic of China.
| |
Collapse
|
138
|
Durmaz E, Dribika L, Kutnyanszky M, Mead B. Utilizing extracellular vesicles as a drug delivery system in glaucoma and RGC degeneration. J Control Release 2024; 372:209-220. [PMID: 38880332 DOI: 10.1016/j.jconrel.2024.06.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 06/10/2024] [Accepted: 06/12/2024] [Indexed: 06/18/2024]
Abstract
Retinal diseases are the leading cause of blindness, resulting in irreversible degeneration and death of retinal neurons. One such cell type, the retinal ganglion cell (RGC), is responsible for connecting the retina to the rest of the brain through its axons that make up the optic nerve and is the primary cell lost in glaucoma and traumatic optic neuropathy. To date, different therapeutic strategies have been investigated to protect RGCs from death and preserve vision, yet currently available strategies are restricted to treating neuron loss by reducing intraocular pressure. A major barrier identified by these studies is drug delivery to RGCs, which is in large part due to drug stability, short duration time at target, low delivery efficiency, and undesired off-target effects. Therefore, a delivery system to deal with these problems is needed to ensure maximum benefit from the candidate therapeutic material. Extracellular vesicles (EV), nanocarriers released by all cells, are lipid membranes encapsulating RNAs, proteins, and lipids. As they naturally shuttle these encapsulated compounds between cells for communicative purposes, they may be exploitable and offer opportunities to overcome hurdles in retinal drug delivery, including drug stability, drug molecular weight, barriers in the retina, and drug adverse effects. Here, we summarize the potential of an EV drug delivery system, discussing their superiorities and potential application to target RGCs.
Collapse
Affiliation(s)
- Esmahan Durmaz
- Cardiff University, School of Optometry & Vision Sciences, Cardiff, UK.
| | | | | | - Ben Mead
- Cardiff University, School of Optometry & Vision Sciences, Cardiff, UK.
| |
Collapse
|
139
|
Waliany S, Lin JJ. Taletrectinib: TRUST in the Continued Evolution of Treatments for ROS1 Fusion-Positive Lung Cancer. J Clin Oncol 2024; 42:2622-2627. [PMID: 38941567 PMCID: PMC11286343 DOI: 10.1200/jco.24.01062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 05/22/2024] [Indexed: 06/30/2024] Open
Abstract
In the article that accompanies this editorial, Li et al. report results from the phase 2 trial TRUST-I, in which taletrectinib, a next-generation ROS1 tyrosine kinase inhibitor (TKI), demonstrated robust systemic and intracranial efficacy, ability to overcome on-target ROS1 resistance mutations, and relatively low rates of neurologic adverse events among TKI-naïve and crizotinib-pretreated patients in China with advanced ROS1 fusion-positive (ROS1+) non-small cell lung cancer (NSCLC). These findings represent another step forward in the efforts to improve outcomes for patients with ROS1+ NSCLC, and the global phase 2 trial TRUST-II is ongoing to further explore the efficacy and safety of taletrectinib in a broader population.
Collapse
Affiliation(s)
- Sarah Waliany
- Cancer Center and Department of Medicine, Massachusetts General Hospital, Boston, MA
| | - Jessica J Lin
- Cancer Center and Department of Medicine, Massachusetts General Hospital, Boston, MA
| |
Collapse
|
140
|
Mahajan AT, Shivani, Datusalia AK, Coluccini C, Coghi P, Chaudhary S. Pyrazolo[1,5- a]pyrimidine as a Prominent Framework for Tropomyosin Receptor Kinase (Trk) Inhibitors-Synthetic Strategies and SAR Insights. Molecules 2024; 29:3560. [PMID: 39124968 PMCID: PMC11314189 DOI: 10.3390/molecules29153560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 07/25/2024] [Accepted: 07/26/2024] [Indexed: 08/12/2024] Open
Abstract
Tropomyosin receptor kinases (Trks) are transmembrane receptor tyrosine kinases named TrkA, TrkB, and TrkC and encoded by the NTRK1, NTRK2, and NTRK3 genes, respectively. These kinases have attracted significant attention and represent a promising therapeutic target for solid tumor treatment due to their vital role in cellular signaling pathways. First-generation TRK inhibitors, i.e., Larotrectinib sulfate and Entrectinib, received clinical approval in 2018 and 2019, respectively. However, the use of these inhibitors was significantly limited because of the development of resistance due to mutations. Fortunately, the second-generation Trk inhibitor Repotrectinib (TPX-0005) was approved by the FDA in November 2023, while Selitrectinib (Loxo-195) has provided an effective solution to this issue. Another macrocycle-based analog, along with many other TRK inhibitors, is currently in clinical trials. Two of the three marketed drugs for NTRK fusion cancers feature a pyrazolo[1,5-a] pyrimidine nucleus, prompting medicinal chemists to develop numerous novel pyrazolopyrimidine-based molecules to enhance clinical applications. This article focuses on a comprehensive review of chronological synthetic developments and the structure-activity relationships (SAR) of pyrazolo[1,5-a]pyrimidine derivatives as Trk inhibitors. This article will also provide comprehensive knowledge and future directions to the researchers working in the field of medicinal chemistry by facilitating the structural modification of pyrazolo [1,5-a]pyrimidine derivatives to synthesize more effective novel chemotherapeutics as TRK inhibitors.
