101
|
Yu Y. The Function of NK Cells in Tumor Metastasis and NK Cell-Based Immunotherapy. Cancers (Basel) 2023; 15:cancers15082323. [PMID: 37190251 DOI: 10.3390/cancers15082323] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/09/2023] [Accepted: 04/13/2023] [Indexed: 05/17/2023] Open
Abstract
Metastatic tumors cause the most deaths in cancer patients. Treating metastasis remains the primary goal of current cancer research. Although the immune system prevents and kills the tumor cells, the function of the immune system in metastatic cancer has been unappreciated for decades because tumors are able to develop complex signaling pathways to suppress immune responses, leading them to escape detection and elimination. Studies showed NK cell-based therapies have many advantages and promise for fighting metastatic cancers. We here review the function of the immune system in tumor progression, specifically focusing on the ability of NK cells in antimetastasis, how metastatic tumors escape the NK cell attack, as well as the recent development of effective antimetastatic immunotherapies.
Collapse
Affiliation(s)
- Yanlin Yu
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
102
|
Blaauw MJ, Cristina dos Santos J, Vadaq N, Trypsteen W, van der Heijden W, Groenendijk A, Zhang Z, Li Y, de Mast Q, Netea MG, Joosten LA, Vandekerckhove L, van der Ven A, Matzaraki V. Targeted plasma proteomics identifies MICA and IL1R1 proteins associated with HIV-1 reservoir size. iScience 2023; 26:106486. [PMID: 37091231 PMCID: PMC10113782 DOI: 10.1016/j.isci.2023.106486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 01/18/2023] [Accepted: 03/18/2023] [Indexed: 04/08/2023] Open
Abstract
HIV-1 reservoir shows high variability in size and activity among virally suppressed individuals. Differences in the size of the viral reservoir may relate to differences in plasma protein concentrations. We tested whether plasma protein expression levels are associated with levels of cell-associated (CA) HIV-1 DNA and RNA in 211 virally suppressed people living with HIV (PLHIV). Plasma concentrations of FOLR1, IL1R1, MICA, and FETUB showed a positive association with CA HIV-1 RNA and DNA. Moreover, SNPs in close proximity to IL1R1 and MICA genes were found to influence the levels of CA HIV-1 RNA and DNA. We found a difference in mRNA expression of the MICA gene in homozygotes carrying the rs9348866-A allele compared to the ones carrying the G allele (p < 0.005). Overall, our findings pinpoint plasma proteins that could serve as potential targets for therapeutic interventions to lower or even eradicate cells containing CA HIV-1 RNA and DNA in PLHIV.
Collapse
|
103
|
Wang J, Soliman AM, Norlin J, Barreda DR, Stafford JL. Expression analysis of Carassius auratus-leukocyte-immune-type receptors (CaLITRs) during goldfish kidney macrophage development and in activated kidney leukocyte cultures. Immunogenetics 2023; 75:171-189. [PMID: 36806761 DOI: 10.1007/s00251-023-01298-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 02/08/2023] [Indexed: 02/21/2023]
Abstract
Carassius auratus leukocyte immune-type receptors (CaLITRs) were recently discovered immunoregulatory receptors in goldfish that have diverse immunoglobulin-like (Ig-like) ectodomains and intracellular signaling motifs. Genomic analysis shows that CaLITR-types are also located as distinct gene clusters across multiple goldfish chromosomes. For example, CaLITR1 (unplaced) is a functionally ambiguous receptor having two Ig-like domains, a transmembrane domain (TM), and a short cytoplasmic tail (CYT) devoid of any recognizable signaling motifs. CaLITR2 (Chr47) is a putative inhibitory receptor containing four Ig-like domains, a TM, and a long CYT with an immunoreceptor tyrosine-based inhibition motif (ITIM) and immunoreceptor tyrosine-based switch motif (ITSM). A putative activating receptor-type, CaLITR3 (Chr3), has four Ig-like domains, a TM, and a short CYT containing a positively charged histidine residue and CaLITR4 (ChrLG28B) is a receptor with putative multifunctional signaling potential as well as five Ig-like domains, a TM, and a long tyrosine-motif containing CYT region. The variable genomic locations of the CaLITRs suggest that they are likely under the influence of different cis- and/or trans-regulatory elements. To better understand the transcriptional activities of select CaLITRs from variable genomic regions, we used an RT-qPCR-based approach to examine the expression of CaLITR1, CaLITR2, CaLITR3, and CaLITR4 during goldfish primary kidney macrophage (PKM) development and in mixed leukocyte reaction cultures (MLRs) of the goldfish. Our results showed that the select CaLITRs are differentially expressed during PKM development and in goldfish MLRs exposed to T-cell mitogens/immunosuppressive drugs, supporting that the transcription of these CaLITRs is likely regulated by distinct cis- and/or trans-regulatory elements.
Collapse
Affiliation(s)
- Jiahui Wang
- Department of Biological Sciences, University of Alberta, CW 405 Biological Sciences Building, Edmonton, AB, T6G 2E9, Canada
| | - Amro M Soliman
- Department of Biological Sciences, University of Alberta, CW 405 Biological Sciences Building, Edmonton, AB, T6G 2E9, Canada
| | - Jeff Norlin
- Department of Biological Sciences, University of Alberta, CW 405 Biological Sciences Building, Edmonton, AB, T6G 2E9, Canada
| | - Daniel R Barreda
- Department of Biological Sciences, University of Alberta, CW 405 Biological Sciences Building, Edmonton, AB, T6G 2E9, Canada
| | - James L Stafford
- Department of Biological Sciences, University of Alberta, CW 405 Biological Sciences Building, Edmonton, AB, T6G 2E9, Canada.
| |
Collapse
|
104
|
Chen Y, Zhu Y, Kramer A, Fang Y, Wilson M, Li YR, Yang L. Genetic engineering strategies to enhance antitumor reactivity and reduce alloreactivity for allogeneic cell-based cancer therapy. Front Med (Lausanne) 2023; 10:1135468. [PMID: 37064017 PMCID: PMC10090359 DOI: 10.3389/fmed.2023.1135468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 03/09/2023] [Indexed: 03/31/2023] Open
Abstract
The realm of cell-based immunotherapy holds untapped potential for the development of next-generation cancer treatment through genetic engineering of chimeric antigen receptor (CAR)-engineered T (CAR-T) cell therapies for targeted eradication of cancerous malignancies. Such allogeneic "off-the-shelf" cell products can be advantageously manufactured in large quantities, stored for extended periods, and easily distributed to treat an exponential number of cancer patients. At current, patient risk of graft-versus-host disease (GvHD) and host-versus-graft (HvG) allorejection severely restrict the development of allogeneic CAR-T cell products. To address these limitations, a variety of genetic engineering strategies have been implemented to enhance antitumor efficacy, reduce GvHD and HvG onset, and improve the overall safety profile of T-cell based immunotherapies. In this review, we summarize these genetic engineering strategies and discuss the challenges and prospects these approaches provide to expedite progression of translational and clinical studies for adoption of a universal cell-based cancer immunotherapy.
