101
|
Gaido OER, Pavlaki N, Granger JM, Mesubi OO, Liu B, Lin BL, Long A, Walker D, Mayourian J, Schole KL, Terrillion CE, Nkashama LJ, Hulsurkar MM, Dorn LE, Ferrero KM, Huganir RL, Müller FU, Wehrens XHT, Liu JO, Luczak ED, Bezzerides VJ, Anderson ME. An improved reporter identifies ruxolitinib as a potent and cardioprotective CaMKII inhibitor. Sci Transl Med 2023; 15:eabq7839. [PMID: 37343080 PMCID: PMC11022683 DOI: 10.1126/scitranslmed.abq7839] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 05/31/2023] [Indexed: 06/23/2023]
Abstract
Ca2+/calmodulin-dependent protein kinase II (CaMKII) hyperactivity causes cardiac arrhythmias, a major source of morbidity and mortality worldwide. Despite proven benefits of CaMKII inhibition in numerous preclinical models of heart disease, translation of CaMKII antagonists into humans has been stymied by low potency, toxicity, and an enduring concern for adverse effects on cognition due to an established role of CaMKII in learning and memory. To address these challenges, we asked whether any clinically approved drugs, developed for other purposes, were potent CaMKII inhibitors. For this, we engineered an improved fluorescent reporter, CaMKAR (CaMKII activity reporter), which features superior sensitivity, kinetics, and tractability for high-throughput screening. Using this tool, we carried out a drug repurposing screen (4475 compounds in clinical use) in human cells expressing constitutively active CaMKII. This yielded five previously unrecognized CaMKII inhibitors with clinically relevant potency: ruxolitinib, baricitinib, silmitasertib, crenolanib, and abemaciclib. We found that ruxolitinib, an orally bioavailable and U.S. Food and Drug Administration-approved medication, inhibited CaMKII in cultured cardiomyocytes and in mice. Ruxolitinib abolished arrhythmogenesis in mouse and patient-derived models of CaMKII-driven arrhythmias. A 10-min pretreatment in vivo was sufficient to prevent catecholaminergic polymorphic ventricular tachycardia, a congenital source of pediatric cardiac arrest, and rescue atrial fibrillation, the most common clinical arrhythmia. At cardioprotective doses, ruxolitinib-treated mice did not show any adverse effects in established cognitive assays. Our results support further clinical investigation of ruxolitinib as a potential treatment for cardiac indications.
Collapse
Affiliation(s)
- Oscar E. Reyes Gaido
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Nikoleta Pavlaki
- Department of Cardiology, Boston Children’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Jonathan M. Granger
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Olurotimi O. Mesubi
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Bian Liu
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Brian L. Lin
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Alan Long
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - David Walker
- Department of Cardiology, Boston Children’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Joshua Mayourian
- Department of Cardiology, Boston Children’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Kate L. Schole
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Chantelle E. Terrillion
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Lubika J. Nkashama
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Mohit M. Hulsurkar
- Cardiovascular Research Institute and Department of Integrative Physiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Lauren E. Dorn
- Cardiovascular Research Institute and Department of Integrative Physiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Kimberly M. Ferrero
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Richard L. Huganir
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Frank U. Müller
- Institute of Pharmacology and Toxicology, University of Münster, Münster 48149, Germany
| | - Xander H. T. Wehrens
- Cardiovascular Research Institute and Department of Integrative Physiology, Baylor College of Medicine, Houston, TX 77030, USA
- Departments of Medicine, Neuroscience, and Pediatrics, Center for Space Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jun O. Liu
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Elizabeth D. Luczak
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Vassilios J. Bezzerides
- Department of Cardiology, Boston Children’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Mark E. Anderson
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Division of Biological Sciences and the Pritzker School of Medicine, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
102
|
Neel NC, Sicklick JK, Zare S, Boles SG. Near-Complete Pathological Response to Abemaciclib in the Treatment of Well-Differentiated/Dedifferentiated Liposarcoma: A Case Report. JCO Precis Oncol 2023; 7:e2100482. [PMID: 37343202 DOI: 10.1200/po.21.00482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 09/26/2022] [Accepted: 03/20/2023] [Indexed: 06/23/2023] Open
Affiliation(s)
- Nicholas C Neel
- University of California, San Diego School of Medicine, San Diego, CA
| | - Jason K Sicklick
- University of California, San Diego School of Medicine, San Diego, CA
- UC San Diego Moores Cancer Center, La Jolla, CA
- Department of Surgery, Division of Surgical Oncology, UC San Diego Health, San Diego, CA
| | - Somaye Zare
- University of California, San Diego School of Medicine, San Diego, CA
- Department of Pathology, UC San Diego Health, San Diego, CA
| | - Sarah G Boles
- University of California, San Diego School of Medicine, San Diego, CA
- UC San Diego Moores Cancer Center, La Jolla, CA
- Department of Medicine, Division of Medical Oncology, UC San Diego Health, San Diego, CA
| |
Collapse
|
103
|
Slamon DJ, Fasching PA, Hurvitz S, Chia S, Crown J, Martín M, Barrios CH, Bardia A, Im SA, Yardley DA, Untch M, Huang CS, Stroyakovskiy D, Xu B, Moroose RL, Loi S, Visco F, Bee-Munteanu V, Afenjar K, Fresco R, Taran T, Chakravartty A, Zarate JP, Lteif A, Hortobagyi GN. Rationale and trial design of NATALEE: a Phase III trial of adjuvant ribociclib + endocrine therapy versus endocrine therapy alone in patients with HR+/HER2- early breast cancer. Ther Adv Med Oncol 2023; 15:17588359231178125. [PMID: 37275963 PMCID: PMC10233570 DOI: 10.1177/17588359231178125] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 05/09/2023] [Indexed: 06/07/2023] Open
Abstract
Background Ribociclib has demonstrated a statistically significant overall survival benefit in pre- and postmenopausal patients with hormone receptor positive/human epidermal growth factor receptor 2 negative (HR+/HER2-) advanced breast cancer. New Adjuvant Trial with Ribociclib [LEE011] (NATALEE) is a trial evaluating the efficacy and safety of adjuvant ribociclib plus endocrine therapy (ET) versus ET alone in patients with HR+/HER2- early nonmetastatic breast cancer (EBC). Methods/design NATALEE is a multicenter, randomized, open-label, Phase III trial in patients with HR+/HER2- EBC. Eligible patients include women, regardless of menopausal status, and men aged ⩾18 years. Select patients with stage IIA, stage IIB, or stage III disease (per the anatomic classification in the AJCC Cancer Staging Manual, 8th edition) with an initial diagnosis ⩽18 months prior to randomization are eligible. Patients receiving standard (neo)adjuvant ET are eligible if treatment was initiated ⩽12 months before randomization. Patients undergo 1:1 randomization to ribociclib 400 mg/day (3 weeks on/1 week off) +ET (letrozole 2.5 mg/day or anastrozole 1 mg/day [investigator's discretion] plus goserelin [men or premenopausal women]) or ET alone. Ribociclib treatment duration is 36 months; ET treatment duration is ⩾60 months. The primary end point is invasive disease-free survival. Discussion The 36-month treatment duration of ribociclib in NATALEE is extended compared with that in other adjuvant cyclin-dependent kinases 4 and 6 (CDK4/6) inhibitor trials and is intended to maximize efficacy due to longer duration of CDK4/6 inhibition. Compared with the 600-mg/day dose used in advanced breast cancer, the reduced ribociclib dose used in NATALEE may improve tolerability while maintaining efficacy. NATALEE includes the broadest population of patients with HR+/HER2- EBC of any Phase III trial currently evaluating adjuvant CDK4/6 inhibitor treatment. Trial registration ClinicalTrials.gov identifier: NCT03701334 (https://clinicaltrials.gov/ct2/show/NCT03701334).
Collapse
Affiliation(s)
- Dennis J. Slamon
- David Geffen School of Medicine at UCLA, 10945
Le Conte Ave. Suite 3360, Los Angeles, CA 90095, USA
| | - Peter A. Fasching
- University Hospital Erlangen Comprehensive
Cancer Center Erlangen-EMN, Friedrich-Alexander University
Erlangen-Nuremberg, Erlangen, Germany
| | - Sara Hurvitz
- University of California, Los Angeles Jonsson
Comprehensive Cancer Center, Los Angeles, CA, USA
| | - Stephen Chia
- British Columbia Cancer Agency, Vancouver, BC,
Canada
| | | | - Miguel Martín
- Instituto de Investigación Sanitaria Gregorio
Marañon, Centro de Investigación Biomédica en Red de Cáncer, Grupo Español
de Investigación en Cáncer de Mama, Universidad Complutense, Madrid,
Spain
| | - Carlos H. Barrios
- Centro de Pesquisa em Oncologia, Hospital São
Lucas, PUCRS, Latin American Cooperative Oncology Group (LACOG), Porto
Alegre, Brazil
| | - Aditya Bardia
- Massachusetts General Hospital Cancer Center,
Harvard Medical School, Boston, MA, USA
| | - Seock-Ah Im
- Cancer Research Institute, Seoul National
University Hospital, Seoul National University College of Medicine, Seoul,
Republic of Korea
| | - Denise A. Yardley
- Sarah Cannon Research Institute, Tennessee
Oncology, Nashville, TN, USA
| | - Michael Untch
- Interdisciplinary Breast Cancer Center, Helios
Klinikum Berlin-Buch, Berlin, Germany
| | - Chiun-Sheng Huang
- National Taiwan University Hospital, National
Taiwan University College of Medicine, Taipei City, Taiwan
| | - Daniil Stroyakovskiy
- Moscow City Oncology Hospital No. 62 of Moscow
Healthcare Department, Moscow Oblast, Russia
| | - Binghe Xu
- Department of Medical Oncology Cancer
Hospital, Chinese Academy of Medical Sciences and Peking Union Medical
College, Beijing, China
| | | | - Sherene Loi
- Peter MacCallum Cancer Centre, Melbourne,
Australia
| | - Frances Visco
- National Breast Cancer Coalition, Washington,
DC, USA
| | | | - Karen Afenjar
- TRIO – Translational Research in Oncology,
Paris, France
| | - Rodrigo Fresco
- TRIO – Translational Research in Oncology,
Montevideo, Uruguay
| | | | | | | | - Agnes Lteif
- Novartis Pharmaceuticals Corporation, East
Hanover, NJ, USA
| | - Gabriel N. Hortobagyi
- Department of Breast Medical Oncology, The
University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
104
|
Nozawa K, Terada M, Onishi M, Ozaki Y, Takano T, Fakhouri W, Novick D, Haro JM, Faris LH, Kawaguchi T, Tanizawa Y, Tsurutani J. Real-world treatment patterns and outcomes of abemaciclib for the treatment of HR + , HER2- metastatic breast cancer patients in Japan. Breast Cancer 2023:10.1007/s12282-023-01461-6. [PMID: 37217763 DOI: 10.1007/s12282-023-01461-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 04/08/2023] [Indexed: 05/24/2023]
Abstract
INTRODUCTION This study described, in routine clinical practice in Japan, the patient characteristics, treatment patterns, and outcomes of female patients with HR + /HER2- metastatic breast cancer (MBC) who started abemaciclib treatment. METHODS Clinical charts were reviewed for patients starting abemaciclib in 12/2018-08/2021 with a minimum of 3 months follow-up data post-abemaciclib initiation regardless of abemaciclib discontinuation. Patient characteristics, treatment patterns, and tumor response were descriptively summarized. Kaplan-Meier curves estimated progression-free survival (PFS). RESULTS 200 patients from 14 institutions were included. At abemaciclib initiation, median age was 59 years, and the Eastern Cooperative Oncology Group performance status score was 0/1/2 for 102/68/5 patients (58.3/38.9/2.9%), respectively. Most had an abemaciclib starting dose of 150 mg (92.5%). The percentage of patients receiving abemaciclib as 1st, 2nd, or 3rd line treatment was 31.5%, 25.8%, and 25.2%, respectively. The most frequent endocrine therapy drugs used with abemaciclib were fulvestrant (59%) and aromatase inhibitors (40%). Evaluation of tumor response was available for 171 patients, 30.4% of whom had complete/partial response. Median PFS was 13.0 months (95% CI 10.1-15.8 months). CONCLUSIONS In a routine clinical practice setting in Japan, patients with HR + , HER2- MBC appear to benefit from abemaciclib treatment in terms of treatment response and median PFS, with the results broadly reflecting the evidence demonstrated in clinical trials.
Collapse
Affiliation(s)
- K Nozawa
- Department of Breast Oncology, Aichi Cancer Center Hospital, Nagoya, Japan
| | - M Terada
- Department of Breast Surgery, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| | - M Onishi
- Department of Medical Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Y Ozaki
- Department of Breast Medical Oncology, Breast Oncology Center, The Cancer Institute Hospital of the Japanese Foundation for Cancer Research, Tokyo, Japan
| | - T Takano
- Department of Breast Medical Oncology, Breast Oncology Center, The Cancer Institute Hospital of the Japanese Foundation for Cancer Research, Tokyo, Japan
| | - W Fakhouri
- Eli Lilly and Company, Indianapolis, IN, USA
| | - D Novick
- Eli Lilly and Company, Indianapolis, IN, USA
| | - J M Haro
- Parc Sanitari Sant Joan de Déu, Universitat de Barcelona, Sant Boi de Llobregat, Barcelona, Spain
| | - L H Faris
- Parc Sanitari Sant Joan de Déu, Universitat de Barcelona, Sant Boi de Llobregat, Barcelona, Spain
| | - T Kawaguchi
- Eli Lilly and Company, Indianapolis, IN, USA
| | - Y Tanizawa
- Eli Lilly and Company, Indianapolis, IN, USA
| | - Junji Tsurutani
- Advanced Cancer Translational Research Institute, Showa University, Tokyo, Japan.
| |
Collapse
|
105
|
He W, Demas DM, Shajahan-Haq AN, Baumann WT. Modeling breast cancer proliferation, drug synergies, and alternating therapies. iScience 2023; 26:106714. [PMID: 37234088 PMCID: PMC10206440 DOI: 10.1016/j.isci.2023.106714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 02/12/2023] [Accepted: 04/18/2023] [Indexed: 05/27/2023] Open
Abstract
Estrogen receptor positive (ER+) breast cancer is responsive to a number of targeted therapies used clinically. Unfortunately, the continuous application of targeted therapy often results in resistance, driving the consideration of combination and alternating therapies. Toward this end, we developed a mathematical model that can simulate various mono, combination, and alternating therapies for ER + breast cancer cells at different doses over long time scales. The model is used to look for optimal drug combinations and predicts a significant synergism between Cdk4/6 inhibitors in combination with the anti-estrogen fulvestrant, which may help explain the clinical success of adding Cdk4/6 inhibitors to anti-estrogen therapy. Furthermore, the model is used to optimize an alternating treatment protocol so it works as well as monotherapy while using less total drug dose.
Collapse
Affiliation(s)
- Wei He
- Program in Genetics, Bioinformatics, and Computational Biology, VT BIOTRANS, Virginia Tech, Blacksburg, VA 24061, USA
| | - Diane M. Demas
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Ayesha N. Shajahan-Haq
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | - William T. Baumann
- Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg, VA 24061, USA
| |
Collapse
|
106
|
Hu Q, Huang T. Regulation of the Cell Cycle by ncRNAs Affects the Efficiency of CDK4/6 Inhibition. Int J Mol Sci 2023; 24:ijms24108939. [PMID: 37240281 DOI: 10.3390/ijms24108939] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/12/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023] Open
Abstract
Cyclin-dependent kinases (CDKs) regulate cell division at multiple levels. Aberrant proliferation induced by abnormal cell cycle is a hallmark of cancer. Over the past few decades, several drugs that inhibit CDK activity have been created to stop the development of cancer cells. The third generation of selective CDK4/6 inhibition has proceeded into clinical trials for a range of cancers and is quickly becoming the backbone of contemporary cancer therapy. Non-coding RNAs, or ncRNAs, do not encode proteins. Many studies have demonstrated the involvement of ncRNAs in the regulation of the cell cycle and their abnormal expression in cancer. By interacting with important cell cycle regulators, preclinical studies have demonstrated that ncRNAs may decrease or increase the treatment outcome of CDK4/6 inhibition. As a result, cell cycle-associated ncRNAs may act as predictors of CDK4/6 inhibition efficacy and perhaps present novel candidates for tumor therapy and diagnosis.