Collapse
Affiliation(s)
- Amol T. Mahajan
- Laboratory of Bioactive Heterocycles and Catalysis (BHC Lab), Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research-Raebareli (Transit Campus), Bijnor–Sisendi Road, Near CRPF Base Camp, Sarojini Nagar, Lucknow 226002, India; (A.T.M.); (S.)
| | - Shivani
- Laboratory of Bioactive Heterocycles and Catalysis (BHC Lab), Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research-Raebareli (Transit Campus), Bijnor–Sisendi Road, Near CRPF Base Camp, Sarojini Nagar, Lucknow 226002, India; (A.T.M.); (S.)
| | - Ashok Kumar Datusalia
- Laboratory of Molecular Neurotherapeutics, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research-Raebareli (Transit Campus), Bijnor–Sisendi Road, Near CRPF Base Camp, Sarojini Nagar, Lucknow 226002, India;
| | - Carmine Coluccini
- Institute of New Drug Development, College of Medicine, China Medical University, No. 91, Hsueh-Shih Road, Taichung 40402, Taiwan
| | - Paolo Coghi
- Laboratory for Drug Discovery from Natural Resources & Industrialization, School of Pharmacy, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau 999078, China
| | - Sandeep Chaudhary
- Laboratory of Bioactive Heterocycles and Catalysis (BHC Lab), Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research-Raebareli (Transit Campus), Bijnor–Sisendi Road, Near CRPF Base Camp, Sarojini Nagar, Lucknow 226002, India; (A.T.M.); (S.)
| |
Collapse
|
141
|
von Bohlen Und Halbach O, Klausch M. The Neurotrophin System in the Postnatal Brain-An Introduction. BIOLOGY 2024; 13:558. [PMID: 39194496 DOI: 10.3390/biology13080558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/11/2024] [Accepted: 07/23/2024] [Indexed: 08/29/2024]
Abstract
Neurotrophins can bind to and signal through specific receptors that belong to the class of the Trk family of tyrosine protein kinase receptors. In addition, they can bind and signal through a low-affinity receptor, termed p75NTR. Neurotrophins play a crucial role in the development, maintenance, and function of the nervous system in vertebrates, but they also have important functions in the mature nervous system. In particular, they are involved in synaptic and neuronal plasticity. Thus, it is not surprisingly that they are involved in learning, memory and cognition and that disturbance in the neurotrophin system can contribute to psychiatric diseases. The neurotrophin system is sensitive to aging and changes in the expression levels correlate with age-related changes in brain functions. Several polymorphisms in genes coding for the different neurotrophins or neurotrophin receptors have been reported. Based on the importance of the neurotrophins for the central nervous system, it is not surprisingly that several of these polymorphisms are associated with psychiatric diseases. In this review, we will shed light on the functions of neurotrophins in the postnatal brain, especially in processes that are involved in synaptic and neuronal plasticity.
