101
|
K. B. A, Madhavan A, T. R. R, Thomas S, Nisha P. Short chain fatty acids enriched fermentation metabolites of soluble dietary fibre from Musa paradisiaca drives HT29 colon cancer cells to apoptosis. PLoS One 2019; 14:e0216604. [PMID: 31095579 PMCID: PMC6522120 DOI: 10.1371/journal.pone.0216604] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 04/24/2019] [Indexed: 12/15/2022] Open
Abstract
In this study, the prebiotic potential of soluble dietary fibre extracted from plantain inflorescence (PIF) was investigated. PIF demonstrated prebiotic potential by enhancing the growth of the probiotics under study and thereby hindered colon cancer development. The soluble dietary fibre from Musa paradisiaca inflorescence (PIF) was fermented using Lactobacillus casei and Bifidobacterium bifidum. The fermentation supernatants (LS and BS) were enriched with short chain fatty acids (SCFA) and were able to initiate apoptotic signalling in HT29 colon cancer cells leading to cell death. Both BS and LS exhibited cytotoxic effect; induced DNA damage and enhanced generation of reactive oxygen species in HT29 cells leading to apoptosis. The induction of apoptosis was facilitated by the reduction of membrane potential of mitochondria and ATP synthesis; enhanced delivery of cytochrome c and interference with the expression of pro/antiapoptotic proteins. BS, which exhibited better activity, was further analysed for the identification of differentially regulated proteins by performing two dimensional electrophoresis and MALDI-TOF mass spectrometry. Results emphasized on the fact that, the exposure to BSalteredthe HT29 proteins expression, particularly the upregulation of apoptosis- inducing factor-AIFM1 leading to apoptosis of HT29 cells.
Collapse
Affiliation(s)
- Arun K. B.
- Agro Processing and Technology Division, National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, Kerala, India
| | - Aravind Madhavan
- Microbial Processing and Technology Division, CSIR-NIIST, Thiruvananthapuram, Kerala, India
| | - Reshmitha T. R.
- Agro Processing and Technology Division, National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, Kerala, India
- Academy of Scientific and Innovative Research (AcSIR), New Delhi, India
| | - Sithara Thomas
- Agro Processing and Technology Division, National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, Kerala, India
- Academy of Scientific and Innovative Research (AcSIR), New Delhi, India
| | - P. Nisha
- Agro Processing and Technology Division, National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, Kerala, India
- Academy of Scientific and Innovative Research (AcSIR), New Delhi, India
- * E-mail:
| |
Collapse
|
102
|
Kuzma J, Chmelař D, Hájek M, Lochmanová A, Čižnár I, Rozložník M, Klugar M. The role of intestinal microbiota in the pathogenesis of colorectal carcinoma. Folia Microbiol (Praha) 2019; 65:17-24. [PMID: 31001762 DOI: 10.1007/s12223-019-00706-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 04/03/2019] [Indexed: 12/12/2022]
Abstract
The symbiotic relationship between intestinal microbiota and the host is a major mechanism of prevention against the development of chronic and metabolic diseases. The intestinal microbiota provides several physiological functions of the organism from the creation of a natural functional barrier with a subsequent immunostimulatory activity up to affecting the energy metabolism of the host. Disruption of physiological intestinal microbiota is reported as one of the major etiological factors of initiation and progression of colorectal carcinoma (CRC). Chronic low-grade inflammation is associated with the development of CRC, through the production of inflammatory cytokines and reactive oxygen species. CRC occurs in association with high-protein and high-fat diets in combination with low-fiber intake. The problem of intestinal dysbiosis and oncological diseases is a multidisciplinary problem and it is necessary to focus on several fields of medicine such as public health, clinical pharmacology, and internal medicine. The aim of this review is describing the role of gut dysbiosis in pathogenesis of colorectal carcinoma.
Collapse
Affiliation(s)
- Jozef Kuzma
- Department of Biomedical Sciences, Institute of Microbiology and Immunology, Faculty of Medicine, University of Ostrava, Syllabova 19, 703 00, Ostrava-Zábřeh, Ostrava, Czech Republic
| | - Dittmar Chmelař
- Department of Biomedical Sciences, Institute of Microbiology and Immunology, Faculty of Medicine, University of Ostrava, Syllabova 19, 703 00, Ostrava-Zábřeh, Ostrava, Czech Republic
- Czech Anaerobic Bacteria Reference Laboratory, Faculty of Medicine, University of Ostrava, Ostrava, Czech Republic
| | - Michal Hájek
- Department of Biomedical Sciences, Institute of Microbiology and Immunology, Faculty of Medicine, University of Ostrava, Syllabova 19, 703 00, Ostrava-Zábřeh, Ostrava, Czech Republic.
- Centre of Hyperbaric Medicine, Ostrava City Hospital, Ostrava, Czech Republic.
| | - Alexandra Lochmanová
- Department of Biomedical Sciences, Institute of Microbiology and Immunology, Faculty of Medicine, University of Ostrava, Syllabova 19, 703 00, Ostrava-Zábřeh, Ostrava, Czech Republic
- Department of Immunology and Alergology, Public Health Institute Ostrava, Ostrava, Czech Republic
| | - Ivan Čižnár
- Department of Biomedical Sciences, Institute of Microbiology and Immunology, Faculty of Medicine, University of Ostrava, Syllabova 19, 703 00, Ostrava-Zábřeh, Ostrava, Czech Republic
- Faculty of Public Health, Slovak Medical University, Bratislava, Slovakia
| | - Miroslav Rozložník
- Department of Biomedical Sciences, Institute of Microbiology and Immunology, Faculty of Medicine, University of Ostrava, Syllabova 19, 703 00, Ostrava-Zábřeh, Ostrava, Czech Republic
| | - Miloslav Klugar
- Institute of Biostatistics and Analyses, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| |
Collapse
|
103
|
Disordered intestinal microbes are associated with the activity of Systemic Lupus Erythematosus. Clin Sci (Lond) 2019; 133:821-838. [PMID: 30872359 DOI: 10.1042/cs20180841] [Citation(s) in RCA: 114] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 01/09/2019] [Accepted: 03/13/2019] [Indexed: 12/21/2022]
Abstract
Abstract
Intestinal dysbiosis is implicated in Systemic Lupus Erythematosus (SLE). However, the evidence of gut microbiome changes in SLE is limited, and the association of changed gut microbiome with the activity of SLE, as well as its functional relevance with SLE still remains unknown. Here, we sequenced 16S rRNA amplicon on fecal samples from 40 SLE patients (19 active patients, 21 remissive patients), 20 disease controls (Rheumatoid Arthritis (RA) patients), and 22 healthy controls (HCs), and investigated the association of functional categories with taxonomic composition by Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt). We demonstrated SLE patients, particularly the active patients, had significant dysbiosis in gut microbiota with reduced bacterial diversity and biased community constitutions. Amongst the disordered microbiota, the genera Streptococcus, Campylobacter, Veillonella, the species anginosus and dispar, were positively correlated with lupus activity, while the genus Bifidobacterium was negatively associated with the disease activity. PICRUSt analysis showed metabolic pathways were different between SLE and HCs, and also between active and remissive SLE patients. Moreover, we revealed that a random forest model could distinguish SLE from RA and HCs (area under the curve (AUC) = 0.792), and another random forest model could well predict the activity of SLE patients (AUC = 0.811). In summary, SLE patients, especially the active patients, show an apparent dysbiosis in gut microbiota and its related metabolic pathways. Amongst the disordered microflora, four genera and two species are associated with lupus activity. Furthermore, the random forest models are able to diagnose SLE and predict disease activity.
Collapse
|
104
|
Chen J, Bian D, Zang S, Yang Z, Tian G, Luo Y, Yang J, Xu B, Shi J. The association between nonalcoholic fatty liver disease and risk of colorectal adenoma and cancer incident and recurrence: a meta-analysis of observational studies. Expert Rev Gastroenterol Hepatol 2019; 13:385-395. [PMID: 30791768 DOI: 10.1080/17474124.2019.1580143] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND & AIM Lifestyle modification plays a key role in nonalcoholic fatty liver disease (NAFLD) and colorectal adenoma and/or cancer (CRA/CRC) development. However, the association between NAFLD and the risk of CRA/CRC has not been carefully evaluated. METHODS In this meta-analysis, we assessed 21 eligible studies including 124,206 participants to determine the association between NAFLD and the risk of incident and recurrent CRA/CRC. RESULTS NAFLD presence was associated with an increased risk of any incident CRA (aOR: 1.30, 95% CI: 1.19-1.43) and advanced incident CRA/CRC (aOR: 1.57, 95% CI: 1.21-2.04). The severity of NAFLD affected this correlation: compared to mild and/or moderate NAFLD, severe NAFLD was associated with an increased risk of incident CRA/CRC (aOR: 2.19, 95% CI: 1.33-3.60). Although pooled cOR revealed that NAFLD was associated with an increased risk of recurrent CRA/CRC (cOR = 1.73; 95% CI: 1.12-2.68), after adjustment for confounding factors, NAFLD had less correlation with the risk of recurrent CRA/CRC (aOR: 1.81, 95% CI: 0.70-4.65). CONCLUSIONS The presence and severity of NAFLD are associated with an increased risk of incident CRA/CRC. However, there is insufficient evidence to indicate that NAFLD is associated with an increased risk of recurrent CRA/CRC.
Collapse
Affiliation(s)
- Jin Chen
- a Department of Postgraduates , Zhejiang Chinese Medical University , Hangzhou , Zhejiang , China
| | - Dongxue Bian
- b Department of Digestive Disease , Yancheng TCM Hospital Affiliated to Nanjing University of Chinese Medicine , Yancheng , Jiangsu , China
| | - Shufei Zang
- c Department of Endocrinology , The Fifth Affiliated Hospital of Fudan University , Shanghai , China
| | - Zongxing Yang
- d Department of Infectious Disease , Hangzhou Xixi hospital , Hangzhou , Zhejiang , China
| | - Guoyan Tian
- e Department of Transformation Medical platform , Hangzhou Normal University Affiliated Hospital , Hangzhou , Zhejiang , China
| | - Yan Luo
- e Department of Transformation Medical platform , Hangzhou Normal University Affiliated Hospital , Hangzhou , Zhejiang , China
| | - Jing Yang
- e Department of Transformation Medical platform , Hangzhou Normal University Affiliated Hospital , Hangzhou , Zhejiang , China
| | - Beibei Xu
- f Department of Postgraduates , China Medical University , Shenyang , Liaoning , China
| | - Junping Shi
- g Department of Liver Diseases , Hangzhou Normal University Affiliated Hospital , Hangzhou , Zhejiang , China
| |
Collapse
|
105
|
Rubinstein MR, Baik JE, Lagana SM, Han RP, Raab WJ, Sahoo D, Dalerba P, Wang TC, Han YW. Fusobacterium nucleatum promotes colorectal cancer by inducing Wnt/β-catenin modulator Annexin A1. EMBO Rep 2019; 20:embr.201847638. [PMID: 30833345 DOI: 10.15252/embr.201847638] [Citation(s) in RCA: 333] [Impact Index Per Article: 55.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 01/23/2019] [Accepted: 01/29/2019] [Indexed: 12/29/2022] Open
Abstract
Fusobacterium nucleatum, a Gram-negative oral anaerobe, is a significant contributor to colorectal cancer. Using an in vitro cancer progression model, we discover that F. nucleatum stimulates the growth of colorectal cancer cells without affecting the pre-cancerous adenoma cells. Annexin A1, a previously unrecognized modulator of Wnt/β-catenin signaling, is a key component through which F. nucleatum exerts its stimulatory effect. Annexin A1 is specifically expressed in proliferating colorectal cancer cells and involved in activation of Cyclin D1. Its expression level in colon cancer is a predictor of poor prognosis independent of cancer stage, grade, age, and sex. The FadA adhesin from F. nucleatum up-regulates Annexin A1 expression through E-cadherin. A positive feedback loop between FadA and Annexin A1 is identified in the cancerous cells, absent in the non-cancerous cells. We therefore propose a "two-hit" model in colorectal carcinogenesis, with somatic mutation(s) serving as the first hit, and F. nucleatum as the second hit exacerbating cancer progression after benign cells become cancerous. This model extends the "adenoma-carcinoma" model and identifies microbes such as F. nucleatum as cancer "facilitators".
Collapse
Affiliation(s)
- Mara Roxana Rubinstein
- Division of Periodontics, College of Dental Medicine, Columbia University, New York, NY, USA
| | - Jung Eun Baik
- Division of Periodontics, College of Dental Medicine, Columbia University, New York, NY, USA
| | - Stephen M Lagana
- Department of Pathology and Cell Biology, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA
| | | | - William J Raab
- Department of Pathology and Cell Biology, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA
| | - Debashis Sahoo
- Department of Computer Science and Engineering, University of California San Diego, San Diego, CA, USA
| | - Piero Dalerba
- Department of Pathology and Cell Biology, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA.,Columbia Stem Cell Initiative, Columbia University, New York, NY, USA.,Division of Digestive and Liver Diseases, Columbia University, New York, NY, USA.,Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA
| | - Timothy C Wang
- Division of Digestive and Liver Diseases, Columbia University, New York, NY, USA.,Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA
| | - Yiping W Han
- Division of Periodontics, College of Dental Medicine, Columbia University, New York, NY, USA .,Division of Digestive and Liver Diseases, Columbia University, New York, NY, USA.,Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA.,Department of Microbiology and Immunology, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA
| |
Collapse
|
106
|
Saito K, Koido S, Odamaki T, Kajihara M, Kato K, Horiuchi S, Adachi S, Arakawa H, Yoshida S, Akasu T, Ito Z, Uchiyama K, Saruta M, Xiao JZ, Sato N, Ohkusa T. Metagenomic analyses of the gut microbiota associated with colorectal adenoma. PLoS One 2019; 14:e0212406. [PMID: 30794590 PMCID: PMC6386391 DOI: 10.1371/journal.pone.0212406] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Accepted: 02/02/2019] [Indexed: 02/07/2023] Open
Abstract
Recent studies have suggested an association between certain members of the Fusobacterium genus, especially F. nucleatum, and the progression of advanced colorectal carcinoma (CRC). We assessed such an association of the gut microbiota in Japanese patients with colorectal adenoma (CRA) or intramucosal CRC using colonoscopy aspirates. We analyzed samples from 81 Japanese patients, including 47 CRA and 24 intramucosal CRC patients, and 10 healthy subjects. Metagenomic analysis of the V3-V4 region of the 16S ribosomal RNA gene was performed. The linear discriminant analysis (LDA) effect size (LEfSe) method was used to examine microbial dysbiosis, revealing significant differences in bacterial abundances between the healthy controls and CRA or intramucosal CRC patients. In particular, F. varium was statistically more abundant in patients with CRA and intramucosal CRC than in healthy subjects. Here, we present the metagenomic profile of CRA and intramucosal CRC and demonstrate that F. varium is at least partially involved in the pathogenesis of CRA and intramucosal CRC.