Collapse
Affiliation(s)
- Qingyi Hu
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Tao Huang
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
107
|
Li X, Lu J, Liu L, Li F, Xu T, Chen L, Yan Z, Li Y, Guo W. FOXK1 regulates malignant progression and radiosensitivity through direct transcriptional activation of CDC25A and CDK4 in esophageal squamous cell carcinoma. Sci Rep 2023; 13:7737. [PMID: 37173384 PMCID: PMC10182098 DOI: 10.1038/s41598-023-34979-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 05/10/2023] [Indexed: 05/15/2023] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) is a serious malignancy with poor prognosis, necessitating identification of oncogenic mechanisms for novel therapeutic strategies. Recent studies have highlighted the significance of the transcription factor forkhead box K1 (FOXK1) in diverse biological processes and carcinogenesis of multiple malignancies, including ESCC. However, the molecular pathways underlying FOXK1's role in ESCC progression are not fully understood, and its potential role in radiosensitivity remains unclear. Here, we aimed to elucidate the function of FOXK1 in ESCC and explore the underlying mechanisms. Elevated FOXK1 expression levels were found in ESCC cells and tissues, positively correlated with TNM stage, invasion depth, and lymph node metastasis. FOXK1 markedly enhanced the proliferative, migratory and invasive capacities of ESCC cells. Furthermore, silencing FOXK1 resulted in heightened radiosensitivity by impeding DNA damage repair, inducing G1 arrest, and promoting apoptosis. Subsequent studies demonstrated that FOXK1 directly bound to the promoter regions of CDC25A and CDK4, thereby activating their transcription in ESCC cells. Moreover, the biological effects mediated by FOXK1 overexpression could be reversed by knockdown of either CDC25A or CDK4. Collectively, FOXK1, along with its downstream target genes CDC25A and CDK4, may serve as a promising set of therapeutic and radiosensitizing targets for ESCC.
Collapse
Affiliation(s)
- Xiaoxu Li
- Laboratory of Pathology, Hebei Cancer Institute, The Fourth Hospital of Hebei Medical University, Jiankang Road 12, Shijiazhuang, 050011, Hebei, China
- Department of Radiation Oncology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Juntao Lu
- Laboratory of Pathology, Hebei Cancer Institute, The Fourth Hospital of Hebei Medical University, Jiankang Road 12, Shijiazhuang, 050011, Hebei, China
| | - Lei Liu
- Department of Thoracic Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Fei Li
- Department of Thoracic Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Tongxin Xu
- Laboratory of Pathology, Hebei Cancer Institute, The Fourth Hospital of Hebei Medical University, Jiankang Road 12, Shijiazhuang, 050011, Hebei, China
| | - Liying Chen
- Laboratory of Pathology, Hebei Cancer Institute, The Fourth Hospital of Hebei Medical University, Jiankang Road 12, Shijiazhuang, 050011, Hebei, China
| | - Zhaoyang Yan
- Laboratory of Pathology, Hebei Cancer Institute, The Fourth Hospital of Hebei Medical University, Jiankang Road 12, Shijiazhuang, 050011, Hebei, China
| | - Yan Li
- Laboratory of Pathology, Hebei Cancer Institute, The Fourth Hospital of Hebei Medical University, Jiankang Road 12, Shijiazhuang, 050011, Hebei, China
| | - Wei Guo
- Laboratory of Pathology, Hebei Cancer Institute, The Fourth Hospital of Hebei Medical University, Jiankang Road 12, Shijiazhuang, 050011, Hebei, China.
| |
Collapse
|
108
|
Abutorabi ES, Poursheikhani A, Kashani B, Shamsaiegahkani S, Haghpanah V, Bashash D, Mousavi SA, Momeny M, Ghaffari SH. The effects of Abemaciclib on cell cycle and apoptosis regulation in anaplastic thyroid cancer cells. Mol Biol Rep 2023; 50:4073-4082. [PMID: 36877344 DOI: 10.1007/s11033-023-08255-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 01/05/2023] [Indexed: 03/07/2023]
Abstract
BACKGROUND Anaplastic thyroid cancer (ATC) is an aggressive subtype of thyroid cancer, accounting for 1 to 2% of all cases. Deregulations of cell cycle regulatory genes including cyclins, cyclin-dependent kinases (CDKs), and endogenous inhibitors of CDKs (CKIs) are hallmarks of cancer cells and hence, studies indicate the inhibition of CDK4/6 kinases and cell cycle progression as potent therapeutic strategies. In this study, we investigated the anti-tumor activity of Abemaciclib, a CDK4 and CDK6 inhibitor, in ATC cell lines. METHODS AND RESULTS The ATC cell lines C643 and SW1736 were selected to study the antiproliferative effects of Abemaciclib using a cell proliferation assay and crystal violet staining assay. Annexin V/PI staining and cell cycle analysis by flow cytometry were also performed to examine the effects on apoptosis induction and cell cycle arrest. Wound healing assay and zymography analysis examined the effects of the drug on invasive abilities of ATC cells and Western blot analyses were applied to further study the anti-tumor mechanism of Abemaciclib, in addition to combination treatment with alpelisib. Our data demonstrated that Abemaciclib significantly inhibited cell proliferation and increased cellular apoptosis and cell cycle arrest in ATC cell lines, while considerably reducing cell migration and colony formation. The mechanism seemed to involve the PI3K pathway. CONCLUSION Our preclinical data highlight CDK4/6 as interesting therapeutic targets in ATC and suggest CDK4/6-blockade therapies as promising strategies in this malignancy.
Collapse
Grants
- Hematology, Oncology, and Stem Cell Transplantation Research Center, Shariati Hospital, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran. Hematology, Oncology, and Stem Cell Transplantation Research Center, Shariati Hospital, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
Collapse
Affiliation(s)
- Elaheh S Abutorabi
- Hematology/Oncology and Stem Cell Transplantation Research Center, School of Medicine, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Arash Poursheikhani
- Medical Genetics Research Center, Department of Medical Genetics and Molecular Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Bahareh Kashani
- Hematology/Oncology and Stem Cell Transplantation Research Center, School of Medicine, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Sahar Shamsaiegahkani
- Hematology/Oncology and Stem Cell Transplantation Research Center, School of Medicine, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Vahid Haghpanah
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Davood Bashash
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seied A Mousavi
- Hematology/Oncology and Stem Cell Transplantation Research Center, School of Medicine, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Majid Momeny
- The Brown Foundation Institute of Molecular Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA.
| | - Seyed H Ghaffari
- Hematology/Oncology and Stem Cell Transplantation Research Center, School of Medicine, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
109
|
Cheung AHK, Hui CHL, Wong KY, Liu X, Chen B, Kang W, To KF. Out of the cycle: Impact of cell cycle aberrations on cancer metabolism and metastasis. Int J Cancer 2023; 152:1510-1525. [PMID: 36093588 DOI: 10.1002/ijc.34288] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 08/17/2022] [Accepted: 09/02/2022] [Indexed: 11/11/2022]
Abstract
The use of cell cycle inhibitors has necessitated a better understanding of the cell cycle in tumor biology to optimize the therapeutic approach. Cell cycle aberrations are common in cancers, and it is increasingly acknowledged that these aberrations exert oncogenic effects beyond the cell cycle. Multiple facets such as cancer metabolism, immunity and metastasis are also affected, all of which are beyond the effect of cell proliferation alone. This review comprehensively summarized the important recent findings and advances in these interrelated processes. In cancer metabolism, cell cycle regulators can modulate various pathways in aerobic glycolysis, glucose uptake and gluconeogenesis, mainly through transcriptional regulation and kinase activities. Amino acid metabolism is also regulated through cell cycle progression. On cancer metastasis, metabolic plasticity, immune evasion, tumor microenvironment adaptation and metastatic site colonization are intricately related to the cell cycle, with distinct regulatory mechanisms at each step of invasion and dissemination. Throughout the synthesis of current understanding, knowledge gaps and limitations in the literature are also highlighted, as are new therapeutic approaches such as combinational therapy and challenges in tackling emerging targeted therapy resistance. A greater understanding of how the cell cycle modulates diverse aspects of cancer biology can hopefully shed light on identifying new molecular targets by harnessing the vast potential of the cell cycle.
Collapse
Affiliation(s)
- Alvin Ho-Kwan Cheung
- Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China.,Institute of Digestive Disease, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Hong Kong, China.,State Key Laboratory of Translational Oncology, Sir Y.K. Pao Cancer Center, The Chinese University of Hong Kong, Hong Kong, China
| | - Chris Ho-Lam Hui
- Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China.,Institute of Digestive Disease, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Hong Kong, China.,State Key Laboratory of Translational Oncology, Sir Y.K. Pao Cancer Center, The Chinese University of Hong Kong, Hong Kong, China
| | - Kit Yee Wong
- Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China.,Institute of Digestive Disease, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Hong Kong, China.,State Key Laboratory of Translational Oncology, Sir Y.K. Pao Cancer Center, The Chinese University of Hong Kong, Hong Kong, China
| | - Xiaoli Liu
- Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China.,Institute of Digestive Disease, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Hong Kong, China.,State Key Laboratory of Translational Oncology, Sir Y.K. Pao Cancer Center, The Chinese University of Hong Kong, Hong Kong, China
| | - Bonan Chen
- Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China.,Institute of Digestive Disease, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Hong Kong, China.,State Key Laboratory of Translational Oncology, Sir Y.K. Pao Cancer Center, The Chinese University of Hong Kong, Hong Kong, China
| | - Wei Kang
- Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China.,Institute of Digestive Disease, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Hong Kong, China.,State Key Laboratory of Translational Oncology, Sir Y.K. Pao Cancer Center, The Chinese University of Hong Kong, Hong Kong, China
| | - Ka Fai To
- Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China.,Institute of Digestive Disease, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Hong Kong, China.,State Key Laboratory of Translational Oncology, Sir Y.K. Pao Cancer Center, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
110
|
Singh R, Purohit R. Computational analysis of protein-ligand interaction by targeting a cell cycle restrainer. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2023; 231:107367. [PMID: 36716649 DOI: 10.1016/j.cmpb.2023.107367] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 01/10/2023] [Accepted: 01/22/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND AND OBJECTIVE The cyclin-dependent kinases 4/6 (CDK4/6) are among the most crucial controllers of the cell cycle, and their abnormal activity may induce uncontrolled cell multiplication, leading to cancers. The FDA currently approved three CDK4/6 inhibitors, however, they are associated with a variety of side effects. Thus it is required to design/develop novel potent and safe CDK4/6 inhibitors. METHODS In the present work, we furnished an integrated in-silico approach followed by steered molecular dynamics (SMD) simulations to identify molecules that can be developed into novel CDK4/6 inhibitors. RESULTS Out of thirty-two 3-methyleneisoindolin-1-one molecules we selected top three M18, M24, and M32 molecules as potential drug candidates based on their respective interaction energies. According to the robust 250 ns MD simulations and thermodynamic free energy, M24 was the best molecule in comparison to palbociclib. In SMD, M24 required ∼205.587 kJ/mol/nm external pulling force, while palbociclib needed ∼160.97 kJ/mol/nm to dissociate from the binding pocket of the CDK4. CONCLUSIONS The high pulling force required for M24 dissociation from the binding site denotes stronger binding with CDK4. Therefore, M24 offers the possibility of a critical starting structure in developing effective CDK4 inhibitors.
Collapse
Affiliation(s)
- Rahul Singh
- Structural Bioinformatics Lab, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, HP 176061, India; Biotechnology Division, CSIR-IHBT, Palampur, HP 176061, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Rituraj Purohit
- Structural Bioinformatics Lab, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, HP 176061, India; Biotechnology Division, CSIR-IHBT, Palampur, HP 176061, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
111
|
Vanhoutte T, Sprangers B. Pseudo-AKI associated with targeted anti-cancer agents-the truth is in the eye of the filtration marker. Clin Kidney J 2023; 16:603-610. [PMID: 37007700 PMCID: PMC10061433 DOI: 10.1093/ckj/sfad011] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Indexed: 01/18/2023] Open
Abstract
Besides true acute kidney injury (AKI), the occurrence of pseudo-AKI has been associated with several targeted agents. To improve the management of cancer patients treated with targeted agents, we need to be aware of this and use diagnostic approaches to differentiate between pseudo-AKI and AKI. In an article by Wijtvliet et al. in this issue of CKJ, tepotinib is added to the list of targeted agents associated with pseudo-AKI. In this editorial we discuss the current literature regarding pseudo-AKI and true AKI associated with targeted agents, and subsequently propose a management strategy to monitor kidney function in patients treated with targeted agents.
Collapse
Affiliation(s)
- Thomas Vanhoutte
- Department of Nephrology, University Hospitals Leuven, Leuven, Belgium
| | - Ben Sprangers
- Ziekenhuis Oost-Limburg, Genk, Belgium
- Biomedical Research Institute, Department of Immunology and Infection, UHasselt, Diepenbeek, Belgium
| |
Collapse
|
112
|
Zhou FH, Downton T, Freelander A, Hurwitz J, Caldon CE, Lim E. CDK4/6 inhibitor resistance in estrogen receptor positive breast cancer, a 2023 perspective. Front Cell Dev Biol 2023; 11:1148792. [PMID: 37035239 PMCID: PMC10073728 DOI: 10.3389/fcell.2023.1148792] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 03/13/2023] [Indexed: 04/11/2023] Open
Abstract
CDK4/6 inhibitors have become game-changers in the treatment of estrogen receptor-positive (ER+) breast cancer, and in combination with endocrine therapy are the standard of care first-line treatment for ER+/HER2-negative advanced breast cancer. Although CDK4/6 inhibitors prolong survival for these patients, resistance is inevitable and there is currently no clear standard next-line treatment. There is an urgent unmet need to dissect the mechanisms which drive intrinsic and acquired resistance to CDK4/6 inhibitors and endocrine therapy to guide the subsequent therapeutic decisions. We will review the insights gained from preclinical studies and clinical cohorts into the diverse mechanisms of CDK4/6 inhibitor action and resistance, and highlight potential therapeutic strategies in the context of CDK4/6 inhibitor resistance.
Collapse
Affiliation(s)
- Fiona H. Zhou
- Garvan Institute of Medical Research, Sydney, NSW, Australia
- St Vincent’s Clinical School, University of NSW, Sydney, NSW, Australia
| | - Teesha Downton
- Garvan Institute of Medical Research, Sydney, NSW, Australia
- St Vincent’s Clinical School, University of NSW, Sydney, NSW, Australia
| | - Allegra Freelander
- Garvan Institute of Medical Research, Sydney, NSW, Australia
- St Vincent’s Clinical School, University of NSW, Sydney, NSW, Australia
| | - Joshua Hurwitz
- Garvan Institute of Medical Research, Sydney, NSW, Australia
- St Vincent’s Clinical School, University of NSW, Sydney, NSW, Australia
| | - C. Elizabeth Caldon
- Garvan Institute of Medical Research, Sydney, NSW, Australia
- St Vincent’s Clinical School, University of NSW, Sydney, NSW, Australia
| | - Elgene Lim
- Garvan Institute of Medical Research, Sydney, NSW, Australia
- St Vincent’s Clinical School, University of NSW, Sydney, NSW, Australia
| |
Collapse
|
113
|
Kumar B, Prasad P, Singh R, Sahu RK, Singh A, Magani SJ, Hedau S. Role of identified proteins in the proteome profiles of CDK4/6 inhibitor-resistant breast cancer cell lines. Mol Omics 2023. [PMID: 36938944 DOI: 10.1039/d2mo00285j] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
Abemaciclib (Ab) and palbociclib (Pb) are CDK4/6 inhibitors used to cure advanced breast cancer (BC). However, acquired resistance is a major challenge. The molecular mechanisms and signature proteins of therapy resistance for Ab and Pb drugs need to be explored. Here we developed resistant cells for Ab and Pb drugs in MCF-7 cell lines and explored the mechanisms and signature proteins of therapy resistance in BC. Proteome profiling was performed using the label-free proteome-orbitrap-fusion-MS-MS technique. Gene ontology (GO)-terms, KEGG pathways and network analysis were performed for the proteome data. Drug-resistant cells showed increased drug tolerance, enhanced colony formation potential and an increased gap-healing tendency for the respective drug. Up-regulation of survival genes (BCL-2 and MCL-1) and down-regulation of apoptosis inducers were observed. Drug-resistance markers (MDR-1 and ABCG2 (BCRP)) along with ESR-1, CDK4, CDK6, and cyclin-D1 genes were up-regulated in resistant cells. A total of 237 and 239 proteins were found to be differentially expressed in the Ab and Pb-resistant cells, respectively. Down-regulated proteins induce apoptosis signalling and nucleotide metabolisms and restrict EGFR signalling; however, up-regulated proteins induce Erk, wnt-β-catenin, VEGFR-PI3K-AKT, glucose transportation, and hypoxia signalling pathways and regulate hydrogen peroxide signalling pathways. The panel of identified proteins associated with these pathways might have characteristics of molecular signature and new drug targets for overcoming drug resistance in breast cancer.