Collapse
Affiliation(s)
- Oliver von Bohlen Und Halbach
- Institut für Anatomie und Zellbiologie, Universitätsmedizin Greifswald, Friedrich Loeffler Str. 23c, 17489 Greifswald, Germany
| | - Monique Klausch
- Institut für Anatomie und Zellbiologie, Universitätsmedizin Greifswald, Friedrich Loeffler Str. 23c, 17489 Greifswald, Germany
| |
Collapse
|
142
|
ElGrawani W, Sun G, Kliem FP, Sennhauser S, Pierre-Ferrer S, Rosi-Andersen A, Boccalaro I, Bethge P, Heo WD, Helmchen F, Adamantidis AR, Forger DB, Robles MS, Brown SA. BDNF-TrkB signaling orchestrates the buildup process of local sleep. Cell Rep 2024; 43:114500. [PMID: 39046880 DOI: 10.1016/j.celrep.2024.114500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 05/15/2024] [Accepted: 06/27/2024] [Indexed: 07/27/2024] Open
Abstract
Sleep debt accumulates during wakefulness, leading to increased slow wave activity (SWA) during sleep, an encephalographic marker for sleep need. The use-dependent demands of prior wakefulness increase sleep SWA locally. However, the circuitry and molecular identity of this "local sleep" remain unclear. Using pharmacology and optogenetic perturbations together with transcriptomics, we find that cortical brain-derived neurotrophic factor (BDNF) regulates SWA via the activation of tyrosine kinase B (TrkB) receptor and cAMP-response element-binding protein (CREB). We map BDNF/TrkB-induced sleep SWA to layer 5 (L5) pyramidal neurons of the cortex, independent of neuronal firing per se. Using mathematical modeling, we here propose a model of how BDNF's effects on synaptic strength can increase SWA in ways not achieved through increased firing alone. Proteomic analysis further reveals that TrkB activation enriches ubiquitin and proteasome subunits. Together, our study reveals that local SWA control is mediated by BDNF-TrkB-CREB signaling in L5 excitatory cortical neurons.
Collapse
Affiliation(s)
- Waleed ElGrawani
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland; Neuroscience Center Zurich (ZNZ), University of Zurich, Zurich, Switzerland.
| | - Guanhua Sun
- Department of Mathematics, University of Michigan, Ann Arbor, MI, USA
| | - Fabian P Kliem
- Institute of Medical Psychology and Biomedical Center (BMC), Faculty of Medicine, LMU Munich, Germany
| | - Simon Sennhauser
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| | - Sara Pierre-Ferrer
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland; Neuroscience Center Zurich (ZNZ), University of Zurich, Zurich, Switzerland
| | - Alex Rosi-Andersen
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland; Neuroscience Center Zurich (ZNZ), University of Zurich, Zurich, Switzerland
| | - Ida Boccalaro
- Zentrum für Experimentelle Neurologie, Department of Neurology, Inselspital University Hospital Bern, Bern, Switzerland
| | - Philipp Bethge
- Neuroscience Center Zurich (ZNZ), University of Zurich, Zurich, Switzerland; Brain Research Institute, University of Zurich, Zurich, Switzerland
| | - Won Do Heo
- Department of Biological Science, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 305-701, Republic of Korea
| | - Fritjof Helmchen
- Neuroscience Center Zurich (ZNZ), University of Zurich, Zurich, Switzerland; Brain Research Institute, University of Zurich, Zurich, Switzerland; University Research Priority Program (URPP), Adaptive Brain Circuits in Development and Learning, University of Zurich, Zurich, Switzerland
| | - Antoine R Adamantidis
- Zentrum für Experimentelle Neurologie, Department of Neurology, Inselspital University Hospital Bern, Bern, Switzerland.
| | - Daniel B Forger
- Department of Mathematics, University of Michigan, Ann Arbor, MI, USA; Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA.
| | - Maria S Robles
- Institute of Medical Psychology and Biomedical Center (BMC), Faculty of Medicine, LMU Munich, Germany.
| | - Steven A Brown
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
143
|
Saadat SH, Javanbakht M, Shahyad S. Brain-derived neurotrophic factor and C-reactive protein (CRP) biomarkers in suicide attempter and non-attempter major depression disorder (MDD) patients. Ann Gen Psychiatry 2024; 23:27. [PMID: 39039500 PMCID: PMC11264361 DOI: 10.1186/s12991-024-00511-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 07/15/2024] [Indexed: 07/24/2024] Open
Abstract
BACKGROUND In the available literature, levels of BDNF and CRP have been reported to correlate with suicide in depressive patients but there are inconsistencies in the results. We aimed to evaluate and compare BDNF and CRP concentrations in MDD patients with(MDD + SA) and without suicide attempts (MDD-SA) and healthy controls. METHODS 30 (MDD + SA) patients, 30 (MDD-SA) patients, and 26 healthy controls were enrolled in the study. Age, sex, and BMI of patients were recorded. Blood sample was obtained for measurement of BDNF and CRP. Smoking and drug history, family history of suicide, and history of self-harm were also documented. Data were analyzed with SPSS version 22 and R version 4.1.1. RESULTS 86 patients in three groups were evaluated (mean age: 28.45 ± 9.27 years, 56.71% female). Baseline and demographic parameters except for self-harm (40%, 3.3%, and 0% for MDD + SA, MDD-SA, and healthy controls, respectively, p = 0.001) did not differ between groups. CRP level was not significantly different between groups. BDNF showed a significant difference between groups (17.35, 16.45, and 19.43 for three groups, respectively, p < 0.001). An increase in BDNF decreased the odds of both depression and suicide. Roc curve showed excellent power for BDNF in discriminating MDD groups With healthy group.Roc can notdicrimiate MDD + SA and MDD-SA. CONCLUSION In our study, the concentration of BDNF differed significantly between depressed patients with/without suicide attempts and healthy controls which shows the association of BDNF with depression development and not suicide attempts. We could not find any association between CRP level and suicide attempt but still larger cohorts are needed for a definite conclusion.
