101
|
Treatments after first progression in metastatic colorectal cancer. A literature review and evidence-based algorithm. Cancer Treat Rev 2020; 92:102135. [PMID: 33307331 DOI: 10.1016/j.ctrv.2020.102135] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 11/17/2020] [Accepted: 11/18/2020] [Indexed: 12/23/2022]
Abstract
Prolonging survival, achieving symptoms palliation and preserving quality of life are the primary therapeutic goals of treatments administered after disease progression in mCRC. Even if the impact of these therapies on the prognosis of affected patients is less relevant than the impact of the upfront treatment, tailoring the optimal second-line therapy is increasingly important. Several therapeutic options are available, and different factors including not only patient- and disease-related characteristics, but also the first-line treatment received (i.e., type, timing of disease progression, observed outcome and reported toxicities) may drive this choice. Herein, we describe the current state of the art in the landscape of treatments after progression in mCRC. Based on a critical review of the literature, we built a patient-oriented therapeutic algorithm, aiming to guide clinicians in their daily decision-making.
Collapse
|
102
|
Avanzini S, Kurtz DM, Chabon JJ, Moding EJ, Hori SS, Gambhir SS, Alizadeh AA, Diehn M, Reiter JG. A mathematical model of ctDNA shedding predicts tumor detection size. SCIENCE ADVANCES 2020; 6:eabc4308. [PMID: 33310847 PMCID: PMC7732186 DOI: 10.1126/sciadv.abc4308] [Citation(s) in RCA: 108] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 10/29/2020] [Indexed: 05/12/2023]
Abstract
Early cancer detection aims to find tumors before they progress to an incurable stage. To determine the potential of circulating tumor DNA (ctDNA) for cancer detection, we developed a mathematical model of tumor evolution and ctDNA shedding to predict the size at which tumors become detectable. From 176 patients with stage I to III lung cancer, we inferred that, on average, 0.014% of a tumor cell's DNA is shed into the bloodstream per cell death. For annual screening, the model predicts median detection sizes of 2.0 to 2.3 cm representing a ~40% decrease from the current median detection size of 3.5 cm. For informed monthly cancer relapse testing, the model predicts a median detection size of 0.83 cm and suggests that treatment failure can be detected 140 days earlier than with imaging-based approaches. This mechanistic framework can help accelerate clinical trials by precomputing the most promising cancer early detection strategies.
Collapse
Affiliation(s)
- Stefano Avanzini
- Canary Center for Cancer Early Detection, Department of Radiology, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - David M Kurtz
- Division of Oncology, Division of Hematology, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Jacob J Chabon
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Everett J Moding
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Sharon Seiko Hori
- Canary Center for Cancer Early Detection, Department of Radiology, Stanford University School of Medicine, Palo Alto, CA 94304, USA
- Molecular Imaging Program at Stanford, Department of Radiology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Sanjiv Sam Gambhir
- Canary Center for Cancer Early Detection, Department of Radiology, Stanford University School of Medicine, Palo Alto, CA 94304, USA
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
- Molecular Imaging Program at Stanford, Department of Radiology, Stanford University School of Medicine, Stanford, CA 94305, USA
- Bio-X Program, Stanford University, Stanford, CA 94305, USA
- Department of Bioengineering and Department of Materials Science and Engineering, Stanford University School of Medicine, Palo Alto, CA 94305, USA
| | - Ash A Alizadeh
- Division of Oncology, Division of Hematology, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Maximilian Diehn
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Johannes G Reiter
- Canary Center for Cancer Early Detection, Department of Radiology, Stanford University School of Medicine, Palo Alto, CA 94304, USA.
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
- Bio-X Program, Stanford University, Stanford, CA 94305, USA
- Department of Biomedical Data Science, Biophysics Program, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
103
|
Yates JWT, Mistry H. Clone Wars: Quantitatively Understanding Cancer Drug Resistance. JCO Clin Cancer Inform 2020; 4:938-946. [PMID: 33112660 DOI: 10.1200/cci.20.00089] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
A key aim of early clinical development for new cancer treatments is to detect the potential for efficacy early and to identify a safe therapeutic dose to take forward to phase II. Because of this need, researchers have sought to build mathematical models linking initial radiologic tumor response, often assessed after 6 to 8 weeks of treatment, with overall survival. However, there has been mixed success of this approach in the literature. We argue that evolutionary selection pressure should be considered to interpret these early efficacy signals and so optimize cancer therapy.
Collapse
Affiliation(s)
| | - Hitesh Mistry
- Division of Pharmacy and Division of Cancer Sciences, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
104
|
Price T, Ang A, Boedigheimer M, Kim TW, Li J, Cascinu S, Ruff P, Satya Suresh A, Thomas A, Tjulandin S, Peeters M. Frequency of S492R mutations in the epidermal growth factor receptor: analysis of plasma DNA from patients with metastatic colorectal cancer treated with panitumumab or cetuximab monotherapy. Cancer Biol Ther 2020; 21:891-898. [PMID: 33026965 PMCID: PMC7583702 DOI: 10.1080/15384047.2020.1798695] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Background Antibodies against epidermal growth factor receptor (EGFR), panitumumab, a fully human monoclonal antibody, and cetuximab, a human/mouse chimeric monoclonal antibody, have shown clinical efficacy in metastatic colorectal cancer (mCRC). In the phase 3 noninferiority ASPECCT (ClinicalTrials.gov, NCT01001377) study, panitumumab was demonstrated to be noninferior to cetuximab and provided a similar overall survival benefit for patients with chemotherapy-refractory wild-type KRAS exon 2 mCRC. However, some patients eventually develop resistance to anti-EGFR therapy. EGFR p.S492R mutation was previously identified as conferring resistance to cetuximab, but not to panitumumab. Methods This biomarker study analyzed plasma samples from ASPECCT collected at both baseline and posttreatment. Results No EGFR p.S492R mutations were identified at baseline; however, after treatment the EGFR p.S492R mutation was detected in 1% of patients treated with panitumumab versus 16% of those treated with cetuximab, supporting that, in a large population, this mutation is more likely to be induced by cetuximab than by panitumumab. There were, however, no significant differences in progression-free survival or overall survival between patients who were wild-type compared with those with the S492R mutation within the cetuximab arm or the overall population. Conclusions These results may support targeting treatment to small patient subgroups based on the presence of emerging EGFR mutations and provide a molecular rationale for rechallenging with a different anti-EGFR agent in patients who develop resistance. Prospective studies are needed to evaluate the efficacy of panitumumab in the EGFR p.S492R mutant population.
Collapse
Affiliation(s)
- Timothy Price
- Clinical Oncology Research and Haematology and Medical Oncology Service Departments, The Queen Elizabeth Hospital and University of Adelaide, Woodville, Australia
| | - Agnes Ang
- Clinical Biomarkers, Amgen Inc , Thousand Oaks, CA, USA
| | | | - Tae Won Kim
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine , Seoul, South Korea
| | - Jin Li
- Department of Oncology, Tongji University East Hospital , Shanghai, China
| | - Stefano Cascinu
- Department of Medical Oncology, Universita Politecnica delle Marche , Ancona, Italy
| | - Paul Ruff
- Faculty of Health Sciences, University of Witwatersrand , Johannesburg, South Africa
| | | | - Anne Thomas
- Department of Oncology, University of Leicester , Leicester, UK
| | - Sergei Tjulandin
- Department of Clinical Pharmacology and Chemotherapy, N. N. Blokhin Cancer Research Center of RAMS , Moscow, Russia
| | - Marc Peeters
- Department of Oncology, Antwerp University Hospital , Edegem, Belgium
| |
Collapse
|
105
|
Maitland ML, Wilkerson J, Karovic S, Zhao B, Flynn J, Zhou M, Hilden P, Ahmed FS, Dercle L, Moskowitz CS, Tang Y, Connors DE, Adam SJ, Kelloff G, Gonen M, Fojo T, Schwartz LH, Oxnard GR. Enhanced Detection of Treatment Effects on Metastatic Colorectal Cancer with Volumetric CT Measurements for Tumor Burden Growth Rate Evaluation. Clin Cancer Res 2020; 26:6464-6474. [PMID: 32988968 DOI: 10.1158/1078-0432.ccr-20-1493] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 08/02/2020] [Accepted: 09/23/2020] [Indexed: 01/05/2023]
Abstract
PURPOSE Mathematical models combined with new imaging technologies could improve clinical oncology studies. To improve detection of therapeutic effect in patients with cancer, we assessed volumetric measurement of target lesions to estimate the rates of exponential tumor growth and regression as treatment is administered. EXPERIMENTAL DESIGN Two completed phase III trials were studied (988 patients) of aflibercept or panitumumab added to standard chemotherapy for advanced colorectal cancer. Retrospectively, radiologists performed semiautomated measurements of all metastatic lesions on CT images. Using exponential growth modeling, tumor regression (d) and growth (g) rates were estimated for each patient's unidimensional and volumetric measurements. RESULTS Exponential growth modeling of volumetric measurements detected different empiric mechanisms of effect for each drug: panitumumab marginally augmented the decay rate [tumor half-life; d [IQR]: 36.5 days (56.3, 29.0)] of chemotherapy [d: 44.5 days (67.2, 32.1), two-sided Wilcoxon P = 0.016], whereas aflibercept more significantly slowed the growth rate [doubling time; g = 300.8 days (154.0, 572.3)] compared with chemotherapy alone [g = 155.9 days (82.2, 347.0), P ≤ 0.0001]. An association of g with overall survival (OS) was observed. Simulating clinical trials using volumetric or unidimensional tumor measurements, fewer patients were required to detect a treatment effect using a volumetric measurement-based strategy (32-60 patients) than for unidimensional measurement-based strategies (124-184 patients). CONCLUSIONS Combined tumor volume measurement and estimation of tumor regression and growth rate has potential to enhance assessment of treatment effects in clinical studies of colorectal cancer that would not be achieved with conventional, RECIST-based unidimensional measurements.
Collapse
Affiliation(s)
- Michael L Maitland
- Inova Schar Cancer Institute, Fairfax, Virginia. .,University of Virginia Cancer Center and Department of Medicine, Charlottesville, Virginia
| | - Julia Wilkerson
- Columbia University Herbert Irving Comprehensive Cancer Center, New York, New York
| | | | - Binsheng Zhao
- Department of Radiology, Columbia University Vagelos College of Physicians and Surgeons/New York Presbyterian Hospital, New York, New York
| | - Jessica Flynn
- Memorial Sloan Kettering Cancer Center, Department of Epidemiology and Biostatistics, New York, New York
| | - Mengxi Zhou
- Columbia University Herbert Irving Comprehensive Cancer Center, New York, New York
| | - Patrick Hilden
- Memorial Sloan Kettering Cancer Center, Department of Epidemiology and Biostatistics, New York, New York
| | - Firas S Ahmed
- Department of Radiology, Columbia University Vagelos College of Physicians and Surgeons/New York Presbyterian Hospital, New York, New York
| | - Laurent Dercle
- Department of Radiology, Columbia University Vagelos College of Physicians and Surgeons/New York Presbyterian Hospital, New York, New York
| | - Chaya S Moskowitz
- Memorial Sloan Kettering Cancer Center, Department of Epidemiology and Biostatistics, New York, New York
| | | | - Dana E Connors
- Foundation for the National Institutes of Health Biomarkers Consortium, North Bethesda, Maryland
| | - Stacey J Adam
- Foundation for the National Institutes of Health Biomarkers Consortium, North Bethesda, Maryland
| | - Gary Kelloff
- Foundation for the National Institutes of Health Biomarkers Consortium, North Bethesda, Maryland
| | - Mithat Gonen
- Memorial Sloan Kettering Cancer Center, Department of Epidemiology and Biostatistics, New York, New York
| | - Tito Fojo
- Columbia University Herbert Irving Comprehensive Cancer Center, New York, New York
| | - Lawrence H Schwartz
- Department of Radiology, Columbia University Vagelos College of Physicians and Surgeons/New York Presbyterian Hospital, New York, New York
| | - Geoffrey R Oxnard
- Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
106
|
Khan K, Gonzalez-Exposito R, Cunningham D, Koh DM, Woolston A, Barber L, Griffiths B, Kouvelakis K, Calamai V, Bali M, Khan N, Bryant A, Saffery C, Dearman C, Begum R, Rao S, Starling N, Watkins D, Chau I, Braconi C, Valeri N, Gerlinger M, Fotiadis N. Diagnostic Accuracy and Safety of Coaxial System in Oncology Patients Treated in a Specialist Cancer Center With Prospective Validation Within Clinical Trial Data. Front Oncol 2020; 10:1634. [PMID: 33014822 PMCID: PMC7500492 DOI: 10.3389/fonc.2020.01634] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 07/27/2020] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND Image-guided tissue biopsies are critically important in the diagnosis and management of cancer patients. High-yield samples are also vital for biomarker and resistance mechanism discovery through molecular/genomic analyses. PATIENTS AND METHODS All consecutive patients who underwent plugged image-guided biopsy at Royal Marsden from June 2013 until September 2016 were included in the analysis. In the next step, a second cohort of patients prospectively treated within two clinical trials (PROSPECT-C and PROSPECT-R) were assessed for the DNA yield from biopsies assessed for complex genomic analysis. RESULTS A total of 522 plugged core biopsies were performed in 457 patients [men, 52%; median age, 63 years (range, 17-93)]. Histological diagnosis was achieved in 501 of 522 (96%) performed biopsies. Age, gender, modality, metastatic site, and seniority of the interventionist were not found to be significant factors associated with odds of failure on a logistic regression. Seventeen (3.3%) were admitted due to biopsy-related complications; nine, three, two, one, one, and one were admitted for grade I/II pain control, sepsis, vasovagal syncope, thrombosis, hematuria, and deranged liver functions, respectively; two patients with right upper quadrant pain after liver biopsy were found to have radiologically confirmed subcapsular hematoma requiring conservative treatment. One patient (0.2%) developed grade III hemorrhage following biopsy of a gastric gastrointestinal stromal tumor (GIST). Overall molecular analysis was successful in 89% (197/222 biopsies). Prospective validation in 62 biopsies gave success rates of 92.06 and 79.03% for DNA extraction of >1 μm and tmour content of >20%, respectively. CONCLUSION The probability of diagnostic success for complex molecular analysis is increased with plugged large coaxial needle biopsy technique, which also minimizes complications and reduces hospital stay. High-yield DNA acquisition allows genomic molecular characterization for personalized medicine.