Collapse
Affiliation(s)
- Keisuke Saito
- Division of Gastroenterology and Hepatology, The Jikei University School of Medicine, Kashiwa Hospital, Chiba, Japan
| | - Shigeo Koido
- Division of Gastroenterology and Hepatology, The Jikei University School of Medicine, Kashiwa Hospital, Chiba, Japan
- * E-mail:
| | - Toshitaka Odamaki
- Gut Microbiota Department, Next Generation Science Institute, Morinaga Milk Industry Co., Ltd., Kanagawa, Japan
| | - Mikio Kajihara
- Division of Gastroenterology and Hepatology, The Jikei University School of Medicine, Kashiwa Hospital, Chiba, Japan
| | - Kumiko Kato
- Gut Microbiota Department, Next Generation Science Institute, Morinaga Milk Industry Co., Ltd., Kanagawa, Japan
| | - Sankichi Horiuchi
- Division of Gastroenterology and Hepatology, The Jikei University School of Medicine, Kashiwa Hospital, Chiba, Japan
| | - Sei Adachi
- Department of Endoscopy, The Jikei University School of Medicine, Kashiwa Hospital, Chiba, Japan
| | - Hiroshi Arakawa
- Department of Endoscopy, The Jikei University School of Medicine, Kashiwa Hospital, Chiba, Japan
| | - Sayumi Yoshida
- Division of Gastroenterology and Hepatology, The Jikei University School of Medicine, Kashiwa Hospital, Chiba, Japan
| | - Takafumi Akasu
- Division of Gastroenterology and Hepatology, The Jikei University School of Medicine, Kashiwa Hospital, Chiba, Japan
| | - Zensho Ito
- Division of Gastroenterology and Hepatology, The Jikei University School of Medicine, Kashiwa Hospital, Chiba, Japan
| | - Kan Uchiyama
- Division of Gastroenterology and Hepatology, The Jikei University School of Medicine, Kashiwa Hospital, Chiba, Japan
| | - Masayuki Saruta
- Division of Gastroenterology and Hepatology, The Jikei University School of Medicine, Tokyo, Japan
| | - Jin-zhong Xiao
- Gut Microbiota Department, Next Generation Science Institute, Morinaga Milk Industry Co., Ltd., Kanagawa, Japan
| | - Nobuhiro Sato
- Department of Microbiota Research, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Toshifumi Ohkusa
- Division of Gastroenterology and Hepatology, The Jikei University School of Medicine, Kashiwa Hospital, Chiba, Japan
- Department of Microbiota Research, Juntendo University Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
107
|
The gut microflora assay in patients with colorectal cancer: in feces or tissue samples? IRANIAN JOURNAL OF MICROBIOLOGY 2019; 11:1-6. [PMID: 30996824 PMCID: PMC6462264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Gut microbiota is the complex community of microorganisms that live in the digestive tracts of humans and other animals, including insects. The relationship between gut microbiota and human health is mutualistic and altered bacterial compositions in fecal and mucosal specimens of colon in patients with cancer compared to healthy subjects were observed. Thereby, studying the gut microbiota, their interactions with the host and their alterations in colorectal cancer (CRC) patients could be helpful to diagnose and treat the disease in earlier stages. In CRC research, the most common samples are feces and tumor tissues. Interestingly, scientists have quite different views regarding gut microbiota composition of feces and tissues. Some believe bacterial populations in feces and mucosa are completely distinct and differ in composition and diversity while some others declare similar variations. Actually, both types of specimens have some advantages and disadvantages in survey of gut microbiota. Fecal samples serve as a noninvasive approach for screening tests while mucosal associated samples are more powerful for identification of bacteria with adenoma and CRC initiation and growth. Here we have discussed the advantages and disadvantages of two type of specimens in CRC investigations and also discussed the similarities and differences of microbial composition between stool and tissue specimens.
Collapse
|
108
|
Bin P, Tang Z, Liu S, Chen S, Xia Y, Liu J, Wu H, Zhu G. Intestinal microbiota mediates Enterotoxigenic Escherichia coli-induced diarrhea in piglets. BMC Vet Res 2018; 14:385. [PMID: 30518356 PMCID: PMC6282381 DOI: 10.1186/s12917-018-1704-9] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 11/21/2018] [Indexed: 12/31/2022] Open
Abstract
Background Enterotoxigenic Escherichia coli (ETEC) causes diarrhea in humans, cows, and pigs. The gut microbiota underlies pathology of several infectious diseases yet the role of the gut microbiota in the pathogenesis of ETEC-induced diarrhea is unknown. Results By using an ETEC induced diarrheal model in piglet, we profiled the jejunal and fecal microbiota using metagenomics and 16S rRNA sequencing. A jejunal microbiota transplantation experiment was conducted to determine the role of the gut microbiota in ETEC-induced diarrhea. ETEC-induced diarrhea influenced the structure and function of gut microbiota. Diarrheal piglets had lower Bacteroidetes: Firmicutes ratio and microbiota diversity in the jejunum and feces, and lower percentage of Prevotella in the feces, but higher Lactococcus in the jejunum and higher Escherichia-Shigella in the feces. The transplantation of the jejunal microbiota from diarrheal piglets to uninfected piglets leaded to diarrhea after transplantation. Microbiota transplantation experiments also supported the notion that dysbiosis of gut microbiota is involved in the immune responses in ETEC-induced diarrhea. Conclusion We conclude that ETEC infection influences the gut microbiota and the dysbiosis of gut microbiota after ETEC infection mediates the immune responses in ETEC infection. Electronic supplementary material The online version of this article (10.1186/s12917-018-1704-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Peng Bin
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Jiangsu Co-innovation Center for Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Zhiyi Tang
- College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Shaojuan Liu
- College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Shuai Chen
- Laboratory of Animal Nutrition and Health and Key Laboratory of Agro-Ecology, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, Hunan, 410125, People's Republic of China
| | - Yaoyao Xia
- Laboratory of Animal Nutrition and Health and Key Laboratory of Agro-Ecology, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, Hunan, 410125, People's Republic of China
| | - Jiaqi Liu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Jiangsu Co-innovation Center for Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Hucong Wu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Jiangsu Co-innovation Center for Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Guoqiang Zhu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Jiangsu Co-innovation Center for Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, China.
| |
Collapse
|
109
|
Abstract
Purpose of Review Metabolic reprogramming is essential for the rapid proliferation of cancer cells and is thus recognized as a hallmark of cancer. In this review, we will discuss the etiologies and effects of metabolic reprogramming in colorectal cancer. Recent Findings Changes in cellular metabolism may precede the acquisition of driver mutations ultimately leading to colonocyte transformation. Oncogenic mutations and loss of tumor suppressor genes further reprogram CRC cells to upregulate glycolysis, glutaminolysis, one-carbon metabolism, and fatty acid synthesis. These metabolic changes are not uniform throughout tumors, as subpopulations of tumor cells may rely on different pathways to adapt to nutrient availability in the local tumor microenvironment. Finally, metabolic cross-communication between stromal cells, immune cells, and the gut microbiota enable CRC growth, invasion, and metastasis. Summary Altered cellular metabolism occurs in CRC at multiple levels, including in the cells that make up the bulk of CRC tumors, cancer stem cells, the tumor microenvironment, and host-microbiome interactions. This knowledge may inform the development of improved screening and therapeutics for CRC.
Collapse
Affiliation(s)
- Rachel E Brown
- Program in Cancer Biology, Vanderbilt University, Nashville, TN, USA.,Vanderbilt University School of Medicine, Vanderbilt University, Nashville, TN, USA
| | - Sarah P Short
- Program in Cancer Biology, Vanderbilt University, Nashville, TN, USA.,Department of Medicine, Division of Gastroenterology, Hepatology, and Nutrition, Vanderbilt University Medical Center, B2215 Garland Ave., 1065D MRB-IV, Nashville, TN 37232-0252, USA
| | - Christopher S Williams
- Program in Cancer Biology, Vanderbilt University, Nashville, TN, USA.,Vanderbilt University School of Medicine, Vanderbilt University, Nashville, TN, USA.,Department of Medicine, Division of Gastroenterology, Hepatology, and Nutrition, Vanderbilt University Medical Center, B2215 Garland Ave., 1065D MRB-IV, Nashville, TN 37232-0252, USA.,Vanderbilt Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA.,Veterans Affairs Tennessee Valley HealthCare System, Nashville, TN, USA
| |
Collapse
|
110
|
Liu Y, Alookaran JJ, Rhoads JM. Probiotics in Autoimmune and Inflammatory Disorders. Nutrients 2018; 10:1537. [PMID: 30340338 PMCID: PMC6213508 DOI: 10.3390/nu10101537] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 10/14/2018] [Accepted: 10/15/2018] [Indexed: 12/14/2022] Open
Abstract
Probiotics have been used to ameliorate gastrointestinal symptoms since ancient times. Over the past 40 years, probiotics have been shown to impact the immune system, both in vivo and in vitro. This interaction is linked to gut microbes, their polysaccharide antigens, and key metabolites produced by these bacteria. At least four metabolic pathways have been implicated in mechanistic studies of probiotics, based on mechanistic studies in animal models. Microbial⁻immune system crosstalk has been linked to: short-chain fatty acid production and signaling, tryptophan metabolism and the activation of aryl hydrocarbon receptors, nucleoside signaling in the gut, and activation of the intestinal histamine-2 receptor. Several randomized controlled trials have now shown that microbial modification by probiotics may improve gastrointestinal symptoms and multiorgan inflammation in rheumatoid arthritis, ulcerative colitis, and multiple sclerosis. Future work will need to carefully assess safety issues, selection of optimal strains and combinations, and attempts to prolong the duration of colonization of beneficial microbes.
Collapse
Affiliation(s)
- Yuying Liu
- The Department of Pediatrics, Division of Gastroenterology, The University of Texas Health Science Center at Houston McGovern Medical School, Houston, TX 77030, USA.
| | - Jane J Alookaran
- The Department of Pediatrics, Division of Gastroenterology, The University of Texas Health Science Center at Houston McGovern Medical School, Houston, TX 77030, USA.
| | - J Marc Rhoads
- The Department of Pediatrics, Division of Gastroenterology, The University of Texas Health Science Center at Houston McGovern Medical School, Houston, TX 77030, USA.
| |
Collapse
|
111
|
Fernández MF, Reina-Pérez I, Astorga JM, Rodríguez-Carrillo A, Plaza-Díaz J, Fontana L. Breast Cancer and Its Relationship with the Microbiota. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:1747. [PMID: 30110974 PMCID: PMC6121903 DOI: 10.3390/ijerph15081747] [Citation(s) in RCA: 216] [Impact Index Per Article: 30.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 08/08/2018] [Accepted: 08/11/2018] [Indexed: 02/06/2023]
Abstract
The microorganisms that live symbiotically in human beings are increasingly recognized as important players in health and disease. The largest collection of these microorganisms is found in the gastrointestinal tract. Microbial composition reflects both genetic and lifestyle variables of the host. This microbiota is in a dynamic balance with the host, exerting local and distant effects. Microbial perturbation (dysbiosis) could contribute to the risk of developing health problems. Various bacterial genes capable of producing estrogen-metabolizing enzymes have been identified. Accordingly, gut microbiota is capable of modulating estrogen serum levels. Conversely, estrogen-like compounds may promote the proliferation of certain species of bacteria. Therefore, a crosstalk between microbiota and both endogenous hormones and estrogen-like compounds might synergize to provide protection from disease but also to increase the risk of developing hormone-related diseases. Recent research suggests that the microbiota of women with breast cancer differs from that of healthy women, indicating that certain bacteria may be associated with cancer development and with different responses to therapy. In this review, we discuss recent knowledge about the microbiome and breast cancer, identifying specific characteristics of the human microbiome that may serve to develop novel approaches for risk assessment, prevention and treatment for this disease.
Collapse
Affiliation(s)
- Mariana F Fernández
- Department of Radiology, School of Medicine, and Biomedical Research Center, University of Granada, 18071 Granada, Spain.
- Health Research Institute of Granada (ibs.GRANADA), 18010 Granada, Spain.
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), 28029 Madrid, Spain.
| | - Iris Reina-Pérez
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), 28029 Madrid, Spain.
| | - Juan Manuel Astorga
- Department of Radiology, School of Medicine, and Biomedical Research Center, University of Granada, 18071 Granada, Spain.
| | - Andrea Rodríguez-Carrillo
- Department of Radiology, School of Medicine, and Biomedical Research Center, University of Granada, 18071 Granada, Spain.
| | - Julio Plaza-Díaz
- Health Research Institute of Granada (ibs.GRANADA), 18010 Granada, Spain.
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, 18071 Granada, Spain.
- Institute of Nutrition and Food Technology "José Mataix", Biomedical Research Center, Parque Tecnológico Ciencias de la Salud, University of Granada, Armilla, 18100 Granada, Spain.
| | - Luis Fontana
- Health Research Institute of Granada (ibs.GRANADA), 18010 Granada, Spain.
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, 18071 Granada, Spain.