Collapse
Affiliation(s)
- Binayak Kumar
- Division of Molecular Oncology, ICMR-National Institute of Cancer Prevention and Research, I-7, Sector-39, Noida, Uttar Pradesh, 201301, India.
| | - Peeyush Prasad
- Department of Research, Sir Ganga Ram Hospital, 110060, New Delhi, India
| | - Ragini Singh
- Division of Molecular Oncology, ICMR-National Institute of Cancer Prevention and Research, I-7, Sector-39, Noida, Uttar Pradesh, 201301, India.
| | - Ram Krishna Sahu
- Division of Molecular Oncology, ICMR-National Institute of Cancer Prevention and Research, I-7, Sector-39, Noida, Uttar Pradesh, 201301, India.
| | - Ashutosh Singh
- Department of Life Sciences, Shiv Nadar University, NH-91, Tahsil-Dadri, Distt-Gautam Budhaa Nagar, Uttar Pradesh, 201314, India.
| | - Srikrishna Jayadev Magani
- Department of Life Sciences, Shiv Nadar University, NH-91, Tahsil-Dadri, Distt-Gautam Budhaa Nagar, Uttar Pradesh, 201314, India.
| | - Suresh Hedau
- Division of Molecular Oncology, ICMR-National Institute of Cancer Prevention and Research, I-7, Sector-39, Noida, Uttar Pradesh, 201301, India.
| |
Collapse
|
114
|
Thanh Nguyen TD, Wang Y, Bui TN, Lazcano R, Ingram DR, Yi M, Vakulabharanam V, Luo L, Pina MA, Karakas C, Li M, Kettner NM, Somaiah N, Hougton PJ, Mawlawi O, Lazar AJ, Hunt KK, Keyomarsi K. Sequential Targeting of Retinoblastoma and DNA Synthesis Pathways Is a Therapeutic Strategy for Sarcomas That Can Be Monitored in Real Time. Cancer Res 2023; 83:939-955. [PMID: 36603130 PMCID: PMC10023441 DOI: 10.1158/0008-5472.can-22-2258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 11/22/2022] [Accepted: 01/03/2023] [Indexed: 01/07/2023]
Abstract
Treatment strategies with a strong scientific rationale based on specific biomarkers are needed to improve outcomes in patients with advanced sarcomas. Suppression of cell-cycle progression through reactivation of the tumor suppressor retinoblastoma (Rb) using CDK4/6 inhibitors is a potential avenue for novel targeted therapies in sarcomas that harbor intact Rb signaling. Here, we evaluated combination treatment strategies (sequential and concomitant) with the CDK4/6 inhibitor abemacicib to identify optimal combination strategies. Expression of Rb was examined in 1,043 sarcoma tumor specimens, and 50% were found to be Rb-positive. Using in vitro and in vivo models, an effective two-step sequential combination strategy was developed. Abemaciclib was used first to prime Rb-positive sarcoma cells to reversibly arrest in G1 phase. Upon drug removal, cells synchronously traversed to S phase, where a second treatment with S-phase targeted agents (gemcitabine or Wee1 kinase inhibitor) mediated a synergistic response by inducing DNA damage. The response to treatment could be noninvasively monitored using real-time positron emission tomography imaging and serum thymidine kinase activity. Collectively, these results show that a novel, sequential treatment strategy with a CDK4/6 inhibitor followed by a DNA-damaging agent was effective, resulting in synergistic tumor cell killing. This approach can be readily translated into a clinical trial with noninvasive functional imaging and serum biomarkers as indicators of response and cell cycling. SIGNIFICANCE An innovative sequential therapeutic strategy targeting Rb, followed by treatment with agents that perturb DNA synthesis pathways, results in synergistic killing of Rb-positive sarcomas that can be noninvasively monitored.
Collapse
Affiliation(s)
- Tuyen Duong Thanh Nguyen
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Yan Wang
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Tuyen N. Bui
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Rossana Lazcano
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Davis R. Ingram
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Min Yi
- Departments of Breast Surgical Oncology and Surgical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | | | - Linjie Luo
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Marc A. Pina
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Cansu Karakas
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Mi Li
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
- The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, 77030, USA
| | - Nicole M. Kettner
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Neeta Somaiah
- Department of Sarcoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Peter J. Hougton
- Greehey Children’s Cancer Research Institute and Molecular Medicine, The University of Texas Heath Science Center, San Antonio, TX 78229, USA
| | - Osama Mawlawi
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Alexander J. Lazar
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Kelly K. Hunt
- Departments of Breast Surgical Oncology and Surgical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Khandan Keyomarsi
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| |
Collapse
|
115
|
Viganò M, La Milia M, Grassini MV, Pugliese N, De Giorgio M, Fagiuoli S. Hepatotoxicity of Small Molecule Protein Kinase Inhibitors for Cancer. Cancers (Basel) 2023; 15:cancers15061766. [PMID: 36980652 PMCID: PMC10046041 DOI: 10.3390/cancers15061766] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/09/2023] [Accepted: 03/11/2023] [Indexed: 03/17/2023] Open
Abstract
Small molecule protein kinase inhibitors (PKIs) have become an effective strategy for cancer patients. However, hepatotoxicity is a major safety concern of these drugs, since the majority are reported to increase transaminases, and few of them (Idelalisib, Lapatinib, Pazopanib, Pexidartinib, Ponatinib, Regorafenib, Sunitinib) have a boxed label warning. The exact rate of PKI-induced hepatoxicity is not well defined due to the fact that the majority of data arise from pre-registration or registration trials on fairly selected patients, and the post-marketing data are often based only on the most severe described cases, whereas most real practice studies do not include drug-related hepatotoxicity as an end point. Although these side effects are usually reversible by dose adjustment or therapy suspension, or by switching to an alternative PKI, and fatality is uncommon, all patients undergoing PKIs should be carefully pre-evaluated and monitored. The management of this complication requires an individually tailored reappraisal of the risk/benefit ratio, especially in patients who are responding to therapy. This review reports the currently available data on the risk and management of hepatotoxicity of all the approved PKIs.
Collapse
Affiliation(s)
- Mauro Viganò
- Gastroenterology Hepatology and Transplantation Unit, ASST Papa Giovanni XXIII, 24127 Bergamo, Italy
- Correspondence: ; Tel.: +39-035-2674259; Fax: +39-035-2674964
| | - Marta La Milia
- Gastroenterology Hepatology and Transplantation Unit, ASST Papa Giovanni XXIII, 24127 Bergamo, Italy
| | - Maria Vittoria Grassini
- Gastroenterology Hepatology and Transplantation Unit, ASST Papa Giovanni XXIII, 24127 Bergamo, Italy
- Section of Gastroenterology & Hepatology, Department of Health Promotion Sciences Maternal and Infant Care, Internal Medicine and Medical Specialties, PROMISE, University of Palermo, 90127 Palermo, Italy
| | - Nicola Pugliese
- Department of Gastroenterology, Division of Internal Medicine and Hepatology, IRCCS Humanitas Research Hospital, 20089 Rozzano, Italy
| | - Massimo De Giorgio
- Gastroenterology Hepatology and Transplantation Unit, ASST Papa Giovanni XXIII, 24127 Bergamo, Italy
| | - Stefano Fagiuoli
- Gastroenterology Hepatology and Transplantation Unit, ASST Papa Giovanni XXIII, 24127 Bergamo, Italy
- Gastroenterology, Department of Medicine, University of Milan Bicocca, 20126 Milan, Italy
| |
Collapse
|
116
|
Xie X, Zhang W, Zhou X, Ye Z, Wang H, Qiu Y, Pan Y, Hu Y, Li L, Chen Z, Yang W, Lu Y, Zou S, Li Y, Bai X. Abemaciclib drives the therapeutic differentiation of acute myeloid leukaemia stem cells. Br J Haematol 2023; 201:940-953. [PMID: 36916190 DOI: 10.1111/bjh.18735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/18/2023] [Accepted: 02/23/2023] [Indexed: 03/15/2023]
Abstract
Self-renewal and differentiation arrest are two features of leukaemia stem cells (LSCs) responsible for the high relapse rate of acute myeloid leukaemia (AML). To screen drugs to overcome differentiation blockade for AML, we conducted screening of 2040 small molecules from a library of United States Food and Drug Administration-approved drugs and found that the cyclin-dependent kinase (CDK)4/6 inhibitor, abemaciclib, exerts high anti-leukaemic activity. Abemaciclib significantly suppressed proliferation and promoted the differentiation of LSCs in vitro. Abemaciclib also efficiently induced differentiation and impaired self-renewal of LSCs, thus reducing the leukaemic cell burden and improving survival in various preclinical animal models, including patient-derived xenografts. Importantly, abemaciclib strongly enhanced anti-tumour effects in combination with venetoclax, a B-cell lymphoma 2 (Bcl-2) inhibitor. This treatment combination led to a marked decrease in LSC-enriched populations and resulted in a synergistic anti-leukaemic effect. Target screening revealed that in addition to CDK4/6, abemaciclib bound to and inhibited CDK9, consequently attenuating the protein levels of global p-Ser2 RNA Polymerase II (Pol II) carboxy terminal domain (CTD), Myc, Bcl-2, and myeloid cell leukaemia-1 (Mcl-1), which was important for the anti-AML effect of abemaciclib. Collectively, these data provide a strong rationale for the clinical evaluation of abemaciclib to induce LSC differentiation and treat highly aggressive AML as well as other advanced haematological malignancies.
Collapse
Affiliation(s)
- Xiaoling Xie
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Wuju Zhang
- Department of Oncology, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Diseases, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Xuan Zhou
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Zhixin Ye
- Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Diseases, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Hao Wang
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yingqi Qiu
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yating Pan
- Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Diseases, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Yuxing Hu
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Luyao Li
- Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Diseases, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Zhuanzhuan Chen
- Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Diseases, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Wanwen Yang
- Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Diseases, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Yao Lu
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Shuxin Zou
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yuhua Li
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaochun Bai
- Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Diseases, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| |
Collapse
|
117
|
Tong J, Tan X, Hao S, Ermine K, Lu X, Liu Z, Jha A, Yu J, Zhang L. Inhibition of multiple CDKs potentiates colon cancer chemotherapy via p73-mediated DR5 induction. Oncogene 2023; 42:869-880. [PMID: 36721000 PMCID: PMC10364554 DOI: 10.1038/s41388-023-02598-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 01/16/2023] [Accepted: 01/18/2023] [Indexed: 02/01/2023]
Abstract
Targeting cyclin-dependent kinases (CDKs) has recently emerged as a promising therapeutic approach against cancer. However, the anticancer mechanisms of different CDK inhibitors (CDKIs) are not well understood. Our recent study revealed that selective CDK4/6 inhibitors sensitize colorectal cancer (CRC) cells to therapy-induced apoptosis by inducing Death Receptor 5 (DR5) via the p53 family member p73. In this study, we investigated if this pathway is involved in anticancer effects of different CDKIs. We found that less-selective CDKIs, including flavopiridol, roscovitine, dinaciclib, and SNS-032, induced DR5 via p73-mediated transcriptional activation. The induction of DR5 by these CDKIs was mediated by dephosphorylation of p73 at Threonine 86 and p73 nuclear translocation. Knockdown of a common target of these CDKIs, including CDK1, 2, or 9, recapitulated p73-mediated DR5 induction. CDKIs strongly synergized with 5-fluorouracil (5-FU), the most commonly used CRC chemotherapy agent, in vitro and in vivo to promote growth suppression and apoptosis, which required DR5 and p73. Together, these findings indicate p73-mediated DR5 induction as a potential tumor suppressive mechanism and a critical target engaged by different CDKIs in potentiating therapy-induced apoptosis in CRC cells. These findings help better understand the anticancer mechanisms of CDKIs and may help facilitate their clinical development and applications in CRC.
Collapse
Affiliation(s)
- Jingshan Tong
- UPMC Hillman Cancer Center, Pittsburgh, PA, 15213, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Xiao Tan
- UPMC Hillman Cancer Center, Pittsburgh, PA, 15213, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Suisui Hao
- UPMC Hillman Cancer Center, Pittsburgh, PA, 15213, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Kaylee Ermine
- UPMC Hillman Cancer Center, Pittsburgh, PA, 15213, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Xinyan Lu
- UPMC Hillman Cancer Center, Pittsburgh, PA, 15213, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Zhaojin Liu
- UPMC Hillman Cancer Center, Pittsburgh, PA, 15213, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Anupma Jha
- UPMC Hillman Cancer Center, Pittsburgh, PA, 15213, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Jian Yu
- UPMC Hillman Cancer Center, Pittsburgh, PA, 15213, USA
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Lin Zhang
- UPMC Hillman Cancer Center, Pittsburgh, PA, 15213, USA.
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA.
| |
Collapse
|
118
|
Abemaciclib: A Review in Early Breast Cancer with a High Risk of Recurrence. Target Oncol 2023; 18:287-294. [PMID: 36826463 DOI: 10.1007/s11523-023-00952-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/12/2023] [Indexed: 02/25/2023]
Abstract
Abemaciclib [Verzenio® (USA) or Verzenios® (EU)] is a cyclin-dependent kinase 4 and 6 (CDK4/6) inhibitor approved in combination with adjuvant endocrine therapy for patients with hormone receptor positive (HR+), human epidermal growth factor receptor 2 negative (HER2-), node-positive, early breast cancer with a high risk of recurrence. In a phase III trial, abemaciclib plus endocrine therapy reduced the risk of recurrence of breast cancer compared with endocrine therapy alone, including in patients who had previously received neoadjuvant chemotherapy, in patients with high- and low-scoring Ki-67 tumours, and in both premenopausal and postmenopausal patients. The tolerability profile of abemaciclib plus endocrine therapy was acceptable and manageable, with diarrhoea, infections and neutropenia being the most common adverse events. Thus, abemaciclib in combination with standard endocrine therapy is a valuable additional treatment option for patients with HR+, HER2-, node-positive early breast cancer with a high risk of recurrence.
Collapse
|
119
|
Arndt C, Tunger A, Wehner R, Rothe R, Kourtellari E, Luttosch S, Hannemann K, Koristka S, Loureiro LR, Feldmann A, Tonn T, Link T, Kuhlmann JD, Wimberger P, Bachmann MP, Schmitz M. Palbociclib impairs the proliferative capacity of activated T cells while retaining their cytotoxic efficacy. Front Pharmacol 2023; 14:970457. [PMID: 36817127 PMCID: PMC9935825 DOI: 10.3389/fphar.2023.970457] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 01/20/2023] [Indexed: 02/05/2023] Open
Abstract
The cyclin-dependent kinase 4 and 6 (CDK4/6) inhibitor palbociclib is an emerging cancer therapeutic that just recently gained Food and Drug Administration approval for treatment of estrogen receptor (ER)-positive, human epidermal growth factor receptor (Her)2-negative breast cancer in combination with the ER degrader fulvestrant. However, CDK4/6 inhibitors are not cancer-specific and may affect also other proliferating cells. Given the importance of T cells in antitumor defense, we studied the influence of palbociclib/fulvestrant on human CD3+ T cells and novel emerging T cell-based cancer immunotherapies. Palbociclib considerably inhibited the proliferation of activated T cells by mediating G0/G1 cell cycle arrest. However, after stopping the drug supply this suppression was fully reversible. In light of combination approaches, we further investigated the effect of palbociclib/fulvestrant on T cell-based immunotherapies by using a CD3-PSCA bispecific antibody or universal chimeric antigen receptor (UniCAR) T cells. Thereby, we observed that palbociclib clearly impaired T cell expansion. This effect resulted in a lower total concentration of interferon-γ and tumor necrosis factor, while palbociclib did not inhibit the average cytokine release per cell. In addition, the cytotoxic potential of the redirected T cells was unaffected by palbociclib and fulvestrant. Overall, these novel findings may have implications for the design of treatment modalities combining CDK4/6 inhibition and T cell-based cancer immunotherapeutic strategies.