Collapse
Affiliation(s)
- Khurum Khan
- Department of Gastrointestinal Oncology, UCL Cancer Institute, University College NHS Foundation Trust, London, United Kingdom
| | | | - David Cunningham
- Department of Medicine, The Royal Marsden NHS Trust, London, United Kingdom
| | - Dow-Mu Koh
- Cancer Research UK Cancer Imaging Centre, Division of Radiotherapy and Imaging, The Institute of Cancer Research and Royal Marsden Hospital, London, United Kingdom
| | - Andrew Woolston
- Translational Oncogenomics Laboratory, Centre for Evolution and Cancer, The Institute of Cancer Research, London, United Kingdom
| | - Louise Barber
- Translational Oncogenomics Laboratory, Centre for Evolution and Cancer, The Institute of Cancer Research, London, United Kingdom
| | - Beatrice Griffiths
- Translational Oncogenomics Laboratory, Centre for Evolution and Cancer, The Institute of Cancer Research, London, United Kingdom
| | | | - Vanessa Calamai
- Department of Medicine, The Royal Marsden NHS Trust, London, United Kingdom
| | - Monia Bali
- Cancer Research UK Cancer Imaging Centre, Division of Radiotherapy and Imaging, The Institute of Cancer Research and Royal Marsden Hospital, London, United Kingdom
| | - Nasir Khan
- Cancer Research UK Cancer Imaging Centre, Division of Radiotherapy and Imaging, The Institute of Cancer Research and Royal Marsden Hospital, London, United Kingdom
| | - Annette Bryant
- Department of Medicine, The Royal Marsden NHS Trust, London, United Kingdom
| | - Claire Saffery
- Department of Medicine, The Royal Marsden NHS Trust, London, United Kingdom
| | - Charles Dearman
- Department of Medicine, The Royal Marsden NHS Trust, London, United Kingdom
| | - Ruwaida Begum
- Department of Medicine, The Royal Marsden NHS Trust, London, United Kingdom
| | - Sheela Rao
- Department of Medicine, The Royal Marsden NHS Trust, London, United Kingdom
| | - Naureen Starling
- Department of Medicine, The Royal Marsden NHS Trust, London, United Kingdom
| | - David Watkins
- Department of Medicine, The Royal Marsden NHS Trust, London, United Kingdom
| | - Ian Chau
- Department of Medicine, The Royal Marsden NHS Trust, London, United Kingdom
| | - Chiara Braconi
- Department of Medicine, The Royal Marsden NHS Trust, London, United Kingdom
| | - Nicola Valeri
- Department of Medicine, The Royal Marsden NHS Trust, London, United Kingdom
- Division of Molecular Pathology, The Institute of Cancer Research, London, United Kingdom
| | - Marco Gerlinger
- Department of Medicine, The Royal Marsden NHS Trust, London, United Kingdom
- Translational Oncogenomics Laboratory, Centre for Evolution and Cancer, The Institute of Cancer Research, London, United Kingdom
| | - Nicos Fotiadis
- Cancer Research UK Cancer Imaging Centre, Division of Radiotherapy and Imaging, The Institute of Cancer Research and Royal Marsden Hospital, London, United Kingdom
| |
Collapse
|
107
|
Vacante M, Ciuni R, Basile F, Biondi A. The Liquid Biopsy in the Management of Colorectal Cancer: An Overview. Biomedicines 2020; 8:E308. [PMID: 32858879 PMCID: PMC7555636 DOI: 10.3390/biomedicines8090308] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 08/19/2020] [Accepted: 08/24/2020] [Indexed: 02/07/2023] Open
Abstract
Currently, there is a crucial need for novel diagnostic and prognostic biomarkers with high specificity and sensitivity in patients with colorectal cancer. A "liquid biopsy" is characterized by the isolation of cancer-derived components, such as circulating tumor cells, circulating tumor DNA, microRNAs, long non-coding RNAs, and proteins, from peripheral blood or other body fluids and their genomic or proteomic assessment. The liquid biopsy is a minimally invasive and repeatable technique that could play a significant role in screening and diagnosis, and predict relapse and metastasis, as well as monitoring minimal residual disease and chemotherapy resistance in colorectal cancer patients. However, there are still some practical issues that need to be addressed before liquid biopsy can be widely used in clinical practice. Potential challenges may include low amounts of circulating tumor cells and circulating tumor DNA in samples, lack of pre-analytical and analytical consensus, clinical validation, and regulatory endorsement. The aim of this review was to summarize the current knowledge of the role of liquid biopsy in the management of colorectal cancer.
Collapse
Affiliation(s)
- Marco Vacante
- Department of General Surgery and Medical-Surgical Specialties, University of Catania, Via S. Sofia 78, 95123 Catania, Italy; (R.C.); (F.B.); (A.B.)
| | | | | | | |
Collapse
|
108
|
Tu Q, Gong H, Yuan C, Liu G, Huang J, Li Z, Luo J. Δ133p53/FLp53 Predicts Poor Clinical Outcome in Esophageal Squamous Cell Carcinoma. Cancer Manag Res 2020; 12:7405-7417. [PMID: 32884352 PMCID: PMC7443442 DOI: 10.2147/cmar.s263559] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 07/25/2020] [Indexed: 12/16/2022] Open
Abstract
Background p53 isoform Δ133p53 is directly transactivated by p53 and antagonizes p53 activities in cancer progression. However, its correlation with prognosis and cancer recurrence in esophageal squamous cell carcinoma (ESCC) is still unclear. Patients and Methods Expression of Δ133p53 and Δ133p53/full-length p53 (FLp53) in tissues and serums of 180 ESCC patients was evaluated using qRT-PCR. Patients were divided into high- and low-expression groups according to the cutoff value determined by X-tile 3.6.1 software. Survival analysis was performed by the Kaplan-Meier method. Univariate and multivariate Cox survival analyses were applied to assess the hazard ratios (HRs). Results Tissue Δ133p53 expression and Δ133p53/FLp53 ratio were significantly increased in ESCC tissue compared with adjacent normal tissue. Pre-operative Δ133p53 expression and Δ133p53/FLp53 ratio in tissue or serum samples were positively associated with TNM stage and post-operative recurrence. Kaplan-Meier curve and multivariate cox regression analyses revealed that the tissue and serum Δ133p53/FLp53 ratios (cutoff value: 2.9160) were independent prognostic factors for overall survival (OS) and progression-free survival (PFS) in ESCC patients and showed no statistical difference in receiver-operating characteristic curve (ROC) analysis, while serum Δ133p53 showed no significant prognostic value. More importantly, the serum Δ133p53/FLp53 ratio in ESCC patients was significantly decreased within 72 h post tumor resection and patients with a consistently high serum Δ133p53/FLp53 ratio (≥2.9160) had higher recurrence rates than those with consistently low ratio values. In addition, dynamic detection in each follow-up timepoint showed that serum Δ133p53/FLp53 ratios were higher than 2.9160 upon recurrence, and they even increased prior to radiologic progression. Conclusion The serum Δ133p53/FLp53 ratio can be a novel predictor for survival outcome and may serve as a real-time parameter for monitoring recurrence in ESCC patients after surgery.
Collapse
Affiliation(s)
- Qimin Tu
- Department of Cardio-Thoracic Surgery, Central Hospital of Enshi Autonomous Prefecture, Enshi Clinical College of Wuhan University, Enshi, Hubei, People's Republic of China.,Department of Gastrointestinal Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, People's Republic of China
| | - Hongjian Gong
- Clinical Research Center, Wuhan Medical and Health Center for Women and Children, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China.,Department of Rheumatism Immunology, Wuhan Medical and Health Center for Women and Children, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Chunhui Yuan
- Clinical Research Center, Wuhan Medical and Health Center for Women and Children, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Gao Liu
- Department of Gastrointestinal Surgery, Central Hospital of Enshi Autonomous Prefecture, Enshi Clinical College of Wuhan University, Enshi, Hubei, People's Republic of China
| | - Jinqi Huang
- Department of Cardio-Thoracic Surgery, Central Hospital of Enshi Autonomous Prefecture, Enshi Clinical College of Wuhan University, Enshi, Hubei, People's Republic of China
| | - Zhichao Li
- Department of Rheumatism Immunology, Wuhan Medical and Health Center for Women and Children, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Jianfei Luo
- Department of Gastrointestinal Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, People's Republic of China
| |
Collapse
|
109
|
Xie H, Kim RD. The Application of Circulating Tumor DNA in the Screening, Surveillance, and Treatment Monitoring of Colorectal Cancer. Ann Surg Oncol 2020; 28:1845-1858. [PMID: 32776184 DOI: 10.1245/s10434-020-09002-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 07/20/2020] [Indexed: 02/06/2023]
Abstract
Precision medicine with genetic profiling of tumor tissue has become an essential part of routine clinical practice in colorectal cancer. However, tissue genetic profiling suffers from clonal evolution, tumor heterogeneity, and time needed to deliver critical information for prompt clinical decision making. In contrast, liquid biopsy with plasma circulating tumor DNA provides genetic and epigenetic information from both the primary and metastatic colorectal cancer, which can potentially capture tumor heterogeneity and evolution with time and treatment. In addition, liquid biopsy with circulating tumor DNA is minimally invasive, quicker, and easily repeatable with high patient compliance to provide both qualitative and quantitative molecular information in real-time. We provide an overview on the potential clinical applications of circulating tumor DNA in the screening, surveillance, and treatment monitoring of colorectal cancer.
Collapse
Affiliation(s)
- Hao Xie
- Division of Medical Oncology, Mayo Clinic, Rochester, USA
| | - Richard D Kim
- Department of Gastrointestinal Oncology, Moffitt Cancer Center, Tampa, FL, USA.
| |
Collapse
|
110
|
Assessment of Pre-Analytical Sample Handling Conditions for Comprehensive Liquid Biopsy Analysis. J Mol Diagn 2020; 22:1070-1086. [PMID: 32497717 DOI: 10.1016/j.jmoldx.2020.05.006] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 05/05/2020] [Accepted: 05/19/2020] [Indexed: 12/25/2022] Open
Abstract
Liquid biopsies as a minimally invasive approach have the potential to revolutionize molecular diagnostics. Yet, although protocols for sample handling and the isolation of circulating tumor DNA (ctDNA) are numerous, comprehensive guidelines for diagnostics and research considering all aspects of real-life multicenter clinical studies are currently not available. These include limitations in sample volume, transport, and blood collection tubes. We tested the impact of commonly used (EDTA and heparin) and specialized blood collection tubes and storage conditions on the yield and purity of cell-free DNA for the application in down-stream analysis. Moreover, we evaluated the feasibility of a combined workflow for ctDNA and tumor cell genomic testing and parallel flow cytometric analysis of leukocytes. For genomic analyses, EDTA tubes showed good results if stored for a maximum of 4 hours at room temperature or for up to 24 hours when stored at 4°C. Spike-in experiments revealed that EDTA tubes in combination with density gradient centrifugation allowed the parallel isolation of ctDNA, leukocytes, and low amounts of tumor cells (0.1%) and their immunophenotyping by flow cytometry and down-stream genomic analysis by whole genome sequencing. In conclusion, adhering to time and temperature limits allows the use of routine EDTA blood samples for liquid biopsy analyses. We further provide a workflow enabling the parallel analysis of cell-free and cellular features for disease monitoring and for clonal evolution studies.
Collapse
|
111
|
Martini G, Dienstmann R, Ros J, Baraibar I, Cuadra-Urteaga JL, Salva F, Ciardiello D, Mulet N, Argiles G, Tabernero J, Elez E. Molecular subtypes and the evolution of treatment management in metastatic colorectal cancer. Ther Adv Med Oncol 2020; 12:1758835920936089. [PMID: 32782486 PMCID: PMC7383645 DOI: 10.1177/1758835920936089] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 05/22/2020] [Indexed: 12/22/2022] Open
Abstract
Colorectal cancer (CRC) is a heterogeneous disease representing a therapeutic challenge, which is further complicated by the common occurrence of several molecular alterations that confer resistance to standard chemotherapy and targeted agents. Mechanisms of resistance have been identified at multiple levels in the epidermal growth factor receptor (EGFR) pathway, including mutations in KRAS, NRAS, and BRAF V600E, and in the HER2 and MET receptors. These alterations represent oncogenic drivers that may co-exist in the same tumor with other primary and acquired alterations via a clonal selection process. Other molecular alterations include DNA damage repair mechanisms and rare kinase fusions, potentially offering a rationale for new therapeutic strategies. In recent years, genomic analysis has been expanded by a more complex study of epigenomic, transcriptomic, and microenvironment features. The Consensus Molecular Subtype (CMS) classification describes four CRC subtypes with distinct biological characteristics that show prognostic and potential predictive value in the clinical setting. Here, we review the panorama of actionable targets in CRC, and the developments in more recent molecular tests, such as liquid biopsy analysis, which are increasingly offering clinicians a means of ensuring optimal tailored treatments for patients with metastatic CRC according to their evolving molecular profile and treatment history.