Collapse
Affiliation(s)
- Yuning Chen
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, United States
| | - Yichen Zhu
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, United States
| | - Adam Kramer
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, United States
| | - Ying Fang
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, United States
| | - Matthew Wilson
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, United States
| | - Yan-Ruide Li
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, United States
| | - Lili Yang
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, United States
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA, United States
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
105
|
Desimio MG, Covino DA, Rivalta B, Cancrini C, Doria M. The Role of NK Cells in EBV Infection and Related Diseases: Current Understanding and Hints for Novel Therapies. Cancers (Basel) 2023; 15:cancers15061914. [PMID: 36980798 PMCID: PMC10047181 DOI: 10.3390/cancers15061914] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/17/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
The Epstein-Barr virus (EBV) is a ubiquitous herpesvirus most often transmitted during infancy and infecting the vast majority of human beings. Usually, EBV infection is nearly asymptomatic and results in life-long persistency of the virus in a latent state under the control of the host immune system. Yet EBV can cause an acute infectious mononucleosis (IM), particularly in adolescents, and is associated with several malignancies and severe diseases that pose a serious threat to individuals with specific inborn error of immunity (IEI). While there is a general consensus on the requirement for functional CD8 T cells to control EBV infection, the role of the natural killer (NK) cells of the innate arm of immunity is more enigmatic. Here we provide an overview of the interaction between EBV and NK cells in the immunocompetent host as well as in the context of primary and secondary immunodeficiencies. Moreover, we report in vitro data on the mechanisms that regulate the capacity of NK cells to recognize and kill EBV-infected cell targets and discuss the potential of recently optimized NK cell-based immunotherapies for the treatment of EBV-associated diseases.
Collapse
Affiliation(s)
- Maria G Desimio
- Primary Immunodeficiency Research Unit, Bambino Gesù Children's Hospital, IRCCS, 00165 Rome, Italy
| | - Daniela A Covino
- Primary Immunodeficiency Research Unit, Bambino Gesù Children's Hospital, IRCCS, 00165 Rome, Italy
| | - Beatrice Rivalta
- Primary Immunodeficiency Research Unit, Bambino Gesù Children's Hospital, IRCCS, 00165 Rome, Italy
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Caterina Cancrini
- Primary Immunodeficiency Research Unit, Bambino Gesù Children's Hospital, IRCCS, 00165 Rome, Italy
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Margherita Doria
- Primary Immunodeficiency Research Unit, Bambino Gesù Children's Hospital, IRCCS, 00165 Rome, Italy
| |
Collapse
|
106
|
Curio S, Lin W, Bromley C, McGovern J, Triulzi C, Jonsson G, Ghislat G, Zelenay S, Guerra N. NKG2D Fine-Tunes the Local Inflammatory Response in Colorectal Cancer. Cancers (Basel) 2023; 15:1792. [PMID: 36980678 PMCID: PMC10046042 DOI: 10.3390/cancers15061792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/12/2023] [Accepted: 03/14/2023] [Indexed: 03/18/2023] Open
Abstract
Treating colorectal cancer (CRC) is a major challenge due to the heterogeneous immunological, clinical and pathological landscapes. Immunotherapy has so far only proven effective in a very limited subgroup of CRC patients. To better define the immune landscape, we examined the immune gene expression profile in various subsets of CRC patients and used a mouse model of intestinal tumors to dissect immune functions. We found that the NK cell receptor, natural-killer group 2 member D (NKG2D, encoded by KLRK1) and NKG2D ligand gene expression is elevated in the most immunogenic subset of CRC patients. High level of KLRK1 positively correlated with the mRNA expression of IFNG and associated with a poor survival of CRC patients. We further show that NKG2D deficiency in the Apcmin/+ mouse model of intestinal tumorigenesis led to reduced intratumoral IFNγ production, reduced tumorigenesis and enhanced survival, suggesting that the high levels of IFNγ observed in the tumors of CRC patients may be a consequence of NKG2D engagement. The mechanisms governing the contribution of NKG2D to CRC progression highlighted in this study will fuel discussions about (i) the benefit of targeting NKG2D in CRC patients and (ii) the need to define the predictive value of NKG2D and NKG2D ligand expression across tumor types.
Collapse
Affiliation(s)
- Sophie Curio
- Department of Life Sciences, Imperial College London, London SW7 2BX, UK
- The University of Queensland Frazer Institute, Faculty of Medicine, The University of Queensland, Woolloongabba, QLD 4102, Australia
| | - Wanzun Lin
- Department of Life Sciences, Imperial College London, London SW7 2BX, UK
| | - Christian Bromley
- Cancer Inflammation and Immunity Group, Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park, Manchester M20 4BX, UK
| | - Jenny McGovern
- Department of Life Sciences, Imperial College London, London SW7 2BX, UK
| | - Chiara Triulzi
- Department of Life Sciences, Imperial College London, London SW7 2BX, UK
| | - Gustav Jonsson
- Department of Life Sciences, Imperial College London, London SW7 2BX, UK
| | - Ghita Ghislat
- Department of Life Sciences, Imperial College London, London SW7 2BX, UK
| | - Santiago Zelenay
- Cancer Inflammation and Immunity Group, Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park, Manchester M20 4BX, UK
| | - Nadia Guerra
- Department of Life Sciences, Imperial College London, London SW7 2BX, UK
| |
Collapse
|
107
|
Clinical Significance of Plasma Soluble MICB in Children With EBV-associated Hemophagocytic Lymphohistiocytosis. J Pediatr Hematol Oncol 2023; 45:e446-e454. [PMID: 36898046 DOI: 10.1097/mph.0000000000002652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 01/27/2023] [Indexed: 03/12/2023]
Abstract
BACKGROUND Hemophagocytic lymphohistiocytosis (HLH) is a potentially fatal systemic inflammation disease in children. The most common cause is Epstein-Barr virus (EBV) infection. MHC class I polypeptide-related sequence B (MICB) is a membrane protein inducibly expressed upon cellular stress, viral infection, or malignant transformation, thus marking these cells for clearance through natural killer group 2 member D-positive lymphocytes. MICB can be released into plasma through several mechanisms, reducing NK cell cytotoxicity. METHODS We conducted clinical research on HLH patients and cell research in vitro. In the retrospective clinical part, 112 HLH patients (including EBV-HLH group and non-EBV-HLH group), 7 infectious mononucleosis patients, and 7 chronic active EBV infection patients were treated in Beijing Children's Hospital, affiliated with Capital Medical University, from January 2014 to December 2020, were enrolled in this study. Real-time quantitative polymerase chain reaction, standard enzyme-linked immunosorbent assay methods, and lactate dehydrogenase release tests were used to examine the expression of MICB mRNA, the soluble MICB (sMICB) levels, and the activity of NK cells in those patients. In vitro research, MICB overexpression-vector virus, MICB knockdown-vector virus, and empty-vector virus were transfected into two kinds of target cells, such as K562 and MCF7. The level of sMICB and NK cell killing activity between other groups was compared. Finally, we compared NK92 cell killing activity in different concentrations of sMICB. RESULTS In clinical studies, compared with the non-EBV-HLH group, the EBV-HLH group had lower NK cell killing activity (P < 0.05). The level of sMICB in the EBV-HLH group was significantly higher than in non-EBV-HLH, infectious mononucleosis, and chronic active EBV infection patients (P<0.05). A high level of sMICB was associated with poor treatment response and poor prognosis (P<0. 05). Cellular studies showed that an increased level of membrane MICB could positively correlate with the killing activity of NK92 cells (P<0. 05), and a high level of sMICB (1250 to 5000pg/ml) could reduce the killing activity of NK92 cells (P < 0.05). A high level of sMICB (2500pg/ml) could increase the release of cytokines from NK92 cells. CONCLUSION The expression level of sMICB in EBV-HLH patients increased, and a high level of sMICB at the initial onset indicated a poor treatment response. The killing activity of NK cells in EBV-HLH patients decreased more significantly. The high level of sMICB may inhibit the killing activity but increase the release of cytokines of NK92 cells.