Collapse
Affiliation(s)
- Seyed Hassan Saadat
- Nephrology and Urology Research Center, Clinical Science Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mohammad Javanbakht
- Nephrology and Urology Research Center, Clinical Science Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Shima Shahyad
- Neuroscience Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
144
|
Metellus P, Camilla C, Bialecki E, Beaufils N, Vellutini C, Pellegrino E, Tomasini P, Ahluwalia MS, Mansouri A, Nanni I, Ouafik L. The landscape of cancer-associated transcript fusions in adult brain tumors: a longitudinal assessment in 140 patients with cerebral gliomas and brain metastases. Front Oncol 2024; 14:1382394. [PMID: 39087020 PMCID: PMC11288828 DOI: 10.3389/fonc.2024.1382394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 06/17/2024] [Indexed: 08/02/2024] Open
Abstract
Background Oncogenic fusions of neurotrophic receptor tyrosine kinase NTRK1, NTRK2, or NTRK3 genes have been found in different types of solid tumors. The treatment of patients with TRK fusion cancer with a first-generation TRK inhibitor (such as larotrectinib or entrectinib) is associated with high response rates (>75%), regardless of tumor histology and presence of metastases. Due to the efficacy of TRK inhibitor therapy of larotrectinib and entrectinib, it is clinically important to identify patients accurately and efficiently with TRK fusion cancer. In this retrospective study, we provide unique data on the incidence of oncogenic NTRK gene fusions in patients with brain metastases (BM) and gliomas. Methods 140 samples fixed and paraffin-embedded tissue (FFPE) of adult patients (59 of gliomas [17 of WHO grade II, 20 of WHO grade III and 22 glioblastomas] and 81 of brain metastasis (BM) of different primary tumors) are analyzed. Identification of NTRK gene fusions is performed using next-generation sequencing (NGS) technology using Focus RNA assay kit (Thermo Fisher Scientific). Results We identified an ETV6 (5)::NTRK3 (15) fusion event using targeted next-generation sequencing (NGS) in one of 59 glioma patient with oligodendroglioma-grade II, IDH-mutated and 1p19q co-deleted at incidence of 1.69%. Five additional patients harboring TMPRSS (2)::ERG (4) were identified in pancreatic carcinoma brain metastasis (BM), prostatic carcinoma BM, endometrium BM and oligodendroglioma (grade II), IDH-mutated and 1p19q co-deleted. A FGFR3 (17)::TACC3 (11) fusion was identified in one carcinoma breast BM. Aberrant splicing to produce EGFR exons 2-7 skipping mRNA, and MET exon 14 skipping mRNA were identified in glioblastoma and pancreas carcinoma BM, respectively. Conclusions This study provides data on the incidence of NTRK gene fusions in brain tumors, which could strongly support the relevance of innovative clinical trials with specific targeted therapies (larotrectinib, entrectinib) in this population of patients. FGFR3 (17)::TACC3 (11) rearrangement was detected in breast carcinoma BM with the possibility of using some specific targeted therapies and TMPRSS (2)::ERG (4) rearrangements occur in a subset of patients with, prostatic carcinoma BM, endometrium BM, and oligodendroglioma (grade II), IDH-mutated and 1p19q co-deleted, where there are yet no approved ERG-directed therapies.