- Institute of Nutrition and Food Technology "José Mataix", Biomedical Research Center, Parque Tecnológico Ciencias de la Salud, University of Granada, Armilla, 18100 Granada, Spain.
| |
Collapse
|
112
|
Golob JL, Pergam SA, Srinivasan S, Fiedler TL, Liu C, Garcia K, Mielcarek M, Ko D, Aker S, Marquis S, Loeffelholz T, Plantinga A, Wu MC, Celustka K, Morrison A, Woodfield M, Fredricks DN. Stool Microbiota at Neutrophil Recovery Is Predictive for Severe Acute Graft vs Host Disease After Hematopoietic Cell Transplantation. Clin Infect Dis 2018; 65:1984-1991. [PMID: 29020185 PMCID: PMC5850019 DOI: 10.1093/cid/cix699] [Citation(s) in RCA: 137] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 08/03/2017] [Indexed: 12/13/2022] Open
Abstract
Background Graft-versus-host disease (GVHD) is common after allogeneic hematopoietic cell transplantation (HCT). Risk for death from GVHD has been associated with low bacterial diversity in the stool microbiota early after transplant; however, the specific species associated with GVHD risk remain poorly defined. Methods We prospectively collected serial weekly stool samples from 66 patients who underwent HCT, starting pre-transplantation and continuing weekly until 100 days post-transplant, a total of 694 observations in HCT recipients. We used 16S rRNA gene polymerase chain reaction with degenerate primers, followed by high-throughput sequencing to assess the relative abundance of sequence reads from bacterial taxa in stool samples over time. Results The gut microbiota was highly dynamic in HCT recipients, with loss and appearance of taxa common on short time scales. As in prior studies, GVHD was associated with lower alpha diversity of the stool microbiota. At neutrophil recovery post-HCT, the presence of oral Actinobacteria and oral Firmicutes in stool was positively correlated with subsequent GVHD; Lachnospiraceae were negatively correlated. A gradient of bacterial species (difference of the sum of the relative abundance of positive correlates minus the sum of the relative abundance of negative correlates) was most predictive (receiver operator characteristic area under the curve of 0.83) of subsequent severe acute GVHD. Conclusions The stool microbiota around the time of neutrophil recovery post-HCT is predictive of subsequent development of severe acute GVHD in this study.
Collapse
Affiliation(s)
- Jonathan L Golob
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Institute.,Division of Allergy and Infectious Diseases, University of Washington
| | - Steven A Pergam
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Institute.,Division of Allergy and Infectious Diseases, University of Washington
| | - Sujatha Srinivasan
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Institute
| | - Tina L Fiedler
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Institute
| | - Congzhou Liu
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Institute
| | - Kristina Garcia
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Institute
| | - Marco Mielcarek
- Clinical Research Division, Fred Hutchinson Cancer Institute.,Medicine
| | - Daisy Ko
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Institute
| | - Sarah Aker
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Institute
| | - Sara Marquis
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Institute
| | - Tillie Loeffelholz
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Institute
| | | | - Michael C Wu
- Public Health Sciences Division, Fred Hutchinson Cancer Institute
| | - Kevin Celustka
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Institute
| | - Alex Morrison
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Institute
| | - Maresa Woodfield
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Institute
| | - David N Fredricks
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Institute.,Division of Allergy and Infectious Diseases, University of Washington.,Department of Microbiology, University of Washington, Seattle
| |
Collapse
|
113
|
Sun L, Suo C, Li ST, Zhang H, Gao P. Metabolic reprogramming for cancer cells and their microenvironment: Beyond the Warburg Effect. Biochim Biophys Acta Rev Cancer 2018; 1870:51-66. [PMID: 29959989 DOI: 10.1016/j.bbcan.2018.06.005] [Citation(s) in RCA: 242] [Impact Index Per Article: 34.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 06/20/2018] [Accepted: 06/20/2018] [Indexed: 02/07/2023]
Abstract
While metabolic reprogramming of cancer cells has long been considered from the standpoint of how and why cancer cells preferentially utilize glucose via aerobic glycolysis, the so-called Warburg Effect, the progress in the following areas during the past several years has substantially advanced our understanding of the rewired metabolic network in cancer cells that is intertwined with oncogenic signaling. First, in addition to the major nutrient substrates glucose and glutamine, cancer cells have been discovered to utilize a variety of unconventional nutrient sources for survival. Second, the deregulated biomass synthesis is intertwined with cell cycle progression to coordinate the accelerated progression of cancer cells. Third, the reciprocal regulation of cancer cell's metabolic alterations and the microenvironment, involving extensive host immune cells and microbiota, have come into view as critical mechanisms to regulate cancer progression. These and other advances are shaping the current and future paradigm of cancer metabolism.
Collapse
Affiliation(s)
- Linchong Sun
- Laboratory of Cancer and Stem Cell metabolism, Guangzhou First Hospital, School of Medicine, South China University of Technology, Guangzhou 510006, China; CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
| | - Caixia Suo
- Laboratory of Cancer and Stem Cell metabolism, Guangzhou First Hospital, School of Medicine, South China University of Technology, Guangzhou 510006, China
| | - Shi-Ting Li
- Laboratory of Cancer and Stem Cell metabolism, Guangzhou First Hospital, School of Medicine, South China University of Technology, Guangzhou 510006, China; CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
| | - Huafeng Zhang
- CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei 230027, China.
| | - Ping Gao
- Laboratory of Cancer and Stem Cell metabolism, Guangzhou First Hospital, School of Medicine, South China University of Technology, Guangzhou 510006, China; CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei 230027, China.
| |
Collapse
|
114
|
Sze MA, Schloss PD. Leveraging Existing 16S rRNA Gene Surveys To Identify Reproducible Biomarkers in Individuals with Colorectal Tumors. mBio 2018; 9:e00630-18. [PMID: 29871916 PMCID: PMC5989068 DOI: 10.1128/mbio.00630-18] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 05/10/2018] [Indexed: 12/20/2022] Open
Abstract
An increasing body of literature suggests that both individual and collections of bacteria are associated with the progression of colorectal cancer. As the number of studies investigating these associations increases and the number of subjects in each study increases, a meta-analysis to identify the associations that are the most predictive of disease progression is warranted. We analyzed previously published 16S rRNA gene sequencing data collected from feces and colon tissue. We quantified the odds ratios (ORs) for individual bacterial taxa that were associated with an individual having tumors relative to a normal colon. Among the fecal samples, there were no taxa that had significant ORs associated with adenoma and there were 8 taxa with significant ORs associated with carcinoma. Similarly, among the tissue samples, there were no taxa that had a significant OR associated with adenoma and there were 3 taxa with significant ORs associated with carcinoma. Among the significant ORs, the association between individual taxa and tumor diagnosis was equal to or below 7.11. Because individual taxa had limited association with tumor diagnosis, we trained Random Forest classification models using only the taxa that had significant ORs, using the entire collection of taxa found in each study, and using operational taxonomic units defined based on a 97% similarity threshold. All training approaches yielded similar classification success as measured using the area under the curve. The ability to correctly classify individuals with adenomas was poor, and the ability to classify individuals with carcinomas was considerably better using sequences from feces or tissue.IMPORTANCE Colorectal cancer is a significant and growing health problem in which animal models and epidemiological data suggest that the colonic microbiota have a role in tumorigenesis. These observations indicate that the colonic microbiota is a reservoir of biomarkers that may improve our ability to detect colonic tumors using noninvasive approaches. This meta-analysis identifies and validates a set of 8 bacterial taxa that can be used within a Random Forest modeling framework to differentiate individuals as having normal colons or carcinomas. When models trained using one data set were tested on other data sets, the models performed well. These results lend support to the use of fecal biomarkers for the detection of tumors. Furthermore, these biomarkers are plausible candidates for further mechanistic studies into the role of the gut microbiota in tumorigenesis.
Collapse
Affiliation(s)
- Marc A Sze
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, USA
| | - Patrick D Schloss
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
115
|
Ducatelle R, Goossens E, De Meyer F, Eeckhaut V, Antonissen G, Haesebrouck F, Van Immerseel F. Biomarkers for monitoring intestinal health in poultry: present status and future perspectives. Vet Res 2018; 49:43. [PMID: 29739469 PMCID: PMC5941335 DOI: 10.1186/s13567-018-0538-6] [Citation(s) in RCA: 158] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 04/23/2018] [Indexed: 02/07/2023] Open
Abstract
Intestinal health is determined by host (immunity, mucosal barrier), nutritional, microbial and environmental factors. Deficiencies in intestinal health are associated with shifts in the composition of the intestinal microbiome (dysbiosis), leakage of the mucosal barrier and/or inflammation. Since the ban on growth promoting antimicrobials in animal feed, these dysbiosis-related problems have become a major issue, especially in intensive animal farming. The economical and animal welfare consequences are considerable. Consequently, there is a need for continuous monitoring of the intestinal health status, particularly in intensively reared animals, where the intestinal function is often pushed to the limit. In the current review, the recent advances in the field of intestinal health biomarkers, both in human and veterinary medicine are discussed, trying to identify present and future markers of intestinal health in poultry. The most promising new biomarkers will be stable molecules ending up in the feces and litter that can be quantified, preferably using rapid and simple pen-side tests. It is unlikely, however, that a single biomarker will be sufficient to follow up all aspects of intestinal health. Combinations of multiple biomarkers and/or metabarcoding, metagenomic, metatranscriptomic, metaproteomic and metabolomic approaches will be the way to go in the future. Candidate biomarkers currently are being investigated by many research groups, but the validation will be a major challenge, due to the complexity of intestinal health in the field.
Collapse
Affiliation(s)
- Richard Ducatelle
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium.
| | - Evy Goossens
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium
| | - Fien De Meyer
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium
| | - Venessa Eeckhaut
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium
| | - Gunther Antonissen
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium.,Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium
| | - Freddy Haesebrouck
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium
| | - Filip Van Immerseel
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium
| |
Collapse
|
116
|
Sulżyc-Bielicka V, Kołodziejczyk L, Jaczewska S, Bielicki D, Safranow K, Bielicki P, Kładny J, Rogowski W. Colorectal cancer and Cryptosporidium spp. infection. PLoS One 2018; 13:e0195834. [PMID: 29672572 PMCID: PMC5908144 DOI: 10.1371/journal.pone.0195834] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 04/01/2018] [Indexed: 01/06/2023] Open
Abstract
Transient or constant impaired immunity is often associated with neoplastic disease or oncological treatment. Among the most common pathogens found in patients with HIV or patients undergoing chemotherapy are protozoans of the Cryptosporidium genus, which cause diarrhea in humans and animals. The present study determined the frequency of Cryptosporidium spp. infections in patients with colorectal cancer (N = 108; 42 women; 66 men; median age, 65 years), before beginning oncological treatment, compared to a control group (N = 125; 56 women, 69 men; median age, 63 years) without colorectal cancer or a history of oncological disease. We also assessed whether Cryptosporidium spp. infections were associated with age, gender, cancer stage (based on Astler-Coller or TNM classification), histological grade, or cancer location. Patients were treated at the Pomeranian Medical University, in 2009-2014. The presence of Cryptosporidium spp. antigen was determined in stool samples, analyzed with a commercial immunoenzymatic test. Cryptosporidium spp. infections occurred significantly more often (p = 0.015) in patients (13%) compared to controls (4%). The patient group showed no significant relationship between Cryptosporidium spp. infection and sex, age, tumor location, cancer grade, or stage. A multivariate logistic regression analysis adjusted for age and sex that included all subjects (patient + control groups, n = 233) showed that the odds of a Cryptosporidium spp. infection were more than three-fold higher in patients than in controls, and more than six-fold higher among men than among women. CONCLUSIONS 1) Cryptosporidium spp. infections occurred significantly more frequently in patients with colorectal cancer (before oncological treatment) compared to controls, independent of age and sex. 2) Cryptosporidium spp. infections were not associated with the colorectal cancer stage, grade, or location or with patient age. 3) Male gender was significantly related to the frequency of Cryptosporidium spp. infections, independent of age and the presence of colorectal cancer.
Collapse
Affiliation(s)
| | - Lidia Kołodziejczyk
- Chair and Department of Biology and Medical Parasitology, Pomeranian Medical University, Szczecin, Poland
| | - Sylwia Jaczewska
- Department of Clinical Oncology, Public Hospital, Szczecin, Poland
| | - Dariusz Bielicki
- Department of Gastroenterology, Pomeranian Medical University, Szczecin, Poland
| | - Krzysztof Safranow
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, Szczecin, Poland
| | | | - Józef Kładny
- Department of General and Oncological Surgery, Pomeranian Medical University, Szczecin, Poland
| | | |
Collapse
|
117
|
Tumor LINE-1 methylation level and colorectal cancer location in relation to patient survival. Oncotarget 2018; 7:55098-55109. [PMID: 27391152 PMCID: PMC5342404 DOI: 10.18632/oncotarget.10398] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Accepted: 06/17/2016] [Indexed: 12/26/2022] Open
Abstract
Colorectal tumors arise with genomic and epigenomic alterations through interactions between neoplastic cells, immune cells, and microbiota that vary along the proximal to distal axis of colorectum. Long interspersed nucleotide element-1 (LINE-1) hypomethylation in colorectal cancer has been associated with worse clinical outcome. Utilizing 1,317 colon and rectal carcinoma cases in two U.S.-nationwide prospective cohort studies, we examined patient survival according to LINE-1 methylation level stratified by tumor location. Cox proportional hazards model was used to assess a statistical interaction between LINE-1 methylation level and tumor location in colorectal cancer-specific mortality analysis, controlling for potential confounders including microsatellite instability, CpG island methylator phenotype, and KRAS, BRAF, and PIK3CA mutations. A statistically significant interaction was found between LINE-1 methylation level and tumor location in colorectal cancer-specific mortality analysis (Pinteraction = 0.011). The association of LINE-1 hypomethylation with higher colorectal cancer-specific mortality was stronger in proximal colon cancers (multivariable hazard ratio [HR], 1.66; 95% confidence interval [CI], 1.21 to 2.28) than in distal colon cancers (multivariable HR, 1.18; 95% CI, 0.81 to 1.72) or rectal cancers (multivariable HR, 0.87; 95% CI, 0.57 to 1.34). Our data suggest the interactive effect of LINE-1 methylation level and colorectal cancer location on clinical outcome.