Collapse
|
108
|
Mariotti FR, Supino D, Landolina N, Garlanda C, Mantovani A, Moretta L, Maggi E. IL-1R8: A molecular brake of anti-tumor and anti-viral activity of NK cells and ILC. Semin Immunol 2023; 66:101712. [PMID: 36753974 DOI: 10.1016/j.smim.2023.101712] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 12/30/2022] [Accepted: 01/09/2023] [Indexed: 02/07/2023]
Abstract
Interleukin-1 receptor family members (ILRs) and Toll-Like Receptors (TLRs) play pivotal role in immunity and inflammation and are expressed by most cell types including cells of both the innate and adaptive immune system. In this context, IL-1 superfamily members are also important players in regulating function and differentiation of adaptive and innate lymphoid cells. This system is tightly regulated in order to avoid uncontrolled activation, which may lead to detrimental inflammation contributing to autoimmune or allergic responses. IL-1R8 (also known as TIR8 or SIGIRR) is a member of the IL-1R family that acts as a negative regulator dampening ILR and TLR signaling and as a co-receptor for human IL-37. Human and mouse NK cells, that are key players in immune surveillance of tumors and infections, express high level of IL-1R8. In this review, we will summarize our current understanding on the structure, expression and function of IL-1R8 and we will also discuss the emerging role of IL-1R8 as an important checkpoint regulating NK cells function in pathological conditions including cancer and viral infections.
Collapse
Affiliation(s)
- Francesca R Mariotti
- Tumor Immunology Unit, Bambino Gesù Children's Hospital, IRCCS, 00146 Rome, Italy
| | | | - Nadine Landolina
- Tumor Immunology Unit, Bambino Gesù Children's Hospital, IRCCS, 00146 Rome, Italy
| | - Cecilia Garlanda
- IRCCS, Humanitas Research Hospital, 20089 Rozzano, Italy; Department of Biomedical Science, Humanitas University, 20072 Pieve Emanuele, Italy
| | - Alberto Mantovani
- IRCCS, Humanitas Research Hospital, 20089 Rozzano, Italy; Department of Biomedical Science, Humanitas University, 20072 Pieve Emanuele, Italy; The William Harvey Research Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, United Kingdom
| | - Lorenzo Moretta
- Tumor Immunology Unit, Bambino Gesù Children's Hospital, IRCCS, 00146 Rome, Italy
| | - Enrico Maggi
- Translational Immunology Unit, Bambino Gesù Children's Hospital, IRCCS, 00146 Rome, Italy.
| |
Collapse
|
109
|
Ohya M, Tateishi A, Matsumoto Y, Satomi H, Kobayashi M. Bystander CD8 + T cells may be involved in the acute phase of diffuse alveolar damage. Virchows Arch 2023; 482:605-613. [PMID: 36849560 PMCID: PMC9970130 DOI: 10.1007/s00428-023-03521-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 02/16/2023] [Accepted: 02/19/2023] [Indexed: 03/01/2023]
Abstract
Acute respiratory distress syndrome (ARDS) is a serious complication of systemic inflammatory response syndrome, and diffuse alveolar damage (DAD) is a histological manifestation of ARDS. Endothelial cell injury is mainly responsible for ARDS. Many neutrophils and macrophages/monocytes, which are inflammatory cells that play a role in innate immunity, infiltrate the lung tissue in DAD. In recent years, it has become clear that CD8 plays an important role not only in the acquired immune system, but also in the innate immune system. Non-antigen-activated bystander CD8 + T cells express the unique granzyme B (GrB) + /CD25-/programmed cell death-1 (PD-1)-phenotype. The involvement of bystander CD8 + T cells in lung tissue in DAD is an unexplored field. This study aimed to determine whether bystander CD8 is involved in DAD. Twenty-three consecutive autopsy specimens were retrieved from patients with DAD, and the phenotypes of infiltrating lymphocytes in the DAD lesions were evaluated using immunohistochemistry. In most cases, the number of CD8 + T cells was higher than that of CD4 + T cells, and many GrB + cells were also observed. However, the number of CD25 + and PD-1 + cells was low. We conclude that bystander CD8 + T cells may be involved in cell injury during the development of DAD.
Collapse
Affiliation(s)
- Maki Ohya
- Department of Pathology, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, 390-8621, Japan
| | - Ayako Tateishi
- Department of Pathology, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, 390-8621, Japan
| | - Yuki Matsumoto
- Department of Pathology, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, 390-8621, Japan
| | - Hidetoshi Satomi
- Department of Pathology, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, 390-8621, Japan
| | - Mikiko Kobayashi
- Department of Pathology, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, 390-8621, Japan.
- Department of Pathology, Marunouchi Hospital, 1-7-45, Nagisa, Matsumoto, 390-8601, Japan.
| |
Collapse
|
110
|
Mace EM. Human natural killer cells: Form, function, and development. J Allergy Clin Immunol 2023; 151:371-385. [PMID: 36195172 PMCID: PMC9905317 DOI: 10.1016/j.jaci.2022.09.022] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 08/22/2022] [Accepted: 09/02/2022] [Indexed: 02/07/2023]
Abstract
Human natural killer (NK) cells are innate lymphoid cells that mediate important effector functions in the control of viral infection and malignancy. Their ability to distinguish "self" from "nonself" and lyse virally infected and tumorigenic cells through germline-encoded receptors makes them important players in maintaining human health and a powerful tool for immunotherapeutic applications and fighting disease. This review introduces our current understanding of NK cell biology, including key facets of NK cell differentiation and the acquisition and execution of NK cell effector function. Further, it addresses the clinical relevance of NK cells in both primary immunodeficiency and immunotherapy. It is intended to provide an up-to-date and comprehensive overview of this important and interesting innate immune effector cell subset.