Collapse
Affiliation(s)
- Giulia Martini
- Università della Campania L. Vanvitelli, Naples
- Vall d’Hebron Institute of Oncology, P/ Vall D’Hebron 119-121, Barcelona, 08035, Spain
| | | | - Javier Ros
- Vall d’Hebron Hospital, Barcelona, Catalunya, Spain
| | | | | | | | - Davide Ciardiello
- Università della Campania L. Vanvitelli, Naples
- Vall d’Hebron Hospital, Barcelona, Catalunya, Spain
| | - Nuria Mulet
- Vall d’Hebron Hospital, Barcelona, Catalunya, Spain
| | | | | | - Elena Elez
- Vall D’Hebron Institute of Oncology P/Vall D’Hebron 119-121, Barcelona, 08035 Spain
| |
Collapse
|
112
|
Oikkonen J, Hautaniemi S. Circulating tumor DNA (ctDNA) in precision oncology of ovarian cancer. Pharmacogenomics 2020; 20:1251-1253. [PMID: 31829836 DOI: 10.2217/pgs-2019-0126] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Affiliation(s)
- Jaana Oikkonen
- Research Program in Systems Oncology, Faculty of Medicine, University of Helsinki, 00014, Helsinki, Finland
| | - Sampsa Hautaniemi
- Research Program in Systems Oncology, Faculty of Medicine, University of Helsinki, 00014, Helsinki, Finland
| |
Collapse
|
113
|
Circulating Tumour DNAs and Non-Coding RNAs as Liquid Biopsies for the Management of Colorectal Cancer Patients. GASTROINTESTINAL DISORDERS 2020. [DOI: 10.3390/gidisord2030022] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Circulating tumour DNAs and non-coding RNAs present in body fluids have been under investigation as tools for cancer diagnosis, disease monitoring, and prognosis for many years. These so-called liquid biopsies offer the opportunity to obtain information about the molecular make-up of a cancer in a minimal invasive way and offer the possibility to implement theranostics for precision oncology. Furthermore, liquid biopsies could overcome the limitations of tissue biopsies in capturing the complexity of tumour heterogeneity within the primary cancer and among different metastatic sites. Liquid biopsies may also be implemented to detect early tumour formation or to monitor cancer relapse of response to therapy with greater sensitivity compared with the currently available protein-based blood biomarkers. Most colorectal cancers are often diagnosed at late stages and have a high mortality rate. Hence, biomolecules as nucleic acids present in liquid biopsies might have prognostic potential and could serve as predictive biomarkers for chemotherapeutic regimens. This review will focus on the role of circulating tumour DNAs and non-coding RNAs as diagnostic, prognostic, and predictive biomarkers in the context of colorectal cancer.
Collapse
|
114
|
Klein-Scory S, Wahner I, Maslova M, Al-Sewaidi Y, Pohl M, Mika T, Ladigan S, Schroers R, Baraniskin A. Evolution of RAS Mutational Status in Liquid Biopsies During First-Line Chemotherapy for Metastatic Colorectal Cancer. Front Oncol 2020; 10:1115. [PMID: 32766143 PMCID: PMC7378792 DOI: 10.3389/fonc.2020.01115] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 06/04/2020] [Indexed: 12/31/2022] Open
Abstract
Treatment options for patients with metastatic colorectal cancer (mCRC) are limited. This particularly affects the largest group of patients with RAS mutations, who are considered ineligible for therapy with antiEGFR antibodies. In this liquid biopsy-based study, we performed the first in-depth analysis of the RAS mutational status in initially RAS-mutated patients during first-line therapy. RAS status of twelve patients with initially RAS-mutated mCRC was monitored longitudinally in 69 liquid biopsy samples. We focused on patients with stable disease (SD) or partial remission (PR) during first-line therapy (11 patients). Detection of fragmented RAS-mutated circulating cell-free tumor DNA (ctDNA) in plasma was performed by digital-droplet PCR (ddPCR) and BEAMing. Patients' total tumor masses were determined by measuring the tumor volumes using CT scan data. All patients with PR or SD at first follow-up showed a significant decrease of RAS mutational load. In ten patients (91%), the ctDNA-based RAS mutational status converted to wild-type in ddPCR and BEAMing. Remarkably, conversions were observed early after the first cycle of chemotherapy. Plasma concentration of ctDNA was controlled by determination of methylated WIF1-promotor ctDNA burden as a second tumor marker for mCRC. Persistent presence of methylated WIF1-promotor fragments confirmed the ongoing release of ctDNA during treatment. In patients with initially RAS-mutated mCRC, RAS mutations rapidly disappeared during first-line therapy in liquid biopsy, independent of type and intensity of chemotherapy and irrespective of anti-VEGF treatments. Following our results demonstrating conversion of RAS-mutational status, potential effectiveness of anti-EGFR antibodies in selected patients becomes an attractive hypothesis for future studies.
Collapse
Affiliation(s)
- Susanne Klein-Scory
- IMBL Medical Clinic, Ruhr University Bochum, University Hospital Knappschaftskrankenhaus Bochum GmbH, Bochum, Germany
| | - Ingo Wahner
- IMBL Medical Clinic, Ruhr University Bochum, University Hospital Knappschaftskrankenhaus Bochum GmbH, Bochum, Germany
| | - Marina Maslova
- Department of Radiology, University Hospital Knappschaftskrankenhaus Bochum GmbH, Ruhr University Bochum, Bochum, Germany
| | - Yosef Al-Sewaidi
- Department of Radiology, University Hospital Knappschaftskrankenhaus Bochum GmbH, Ruhr University Bochum, Bochum, Germany
| | - Michael Pohl
- Department of Medicine, University Hospital Knappschaftskrankenhaus Bochum GmbH, Ruhr University Bochum, Bochum, Germany
| | - Thomas Mika
- Department of Medicine, University Hospital Knappschaftskrankenhaus Bochum GmbH, Ruhr University Bochum, Bochum, Germany
| | - Swetlana Ladigan
- Department of Medicine, University Hospital Knappschaftskrankenhaus Bochum GmbH, Ruhr University Bochum, Bochum, Germany
| | - Roland Schroers
- Department of Medicine, University Hospital Knappschaftskrankenhaus Bochum GmbH, Ruhr University Bochum, Bochum, Germany
| | - Alexander Baraniskin
- IMBL Medical Clinic, Ruhr University Bochum, University Hospital Knappschaftskrankenhaus Bochum GmbH, Bochum, Germany
- Department of Medicine, University Hospital Knappschaftskrankenhaus Bochum GmbH, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
115
|
Hussung S, Follo M, Klar RF, Michalczyk S, Fritsch K, Nollmann F, Hipp J, Duyster J, Scherer F, von Bubnoff N, Boerries M, Wittel U, Fritsch RM. Development and Clinical Validation of Discriminatory Multitarget Digital Droplet PCR Assays for the Detection of Hot Spot KRAS and NRAS Mutations in Cell-Free DNA. J Mol Diagn 2020; 22:943-956. [DOI: 10.1016/j.jmoldx.2020.04.206] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 03/21/2020] [Accepted: 04/13/2020] [Indexed: 12/22/2022] Open
|
116
|
Bozic I, Wu CJ. Delineating the evolutionary dynamics of cancer from theory to reality. ACTA ACUST UNITED AC 2020; 1:580-588. [DOI: 10.1038/s43018-020-0079-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 05/18/2020] [Indexed: 01/08/2023]
|
117
|
Thakral D, Das N, Basnal A, Gupta R. Cell-free DNA for genomic profiling and minimal residual disease monitoring in Myeloma- are we there yet? AMERICAN JOURNAL OF BLOOD RESEARCH 2020; 10:26-45. [PMID: 32685257 PMCID: PMC7364270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 06/11/2020] [Indexed: 06/11/2023]
Abstract
OBJECTIVE Multiple myeloma (MM), a plasma cell neoplasm, afflicts elder individuals accounting for 10% of hematologic malignancies. The MM plasma cells largely reside within the bone marrow niche and are accessible through an invasive bone marrow biopsy, which is challenging during serial monitoring of patients. In this setting, cell free DNA (cfDNA) may have a role to ascertain the molecular aberrations at diagnosis and in assessment of residual disease during therapy. The aim of this review was to explore the utility and current status of cfDNA in MM. METHOD PubMed was searched with terms including cell-free DNA, circulating-tumor DNA, Multiple Myeloma, diagnosis, genomic profiling, Minimal Residual Disease individually or in combination to shortlist the relevant studies. RESULT cfDNA serves as a non-invasive source of tumor-specific molecular biomarker, ctDNA that has immense potential in facilitating management of cancer patients. The mutation detection platforms for ctDNA include hybrid capture and ultra-deep sequencing. Hybrid capture allows full length gene sequencing for mutation and CNV detection. The disease progression can be monitored by profiling prognostic somatic copy number alterations by ultra-low pass whole genome sequencing of ctDNA cost-effectively. Evolution of both the laboratory protocols and bioinformatics tools may further improve the sensitivity of ctDNA detection for better disease management. Only a limited number of studies were available in MM exploring the potential utility of cfDNA. CONCLUSION In this review, we discuss the nuances and challenges associated with molecular evaluation of cfDNA and its potential role in diagnosis and monitoring of treatment response in MM.
Collapse
Affiliation(s)
- Deepshi Thakral
- Laboratory Oncology Unit, Dr BR Ambedkar Institute Rotary Cancer Hospital, All India Institute of Medical Sciences New Delhi, India
| | - Nupur Das
- Laboratory Oncology Unit, Dr BR Ambedkar Institute Rotary Cancer Hospital, All India Institute of Medical Sciences New Delhi, India
| | - Atul Basnal
- Laboratory Oncology Unit, Dr BR Ambedkar Institute Rotary Cancer Hospital, All India Institute of Medical Sciences New Delhi, India
| | - Ritu Gupta
- Laboratory Oncology Unit, Dr BR Ambedkar Institute Rotary Cancer Hospital, All India Institute of Medical Sciences New Delhi, India
| |
Collapse
|
118
|
Georgiou A, Stewart A, Cunningham D, Banerji U, Whittaker SR. Inactivation of NF1 Promotes Resistance to EGFR Inhibition in KRAS/NRAS/BRAFV600 -Wild-Type Colorectal Cancer. Mol Cancer Res 2020; 18:835-846. [PMID: 32098826 PMCID: PMC7611272 DOI: 10.1158/1541-7786.mcr-19-1201] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 01/21/2020] [Accepted: 02/20/2020] [Indexed: 12/26/2022]
Abstract
Through the use of an unbiased, genome-scale CRISPR modifier screen, we identified NF1 suppression as a mechanism of resistance to EGFR inhibition in NRAS/KRAS/BRAFV600 -wild-type colorectal cancer cells. Reduced NF1 expression permitted sustained signaling through the MAPK pathway to promote cell proliferation in the presence of EGFR inhibition. Targeting of MEK in combination with EGFR inhibition leads to synergistic antiproliferative activity. Human KRAS/NRAS/BRAFV600 -wild-type colorectal cancer cell lines with NF1 mutations displayed reduced NF1 mRNA or protein expression and were resistant to EGFR blockade by gefitinib or cetuximab. Cooccurring loss-of-function mutations in PTEN were associated with resistance to dual EGFR/MEK inhibition but cotreatment with a PI3K inhibitor further suppressed proliferation. Loss of NF1 may be a useful biomarker to identify patients that are less likely to benefit from single-agent anti-EGFR therapy in colorectal cancer and may direct potential combination strategies. IMPLICATIONS: This study suggests that further clinical validation of NF1 status as predictor of response to anti-EGFR targeting antibodies in patients with colorectal cancer with KRAS/NRAS/BRAFV600 -wild-type tumors is warranted.
Collapse
Affiliation(s)
- Alexandros Georgiou
- Division of Cancer Therapeutics, The Institute of Cancer Research, London, United Kingdom
- Department of Medicine, The Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - Adam Stewart
- Division of Cancer Therapeutics, The Institute of Cancer Research, London, United Kingdom
| | - David Cunningham
- Department of Medicine, The Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - Udai Banerji
- Division of Cancer Therapeutics, The Institute of Cancer Research, London, United Kingdom.
- Division of Clinical Studies, The Institute of Cancer Research, London, United Kingdom
| | - Steven R Whittaker
- Division of Cancer Therapeutics, The Institute of Cancer Research, London, United Kingdom.
| |
Collapse
|
119
|
Kolenčík D, Shishido SN, Pitule P, Mason J, Hicks J, Kuhn P. Liquid Biopsy in Colorectal Carcinoma: Clinical Applications and Challenges. Cancers (Basel) 2020; 12:E1376. [PMID: 32471160 PMCID: PMC7352156 DOI: 10.3390/cancers12061376] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 05/16/2020] [Accepted: 05/25/2020] [Indexed: 12/24/2022] Open
Abstract
Colorectal carcinoma (CRC) is characterized by wide intratumor heterogeneity with general genomic instability and there is a need for improved diagnostic, prognostic, and therapeutic tools. The liquid biopsy provides a noninvasive route of sample collection for analysis of circulating tumor cells (CTCs) and genomic material, including cell-free DNA (cfDNA), as a complementary biopsy to the solid tumor tissue. The solid biopsy is critical for molecular characterization and diagnosis at the time of collection. The liquid biopsy has the advantage of longitudinal molecular characterization of the disease, which is crucial for precision medicine and patient-oriented treatment. In this review, we provide an overview of CRC and the different methodologies for the detection of CTCs and cfDNA, followed by a discussion on the potential clinical utility of the liquid biopsy in CRC patient care, and lastly, current challenges in the field.
Collapse
Affiliation(s)
- Drahomír Kolenčík
- Biomedical Centre, Faculty of Medicine in Pilsen, Charles University, 32300 Pilsen, Czech Republic; (D.K.); (P.P.)
| | - Stephanie N. Shishido
- Convergent Science Institute in Cancer, Michelson Center for Convergent Bioscience, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, CA 90089, USA; (S.N.S.); (J.M.); (J.H.)
| | - Pavel Pitule
- Biomedical Centre, Faculty of Medicine in Pilsen, Charles University, 32300 Pilsen, Czech Republic; (D.K.); (P.P.)
| | - Jeremy Mason
- Convergent Science Institute in Cancer, Michelson Center for Convergent Bioscience, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, CA 90089, USA; (S.N.S.); (J.M.); (J.H.)