Collapse
|
118
|
Chen L, Brar MS, Leung FCC, Hsiao WLW. Triterpenoid herbal saponins enhance beneficial bacteria, decrease sulfate-reducing bacteria, modulate inflammatory intestinal microenvironment and exert cancer preventive effects in ApcMin/+ mice. Oncotarget 2017; 7:31226-42. [PMID: 27121311 PMCID: PMC5058752 DOI: 10.18632/oncotarget.8886] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 04/02/2016] [Indexed: 12/26/2022] Open
Abstract
Saponins derived from medicinal plants have raised considerable interest for their preventive roles in various diseases. Here, we investigated the impacts of triterpenoid saponins isolated from Gynostemma pentaphyllum (GpS) on gut microbiome, mucosal environment, and the preventive effect on tumor growth. Six-week old ApcMin/+ mice and their wild-type littermates were fed either with vehicle or GpS daily for the duration of 8 weeks. The fecal microbiome was analyzed by enterobacterial repetitive intergenic consensus (ERIC)-PCR and 16S rRNA gene pyrosequencing. Study showed that GpS treatment significantly reduced the number of intestinal polyps in a preventive mode. More importantly, GpS feeding strikingly reduced the sulfate-reducing bacteria lineage, which are known to produce hydrogen sulfide and contribute to damage the intestinal epithelium or even promote cancer progression. Meanwhile, GpS also boosted the beneficial microbes. In the gut barrier of the ApcMin/+ mice, GpS treatment increased Paneth and goblet cells, up-regulated E-cadherin and down-regulated N-cadherin. In addition, GpS decreased the pro-oncogenic β-catenin, p-Src and the p-STAT3. Furthermore, GpS might also improve the inflamed gut epithelium of the ApcMin/+ mice by upregulating the anti-inflammatory cytokine IL-4, while downregulating pro-inflammatory cytokines TNF-α, IL-1β and IL-18. Intriguingly, GpS markedly stimulated M2 and suppressed M1 macrophage markers, indicating that GpS altered mucosal cytokine profile in favor of the M1 to M2 macrophages switching, facilitating intestinal tissue repair. In conclusion, GpS might reverse the host's inflammatory phenotype by increasing beneficial bacteria, decreasing sulfate-reducing bacteria, and alleviating intestinal inflammatory gut environment, which might contribute to its cancer preventive effects.
Collapse
Affiliation(s)
- Lei Chen
- Center for Cancer & Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong, China
| | - Manreetpal S Brar
- School of Biological Sciences, University of Hong Kong, Pokfulam, Hong Kong, China
| | - Frederick C C Leung
- School of Biological Sciences, University of Hong Kong, Pokfulam, Hong Kong, China
| | - W L Wendy Hsiao
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau, China
| |
Collapse
|
119
|
Cummins G, Yung DE, Cox BF, Koulaouzidis A, Desmulliez MPY, Cochran S. Luminally expressed gastrointestinal biomarkers. Expert Rev Gastroenterol Hepatol 2017; 11:1119-1134. [PMID: 28849686 DOI: 10.1080/17474124.2017.1373017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A biomarker is a measurable indicator of normal biologic processes, pathogenic processes or pharmacological responses. The identification of a useful biomarker is challenging, with several hurdles to overcome before clinical adoption. This review gives a general overview of a range of biomarkers associated with inflammatory bowel disease or colorectal cancer along the gastrointestinal tract. Areas covered: These markers include those that are already clinically accepted, such as inflammatory markers such as faecal calprotectin, S100A12 (Calgranulin C), Fatty Acid Binding Proteins (FABP), malignancy markers such as Faecal Occult Blood, Mucins, Stool DNA, Faecal microRNA (miRNA), other markers such as Faecal Elastase, Faecal alpha-1-antitrypsin, Alpha2-macroglobulin and possible future markers such as microbiota, volatile organic compounds and pH. Expert commentary: There are currently a few biomarkers that have been sufficiently validated for routine clinical use at present such as FC. However, many of these biomarkers continue to be limited in sensitivity and specificity for various GI diseases. Emerging biomarkers have the potential to improve diagnosis and monitoring but further study is required to determine efficacy and validate clinical utility.
Collapse
Affiliation(s)
- Gerard Cummins
- a Institute of Sensors, Signals and Systems, School of Engineering and Physical Sciences , Heriot-Watt University , Edinburgh , UK
| | - Diana E Yung
- b The Royal Infirmary of Edinburgh , Endoscopy Unit , Edinburgh , UK
| | - Ben F Cox
- c School of Medicine , University of Dundee , Dundee , UK
| | | | - Marc P Y Desmulliez
- a Institute of Sensors, Signals and Systems, School of Engineering and Physical Sciences , Heriot-Watt University , Edinburgh , UK
| | - Sandy Cochran
- d Medical and Industrial Ultrasonics, School of Engineering , University of Glasgow , Glasgow , UK
| |
Collapse
|
120
|
Effects of kestose on gut mucosal immunity in an atopic dermatitis mouse model. J Dermatol Sci 2017; 89:27-32. [PMID: 29111180 DOI: 10.1016/j.jdermsci.2017.10.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 10/02/2017] [Accepted: 10/14/2017] [Indexed: 01/08/2023]
Abstract
BACKGROUND Atopic dermatitis (AD) is recently increasing among populations, but the underlying mechanisms remain controversial. Interactions between the gut microbiota and mucosal immunity are considered to be a crucial etiology. Fructooligosaccharide (FOS), prebiotics have been reported as activators of the gut microbiota. OBJECTIVE The aim of this study was to investigate the effects of kestose, the smallest FOS and FOS on atopic dermatitis in mice. METHODS An AD mouse model was developed by (ovalbumin) epidermal sensitization using BALB/c mice. Kestose (1%, 5%, and 10%) or FOS (5%, positive control) was orally administered throughout the study. RESULTS In comparison with the values observed for the control AD mice, transepidermal water loss (TEWL), clinical score, and skin inflammation on histopathology were significantly decreased by the oral administration of kestose. Total IgE, thymic stromal lymphopoietin (TSLP) in skin, and IL-4 were also suppressed by this administration. In addition, the population of CD4+Foxp3+ cells in mesenteric lymph nodes (MLNs) and acetate concentrations in feces were significantly increased by kestose treatment. CONCLUSIONS These findings suggest that kestose activates the gut immune system to induce the tolerance against allergic skin inflammations in AD.
Collapse
|
121
|
Amitay EL, Werner S, Vital M, Pieper DH, Höfler D, Gierse IJ, Butt J, Balavarca Y, Cuk K, Brenner H. Fusobacterium and colorectal cancer: causal factor or passenger? Results from a large colorectal cancer screening study. Carcinogenesis 2017; 38:781-788. [PMID: 28582482 DOI: 10.1093/carcin/bgx053] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 06/01/2017] [Indexed: 12/19/2022] Open
Abstract
Colorectal cancer is a leading cause of morbidity and mortality worldwide in both men and women. The gut microbiome is increasingly recognized as having an important role in human health and disease. Fusobacterium has been identified in former studies as a leading gut bacterium associated with colorectal cancer, but it is still not clear if it plays an oncogenic role. In the current study, fecal samples were collected prior to bowel preparation from participants of screening colonoscopy in the German BliTz study. Using 16S rRNA gene analysis, we examined the presence and relative abundance of Fusobacterium in fecal samples from 500 participants, including 46, 113, 110 and 231 individuals with colorectal cancer, advanced adenomas, non-advanced adenomas and without any neoplasms, respectively. We found that the abundance of Fusobacterium in feces was strongly associated with the presence of colorectal cancer (P-value < 0.0001). This was confirmed by PCR at the species level for Fusobacterium nucleatum. However, no association was seen with the presence of advanced adenomas (P-value = 0.80) or non-advanced adenomas (P-value = 0.80), nor were there any associations observed with dietary or lifestyle habits. Although a causal role cannot be ruled out, our observations, based on fecal microbiome, support the hypothesis that Fusobacterium is a passenger that multiplies in the more favorable conditions caused by the malignant tumor rather than a causal factor in colorectal cancer development.
Collapse
Affiliation(s)
- Efrat L Amitay
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Centre (DKFZ), Heidelberg 69120, Germany
| | - Simone Werner
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Centre (DKFZ), Heidelberg 69120, Germany
| | - Marius Vital
- Microbial Interactions and Processes Research Group, Helmholtz Centre for Infection Research (HZI), Braunschweig 38124, Germany
| | - Dietmar H Pieper
- Microbial Interactions and Processes Research Group, Helmholtz Centre for Infection Research (HZI), Braunschweig 38124, Germany
| | - Daniela Höfler
- Division of Molecular Diagnostics of Oncogenic Infections, German Cancer Research Center (DKFZ), Heidelberg 69120, Germany
| | - Indra-Jasmin Gierse
- Division of Molecular Diagnostics of Oncogenic Infections, German Cancer Research Center (DKFZ), Heidelberg 69120, Germany
| | - Julia Butt
- Division of Molecular Diagnostics of Oncogenic Infections, German Cancer Research Center (DKFZ), Heidelberg 69120, Germany
| | - Yesilda Balavarca
- Division of Preventive Oncology, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), Heidelberg 69120, Germany
| | - Katarina Cuk
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Centre (DKFZ), Heidelberg 69120, Germany
| | - Hermann Brenner
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Centre (DKFZ), Heidelberg 69120, Germany.,Division of Preventive Oncology, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), Heidelberg 69120, Germany.,German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg 69120, Germany
| |
Collapse
|
122
|
Saroja B, SelwinMich Priyadharson A. Adaptive pillar K-means clustering-based colon cancer detection from biopsy samples with outliers. COMPUTER METHODS IN BIOMECHANICS AND BIOMEDICAL ENGINEERING: IMAGING & VISUALIZATION 2017. [DOI: 10.1080/21681163.2017.1350603] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- B. Saroja
- School of Electrical and Computing, Vel Tech University, Avadi, Chennai
| | | |
Collapse
|
123
|
Gonzalez-Correa C, Mulett-Vásquez E, Miranda D, Gonzalez-Correa C, Gómez-Buitrago P. The colon revisited or the key to wellness, health and disease. Med Hypotheses 2017; 108:133-143. [DOI: 10.1016/j.mehy.2017.07.032] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 07/28/2017] [Indexed: 12/12/2022]
|
124
|
Specific Signatures of the Gut Microbiota and Increased Levels of Butyrate in Children Treated with Fermented Cow's Milk Containing Heat-Killed Lactobacillus paracasei CBA L74. Appl Environ Microbiol 2017; 83:AEM.01206-17. [PMID: 28733284 DOI: 10.1128/aem.01206-17] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 07/12/2017] [Indexed: 12/17/2022] Open
Abstract
We recently demonstrated that cow's milk fermented with the probiotic Lactobacillus paracasei CBA L74 (FM-CBAL74) reduces the incidence of respiratory and gastrointestinal tract infections in young children attending school. This effect apparently derives from a complex regulation of non-immune and immune protective mechanisms. We investigated whether FM-CBAL74 could regulate gut microbiota composition and butyrate production. We randomly selected 20 healthy children (12 to 48 months) from the previous randomized controlled trial, before (t0) and after 3 months (t3) of dietary treatment with FM-CBAL74 (FM) or placebo (PL). Fecal microbiota was profiled using 16S rRNA gene amplicon sequencing, and the fecal butyrate concentration was also measured. Microbial alpha and beta diversities were not significantly different between groups prior to treatment. FM-CBAL74 but not PL treatment increased the relative abundance of Lactobacillus Individual Blautia, Roseburia, and Faecalibacterium oligotypes were associated with FM-CBAL74 treatment and demonstrated correlative associations with immune biomarkers. Accordingly, PICRUSt analysis predicted an increase in the proportion of genes involved in butyrate production pathways, consistent with an increase in fecal butyrate observed only in the FM group. Dietary supplementation with FM-CBAL74 induces specific signatures in gut microbiota composition and stimulates butyrate production. These effects are associated with changes in innate and acquired immunity.IMPORTANCE The use of a fermented milk product containing the heat-killed probiotic strain Lactobacillus paracasei CBAL74 induces changes in the gut microbiota, promoting the development of butyrate producers. These changes in the gut microbiota composition correlate with increased levels of innate and acquired immunity biomarkers.
Collapse
|
125
|
Chang PY, Chen JS, Chang SC, Wang MC, Chang NC, Wen YH, Tsai WS, Liu WH, Liu HL, Lu JJ. Acquired somatic TP53 or PIK3CA mutations are potential predictors of when polyps evolve into colorectal cancer. Oncotarget 2017; 8:72352-72362. [PMID: 29069792 PMCID: PMC5641135 DOI: 10.18632/oncotarget.20376] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 08/07/2017] [Indexed: 12/23/2022] Open
Abstract
Colorectal cancer (CRC) develops from accumulated mutations. However, which gene determines the malignant transformation from adenoma to carcinoma is still uncertain. Fifty-three formalin fixed paraffin-embedded polyps that had pathological findings from patients with hyperplasia, adenomatous, and tubular adenoma < 1 cm (non-neoplasia polyps, NNP, n = 27) or tubular adenoma ≥ 1 cm, tubulovillous and villous adenoma (neoplastic polyps, NP, n = 26) were recruited. Six paired synchronous polyps and cancer tissues and 50 independent fresh CRC tumors were also collected. All tissues were analyzed for their mutation genomes using next generation sequencing with a 50-gene panel. There were 40 types of somatic variants found in 7 genes, APC (43%), KRAS (28%), TP53 (11%), FBXW7 (8%), GNAS (4%), SMAD4 (2%), and BRAF (2%), and they were detected in 32 (60%) polyps. If combined with the mutation spectrum found in CRC tissues, a significant increase in the mutation rate in TP53 and PIK3CA from NNP, NP, early and late stage carcinoma (7%, 15%, 33.3% and 65% for TP53, p < 0.001; 0%, 0%, 23.3% and 25% for PIK3CA, p = 0.002) were noticed. Furthermore, distinct molecular features can be found in five pairs of synchronous polyps and tumors. However, TP53 or PIK3CA mutations can be found in tumor tissues but not in polyps. By systematically investigating the genome from polyps to tumor tissues, we demonstrated that acquired TP53 or PIK3CA somatic mutations are potential predictors for malignancy development. These results may aid in the identification of high risk individuals with tissues harboring mutations in these two genes.