Collapse
Affiliation(s)
- Emily M Mace
- Division of Allergy, Immunology and Rheumatology, Department of Pediatrics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York.
| |
Collapse
|
111
|
Milito ND, Zingoni A, Stabile H, Soriani A, Capuano C, Cippitelli M, Gismondi A, Santoni A, Paolini R, Molfetta R. NKG2D engagement on human NK cells leads to DNAM-1 hypo-responsiveness through different converging mechanisms. Eur J Immunol 2023; 53:e2250198. [PMID: 36440686 DOI: 10.1002/eji.202250198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/09/2022] [Accepted: 11/22/2022] [Indexed: 11/30/2022]
Abstract
Natural killer (NK) cell activation is regulated by activating and inhibitory receptors that facilitate diseased cell recognition. Among activating receptors, NKG2D and DNAM-1 play a pivotal role in anticancer immune responses since they bind ligands upregulated on transformed cells. During tumor progression, however, these receptors are frequently downmodulated and rendered functionally inactive. Of note, NKG2D internalization has been associated with the acquisition of a dysfunctional phenotype characterized by the cross-tolerization of unrelated activating receptors. However, our knowledge of the consequences of NKG2D engagement is still incomplete. Here, by cytotoxicity assays combined with confocal microscopy, we demonstrate that NKG2D engagement on human NK cells impairs DNAM-1-mediated killing through two different converging mechanisms: by the upregulation of the checkpoint inhibitory receptor TIGIT, that in turn suppresses DNAM-1-mediated cytotoxic function, and by direct inhibition of DNAM-1-promoted signaling. Our results highlight a novel interplay between NKG2D and DNAM-1/TIGIT receptors that may facilitate neoplastic cell evasion from NK cell-mediated clearance.
Collapse
Affiliation(s)
- Nadia D Milito
- Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Alessandra Zingoni
- Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Helena Stabile
- Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Alessandra Soriani
- Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Cristina Capuano
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Marco Cippitelli
- Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Angela Gismondi
- Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Angela Santoni
- Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy.,IRCCS Neuromed, Pozzilli, Isernia, Italy
| | - Rossella Paolini
- Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Rosa Molfetta
- Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
112
|
Kupke P, Adenugba A, Schemmerer M, Bitterer F, Schlitt HJ, Geissler EK, Wenzel JJ, Werner JM. Immunomodulation of Natural Killer Cell Function by Ribavirin Involves TYK-2 Activation and Subsequent Increased IFN-γ Secretion in the Context of In Vitro Hepatitis E Virus Infection. Cells 2023; 12:cells12030453. [PMID: 36766795 PMCID: PMC9913562 DOI: 10.3390/cells12030453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/20/2023] [Accepted: 01/27/2023] [Indexed: 02/01/2023] Open
Abstract
Hepatitis E virus (HEV) is a major cause of acute hepatitis globally. Chronic and fulminant courses are observed especially in immunocompromised transplant recipients since administration of ribavirin (RBV) does not always lead to a sustained virologic response. By in vitro stimulation of NK cells through hepatoma cell lines inoculated with a full-length HEV and treatment with RBV, we analyzed the viral replication and cell response to further elucidate the mechanism of action of RBV on immune cells, especially NK cells, in the context of HEV infection. Co-culture of HEV-infected hepatoma cells with PBMCs and treatment with RBV both resulted in a decrease in viral replication, which in combination showed an additive effect. An analysis of NK cell functions after stimulation revealed evidence of reduced cytotoxicity by decreased TRAIL and CD107a degranulation. Simultaneously, IFN-ɣ production was significantly increased through the IL-12R pathway. Although there was no direct effect on the IL-12R subunits, downstream events starting with TYK-2 and subsequently pSTAT4 were upregulated. In conclusion, we showed that RBV has an immunomodulatory effect on the IL-12R pathway of NK cells via TYK-2. This subsequently leads to an enhanced IFN-ɣ response and thus, to an additive antiviral effect in the context of an in vitro HEV infection.
Collapse
Affiliation(s)
- Paul Kupke
- Department of Surgery, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Akinbami Adenugba
- Department of Surgery, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Mathias Schemmerer
- National Consultant Laboratory for HAV and HEV, Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Florian Bitterer
- Department of Surgery, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Hans J. Schlitt
- Department of Surgery, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Edward K. Geissler
- Department of Surgery, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Jürgen J. Wenzel
- National Consultant Laboratory for HAV and HEV, Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Jens M. Werner
- Department of Surgery, University Hospital Regensburg, 93053 Regensburg, Germany
- Correspondence:
| |
Collapse
|
113
|
Carmena Moratalla A, Carpentier Solorio Y, Lemaître F, Farzam-Kia N, Da Cal S, Guimond JV, Haddad E, Duquette P, Girard JM, Prat A, Larochelle C, Arbour N. Specific alterations in NKG2D + T lymphocytes in relapsing-remitting and progressive multiple sclerosis patients. Mult Scler Relat Disord 2023; 71:104542. [PMID: 36716577 DOI: 10.1016/j.msard.2023.104542] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 01/19/2023] [Accepted: 01/25/2023] [Indexed: 01/27/2023]
Abstract
BACKGROUND T lymphocytes exhibit numerous alterations in relapsing-remitting (RRMS), secondary progressive (SPMS), and primary progressive multiple sclerosis (PPMS). The NKG2D pathway has been involved in MS pathology. NKG2D is a co-activating receptor on subsets of CD4+ and most CD8+ T lymphocytes. The ligands of NKG2D are expressed at low levels in normal tissues but are elevated in MS postmortem brain tissues compared with controls. Whether the NKG2D pathway shows specific changes in different forms of MS remains unclear. METHODS We performed unsupervised and supervised flow cytometry analysis to characterize peripheral blood T lymphocytes from RRMS, SPMS, and PPMS patients and healthy controls (HC). We used an in vitro microscopy approach to assess the role of NKG2D in the interactions between human CD8+T lymphocytes and human astrocytes. RESULTS Specific CD8+, CD4+, and CD4-CD8- T cell populations exhibited altered frequency in MS patients' subgroups. The proportion of NKG2D+ T lymphocytes declined with age in PPMS patients but not in RRMS and HC. This reduced percentage of NKG2D+ cells was due to lower abundance of γδ and αβ CD4-CD8- T lymphocytes in PPMS patients. NKG2D+ T lymphocytes were significantly less abundant in RRMS than in HC; this was caused by a decreased frequency of CD4-CD8- and CD8+ T lymphocytes and was not linked to age. Blocking NKG2D increased the motility of CD8+ T lymphocytes co-cultured with astrocytes expressing NKG2D ligand. Moreover, preventing NKG2D from interacting with its ligands increased the proportion of CD8+ T lymphocytes exhibiting a kinapse-like behavior characterized by short-term interaction while reducing those displaying a long-lasting synapse-like behavior. These results support that NKG2D participates in the establishment of long-term interactions between activated CD8+ T lymphocytes and astrocytes. CONCLUSION Our data demonstrate specific alterations in NKG2D+ T lymphocytes in MS patients' subgroups and suggest that NKG2D contributes to the interactions between human CD8+ T lymphocytes and human astrocytes.