Collapse
Affiliation(s)
- Claudia Arndt
- Department of Radioimmunology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany,Mildred Scheel Early Career Center, Faculty of Medicine Carl Gustav Carus, TU Dresden, Dresden, Germany,*Correspondence: Claudia Arndt, ; Marc Schmitz,
| | - Antje Tunger
- National Center for Tumor Diseases (NCT), University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany,Institute of Immunology, Faculty of Medicine Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Rebekka Wehner
- National Center for Tumor Diseases (NCT), University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany,Institute of Immunology, Faculty of Medicine Carl Gustav Carus, TU Dresden, Dresden, Germany,German Cancer Consortium (DKTK), Partner Site Dresden, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Rebecca Rothe
- National Center for Tumor Diseases (NCT), University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany,Institute of Immunology, Faculty of Medicine Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Eleni Kourtellari
- Institute of Immunology, Faculty of Medicine Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Stephanie Luttosch
- Institute of Immunology, Faculty of Medicine Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Katharina Hannemann
- Institute of Immunology, Faculty of Medicine Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Stefanie Koristka
- Department of Radioimmunology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Liliana R. Loureiro
- Department of Radioimmunology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Anja Feldmann
- Department of Radioimmunology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Torsten Tonn
- German Cancer Consortium (DKTK), Partner Site Dresden, German Cancer Research Center (DKFZ), Heidelberg, Germany,German Red Cross Blood Donation Service North-East, Institute for Transfusion Medicine, Dresden, Germany,Experimental Transfusion Medicine, Faculty of Medicine Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Theresa Link
- National Center for Tumor Diseases (NCT), University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany,German Cancer Consortium (DKTK), Partner Site Dresden, German Cancer Research Center (DKFZ), Heidelberg, Germany,Department of Gynecology and Obstetrics, University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Jan Dominik Kuhlmann
- National Center for Tumor Diseases (NCT), University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany,German Cancer Consortium (DKTK), Partner Site Dresden, German Cancer Research Center (DKFZ), Heidelberg, Germany,Department of Gynecology and Obstetrics, University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Pauline Wimberger
- National Center for Tumor Diseases (NCT), University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany,German Cancer Consortium (DKTK), Partner Site Dresden, German Cancer Research Center (DKFZ), Heidelberg, Germany,Department of Gynecology and Obstetrics, University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Michael Philipp Bachmann
- Department of Radioimmunology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany,National Center for Tumor Diseases (NCT), University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany,German Cancer Consortium (DKTK), Partner Site Dresden, German Cancer Research Center (DKFZ), Heidelberg, Germany,Tumor Immunology, University Cancer Center (UCC), University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Marc Schmitz
- National Center for Tumor Diseases (NCT), University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany,Institute of Immunology, Faculty of Medicine Carl Gustav Carus, TU Dresden, Dresden, Germany,German Cancer Consortium (DKTK), Partner Site Dresden, German Cancer Research Center (DKFZ), Heidelberg, Germany,*Correspondence: Claudia Arndt, ; Marc Schmitz,
| |
Collapse
|
120
|
Arsenijevic T, Coulonval K, Raspé E, Demols A, Roger PP, Van Laethem JL. CDK4/6 Inhibitors in Pancreatobiliary Cancers: Opportunities and Challenges. Cancers (Basel) 2023; 15:968. [PMID: 36765923 PMCID: PMC9913743 DOI: 10.3390/cancers15030968] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/31/2023] [Accepted: 02/01/2023] [Indexed: 02/05/2023] Open
Abstract
Existing treatment strategies for pancreatobiliary malignancies are limited. Nowadays, surgery is the only path to cure these types of cancer, but only a small number of patients present with resectable tumors at the time of diagnosis. The notoriously poor prognosis, lack of diverse treatment options associated with pancreaticobiliary cancers, and their resistance to current therapies reflect the urge for the development of novel therapeutic targets. Cyclin-dependent kinase 4/6 (CDK4/6) inhibitors have emerged as an attractive therapeutic strategy in a number of cancers since their approval for treatment in patients with ER+/HER- breast cancer in combination with antiestrogens. In this article, we discuss the therapeutic potential of CDK4/6 inhibitors in pancreatobiliary cancers, notably cholangiocarcinoma and pancreatic ductal adenocarcinoma.
Collapse
Affiliation(s)
- Tatjana Arsenijevic
- Laboratory of Experimental Gastroenterology, Université Libre de Bruxelles, Route de Lennik 808, 1070 Brussels, Belgium
- Department of Gastroenterology, Hepatology and Digestive Oncology, HUB Bordet Erasme Hospital, Université Libre de Bruxelles, Route de Lennik 808, 1070 Brussels, Belgium
| | - Katia Coulonval
- Institute of Interdisciplinary Research (Iribhm), ULB-Cancer Research Center (U-crc), Université Libre de Bruxelles, Campus Erasme, Route de Lennik 808, 1070 Brussels, Belgium
| | - Eric Raspé
- Institute of Interdisciplinary Research (Iribhm), ULB-Cancer Research Center (U-crc), Université Libre de Bruxelles, Campus Erasme, Route de Lennik 808, 1070 Brussels, Belgium
| | - Anne Demols
- Laboratory of Experimental Gastroenterology, Université Libre de Bruxelles, Route de Lennik 808, 1070 Brussels, Belgium
- Department of Gastroenterology, Hepatology and Digestive Oncology, HUB Bordet Erasme Hospital, Université Libre de Bruxelles, Route de Lennik 808, 1070 Brussels, Belgium
| | - Pierre P. Roger
- Institute of Interdisciplinary Research (Iribhm), ULB-Cancer Research Center (U-crc), Université Libre de Bruxelles, Campus Erasme, Route de Lennik 808, 1070 Brussels, Belgium
| | - Jean-Luc Van Laethem
- Laboratory of Experimental Gastroenterology, Université Libre de Bruxelles, Route de Lennik 808, 1070 Brussels, Belgium
- Department of Gastroenterology, Hepatology and Digestive Oncology, HUB Bordet Erasme Hospital, Université Libre de Bruxelles, Route de Lennik 808, 1070 Brussels, Belgium
| |
Collapse
|
121
|
Pandey P, Khan F, Upadhyay TK, Sharangi AB. Deciphering the Immunomodulatory Role of Cyclin-Dependent Kinase 4/6 Inhibitors in the Tumor Microenvironment. Int J Mol Sci 2023; 24:ijms24032236. [PMID: 36768557 PMCID: PMC9916547 DOI: 10.3390/ijms24032236] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 01/18/2023] [Accepted: 01/20/2023] [Indexed: 01/24/2023] Open
Abstract
Cancer is characterized by persistent cell proliferation driven by aberrant cell cycle regulation and stimulation of cyclin-dependent kinases (CDKs). A very intriguing and potential approach for the development of antitumor medicines is the suppression of CDKs that lead to induction of apoptosis and cell cycle arrest. The shift of the cell cycle from the G0/G1 phase to the S phase, which is characterized by active transcription and synthesis, depends on the development of the cyclin D-CDK4/6 complex. A precise balance between anticancer activity and general toxicity is demonstrated by CDK inhibitors, which can specifically block CDK4/6 and control the cell cycle by reducing the G1 to S phase transition. CDK4/6 inhibitors have recently been reported to exhibit significant cell growth inhibition via modulating the tumour microenvironment in cancerous cells. One significant new understanding is that these inhibitors serve important functions in the interaction among tumour cells and the host immune system in addition to being cytostatic. Herein, we discuss the biological significance of CDK4/6 inhibitors in cancer therapeutics, as well as their biological impact on T cells and other important immune cells. Furthermore, we explore the integration of preclinical findings of these pharmaceuticals' ability to enhance antitumor immunity.
Collapse
Affiliation(s)
- Pratibha Pandey
- Department of Biotechnology, Noida Institute of Engineering and Technology, 19, Knowledge Park-II, Institutional Area, Greater Noida 201306, India
| | - Fahad Khan
- Department of Biotechnology, Noida Institute of Engineering and Technology, 19, Knowledge Park-II, Institutional Area, Greater Noida 201306, India
- Correspondence:
| | - Tarun Kumar Upadhyay
- Department of Biotechnology, Parul Institute of Applied Sciences and Centre of Research for Development, Parul University, Vadodara 391760, India
| | - Amit Baran Sharangi
- Department of Plantation Spices Medicinal and Aromatic Crops, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur 741252, India
| |
Collapse
|
122
|
Konstantinopoulos PA, Lee EK, Xiong N, Krasner C, Campos S, Kolin DL, Liu JF, Horowitz N, Wright AA, Bouberhan S, Penson RT, Yeku O, Bowes B, Needham H, Hayes M, Sawyer H, Polak M, Shea M, Cheng SC, Castro C, Matulonis UA. A Phase II, Two-Stage Study of Letrozole and Abemaciclib in Estrogen Receptor-Positive Recurrent Endometrial Cancer. J Clin Oncol 2023; 41:599-608. [PMID: 36174113 DOI: 10.1200/jco.22.00628] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
PURPOSE Estrogen receptor (ER)-positive endometrial cancers (ECs) are characterized by phosphatidylinositol 3-kinase (PI3K) and receptor tyrosine kinase (RTK)/RAS/β-catenin (CTNNB1) pathway alterations in approximately 90% and 80% of cases, respectively. Extensive cross-talk between ER, PI3K, and RTK/RAS/CTNNB1 pathways leads to both ligand-dependent and ligand-independent ER transcriptional activity as well as upregulation of cyclin D1 which, in complex with cyclin-dependent kinases 4 and 6 (CDK4 and CDK6), is a critical regulator of cell cycle progression and a key mediator of resistance to hormonal therapy. We hypothesized that the combination of the aromatase inhibitor letrozole and CDK4/6 inhibitor abemaciclib would demonstrate promising activity in this setting. METHODS We conducted a phase II, two-stage study of letrozole/abemaciclib in recurrent ER-positive EC. Eligibility criteria included measurable disease, no limit on prior therapies, and all EC histologies; prior hormonal therapy was allowed. Primary end points were objective response rate by RECIST 1.1 and progression-free survival (PFS) rate at 6 months. RESULTS At the data cutoff date (December 03, 2021), 30 patients (28 with endometrioid EC) initiated protocol therapy; 15 (50%) patients had prior hormonal therapy. There were nine total responses (eight confirmed), for an objective response rate of 30% (95% CI, 14.7 to 49.4), all in endometrioid adenocarcinomas. Median PFS was 9.1 months, PFS at 6 months was 55.6% (95% CI, 35.1 to 72), and median duration of response was 7.4 months. Most common ≥ grade 3 treatment-related adverse events were neutropenia (20%) and anemia (17%). Responses were observed regardless of grade, prior hormonal therapy, mismatch repair, and progesterone receptor status. Exploratory tumor profiling revealed several mechanistically relevant candidate predictors of response (CTNNB1, KRAS, and CDKN2A mutations) or absence of response (TP53 mutations), which require independent validation. CONCLUSION Letrozole/abemaciclib demonstrated encouraging and durable evidence of activity in recurrent ER positive endometrioid EC.
Collapse
Affiliation(s)
| | | | - Niya Xiong
- Dana-Farber Cancer Institute, Boston, MA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Meghan Shea
- Beth Israel Deaconess Medical Center, Boston, MA
| | | | | | | |
Collapse
|
123
|
Chen JLY, Pan CK, Lin LC, Tsai CY, Kuo CY, Huang YS, Lin YL. Therapeutic efficacy of cyclin-dependent kinase inhibition in combination with ionizing radiation for lung cancer. Int J Radiat Biol 2023; 99:1257-1266. [PMID: 36598432 DOI: 10.1080/09553002.2023.2161658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 11/24/2022] [Accepted: 12/13/2022] [Indexed: 01/05/2023]
Abstract
PURPOSE To evaluate the therapeutic efficacy of cyclin-dependent kinase (CDK) inhibition in combination with ionizing radiation for lung cancer. MATERIALS AND METHODS Human lung adenocarcinoma (A549) and squamous cell carcinoma (H520) cells were used to evaluate the therapeutic efficacy of CDK inhibition in combination with ionizing radiation in vitro using colony formation assay, γH2AX immunofluorescence staining, western blotting, and cell cycle phase analysis. We also performed in vivo evaluations of ectopic tumor growth. RESULTS In vitro pretreatment with the CDK inhibitor, seliciclib, before irradiation significantly decreased the survival of A549 and H520 cells in a dose-dependent manner. Although CDK inhibition alone did not increase the intensity of γH2AX foci, its combination with ionizing radiation increased DNA double-strand breaks, as shown by γH2AX immunofluorescence staining and western blotting. The combination of CDK inhibition and ionizing radiation-induced G2/M arrest and increased apoptosis, as evidenced by the increased proportion of cells in G2/M arrest, subG1 apoptotic population, and expression of apoptotic markers (cleaved PARP-1 and cleaved caspase-3). Mechanistic studies showed reduced expression of cyclin A with combined treatment, indicating cell cycle shifting effects. An in vivo xenograft model showed that the combination of CDK inhibition and ionizing radiation delayed xenograft tumor growth, and increased the proportion of cleaved PARP-1- and cleaved caspase-3-positive cells, compared to either treatment alone. CONCLUSIONS We provide preclinical tumoricidal evidence that the combination of CDK inhibition and ionizing radiation is an efficacious treatment for lung cancer.
Collapse
Affiliation(s)
- Jenny Ling-Yu Chen
- Division of Radiation Oncology, Department of Oncology, National Taiwan University Hospital, Taipei, Taiwan
- Department of Radiology, National Taiwan University College of Medicine, Taipei, Taiwan
- National Taiwan University Cancer Center, Taipei, Taiwan
| | - Chun-Kai Pan
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan
| | - Li-Cheng Lin
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan
| | - Ching-Yi Tsai
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan
- Institute of Toxicology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Ching-Ying Kuo
- Department of Clinical Laboratory Sciences and Medical Biotechnology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Yu-Sen Huang
- Division of Radiation Oncology, Department of Oncology, National Taiwan University Hospital, Taipei, Taiwan
- Department of Medical Imaging, National Taiwan University Hospital, Taipei, Taiwan
| | - Yu-Li Lin
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan
| |
Collapse
|
124
|
Zhai J, Gu X, Liu Y, Hu Y, Jiang Y, Zhang Z. Chemotherapeutic and targeted drugs-induced immunogenic cell death in cancer models and antitumor therapy: An update review. Front Pharmacol 2023; 14:1152934. [PMID: 37153795 PMCID: PMC10160433 DOI: 10.3389/fphar.2023.1152934] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 04/04/2023] [Indexed: 05/10/2023] Open
Abstract
As traditional strategies for cancer treatment, some chemotherapy agents, such as doxorubicin, oxaliplatin, cyclophosphamide, bortezomib, and paclitaxel exert their anti-tumor effects by inducing immunogenic cell death (ICD) of tumor cells. ICD induces anti-tumor immunity through release of, or exposure to, damage-related molecular patterns (DAMPs), including high mobility group box 1 (HMGB1), calreticulin, adenosine triphosphate, and heat shock proteins. This leads to activation of tumor-specific immune responses, which can act in combination with the direct killing functions of chemotherapy drugs on cancer cells to further improve their curative effects. In this review, we highlight the molecular mechanisms underlying ICD, including those of several chemotherapeutic drugs in inducing DAMPs exposed during ICD to activate the immune system, as well as discussing the prospects for application and potential role of ICD in cancer immunotherapy, with the aim of providing valuable inspiration for future development of chemoimmunotherapy.
Collapse
|
125
|
Wang S, Bei Y, Tian Q, He J, Wang R, Wang Q, Sun L, Ke J, Xie C, Shen P. PFKFB4 facilitates palbociclib resistance in oestrogen receptor-positive breast cancer by enhancing stemness. Cell Prolif 2023; 56:e13337. [PMID: 36127291 PMCID: PMC9816941 DOI: 10.1111/cpr.13337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 08/17/2022] [Accepted: 08/30/2022] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND ER+ breast cancer (ER+ BC) is the most common subtype of BC. Recently, CDK4/6 inhibitors combined with aromatase inhibitors have been approved by FDA as the first-line therapy for patients with ER+ BC, and showed promising therapeutic efficacy in clinical treatment. However, resistance to CDK4/6 inhibitors is frequently observed. A better understanding of the drug resistance mechanism is beneficial to improving therapeutic strategies by identifying optimal combinational treatments. METHODS Western blotting, qPCR, flow cytometry and a series of cell experiments were performed to evaluate the phenotype of MCF-7/R cells. RNA sequencing, non-targeted metabolomics, shRNA knockdown and tumour cell-bearing mouse models were used to clarify the drug resistance mechanism. RESULTS Here, we found that ER+ BC cells have shown an adaptive resistance to palbociclib-induced cell cycle arrest by activating an alternative signal pathway, independent of the CDK4/6-RB signal transduction. Continuing treatment of palbociclib evoked cellular senescence of ER+ BC cells. Subsequently, the senescence-like phenotype promoted stemness of ER+ BC cells, accompanied by increased chemoresistance and tumour-initiating potential. Based on transcriptome analysis, we found that PFKFB4 played an important role in stemness transformation and drug resistance. A close correlation was determined between PFKFB4 expression by ER+ BC cells and cell senescence and stemness. Mechanistically, metabolomic profiling revealed that PFKFB4 reprogramed glucose metabolism and promoted cell stemness by enhancing glycolysis. Strikingly, diminishing PFKFB4 levels improved drug sensitivity and overcame chemoresistance during palbociclib treatment in ER+ BC. CONCLUSIONS These findings not only demonstrated the novel mechanism underlying which ER+ BC cells resisted to palbociclib, but also provided a possible therapeutic strategy in the intervention of ER+ BC to overcome drug resistance.