- USC Institute of Urology, Catherine & Joseph Aresty Department of Urology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - James Hicks
- Convergent Science Institute in Cancer, Michelson Center for Convergent Bioscience, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, CA 90089, USA; (S.N.S.); (J.M.); (J.H.)
| | - Peter Kuhn
- Convergent Science Institute in Cancer, Michelson Center for Convergent Bioscience, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, CA 90089, USA; (S.N.S.); (J.M.); (J.H.)
| |
Collapse
|
120
|
Liquid Biopsy Serial Monitoring of Treatment Responses and Relapse in Advanced Esophageal Squamous Cell Carcinoma. Cancers (Basel) 2020; 12:cancers12061352. [PMID: 32466419 PMCID: PMC7352685 DOI: 10.3390/cancers12061352] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 05/12/2020] [Accepted: 05/23/2020] [Indexed: 12/27/2022] Open
Abstract
(1) Background: Early predictive markers to track treatment responses are needed for advanced esophageal squamous cell carcinoma (ESCC) patients. We examined the prognostication and risk stratification role of liquid biopsy serial monitoring for this deadly cancer. (2) Methods: Circulating tumor cells (CTCs) and plasma cell-free DNA (cfDNA) were isolated from 60 ESCC patients treated by chemotherapy (CT) at five serial timepoints: baseline (CTC1/cfDNA1), CT pre-cycle III (CTC2/cfDNA2), CT post-cycle IV, end of CT and relapse. (3) Results: In 45/57 ESCC patients with evaluable CTC counts at CT pre-cycle III, positive CTC2 (≥3 CTCs) is independently associated with response at interim reassessment and progression-free survival (PFS) in multivariate analysis. In 42/57 ESCC patients with changes of CTC1/CTC2 and cfDNA1/cfDNA2, patients categorized into four risk groups based on the number of favorable and unfavorable changes of CTC1/CTC2 and cfDNA1/cfDNA2, were independently associated with overall survival (OS) by multivariate analysis. (4) Conclusions: CTC counts at pre-cycle III are independently associated with response at interim reassessment and PFS. Combined changes of CTC counts and cfDNA levels from baseline to pre-cycle III are independently associated with OS. Longitudinal liquid biopsy serial monitoring provides complementary information for prediction and prognosis for CT responses in advanced ESCC.
Collapse
|
121
|
Gluzman M, Scott JG, Vladimirsky A. Optimizing adaptive cancer therapy: dynamic programming and evolutionary game theory. Proc Biol Sci 2020; 287:20192454. [PMID: 32315588 DOI: 10.1098/rspb.2019.2454] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Recent clinical trials have shown that adaptive drug therapies can be more efficient than a standard cancer treatment based on a continuous use of maximum tolerated doses (MTD). The adaptive therapy paradigm is not based on a preset schedule; instead, the doses are administered based on the current state of tumour. But the adaptive treatment policies examined so far have been largely ad hoc. We propose a method for systematically optimizing adaptive policies based on an evolutionary game theory model of cancer dynamics. Given a set of treatment objectives, we use the framework of dynamic programming to find the optimal treatment strategies. In particular, we optimize the total drug usage and time to recovery by solving a Hamilton-Jacobi-Bellman equation. We compare MTD-based treatment strategy with optimal adaptive treatment policies and show that the latter can significantly decrease the total amount of drugs prescribed while also increasing the fraction of initial tumour states from which the recovery is possible. We conclude that the use of optimal control theory to improve adaptive policies is a promising concept in cancer treatment and should be integrated into clinical trial design.
Collapse
Affiliation(s)
- Mark Gluzman
- Center for Applied Mathematics, Cornell University, Ithaca, NY, USA
| | - Jacob G Scott
- Department of Translational Hematology and Oncology Research, Cleveland Clinic, Cleveland, OH, USA
| | - Alexander Vladimirsky
- Department of Mathematics and Center for Applied Mathematics, Cornell University, 561 Malott Hall, Ithaca, NY 14853-4201, USA
| |
Collapse
|
122
|
Abstract
Advances in our understanding of molecular mechanisms of tumorigenesis have translated into knowledge-based therapies directed against specific oncogenic signaling targets. These therapies often induce dramatic responses in susceptible tumors. Unfortunately, most advanced cancers, including those with robust initial responses, eventually acquire resistance to targeted therapies and relapse. Even though immune-based therapies are more likely to achieve complete cures, acquired resistance remains an obstacle to their success as well. Acquired resistance is the direct consequence of pre-existing intratumor heterogeneity and ongoing diversification during therapy, which enables some tumor cells to survive treatment and facilitates the development of new therapy-resistant phenotypes. In this review, we discuss the sources of intratumor heterogeneity and approaches to capture and account for it during clinical decision making. Finally, we outline potential strategies to improve therapeutic outcomes by directly targeting intratumor heterogeneity.
Collapse
Affiliation(s)
- Andriy Marusyk
- Department of Cancer Physiology, H Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Michalina Janiszewska
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Kornelia Polyak
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
123
|
Martini G, Ciardiello D, Vitiello PP, Napolitano S, Cardone C, Cuomo A, Troiani T, Ciardiello F, Martinelli E. Resistance to anti-epidermal growth factor receptor in metastatic colorectal cancer: What does still need to be addressed? Cancer Treat Rev 2020; 86:102023. [PMID: 32474402 DOI: 10.1016/j.ctrv.2020.102023] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 04/07/2020] [Accepted: 04/08/2020] [Indexed: 12/21/2022]
Abstract
Colorectal cancer (CRC) represents a global health problem, being one of the most diagnosed and aggressive tumors. Cetuximab and panitumumab monoclonal antibodies (mAbs) in combination with chemotherapy are an effective strategy for patients with RAS Wild Type (WT) metastatic colorectal cancer (mCRC). However, tumors are often unresponsive or develop resistance. In the last years, molecular alterations in principal oncogenes (RAS, BRAF, PI3KCA, PTEN) in the downstream pathway of the epidermal growth factor receptor (EGFR) and in other receptors (HER2, MET) that converge on MAPK-ERK signalling have been identified as novel mechanisms of resistance to anti-EGFR strategies. However, further efforts are needed to better stratify CRCs and ensure more individualized treatments. Herein, we describe the consolidated molecular drivers of resistance and the therapeutic strategies available so far, with an overview on potential biomarkers of response that could be integrated in clinical practice.
Collapse
Affiliation(s)
- Giulia Martini
- Department of Precision Medicine, Università degli Studi della Campania Luigi Vanvitelli, Naples, Italy
| | - Davide Ciardiello
- Department of Precision Medicine, Università degli Studi della Campania Luigi Vanvitelli, Naples, Italy
| | - Pietro Paolo Vitiello
- Department of Precision Medicine, Università degli Studi della Campania Luigi Vanvitelli, Naples, Italy
| | - Stefania Napolitano
- Department of Precision Medicine, Università degli Studi della Campania Luigi Vanvitelli, Naples, Italy
| | - Claudia Cardone
- Department of Precision Medicine, Università degli Studi della Campania Luigi Vanvitelli, Naples, Italy
| | - Antonio Cuomo
- Gastroenterology Unit, Ospedale Umberto I, Nocera Inferiore, Italy
| | - Teresa Troiani
- Department of Precision Medicine, Università degli Studi della Campania Luigi Vanvitelli, Naples, Italy
| | - Fortunato Ciardiello
- Department of Precision Medicine, Università degli Studi della Campania Luigi Vanvitelli, Naples, Italy
| | - Erika Martinelli
- Department of Precision Medicine, Università degli Studi della Campania Luigi Vanvitelli, Naples, Italy
| |
Collapse
|
124
|
Imaging and clinical correlates with regorafenib in metastatic colorectal cancer. Cancer Treat Rev 2020; 86:102020. [PMID: 32278232 DOI: 10.1016/j.ctrv.2020.102020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 03/27/2020] [Accepted: 03/29/2020] [Indexed: 12/11/2022]
Abstract
In colorectal cancer (CRC), imaging is important in determining tumor stage, selecting treatment strategies, and in assessing response to therapy. However, some challenges remain with established imaging techniques, such as computed tomography, and with some commonly used response criteria, such as Response Evaluation Criteria in Solid Tumors, which measures change in size of several target lesions instead of change in tumor morphology or metabolic function. In addition, these assessments are not typically conducted until after 8 weeks of treatment, meaning that potential non-responders are often not identified in a timely manner. Regorafenib, an oral tyrosine kinase inhibitor indicated for the treatment of metastatic CRC, blocks the activity of several protein kinases involved in angiogenesis, oncogenesis, metastasis, and tumor immunity. Timely differentiation of regorafenib responders from non-responders using appropriate imaging techniques that recognize not only changes in tumor size but also changes in tumor density or vasculature, may reduce unnecessary drug-related toxicity in patients who are unlikely to respond to treatment. This review discusses the latest developments in computed tomography, magnetic resonance imaging, and positron emission tomography tumor imaging modalities, and how these aid in identifying patients with metastatic CRC who are responders or non-responders to regorafenib treatment.
Collapse
|
125
|
Kyrochristos ID, Baltagiannis EG, Mitsis M, Roukos DH. Precision in cancer pharmacogenomics. Pharmacogenomics 2020; 21:311-316. [PMID: 32242500 DOI: 10.2217/pgs-2020-0011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Affiliation(s)
- Ioannis D Kyrochristos
- Centre for Biosystems & Genome Network Medicine, Ioannina University, Ioannina, Greece
- Department of Surgery, University Hospital of Ioannina, Ioannina, Greece
| | - Evangelos G Baltagiannis
- Centre for Biosystems & Genome Network Medicine, Ioannina University, Ioannina, Greece
- Department of Surgery, University Hospital of Ioannina, Ioannina, Greece
| | - Michail Mitsis
- Department of Surgery, University Hospital of Ioannina, Ioannina, Greece
- Cancer Biobank Centre, Ioannina University, Ioannina, Greece
| | - Dimitrios H Roukos
- Centre for Biosystems & Genome Network Medicine, Ioannina University, Ioannina, Greece
- Department of Surgery, University Hospital of Ioannina, Ioannina, Greece
- Department of Systems Biology, Biomedical Research Foundation of the Academy of Athens (BRFAA), Athens, Greece
| |
Collapse
|
126
|
Cresswell GD, Nichol D, Spiteri I, Tari H, Zapata L, Heide T, Maley CC, Magnani L, Schiavon G, Ashworth A, Barry P, Sottoriva A. Mapping the breast cancer metastatic cascade onto ctDNA using genetic and epigenetic clonal tracking. Nat Commun 2020; 11:1446. [PMID: 32221288 PMCID: PMC7101390 DOI: 10.1038/s41467-020-15047-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 02/18/2020] [Indexed: 02/06/2023] Open
Abstract
Circulating tumour DNA (ctDNA) allows tracking of the evolution of human cancers at high resolution, overcoming many limitations of tissue biopsies. However, exploiting ctDNA to determine how a patient's cancer is evolving in order to aid clinical decisions remains difficult. This is because ctDNA is a mix of fragmented alleles, and the contribution of different cancer deposits to ctDNA is largely unknown. Profiling ctDNA almost invariably requires prior knowledge of what genomic alterations to track. Here, we leverage on a rapid autopsy programme to demonstrate that unbiased genomic characterisation of several metastatic sites and concomitant ctDNA profiling at whole-genome resolution reveals the extent to which ctDNA is representative of widespread disease. We also present a methylation profiling method that allows tracking evolutionary changes in ctDNA at single-molecule resolution without prior knowledge. These results have critical implications for the use of liquid biopsies to monitor cancer evolution in humans and guide treatment.
Collapse
Affiliation(s)
- George D Cresswell
- Evolutionary Genomics and Modelling Lab, Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK
| | - Daniel Nichol
- Evolutionary Genomics and Modelling Lab, Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK
| | - Inmaculada Spiteri
- Evolutionary Genomics and Modelling Lab, Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK
| | - Haider Tari
- Evolutionary Genomics and Modelling Lab, Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK
- Glioma Lab, The Institute of Cancer Research, London, UK
| | - Luis Zapata
- Evolutionary Genomics and Modelling Lab, Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK
| | - Timon Heide
- Evolutionary Genomics and Modelling Lab, Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK
| | - Carlo C Maley
- Arizona Cancer Evolution Center, Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | - Luca Magnani
- Department of Surgery and Cancer, Imperial College London, London, UK
| | - Gaia Schiavon
- Breast Unit, Royal Marsden Hospital, London, UK
- AstraZeneca, Oncology R&D, Cambridge, UK
| | - Alan Ashworth
- UCSF Helen Diller Family Comprehensive Cancer Center, 1450 3rd St, San Francisco, CA, 94158, USA
| | - Peter Barry
- Breast Unit, Royal Marsden Hospital, London, UK.
| | - Andrea Sottoriva
- Evolutionary Genomics and Modelling Lab, Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK.
| |
Collapse
|
127
|
Calandri M, Siravegna G, Yevich SM, Stranieri G, Gazzera C, Kopetz S, Fonio P, Gupta S, Bardelli A, Veltri A, Odisio BC. Liquid biopsy, a paradigm shift in oncology: what interventional radiologists should know. Eur Radiol 2020; 30:4496-4503. [PMID: 32193642 DOI: 10.1007/s00330-020-06700-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 01/21/2020] [Accepted: 01/31/2020] [Indexed: 02/08/2023]
Abstract
The acquisition of adequate tumor sample is required to verify primary tumor type and specific biomarkers and to assess response to therapy. Historically, invasive surgical procedures were the standard methods to acquire tumor samples until advancements in imaging and minimally invasive equipment facilitated the paradigm shift image-guided biopsy. Image-guided biopsy has improved sampling yield and minimized risk to the patient; however, there are still limitations, such as its invasive nature and its consequent limitations to longitudinal tumor monitoring. The next paradigm shift in sampling technique will need to address these issues to provide a more reliable and less invasive technique. Recently, liquid biopsy (LB) has emerged as a non-invasive alternative to tissue sampling. This technique relies on direct sampling of blood or other bodily fluids in contact with the tumor in order to collect circulating tumor DNA (ctDNA), circulating tumor cells (CTCs), and circulating RNAs-in particular microRNA (miRNAs). Clinical applications of LB involve different steps of cancer patient management including screening, detection of disease recurrence, and evaluation of acquired resistance. With any paradigm shift, old techniques are often relegated to a secondary option. Although image-guided biopsies may appear as a passive spectator on the rapid advancement of LB, the two techniques may well be codependent. Interventional radiology may be integral to directly sample the liquid surrounding or draining from the tumor. In addition, LB may help to correctly select the patients for image-guided loco-regional treatments, to determine its treatment endpoint, and to early detect recurrence. KEY POINTS: • Liquid biopsy is a novel technology with potential high impact in the management of patients undergoing image-guided procedures. • Interventional radiology procedures may increase liquid biopsy sensitivity through direct fluid sampling. • Liquid biopsy techniques may provide a venue for improving patients' selection and enhance outcomes of interventional loco-regional therapies performed by interventional radiologists.