Collapse
Affiliation(s)
- Ana Carmena Moratalla
- Department of Neurosciences, Université de Montréal and Centre de Recherche du CHUM (CRCHUM) 900 St-Denis Street Montreal, QC, Canada, H2X0A9
| | - Yves Carpentier Solorio
- Department of Neurosciences, Université de Montréal and Centre de Recherche du CHUM (CRCHUM) 900 St-Denis Street Montreal, QC, Canada, H2X0A9
| | - Florent Lemaître
- Department of Neurosciences, Université de Montréal and Centre de Recherche du CHUM (CRCHUM) 900 St-Denis Street Montreal, QC, Canada, H2X0A9
| | - Negar Farzam-Kia
- Department of Neurosciences, Université de Montréal and Centre de Recherche du CHUM (CRCHUM) 900 St-Denis Street Montreal, QC, Canada, H2X0A9
| | - Sandra Da Cal
- Department of Neurosciences, Université de Montréal and Centre de Recherche du CHUM (CRCHUM) 900 St-Denis Street Montreal, QC, Canada, H2X0A9
| | - Jean Victor Guimond
- CLSC des Faubourgs, CIUSSS du Centre-Sud-de-l'Ile-de-Montréal, Montreal, QC, Canada
| | - Elie Haddad
- Department of Microbiology, Infectious Diseases, and Immunology and Department of Pediatrics, Université de Montréal, Centre de Recherche du Centre Hospitalier Universitaire Sainte-Justine (CHU Sainte-Justine), Montreal, Quebec, Canada
| | - Pierre Duquette
- Department of Neurosciences, Université de Montréal and Centre de Recherche du CHUM (CRCHUM) 900 St-Denis Street Montreal, QC, Canada, H2X0A9; MS-CHUM Clinic 900 St-Denis Street, Montreal, QC, Canada, H2X0A9
| | - J Marc Girard
- Department of Neurosciences, Université de Montréal and Centre de Recherche du CHUM (CRCHUM) 900 St-Denis Street Montreal, QC, Canada, H2X0A9; MS-CHUM Clinic 900 St-Denis Street, Montreal, QC, Canada, H2X0A9
| | - Alexandre Prat
- Department of Neurosciences, Université de Montréal and Centre de Recherche du CHUM (CRCHUM) 900 St-Denis Street Montreal, QC, Canada, H2X0A9; MS-CHUM Clinic 900 St-Denis Street, Montreal, QC, Canada, H2X0A9
| | - Catherine Larochelle
- Department of Neurosciences, Université de Montréal and Centre de Recherche du CHUM (CRCHUM) 900 St-Denis Street Montreal, QC, Canada, H2X0A9; MS-CHUM Clinic 900 St-Denis Street, Montreal, QC, Canada, H2X0A9
| | - Nathalie Arbour
- Department of Neurosciences, Université de Montréal and Centre de Recherche du CHUM (CRCHUM) 900 St-Denis Street Montreal, QC, Canada, H2X0A9.
| |
Collapse
|
114
|
Coordinated Loss and Acquisition of NK Cell Surface Markers Accompanied by Generalized Cytokine Dysregulation in COVID-19. Int J Mol Sci 2023; 24:ijms24031996. [PMID: 36768315 PMCID: PMC9917026 DOI: 10.3390/ijms24031996] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/15/2023] [Accepted: 01/17/2023] [Indexed: 01/20/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19), caused by the SARS-CoV-2 virus, is accompanied by a dysregulated immune response. In particular, NK cells, involved in the antiviral response, are affected by the infection. This study aimed to investigate circulating NK cells with a focus on their activation, depletion, changes in the surface expression of key receptors, and functional activity during COVID-19, among intensive care unit (ICU) patients, moderately ill patients, and convalescents (CCP). Our data confirmed that NK cell activation in patients with COVID-19 is accompanied by changes in circulating cytokines. The progression of COVID-19 was associated with a coordinated decrease in the proportion of NKG2D+ and CD16+ NK cells, and an increase in PD-1, which indicated their exhaustion. A higher content of NKG2D+ NK cells distinguished surviving patients from non-survivors in the ICU group. NK cell exhaustion in ICU patients was additionally confirmed by a strong negative correlation of PD-1 and natural cytotoxicity levels. In moderately ill patients and convalescents, correlations were found between the levels of CD57, NKG2C, and NKp30, which may indicate the formation of adaptive NK cells. A reduced NKp30 level was observed in patients with a lethal outcome. Altogether, the phenotypic changes in circulating NK cells of COVID-19 patients suggest that the intense activation of NK cells during SARS-CoV-2 infection, most likely induced by cytokines, is accompanied by NK cell exhaustion, the extent of which may be critical for the disease outcome.
Collapse
|
115
|
Liang L, Wang X, Huang S, Chen Y, Zhang P, Li L, Cui Y. Tyrosine kinase inhibitors as potential sensitizers of adoptive T cell therapy for hepatocellular carcinoma. Front Immunol 2023; 14:1046771. [PMID: 36936932 PMCID: PMC10014465 DOI: 10.3389/fimmu.2023.1046771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 02/13/2023] [Indexed: 03/04/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a high-incidence malignant tumor worldwide and lacks effective treatment options. Targeted drugs are the preferred recommendations for the systemic treatment of hepatocellular carcinoma. Immunotherapy is a breakthrough in the systemic treatment of malignant tumors, including HCC. However, either targeted therapy or immunotherapy alone is inefficient and has limited survival benefits on part of HCC patients. Investigations have proved that tyrosine kinase inhibitors (TKIs) have regulatory effects on the tumor microenvironment and immune response, which are potential sensitizers for immunotherapy. Herein, a combination therapy using TKIs and immunotherapy has been explored and demonstrated to improve the effectiveness of treatment. As an effective immunotherapy, adoptive T cell therapy in solid tumors is required to improve tumor infiltration and killing activity which can be possibly achieved by combination with TKIs.
Collapse
Affiliation(s)
- Linjun Liang
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Department of Oncology, Shenzhen Qianhai Shekou Free Trade Zone Hospital, Shenzhen, Guangdong, China
| | - Xiaoyan Wang
- Department of Oncology, Shenzhen Qianhai Shekou Free Trade Zone Hospital, Shenzhen, Guangdong, China
| | - Shuying Huang
- Department of Oncology, Shenzhen Qianhai Shekou Free Trade Zone Hospital, Shenzhen, Guangdong, China
| | - Yanwei Chen
- Department of Pulmonary Critical Care Medicine of Tangdu Hospital, Fourth Military Medical University, Xi’an, China
| | - Peng Zhang
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- *Correspondence: Peng Zhang, ; Liang Li, ; Yong Cui,
| | - Liang Li
- School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, China
- *Correspondence: Peng Zhang, ; Liang Li, ; Yong Cui,
| | - Yong Cui
- Department of Oncology, Shenzhen Qianhai Shekou Free Trade Zone Hospital, Shenzhen, Guangdong, China
- *Correspondence: Peng Zhang, ; Liang Li, ; Yong Cui,
| |
Collapse
|
116
|
Padmaraju V, Sankla Y, Malla RR. Role of γδ T Cells in Cancer Progression and Therapy. Crit Rev Oncog 2023; 28:59-70. [PMID: 38050982 DOI: 10.1615/critrevoncog.2023050067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
γδ T cells signify a foundational group of immune cells that infiltrate tumors early on, engaging in combat against cancer cells. The buildup of γδ T cells as cancer advances underscores their significance. Initially, these cells infiltrate and enact cytotoxic effects within the tumor tissue. However, in later stages, the predominant phenotype of γδ T cells undergoes changes in numerous cancers, fostering tumor growth and metastasis. Different mechanisms induced by cancer cell suppress effector action of γδ T cells and even sometimes promote cancer progression. In the early stages, stopping this mechanism clears this challenge and enables γδ T cells to effectively remove cancer cells. Given this context, it becomes imperative to delve into the mechanisms of how γδ T cells function in tumor microenvironment. This review discusses γδ T cells' role across different cancer types.