Collapse
Affiliation(s)
- Philippe Metellus
- Aix Marseille Univ, Centre national de Recherche Scientifique (CNRS), INP, Inst Neurophysiopathol, Marseille, France
- Ramsay Santé, Hôpital Privé Clairval, Département de Neurochirurgie, Marseille, France
| | - Clara Camilla
- Aix Marseille Univ, Centre national de Recherche Scientifique (CNRS), INP, Inst Neurophysiopathol, Marseille, France
- Aix Marseille Univ, APHM, CHU Timone, Service d’OncoBiologie, Marseille, France
| | - Emilie Bialecki
- Ramsay Santé, Hôpital Privé Clairval, Département de Neurochirurgie, Marseille, France
| | - Nathalie Beaufils
- Aix Marseille Univ, APHM, CHU Timone, Service d’OncoBiologie, Marseille, France
| | - Christine Vellutini
- Aix Marseille Univ, Centre national de Recherche Scientifique (CNRS), INP, Inst Neurophysiopathol, Marseille, France
| | - Eric Pellegrino
- Aix Marseille Univ, APHM, CHU Timone, Service d’OncoBiologie, Marseille, France
| | - Pascale Tomasini
- Aix Marseille Univ, APHM, Oncologie multidisciplinaire et innovations thérapeutiques, Marseille, France
- Aix-Marseille Univ, Centre national de Recherche Scientifique (CNRS), Inserm, CRCM, Marseille, France
| | - Manmeet S. Ahluwalia
- Miami Cancer Institute, Baptist Health South Florida, Miami, FL, United States
- Herbert Wertheim College of Medicine, Florida International University, Miami, FL, United States
| | - Alireza Mansouri
- Department of Neurosurgery, Penn State Cancer Institute, Hershey, PA, United States
| | - Isabelle Nanni
- Aix Marseille Univ, APHM, CHU Timone, Service d’OncoBiologie, Marseille, France
| | - L’Houcine Ouafik
- Aix Marseille Univ, Centre national de Recherche Scientifique (CNRS), INP, Inst Neurophysiopathol, Marseille, France
- Aix Marseille Univ, APHM, CHU Timone, Service d’OncoBiologie, Marseille, France
| |
Collapse
|
145
|
Yamada T, Mihara K, Ueda T, Yamauchi D, Shimizu M, Ando A, Mayumi K, Nakata Z, Mikamiyama H. Discovery and Hit to Lead Optimization of Macrocyclic Peptides as Novel Tropomyosin Receptor Kinase A Antagonists. J Med Chem 2024; 67:11197-11208. [PMID: 38950284 DOI: 10.1021/acs.jmedchem.4c00715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
Tropomyosin receptor kinases (Trks) are receptor tyrosine kinases activated by neurotrophic factors, called neurotrophins. Among them, TrkA interacts with the nerve growth factor (NGF), which leads to pain induction. mRNA-display screening was carried out to discover a hit compound 2, which inhibits protein-protein interactions between TrkA and NGF. Subsequent structure optimization improving phosphorylation inhibitory activity and serum stability was pursued using a unique process that took advantage of the peptide being synthesized by translation from mRNA. This gave peptide 19, which showed an analgesic effect in a rat incisional pain model. The peptides described here can serve as a new class of analgesics, and the structure optimization methods reported provide a strategy for discovering new peptide drugs.
Collapse
Affiliation(s)
- Toru Yamada
- Biopharmaceutical Research Division, Shionogi Pharmaceutical Research Center, Toyonaka , Osaka 561-0825, Japan
| | - Kousuke Mihara
- Pharmaceutical Research Division, Shionogi Pharmaceutical Research Center, Toyonaka , Osaka 561-0825, Japan
| | - Taichi Ueda
- Pharmaceutical Research Division, Shionogi Pharmaceutical Research Center, Toyonaka , Osaka 561-0825, Japan
| | - Daisuke Yamauchi
- Pharmaceutical Research Division, Shionogi Pharmaceutical Research Center, Toyonaka , Osaka 561-0825, Japan
| | - Masaya Shimizu
- Pharmaceutical Research Division, Shionogi Pharmaceutical Research Center, Toyonaka , Osaka 561-0825, Japan
| | - Azusa Ando
- Pharmaceutical Research Division, Shionogi Pharmaceutical Research Center, Toyonaka , Osaka 561-0825, Japan
| | - Kei Mayumi
- Pharmaceutical Development Division, Yodoyabashi Office, Osaka , Osaka 541-0042, Japan
| | - Zenzaburo Nakata
- Pharmaceutical Research Division, Shionogi Pharmaceutical Research Center, Toyonaka , Osaka 561-0825, Japan
| | - Hidenori Mikamiyama
- Pharmaceutical Research Division, Shionogi Pharmaceutical Research Center, Toyonaka , Osaka 561-0825, Japan
| |
Collapse
|
146
|
Shen Y, Zhao M, Zhao P, Meng L, Zhang Y, Zhang G, Taishi Y, Sun L. Molecular mechanisms and therapeutic potential of lithium in Alzheimer's disease: repurposing an old class of drugs. Front Pharmacol 2024; 15:1408462. [PMID: 39055498 PMCID: PMC11269163 DOI: 10.3389/fphar.2024.1408462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 06/25/2024] [Indexed: 07/27/2024] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by cognitive decline and memory loss. Despite advances in understanding the pathophysiological mechanisms of AD, effective treatments remain scarce. Lithium salts, recognized as mood stabilizers in bipolar disorder, have been extensively studied for their neuroprotective effects. Several studies indicate that lithium may be a disease-modifying agent in the treatment of AD. Lithium's neuroprotective properties in AD by acting on multiple neuropathological targets, such as reducing amyloid deposition and tau phosphorylation, enhancing autophagy, neurogenesis, and synaptic plasticity, regulating cholinergic and glucose metabolism, inhibiting neuroinflammation, oxidative stress, and apoptosis, while preserving mitochondrial function. Clinical trials have demonstrated that lithium therapy can improve cognitive function in patients with AD. In particular, meta-analyses have shown that lithium may be a more effective and safer treatment than the recently FDA-approved aducanumab for improving cognitive function in patients with AD. The affordability and therapeutic efficacy of lithium have prompted a reassessment of its use. However, the use of lithium may lead to potential side effects and safety issues, which may limit its clinical application. Currently, several new lithium formulations are undergoing clinical trials to improve safety and efficacy. This review focuses on lithium's mechanism of action in treating AD, highlighting the latest advances in preclinical studies and clinical trials. It also explores the side effects of lithium therapy and coping strategies, offering a potential therapeutic strategy for patients with AD.