Collapse
Affiliation(s)
- Marco Calandri
- Radiology Unit, A.O.U. San Luigi Gonzaga - Orbassano (To), Orbassano, TO, Italy.,Department of Oncology, University of Torino, Turin, Italy
| | - Giulia Siravegna
- Candiolo Cancer Institute-FPO, IRCCS, Candiolo (To), Candiolo, TO, Italy.,Cancer Center, Massachusetts General Hospital, Harvard Medical School, Boston, USA
| | - Steven M Yevich
- Department of Interventional Radiology, MD Anderson Cancer Center, The University of Texas, Houston, TX, USA
| | - Giuseppe Stranieri
- Radiology Unit, A.O.U. San Luigi Gonzaga - Orbassano (To), Orbassano, TO, Italy
| | - Carlo Gazzera
- Radiology Institute, Città della Salute e della Scienza - Torino Department of Surgical Sciences, University of Turin, Turin, Italy
| | - Scott Kopetz
- Department of Gastrointestinal Medical Oncology, MD Anderson Cancer Center, The University of Texas, Houston, TX, USA
| | - Paolo Fonio
- Radiology Institute, Città della Salute e della Scienza - Torino Department of Surgical Sciences, University of Turin, Turin, Italy
| | - Sanjay Gupta
- Department of Interventional Radiology, MD Anderson Cancer Center, The University of Texas, Houston, TX, USA
| | - Alberto Bardelli
- Department of Oncology, University of Torino, Turin, Italy.,Candiolo Cancer Institute-FPO, IRCCS, Candiolo (To), Candiolo, TO, Italy
| | - Andrea Veltri
- Radiology Unit, A.O.U. San Luigi Gonzaga - Orbassano (To), Orbassano, TO, Italy.,Department of Oncology, University of Torino, Turin, Italy
| | - Bruno C Odisio
- Department of Interventional Radiology, MD Anderson Cancer Center, The University of Texas, Houston, TX, USA.
| |
Collapse
|
128
|
Abstract
Hepatocellular carcinoma (HCC), the most common form of primary liver cancer, typically develops on the background of chronic liver disease and is an aggressive disease with dismal prognosis. Studies using next-generation sequencing of multiple regions of the same tumour nodule suggest different patterns of HCC evolution and confirm the high molecular heterogeneity in a subset of patients. Different hypotheses have been proposed to explain tumour evolution, including clonal selection or neutral and punctuated acquisition of genetic alterations. In parallel, data indicate a fundamental contribution of nonmalignant cells of the tumour microenvironment to cancer clonal evolution. Delineating these dynamics is crucial to improve the treatment of patients with HCC, and particularly to help understand how HCC evolution drives resistance to systemic therapies. A number of new minimally invasive techniques, such as liquid biopsies, could help track cancer evolution in HCC. These tools might improve our understanding of how systemic therapies affect tumour clonal composition and could facilitate implementation of real-time molecular monitoring of patients with HCC.
Collapse
|
129
|
Campos-Carrillo A, Weitzel JN, Sahoo P, Rockne R, Mokhnatkin JV, Murtaza M, Gray SW, Goetz L, Goel A, Schork N, Slavin TP. Circulating tumor DNA as an early cancer detection tool. Pharmacol Ther 2020; 207:107458. [PMID: 31863816 PMCID: PMC6957244 DOI: 10.1016/j.pharmthera.2019.107458] [Citation(s) in RCA: 141] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 12/12/2019] [Indexed: 02/07/2023]
Abstract
Circulating tumor DNA holds substantial promise as an early detection biomarker, particularly for cancers that do not have currently accepted screening methodologies, such as ovarian, pancreatic, and gastric cancers. Many features intrinsic to ctDNA analysis may be leveraged to enhance its use as an early cancer detection biomarker: including ctDNA fragment lengths, DNA copy number variations, and associated patient phenotypic information. Furthermore, ctDNA testing may be synergistically used with other multi-omic biomarkers to enhance early detection. For instance, assays may incorporate early detection proteins (i.e., CA-125), epigenetic markers, circulating tumor RNA, nucleosomes, exosomes, and associated immune markers. Many companies are currently competing to develop a marketable early cancer detection test that leverages ctDNA. Although some hurdles (like early stage disease assay accuracy, high implementation costs, confounding from clonal hematopoiesis, and lack of clinical utility studies) need to be addressed before integration into healthcare, ctDNA assays hold substantial potential as an early cancer screening test.
Collapse
Affiliation(s)
| | | | - Prativa Sahoo
- City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Russell Rockne
- City of Hope National Medical Center, Duarte, CA 91010, USA
| | | | - Muhammed Murtaza
- Translational Genomics Research Institute, Phoenix, AZ 85004, USA
| | - Stacy W Gray
- City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Laura Goetz
- City of Hope National Medical Center, Duarte, CA 91010, USA; Translational Genomics Research Institute, Phoenix, AZ 85004, USA
| | - Ajay Goel
- City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Nicholas Schork
- City of Hope National Medical Center, Duarte, CA 91010, USA; Translational Genomics Research Institute, Phoenix, AZ 85004, USA
| | - Thomas P Slavin
- City of Hope National Medical Center, Duarte, CA 91010, USA.
| |
Collapse
|
130
|
Rachiglio AM, Sacco A, Forgione L, Esposito C, Chicchinelli N, Normanno N. Colorectal cancer genomic biomarkers in the clinical management of patients with metastatic colorectal carcinoma. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2020; 1:53-70. [PMID: 36046264 PMCID: PMC9400741 DOI: 10.37349/etat.2020.00004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 02/12/2020] [Indexed: 02/06/2023] Open
Abstract
Colorectal carcinoma (CRC) is an heterogeneous disease in which different genetic alterations play a role in its pathogenesis and progression and offer potential for therapeutic intervention. The research on predictive biomarkers in metastatic CRC (mCRC) mainly focused on the identification of biomarkers of response or resistance to anti-epidermal growth factor receptor monoclonal antibodies. In this respect, international guidelines suggest testing mCRC patients only for KRAS, NRAS and BRAF mutations and for microsatellite instability. However, the use of novel testing methods is raising relevant issue related to these biomarkers, such as the presence of sub-clonal RAS mutations or the clinical interpretation of rare no-V600 BRAF variants. In addition, a number of novel biomarkers is emerging from recent studies including amplification of ERBB2, mutations in ERBB2, MAP2K1 and NF1 and rearrangements of ALK, ROS1, NTRK and RET. Mutations in POLE and the levels of tumor mutation burden also appear as possible biomarkers of response to immunotherapy in CRC. Finally, the consensus molecular subtypes classification of CRC based on gene expression profiling has prognostic and predictive implications. Integration of all these information will be likely necessary in the next future in order to improve precision/personalized medicine in mCRC patients.
Collapse
Affiliation(s)
- Anna Maria Rachiglio
- Cell Biology and Biotherapy Unit, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Naples, Italy
| | - Alessandra Sacco
- Cell Biology and Biotherapy Unit, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Naples, Italy
| | - Laura Forgione
- Cell Biology and Biotherapy Unit, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Naples, Italy
| | - Claudia Esposito
- Cell Biology and Biotherapy Unit, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Naples, Italy
| | - Nicoletta Chicchinelli
- Cell Biology and Biotherapy Unit, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Naples, Italy
| | - Nicola Normanno
- Cell Biology and Biotherapy Unit, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Naples, Italy
| |
Collapse
|
131
|
Werner B, Case J, Williams MJ, Chkhaidze K, Temko D, Fernández-Mateos J, Cresswell GD, Nichol D, Cross W, Spiteri I, Huang W, Tomlinson IPM, Barnes CP, Graham TA, Sottoriva A. Measuring single cell divisions in human tissues from multi-region sequencing data. Nat Commun 2020; 11:1035. [PMID: 32098957 PMCID: PMC7042311 DOI: 10.1038/s41467-020-14844-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 01/29/2020] [Indexed: 01/06/2023] Open
Abstract
Both normal tissue development and cancer growth are driven by a branching process of cell division and mutation accumulation that leads to intra-tissue genetic heterogeneity. However, quantifying somatic evolution in humans remains challenging. Here, we show that multi-sample genomic data from a single time point of normal and cancer tissues contains information on single-cell divisions. We present a new theoretical framework that, applied to whole-genome sequencing data of healthy tissue and cancer, allows inferring the mutation rate and the cell survival/death rate per division. On average, we found that cells accumulate 1.14 mutations per cell division in healthy haematopoiesis and 1.37 mutations per division in brain development. In both tissues, cell survival was maximal during early development. Analysis of 131 biopsies from 16 tumours showed 4 to 100 times increased mutation rates compared to healthy development and substantial inter-patient variation of cell survival/death rates.
Collapse
Affiliation(s)
- Benjamin Werner
- Evolutionary Genomics and Modelling Lab, Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK.
- Evolutionary Dynamics Group, Centre for Cancer Genomics & Computational Biology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK.
| | - Jack Case
- Evolutionary Genomics and Modelling Lab, Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK
- University of Cambridge, Cambridge, UK
| | - Marc J Williams
- Evolution and Cancer Laboratory, Centre for Cancer Genomics & Computational Biology, Barts Cancer Institute, Queen Mary University London, London, Charterhouse Square, London, EC1M 6BQ, UK
- Department of Cell and Developmental Biology, University College London, London, UK
- Centre for Mathematics and Physics in the Life Sciences and Experimental Biology (CoMPLEX), University College London, London, UK
| | - Ketevan Chkhaidze
- Evolutionary Genomics and Modelling Lab, Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK
| | - Daniel Temko
- Evolution and Cancer Laboratory, Centre for Cancer Genomics & Computational Biology, Barts Cancer Institute, Queen Mary University London, London, Charterhouse Square, London, EC1M 6BQ, UK
| | - Javier Fernández-Mateos
- Evolutionary Genomics and Modelling Lab, Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK
| | - George D Cresswell
- Evolutionary Genomics and Modelling Lab, Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK
| | - Daniel Nichol
- Evolutionary Genomics and Modelling Lab, Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK
| | - William Cross
- Evolution and Cancer Laboratory, Centre for Cancer Genomics & Computational Biology, Barts Cancer Institute, Queen Mary University London, London, Charterhouse Square, London, EC1M 6BQ, UK
| | - Inmaculada Spiteri
- Evolutionary Genomics and Modelling Lab, Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK
| | - Weini Huang
- Group of Theoretical Biology, The State Key Laboratory of Biocontrol, School of Life Science, Sun Yat-sen University, 510060, Guangzhou, China
- School of Mathematical Sciences, Queen Mary University London, London, UK
| | - Ian P M Tomlinson
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Chris P Barnes
- Department of Cell and Developmental Biology, University College London, London, UK
- UCL Genetics Institute, University College London, London, UK
| | - Trevor A Graham
- Evolution and Cancer Laboratory, Centre for Cancer Genomics & Computational Biology, Barts Cancer Institute, Queen Mary University London, London, Charterhouse Square, London, EC1M 6BQ, UK.
| | - Andrea Sottoriva
- Evolutionary Genomics and Modelling Lab, Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK.
| |
Collapse
|
132
|
Cerasuolo M, Maccarinelli F, Coltrini D, Mahmoud AM, Marolda V, Ghedini GC, Rezzola S, Giacomini A, Triggiani L, Kostrzewa M, Verde R, Paris D, Melck D, Presta M, Ligresti A, Ronca R. Modeling Acquired Resistance to the Second-Generation Androgen Receptor Antagonist Enzalutamide in the TRAMP Model of Prostate Cancer. Cancer Res 2020; 80:1564-1577. [PMID: 32029552 DOI: 10.1158/0008-5472.can-18-3637] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 10/28/2019] [Accepted: 01/30/2020] [Indexed: 11/16/2022]
Abstract
Enzalutamide (MDV3100) is a potent second-generation androgen receptor antagonist approved for the treatment of castration-resistant prostate cancer (CRPC) in chemotherapy-naïve as well as in patients previously exposed to chemotherapy. However, resistance to enzalutamide and enzalutamide withdrawal syndrome have been reported. Thus, reliable and integrated preclinical models are required to elucidate the mechanisms of resistance and to assess therapeutic settings that may delay or prevent the onset of resistance. In this study, the prostate cancer multistage murine model TRAMP and TRAMP-derived cells have been used to extensively characterize in vitro and in vivo the response and resistance to enzalutamide. The therapeutic profile as well as the resistance onset were characterized and a multiscale stochastic mathematical model was proposed to link the in vitro and in vivo evolution of prostate cancer. The model showed that all therapeutic strategies that use enzalutamide result in the onset of resistance. The model also showed that combination therapies can delay the onset of resistance to enzalutamide, and in the best scenario, can eliminate the disease. These results set the basis for the exploitation of this "TRAMP-based platform" to test novel therapeutic approaches and build further mathematical models of combination therapies to treat prostate cancer and CRPC.Significance: Merging mathematical modeling with experimental data, this study presents the "TRAMP-based platform" as a novel experimental tool to study the in vitro and in vivo evolution of prostate cancer resistance to enzalutamide.