Collapse
Affiliation(s)
- Vasudevaraju Padmaraju
- Department of Biochemistry and Bioinformatics, GITAM School of Science, Department of Biochemistry and Bioinformatics, GITAM School of Science (GSS), GITAM (Deemed to be University), Visakhapatnam, Andhra Pradesh, 530045, India
| | - Yogitha Sankla
- Department of Biochemistry and Bioinformatics, GITAM School of Science, Department of Biochemistry and Bioinformatics, GITAM School of Science (GSS), GITAM (Deemed to be University), Visakhapatnam, Andhra Pradesh, 530045, India
| | - Rama Rao Malla
- Cancer Biology Laboratory, Department of Biochemistry and Bioinformatics, School of Science, Gandhi Institute of Technology and Management (GITAM) (Deemed to be University), Visakhapatnam-530045, Andhra Pradesh, India; Department of Biochemistry and Bioinformatics, School of Science, GITAM (Deemed to be University), Visakhapatnam-530045, Andhra Pradesh, India
| |
Collapse
|
117
|
Secchiari F, Nuñez SY, Sierra JM, Ziblat A, Regge MV, Raffo Iraolagoitia XL, Rovegno A, Ameri C, Secin FP, Richards N, Ríos Pita H, Vitagliano G, Rico L, Mieggi M, Frascheri F, Bonanno N, Blas L, Trotta A, Friedrich AD, Fuertes MB, Domaica CI, Zwirner NW. The MICA-NKG2D axis in clear cell renal cell carcinoma bolsters MICA as target in immuno-oncology. Oncoimmunology 2022; 11:2104991. [PMID: 35936986 PMCID: PMC9354769 DOI: 10.1080/2162402x.2022.2104991] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
NKG2D is a major natural killer (NK) cell-activating receptor that recognizes eight ligands (NKG2DLs), including MICA, and whose engagement triggers NK cell effector functions. As NKG2DLs are upregulated on tumor cells but tumors can subvert the NKG2D-NKG2DL axis, NKG2DLs constitute attractive targets for antibody (Ab)-based immuno-oncology therapies. However, such approaches require a deep characterization of NKG2DLs and NKG2D cell surface expression on primary tumor and immune cells. Here, using a bioinformatic analysis, we observed that MICA is overexpressed in renal cell carcinoma (RCC), and we also detected an association between the NKG2D-MICA axis and a diminished overall survival of RCC patients. Also, by flow cytometry (FC), we observed that MICA was the only NKG2DL over-expressed on clear cell renal cell carcinoma (ccRCC) tumor cells, including cancer stem cells (CSC) that also coexpressed NKG2D. Moreover, tumor-infiltrating leukocytes (TIL), but not peripheral blood lymphoid cells (PBL) from ccRCC patients, over-expressed MICA, ULBP3 and ULBP4. In addition, NKG2D was downregulated on peripheral blood NK cells (PBNK) from ccRCC patients but upregulated on tumor-infiltrating NK cells (TINK). These TINK exhibited impaired degranulation that negatively correlated with NKG2D expression, diminished IFN-γ production, upregulation of TIM-3, and an impaired glucose intake upon stimulation with cytokines, indicating that they are dysfunctional, display features of exhaustion and an altered metabolic fitness. We conclude that ccRCC patients exhibit a distorted MICA-NKG2D axis, and MICA emerges as the forefront NKG2DL for the development of targeted therapies in ccRCC.
Collapse
Affiliation(s)
- Florencia Secchiari
- Laboratorio de Fisiopatología de la Inmunidad Innata, Instituto de Biología y Medicina Experimental (IBYME-CONICET), Argentina
| | - Sol Yanel Nuñez
- Laboratorio de Fisiopatología de la Inmunidad Innata, Instituto de Biología y Medicina Experimental (IBYME-CONICET), Argentina
| | - Jessica Mariel Sierra
- Laboratorio de Fisiopatología de la Inmunidad Innata, Instituto de Biología y Medicina Experimental (IBYME-CONICET), Argentina
| | - Andrea Ziblat
- Laboratorio de Fisiopatología de la Inmunidad Innata, Instituto de Biología y Medicina Experimental (IBYME-CONICET), Argentina
| | - María Victoria Regge
- Laboratorio de Fisiopatología de la Inmunidad Innata, Instituto de Biología y Medicina Experimental (IBYME-CONICET), Argentina
| | - Ximena Lucía Raffo Iraolagoitia
- Laboratorio de Fisiopatología de la Inmunidad Innata, Instituto de Biología y Medicina Experimental (IBYME-CONICET), Argentina
| | - Agustín Rovegno
- Servicio de Urología, Centro de Educación Médica e Investigaciones Clínicas “Norberto Quirno” (CEMIC)
| | - Carlos Ameri
- Servicio de Urología, Hospital Alemán, Buenos Aires, Argentina
| | - Fernando Pablo Secin
- Servicio de Urología, Centro de Educación Médica e Investigaciones Clínicas “Norberto Quirno” (CEMIC)
| | - Nicolás Richards
- Servicio de Urología, Centro de Educación Médica e Investigaciones Clínicas “Norberto Quirno” (CEMIC)
| | | | | | - Luis Rico
- Servicio de Urología, Hospital Alemán, Buenos Aires, Argentina
| | - Mauro Mieggi
- Servicio de Urología, Hospital Alemán, Buenos Aires, Argentina
| | | | - Nicolás Bonanno
- Servicio de Urología, Hospital Alemán, Buenos Aires, Argentina
| | - Leandro Blas
- Servicio de Urología, Hospital Alemán, Buenos Aires, Argentina
| | - Aldana Trotta
- Laboratorio de Fisiopatología de la Inmunidad Innata, Instituto de Biología y Medicina Experimental (IBYME-CONICET), Argentina
| | - Adrián David Friedrich
- Laboratorio de Fisiopatología de la Inmunidad Innata, Instituto de Biología y Medicina Experimental (IBYME-CONICET), Argentina
| | - Mercedes Beatriz Fuertes
- Laboratorio de Fisiopatología de la Inmunidad Innata, Instituto de Biología y Medicina Experimental (IBYME-CONICET), Argentina
| | - Carolina Inés Domaica
- Laboratorio de Fisiopatología de la Inmunidad Innata, Instituto de Biología y Medicina Experimental (IBYME-CONICET), Argentina
| | - Norberto Walter Zwirner
- Laboratorio de Fisiopatología de la Inmunidad Innata, Instituto de Biología y Medicina Experimental (IBYME-CONICET), Argentina
- Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Universidad de Buenos Aires, Argentina
| |
Collapse
|
118
|
Lee MJ, Leong MW, Rustagi A, Beck A, Zeng L, Holmes S, Qi LS, Blish CA. SARS-CoV-2 escapes direct NK cell killing through Nsp1-mediated downregulation of ligands for NKG2D. Cell Rep 2022; 41:111892. [PMID: 36543165 PMCID: PMC9742201 DOI: 10.1016/j.celrep.2022.111892] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 11/09/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022] Open
Abstract
Natural killer (NK) cells are cytotoxic effector cells that target and lyse virally infected cells; many viruses therefore encode mechanisms to escape such NK cell killing. Here, we interrogate the ability of SARS-CoV-2 to modulate NK cell recognition and lysis of infected cells. We find that NK cells exhibit poor cytotoxic responses against SARS-CoV-2-infected targets, preferentially killing uninfected bystander cells. We demonstrate that this escape is driven by downregulation of ligands for the activating receptor NKG2D (NKG2D-L). Indeed, early in viral infection, prior to NKG2D-L downregulation, NK cells are able to target and kill infected cells; however, this ability is lost as viral proteins are expressed. Finally, we find that SARS-CoV-2 non-structural protein 1 (Nsp1) mediates downregulation of NKG2D-L and that Nsp1 alone is sufficient to confer resistance to NK cell killing. Collectively, our work demonstrates that SARS-CoV-2 evades direct NK cell cytotoxicity and describes a mechanism by which this occurs.