Collapse
Affiliation(s)
- Sijie Wang
- Department of Radiation and Medical OncologyThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhouChina
- State Key Laboratory of Pharmaceutical Biotechnology and The Comprehensive Cancer CenterNanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, School of Life Sciences, Nanjing UniversityNanjingChina
| | - Yuncheng Bei
- State Key Laboratory of Pharmaceutical Biotechnology and The Comprehensive Cancer CenterNanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, School of Life Sciences, Nanjing UniversityNanjingChina
| | - Qiang Tian
- State Key Laboratory of Pharmaceutical Biotechnology and The Comprehensive Cancer CenterNanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, School of Life Sciences, Nanjing UniversityNanjingChina
| | - Jian He
- Department of Nuclear MedicineNanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical SchoolNanjingChina
| | - Rui Wang
- State Key Laboratory of Pharmaceutical Biotechnology and The Comprehensive Cancer CenterNanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, School of Life Sciences, Nanjing UniversityNanjingChina
| | - Qiuping Wang
- State Key Laboratory of Pharmaceutical Biotechnology and The Comprehensive Cancer CenterNanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, School of Life Sciences, Nanjing UniversityNanjingChina
| | - Luchen Sun
- Department of Radiation and Medical OncologyThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Jiangqiong Ke
- Department of Geriatric MedicineThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Congying Xie
- Department of Radiation and Medical OncologyThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Pingping Shen
- Department of Radiation and Medical OncologyThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhouChina
- State Key Laboratory of Pharmaceutical Biotechnology and The Comprehensive Cancer CenterNanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, School of Life Sciences, Nanjing UniversityNanjingChina
| |
Collapse
|
126
|
Mughal MJ, Bhadresha K, Kwok HF. CDK inhibitors from past to present: A new wave of cancer therapy. Semin Cancer Biol 2023; 88:106-122. [PMID: 36565895 DOI: 10.1016/j.semcancer.2022.12.006] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 12/19/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022]
Abstract
Deregulation of the cell cycle machinery, which has been linked to dysregulation of cyclin-dependent kinases (CDKs), is a defining characteristic of cancer, eventually promoting abnormal proliferation that feeds tumorigenesis and disease development. In this regard, several CDK inhibitors (CDKIs) have been developed during the last few decades (1st, 2nd, and 3rd generation CDKIs) to inhibit cancer cell proliferation. 1st and 2nd generation CDKIs have not received much clinical attention for the treatment of cancer patients because of their limited specificity and high toxicity. However, the recent development of combination strategies allowed us to reduce the toxicity and side effects of these CDKIs, paving the way for their potential application in clinical settings. The 3rd generation CDKIs have yielded the most promising results at the preclinical and clinical levels, propelling them into the advanced stages of clinical trials against multiple malignancies, especially breast cancer, and revolutionizing traditional treatment strategies. In this review, we discuss the most-investigated candidates from the 1st, 2nd, and 3rd generations of CDKIs, their basic mechanisms of action, the reasons for their failure in the past, and their current clinical development for the treatment of different malignancies. Additionally, we briefly highlighted the most recent clinical trial results and advances in the development of 3rd generation FDA-approved selective CDK4/6 inhibitors that combat the most prevalent cancer. Overall, this review will provide a thorough knowledge of CDKIs from the past to the present, allowing researchers to rethink and develop innovative cancer therapeutic regimens.
Collapse
Affiliation(s)
- Muhammad Jameel Mughal
- Cancer Centre, Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macau SAR; MOE Frontiers Science Center for Precision Oncology, University of Macau, Avenida de Universidade, Taipa, Macau SAR; Department of Biomedical Sciences, Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macau SAR; Department of Biochemistry and Molecular Medicine, School of Medicine and Health Sciences, George Washington University, Washington, DC, United States
| | - Kinjal Bhadresha
- Cancer Centre, Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macau SAR; Hematology/Oncology Division, School of Medicine, Indiana University Indianapolis, IN, United States
| | - Hang Fai Kwok
- Cancer Centre, Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macau SAR; MOE Frontiers Science Center for Precision Oncology, University of Macau, Avenida de Universidade, Taipa, Macau SAR; Department of Biomedical Sciences, Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macau SAR.
| |
Collapse
|
127
|
Madhana Priya N, Balasundaram A, Sidharth Kumar N, Udhaya Kumar S, Thirumal Kumar D, Magesh R, Zayed H, George Priya Doss C. Controlling cell proliferation by targeting cyclin-dependent kinase 6 using drug repurposing approach. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2023; 135:97-124. [PMID: 37061342 DOI: 10.1016/bs.apcsb.2023.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/13/2023]
Abstract
Cyclin-dependent kinase 6 (CDK6) is an essential kinase in cell cycle progression, which is a viable target for inhibitors in various malignancies, including breast cancer. This study aimed to virtually screen efficient compounds as new leads in treating breast cancer using a drug repurposing approach. Apoptosis regulatory compounds were taken from the seleckchem database. Molecular docking experiments were carried out in the presence of abemaciclib, a routinely used FDA drug. Compared to conventional drugs, the two compounds demonstrated a higher binding affinity for CDK6. Compounds (N-benzyl-6-[(4-hydroxyphenyl)methyl]-8-(naphthalen-1-ylmethyl)-4,7-dioxo-3,6,9,9a-tetrahydro-2H-pyrazino[1,2-a]pyrimidine-1-carboxamide) and (1'-[4-[1-(4-fluorophenyl)indol-3-yl]butyl]spiro[1H-2-benzofuran-3,4'-piperidine]) were discovered to have an inhibitory effect against CDK6 at -8.49 and -6.78kcal/mol, respectively, compared to -8.09kcal/mol of the control molecule, the interacting residues of these two new compounds were found to fall within the binding site of the CDK6 molecule. Both compounds exhibited equal ADME features compared with abemaciclib and would be well distributed and metabolized by the body with an appropriate druglikeness range. Lastly, molecular dynamics was initiated for 200ns for the selected potent inhibitors and abemaciclib as complexed with CDK6. The RMSD, RMSF, Rg, H-Bond interactions, SASA, PCA, FEL, and MM/PBSA analysis were performed for the complexes to assess the stability, fluctuations, radius of gyration, hydrogen bond interaction, solvent accessibility, essential dynamics, free energy landscape, and MM/PBSA. The selected two compounds are small molecules in the appropriate druglikeness range. The results observed in molecular docking and molecular dynamics simulations were most promising for two compounds, suggesting their potent inhibitory effect against CDK6. We propose that these candidate compounds can undergo in vitro validation and in vivo testing for their further use against cancer.
Collapse
|
128
|
Systemic Therapy for HER2-Positive Metastatic Breast Cancer: Current and Future Trends. Cancers (Basel) 2022; 15:cancers15010051. [PMID: 36612047 PMCID: PMC9817525 DOI: 10.3390/cancers15010051] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/16/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
Approximately 20% of breast cancers (BC) overexpress human epidermal growth factor receptor 2 (HER2). This subtype of BC is a clinically and biologically heterogeneous disease that was associated with an increased risk for the development of systemic and brain metastases and poor overall survival before anti-HER2 therapies were developed. The standard of care was dual blockade with trastuzumab and pertuzumab as first-line followed by TDM-1 as second-line. However, with the advent of new HER2-targeted monoclonal antibodies, tyrosine kinase inhibitors and antibody- drug conjugates, the clinical outcomes of patients with HER2-positive BC have changed dramatically in recent years, leading to a paradigm shift in the treatment of the disease. Notably, the development of new-generation ADCs has led to unprecedented results compared with T-DM1, currently establishing trastuzumab deruxtecan as a new standard of care in second-line. Despite the widespread availability of HER2-targeted therapies, patients with HER2-positive BC continue to face the challenges of disease progression, treatment resistance, and brain metastases. Response rate and overall life expectancy decrease with each additional line of treatment, and tumor heterogeneity remains an issue. In this review, we update the new-targeted therapeutic options for HER2-positive BC and highlight the future perspectives of treatment in this setting.
Collapse
|
129
|
Sun S, Liu L, Song H, Li H. Pharmacokinetic study on the co-administration of abemaciclib and astragaloside IV in rats. PHARMACEUTICAL BIOLOGY 2022; 60:1944-1948. [PMID: 36226863 PMCID: PMC9578455 DOI: 10.1080/13880209.2022.2125539] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 08/15/2022] [Accepted: 09/08/2022] [Indexed: 06/01/2023]
Abstract
CONTEXT The co-administration of abemaciclib and astragaloside IV might occur in the treatment of breast cancer. OBJECTIVE This study evaluates the interaction between abemaciclib and astragaloside IV in rats and describes the potential mechanism. MATERIALS AND METHODS Male Sprague Dawley rats were randomly divided into four groups: single dose of abemaciclib (control), abemaciclib + 50 mg/kg/d astragaloside IV, abemaciclib + 100 mg/kg/d astragaloside IV, and abemaciclib + 150 mg/kg/d astragaloside IV. Abemaciclib and astragaloside IV were orally administrated, and astragaloside IV was pre-administrated for 7 d in the co-administrated groups. The pharmacokinetics and transport of abemaciclib were assessed in the absence or presence of astragaloside IV. In mechanism, the activity of CYP3A4 was estimated in human liver microsomes in the presence of astragaloside IV. RESULTS Astragaloside IV significantly increased the Cmax (from 991.5 ± 116.99 up to 2308.5 ± 55.29 μg/L) and AUC (from 24.49 ± 2.86 up to 66.14 ± 1.17 μg/mL × h) and prolonged the t1/2 (from 19.85 ± 4.65 up to 66.17 ± 28.73 h) of abemaciclib, and the effect was enhanced with the increasing astragaloside IV concentration. Astragaloside IV also suppressed the transport of abemaciclib with the efflux ratio decreasing to 1.35. Astragaloside IV suppressed the activity of CYP3A4 with an IC50 value of 21.78 μM. DISCUSSION AND CONCLUSIONS The co-administration of abemaciclib and astragaloside IV induced the increasing systemic exposure of abemaciclib through the inhibition of CYP3A4. Further clinical validations could be carried out according to the study design of the present investigation.
Collapse
Affiliation(s)
- Sen Sun
- Department of Anesthesiology, Shanghai Pulmonary Hospital, Shanghai, China
| | - Lu Liu
- Department of Endocrine, Seventh People’s Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hongming Song
- Breast Disease Center, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Hong Li
- Department of Endocrinology and Metabolism, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
130
|
He R, Yuan X, Chen Z, Zheng Y. Combined immunotherapy for metastatic triple-negative breast cancer based on PD-1/PD-L1 immune checkpoint blocking. Int Immunopharmacol 2022; 113:109444. [DOI: 10.1016/j.intimp.2022.109444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/06/2022] [Accepted: 11/07/2022] [Indexed: 11/17/2022]
|
131
|
Terenziani R, Galetti M, La Monica S, Fumarola C, Zoppi S, Alfieri R, Digiacomo G, Cavazzoni A, Cavallo D, Corradi M, Tiseo M, Petronini PG, Bonelli M. CDK4/6 Inhibition Enhances the Efficacy of Standard Chemotherapy Treatment in Malignant Pleural Mesothelioma Cells. Cancers (Basel) 2022; 14:cancers14235925. [PMID: 36497412 PMCID: PMC9739278 DOI: 10.3390/cancers14235925] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 11/22/2022] [Accepted: 11/26/2022] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND The loss of the CDKN2A/ARF (cyclin-dependent kinase inhibitor 2A/alternative reading frame) gene is the most common alteration in malignant pleural mesothelioma (MPM), with an incidence of about 70%, thus representing a novel target for mesothelioma treatment. In the present study, we evaluated the antitumor potential of combining the standard chemotherapy regimen used for unresectable MPM with the CDK4/6 (cyclin-dependent kinase 4 or 6) inhibitor abemaciclib. METHODS Cell viability, cell death, senescence, and autophagy induction were evaluated in two MPM cell lines and in a primary MPM cell culture. RESULTS The simultaneous treatment of abemaciclib with cisplatin and pemetrexed showed a greater antiproliferative effect than chemotherapy alone, both in MPM cell lines and in primary cells. This combined treatment induced cellular senescence or autophagic cell death, depending on the cell type. More in detail, the induction of cellular senescence was related to the increased expression of p21, whereas autophagy induction was due to the impairment of the AKT/mTOR signaling. Notably, the effect of the combination was irreversible and no resumption in tumor cell proliferation was observed after drug withdrawal. CONCLUSION Our results demonstrated the therapeutic potential of CDK4/6 inhibitors in combination with chemotherapy for the treatment of MPM and are consistent with the recent positive results in the MiST2 arm in abemaciclib-treated patients.
Collapse
Affiliation(s)
- Rita Terenziani
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | - Maricla Galetti
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, INAIL-Italian Workers’ Compensation Authority, Monte Porzio Catone, 00078 Rome, Italy
- Correspondence: (M.G.); (S.L.M.); Tel.: +39-0521-033764 (M.G.); +39-0521-033747 (S.L.M.)
| | - Silvia La Monica
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
- Correspondence: (M.G.); (S.L.M.); Tel.: +39-0521-033764 (M.G.); +39-0521-033747 (S.L.M.)
| | - Claudia Fumarola
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | - Silvia Zoppi
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | - Roberta Alfieri
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | - Graziana Digiacomo
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | - Andrea Cavazzoni
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | - Delia Cavallo
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, INAIL-Italian Workers’ Compensation Authority, Monte Porzio Catone, 00078 Rome, Italy
| | - Massimo Corradi
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
- Center of Excellence for Toxicological Research (CERT), University of Parma, 43126 Parma, Italy
| | - Marcello Tiseo
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
- Medical Oncology Unit, University Hospital of Parma, 43126 Parma, Italy
| | | | - Mara Bonelli
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| |
Collapse
|
132
|
Chu Z. Abemaciclib plus fulvestrant for the treatment of hormone receptor-positive/human epidermal growth factor receptor 2-negative breast cancer with cystic brain metastases: A case report and literature review. Front Oncol 2022; 12:984454. [DOI: 10.3389/fonc.2022.984454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 11/11/2022] [Indexed: 12/02/2022] Open
Abstract
Cystic brain metastases (CBM) in patients with breast cancer are rare. They have a worse prognosis than solid brain metastases, and they are less sensitive to radiotherapy. We report a case of hormone receptor-positive (HR+)/human epidermal growth factor receptor 2-negative (HER2−) metastatic breast cancer with CBM. The patient underwent treatment with docetaxel combined with capecitabine for 5 months, followed by anastrozole maintenance therapy for 10 months, and palbociclib combined with exemestane for 22 months. CBM emerged and bone metastases increased in number. A missense mutation in PIK3CA (exon 10, c.1633G>A [p.Glu545Lys]) was detected by whole-exome next-generation sequencing from peripheral blood samples. After whole-brain radiotherapy (40 Gy/20 fx) combined with 3 months of treatment with everolimus and fulvestrant, CBM demonstrated partial remission (PR), but extracranial bone metastases continued to increase in number. Thus, the patient underwent fourth-line treatment with abemaciclib (100 mg bid) combined with fulvestrant (500 mg). Three months later, CBM significantly demonstrated PR and extracranial bone metastases were stable. At present, the patient has above 9 months of progression-free survival time without obvious adverse effects. This is the first report of abemaciclib combined with fulvestrant in the treatment of CBM in a patient with HR+/HER2− breast cancer.
Collapse
|
133
|
Lau SCM, Pan Y, Velcheti V, Wong KK. Squamous cell lung cancer: Current landscape and future therapeutic options. Cancer Cell 2022; 40:1279-1293. [PMID: 36270277 DOI: 10.1016/j.ccell.2022.09.018] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 08/19/2022] [Accepted: 09/27/2022] [Indexed: 01/09/2023]
Abstract
Squamous cell lung cancers (lung squamous cell carcinomas [LUSCs]) are associated with high mortality and a lack of therapies specific to this disease. Although recurrent molecular aberrations are present in LUSCs, efforts to develop targeted therapies against receptor tyrosine kinases, signaling transduction, and cell cycle checkpoints in LUSCs were met with significant challenges. The present therapeutic landscape focuses on epigenetic therapies to modulate the expression of lineage-dependent survival pathways and undruggable oncogenes. Another important therapeutic approach is to exploit metabolic vulnerabilities unique to LUSCs. These novel therapies may synergize with immune checkpoint inhibitors in the right therapeutic context. For example, the recognition that alterations in KEAP1-NFE2L2 in LUSCs affected antitumor immune responses created unique opportunities for targeted, metabolic, and immune combinations. This article provides a perspective on how lessons learned from the past influence the current therapeutic landscape and opportunities for future drug development for LUSCs.