Collapse
Affiliation(s)
- Marianna Cerasuolo
- School of Mathematics and Physics, University of Portsmouth, Hampshire, United Kingdom
| | - Federica Maccarinelli
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Daniela Coltrini
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Ali Mokhtar Mahmoud
- Institute of Biomolecular Chemistry, National Research Council of Italy, Pozzuoli, Italy
| | - Viviana Marolda
- Institute of Biomolecular Chemistry, National Research Council of Italy, Pozzuoli, Italy
| | - Gaia Cristina Ghedini
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Sara Rezzola
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Arianna Giacomini
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Luca Triggiani
- Department of Radiation Oncology, University and Spedali Civili Hospital, Brescia, Italy
| | - Magdalena Kostrzewa
- Institute of Biomolecular Chemistry, National Research Council of Italy, Pozzuoli, Italy
| | - Roberta Verde
- Institute of Biomolecular Chemistry, National Research Council of Italy, Pozzuoli, Italy
| | - Debora Paris
- Institute of Biomolecular Chemistry, National Research Council of Italy, Pozzuoli, Italy
| | - Dominique Melck
- Institute of Biomolecular Chemistry, National Research Council of Italy, Pozzuoli, Italy
| | - Marco Presta
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Alessia Ligresti
- Institute of Biomolecular Chemistry, National Research Council of Italy, Pozzuoli, Italy.
| | - Roberto Ronca
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy.
| |
Collapse
|
133
|
Ye S, Hu X, Ni C, Jin W, Xu Y, Chang L, Zhou H, Jiang J, Yang L. KLF4 p.A472D Mutation Contributes to Acquired Resistance to Cetuximab in Colorectal Cancer. Mol Cancer Ther 2020; 19:956-965. [PMID: 31924740 DOI: 10.1158/1535-7163.mct-18-1385] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 05/22/2019] [Accepted: 12/26/2019] [Indexed: 11/16/2022]
Abstract
With the increase of treatment course, resistance to EGFR blockade is inevitable in patients with metastatic colorectal cancer (mCRC). KRAS mutations have been considered to be primary drivers of this resistance; however, the potential function of other genes has not been extensively investigated. This study collected 17 plasma samples from patients with mCRC with cetuximab resistance, and target-capture deep sequencing was used to identify mutations in circulating tumor DNA (ctDNA). Analysis of mutational prevalence in ctDNA was performed from three colorectal cancer tissue-based datasets and one ctDNA dataset. The prevalence of mutations identified in ctDNA was consistent with both colorectal cancer tissue-based and ctDNA datasets. Clonal analysis revealed that 41.2% of patients were positive for at least one subclone. Multiple mechanisms of cetuximab resistance were coexisted in individual patients, and one of the patients even harbored nine distinct mutations. In particular, functional study of Krüppel-like factor 4 (KLF4) p.A472D revealed increased cetuximab resistance in colorectal cancer cells, which was associated with the increased phosphorylation of downstream EGFR signaling proteins. These results suggest that KLF4 p.A472D may contribute to cetuximab resistance in patients with mCRC and thus may serve as a new biomarker in clinical application. Monitoring somatic mutations related to cetuximab resistance in patients with mCRC through ctDNA may provide real-time insights for clinical reference and treatment planning.
Collapse
Affiliation(s)
- Song Ye
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiaoge Hu
- Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Chao Ni
- Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang, China.,Department of General Surgery, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Weiwei Jin
- Department of Gastroenterology & Pancreatic Surgery, Key Laboratory of Gastroenterology, Zhejiang Provincial People's Hospital, Hangzhou Medical College, Zhejiang, China
| | - Yaping Xu
- Geneplus-Beijing Institute, Beijing, China
| | | | - Huaixiang Zhou
- Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Jiahong Jiang
- Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang, China.
| | - Liu Yang
- Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang, China.
| |
Collapse
|
134
|
Haupts A, Roth W, Hartmann N. [Liquid biopsy in colorectal cancer : An overview of ctDNA analysis in tumour diagnostics]. DER PATHOLOGE 2020; 40:244-251. [PMID: 31797045 DOI: 10.1007/s00292-019-00698-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In current routine diagnostics, the gold standard to determine the genomic profile of colorectal cancers (CRCs) is using biopsy or surgically resected tissues. However, such a tissue sample cannot represent the entire tumour heterogeneity, because it only shows a local and temporal snapshot. As a complement to tumour tissue genotyping, liquid biopsies enable minimally invasive detection of all potential tumour-specific mutations and their dynamic changes for molecular profiling. Furthermore, they can be repeated in certain intervals for monitoring response to treatment, occurrence of drug resistance and detection of relapse. This review focusses on analyzing circulating cell-free tumour DNA (ctDNA), which is mostly released from apoptotic or necrotic tumour cells into the bloodstream or by active secretion of circulating tumour cells (CTCs). Nevertheless, there are some challenges in analyzing ctDNA. First, ctDNA represents only a small fraction of total circulating DNA, because there is an enormous wild-type background of cell-free DNA (cfDNA) released by healthy cells. Second, ctDNA is highly fragmented and the amount of ctDNA in the blood is very low. In this review, we discuss the potential, fields of application as well as challenges and limitations of liquid biopsy approaches. In more detail, we discuss the possibility of using liquid biopsies as a future application for molecular characterization of CRCs, particularly for monitoring CRC patients during anti-EGFR therapy to detect resistance mutations (e.g. KRAS mutations) or further therapy-relevant mutations. In addition, we investigate whether blood-based molecular profiling is a reliable addition to routine diagnostic approaches of tissue-based molecular characterization.
Collapse
Affiliation(s)
- A Haupts
- Institut für Pathologie, Universitätsmedizin Mainz, Langenbeckstr. 1, 55131, Mainz, Deutschland.
| | - W Roth
- Institut für Pathologie, Universitätsmedizin Mainz, Langenbeckstr. 1, 55131, Mainz, Deutschland
| | - N Hartmann
- Institut für Pathologie, Universitätsmedizin Mainz, Langenbeckstr. 1, 55131, Mainz, Deutschland
| |
Collapse
|
135
|
Halkola AS, Parvinen K, Kasanen H, Mustjoki S, Aittokallio T. Modelling of killer T-cell and cancer cell subpopulation dynamics under immuno- and chemotherapies. J Theor Biol 2019; 488:110136. [PMID: 31887273 DOI: 10.1016/j.jtbi.2019.110136] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 11/25/2019] [Accepted: 12/21/2019] [Indexed: 12/22/2022]
Abstract
Each patient's cancer has a unique molecular makeup, often comprised of distinct cancer cell subpopulations. Improved understanding of dynamic processes between cancer cell populations is therefore critical for making treatment more effective and personalized. It has been shown that immunotherapy increases the survival of melanoma patients. However, there remain critical open questions, such as timing and duration of immunotherapy and its added benefits when combined with other types of treatments. We introduce a model for the dynamics of active killer T-cells and cancer cell subpopulations. Rather than defining the cancer cell populations based on their genetic makeup alone, we consider also other, non-genetic differences that make the cell populations either sensitive or resistant to a therapy. Using the model, we make predictions of possible outcomes of the various treatment strategies in virtual melanoma patients, providing hypotheses regarding therapeutic efficacy and side-effects. It is shown, for instance, that starting immunotherapy with a denser treatment schedule may enable changing to a sparser schedule later during the treatment. Furthermore, combination of targeted and immunotherapy results in a better treatment effect, compared to mono-immunotherapy, and a stable disease can be reached with a patient-tailored combination. These results offer better understanding of the competition between T-cells and cancer cells, toward personalized immunotherapy regimens.
Collapse
Affiliation(s)
- Anni S Halkola
- Department of Mathematics and Statistics, University of Turku, Turku, Finland; Western Finland Cancer Centre (FICAN West), Turku University Hospital, Turku, Finland.
| | - Kalle Parvinen
- Department of Mathematics and Statistics, University of Turku, Turku, Finland; Western Finland Cancer Centre (FICAN West), Turku University Hospital, Turku, Finland; Evolution and Ecology Program, International Institute for Applied Systems Analysis (IIASA), Laxenburg, Austria.
| | - Henna Kasanen
- Hematology Research Unit Helsinki, Department of Clinical Chemistry and Hematology, University of Helsinki and Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland; Translational Immunology Research Program, University of Helsinki, Helsinki, Finland
| | - Satu Mustjoki
- Hematology Research Unit Helsinki, Department of Clinical Chemistry and Hematology, University of Helsinki and Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland; Translational Immunology Research Program, University of Helsinki, Helsinki, Finland
| | - Tero Aittokallio
- Department of Mathematics and Statistics, University of Turku, Turku, Finland; Western Finland Cancer Centre (FICAN West), Turku University Hospital, Turku, Finland; Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland.
| |
Collapse
|
136
|
Bruno R, Bottino D, de Alwis DP, Fojo AT, Guedj J, Liu C, Swanson KR, Zheng J, Zheng Y, Jin JY. Progress and Opportunities to Advance Clinical Cancer Therapeutics Using Tumor Dynamic Models. Clin Cancer Res 2019; 26:1787-1795. [PMID: 31871299 DOI: 10.1158/1078-0432.ccr-19-0287] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 10/31/2019] [Accepted: 12/19/2019] [Indexed: 12/17/2022]
Abstract
There is a need for new approaches and endpoints in oncology drug development, particularly with the advent of immunotherapies and the multiple drug combinations under investigation. Tumor dynamics modeling, a key component to oncology "model-informed drug development," has shown a growing number of applications and a broader adoption by drug developers and regulatory agencies in the past years to support drug development and approval in a variety of ways. Tumor dynamics modeling is also being investigated in personalized cancer therapy approaches. These models and applications are reviewed and discussed, as well as the limitations and issues open for further investigations. A close collaboration between stakeholders like clinical investigators, statisticians, and pharmacometricians is warranted to advance clinical cancer therapeutics.
Collapse
Affiliation(s)
| | - Dean Bottino
- Millennium Pharmaceuticals, a wholly owned subsidiary of Takeda Pharmaceuticals, Inc. Cambridge, Massachusetts
| | | | | | - Jérémie Guedj
- IAME, UMR 1137, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Chao Liu
- U.S. Food and Drug Administration, Silver Spring, Maryland
| | | | | | | | - Jin Y Jin
- Genentech-Roche, South San Francisco, California
| |
Collapse
|
137
|
Christou N, Meyer J, Popeskou S, David V, Toso C, Buchs N, Liot E, Robert J, Ris F, Mathonnet M. Circulating Tumour Cells, Circulating Tumour DNA and Circulating Tumour miRNA in Blood Assays in the Different Steps of Colorectal Cancer Management, a Review of the Evidence in 2019. BIOMED RESEARCH INTERNATIONAL 2019; 2019:5953036. [PMID: 31930130 PMCID: PMC6942724 DOI: 10.1155/2019/5953036] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 08/02/2019] [Accepted: 08/17/2019] [Indexed: 12/24/2022]
Abstract
Despite many advances in the diagnosis and treatment of colorectal cancer (CRC), its incidence and mortality rates continue to make an impact worldwide and in some countries rates are mounting. Over the past decade, liquid biopsies have been the object of fundamental and clinical research with regard to the different steps of CRC patient care such as screening, diagnosis, prognosis, follow-up, and therapeutic response. They are attractive because they are considered to encompass both the cellular and molecular heterogeneity of tumours. They are easily accessible and can be applied to large-scale settings despite the cost. However, liquid biopsies face drawbacks in detection regardless of whether we are testing for circulating tumour cells (CTCs), circulating tumour DNA (ctDNA), or miRNA. This review highlights the different advantages and disadvantages of each type of blood-based biopsy and underlines which specific one may be the most useful and informative for each step of CRC patient care.
Collapse
Affiliation(s)
- Niki Christou
- Endocrine, General and Digestive Surgery Department, CHU de Limoges, Limoges Cedex 87042, France
- Laboratoire EA3842 Contrôle de l'Activation cellulaire, Progression Tumorale et Résistances thérapeutiques «CAPTuR», Faculté de médecine, 2 Rue du Docteur Marcland, 87025 Limoges, France
- Department of Visceral Surgery, University Hospital of Geneva, Rue Gabrielle-Perret-Gentil 4, 1211 Genève 14, Switzerland
| | - Jeremy Meyer
- Department of Visceral Surgery, University Hospital of Geneva, Rue Gabrielle-Perret-Gentil 4, 1211 Genève 14, Switzerland
| | - Sotirios Popeskou
- Department of Visceral Surgery, University Hospital of Geneva, Rue Gabrielle-Perret-Gentil 4, 1211 Genève 14, Switzerland
| | - Valentin David
- Laboratoire EA3842 Contrôle de l'Activation cellulaire, Progression Tumorale et Résistances thérapeutiques «CAPTuR», Faculté de médecine, 2 Rue du Docteur Marcland, 87025 Limoges, France
| | - Christian Toso
- Department of Visceral Surgery, University Hospital of Geneva, Rue Gabrielle-Perret-Gentil 4, 1211 Genève 14, Switzerland
| | - Nicolas Buchs
- Department of Visceral Surgery, University Hospital of Geneva, Rue Gabrielle-Perret-Gentil 4, 1211 Genève 14, Switzerland
| | - Emilie Liot
- Department of Visceral Surgery, University Hospital of Geneva, Rue Gabrielle-Perret-Gentil 4, 1211 Genève 14, Switzerland
| | - Joan Robert
- Department of Visceral Surgery, University Hospital of Geneva, Rue Gabrielle-Perret-Gentil 4, 1211 Genève 14, Switzerland
| | - Frederic Ris
- Department of Visceral Surgery, University Hospital of Geneva, Rue Gabrielle-Perret-Gentil 4, 1211 Genève 14, Switzerland
| | - Muriel Mathonnet
- Endocrine, General and Digestive Surgery Department, CHU de Limoges, Limoges Cedex 87042, France
- Laboratoire EA3842 Contrôle de l'Activation cellulaire, Progression Tumorale et Résistances thérapeutiques «CAPTuR», Faculté de médecine, 2 Rue du Docteur Marcland, 87025 Limoges, France
| |
Collapse
|
138
|
Antoniotti C, Pietrantonio F, Corallo S, De Braud F, Falcone A, Cremolini C. Circulating Tumor DNA Analysis in Colorectal Cancer: From Dream to Reality. JCO Precis Oncol 2019; 3:1-14. [DOI: 10.1200/po.18.00397] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Affiliation(s)
- Carlotta Antoniotti
- Unit of Medical Oncology 2, Azienda Ospedaliera-Universitaria Pisana, Pisa, Italy
- Department of Translational Research and New Technologies in Medicine, University of Pisa, Pisa, Italy
| | - Filippo Pietrantonio
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
- Department of Oncology and Hemato-oncology, University of Milan, Milan, Italy
| | - Salvatore Corallo
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Filippo De Braud
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
- Department of Oncology and Hemato-oncology, University of Milan, Milan, Italy
| | - Alfredo Falcone
- Unit of Medical Oncology 2, Azienda Ospedaliera-Universitaria Pisana, Pisa, Italy
- Department of Translational Research and New Technologies in Medicine, University of Pisa, Pisa, Italy
| | - Chiara Cremolini
- Unit of Medical Oncology 2, Azienda Ospedaliera-Universitaria Pisana, Pisa, Italy
- Department of Translational Research and New Technologies in Medicine, University of Pisa, Pisa, Italy
| |
Collapse
|
139
|
Parseghian CM, Napolitano S, Loree JM, Kopetz S. Mechanisms of Innate and Acquired Resistance to Anti-EGFR Therapy: A Review of Current Knowledge with a Focus on Rechallenge Therapies. Clin Cancer Res 2019; 25:6899-6908. [PMID: 31263029 PMCID: PMC6891150 DOI: 10.1158/1078-0432.ccr-19-0823] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 05/16/2019] [Accepted: 06/26/2019] [Indexed: 02/06/2023]
Abstract
Innate and acquired resistance to anti-EGFR therapy (EGFRi) is a major limitation in the treatment of metastatic colorectal cancer (mCRC). Although RAS genes are the most commonly mutated innate and acquired oncogenes in cancer, there are a number of other mechanisms that limit the effectiveness of EGFRi. Patients with innate resistance have been found to contain BRAFV600E mutations, and possibly MET, MEK, PIK3CA, PTEN, and HER2 alterations. Meanwhile, BRAFV600E mutations may also be involved in acquired resistance to EGFRi, in addition to EGFR ectodomain mutations, MET alterations, and possibly HER2 amplification. In addition, paracrine effects and cell-fate mechanisms of resistance are being increasingly described as contributing to acquired resistance. Utilization of circulating tumor DNA has been paramount in monitoring the dynamic nature of acquired resistance and has helped to guide treatment decisions, particularly in the EGFRi rechallenge setting. Herein, we provide an in-depth review of EGFRi-resistance mechanisms and describe the current therapeutic landscape in the hopes of identifying effective rechallenge strategies.