Collapse
Affiliation(s)
- Madeline J Lee
- Stanford Immunology Program, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Michelle W Leong
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Arjun Rustagi
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Aimee Beck
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Leiping Zeng
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Susan Holmes
- Department of Statistics, Stanford University, Stanford, CA 94305, USA
| | - Lei S Qi
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA; Sarafan Chem-H, Stanford University, Stanford, CA 94305, USA; Chan Zuckerberg Biohub, San Francisco, CA 94157, USA
| | - Catherine A Blish
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Chan Zuckerberg Biohub, San Francisco, CA 94157, USA; Stanford Medical Scientist Training Program, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
119
|
Fan J, Shi J, Zhang Y, Liu J, An C, Zhu H, Wu P, Hu W, Qin R, Yao D, Shou X, Xu Y, Tong Z, Wen X, Xu J, Zhang J, Fang W, Lou J, Yin W, Chen W. NKG2D discriminates diverse ligands through selectively mechano-regulated ligand conformational changes. EMBO J 2022; 41:e107739. [PMID: 34913508 PMCID: PMC8762575 DOI: 10.15252/embj.2021107739] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 11/10/2021] [Accepted: 11/18/2021] [Indexed: 11/12/2022] Open
Abstract
Stimulatory immune receptor NKG2D binds diverse ligands to elicit differential anti-tumor and anti-virus immune responses. Two conflicting degeneracy recognition models based on static crystal structures and in-solution binding affinities have been considered for almost two decades. Whether and how NKG2D recognizes and discriminates diverse ligands still remain unclear. Using live-cell-based single-molecule biomechanical assay, we characterized the in situ binding kinetics of NKG2D interacting with different ligands in the absence or presence of mechanical force. We found that mechanical force application selectively prolonged NKG2D interaction lifetimes with the ligands MICA and MICB, but not with ULBPs, and that force-strengthened binding is much more pronounced for MICA than for other ligands. We also integrated steered molecular dynamics simulations and mutagenesis to reveal force-induced rotational conformational changes of MICA, involving formation of additional hydrogen bonds on its binding interface with NKG2D, impeding MICA dissociation under force. We further provided a kinetic triggering model to reveal that force-dependent affinity determines NKG2D ligand discrimination and its downstream NK cell activation. Together, our results demonstrate that NKG2D has a discrimination power to recognize different ligands, which depends on selective mechanical force-induced ligand conformational changes.
Collapse
Affiliation(s)
- Juan Fan
- Department of Cell Biology and Department of Cardiology of the Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Jiawei Shi
- Key Laboratory for Biomedical Engineering of the Ministry of EducationZhejiang UniversityHangzhouChina
| | - Yong Zhang
- Key Laboratory of RNA BiologyCAS Center for Excellence in BiomacromoleculesInstitute of BiophysicsChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Junwei Liu
- Key Laboratory for Biomedical Engineering of the Ministry of EducationZhejiang UniversityHangzhouChina
- Department of Hepatobiliary and Pancreatic SurgeryThe Center for Integrated Oncology and Precision MedicineAffiliated Hangzhou First People's HospitalZhejiang University School of MedicineHangzhouChina
| | - Chenyi An
- Department of Cell Biology and Department of Cardiology of the Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Huaying Zhu
- Department of Cell Biology and Department of Cardiology of the Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Peng Wu
- Department of Cell Biology and Department of Cardiology of the Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Wei Hu
- Department of Cell Biology and Department of Cardiology of the Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Rui Qin
- Department of Cell Biology and Department of Cardiology of the Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Danmei Yao
- Department of Cell Biology and Department of Cardiology of the Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Xin Shou
- Institute of Translational MedicineSchool of MedicineZhejiang UniversityHangzhouChina
| | - Yibing Xu
- Institute of Translational MedicineSchool of MedicineZhejiang UniversityHangzhouChina
| | - Zhou Tong
- Department of Medical OncologyFirst Affiliated HospitalSchool of MedicineZhejiang UniversityHangzhouChina
| | - Xue Wen
- Department of PathologyThe First Affiliated HospitalSchool of MedicineZhejiang UniversityHangzhouChina
| | - Jianpo Xu
- Center for Stem Cell and Regenerative MedicineDepartment of Basic Medical SciencesThe First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Jin Zhang
- Center for Stem Cell and Regenerative MedicineDepartment of Basic Medical SciencesThe First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- Zhejiang Laboratory for Systems and Precision MedicineZhejiang University Medical CenterHangzhouChina
- Institute of HematologyZhejiang UniversityHangzhouChina
| | - Weijia Fang
- Department of Medical OncologyFirst Affiliated HospitalSchool of MedicineZhejiang UniversityHangzhouChina
| | - Jizhong Lou
- Key Laboratory of RNA BiologyCAS Center for Excellence in BiomacromoleculesInstitute of BiophysicsChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Weiwei Yin
- Key Laboratory for Biomedical Engineering of the Ministry of EducationZhejiang UniversityHangzhouChina
- Department of Thoracic SurgerySir Run Run Shaw HospitalZhejiang University School of MedicineHangzhouChina
- Zhejiang Provincial Key Laboratory of Cardio‐Cerebral Vascular Detection Technology and Medicinal Effectiveness AppraisalCollege of Biomedical Engineering and Instrument of ScienceZhejiang UniversityHangzhouChina
| | - Wei Chen
- Department of Cell Biology and Department of Cardiology of the Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- Key Laboratory for Biomedical Engineering of the Ministry of EducationZhejiang UniversityHangzhouChina
- Department of Hepatobiliary and Pancreatic SurgeryThe Center for Integrated Oncology and Precision MedicineAffiliated Hangzhou First People's HospitalZhejiang University School of MedicineHangzhouChina
- Zhejiang Laboratory for Systems and Precision MedicineZhejiang University Medical CenterHangzhouChina
- The MOE Frontier Science Center for Brain Science & Brain‐machine IntegrationZhejiang UniversityHangzhouChina
| |
Collapse
|
120
|
Study of the association between a MICA gene polymorphism and cholangiocarcinoma in Egyptian patients. Clin Exp Hepatol 2022; 8:293-299. [PMID: 36683874 PMCID: PMC9850301 DOI: 10.5114/ceh.2022.122293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 09/19/2022] [Indexed: 12/31/2022] Open
Abstract
Introduction An inflammatory environment is the common pathway for the development of cholangiocarcinoma (CCA). The natural killer group 2D receptor (NKG2D), an activating receptor for NK cells, is a potent immune axis in the antitumor and antimicrobial immune response through its binding to NKG2D ligands (NKG2DLs). NKG2DLs are normally absent or poorly expressed in most cells; conversely, they are upregulated in stressed cells. We studied the rs2596542 polymorphism located upstream of the MICA gene, which encodes an NKG2DL, in patients with CCA as a marker for early disease detection and a possible therapeutic target. Material and methods A case-control study was conducted on 40 patients with CCA and 45 healthy individuals (as controls). After routine examination, the rs2596542 polymorphism of the MICA gene was investigated using real-time PCR. Results We found that a TT homozygous genotype was significantly predominant in patients with CCA (p = 0.039), with the T allele being dominantly distributed in CCA (p = 0.007). High levels of CA19-9 were significantly associated with the TT genotype in the patients. However, we did not detect significant differences in rs2596542C/T genotype and allele distribution between patients with CCA with cirrhosis and those without cirrhosis (p > 0.05). Conclusions The MICA rs2596542 polymorphism may affect the susceptibility to CCA, but not its progression. The TT genotype could be used as a potential diagnostic marker for CCA and triggering the MICA pathway could be a promising therapeutic target.