Collapse
Affiliation(s)
- Pi-Yueh Chang
- Department of Laboratory Medicine, Chang Gung Memorial Hospital at LinKou, Taoyuan, Taiwan.,Department of Medical Biotechnology and Laboratory Science, Chang Gung University, Taoyuan, Taiwan
| | - Jinn-Shiun Chen
- Department of Colorectal Surgery, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Shih-Cheng Chang
- Department of Laboratory Medicine, Chang Gung Memorial Hospital at LinKou, Taoyuan, Taiwan.,Department of Medical Biotechnology and Laboratory Science, Chang Gung University, Taoyuan, Taiwan
| | - Mei-Chia Wang
- Department of Laboratory Medicine, Chang Gung Memorial Hospital at LinKou, Taoyuan, Taiwan.,Department of Medical Biotechnology and Laboratory Science, Chang Gung University, Taoyuan, Taiwan
| | - Nai-Chung Chang
- Department of Laboratory Medicine, Chang Gung Memorial Hospital at LinKou, Taoyuan, Taiwan
| | - Ying-Hao Wen
- Department of Laboratory Medicine, Chang Gung Memorial Hospital at LinKou, Taoyuan, Taiwan
| | - Wen-Sy Tsai
- Department of Colorectal Surgery, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Wei-Hsiu Liu
- Department of Laboratory Medicine, Chang Gung Memorial Hospital at LinKou, Taoyuan, Taiwan
| | - Hsiu-Ling Liu
- Department of Laboratory Medicine, Chang Gung Memorial Hospital at LinKou, Taoyuan, Taiwan
| | - Jang-Jih Lu
- Department of Laboratory Medicine, Chang Gung Memorial Hospital at LinKou, Taoyuan, Taiwan.,Department of Medical Biotechnology and Laboratory Science, Chang Gung University, Taoyuan, Taiwan
| |
Collapse
|
126
|
Gao R, Kong C, Huang L, Li H, Qu X, Liu Z, Lan P, Wang J, Qin H. Mucosa-associated microbiota signature in colorectal cancer. Eur J Clin Microbiol Infect Dis 2017; 36:2073-2083. [PMID: 28600626 DOI: 10.1007/s10096-017-3026-4] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 05/22/2017] [Indexed: 12/15/2022]
Abstract
The aim of this study was to explore the gut microbiota profiles of colorectal cancer (CRC) patients and to examine the relationship between gut microbiota and other key molecular factors involved in CRC tumorigenesis. In this study, a 16S rDNA sequencing platform was used to identify possible differences in the microbiota signature between CRC and adjacent normal mucosal tissue. Differences in the microbiota composition in different anatomical colorectal tumor sites and their potential association with KRAS mutation were also explored. In this study, the number of Firmicutes and Actinobacteria decreased, while the number of Fusobacteria increased in the gut of CRC patients. In addition, at the genus level, Fusobacterium was identified as the key contributor to CRC tumorigenesis. In addition, a different distribution of gut microbiota in ascending and descending colon cancer samples was observed. Lipopolysaccharide biosynthesis-associated microbial genes were enriched in tumor tissues. Our study suggests that specific mucosa-associated microbiota signature and function are significantly changed in the gut of CRC patients, which may provide insight into the progression of CRC. These findings could also be of value in the creation of new prevention and treatment strategies for this type of cancer.
Collapse
Affiliation(s)
- R Gao
- Department of GI Surgery, Shanghai Tenth People's Hospital Affiliated to Tongji University School of Medicine, No.301 Yanchang Road, Zhabei District, Shanghai, China
- Research Institute of Intestinal Diseases, Tongji University School of Medicine, Shanghai, China
| | - C Kong
- Department of GI Surgery, Shanghai Tenth People's Hospital Affiliated to Tongji University School of Medicine, No.301 Yanchang Road, Zhabei District, Shanghai, China
- Research Institute of Intestinal Diseases, Tongji University School of Medicine, Shanghai, China
| | - L Huang
- Department of GI Surgery, Shanghai Tenth People's Hospital Affiliated to Tongji University School of Medicine, No.301 Yanchang Road, Zhabei District, Shanghai, China
- Research Institute of Intestinal Diseases, Tongji University School of Medicine, Shanghai, China
| | - H Li
- Department of GI Surgery, Shanghai Tenth People's Hospital Affiliated to Tongji University School of Medicine, No.301 Yanchang Road, Zhabei District, Shanghai, China
- Research Institute of Intestinal Diseases, Tongji University School of Medicine, Shanghai, China
| | - X Qu
- Department of GI Surgery, Shanghai Tenth People's Hospital Affiliated to Tongji University School of Medicine, No.301 Yanchang Road, Zhabei District, Shanghai, China
- Research Institute of Intestinal Diseases, Tongji University School of Medicine, Shanghai, China
| | - Z Liu
- Department of GI Surgery, the Sixth Affiliated Hospital, Sun Yat-sen University, Guangdong Province, China
| | - P Lan
- Department of GI Surgery, the Sixth Affiliated Hospital, Sun Yat-sen University, Guangdong Province, China
| | - J Wang
- Department of GI Surgery, the Sixth Affiliated Hospital, Sun Yat-sen University, Guangdong Province, China
| | - H Qin
- Department of GI Surgery, Shanghai Tenth People's Hospital Affiliated to Tongji University School of Medicine, No.301 Yanchang Road, Zhabei District, Shanghai, China.
- Research Institute of Intestinal Diseases, Tongji University School of Medicine, Shanghai, China.
| |
Collapse
|
127
|
Xu KY, Xia GH, Lu JQ, Chen MX, Zhen X, Wang S, You C, Nie J, Zhou HW, Yin J. Impaired renal function and dysbiosis of gut microbiota contribute to increased trimethylamine-N-oxide in chronic kidney disease patients. Sci Rep 2017; 7:1445. [PMID: 28469156 PMCID: PMC5431124 DOI: 10.1038/s41598-017-01387-y] [Citation(s) in RCA: 189] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 03/29/2017] [Indexed: 12/17/2022] Open
Abstract
Chronic kidney disease (CKD) patients have an increased risk of cardiovascular diseases (CVDs). The present study aimed to investigate the gut microbiota and blood trimethylamine-N-oxide concentration (TMAO) in Chinese CKD patients and explore the underlying explanations through the animal experiment. The median plasma TMAO level was 30.33 μmol/L in the CKD patients, which was significantly higher than the 2.08 μmol/L concentration measured in the healthy controls. Next-generation sequence revealed obvious dysbiosis of the gut microbiome in CKD patients, with reduced bacterial diversity and biased community constitutions. CKD patients had higher percentages of opportunistic pathogens from gamma-Proteobacteria and reduced percentages of beneficial microbes, such as Roseburia, Coprococcus, and Ruminococcaceae. The PICRUSt analysis demonstrated that eight genes involved in choline, betaine, L-carnitine and trimethylamine (TMA) metabolism were changed in the CKD patients. Moreover, we transferred faecal samples from CKD patients and healthy controls into antibiotic-treated C57BL/6 mice and found that the mice that received gut microbes from the CKD patients had significantly higher plasma TMAO levels and different composition of gut microbiota than did the comparative mouse group. Our present study demonstrated that CKD patients had increased plasma TMAO levels due to contributions from both impaired renal functions and dysbiosis of the gut microbiota.
Collapse
Affiliation(s)
- Kai-Yu Xu
- Department of Neurology, NanFang Hospital, Southern Medical University, Guangzhou, China
| | - Geng-Hong Xia
- Department of Neurology, NanFang Hospital, Southern Medical University, Guangzhou, China
| | - Jun-Qi Lu
- Department of Environmental Health, School of Public Health, Southern Medical University, Guangzhou, China.,State Key Laboratory of Organ Failure Research, Division of Laboratory Medicine, ZhuJiang Hospital, Southern Medical University, Guangzhou, China
| | - Mu-Xuan Chen
- State Key Laboratory of Organ Failure Research, Division of Laboratory Medicine, ZhuJiang Hospital, Southern Medical University, Guangzhou, China
| | - Xin Zhen
- Department of Nephrology, NanFang Hospital, Southern Medical University, Guangzhou, China
| | - Shan Wang
- State Key Laboratory of Organ Failure Research, Division of Laboratory Medicine, ZhuJiang Hospital, Southern Medical University, Guangzhou, China
| | - Chao You
- Department of Neurology, NanFang Hospital, Southern Medical University, Guangzhou, China
| | - Jing Nie
- Department of Nephrology, NanFang Hospital, Southern Medical University, Guangzhou, China
| | - Hong-Wei Zhou
- State Key Laboratory of Organ Failure Research, Division of Laboratory Medicine, ZhuJiang Hospital, Southern Medical University, Guangzhou, China.
| | - Jia Yin
- Department of Neurology, NanFang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
128
|
Mirza A, Mao-Draayer Y. The gut microbiome and microbial translocation in multiple sclerosis. Clin Immunol 2017; 183:213-224. [PMID: 28286112 DOI: 10.1016/j.clim.2017.03.001] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 02/03/2017] [Accepted: 03/07/2017] [Indexed: 02/07/2023]
Abstract
Individuals with multiple sclerosis (MS) have a distinct intestinal microbial community (microbiota) and increased low-grade translocation of bacteria from the intestines into the circulation. The observed change of intestinal bacteria in MS patients regulate immune functions involved in MS pathogenesis. These functions include: systemic and central nervous system (CNS) immunity (including peripheral regulatory T cell function), the blood-brain barrier (BBB) permeability and CNS-resident cell activity. This review discusses the MS intestinal microbiota implication on MS systemic- and CNS-immunopathology. We introduce the possible contributions of MS low-grade microbial translocation (LG-MT) to the development of MS, and end on a discussion on microbiota therapies for MS patients.
Collapse
Affiliation(s)
- Ali Mirza
- Department of Microbiology and Immunology, University of Michigan School of Medicine, 4258 Alfred Taubman Biomedical Sciences Research Bldg. 109 Zina Pitcher Place, Ann Arbor, MI 48109-2200, United States; Department of Neurology, University of Michigan School of Medicine, 4258 Alfred Taubman Biomedical Sciences Research Bldg. 109 Zina Pitcher Place, Ann Arbor, MI 48109-2200, United States
| | - Yang Mao-Draayer
- Department of Neurology, University of Michigan School of Medicine, 4015 Alfred Taubman Biomedical Sciences Research Bldg. 109 Zina Pitcher Place, Ann Arbor, MI 48109-2200, United States.
| |
Collapse
|
129
|
Saetang J, Sangkhathat S. Diets link metabolic syndrome and colorectal cancer development (Review). Oncol Rep 2017; 37:1312-1320. [PMID: 28098913 DOI: 10.3892/or.2017.5385] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2016] [Accepted: 01/13/2017] [Indexed: 02/07/2023] Open
Abstract
Diets have been believed to be an important factor in the development of metabolic syndrome and colorectal cancer (CRC). In recent years, many studies have shown an intimate relationship between mucosal immunity, metabolism and diets, which has led to a greater understanding of the pathophysiology of metabolic syndrome and CRC development. Although the precise effects of diets on oncogenesis have not been compl-etely elucidated, microbiota changes and inflammation are believed to be important factors that influence the development of CRC. Moreover, increased release of pro-inflammatory cytokines and alteration of adipokine levels have been observed in patients with colorectal adenoma and/or CRC, and these all have been considered as the important mechanisms that link diets to the development of metabolic syndrome and CRC. Importantly, a high-fat, low-fiber diet is associated with dysbiosis, and as the gut signature becomes more important in metabolic syndrome and CRC, an increased understanding of diets on bacterial activity in the pathogenesis of metabolic syndrome and CRC will lead to new preventive and therapeutic strategies.
Collapse
Affiliation(s)
- Jirakrit Saetang
- Department of Biomedical Sciences, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand
| | - Surasak Sangkhathat
- Tumor Biology Research Unit, Department of Surgery, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand
| |
Collapse
|
130
|
Mokarram P, Albokashy M, Zarghooni M, Moosavi MA, Sepehri Z, Chen QM, Hudecki A, Sargazi A, Alizadeh J, Moghadam AR, Hashemi M, Movassagh H, Klonisch T, Owji AA, Łos MJ, Ghavami S. New frontiers in the treatment of colorectal cancer: Autophagy and the unfolded protein response as promising targets. Autophagy 2017; 13:781-819. [PMID: 28358273 PMCID: PMC5446063 DOI: 10.1080/15548627.2017.1290751] [Citation(s) in RCA: 120] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Colorectal cancer (CRC), despite numerous therapeutic and screening attempts, still remains a major life-threatening malignancy. CRC etiology entails both genetic and environmental factors. Macroautophagy/autophagy and the unfolded protein response (UPR) are fundamental mechanisms involved in the regulation of cellular responses to environmental and genetic stresses. Both pathways are interconnected and regulate cellular responses to apoptotic stimuli. In this review, we address the epidemiology and risk factors of CRC, including genetic mutations leading to the occurrence of the disease. Next, we discuss mutations of genes related to autophagy and the UPR in CRC. Then, we discuss how autophagy and the UPR are involved in the regulation of CRC and how they associate with obesity and inflammatory responses in CRC. Finally, we provide perspectives for the modulation of autophagy and the UPR as new therapeutic options for CRC treatment.