Collapse
Affiliation(s)
- Yanxin Shen
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Jilin University, Changchun, Jilin Province, China
- Cognitive Center, Department of Neurology, The First Hospital of Jilin University, Jilin University, Changchun, Jilin Province, China
| | - Meng Zhao
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Jilin University, Changchun, Jilin Province, China
- Cognitive Center, Department of Neurology, The First Hospital of Jilin University, Jilin University, Changchun, Jilin Province, China
| | - Panpan Zhao
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Jilin University, Changchun, Jilin Province, China
- Cognitive Center, Department of Neurology, The First Hospital of Jilin University, Jilin University, Changchun, Jilin Province, China
| | - Lingjie Meng
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Jilin University, Changchun, Jilin Province, China
- Cognitive Center, Department of Neurology, The First Hospital of Jilin University, Jilin University, Changchun, Jilin Province, China
| | - Yan Zhang
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Jilin University, Changchun, Jilin Province, China
- Cognitive Center, Department of Neurology, The First Hospital of Jilin University, Jilin University, Changchun, Jilin Province, China
| | - Guimei Zhang
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Jilin University, Changchun, Jilin Province, China
- Cognitive Center, Department of Neurology, The First Hospital of Jilin University, Jilin University, Changchun, Jilin Province, China
| | - Yezi Taishi
- Department of Cadre Ward, The First Hospital of Jilin University, Jilin University, Changchun, Jilin Province, China
| | - Li Sun
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Jilin University, Changchun, Jilin Province, China
- Cognitive Center, Department of Neurology, The First Hospital of Jilin University, Jilin University, Changchun, Jilin Province, China
| |
Collapse
|
147
|
Carpita B, Nardi B, Bonelli C, Pascariello L, Massimetti G, Cremone IM, Pini S, Palego L, Betti L, Giannaccini G, Dell’Osso L. Platelet Levels of Brain-Derived Neurotrophic Factor in Adults with Autism Spectrum Disorder: Is There a Specific Association with Autism Spectrum Psychopathology? Biomedicines 2024; 12:1529. [PMID: 39062102 PMCID: PMC11274613 DOI: 10.3390/biomedicines12071529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/05/2024] [Accepted: 07/06/2024] [Indexed: 07/28/2024] Open
Abstract
To date, although several studies have investigated the circulating levels of brain-derived neurotrophic factor (BDNF) in children with autism spectrum disorder (ASD), only a few authors have addressed their evaluation in adults. Furthermore, an important limitation of these studies lies in the fact that circulating BDNF is stored in platelets and released into the circulation when needed. To the best of our knowledge, a very limited number of studies have related peripheral BDNF values to platelet counts, and yet no study has evaluated intra-platelet BDNF levels in adults with ASD. In this framework, the aim of the present work is to pave the way in this field and evaluate platelet BNDF levels in adult ASD patients, as well as their correlation with autistic symptoms and related psychopathological dimensions. We recruited 22 ASD and 22 healthy controls, evaluated with the Adult autism subthreshold spectrum (AdAS Spectrum), the Social Anxiety Spectrum-self report (SHY-SR), the Trauma and loss spectrum-self report (TALS-SR), the Work and Social Adjustment Scale (WSAS), and the Mood Spectrum-self report for suicidality. Intra-platelet BDNF levels were also assessed. The results highlighted lower BDNF levels in the ASD group; moreover, AdAS Spectrum and WSAS total score as well as AdAS Spectrum Restricted interest and rumination, WSAS Private leisure activities, TALS-SR Arousal, and SHY-SR Childhood domains were significant negative predictors of platelet BDNF levels.