Collapse
Affiliation(s)
- Sally C M Lau
- Department of Medical Oncology, Laura & Issac Perlmutter Cancer Center, NYU Grossman School of Medicine, NYU Langone Health, Smilow Building 10th Floor, Suite 1001, New York, NY 10016, USA
| | - Yuanwang Pan
- Department of Medical Oncology, Laura & Issac Perlmutter Cancer Center, NYU Grossman School of Medicine, NYU Langone Health, Smilow Building 10th Floor, Suite 1001, New York, NY 10016, USA
| | - Vamsidhar Velcheti
- Department of Medical Oncology, Laura & Issac Perlmutter Cancer Center, NYU Grossman School of Medicine, NYU Langone Health, Smilow Building 10th Floor, Suite 1001, New York, NY 10016, USA
| | - Kwok Kin Wong
- Department of Medical Oncology, Laura & Issac Perlmutter Cancer Center, NYU Grossman School of Medicine, NYU Langone Health, Smilow Building 10th Floor, Suite 1001, New York, NY 10016, USA.
| |
Collapse
|
134
|
Mills CE, Subramanian K, Hafner M, Niepel M, Gerosa L, Chung M, Victor C, Gaudio B, Yapp C, Nirmal AJ, Clark N, Sorger PK. Multiplexed and reproducible high content screening of live and fixed cells using Dye Drop. Nat Commun 2022; 13:6918. [PMID: 36376301 PMCID: PMC9663587 DOI: 10.1038/s41467-022-34536-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 10/06/2022] [Indexed: 11/16/2022] Open
Abstract
High-throughput measurement of cells perturbed using libraries of small molecules, gene knockouts, or different microenvironmental factors is a key step in functional genomics and pre-clinical drug discovery. However, it remains difficult to perform accurate single-cell assays in 384-well plates, limiting many studies to well-average measurements (e.g., CellTiter-Glo®). Here we describe a public domain Dye Drop method that uses sequential density displacement and microscopy to perform multi-step assays on living cells. We use Dye Drop cell viability and DNA replication assays followed by immunofluorescence imaging to collect single-cell dose-response data for 67 investigational and clinical-grade small molecules in 58 breast cancer cell lines. By separating the cytostatic and cytotoxic effects of drugs computationally, we uncover unexpected relationships between the two. Dye Drop is rapid, reproducible, customizable, and compatible with manual or automated laboratory equipment. Dye Drop improves the tradeoff between data content and cost, enabling the collection of information-rich perturbagen-response datasets.
Collapse
Affiliation(s)
- Caitlin E Mills
- Laboratory of Systems Pharmacology, Department of Systems Biology, Harvard Medical School, Boston, MA, 02115, USA
| | - Kartik Subramanian
- Laboratory of Systems Pharmacology, Department of Systems Biology, Harvard Medical School, Boston, MA, 02115, USA
- Bristol Myers Squibb, Cambridge, MA, 02142, USA
| | - Marc Hafner
- Laboratory of Systems Pharmacology, Department of Systems Biology, Harvard Medical School, Boston, MA, 02115, USA
- Genentech, Inc., South San Francisco, CA, 94080, USA
| | - Mario Niepel
- Laboratory of Systems Pharmacology, Department of Systems Biology, Harvard Medical School, Boston, MA, 02115, USA
- Ribon Therapeutics, Inc., Cambridge, MA, 02140, USA
| | - Luca Gerosa
- Laboratory of Systems Pharmacology, Department of Systems Biology, Harvard Medical School, Boston, MA, 02115, USA
- Genentech, Inc., South San Francisco, CA, 94080, USA
| | - Mirra Chung
- Laboratory of Systems Pharmacology, Department of Systems Biology, Harvard Medical School, Boston, MA, 02115, USA
| | - Chiara Victor
- Laboratory of Systems Pharmacology, Department of Systems Biology, Harvard Medical School, Boston, MA, 02115, USA
| | - Benjamin Gaudio
- Laboratory of Systems Pharmacology, Department of Systems Biology, Harvard Medical School, Boston, MA, 02115, USA
| | - Clarence Yapp
- Laboratory of Systems Pharmacology, Department of Systems Biology, Harvard Medical School, Boston, MA, 02115, USA
| | - Ajit J Nirmal
- Laboratory of Systems Pharmacology, Department of Systems Biology, Harvard Medical School, Boston, MA, 02115, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, 02115, USA
| | - Nicholas Clark
- Laboratory of Systems Pharmacology, Department of Systems Biology, Harvard Medical School, Boston, MA, 02115, USA
| | - Peter K Sorger
- Laboratory of Systems Pharmacology, Department of Systems Biology, Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
135
|
Hao C, Bai X, Zhang J, Meng W, Tong Z. Real-world data for the renal safety of abemaciclib combined with bisphosphonate in HR+/HER2- advanced breast cancer. Thorac Cancer 2022; 14:68-72. [PMID: 36351632 PMCID: PMC9807446 DOI: 10.1111/1759-7714.14715] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 10/19/2022] [Indexed: 11/11/2022] Open
Abstract
OBJECTIVE Our study evaluated the renal safety of abemaciclib plus endocrine therapy (ET) with bisphosphonate as a treatment option for hormone receptor positive, human epidermal growth factor receptor 2 (HER-2) negative (HR+/HER2-) advanced breast cancer (ABC), especially with bone metastasis. METHODS Data were collected from HR+/HER2- ABC patients who received abemaciclib with ET between March 2021 and May 2022 in a single medical center in China. We performed an analysis of the change in serum creatine (Cr) and creatine clearance (CrCl), time to first abnormal Cr value, and Common Terminology Criteria for Adverse Events grade of increased creatinine. RESULTS A total of 210 patients were included in the final analysis, with a median age of 56 years and a median weight of 65 kg. Any grade laboratory-assessing increased Cr occurred in 87.1% of patients, while CrCl rarely went down to 30 ml/min. Associations between start dose with grade of increased Cr and menopausal status with alert value, which is defined as creatinine clearance <30 ml/min, were indicated. CONCLUSION This study shows that abemaciclib combined with bisphosphonate would be safe for renal function in HR+/HER2- ABC patients with bone metastases.
Collapse
Affiliation(s)
- Chunfang Hao
- Present address:
Department of Breast Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and TherapyTianjin's Clinical Research Center for CancerTianjinChina
| | - Xuedong Bai
- Present address:
Department of Breast Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and TherapyTianjin's Clinical Research Center for CancerTianjinChina,Department of GeriatricsHebei General HospitalShijiazhuangChina
| | - Jie Zhang
- Department of Breast Oncology, Tianjin Cancer Hospital Airport Hospital, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and TherapyTianjin's Clinical Research Center for CancerTianjinChina
| | - Wenjing Meng
- Present address:
Department of Breast Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and TherapyTianjin's Clinical Research Center for CancerTianjinChina
| | - Zhongsheng Tong
- Present address:
Department of Breast Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and TherapyTianjin's Clinical Research Center for CancerTianjinChina
| |
Collapse
|
136
|
Rugo HS, Kabos P, Beck JT, Jerusalem G, Wildiers H, Sevillano E, Paz-Ares L, Chisamore MJ, Chapman SC, Hossain AM, Chen Y, Tolaney SM. Abemaciclib in combination with pembrolizumab for HR+, HER2- metastatic breast cancer: Phase 1b study. NPJ Breast Cancer 2022; 8:118. [PMID: 36335120 PMCID: PMC9637121 DOI: 10.1038/s41523-022-00482-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 09/26/2022] [Indexed: 11/07/2022] Open
Abstract
This nonrandomized, open-label, multi-cohort Phase 1b study (NCT02779751) investigated the safety and efficacy of abemaciclib plus pembrolizumab with/without anastrozole in patients with hormone receptor-positive (HR+), human epidermal growth factor receptor 2-negative (HER2-) metastatic breast cancer (MBC) without prior CDK4 and 6 inhibitor exposure. Patients were divided into two cohorts: treatment naïve (cohort 1) and pretreated (cohort 2). Patients received abemaciclib plus pembrolizumab with (cohort 1) or without (cohort 2) anastrozole over 21-day cycles. The primary objective was safety, and secondary objectives included efficacy and pharmacokinetics (PK). Cohort 1/2 enrolled 26/28 patients, respectively. Neutropenia (30.8/28.6%), AST increase (34.6/17.9%), ALT increase (42.3/10.7%), and diarrhea (3.8/10.7%) were the most frequent grade ≥3 adverse events in cohort 1/2, respectively. A total of two deaths occurred, which investigators attributed to treatment-related adverse events (AEs), both in cohort 1. Higher rates of all grade and grade ≥3 interstitial lung disease (ILD)/pneumonitis were observed compared to previously reported with abemaciclib and pembrolizumab monotherapy. The PK profiles were consistent between cohorts and with previous monotherapy studies. In cohorts 1/2, the overall response rate and disease control rate were 23.1/28.6% and 84.6/82.1%, respectively. Median progression-free survival and overall survivals were 8.9 (95% CI: 3.9-11.1) and 26.3 months (95% CI: 20.0-31.0) for cohort 2; cohort 1 data are immature. Abemaciclib plus pembrolizumab demonstrated antitumor activity, but high rates of ILD/pneumonitis and severe transaminase elevations occurred with/without anastrozole compared to the previous reporting. Benefit/risk analysis does not support further evaluation of this combination in the treatment of HR+, HER2- MBC.
Collapse
Affiliation(s)
- Hope S Rugo
- University of California San Francisco Helen Diller Family Comprehensive Cancer Center, San Francisco, CA, USA.
| | - Peter Kabos
- Divisions of Medical Oncology, Department of Medicine, University of Colorado, Anschutz Medical Campus, 12801 East 17th Avenue, Aurora, CO, 80045, USA
| | - J Thad Beck
- Highlands Oncology Group, Fayetteville, AR, USA
| | - Guy Jerusalem
- Laboratory of Medical Oncology, University of Liège, Liège, Belgium
- Department of Medical Oncology, CHU Sart-Tilman Liège, Liège, Belgium
| | - Hans Wildiers
- Department of General Medical Oncology, University Hospitals Leuven, Leuven, Belgium
| | - Elena Sevillano
- Department of Medical Oncology, Centro Integral Oncologico Clara Campal, Madrid, Spain
| | - Luis Paz-Ares
- Hospital Universitario 12 de Octubre, CNIO-H120 Lung Cancer Unit, Universidad Complutense and Ciberonc, Madrid, Spain
| | | | | | | | - Yanyun Chen
- Eli Lilly and Company, Indianapolis, IN, USA
| | - Sara M Tolaney
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| |
Collapse
|
137
|
Investigation of self-assembled poly(ethylene glycol)-poly(L-lactic acid) micelle as potential drug delivery system for poorly water soluble anticancer drug abemaciclib. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120192] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
138
|
Abdelmalak M, Singh R, Anwer M, Ivanchenko P, Randhawa A, Ahmed M, Ashton AW, Du Y, Jiao X, Pestell R. The Renaissance of CDK Inhibitors in Breast Cancer Therapy: An Update on Clinical Trials and Therapy Resistance. Cancers (Basel) 2022; 14:cancers14215388. [PMID: 36358806 PMCID: PMC9655989 DOI: 10.3390/cancers14215388] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/25/2022] [Accepted: 10/27/2022] [Indexed: 11/06/2022] Open
Abstract
Simple Summary Cyclin-dependent kinase inhibitors (palbociclib (Ibrance), ribociclib (Kisqali), and abemaciclib (Verzenio)), targeting aberrant cell-cycle activity have been evaluated extensively in clinical trials. Significant delays in progression free survival and overall survival are now documented with each agent in estrogen receptor positive and human epidermal growth factor receptor two negative advanced breast cancer including luminal B breast cancer. Therapy resistance, driven by chromosomal instability, results in genomic rearrangements, activation of cell-cycle components (cyclin E/cdk2 in Rb− tumors, cyclin D1 in growth factor activated pathways), and the immune response. Molecular analysis of therapy resistant tumors may provide the rational basis for new therapies (brivanib, CYC065, WEE1 kinase and other inhibitors). Luminal B breast cancer is enriched for cyclin D1 overexpression and the chromosomal instability gene signature. The molecular mechanisms governing chromosomal instability in luminal B breast cancer remain poorly understood. Co-targeting of chromosomal instability may potentially reduce the prevalent escape mechanisms that reduce the effectiveness of cyclin-dependent kinase inhibitors. Abstract Cyclin-dependent kinases (CDKs) govern cell-cycle checkpoint transitions necessary for cancer cell proliferation. Recent developments have illustrated nuanced important differences between mono CDK inhibitor (CDKI) treatment and the combination therapies of breast cancers. The CDKIs that are currently FDA-approved for breast cancer therapy are oral agents that selectively inhibit CDK4 and CDK6, include palbociclib (Ibrance), ribociclib (Kisqali), and abemaciclib (Verzenio). CDKI therapy is effective in hormone receptor positive (HR+), and human epidermal growth factor receptor two negative (HER2−) advanced breast cancers (ABC) malignancies, but remains susceptible due to estrogen and progesterone receptor overexpression. Adding a CDK4/6I to endocrine therapy increases efficacy and delays disease progression. Given the side effects of CDKI, identifying potential new treatments to enhance CDKI effectiveness is essential. Recent long-term studies with Palbociclib, including the PALLAS and PENELOPE B, which failed to meet their primary endpoints of influencing progression-free survival, suggest a deeper mechanistic understanding of cyclin/CDK functions is required. The impact of CDKI on the anti-tumor immune response represents an area of great promise. CDKI therapy resistance that arises provides the opportunity for specific types of new therapies currently in clinical trials.
Collapse
Affiliation(s)
- Mary Abdelmalak
- Xavier University School of Medicine, #23, Santa Helenastraat, Oranjestad, Aruba
| | - Rajanbir Singh
- Xavier University School of Medicine, #23, Santa Helenastraat, Oranjestad, Aruba
| | - Mohammed Anwer
- Xavier University School of Medicine, #23, Santa Helenastraat, Oranjestad, Aruba
| | - Pavel Ivanchenko
- Xavier University School of Medicine, #23, Santa Helenastraat, Oranjestad, Aruba
| | - Amritdeep Randhawa
- Xavier University School of Medicine, #23, Santa Helenastraat, Oranjestad, Aruba
| | - Myra Ahmed
- Xavier University School of Medicine, #23, Santa Helenastraat, Oranjestad, Aruba
| | - Anthony W. Ashton
- Xavier University School of Medicine, #23, Santa Helenastraat, Oranjestad, Aruba
- Lankenau Institute for Medical Research Philadelphia, 100 East Lancaster Ave., Wynnewood, PA 19069, USA
| | - Yanming Du
- Pennsylvania Cancer and Regenerative Medicine Research Center, Baruch S. Blumberg Institute, 3805 Old Easton Road, Doylestown, PA 18902, USA
| | - Xuanmao Jiao
- Pennsylvania Cancer and Regenerative Medicine Research Center, Baruch S. Blumberg Institute, 3805 Old Easton Road, Doylestown, PA 18902, USA
- Xavier University School of Medicine, #23, Santa Helenastraat, Oranjestad, Aruba
- Correspondence: (X.J.); (R.P.)
| | - Richard Pestell
- Pennsylvania Cancer and Regenerative Medicine Research Center, Baruch S. Blumberg Institute, 3805 Old Easton Road, Doylestown, PA 18902, USA
- Xavier University School of Medicine, #23, Santa Helenastraat, Oranjestad, Aruba
- The Wistar Cancer Center, Philadelphia, PA 19107, USA
- Correspondence: (X.J.); (R.P.)
| |
Collapse
|
139
|
Abemaciclib-Associated Status Epilepticus. Am J Ther 2022; 29:e772-e774. [PMID: 32496440 DOI: 10.1097/mjt.0000000000001179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
140
|
Drugging KRAS: current perspectives and state-of-art review. J Hematol Oncol 2022; 15:152. [PMID: 36284306 PMCID: PMC9597994 DOI: 10.1186/s13045-022-01375-4] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 10/11/2022] [Indexed: 11/10/2022] Open
Abstract
After decades of efforts, we have recently made progress into targeting KRAS mutations in several malignancies. Known as the ‘holy grail’ of targeted cancer therapies, KRAS is the most frequently mutated oncogene in human malignancies. Under normal conditions, KRAS shuttles between the GDP-bound ‘off’ state and the GTP-bound ‘on’ state. Mutant KRAS is constitutively activated and leads to persistent downstream signaling and oncogenesis. In 2013, improved understanding of KRAS biology and newer drug designing technologies led to the crucial discovery of a cysteine drug-binding pocket in GDP-bound mutant KRAS G12C protein. Covalent inhibitors that block mutant KRAS G12C were successfully developed and sotorasib was the first KRAS G12C inhibitor to be approved, with several more in the pipeline. Simultaneously, effects of KRAS mutations on tumour microenvironment were also discovered, partly owing to the universal use of immune checkpoint inhibitors. In this review, we discuss the discovery, biology, and function of KRAS in human malignancies. We also discuss the relationship between KRAS mutations and the tumour microenvironment, and therapeutic strategies to target KRAS. Finally, we review the current clinical evidence and ongoing clinical trials of novel agents targeting KRAS and shine light on resistance pathways known so far.