Collapse
Affiliation(s)
- Pooneh Mokarram
- a Colorectal Research Center and Department of Biochemistry , School of Medicine, Shiraz University of Medical Sciences , Shiraz , Iran
| | - Mohammed Albokashy
- b Department of Human Anatomy and Cell Science , Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba , Winnipeg , MB , Canada
| | - Maryam Zarghooni
- c Zabol University of Medical Sciences , Zabol , Iran.,d University of Toronto Alumni , Toronto , ON , Canada
| | - Mohammad Amin Moosavi
- e Department of Molecular Medicine , Institute of Medical Biotechnology, National Institute for Genetic Engineering and Biotechnology , Tehran , Iran
| | - Zahra Sepehri
- c Zabol University of Medical Sciences , Zabol , Iran
| | - Qi Min Chen
- b Department of Human Anatomy and Cell Science , Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba , Winnipeg , MB , Canada
| | | | | | - Javad Alizadeh
- b Department of Human Anatomy and Cell Science , Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba , Winnipeg , MB , Canada
| | - Adel Rezaei Moghadam
- b Department of Human Anatomy and Cell Science , Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba , Winnipeg , MB , Canada
| | - Mohammad Hashemi
- g Department of Clinical Biochemistry , School of Medicine, Zahedan University of Medical Sciences , Zahedan , Iran
| | - Hesam Movassagh
- h Department of Immunology , Rady Faculty of Health Sciences, College of Medicine, University of Manitoba , Winnipeg , MB , Canada
| | - Thomas Klonisch
- b Department of Human Anatomy and Cell Science , Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba , Winnipeg , MB , Canada
| | - Ali Akbar Owji
- i Department of Clinical Biochemistry , School of Medicine, Shiraz Medical University , Shiraz , Iran
| | - Marek J Łos
- j Małopolska Centre of Biotechnology , Jagiellonian University , Krakow , Poland ; LinkoCare Life Sciences AB , Sweden
| | - Saeid Ghavami
- b Department of Human Anatomy and Cell Science , Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba , Winnipeg , MB , Canada.,k Health Policy Research Center , Shiraz University of Medical Sciences , Shiraz , Iran
| |
Collapse
|
131
|
Peters BA, Dominianni C, Shapiro JA, Church TR, Wu J, Miller G, Yuen E, Freiman H, Lustbader I, Salik J, Friedlander C, Hayes RB, Ahn J. The gut microbiota in conventional and serrated precursors of colorectal cancer. MICROBIOME 2016; 4:69. [PMID: 28038683 PMCID: PMC5203720 DOI: 10.1186/s40168-016-0218-6] [Citation(s) in RCA: 186] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 12/03/2016] [Indexed: 05/09/2023]
Abstract
BACKGROUND Colorectal cancer is a heterogeneous disease arising from at least two precursors-the conventional adenoma (CA) and the serrated polyp. We and others have previously shown a relationship between the human gut microbiota and colorectal cancer; however, its relationship to the different early precursors of colorectal cancer is understudied. We tested, for the first time, the relationship of the gut microbiota to specific colorectal polyp types. RESULTS Gut microbiota were assessed in 540 colonoscopy-screened adults by 16S rRNA gene sequencing of stool samples. Participants were categorized as CA cases (n = 144), serrated polyp cases (n = 73), or polyp-free controls (n = 323). CA cases were further classified as proximal (n = 87) or distal (n = 55) and as non-advanced (n = 121) or advanced (n = 22). Serrated polyp cases were further classified as hyperplastic polyp (HP; n = 40) or sessile serrated adenoma (SSA; n = 33). We compared gut microbiota diversity, overall composition, and normalized taxon abundance among these groups. CA cases had lower species richness in stool than controls (p = 0.03); in particular, this association was strongest for advanced CA cases (p = 0.004). In relation to overall microbiota composition, only distal or advanced CA cases differed significantly from controls (p = 0.02 and p = 0.002). In taxon-based analysis, stool of CA cases was depleted in a network of Clostridia operational taxonomic units from families Ruminococcaceae, Clostridiaceae, and Lachnospiraceae, and enriched in the classes Bacilli and Gammaproteobacteria, order Enterobacteriales, and genera Actinomyces and Streptococcus (all q < 0.10). SSA and HP cases did not differ in diversity or composition from controls, though sample size for these groups was small. Few taxa were differentially abundant between HP cases or SSA cases and controls; among them, class Erysipelotrichi was depleted in SSA cases. CONCLUSIONS Our results indicate that gut microbes may play a role in the early stages of colorectal carcinogenesis through the development of CAs. Findings may have implications for developing colorectal cancer prevention therapies targeting early microbial drivers of colorectal carcinogenesis.
Collapse
Affiliation(s)
- Brandilyn A Peters
- Department of Population Health, New York University School of Medicine, New York, NY, USA
| | - Christine Dominianni
- Department of Population Health, New York University School of Medicine, New York, NY, USA
| | - Jean A Shapiro
- Division of Cancer Prevention and Control, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Timothy R Church
- Division of Environmental Health Sciences, School of Public Health, University of Minnesota, Minneapolis, MN, USA
| | - Jing Wu
- Department of Population Health, New York University School of Medicine, New York, NY, USA
| | - George Miller
- Department of Surgery, New York University School of Medicine, New York, NY, USA
- Department of Cell Biology, New York University School of Medicine, New York, NY, USA
- NYU Perlmutter Cancer Center, New York University School of Medicine, New York, NY, USA
| | | | - Hal Freiman
- Kips Bay Endoscopy Center, New York, NY, USA
| | | | - James Salik
- Kips Bay Endoscopy Center, New York, NY, USA
| | | | - Richard B Hayes
- Department of Population Health, New York University School of Medicine, New York, NY, USA
- NYU Perlmutter Cancer Center, New York University School of Medicine, New York, NY, USA
| | - Jiyoung Ahn
- Department of Population Health, New York University School of Medicine, New York, NY, USA.
- NYU Perlmutter Cancer Center, New York University School of Medicine, New York, NY, USA.
| |
Collapse
|
132
|
Wen F, Liu Y, Wang W, Li M, Guo F, Sang Y, Qin Q, Wang Y, Li Q. Adenomatous polyposis coli genotype-dependent toll-like receptor 4 activity in colon cancer. Oncotarget 2016; 7:7761-72. [PMID: 26760960 PMCID: PMC4884952 DOI: 10.18632/oncotarget.6844] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 01/01/2016] [Indexed: 02/05/2023] Open
Abstract
Toll-like receptors (TLRs)/NF-κB activation stimulated by lipopolysaccharide (LPS) was associated with diverse biological response in colon cancer, but the underlying mechanism was largely unknown. In the current study, we reported cell proliferation was elevated in adenomatous polyposis coli (APC) mutated- and APC knockdown cell lines, while the proliferation was inhibited in APC wild-type cell lines. Besides, in vivo experiments showed that LPS promoted APC knockdown tumor growth while inhibited proliferation of APC wild type. Further study confirmed that activation of TLRs/NF-κB signaling pathway by LPS cross regulated with APC/GSK-3β/β-catenin pathway, which were depend on APC status of cell lines. Taken together, APC genotypes play a key role in LPS induced different colon cancer biological response by cross-regulating β-catenin and NF-κB, which may provide a novel strategy for carcinogenesis prevention.
Collapse
Affiliation(s)
- Feng Wen
- The Department of Medical Oncology, Cancer Center, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, University of Sichuan, Sichuan, China
| | - Yongmei Liu
- The Department of Medical Oncology, Cancer Center, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, University of Sichuan, Sichuan, China
| | - Wei Wang
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, University of Sichuan, Sichuan, China
| | - Meng Li
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, University of Sichuan, Sichuan, China
| | - Fuchun Guo
- The Department of Medical Oncology, Cancer Center, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, University of Sichuan, Sichuan, China
| | - Yaxiong Sang
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, University of Sichuan, Sichuan, China
| | - Qing Qin
- The Department of Medical Oncology, Cancer Center, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, University of Sichuan, Sichuan, China
| | - Yongsheng Wang
- The Department of Medical Oncology, Cancer Center, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, University of Sichuan, Sichuan, China
| | - Qiu Li
- The Department of Medical Oncology, Cancer Center, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, University of Sichuan, Sichuan, China
| |
Collapse
|
133
|
Mima K, Cao Y, Chan AT, Qian ZR, Nowak JA, Masugi Y, Shi Y, Song M, da Silva A, Gu M, Li W, Hamada T, Kosumi K, Hanyuda A, Liu L, Kostic AD, Giannakis M, Bullman S, Brennan CA, Milner DA, Baba H, Garraway LA, Meyerhardt JA, Garrett WS, Huttenhower C, Meyerson M, Giovannucci EL, Fuchs CS, Nishihara R, Ogino S. Fusobacterium nucleatum in Colorectal Carcinoma Tissue According to Tumor Location. Clin Transl Gastroenterol 2016; 7:e200. [PMID: 27811909 PMCID: PMC5543402 DOI: 10.1038/ctg.2016.53] [Citation(s) in RCA: 217] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2016] [Accepted: 09/13/2016] [Indexed: 02/06/2023] Open
Abstract
Objectives: Evidence suggests a possible role of Fusobacterium nucleatum in colorectal carcinogenesis, especially in right-sided proximal colorectum. Considering a change in bowel contents and microbiome from proximal to distal colorectal segments, we hypothesized that the proportion of colorectal carcinoma enriched with F. nucleatum might gradually increase along the bowel subsites from rectum to cecum. Methods: A retrospective, cross-sectional analysis was conducted on 1,102 colon and rectal carcinomas in molecular pathological epidemiology databases of the Nurses’ Health Study and the Health Professionals Follow-up Study. We measured the amount of F. nucleatum DNA in colorectal tumor tissue using a quantitative PCR assay and equally dichotomized F. nucleatum-positive cases (high vs. low). We used multivariable logistic regression analysis to examine the relationship of a bowel subsite variable (rectum, rectosigmoid junction, sigmoid colon, descending colon, splenic flexure, transverse colon, hepatic flexure, ascending colon, and cecum) with the amount of F. nucleatum. Results: The proportion of F. nucleatum-high colorectal cancers gradually increased from rectal cancers (2.5% 4/157) to cecal cancers (11% 19/178), with a statistically significant linear trend along all subsites (P<0.0001) and little evidence of non-linearity. The proportion of F. nucleatum-low cancers was higher in rectal, ascending colon, and cecal cancers than in cancers of middle segments. Conclusions: The proportion of F. nucleatum-high colorectal cancers gradually increases from rectum to cecum. Our data support the colorectal continuum model that reflects pathogenic influences of the gut microbiota on neoplastic and immune cells and challenges the prevailing two-colon (proximal vs. distal) dichotomy paradigm.
Collapse
Affiliation(s)
- Kosuke Mima
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts, USA
| | - Yin Cao
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA.,Division of Gastroenterology, Massachusetts General Hospital, Boston, Massachusetts, USA.,Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Andrew T Chan
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA.,Division of Gastroenterology, Massachusetts General Hospital, Boston, Massachusetts, USA.,Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Zhi Rong Qian
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts, USA
| | - Jonathan A Nowak
- Division of MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Yohei Masugi
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts, USA
| | - Yan Shi
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts, USA
| | - Mingyang Song
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA.,Division of Gastroenterology, Massachusetts General Hospital, Boston, Massachusetts, USA.,Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Annacarolina da Silva
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts, USA
| | - Mancang Gu
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts, USA
| | - Wanwan Li
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts, USA
| | - Tsuyoshi Hamada
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts, USA
| | - Keisuke Kosumi
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts, USA
| | - Akiko Hanyuda
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts, USA
| | - Li Liu
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts, USA
| | - Aleksandar D Kostic
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA.,Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts, USA.,Center for Computational and Integrative Biology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Marios Giannakis
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts, USA.,Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts, USA.,Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Susan Bullman
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts, USA.,Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts, USA
| | - Caitlin A Brennan
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Danny A Milner
- Division of MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA.,Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Hideo Baba
- Department of Gastroenterological Surgery, Graduate School of Medical Science, Kumamoto University, Kumamoto, Japan
| | - Levi A Garraway
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts, USA.,Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts, USA.,Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Jeffrey A Meyerhardt
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts, USA
| | - Wendy S Garrett
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts, USA.,Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts, USA.,Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Curtis Huttenhower
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA.,Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts, USA.,Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Matthew Meyerson
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts, USA.,Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts, USA
| | - Edward L Giovannucci
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA.,Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA.,Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Charles S Fuchs
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts, USA.,Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Reiko Nishihara
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts, USA.,Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA.,Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA.,Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Shuji Ogino
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts, USA.,Division of MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA.,Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| |
Collapse
|
134
|
Lee HJ, Park JM, Han YM, Gil HK, Kim J, Chang JY, Jeong M, Go EJ, Hahm KB. The role of chronic inflammation in the development of gastrointestinal cancers: reviewing cancer prevention with natural anti-inflammatory intervention. Expert Rev Gastroenterol Hepatol 2016; 10:129-39. [PMID: 26524133 DOI: 10.1586/17474124.2016.1103179] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Inflammatory mediators alter the local environment of tumors, known as the tumor microenvironment. Mechanistically, chronic inflammation induces DNA damage, but understanding this hazard may help in the search for new chemopreventive agents for gastrointestinal (GI) cancer which attenuate inflammation. In the clinic, GI cancer still remains a major cause of cancer-associated mortality, chemoprevention with anti-inflammatory agents is thought to be a realistic approach to reduce GI cancer. Proton pump inhibitors, monoclonal antibodies targeting tumor necrosis factor-alpha, anti-sense targeted smad7 and non-steroidal anti-inflammatory agents have been investigated for their potential to prevent inflammation-based GI cancer. Besides these, a wide variety of natural products have also shown potential for the prevention of GI cancer. In this review, the authors will provide insights to explain the mechanistic connection between inflammation and GI cancer, as well as describe a feasible cancer prevention strategy based on anti-inflammatory treatments.
Collapse
Affiliation(s)
- Ho-Jae Lee
- a Laboratory of Chemoprevention, Lee Gil Ya Cancer and Diabetes Institute , Gachon University , Incheon , Korea
| | - Jong-Min Park
- b CHA Cancer Prevention Research Center , CHA Cancer Institute, CHA University , Seongnam , Korea
| | - Young Min Han
- b CHA Cancer Prevention Research Center , CHA Cancer Institute, CHA University , Seongnam , Korea
| | - Hong Kwon Gil
- b CHA Cancer Prevention Research Center , CHA Cancer Institute, CHA University , Seongnam , Korea
| | - Jinhyung Kim
- b CHA Cancer Prevention Research Center , CHA Cancer Institute, CHA University , Seongnam , Korea
| | - Ji Young Chang
- b CHA Cancer Prevention Research Center , CHA Cancer Institute, CHA University , Seongnam , Korea
| | - Migyeong Jeong
- b CHA Cancer Prevention Research Center , CHA Cancer Institute, CHA University , Seongnam , Korea
| | - Eun-Jin Go
- b CHA Cancer Prevention Research Center , CHA Cancer Institute, CHA University , Seongnam , Korea
| | - Ki Baik Hahm
- b CHA Cancer Prevention Research Center , CHA Cancer Institute, CHA University , Seongnam , Korea.,c Digestive Disease Center , CHA University Bundang Medical Center , Seongnam , Korea
| |
Collapse
|
135
|
Wroblewski LE, Peek RM, Coburn LA. The Role of the Microbiome in Gastrointestinal Cancer. Gastroenterol Clin North Am 2016; 45:543-56. [PMID: 27546848 PMCID: PMC4994977 DOI: 10.1016/j.gtc.2016.04.010] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Humans are host to complex microbial communities previously termed normal flora and largely overlooked. However, resident microbes contribute to both health and disease. Investigators are beginning to define microbes that contribute to the development of gastrointestinal malignancies and the mechanisms by which this occurs. Resident microbes can induce inflammation, leading to cell proliferation and altered stem cell dynamics, which can lead to alterations in DNA integrity and immune regulation and promote carcinogenesis. Studies in human patients and rodent models of cancer have identified alterations in the microbiota of the stomach, esophagus, and colon that increase the risk for malignancy.