Collapse
Affiliation(s)
- Christine M Parseghian
- Department of Gastrointestinal Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| | - Stefania Napolitano
- Department of Gastrointestinal Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | | | - Scott Kopetz
- Department of Gastrointestinal Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
140
|
Reece M, Saluja H, Hollington P, Karapetis CS, Vatandoust S, Young GP, Symonds EL. The Use of Circulating Tumor DNA to Monitor and Predict Response to Treatment in Colorectal Cancer. Front Genet 2019; 10:1118. [PMID: 31824558 PMCID: PMC6881479 DOI: 10.3389/fgene.2019.01118] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 10/16/2019] [Indexed: 12/20/2022] Open
Abstract
Background: Colorectal cancer is one of the most common cancers worldwide and has a high mortality rate following disease recurrence. Treatment efficacy is maximized by providing tailored cancer treatment, ideally involving surgical resection and personalized neoadjuvant and adjuvant therapies, including chemotherapy, radiotherapy and increasingly, targeted therapy. Early detection of recurrence or disease progression results in more treatable disease and is essential to improving survival outcomes. Recent advances in the understanding of tumor genetics have resulted in the discovery of circulating tumor DNA (ctDNA). A growing body of evidence supports the use of these sensitive biomarkers in detecting residual disease and diagnosing recurrence as well as enabling targeted and tumor-specific adjuvant therapies. Methods: A literature search in Pubmed was performed to identify all original articles preceding April 2019 that utilize ctDNA for the purpose of monitoring response to colorectal cancer treatment. Results: Ninety-two clinical studies were included. These studies demonstrate that ctDNA is a reliable measure of tumor burden. Studies show the utility of ctDNA in assessing the adequacy of surgical tumor clearance and changes in ctDNA levels reflect response to systemic treatments. ctDNA can be used in the selection of targeted treatments. The reappearance or increase in ctDNA, as well as the emergence of new mutations, correlates with disease recurrence, progression, and resistance to therapy, with ctDNA measurement allowing more sensitive monitoring than currently used clinical tools. Conclusions: ctDNA shows enormous promise as a sensitive biomarker for monitoring response to many treatment modalities and for targeting therapy. Thus, it is emerging as a new way for guiding treatment decisions-initiating, altering, and ceasing treatments, or prompting investigation into the potential for residual disease. However, many potentially useful ctDNA markers are available and more work is needed to determine which are best suited for specific purposes and for improving specific outcomes.
Collapse
Affiliation(s)
- Mifanwy Reece
- Colorectal Surgery, Division of Surgery & Perioperative Medicine, Flinders Medical Centre, Bedford Park, SA, Australia
| | - Hariti Saluja
- Department of Medicine, College of Medicine and Public Health, Flinders University, Bedford Park, SA, Australia
- Flinders Centre for Innovation in Cancer, College of Medicine and Public Health, Flinders University, Bedford Park, SA, Australia
| | - Paul Hollington
- Colorectal Surgery, Division of Surgery & Perioperative Medicine, Flinders Medical Centre, Bedford Park, SA, Australia
| | - Christos S. Karapetis
- Flinders Centre for Innovation in Cancer, College of Medicine and Public Health, Flinders University, Bedford Park, SA, Australia
- Department of Medical Oncology, Flinders Medical Centre, Bedford Park, SA, Australia
| | - Sina Vatandoust
- Department of Medical Oncology, Flinders Medical Centre, Bedford Park, SA, Australia
| | - Graeme P. Young
- Flinders Centre for Innovation in Cancer, College of Medicine and Public Health, Flinders University, Bedford Park, SA, Australia
| | - Erin L. Symonds
- Flinders Centre for Innovation in Cancer, College of Medicine and Public Health, Flinders University, Bedford Park, SA, Australia
- Bowel Health Service, Flinders Medical Centre, Bedford Park, SA, Australia
| |
Collapse
|
141
|
Kyrochristos ID, Ziogas DE, Goussia A, Glantzounis GK, Roukos DH. Bulk and Single-Cell Next-Generation Sequencing: Individualizing Treatment for Colorectal Cancer. Cancers (Basel) 2019; 11:1809. [PMID: 31752125 PMCID: PMC6895993 DOI: 10.3390/cancers11111809] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 11/12/2019] [Accepted: 11/14/2019] [Indexed: 12/24/2022] Open
Abstract
The increasing incidence combined with constant rates of early diagnosis and mortality of colorectal cancer (CRC) over the past decade worldwide, as well as minor overall survival improvements in the industrialized world, suggest the need to shift from conventional research and clinical practice to the innovative development of screening, predictive and therapeutic tools. Explosive integration of next-generation sequencing (NGS) systems into basic, translational and, more recently, basket trials is transforming biomedical and cancer research, aiming for substantial clinical implementation as well. Shifting from inter-patient tumor variability to the precise characterization of intra-tumor genetic, genomic and transcriptional heterogeneity (ITH) via multi-regional bulk tissue NGS and emerging single-cell transcriptomics, coupled with NGS of circulating cell-free DNA (cfDNA), unravels novel strategies for therapeutic response prediction and drug development. Remarkably, underway and future genomic/transcriptomic studies and trials exploring spatiotemporal clonal evolution represent most rational expectations to discover novel prognostic, predictive and therapeutic tools. This review describes latest advancements and future perspectives of integrated sequencing systems for genome and transcriptome exploration to overcome unmet research and clinical challenges towards Precision Oncology.
Collapse
Affiliation(s)
- Ioannis D. Kyrochristos
- Centre for Biosystems and Genome Network Medicine, Ioannina University, 45110 Ioannina, Greece; (I.D.K.); (D.E.Z.)
- Department of Surgery, Ioannina University Hospital, 45500 Ioannina, Greece;
| | - Demosthenes E. Ziogas
- Centre for Biosystems and Genome Network Medicine, Ioannina University, 45110 Ioannina, Greece; (I.D.K.); (D.E.Z.)
- Department of Surgery, ‘G. Hatzikosta’ General Hospital, 45001 Ioannina, Greece
| | - Anna Goussia
- Department of Pathology, Ioannina University Hospital, 45500 Ioannina, Greece;
| | | | - Dimitrios H. Roukos
- Centre for Biosystems and Genome Network Medicine, Ioannina University, 45110 Ioannina, Greece; (I.D.K.); (D.E.Z.)
- Department of Surgery, Ioannina University Hospital, 45500 Ioannina, Greece;
- Department of Systems Biology, Biomedical Research Foundation of the Academy of Athens (BRFAA), 11527 Athens, Greece
| |
Collapse
|
142
|
Palmieri M, Baldassarri M, Fava F, Fabbiani A, Campennì GM, Mencarelli MA, Tita R, Marsili S, Renieri A, Frullanti E. PIK3CA-CDKN2A clonal evolution in metastatic breast cancer and multiple points cell-free DNA analysis. Cancer Cell Int 2019; 19:274. [PMID: 31673247 PMCID: PMC6819469 DOI: 10.1186/s12935-019-0991-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 10/12/2019] [Indexed: 11/25/2022] Open
Abstract
Background Daily experience tells us that breast cancer can be controlled using standard protocols up to the advent of a relapse. Now new frontiers in precision medicine like liquid biopsy of cell free DNA (cfDNA) give us the possibility to understand cancer evolution and pick up the key mutation on specific cancer driver gene. However, tight schedule of standardized protocol may impair the use of personalized experimental drugs in a timely therapeutic window. Main body Here, using a combination of deep next generation sequencing and cfDNA liquid biopsy, we demonstrated that it is possible to monitor cancer relapse over time. We showed for the first time the exact correspondence from the increasing clonal expansion and clinical worsening of metastatic breast cancer. Conclusion Thanks to liquid biopsy may be possible to introduce new experimental drugs in the correct therapeutic window which would lead in the near future to an effective treatment which otherwise remains challenging.
Collapse
Affiliation(s)
- Maria Palmieri
- 1Medical Genetics Unit, Policlinico "Santa Maria alle Scotte", University of Siena, Viale Bracci, 2, 53100 Siena, Italy
| | | | - Francesca Fava
- 1Medical Genetics Unit, Policlinico "Santa Maria alle Scotte", University of Siena, Viale Bracci, 2, 53100 Siena, Italy
| | - Alessandra Fabbiani
- 1Medical Genetics Unit, Policlinico "Santa Maria alle Scotte", University of Siena, Viale Bracci, 2, 53100 Siena, Italy
| | | | | | - Rossella Tita
- 2Genetica Medica, Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | - Stefania Marsili
- 4Oncology, Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | - Alessandra Renieri
- 1Medical Genetics Unit, Policlinico "Santa Maria alle Scotte", University of Siena, Viale Bracci, 2, 53100 Siena, Italy.,2Genetica Medica, Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | - Elisa Frullanti
- 1Medical Genetics Unit, Policlinico "Santa Maria alle Scotte", University of Siena, Viale Bracci, 2, 53100 Siena, Italy
| |
Collapse
|
143
|
Reiter JG, Baretti M, Gerold JM, Makohon-Moore AP, Daud A, Iacobuzio-Donahue CA, Azad NS, Kinzler KW, Nowak MA, Vogelstein B. An analysis of genetic heterogeneity in untreated cancers. Nat Rev Cancer 2019; 19:639-650. [PMID: 31455892 PMCID: PMC6816333 DOI: 10.1038/s41568-019-0185-x] [Citation(s) in RCA: 123] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/23/2019] [Indexed: 12/12/2022]
Abstract
Genetic intratumoural heterogeneity is a natural consequence of imperfect DNA replication. Any two randomly selected cells, whether normal or cancerous, are therefore genetically different. Here, we review the different forms of genetic heterogeneity in cancer and re-analyse the extent of genetic heterogeneity within seven types of untreated epithelial cancers, with particular regard to its clinical relevance. We find that the homogeneity of predicted functional mutations in driver genes is the rule rather than the exception. In primary tumours with multiple samples, 97% of driver-gene mutations in 38 patients were homogeneous. Moreover, among metastases from the same primary tumour, 100% of the driver mutations in 17 patients were homogeneous. With a single biopsy of a primary tumour in 14 patients, the likelihood of missing a functional driver-gene mutation that was present in all metastases was 2.6%. Furthermore, all functional driver-gene mutations detected in these 14 primary tumours were present among all their metastases. Finally, we found that individual metastatic lesions responded concordantly to targeted therapies in 91% of 44 patients. These analyses indicate that the cells within the primary tumours that gave rise to metastases are genetically homogeneous with respect to functional driver-gene mutations, and we suggest that future efforts to develop combination therapies have the potential to be curative.
Collapse
Affiliation(s)
- Johannes G Reiter
- Canary Center for Cancer Early Detection, Department of Radiology, Stanford University School of Medicine, Palo Alto, CA, USA.
| | - Marina Baretti
- The Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jeffrey M Gerold
- Program for Evolutionary Dynamics, Harvard University, Cambridge, MA, USA
| | - Alvin P Makohon-Moore
- The David M. Rubenstein Center for Pancreatic Cancer Research, Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Adil Daud
- University of California, San Francisco, San Francisco, CA, USA
| | - Christine A Iacobuzio-Donahue
- The David M. Rubenstein Center for Pancreatic Cancer Research, Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Nilofer S Azad
- The Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kenneth W Kinzler
- The Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The Ludwig Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Martin A Nowak
- Program for Evolutionary Dynamics, Harvard University, Cambridge, MA, USA.
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA.
- Department of Mathematics, Harvard University, Cambridge, MA, USA.
| | - Bert Vogelstein
- The Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- The Ludwig Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
144
|
Khan K, Valeri N, Dearman C, Rao S, Watkins D, Starling N, Chau I, Cunningham D. Targeting EGFR pathway in metastatic colorectal cancer- tumour heterogeniety and convergent evolution. Crit Rev Oncol Hematol 2019; 143:153-163. [PMID: 31678702 DOI: 10.1016/j.critrevonc.2019.09.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 08/28/2019] [Accepted: 09/03/2019] [Indexed: 12/30/2022] Open
Abstract
Despite significant progress in management of metastatic colorectal cancer (mCRC) pertaining to better screening procedures and amelioration of the therapeutic armamentarium with targeted therapies, prognosis remains poor. Targeting epidermal growth factor receptor (EGFR) has been of particular interest owing to favourable efficacy benefits demonstrated by monoclonal antibodies (cetuximab and panitumumab) in various clinical settings and development of predictive biomarkers informing treatment decisions respectively. In spite of optimal patient selection based on RAS mutation status, primary and secondary resistance to monoclonal antibodies is higher than desired. Further research into predictive biomarkers is therefore essential, but has, to date, been conducted with considerable limitations. Whilst molecular heterogeneity has been demonstrated by several studies in mCRC, for incomprehensible reasons, multiple resistant genetic alterations that emerge under the selective pressure of EGFR-targeted therapies are somehow able to influence the biological and clinical behaviour of cancer cells, despite being detectable at extremely low frequencies. Intriguingly, these subclonal events largely seem to converge on RAS/RAF/MAPK pathway in patients treated with EGFR-targeted monoclonal antibodies. This review describes the clinical and biological evolution and development of EGFR targeted therapies in mCRC, the challenges in the presence of molecular complexities, the role of cell free (cf)-DNA and future strategies that could lead to further optimal discovery of clinically meaningful biomarkers and application of precision medicine.