Collapse
|
141
|
Patnaik A, Hamilton E, Xing Y, Rasco DW, Smith L, Lee YL, Fang S, Wei J, Hui AM. A Phase I Dose-Escalation and Dose-Expansion Study of FCN-437c, a Novel CDK4/6 Inhibitor, in Patients with Advanced Solid Tumors. Cancers (Basel) 2022; 14:4996. [PMID: 36291780 PMCID: PMC9599640 DOI: 10.3390/cancers14204996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 09/30/2022] [Accepted: 10/01/2022] [Indexed: 11/16/2022] Open
Abstract
A phase I study evaluated the safety, tolerability, and maximum-tolerated dose (MTD)/recommended phase II dose (RP2D) of FCN-437c, a novel, orally available cyclin-dependent kinase inhibitor (CDK4/6i), in participants with advanced/metastatic solid tumors (aSTs). FCN-437c was escalated from 50 mg (once daily [QD] on days 1-21 of 28-day cycles) to the MTD/RP2D. In the dose-expansion phase, patients with CDK4/6i-treated breast cancer, or KRAS-mutant (KRASmut) non-small-cell lung cancer (NSCLC) received the MTD. Twenty-two patients were enrolled. The most common tumors in the dose-escalation phase (n = 15) were breast, colorectal, and lung (each n = 4 [27.3%]). The dose-expansion phase included five (71.4%) patients with breast cancer and two (28.6%) with KRASmut NSCLC. Twenty (90.9%) participants experienced FCN-437c-related adverse events. Dose-limiting toxicities occurred in two (33.3%) participants (200-mg dose, dose-escalation phase): grade 3 neutropenia and grade 4 neutrophil count decreased. Due to toxicities reported at 150 mg QD, the MTD was de-escalated to 100 mg QD. One (4.5%) participant (KRASmut NSCLC, 100-mg dose) achieved a partial response lasting 724+ days, and five (22.7%) had stable disease lasting 56+ days. In conclusion, FCN-437c was well tolerated with encouraging signs of antitumor activity and disease control. Further exploration of FCN-437c in aSTs is warranted.
Collapse
Affiliation(s)
- Amita Patnaik
- South Texas Accelerated Research Therapeutics, San Antonio, TX 78229, USA
| | - Erika Hamilton
- Breast and Gynecologic Research Program, Sarah Cannon Research Institute, Tennessee Oncology PLLC, Nashville, TN 37203, USA
| | - Yan Xing
- Department of Medical Oncology & Therapeutics Research, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Drew W. Rasco
- South Texas Accelerated Research Therapeutics, San Antonio, TX 78229, USA
| | - Lon Smith
- South Texas Accelerated Research Therapeutics, San Antonio, TX 78229, USA
| | - Ya-Li Lee
- Fosun Pharma USA Inc., Lexington, MA 02421, USA
| | - Steven Fang
- Fosun Pharma USA Inc., Lexington, MA 02421, USA
| | - Jiao Wei
- Fosun Pharma USA Inc., Lexington, MA 02421, USA
| | - Ai-Min Hui
- Fosun Pharma USA Inc., Lexington, MA 02421, USA
| |
Collapse
|
142
|
Gupta R, Gupta S, Antonios B, Ghimire B, Jindal V, Deol J, Gaikazian S, Huben M, Anderson J, Stender M, Jaiyesimi I. Therapeutic landscape of advanced HER2-positive breast cancer in 2022. MEDICAL ONCOLOGY (NORTHWOOD, LONDON, ENGLAND) 2022; 39:258. [PMID: 36224475 DOI: 10.1007/s12032-022-01849-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 09/06/2022] [Indexed: 11/29/2022]
Abstract
HER2-positive breast cancer is an aggressive subtype of breast cancer with five-year survival rates of 30% for the advanced stage. The development of anti-HER2 treatments has led to a paradigm shift in the management and clinical outcomes of advanced HER2-positive breast cancer patients. The standard first-line treatment consists of taxane-based chemotherapy plus dual anti-HER2 therapies with trastuzumab and pertuzumab. The antibody-drug conjugate (ADC) ado-trastuzumab emtansine (T-DM1) has been a second-line therapeutic standard, but the second-line treatment approach is rapidly evolving. Given a substantial advantage of another ADC, Fam-trastuzumab deruxtecan (T-DXd), compared to T-DM1 in a recent randomized trial in the second-line setting, T-DXd is currently the preferred second-line option. Optimal third-line treatment strategies are still not established, and multiple approaches have been used including combinations based on capecitabine, trastuzumab, or both with oral anti-HER2 tyrosine kinase inhibitors. Tucatinib plus capecitabine and trastuzumab, lapatinib plus trastuzumab, neratinib or lapatinib plus capecitabine are some of the FDA approved combinations. Another newer agent approved for third- or later-line therapy in the metastatic setting is margetuximab, an Fc-engineered anti-HER2 monoclonal antibody, in combination with chemotherapy. Other novel agents currently under clinical trials are the drugs that indirectly target HER2, including immune cell cycle inhibitors, PI3K/mTOR inhibitors, and immunotherapy agents.
Collapse
Affiliation(s)
- Ruby Gupta
- Department of Hematology and Medical Oncology, William Beaumont Hospital, 3601 W. 13 Mile Rd, Royal Oak, MI, 48073, USA.
| | - Sachin Gupta
- Department of Internal Medicine, Penn State Health Milton S. Hershey Medical Center, Hershey, PA, USA
| | - Bana Antonios
- Department of Internal Medicine, William Beaumont Hospital, Royal Oak, MI, 48073, USA
| | - Bipin Ghimire
- Department of Internal Medicine, William Beaumont Hospital, Royal Oak, MI, 48073, USA
| | - Vishal Jindal
- Department of Hematology and Medical Oncology, William Beaumont Hospital, 3601 W. 13 Mile Rd, Royal Oak, MI, 48073, USA
| | - Jaskiran Deol
- College of Liberal Arts and Sciences, Wayne State University, Detroit, MI, USA
| | - Suzanna Gaikazian
- Department of Hematology and Medical Oncology, William Beaumont Hospital, 3601 W. 13 Mile Rd, Royal Oak, MI, 48073, USA
| | - Marianne Huben
- Department of Hematology and Medical Oncology, William Beaumont Hospital, 3601 W. 13 Mile Rd, Royal Oak, MI, 48073, USA
| | - Joseph Anderson
- Department of Hematology and Medical Oncology, William Beaumont Hospital, 3601 W. 13 Mile Rd, Royal Oak, MI, 48073, USA
| | - Michael Stender
- Department of Hematology and Medical Oncology, William Beaumont Hospital, 3601 W. 13 Mile Rd, Royal Oak, MI, 48073, USA
| | - Ishmael Jaiyesimi
- Department of Hematology and Medical Oncology, William Beaumont Hospital, 3601 W. 13 Mile Rd, Royal Oak, MI, 48073, USA
| |
Collapse
|
143
|
Huang ML, Luo WL. Engrailed homeobox 1 transcriptional regulation of COL22A1 inhibits nasopharyngeal carcinoma cell senescence through the G1/S phase arrest. J Cell Mol Med 2022; 26:5473-5485. [PMID: 36196630 PMCID: PMC9639036 DOI: 10.1111/jcmm.17575] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 09/19/2022] [Accepted: 09/22/2022] [Indexed: 11/30/2022] Open
Abstract
EN1 is well known as a transcription factor in other tumours, but its role in NPC is unclear. In this study, we first used bioinformatics to analyse GEO data to obtain the differentially expressed gene EN1, and subsequently verified that EN1 was highly expressed in nasopharyngeal carcinoma cells by tissue microarrays as well as cell lines. Further, we down‐regulated the expression of EN1 in cells for RNA sequencing. The analysis of sequencing results using KEGG and GO revealed significant changes in cell proliferation and cycle function after downregulation of EN1. Meanwhile, we found that cells underwent senescence after inhibition of EN1 under electron microscopy and the SA‐β‐gal assays. Based on the sequencing results, we verified that EN1 can promote the proliferation and cycle of NPC cells in cell function experiments and animal experiments. To investigate how EN1 affects cell senescence, we found that EN1 transcriptional regulation of COL22A1 regulated cell proliferation and cycle via CDK4/6‐cyclin D1‐Rb signalling pathway by dual luciferase reporter, Immunoblotting and rescue experiment. Accordingly, we uncovered that EN1 could serve as a target for the regulation of senescence in NPC.
Collapse
Affiliation(s)
- Mao-Ling Huang
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Wen-Long Luo
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
144
|
Signaling pathways and targeted therapies in lung squamous cell carcinoma: mechanisms and clinical trials. Signal Transduct Target Ther 2022; 7:353. [PMID: 36198685 PMCID: PMC9535022 DOI: 10.1038/s41392-022-01200-x] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 09/03/2022] [Accepted: 09/18/2022] [Indexed: 11/08/2022] Open
Abstract
Lung cancer is the leading cause of cancer-related death across the world. Unlike lung adenocarcinoma, patients with lung squamous cell carcinoma (LSCC) have not benefitted from targeted therapies. Although immunotherapy has significantly improved cancer patients' outcomes, the relatively low response rate and severe adverse events hinder the clinical application of this promising treatment in LSCC. Therefore, it is of vital importance to have a better understanding of the mechanisms underlying the pathogenesis of LSCC as well as the inner connection among different signaling pathways, which will surely provide opportunities for more effective therapeutic interventions for LSCC. In this review, new insights were given about classical signaling pathways which have been proved in other cancer types but not in LSCC, including PI3K signaling pathway, VEGF/VEGFR signaling, and CDK4/6 pathway. Other signaling pathways which may have therapeutic potentials in LSCC were also discussed, including the FGFR1 pathway, EGFR pathway, and KEAP1/NRF2 pathway. Next, chromosome 3q, which harbors two key squamous differentiation markers SOX2 and TP63 is discussed as well as its related potential therapeutic targets. We also provided some progress of LSCC in epigenetic therapies and immune checkpoints blockade (ICB) therapies. Subsequently, we outlined some combination strategies of ICB therapies and other targeted therapies. Finally, prospects and challenges were given related to the exploration and application of novel therapeutic strategies for LSCC.
Collapse
|
145
|
Qiao Z, Kong Y, Zhang Y, Qian L, Wang Z, Guan X, Lu H, Xiao H. Phosphoproteomics of extracellular vesicles integrated with multiomics analysis reveals novel kinase networks for lung cancer. Mol Carcinog 2022; 61:1116-1127. [PMID: 36148632 DOI: 10.1002/mc.23462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 08/18/2022] [Accepted: 08/29/2022] [Indexed: 11/07/2022]
Abstract
Phosphorylation regulates the functions of proteins and aberrant phosphorylation often leads to a variety of diseases, including cancers. Extracellular vesicles (EVs) are important messengers in the microenvironment and their proteome contributes to cancer genesis and metastasis, while the kinases that driving EVs proteins' phosphorylation are less known. Clinical tissue samples from 13 patients with non-small-cell lung cancer (NSCLC) were utilized to isolate cancer EVs and adjacent normal EVs. Through quantitative phosphoproteomics analysis, 2473 phosphorylation sites on 1567 proteins were successfully identified and quantified. Accordingly, 152 kinases were identified, and 25 of them were differentially expressed. Based on Tied Diffusion through Interacting Events (TieDIE) algorithm, we integrated genomic and transcriptomic data sets of NSCLC from TCGA with our phosphoproteome data set to construct signaling networks. Through database integration and multiomics enrichment analysis, a compact network of 234 nodes with 1599 edges was constructed, which consisted of 34 transcription factors, 33 kinases, 63 aberrant genes, and 172 linking proteins. Rarely studied phosphorylation sites were specifically enriched. Key phosphoproteins of network nodes were validated in patients' EVs, including MAPK6S189 , IKBKES172 , SRCY530 , CDK7S164 , and CDK1T14 . These networks depict intrinsic signal-regulation derived from EVs' phosphoproteins, providing a comprehensive and pathway-based strategy for in-depth lung cancer research.
Collapse
Affiliation(s)
- Zhi Qiao
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Yan Kong
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, SJTU-Yale Joint Center for Biostatistics and Data Science, Shanghai Jiao Tong University, Shanghai, China
| | - Yan Zhang
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Liqiang Qian
- Department of Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Zeyuan Wang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Xin Guan
- Department of Thoracic Surgery, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hui Lu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, SJTU-Yale Joint Center for Biostatistics and Data Science, Shanghai Jiao Tong University, Shanghai, China
| | - Hua Xiao
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
146
|
Gámez-Chiachio M, Sarrió D, Moreno-Bueno G. Novel Therapies and Strategies to Overcome Resistance to Anti-HER2-Targeted Drugs. Cancers (Basel) 2022; 14:4543. [PMID: 36139701 PMCID: PMC9496705 DOI: 10.3390/cancers14184543] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/09/2022] [Accepted: 09/15/2022] [Indexed: 11/17/2022] Open
Abstract
The prognosis and quality of life of HER2 breast cancer patients have significantly improved due to the crucial clinical benefit of various anti-HER2 targeted therapies. However, HER2 tumors can possess or develop several resistance mechanisms to these treatments, thus leaving patients with a limited set of additional therapeutic options. Fortunately, to overcome this problem, in recent years, multiple different and complementary approaches have been developed (such as antibody-drug conjugates (ADCs)) that are in clinical or preclinical stages. In this review, we focus on emerging strategies other than on ADCs that are either aimed at directly target the HER2 receptor (i.e., novel tyrosine kinase inhibitors) or subsequent intracellular signaling (e.g., PI3K/AKT/mTOR, CDK4/6 inhibitors, etc.), as well as on innovative approaches designed to attack other potential tumor weaknesses (such as immunotherapy, autophagy blockade, or targeting of other genes within the HER2 amplicon). Moreover, relevant technical advances such as anti-HER2 nanotherapies and immunotoxins are also discussed. In brief, this review summarizes the impact of novel therapeutic approaches on current and future clinical management of aggressive HER2 breast tumors.
Collapse
Affiliation(s)
- Manuel Gámez-Chiachio
- Biochemistry Department, Medicine Faculty, Universidad Autónoma Madrid-CSIC, IdiPaz, 28029 Madrid, Spain
- Centro de Investigación Biomédica en Red-Oncología (CIBERONC), 28029 Madrid, Spain
| | - David Sarrió
- Biochemistry Department, Medicine Faculty, Universidad Autónoma Madrid-CSIC, IdiPaz, 28029 Madrid, Spain
- Centro de Investigación Biomédica en Red-Oncología (CIBERONC), 28029 Madrid, Spain
| | - Gema Moreno-Bueno
- Biochemistry Department, Medicine Faculty, Universidad Autónoma Madrid-CSIC, IdiPaz, 28029 Madrid, Spain
- Centro de Investigación Biomédica en Red-Oncología (CIBERONC), 28029 Madrid, Spain
- MD Anderson International Foundation, 28033 Madrid, Spain
| |
Collapse
|
147
|
Palafox M, Monserrat L, Bellet M, Villacampa G, Gonzalez-Perez A, Oliveira M, Brasó-Maristany F, Ibrahimi N, Kannan S, Mina L, Herrera-Abreu MT, Òdena A, Sánchez-Guixé M, Capelán M, Azaro A, Bruna A, Rodríguez O, Guzmán M, Grueso J, Viaplana C, Hernández J, Su F, Lin K, Clarke RB, Caldas C, Arribas J, Michiels S, García-Sanz A, Turner NC, Prat A, Nuciforo P, Dienstmann R, Verma CS, Lopez-Bigas N, Scaltriti M, Arnedos M, Saura C, Serra V. High p16 expression and heterozygous RB1 loss are biomarkers for CDK4/6 inhibitor resistance in ER + breast cancer. Nat Commun 2022; 13:5258. [PMID: 36071033 PMCID: PMC9452562 DOI: 10.1038/s41467-022-32828-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 08/17/2022] [Indexed: 12/27/2022] Open
Abstract
CDK4/6 inhibitors combined with endocrine therapy have demonstrated higher antitumor activity than endocrine therapy alone for the treatment of advanced estrogen receptor-positive breast cancer. Some of these tumors are de novo resistant to CDK4/6 inhibitors and others develop acquired resistance. Here, we show that p16 overexpression is associated with reduced antitumor activity of CDK4/6 inhibitors in patient-derived xenografts (n = 37) and estrogen receptor-positive breast cancer cell lines, as well as reduced response of early and advanced breast cancer patients to CDK4/6 inhibitors (n = 89). We also identified heterozygous RB1 loss as biomarker of acquired resistance and poor clinical outcome. Combination of the CDK4/6 inhibitor ribociclib with the PI3K inhibitor alpelisib showed antitumor activity in estrogen receptor-positive non-basal-like breast cancer patient-derived xenografts, independently of PIK3CA, ESR1 or RB1 mutation, also in drug de-escalation experiments or omitting endocrine therapy. Our results offer insights into predicting primary/acquired resistance to CDK4/6 inhibitors and post-progression therapeutic strategies.