Collapse
Affiliation(s)
- Barbara Carpita
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (B.C.); (C.B.); (L.P.); (G.M.); (I.M.C.); (S.P.); (L.D.)
| | - Benedetta Nardi
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (B.C.); (C.B.); (L.P.); (G.M.); (I.M.C.); (S.P.); (L.D.)
| | - Chiara Bonelli
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (B.C.); (C.B.); (L.P.); (G.M.); (I.M.C.); (S.P.); (L.D.)
| | - Lavinia Pascariello
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (B.C.); (C.B.); (L.P.); (G.M.); (I.M.C.); (S.P.); (L.D.)
| | - Gabriele Massimetti
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (B.C.); (C.B.); (L.P.); (G.M.); (I.M.C.); (S.P.); (L.D.)
| | - Ivan Mirko Cremone
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (B.C.); (C.B.); (L.P.); (G.M.); (I.M.C.); (S.P.); (L.D.)
| | - Stefano Pini
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (B.C.); (C.B.); (L.P.); (G.M.); (I.M.C.); (S.P.); (L.D.)
| | - Lionella Palego
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy; (L.P.); (L.B.); (G.G.)
| | - Laura Betti
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy; (L.P.); (L.B.); (G.G.)
| | - Gino Giannaccini
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy; (L.P.); (L.B.); (G.G.)
| | - Liliana Dell’Osso
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (B.C.); (C.B.); (L.P.); (G.M.); (I.M.C.); (S.P.); (L.D.)
| |
Collapse
|
148
|
Loganathan T, George Priya Doss C. Biomarker identification of medullary thyroid carcinoma from gene expression profiles considering without-treatment and with-treatment studies-A bioinformatics approach. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2024; 142:367-396. [PMID: 39059991 DOI: 10.1016/bs.apcsb.2023.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
Medullary thyroid carcinoma (MTC) is a neuroendocrine tumor derived from parafollicular thyroid gland cells. In both hereditary MTC and sporadic forms, genetic changes result in fundamental changes, and prognosis and mutational status are highly correlated. In this work, biomarker genes (DEGs and DEmiRNAs) for MTC will be computationally identified in order to help in their diagnosis and treatment. The gene expression profiles of two different types of studies, namely without-treatment (wo-trt) and with-treatment (w-trt), are considered for discovering biomarkers. The datasets were retrieved from the GEO database, and the DEGs and DEmiRNAs were analyzed using ExpressAnalyst and GEO2R. The functional analysis of DEGs and DEmiRNAs was performed, and most of the pathways enriched related to thyroid oncological pathways such as MAPK pathway,mTOR pathway, and PI3K-AKT Signaling pathway. Through this conclusion, the RET gene was upregulated wo-trt; the dinaciclib treatment RET gene was down-regulated computationally. To optimize the therapeutic targeting of RET, greater research into the mechanisms regulating RET transcription is necessary.
Collapse
Affiliation(s)
- Tamizhini Loganathan
- Laboratory of Integrative Genomics, Department of Integrative Biology, School of BioSciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India
| | - C George Priya Doss
- Laboratory of Integrative Genomics, Department of Integrative Biology, School of BioSciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India.