Collapse
Affiliation(s)
- Lydia E. Wroblewski
- Division of Gastroenterology, Department of Medicine; Vanderbilt University School of Medicine; Nashville, TN USA, T: 615-322-4215
| | - Richard M. Peek
- Division of Gastroenterology, Department of Medicine; Vanderbilt University School of Medicine; Nashville, TN USA, T: 615-343-1596
| | - Lori A. Coburn
- Veterans Affairs Tennessee Valley Healthcare System; Division of Gastroenterology, Department of Medicine; Vanderbilt University School of Medicine; Nashville, TN USA, T: 615-875-4222, F: 615-343-4229
| |
Collapse
|
136
|
Braicu C, Selicean S, Cojocneanu-Petric R, Lajos R, Balacescu O, Taranu I, Marin DE, Motiu M, Jurj A, Achimas-Cadariu P, Berindan-Neagoe I. Evaluation of cellular and molecular impact of zearalenone and Escherichia coli co-exposure on IPEC-1 cells using microarray technology. BMC Genomics 2016; 17:576. [PMID: 27506675 PMCID: PMC4977621 DOI: 10.1186/s12864-016-2830-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 06/10/2016] [Indexed: 02/07/2023] Open
Abstract
Background The gastrointestinal tract is the primary site of toxin interaction, an interface between the organism and its surroundings. In this study, we assessed the alteration of intestinal mRNA profile in the case of co-occurrence of zearalenone (ZEA), a secondary Fusarium metabolite, and Escherichia coli (E. coli), on the intestinal porcine epithelial cells IPEC-1. We chose this model since the pig is a species which is susceptible to pathogen and mycotoxin co-exposure. Results After treating the cells with the two contaminants, either separately or in combination, the differential gene expression between groups was assessed, using the microarray technology. Data analysis identified 1691 upregulated and 797 downregulated genes as a response to E. coli exposure, while for ZEA treated cells, 303 genes were upregulated and 49 downregulated. The co-contamination led to 991 upregulated and 800 downregulated genes. The altered gene expression pattern was further classified into 8 functional groups. In the case of co-exposure to ZEA and E.coli, a clear increase of proinflammatory mechanisms. Conclusions These results demonstrate the complex effect of single or multiple contaminants exposure at cellular and molecular level, with significant implications that might lead to the activation of pathological mechanisms. A better understanding of the effects of co-contamination is mandatory in developing novel exposure regulations and prevention measures.
Collapse
Affiliation(s)
- Cornelia Braicu
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, "Iuliu Hatieganu" University of Medicine and Pharmacy, Marinescu 23 Street, No. 23, Cluj-Napoca, 400012, Romania.,Department of Functional Genomics and Experimental Pathology, The Oncological Institute "Prof. Dr. Ion Chiricuta", Republicii Street, No. 34-36, Cluj-Napoca, 401015, Romania
| | - Sonia Selicean
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, "Iuliu Hatieganu" University of Medicine and Pharmacy, Marinescu 23 Street, No. 23, Cluj-Napoca, 400012, Romania
| | - Roxana Cojocneanu-Petric
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, "Iuliu Hatieganu" University of Medicine and Pharmacy, Marinescu 23 Street, No. 23, Cluj-Napoca, 400012, Romania
| | - Raduly Lajos
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, "Iuliu Hatieganu" University of Medicine and Pharmacy, Marinescu 23 Street, No. 23, Cluj-Napoca, 400012, Romania.,Department of Physiopathology, Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine, Calea Mănăștur 3-5, Cluj-Napoca, 400372, Romania
| | - Ovidiu Balacescu
- Department of Functional Genomics and Experimental Pathology, The Oncological Institute "Prof. Dr. Ion Chiricuta", Republicii Street, No. 34-36, Cluj-Napoca, 401015, Romania
| | - Ionelia Taranu
- Laboratory of Animal Biology, National Institute for Research and Development for Biology and Animal Nutrition, Calea Bucuresti No. 1, Balotesti, Ilfov, 077015, Romania
| | - Daniela Eliza Marin
- Laboratory of Animal Biology, National Institute for Research and Development for Biology and Animal Nutrition, Calea Bucuresti No. 1, Balotesti, Ilfov, 077015, Romania
| | - Monica Motiu
- Laboratory of Animal Biology, National Institute for Research and Development for Biology and Animal Nutrition, Calea Bucuresti No. 1, Balotesti, Ilfov, 077015, Romania
| | - Ancuta Jurj
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, "Iuliu Hatieganu" University of Medicine and Pharmacy, Marinescu 23 Street, No. 23, Cluj-Napoca, 400012, Romania
| | - Patriciu Achimas-Cadariu
- Department of Surgery, The Oncology Institute "Prof. Dr. Ion Chiricuta", Republicii Street, No. 34-36, Cluj-Napoca, 401015, Romania. .,Department of Surgical Oncology and Gynaecological Oncology, "Iuliu Hatieganu" University of Medicine and Pharmacy, 8 Babeş Street, Cluj-Napoca, 400012, Romania.
| | - Ioana Berindan-Neagoe
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, "Iuliu Hatieganu" University of Medicine and Pharmacy, Marinescu 23 Street, No. 23, Cluj-Napoca, 400012, Romania. .,Department of Functional Genomics and Experimental Pathology, The Oncological Institute "Prof. Dr. Ion Chiricuta", Republicii Street, No. 34-36, Cluj-Napoca, 401015, Romania. .,Research Center for Functional Genomics and Translational Medicine, "Iuliu Hatieganu" University of Medicine and Pharmacy, 23 Marinescu Street, Cluj-Napoca, 40015, Romania.
| |
Collapse
|
137
|
Abstract
The human body is host to 100 trillion gut microbes, approximately 10-times more than all human cells. It is estimated that the approximately 500-1000 species residing in the human gut encode 150-fold more unique genes than the human genome. The gut microbiota has important functions in metabolic processing, such as energy production, immune cell development, food digestion, and epithelial homeostasis. It has been increasingly recognized that a dysregulated gut microbiome contributes in a significant way to a variety of diseases, including diabetes, obesity, cardiovascular diseases, allergies, and inflammatory bowel disease. In particular, accumulating evidence indicates that functional interactions between the gut microbiome and xenobiotics play a role in mediating chemical toxicity and causing or exacerbating human disease. This review summarizes emerging evidence that illustrates how xenobiotics can affect the gut microbiome structure, create functional changes to the gut microbiome, and become biotransformed by the gut microbiome.
Collapse
Affiliation(s)
- Kun Lu
- Kun Lu, PhD, is an Assistant Professor in the Department of Environmental Health Science at the University of Georgia, Athens, Georgia. Ridwan Mahbub, BSA, MS, was a graduate student in the laboratory of Dr. Kun Lu at University of Georgia, Athens, Georgia. James G. Fox, DVM, is currently Professor and Director of the Division of Comparative Medicine at the Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Ridwan Mahbub
- Kun Lu, PhD, is an Assistant Professor in the Department of Environmental Health Science at the University of Georgia, Athens, Georgia. Ridwan Mahbub, BSA, MS, was a graduate student in the laboratory of Dr. Kun Lu at University of Georgia, Athens, Georgia. James G. Fox, DVM, is currently Professor and Director of the Division of Comparative Medicine at the Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - James G Fox
- Kun Lu, PhD, is an Assistant Professor in the Department of Environmental Health Science at the University of Georgia, Athens, Georgia. Ridwan Mahbub, BSA, MS, was a graduate student in the laboratory of Dr. Kun Lu at University of Georgia, Athens, Georgia. James G. Fox, DVM, is currently Professor and Director of the Division of Comparative Medicine at the Massachusetts Institute of Technology, Cambridge, Massachusetts
| |
Collapse
|
138
|
Abstract
Although genes contribute to colorectal cancer, the gut microbiota are an important player. Accumulating evidence suggests that chronic infection and the ensuing inflammation contributes to tumor initiation and tumor progression. A variety of bacterial species and tumor-promoting virulence mechanisms have been investigated. Significant advances have been made in understanding the composition and functional capabilities of the gut microbiota and its roles in cancer. In the current review, we discuss the novel roles of microbiota in the progression of colon cancer. Although microbiota technically include organisms other than bacteria e.g., viruses and fungi, this review will primarily focus on bacteria. We summarize epidemiological studies of human microbiome and colon cancer. We discuss the progress in the scientific understanding of the interplay between the gut microbiota, barrier function, and host responses in experimental models. Further, we discuss the potential application in prevention, diagnosis, and therapy of colon cancer by targeting microbiota. We discuss the challenges lie ahead and the future direction in studying gut microbiome in colon cancer to close the gap between the basic sciences and clinical application.
Collapse
Affiliation(s)
- Jun Sun
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Ikuko Kato
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI 48201, USA
- Department of Pathology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| |
Collapse
|
139
|
Pevsner-Fischer M, Tuganbaev T, Meijer M, Zhang SH, Zeng ZR, Chen MH, Elinav E. Role of the microbiome in non-gastrointestinal cancers. World J Clin Oncol 2016; 7:200-213. [PMID: 27081642 PMCID: PMC4826965 DOI: 10.5306/wjco.v7.i2.200] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 11/15/2015] [Accepted: 02/24/2016] [Indexed: 02/06/2023] Open
Abstract
“The forgotten organ”, the human microbiome, comprises a community of microorganisms that colonizes various sites of the human body. Through coevolution of bacteria, archaea and fungi with the human host over thousands of years, a complex host-microbiome relationship emerged in which many functions, including metabolism and immune responses, became codependent. This coupling becomes evident when disruption in the microbiome composition, termed dysbiosis, is mirrored by the development of pathologies in the host. Among the most serious consequences of dysbiosis, is the development of cancer. As many as 20% of total cancers worldwide are caused by a microbial agent. To date, a vast majority of microbiome-cancer studies focus solely on the microbiome of the large intestine and the development of gastrointestinal cancers. Here, we will review the available evidence implicating microbiome involvement in the development and progression of non-gastrointestinal cancers, while distinguishing between viral and bacterial drivers of cancer, as well as “local” and “systemic”, “cancer-stimulating” and “cancer-suppressing” effects of the microbiome. Developing a system-wide approach to cancer-microbiome studies will be crucial in understanding how microbiome influences carcinogenesis, and may enable to employ microbiome-targeting approaches as part of cancer treatment.
Collapse
|
140
|
Abstract
The food we consume feeds not only us, but also a vast and diverse community of microbiota within our gastrointestinal tract. In a process of symbiotic co-evolution, the gut microbiota became essential for the maintenance of the health and integrity of our colon. The advent of next-generation DNA sequencing technology and metabolic profiling have, in the recent years, revealed the remarkable complexity of microbial diversity and function, and that the microbiota produce a wide variety of bioactive products that are not only active at the mucosal surface, but also absorbed and circulated throughout the body, influencing distant organ health and function. As a result, several microbiota compositional patterns and their associations with both health and disease states have been identified. Importantly, a disturbed microbiota-host relationship, termed dysbiosis, is now recognized to be the root cause for a growing list of diseases, including colorectal cancer (CRC). There is mounting in vitro and in vivo evidence to suggest that diet selects for the microbiota composition and several health promoting and deleterious effects of diet are, in fact, mediated by the microbiota. Recent findings of the feasibility of dietary fiber to boost the colonic microbial synthesis of anti-proliferative and counter carcinogenic metabolites, particularly butyrate, underscores the prerequisite of dietary modification as a key measure to curb the pandemic of CRC in westernized countries. Better understanding of the diet-microbiota interplay and large-scale studies to evaluate the efficacy of dietary modification and gut microbiota modulation in reversing dysbiosis and restoring health could offer novel preventative and/or therapeutic strategies against westernized diseases, which are now considered the chief threat to public health.
Collapse
Affiliation(s)
- Kishore Vipperla
- Division of General Internal Medicine, University of Pittsburgh Medical Center, 200 Lothrop Street, 933W MUH, Pittsburgh, PA 15213, USA.
| | - Stephen J O'Keefe
- Division of Gastroenterology, Hepatology, and Nutrition, University of Pittsburgh School of Medicine, 200 Lothrop Street, PUH, Mezzanine Level - C Wing, Pittsburgh, PA 15213, USA.
| |
Collapse
|
141
|
Higashimura Y, Naito Y, Takagi T, Uchiyama K, Mizushima K, Ushiroda C, Ohnogi H, Kudo Y, Yasui M, Inui S, Hisada T, Honda A, Matsuzaki Y, Yoshikawa T. Protective effect of agaro-oligosaccharides on gut dysbiosis and colon tumorigenesis in high-fat diet-fed mice. Am J Physiol Gastrointest Liver Physiol 2016; 310:G367-75. [PMID: 26767984 DOI: 10.1152/ajpgi.00324.2015] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 12/15/2015] [Indexed: 01/31/2023]
Abstract
High-fat diet (HFD)-induced alteration in the gut microbial composition, known as dysbiosis, is increasingly recognized as a major risk factor for various diseases, including colon cancer. This report describes a comprehensive investigation of the effect of agaro-oligosaccharides (AGO) on HFD-induced gut dysbiosis, including alterations in short-chain fatty acid contents and bile acid metabolism in mice. C57BL/6N mice were fed a control diet or HFD, with or without AGO. Terminal restriction fragment-length polymorphism (T-RFLP) analysis produced their fecal microbiota profiles. Profiles of cecal organic acids and serum bile acids were determined, respectively, using HPLC and liquid chromatography-tandem mass spectrometry systems. T-RFLP analyses showed that an HFD changed the gut microbiota significantly. Changes in the microbiota composition induced by an HFD were characterized by a decrease in the order Lactobacillales and by an increase in the Clostridium subcluster XIVa. These changes of the microbiota community generated by HFD treatment were suppressed by AGO supplementation. As supported by the data of the proportion of Lactobacillales order, the concentration of lactic acid increased in the HFD + AGO group. Data from the serum bile acid profile showed that the level of deoxycholic acid, a carcinogenic secondary bile acid produced by gut bacteria, was increased in HFD-receiving mice. The upregulation tended to be suppressed by AGO supplementation. Finally, results show that AGO supplementation suppressed the azoxymethane-induced generation of aberrant crypt foci in the colon derived from HFD-treated mice. Our results suggest that oral intake of AGO prevents HFD-induced gut dysbiosis, thereby inhibiting colon carcinogenesis.