Collapse
Affiliation(s)
- Marta Palafox
- Experimental Therapeutics Group, Vall d'Hebron Institute of Oncology, Barcelona, Spain
| | - Laia Monserrat
- Experimental Therapeutics Group, Vall d'Hebron Institute of Oncology, Barcelona, Spain
| | - Meritxell Bellet
- Breast Cancer and Melanoma Group, Vall d'Hebron Institute of Oncology, Barcelona, Spain
- Department of Medical Oncology, Hospital Vall d'Hebron, Barcelona, Spain
| | - Guillermo Villacampa
- Oncology Data Science Group, Vall d'Hebron Institute of Oncology, Barcelona, Spain
| | - Abel Gonzalez-Perez
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona, Spain
- Research Program on Biomedical Informatics, Universitat Pompeu Fabra, Barcelona, Spain
| | - Mafalda Oliveira
- Breast Cancer and Melanoma Group, Vall d'Hebron Institute of Oncology, Barcelona, Spain
- Department of Medical Oncology, Hospital Vall d'Hebron, Barcelona, Spain
| | - Fara Brasó-Maristany
- Translational Genomics and Targeted Therapies in Solid Tumors, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
| | - Nusaibah Ibrahimi
- Service de Biostatistique et d'Epidémiologie, Gustave Roussy, Villejuif, France
- Oncostat U1018, Inserm, University Paris-Saclay, Villejuif, France
| | | | - Leonardo Mina
- Medica Scientia Innovation Research (MedSIR), Barcelona, Spain
| | | | - Andreu Òdena
- Experimental Therapeutics Group, Vall d'Hebron Institute of Oncology, Barcelona, Spain
| | - Mònica Sánchez-Guixé
- Experimental Therapeutics Group, Vall d'Hebron Institute of Oncology, Barcelona, Spain
| | - Marta Capelán
- Breast Cancer and Melanoma Group, Vall d'Hebron Institute of Oncology, Barcelona, Spain
- Department of Medical Oncology, Hospital Vall d'Hebron, Barcelona, Spain
| | - Analía Azaro
- Breast Cancer and Melanoma Group, Vall d'Hebron Institute of Oncology, Barcelona, Spain
- Department of Medical Oncology, Hospital Vall d'Hebron, Barcelona, Spain
| | - Alejandra Bruna
- Preclinical Modelling of Pediatric Cancer Evolution Group, The Institute of Cancer Research, London, UK
| | - Olga Rodríguez
- Experimental Therapeutics Group, Vall d'Hebron Institute of Oncology, Barcelona, Spain
| | - Marta Guzmán
- Experimental Therapeutics Group, Vall d'Hebron Institute of Oncology, Barcelona, Spain
| | - Judit Grueso
- Experimental Therapeutics Group, Vall d'Hebron Institute of Oncology, Barcelona, Spain
| | - Cristina Viaplana
- Oncology Data Science Group, Vall d'Hebron Institute of Oncology, Barcelona, Spain
| | - Javier Hernández
- Translational Molecular Pathology, Vall d'Hebron Institute of Research (VHIR), Barcelona, Spain
| | - Faye Su
- Novartis Pharmaceuticals, East Hanover, NJ, USA
| | - Kui Lin
- Genentech, Inc., South San Francisco, California, USA
| | - Robert B Clarke
- Breast Biology Group, Manchester Breast Centre, Manchester, UK
| | | | - Joaquín Arribas
- CIBERONC, Vall d'Hebron Institute of Oncology, Barcelona, Spain
- Growth Factors Laboratory, Vall d'Hebron Institute of Oncology, Barcelona, Spain
- Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Barcelona, Spain
- IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Stefan Michiels
- Service de Biostatistique et d'Epidémiologie, Gustave Roussy, Villejuif, France
- Oncostat U1018, Inserm, University Paris-Saclay, Villejuif, France
| | | | | | - Aleix Prat
- Translational Genomics and Targeted Therapies in Solid Tumors, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
- University of Barcelona, Barcelona, Spain
- Department of Medical Oncology, Hospital Clinic, Barcelona, Spain
- SOLTI Breast Cancer Research Group, Barcelona, Spain
- Department of Oncology, IOB Institute of Oncology, Barcelona, Spain
| | - Paolo Nuciforo
- Molecular Oncology Group, Vall d'Hebron Institute of Oncology, Barcelona, Spain
| | - Rodrigo Dienstmann
- Oncology Data Science Group, Vall d'Hebron Institute of Oncology, Barcelona, Spain
| | - Chandra S Verma
- Bioinformatics Institute (A*STAR), Singapore, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Nuria Lopez-Bigas
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona, Spain
- Research Program on Biomedical Informatics, Universitat Pompeu Fabra, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Maurizio Scaltriti
- Departments of Pathology and Human Oncology and Pathogenesis Program, Memorial Sloan-Kettering Cancer Center, New York, USA
| | - Monica Arnedos
- Department of Medical Oncology, Gustave Roussy, Villejuif, France
- Inserm Unit U981, Villejuif, France
| | - Cristina Saura
- Breast Cancer and Melanoma Group, Vall d'Hebron Institute of Oncology, Barcelona, Spain
- Department of Medical Oncology, Hospital Vall d'Hebron, Barcelona, Spain
| | - Violeta Serra
- Experimental Therapeutics Group, Vall d'Hebron Institute of Oncology, Barcelona, Spain.
- CIBERONC, Vall d'Hebron Institute of Oncology, Barcelona, Spain.
| |
Collapse
|
148
|
Gao Y, Yang R, Lou K, Dang Y, Dong Y, He Y, Huang W, Chen M, Zhang G. In vivo visualization of fluorescence reflecting CDK4 activity in a breast cancer mouse model. MedComm (Beijing) 2022; 3:e136. [PMID: 35711853 PMCID: PMC9187519 DOI: 10.1002/mco2.136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 03/21/2022] [Accepted: 03/23/2022] [Indexed: 11/06/2022] Open
Abstract
The CDK4/6-Rb axis is a crucial target of cancer therapy and several selective inhibitors of it have been approved for clinical application. However, current therapeutic efficacy evaluation mostly relies on anatomical imaging, which cannot directly reflect changes in drug targets, leading to a delay in the selection of optimal treatment. In this study, we constructed a novel fluorescent probe, CPP30-Lipo/CDKACT4, for real-time monitoring of CDK4 activity and the therapeutic efficacy of its inhibitor in HR+/HER2- breast cancer. CPP30-Lipo/CDKACT4 exhibited good optical stability and targetability. The signal of the probe in living cells decreased after CDK4 knockdown or palbociclib treatment. Moreover, the fluorescence intensity of the tumors after 7 days of palbociclib treatment was significantly lower than that before treatment, while no significant change in tumor diameter was observed under magnetic resonance imaging. Overall, we developed an innovative fluorescent probe that can monitor CDK4 activity and the early therapeutic response to CDK4 inhibitors in living cells and in vivo. It may provide a new strategy for evaluating antitumor therapeutic efficacy in a clinical context and for drug development.
Collapse
Affiliation(s)
- Yi‐Yang Gao
- Department of Breast and Thyroid SurgeryXiang'an Hospital of Xiamen University, School of Medicine, Xiamen UniversityXiamenChina
- Fujian Key Laboratory of Precision Diagnosis and Treatment in Breast CancerXiang'an Hospital of Xiamen University, Xiamen UniversityXiamenChina
- Xiamen Key Laboratory of Endocrine‐Related Cancer Precision MedicineXiang'an Hospital of Xiamen University, Xiamen UniversityXiamenChina
- Central LaboratoryXiang'an Hospital of Xiamen University, School of Medicine, Xiamen UniversityXiamenChina
| | - Rui‐Qin Yang
- Department of Breast and Thyroid SurgeryXiang'an Hospital of Xiamen University, School of Medicine, Xiamen UniversityXiamenChina
- Fujian Key Laboratory of Precision Diagnosis and Treatment in Breast CancerXiang'an Hospital of Xiamen University, Xiamen UniversityXiamenChina
- Xiamen Key Laboratory of Endocrine‐Related Cancer Precision MedicineXiang'an Hospital of Xiamen University, Xiamen UniversityXiamenChina
- Central LaboratoryXiang'an Hospital of Xiamen University, School of Medicine, Xiamen UniversityXiamenChina
| | - Kang‐Liang Lou
- Department of Breast and Thyroid SurgeryXiang'an Hospital of Xiamen University, School of Medicine, Xiamen UniversityXiamenChina
- Fujian Key Laboratory of Precision Diagnosis and Treatment in Breast CancerXiang'an Hospital of Xiamen University, Xiamen UniversityXiamenChina
- Xiamen Key Laboratory of Endocrine‐Related Cancer Precision MedicineXiang'an Hospital of Xiamen University, Xiamen UniversityXiamenChina
- Central LaboratoryXiang'an Hospital of Xiamen University, School of Medicine, Xiamen UniversityXiamenChina
| | - Yong‐Ying Dang
- Department of Breast and Thyroid SurgeryXiang'an Hospital of Xiamen University, School of Medicine, Xiamen UniversityXiamenChina
- Fujian Key Laboratory of Precision Diagnosis and Treatment in Breast CancerXiang'an Hospital of Xiamen University, Xiamen UniversityXiamenChina
- Xiamen Key Laboratory of Endocrine‐Related Cancer Precision MedicineXiang'an Hospital of Xiamen University, Xiamen UniversityXiamenChina
- Central LaboratoryXiang'an Hospital of Xiamen University, School of Medicine, Xiamen UniversityXiamenChina
| | - Yuan‐Yuan Dong
- Department of Breast and Thyroid SurgeryXiang'an Hospital of Xiamen University, School of Medicine, Xiamen UniversityXiamenChina
- Fujian Key Laboratory of Precision Diagnosis and Treatment in Breast CancerXiang'an Hospital of Xiamen University, Xiamen UniversityXiamenChina
- Xiamen Key Laboratory of Endocrine‐Related Cancer Precision MedicineXiang'an Hospital of Xiamen University, Xiamen UniversityXiamenChina
- Central LaboratoryXiang'an Hospital of Xiamen University, School of Medicine, Xiamen UniversityXiamenChina
| | - Yue‐Yang He
- Department of Breast and Thyroid SurgeryXiang'an Hospital of Xiamen University, School of Medicine, Xiamen UniversityXiamenChina
- Fujian Key Laboratory of Precision Diagnosis and Treatment in Breast CancerXiang'an Hospital of Xiamen University, Xiamen UniversityXiamenChina
- Xiamen Key Laboratory of Endocrine‐Related Cancer Precision MedicineXiang'an Hospital of Xiamen University, Xiamen UniversityXiamenChina
- Central LaboratoryXiang'an Hospital of Xiamen University, School of Medicine, Xiamen UniversityXiamenChina
| | - Wen‐He Huang
- Department of Breast and Thyroid SurgeryXiang'an Hospital of Xiamen University, School of Medicine, Xiamen UniversityXiamenChina
- Fujian Key Laboratory of Precision Diagnosis and Treatment in Breast CancerXiang'an Hospital of Xiamen University, Xiamen UniversityXiamenChina
- Xiamen Key Laboratory of Endocrine‐Related Cancer Precision MedicineXiang'an Hospital of Xiamen University, Xiamen UniversityXiamenChina
- Xiamen Research Center of Clinical Medicine in Breast and Thyroid CancersXiang'an Hospital of Xiamen University, Xiamen UniversityXiamenChina
| | - Min Chen
- Xiamen Key Laboratory of Endocrine‐Related Cancer Precision MedicineXiang'an Hospital of Xiamen University, Xiamen UniversityXiamenChina
- Central LaboratoryXiang'an Hospital of Xiamen University, School of Medicine, Xiamen UniversityXiamenChina
- Cancer Research Center of Xiamen UniversitySchool of Medicine, Xiamen UniversityXiamenChina
| | - Guo‐Jun Zhang
- Department of Breast and Thyroid SurgeryXiang'an Hospital of Xiamen University, School of Medicine, Xiamen UniversityXiamenChina
- Fujian Key Laboratory of Precision Diagnosis and Treatment in Breast CancerXiang'an Hospital of Xiamen University, Xiamen UniversityXiamenChina
- Xiamen Key Laboratory of Endocrine‐Related Cancer Precision MedicineXiang'an Hospital of Xiamen University, Xiamen UniversityXiamenChina
- Xiamen Research Center of Clinical Medicine in Breast and Thyroid CancersXiang'an Hospital of Xiamen University, Xiamen UniversityXiamenChina
- Cancer Research Center of Xiamen UniversitySchool of Medicine, Xiamen UniversityXiamenChina
| |
Collapse
|
149
|
Soledad Poetto A, Posocco B, Zanchetta M, Gagno S, Orleni M, Canil G, Alberti M, Puglisi F, Toffoli G. "A new LC-MS/MS method for the simultaneous quantification of abemaciclib, its main active metabolites M2 and M20, and letrozole for therapeutic drug monitoring". J Chromatogr B Analyt Technol Biomed Life Sci 2022; 1207:123403. [PMID: 35940043 DOI: 10.1016/j.jchromb.2022.123403] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 07/28/2022] [Accepted: 07/30/2022] [Indexed: 11/16/2022]
Abstract
Abemaciclib (ABEMA) is the last CDKi approved for the treatment of breast cancer. Adverse reactions to this drug are not experienced in the same manner by the entire patient population but in case of severe toxicity dose reductions and therapy discontinuation are required, suggesting that a TDM-guided treatment could be beneficial for these patients. ABEMA is extensively metabolized by the liver. The most abundant active metabolites are M2 and M20. This CDKi is administered together with anti-estrogen drugs, such as letrozole (LETRO). The aim of this work was to develop and validate a LC-MS/MS method for the simultaneous quantification of ABEMA, M2, M20, and LETRO. The chromatographic separation of the analytes was obtained using a SIL-20AC XR auto-sampler coupled to LC-20AD UFLC Prominence XR pumps (Shimadzu, Tokyo, Japan). The chromatographic column employed was an XTerra MS C18, (3,5 µm, 125 Å, 50x2.1 mm) coupled with a Security Guard Cartridge (MS C18, 125 Å, 3.9x5 mm) provided by Waters. Detection was performed by an API 4000 QTrap (SCIEX) mass spectrometer. The presented analytical method was fully validated according to EMA and FDA guidelines on bioanalytical method validation. Linearity was confirmed on 10 independent tests (R2 within 0.997-1.000) over the concentration ranges of 40-800 ng/mL for ABEMA, 10-200 ng/mL for M2 and M20, 20-400 ng/mL for LETRO. The method was applied to analyze plasma samples from patients enrolled in a clinical trial, collected at Cmin. Incurred sample reanalysis was performed on a set of 30 samples, confirming the reproducibility of the analytical method.
Collapse
Affiliation(s)
- Ariana Soledad Poetto
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy; Doctoral School in Pharmacological Sciences, University of Padua, Lgo Meneghetti 2, 35131 Padova, Italy
| | - Bianca Posocco
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy.
| | - Martina Zanchetta
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy
| | - Sara Gagno
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy
| | - Marco Orleni
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy; Doctoral School in Pharmacological Sciences, University of Padua, Lgo Meneghetti 2, 35131 Padova, Italy
| | - Giovanni Canil
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy
| | - Martina Alberti
- Department of Medicine (DAME), University of Udine, 33100 Udine, Italy
| | - Fabio Puglisi
- Department of Medicine (DAME), University of Udine, 33100 Udine, Italy; Department of Medical Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy
| | - Giuseppe Toffoli
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy
| |
Collapse
|
150
|
Off the Clock: the Non-canonical Roles of Cyclin-Dependent Kinases in Neural and Glioma Stem Cell Self-Renewal. Mol Neurobiol 2022; 59:6805-6816. [PMID: 36042143 DOI: 10.1007/s12035-022-03009-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 08/18/2022] [Indexed: 10/14/2022]
Abstract
Glioma stem cells (GSCs) are thought to drive growth and therapy resistance in glioblastoma (GBM) by "hijacking" at least a subset of signaling pathways active in normal neural stem cells (NSCs). Though the origins of GSCs still remain elusive, uncovering the mechanisms of self-renewing division and cell differentiation in normal NSCs has shed light on their dysfunction in GSCs. However, the distinction between self-renewing division pathways utilized by NSC and GSC becomes critical when considering options for therapeutically targeting signaling pathways that are specifically active or altered in GSCs. It is well-established that cyclin-dependent kinases (CDKs) regulate the cell cycle, yet more recent studies have shown that CDKs also play important roles in the regulation of neuronal survival, metabolism, differentiation, and self-renewal. The intimate relationship between cell cycle regulation and the cellular programs that determine self-renewing division versus cell differentiation is only beginning to be understood, yet seems to suggest potential differential vulnerabilities in GSCs. In this timely review, we focus on the role of CDKs in regulating the self-renewal properties of normal NSCs and GSCs, highlighting novel opportunities to therapeutically target self-renewing signaling pathways specifically in GBM.
Collapse
|