| |
Collapse
|
149
|
Kolasa M, Nikiforuk A, Korlatowicz A, Solich J, Potasiewicz A, Dziedzicka-Wasylewska M, Bugno R, Hogendorf A, Bojarski A, Faron-Górecka A. Unraveling psilocybin's therapeutic potential: behavioral and neuroplasticity insights in Wistar-Kyoto and Wistar male rat models of treatment-resistant depression. Psychopharmacology (Berl) 2024:10.1007/s00213-024-06644-3. [PMID: 38963553 DOI: 10.1007/s00213-024-06644-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 06/26/2024] [Indexed: 07/05/2024]
Abstract
RATIONALE Our study aimed to unravel the unknown mechanisms behind the exceptional efficacy of Psilocybin (PSI) in treating treatment-resistant depression (TRD). Focusing on Wistar-Kyoto (WKY) rats with a TRD phenotype and Wistar (WIS) rats as a normative comparison, we investigated behavioral and neuroplasticity-related responses to PSI, striving to shed light on the distinctive features of its antidepressant effects. OBJECTIVES We set out to assess the behavioral impact of acute and prolonged PSI administration on WKY and WIS rats, employing Novel Object Recognition (NORT), Social Interaction (SI), and Forced Swimming Test (FST). Our secondary objectives involved exploring strain-specific alterations in neuroplasticity-related parameters, including brain-derived neurotrophic factor (BDNF) and activity-regulated cytoskeleton-associated protein (Arc). METHODS Conducting post-acute and extended assessments after a single PSI administration, we applied behavioral tests and biochemical analyses to measure serum BDNF levels and neuroplasticity-related parameters in the prefrontal cortex. Statistical analyses were deployed to discern significant differences between the rat strains and assess the impact of PSI on behavioral and biochemical outcomes. RESULTS Our findings uncovered significant behavioral disparities between WKY and WIS rats, indicating passive behavior and social withdrawal in the former. PSI demonstrated pronounced pro-social and antidepressant effects in both strains, each with its distinctive temporal trajectory. Notably, we identified strain-specific variations in BDNF-related signaling and observed the modulation of Arc expression in WKY rats. CONCLUSIONS Our study delineated mood-related behavioral nuances between WKY and WIS rat strains, underscoring the antidepressant and pro-social properties of PSI in both groups. The distinct temporal patterns of observed changes and the identified strain-specific neuroplasticity alterations provide valuable insights into the TRD phenotype and the mechanisms underpinning the efficacy of PSI.
Collapse
Affiliation(s)
- Magdalena Kolasa
- Department of Pharmacology, Maj Institute of Pharmacology Polish Academy of Sciences, Kraków, Poland
| | - Agnieszka Nikiforuk
- Department of Behavioral Neuroscience & Drug Development, Maj Institute of Pharmacology Polish Academy of Sciences, Kraków, Poland
| | - Agata Korlatowicz
- Department of Pharmacology, Maj Institute of Pharmacology Polish Academy of Sciences, Kraków, Poland
| | - Joanna Solich
- Department of Pharmacology, Maj Institute of Pharmacology Polish Academy of Sciences, Kraków, Poland
| | - Agnieszka Potasiewicz
- Department of Behavioral Neuroscience & Drug Development, Maj Institute of Pharmacology Polish Academy of Sciences, Kraków, Poland
| | | | - Ryszard Bugno
- Department of Medicinal Chemistry, Maj Institute of Pharmacology Polish Academy of Sciences, Kraków, Poland
| | - Adam Hogendorf
- Department of Medicinal Chemistry, Maj Institute of Pharmacology Polish Academy of Sciences, Kraków, Poland
| | - Andrzej Bojarski
- Department of Medicinal Chemistry, Maj Institute of Pharmacology Polish Academy of Sciences, Kraków, Poland
| | - Agata Faron-Górecka
- Department of Pharmacology, Maj Institute of Pharmacology Polish Academy of Sciences, Kraków, Poland.
| |
Collapse
|
150
|
Li D, Liu C, Wang H, Li Y, Wang Y, An S, Sun S. The Role of Neuromodulation and Potential Mechanism in Regulating Heterotopic Ossification. Neurochem Res 2024; 49:1628-1642. [PMID: 38416374 DOI: 10.1007/s11064-024-04118-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/17/2024] [Accepted: 01/28/2024] [Indexed: 02/29/2024]
Abstract
Heterotopic ossification (HO) is a pathological process characterized by the aberrant formation of bone in muscles and soft tissues. It is commonly triggered by traumatic brain injury, spinal cord injury, and burns. Despite a wide range of evidence underscoring the significance of neurogenic signals in proper bone remodeling, a clear understanding of HO induced by nerve injury remains rudimentary. Recent studies suggest that injury to the nervous system can activate various signaling pathways, such as TGF-β, leading to neurogenic HO through the release of neurotrophins. These pathophysiological changes lay a robust groundwork for the prevention and treatment of HO. In this review, we collected evidence to elucidate the mechanisms underlying the pathogenesis of HO related to nerve injury, aiming to enhance our understanding of how neurological repair processes can culminate in HO.
Collapse
Affiliation(s)
- Dengju Li
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- Shandong First Medical University, Jinan, Shandong, China
| | - Changxing Liu
- Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
| | - Haojue Wang
- Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
| | - Yunfeng Li
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Yaqi Wang
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Senbo An
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.
- Shandong First Medical University, Jinan, Shandong, China.
| | - Shui Sun
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.
- Shandong First Medical University, Jinan, Shandong, China.
- Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China.
| |
Collapse
|