Collapse
Affiliation(s)
- Yasuki Higashimura
- Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan; Department of Food Factor Science, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yuji Naito
- Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan;
| | - Tomohisa Takagi
- Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Kazuhiko Uchiyama
- Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Katsura Mizushima
- Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Chihiro Ushiroda
- Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Hiromu Ohnogi
- Department of Food Factor Science, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan; Takara Bio Incorporated, Otsu, Shiga, Japan
| | - Yoko Kudo
- Takara Bio Incorporated, Otsu, Shiga, Japan
| | | | - Seina Inui
- Takara Bio Incorporated, Otsu, Shiga, Japan
| | | | - Akira Honda
- Gastroenterology, Tokyo Medical University Ibaraki Medical Center, Ami, Ibaraki, Japan
| | - Yasushi Matsuzaki
- Gastroenterology, Tokyo Medical University Ibaraki Medical Center, Ami, Ibaraki, Japan
| | - Toshikazu Yoshikawa
- Department of Food Factor Science, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| |
Collapse
|
142
|
Understanding the Impact of Omega-3 Rich Diet on the Gut Microbiota. Case Rep Med 2016; 2016:3089303. [PMID: 27065349 PMCID: PMC4808672 DOI: 10.1155/2016/3089303] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2015] [Revised: 02/11/2016] [Accepted: 02/17/2016] [Indexed: 02/07/2023] Open
Abstract
Background. Recently, the importance of the gut microbiota in the pathogenesis of several disorders has gained clinical interests. Among exogenous factors affecting gut microbiome, diet appears to have the largest effect. Fatty acids, especially omega-3 polyunsaturated, ameliorate a range of several diseases, including cardiometabolic and inflammatory and cancer. Fatty acids associated beneficial effects may be mediated, to an important extent, through changes in gut microbiota composition. We sought to understand the changes of the gut microbiota in response to an omega-3 rich diet. Case Presentation. This case study investigated changes of gut microbiota with an omega-3 rich diet. Fecal samples were collected from a 45-year-old male who consumed 600 mg of omega-3 daily for 14 days. After the intervention, species diversity was decreased, but several butyrate-producing bacteria increased. There was an important decrease in Faecalibacterium prausnitzii and Akkermansia spp. Gut microbiota changes were reverted after the 14-day washout. Conclusion. Some of the health-related benefits of omega-3 may be due, in part, to increases in butyrate-producing bacteria. These findings may shed light on the mechanisms explaining the effects of omega-3 in several chronic diseases and may also serve as an existing foundation for tailoring personalized medical treatments.
Collapse
|
143
|
Ríos-Covián D, Ruas-Madiedo P, Margolles A, Gueimonde M, de Los Reyes-Gavilán CG, Salazar N. Intestinal Short Chain Fatty Acids and their Link with Diet and Human Health. Front Microbiol 2016; 7:185. [PMID: 26925050 PMCID: PMC4756104 DOI: 10.3389/fmicb.2016.00185] [Citation(s) in RCA: 1300] [Impact Index Per Article: 144.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 02/02/2016] [Indexed: 12/18/2022] Open
Abstract
The colon is inhabited by a dense population of microorganisms, the so-called “gut microbiota,” able to ferment carbohydrates and proteins that escape absorption in the small intestine during digestion. This microbiota produces a wide range of metabolites, including short chain fatty acids (SCFA). These compounds are absorbed in the large bowel and are defined as 1-6 carbon volatile fatty acids which can present straight or branched-chain conformation. Their production is influenced by the pattern of food intake and diet-mediated changes in the gut microbiota. SCFA have distinct physiological effects: they contribute to shaping the gut environment, influence the physiology of the colon, they can be used as energy sources by host cells and the intestinal microbiota and they also participate in different host-signaling mechanisms. We summarize the current knowledge about the production of SCFA, including bacterial cross-feedings interactions, and the biological properties of these metabolites with impact on the human health.
Collapse
Affiliation(s)
- David Ríos-Covián
- Probiotics and Prebiotics Group, Department of Biochemistry and Microbiology of Dairy Products, Instituto de Productos Lácteos de Asturias, Consejo Superior de Investigaciones Científicas Villaviciosa, Spain
| | - Patricia Ruas-Madiedo
- Probiotics and Prebiotics Group, Department of Biochemistry and Microbiology of Dairy Products, Instituto de Productos Lácteos de Asturias, Consejo Superior de Investigaciones Científicas Villaviciosa, Spain
| | - Abelardo Margolles
- Probiotics and Prebiotics Group, Department of Biochemistry and Microbiology of Dairy Products, Instituto de Productos Lácteos de Asturias, Consejo Superior de Investigaciones Científicas Villaviciosa, Spain
| | - Miguel Gueimonde
- Probiotics and Prebiotics Group, Department of Biochemistry and Microbiology of Dairy Products, Instituto de Productos Lácteos de Asturias, Consejo Superior de Investigaciones Científicas Villaviciosa, Spain
| | - Clara G de Los Reyes-Gavilán
- Probiotics and Prebiotics Group, Department of Biochemistry and Microbiology of Dairy Products, Instituto de Productos Lácteos de Asturias, Consejo Superior de Investigaciones Científicas Villaviciosa, Spain
| | - Nuria Salazar
- Probiotics and Prebiotics Group, Department of Biochemistry and Microbiology of Dairy Products, Instituto de Productos Lácteos de Asturias, Consejo Superior de Investigaciones Científicas Villaviciosa, Spain
| |
Collapse
|
144
|
Ríos-Covián D, Ruas-Madiedo P, Margolles A, Gueimonde M, de los Reyes-Gavilán CG, Salazar N. Intestinal Short Chain Fatty Acids and their Link with Diet and Human Health. Front Microbiol 2016; 7:185. [PMID: 26925050 PMCID: PMC4756104 DOI: 10.3389/fmicb.2016.00185 10.3389/fmicb.2016.00185] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The colon is inhabited by a dense population of microorganisms, the so-called "gut microbiota," able to ferment carbohydrates and proteins that escape absorption in the small intestine during digestion. This microbiota produces a wide range of metabolites, including short chain fatty acids (SCFA). These compounds are absorbed in the large bowel and are defined as 1-6 carbon volatile fatty acids which can present straight or branched-chain conformation. Their production is influenced by the pattern of food intake and diet-mediated changes in the gut microbiota. SCFA have distinct physiological effects: they contribute to shaping the gut environment, influence the physiology of the colon, they can be used as energy sources by host cells and the intestinal microbiota and they also participate in different host-signaling mechanisms. We summarize the current knowledge about the production of SCFA, including bacterial cross-feedings interactions, and the biological properties of these metabolites with impact on the human health.
Collapse
|
145
|
Repass J, Maherali N, Owen K. Registered report: Fusobacterium nucleatum infection is prevalent in human colorectal carcinoma. eLife 2016; 5. [PMID: 26882501 PMCID: PMC4764561 DOI: 10.7554/elife.10012] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 11/30/2015] [Indexed: 12/14/2022] Open
Abstract
The Reproducibility Project: Cancer Biology seeks to address growing concerns about reproducibility in scientific research by conducting replications of selected experiments from a number of high-profile papers in the field of cancer biology. The papers, which were published between 2010 and 2012, were selected on the basis of citations and Altmetric scores (Errington et al., 2014). This Registered Report describes the proposed replication plan of key experiments from 'Fusobacterium nucleatum infection is prevalent in human colorectal carcinoma' by Castellarin and colleagues published in Genome Research in 2012 (Castellarin et al., 2012). The experiment to be replicated is reported in Figure 2. Here, Castellarin and colleagues performed a metagenomic analysis of colorectal carcinoma (CRC) to identify potential associations between inflammatory microorganisms and gastrointestinal cancers. They conducted quantitative real-time PCR on genomic DNA isolated from tumor and matched normal biopsies from a patient cohort and found that the overall abundance of Fusobacterium was 415 times greater in CRC versus adjacent normal tissue. These results confirmed earlier studies and provide evidence for a link between tissue-associated bacteria and tumorigenesis. The Reproducibility Project: Cancer Biology is a collaboration between the Center for Open Science and Science Exchange and the results of the replications will be published in eLife. DOI:http://dx.doi.org/10.7554/eLife.10012.001
Collapse
Affiliation(s)
| | | | - Kate Owen
- University of Virginia, Charlottesville, United States
| | | | | |
Collapse
|
146
|
Cassir N, Simeoni U, La Scola B. Gut microbiota and the pathogenesis of necrotizing enterocolitis in preterm neonates. Future Microbiol 2016; 11:273-92. [PMID: 26855351 DOI: 10.2217/fmb.15.136] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Necrotizing enterocolitis (NEC) remains a devastating intestinal disease in preterm neonates. In this population, disruption of the gut microbiota development, mainly due to organ immaturity, antibiotic use and hospital microbial environment, plays a key role in the pathogenesis of NEC. This gut dysbiosis has been associated with opportunistic pathogens overgrowth, expression of virulence factors, altered metabolic functions and inflammatory dysregulated responses. In this review, we provide an updated summary of the host and gut microbiota interactions during the formative early life. We also explore the key determinants of gut dysbiosis in preterm neonates with NEC. Finally, we discuss the promising role of bacteriotherapy in the management of NEC, the aim being to shape or restore the beneficial gut bacterial communities.
Collapse
Affiliation(s)
- Nadim Cassir
- Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes (URMITE), UM63, CNRS 7278, IRD 198, INSERM U1095, Facultés de Médecine et de Pharmacie, Aix-Marseille Université, Marseille, France
| | - Umberto Simeoni
- Service de Pédiatrie, Centre Hospitalier Universitaire Vaudois, Lausanne, Suisse, Switzerland
| | - Bernard La Scola
- Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes (URMITE), UM63, CNRS 7278, IRD 198, INSERM U1095, Facultés de Médecine et de Pharmacie, Aix-Marseille Université, Marseille, France
| |
Collapse
|
147
|
Ma D, Yang F, Fang J, Wang SL, Li ZS, Bai Y. Role of intestinal flora and defensins in colorectal carcinogenesis. Shijie Huaren Xiaohua Zazhi 2015; 23:5275-5281. [DOI: 10.11569/wcjd.v23.i33.5275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer is a common malignant tumor of the digestive system. In recent years, the morbidity and mortality of colorectal cancer in China have been rising continuously, causing heavy medical burden; however, the exact etiology is still unknown. Therefore, there is an urgent need to elucidate the etiology and pathogenesis of colorectal cancer to promote early prevention, effective screening and targeted therapy. At present, the research on the correlation between intestinal flora and colorectal cancer is being deepened constantly. Defensins, mediating interaction between intestinal flora and the intestinal mucosa, have attracted more and more attention because of their potential role in the development of colorectal cancer. Here we briefly introduce human intestinal flora and defensins, review new advances in our understanding of their role in colorectal carcinogenesis and the possible mechanism, and preliminarily explore their mutual interaction.
Collapse
|
148
|
Nistal E, Fernández-Fernández N, Vivas S, Olcoz JL. Factors Determining Colorectal Cancer: The Role of the Intestinal Microbiota. Front Oncol 2015; 5:220. [PMID: 26528432 PMCID: PMC4601259 DOI: 10.3389/fonc.2015.00220] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 09/24/2015] [Indexed: 12/26/2022] Open
Abstract
The gastrointestinal tract, in particular the colon, holds a complex community of microorganisms, which are essential for maintaining homeostasis. However, in recent years, many studies have implicated microbiota in the development of colorectal cancer (CRC), with this disease considered a major cause of death in the western world. The mechanisms underlying bacterial contribution in its development are complex and are not yet fully understood. However, there is increasing evidence showing a connection between intestinal microbiota and CRC. Intestinal microorganisms cause the onset and progression of CRC using different mechanisms, such as the induction of a chronic inflammation state, the biosynthesis of genotoxins that interfere with cell cycle regulation, the production of toxic metabolites, or heterocyclic amine activation of pro-diet carcinogenic compounds. Despite these advances, additional studies in humans and animal models will further decipher the relationship between microbiota and CRC, and aid in developing alternate therapies based on microbiota manipulation.
Collapse
Affiliation(s)
- Esther Nistal
- Instituto de Biomedicina (IBIOMED), Universidad de León , León , Spain
| | | | - Santiago Vivas
- Instituto de Biomedicina (IBIOMED), Universidad de León , León , Spain ; Gastroenterología, Hospital Universitario de León , León , Spain
| | - José Luis Olcoz
- Gastroenterología, Hospital Universitario de León , León , Spain
| |
Collapse
|
149
|
Gagnière C. [Predictive value of genotypes and fecal bacterial phenotypes in the early detection of colorectal cancers]. Med Sci (Paris) 2015; 31:709-12. [PMID: 26340823 DOI: 10.1051/medsci/20153108002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Charlotte Gagnière
- Service de gastroentérologie, Université Paris Est Créteil-Val de Marne, équipe universitaire EC2M3, hôpital Henri Mondor-APHP, 51, avenue du maréchal de Lattre de Tassigny, 94010 Créteil, France
| |
Collapse
|
150
|
Extraction of Peptidoglycan from L. paracasei subp. Paracasei X12 and Its Preliminary Mechanisms of Inducing Immunogenic Cell Death in HT-29 Cells. Int J Mol Sci 2015; 16:20033-49. [PMID: 26305246 PMCID: PMC4581339 DOI: 10.3390/ijms160820033] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2015] [Revised: 08/10/2015] [Accepted: 08/18/2015] [Indexed: 01/13/2023] Open
Abstract
L. paracasei subp. paracaseiX12 was previously isolated from a Chinese traditional fermented cheese with anticancer activities and probiotic potential. Herein, the integral peptidoglycan (X12-PG) was extracted by a modified trichloroacetic acid (TCA) method. X12-PG contained the four representative amino acids Asp, Glu, Ala and Lys, and displayed the similar lysozyme sensitivity, UV-visible scanning spectrum and molecular weight as the peptidoglycan standard. X12-PG could induce the production of apoptotic bodies observed by transmission electron microscopy (TEM). X12-PG could significantly induced the translocation of calreticulin (CRT) and the release of high mobility group box 1 protein (HMGB1), the two notable hallmarks of immunogenic cell death (ICD), with the endoplastic reticulum (ER) damaged and subsequently intracellular [Ca2+] elevated. Our findings implied that X12-PG could induce the ICD of HT-29 cells through targeting at the ER. The present results may enlighten the prospect of probiotics in the prevention of colon cancer.
Collapse
|