Collapse
Affiliation(s)
- Khurum Khan
- Gastrointestinal Unit, The Royal Marsden NHS Foundation Trust, Sutton SM2 5PT, UK; Gastrointestinal Unit, University College London Hospitals, 250 Euston Road London, NW1 2AF, UK
| | - Nicola Valeri
- Gastrointestinal Unit, The Royal Marsden NHS Foundation Trust, Sutton SM2 5PT, UK
| | - Charles Dearman
- Gastrointestinal Unit, The Royal Marsden NHS Foundation Trust, Sutton SM2 5PT, UK
| | - Sheela Rao
- Gastrointestinal Unit, The Royal Marsden NHS Foundation Trust, Sutton SM2 5PT, UK
| | - David Watkins
- Gastrointestinal Unit, The Royal Marsden NHS Foundation Trust, Sutton SM2 5PT, UK
| | - Naureen Starling
- Gastrointestinal Unit, The Royal Marsden NHS Foundation Trust, Sutton SM2 5PT, UK
| | - Ian Chau
- Gastrointestinal Unit, The Royal Marsden NHS Foundation Trust, Sutton SM2 5PT, UK
| | - David Cunningham
- Gastrointestinal Unit, The Royal Marsden NHS Foundation Trust, Sutton SM2 5PT, UK.
| |
Collapse
|
145
|
Sun L, Fang Y, Wang X, Han Y, Du F, Li C, Hu H, Liu H, Liu Q, Wang J, Liang J, Chen P, Yang H, Nie Y, Wu K, Fan D, Coffey RJ, Lu Y, Zhao X, Wang X. miR-302a Inhibits Metastasis and Cetuximab Resistance in Colorectal Cancer by Targeting NFIB and CD44. Am J Cancer Res 2019; 9:8409-8425. [PMID: 31754405 PMCID: PMC6857048 DOI: 10.7150/thno.36605] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Accepted: 09/10/2019] [Indexed: 12/24/2022] Open
Abstract
Introduction: Metastasis and drug resistance contribute substantially to the poor prognosis of colorectal cancer (CRC) patients. However, the epigenetic regulatory mechanisms by which CRC develops metastatic and drug-resistant characteristics remain unclear. This study aimed to investigate the role of miR-302a in the metastasis and molecular-targeted drug resistance of CRC and elucidate the underlying molecular mechanisms. Methods: miR-302a expression in CRC cell lines and patient tissue microarrays was analyzed by qPCR and fluorescence in situ hybridization. The roles of miR-302a in metastasis and cetuximab (CTX) resistance were evaluated both in vitro and in vivo. Bioinformatic prediction algorithms and luciferase reporter assays were performed to identify the miR-302a binding regions in the NFIB and CD44 3'-UTRs. A chromatin immunoprecipitation assay was performed to examine NFIB occupancy in the ITGA6 promoter region. Immunoblotting was performed to identify the EGFR-mediated pathways altered by miR-302a. Results: miR-302a expression was frequently reduced in CRC cells and tissues, especially in CTX-resistant cells and patient-derived xenografts. The decreased miR-302a levels correlated with poor overall CRC patient survival. miR-302a overexpression inhibited metastasis and restored CTX responsiveness in CRC cells, whereas miR-302a silencing exerted the opposite effects. NFIB and CD44 were identified as novel targets of miR-302a. miR-302a inhibited the metastasis-promoting effect of NFIB that physiologically activates ITGA6 transcription. miR-302a restored CTX responsiveness by suppressing CD44-induced cancer stem cell-like properties and EGFR-mediated MAPK and AKT signaling. These results are consistent with clinical observations indicating that miR-302a expression is inversely correlated with the expression of its targets in CRC specimens. Conclusions: Our findings show that miR-302a acts as a multifaceted regulator of CRC metastasis and CTX resistance by targeting NFIB and CD44, respectively. Our study implicates miR-302a as a candidate prognostic predictor and a therapeutic agent in CRC.
Collapse
|
146
|
Kastrisiou M, Zarkavelis G, Pentheroudakis G, Magklara A. Clinical Application of Next-Generation Sequencing as A Liquid Biopsy Technique in Advanced Colorectal Cancer: A Trick or A Treat? Cancers (Basel) 2019; 11:E1573. [PMID: 31623125 PMCID: PMC6826585 DOI: 10.3390/cancers11101573] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 10/01/2019] [Accepted: 10/13/2019] [Indexed: 12/24/2022] Open
Abstract
Owing to its advantages over prior relevant technologies, massive parallel or next-generation sequencing (NGS) is rapidly evolving, with growing applications in a wide range of human diseases. The burst in actionable molecular alterations in many cancer types advocates for the practicality of using NGS in the clinical setting, as it permits the parallel characterization of multiple genes in a cost- and time-effective way, starting from low-input DNA. In advanced clinical practice, the oncological management of colorectal cancer requires prior knowledge of KRAS, NRAS, and BRAF status, for the design of appropriate therapeutic strategies, with more gene mutations still surfacing as potential biomarkers. Tumor heterogeneity, as well as the need for serial gene profiling due to tumor evolution and the emergence of novel genetic alterations, have promoted the use of liquid biopsies-especially in the form of circulating tumor DNA (ctDNA)-as a promising alternative to tissue molecular analysis. This review discusses recent studies that have used plasma NGS in advanced colorectal cancer and summarizes the clinical applications, as well as the technical challenges involved in adopting this technique in a clinically beneficial oncological practice.
Collapse
Affiliation(s)
- Myrto Kastrisiou
- Laboratory of Clinical Chemistry, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece.
- Department of Medical Oncology, University General Hospital of Ioannina, 45500 Ioannina, Greece.
- Society for Study of Clonal Heterogeneity of Neoplasia (EMEKEN), 45444 Ioannina, Greece.
| | - George Zarkavelis
- Department of Medical Oncology, University General Hospital of Ioannina, 45500 Ioannina, Greece.
- Society for Study of Clonal Heterogeneity of Neoplasia (EMEKEN), 45444 Ioannina, Greece.
| | - George Pentheroudakis
- Department of Medical Oncology, University General Hospital of Ioannina, 45500 Ioannina, Greece.
- Society for Study of Clonal Heterogeneity of Neoplasia (EMEKEN), 45444 Ioannina, Greece.
| | - Angeliki Magklara
- Laboratory of Clinical Chemistry, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece.
- Department of Biomedical Research, Institute of Molecular Biology & Biotechnology, Foundation for Research & Technology-Hellas, 45110 Ioannina, Greece.
| |
Collapse
|
147
|
van der Pol Y, Mouliere F. Toward the Early Detection of Cancer by Decoding the Epigenetic and Environmental Fingerprints of Cell-Free DNA. Cancer Cell 2019; 36:350-368. [PMID: 31614115 DOI: 10.1016/j.ccell.2019.09.003] [Citation(s) in RCA: 187] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 07/18/2019] [Accepted: 09/06/2019] [Indexed: 12/15/2022]
Abstract
Widespread adaptation of liquid biopsy for the early detection of cancer has yet to reach clinical utility. Circulating tumor DNA is commonly detected though the presence of genetic alterations, but only a minor fraction of tumor-derived cell-free DNA (cfDNA) fragments exhibit mutations. The cellular processes occurring in cancer development mark the chromatin. These epigenetic marks are reflected by modifications in the cfDNA methylation, fragment size, and structure. In this review, we describe how going beyond DNA sequence information alone, by analyzing cfDNA epigenetic and immune signatures, boosts the potential of liquid biopsy for the early detection of cancer.
Collapse
Affiliation(s)
- Ymke van der Pol
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Pathology, Cancer Center Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
| | - Florent Mouliere
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Pathology, Cancer Center Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands.
| |
Collapse
|
148
|
van Helden EJ, Angus L, Menke-van der Houven van Oordt CW, Heideman DAM, Boon E, van Es SC, Radema SA, van Herpen CML, de Groot DJA, de Vries EGE, Jansen MPHM, Sleijfer S, Verheul HMW. RAS and BRAF mutations in cell-free DNA are predictive for outcome of cetuximab monotherapy in patients with tissue-tested RAS wild-type advanced colorectal cancer. Mol Oncol 2019; 13:2361-2374. [PMID: 31350822 PMCID: PMC6822250 DOI: 10.1002/1878-0261.12550] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 05/09/2019] [Accepted: 07/17/2019] [Indexed: 12/15/2022] Open
Abstract
In metastatic colorectal cancer, RAS and BRAF mutations cause resistance to anti‐EGFR therapies, such as cetuximab. Heterogeneity in RAS and BRAF mutations might explain nonresponse in a subset of patients receiving cetuximab. Analyzing mutations in plasma‐derived circulating tumor DNA (ctDNA) could provide a more comprehensive overview of the mutational landscape as compared to analyses of primary and/or metastatic tumor tissue. Therefore, this prospective multicenter study followed 34 patients with metastatic colorectal cancer who were tissue‐tested as RAS wild‐type (exons 2–4) during routine work‐up and received third‐line cetuximab monotherapy. BRAF mutation status was also tested but did not exclude patients from therapy. At baseline and upon disease progression, cell‐free DNA (cfDNA) was isolated for targeted next‐generation sequencing (NGS). At 8 weeks, we determined that patients had benefited from treatment. NGS of cfDNA identified three patients with RAS mutations not detected in tumor tissue during routine work‐up. Another six patients had a BRAF or rare RAS mutation in ctDNA and/or tumor tissue. Relative to patients without mutations in RAS/BRAF, patients with mutations at baseline had shorter progression‐free survival [1.8 versus 4.9 months (P < 0.001)] and overall survival [3.1 versus 9.4 months (P = 0.001)]. In patients with clinical benefit (progressive disease after 8 weeks), ctDNA testing revealed previously undetected mutations in RAS/BRAF (71%) and EGFR (47%), which often emerged polyclonally. Our results indicate that baseline NGS of ctDNA can identify additional RAS mutation carriers, which could improve patient selection for anti‐EGFR therapies. Acquired resistance, in patients with initial treatment benefit, is mainly explained by polyclonal emergence of RAS,BRAF, and EGFR mutations in ctDNA.
Collapse
Affiliation(s)
- Erik J van Helden
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, The Netherlands
| | - Lindsay Angus
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | | | - Daniëlle A M Heideman
- Department of Pathology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, The Netherlands
| | - Eline Boon
- Department of Medical Oncology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Suzanne C van Es
- Department of Medical Oncology, University Medical Center Groningen, The Netherlands
| | - Sandra A Radema
- Department of Medical Oncology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Carla M L van Herpen
- Department of Medical Oncology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Derk Jan A de Groot
- Department of Medical Oncology, University Medical Center Groningen, The Netherlands
| | | | - Maurice P H M Jansen
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Stefan Sleijfer
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Henk M W Verheul
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, The Netherlands
| |
Collapse
|
149
|
Mardis ER. The Impact of Next-Generation Sequencing on Cancer Genomics: From Discovery to Clinic. Cold Spring Harb Perspect Med 2019; 9:cshperspect.a036269. [PMID: 30397020 DOI: 10.1101/cshperspect.a036269] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The application of next-generation sequencing (NGS) technology to the study of cancer genomes has been transformational. Not only has this technology revealed the genetic and epigenetic underpinnings of disease onset and progression, but also has redefined our clinical diagnosis and treatment paradigms. This rapid translation from discovery to clinical platform has occurred in the context of new pharmaceutical paradigms, enabling the use of NGS for the diagnosis and definition of therapeutic vulnerabilities of cancer. This review explores this transformation and identifies cutting-edge applications of NGS that will result in its additional utility in cancer care.
Collapse
Affiliation(s)
- Elaine R Mardis
- The Ohio State University College of Medicine, Columbus, Ohio 43205
| |
Collapse
|
150
|
Kyrochristos ID, Roukos DH. Comprehensive intra-individual genomic and transcriptional heterogeneity: Evidence-based Colorectal Cancer Precision Medicine. Cancer Treat Rev 2019; 80:101894. [PMID: 31518831 DOI: 10.1016/j.ctrv.2019.101894] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 08/27/2019] [Accepted: 08/29/2019] [Indexed: 12/14/2022]
Abstract
Despite advances in translating conventional research into multi-modal treatment for colorectal cancer (CRC), therapeutic resistance and relapse remain unresolved in advanced resectable and, particularly, non-resectable disease. Genome and transcriptome sequencing and editing technologies, coupled with interaction mapping and machine learning, are transforming biomedical research, representing the most rational hope to overcome unmet research and clinical challenges. Rapid progress in both bulk and single-cell next-generation sequencing (NGS) analyses in the identification of primary and metastatic intratumor genomic and transcriptional heterogeneity (ITH) and the detection of circulating cell-free DNA (cfDNA) alterations is providing critical insight into the origins and spatiotemporal evolution of genomic clones responsible for early and late therapeutic resistance and relapse. Moreover, DNA and RNA editing pave new avenues towards the discovery of novel drug targets. Breakthrough combinations of sequencing and editing systems with technologies exploring dynamic interaction networks within pioneering studies could delineate how coding and non-coding mutations perturb regulatory networks and gene expression. This review discusses latest data on genomic and transcriptomic landscapes in time and space, as well as early-phase clinical trials on targeted drug combinations, highlighting the transition from research to clinical Colorectal Cancer Precision Medicine, through non-invasive screening, individualized drug response prediction and development of multiple novel drugs. Future studies exploring the potential to target key transcriptional drivers and regulators will contribute to the next-generation pharmaceutical controllability of multi-layered aberrant transcriptional biocircuits.
Collapse
Affiliation(s)
- Ioannis D Kyrochristos
- Centre for Biosystems and Genome Network Medicine, Ioannina University, Ioannina, Greece; Department of Surgery, Ioannina University Hospital, Ioannina, Greece
| | - Dimitrios H Roukos
- Centre for Biosystems and Genome Network Medicine, Ioannina University, Ioannina, Greece; Department of Surgery, Ioannina University Hospital, Ioannina, Greece; Department of Systems Biology, Biomedical Research Foundation of the Academy of Athens (BRFAA), Athens, Greece.
| |
Collapse
|