Collapse
|
121
|
Yi X, Hu W. Advances in adoptive cellular therapy for colorectal cancer: a narrative review. ANNALS OF TRANSLATIONAL MEDICINE 2022; 10:1404. [PMID: 36660664 PMCID: PMC9843349 DOI: 10.21037/atm-22-6196] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 12/19/2022] [Indexed: 01/01/2023]
Abstract
Background and Objective In recent years, adoptive cell therapy (ACT) has shown great potential in antitumor treatment. To significantly improve the clinical efficacy of ACT against solid tumors, we may need to carefully study the latest developments in ACT. As one of the most common malignancies, colorectal cancer (CRC) is a major risk to human health and has become a significant burden on global healthcare systems. This article reviews the recent advances in the treatment of CRC with ACT. Methods We searched PubMed for articles related to ACT for CRC published as of August 31, 2022, and retrieved relevant clinical trial information on the National Institutes of Health ClinicalTrials.gov website. Based on search results, comprehensive and systematic review is made. Key Content and Findings This article provides an overview of the research progress of ACT for CRC, including chimeric antigen receptor (CAR) T-cell therapy, T-cell receptor (TCR)-engineered T-cell therapy, and tumor-infiltrating lymphocyte (TIL) therapy. Common tumor-associated antigens (TAAs) in clinical trials of CAR-T cell therapy for CRC are described. Conclusions Despite many obstacles, ACT shows great promise in treating CRC. Therefore, more basic experimental studies and clinical trials are warranted to further clarify the effectiveness and safety of ACT.
Collapse
Affiliation(s)
- Xing Yi
- Department of Oncology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Wenwei Hu
- Department of Oncology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| |
Collapse
|
122
|
Zheng L, Yang Q, Li F, Zhu M, Yang H, Tan T, Wu B, Liu M, Xu C, Yin J, Cao C. The Glycosylation of Immune Checkpoints and Their Applications in Oncology. Pharmaceuticals (Basel) 2022; 15:ph15121451. [PMID: 36558902 PMCID: PMC9783268 DOI: 10.3390/ph15121451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/16/2022] [Accepted: 11/18/2022] [Indexed: 11/24/2022] Open
Abstract
Tumor therapies have entered the immunotherapy era. Immune checkpoint inhibitors have achieved tremendous success, with some patients achieving long-term tumor control. Tumors, on the other hand, can still accomplish immune evasion, which is aided by immune checkpoints. The majority of immune checkpoints are membrane glycoproteins, and abnormal tumor glycosylation may alter how the immune system perceives tumors, affecting the body's anti-tumor immunity. Furthermore, RNA can also be glycosylated, and GlycoRNA is important to the immune system. Glycosylation has emerged as a new hallmark of tumors, with glycosylation being considered a potential therapeutic approach. The glycosylation modification of immune checkpoints and the most recent advances in glycosylation-targeted immunotherapy are discussed in this review.
Collapse
Affiliation(s)
- Linlin Zheng
- School of Medicine, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Qi Yang
- Biotherapy Center, Third Affiliated Hospital of Harbin Medical University, Harbin 150081, China
| | - Feifei Li
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Guangxi Medical University, Nanning 530021, China
| | - Min Zhu
- School of Medicine, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Haochi Yang
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Tian Tan
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Binghuo Wu
- Department of Oncology, Sichuan Academy of Medical Sciences, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Mingxin Liu
- School of Medicine, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Chuan Xu
- Department of Oncology, Sichuan Academy of Medical Sciences, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China
- Sichuan Key Laboratory of Radiation Oncology, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610041, China
| | - Jun Yin
- Sichuan Key Laboratory of Radiation Oncology, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610041, China
- Correspondence: (J.Y.); (C.C.)
| | - Chenhui Cao
- Sichuan Key Laboratory of Radiation Oncology, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610041, China
- Correspondence: (J.Y.); (C.C.)
| |
Collapse
|
123
|
Role of PARP Inhibitors in Cancer Immunotherapy: Potential Friends to Immune Activating Molecules and Foes to Immune Checkpoints. Cancers (Basel) 2022; 14:cancers14225633. [PMID: 36428727 PMCID: PMC9688455 DOI: 10.3390/cancers14225633] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 11/04/2022] [Accepted: 11/13/2022] [Indexed: 11/19/2022] Open
Abstract
Poly (ADP-ribose) polymerase (PARP) inhibitors (PARPi) induce cytotoxic effects as single agents in tumors characterized by defective repair of DNA double-strand breaks deriving from BRCA1/2 mutations or other abnormalities in genes associated with homologous recombination. Preclinical studies have shown that PARPi-induced DNA damage may affect the tumor immune microenvironment and immune-mediated anti-tumor response through several mechanisms. In particular, increased DNA damage has been shown to induce the activation of type I interferon pathway and up-regulation of PD-L1 expression in cancer cells, which can both enhance sensitivity to Immune Checkpoint Inhibitors (ICIs). Despite the recent approval of ICIs for a number of advanced cancer types based on their ability to reinvigorate T-cell-mediated antitumor immune responses, a consistent percentage of treated patients fail to respond, strongly encouraging the identification of combination therapies to overcome resistance. In the present review, we analyzed both established and unexplored mechanisms that may be elicited by PARPi, supporting immune reactivation and their potential synergism with currently used ICIs. This analysis may indicate novel and possibly patient-specific immune features that might represent new pharmacological targets of PARPi, potentially leading to the identification of predictive biomarkers of response to their combination with ICIs.
Collapse
|
124
|
Ghazi B, El Ghanmi A, Kandoussi S, Ghouzlani A, Badou A. CAR T-cells for colorectal cancer immunotherapy: Ready to go? Front Immunol 2022; 13:978195. [PMID: 36458008 PMCID: PMC9705989 DOI: 10.3389/fimmu.2022.978195] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 10/14/2022] [Indexed: 08/12/2023] Open
Abstract
Chimeric antigen receptor (CAR) T-cells represent a new genetically engineered cell-based immunotherapy tool against cancer. The use of CAR T-cells has revolutionized the therapeutic approach for hematological malignancies. Unfortunately, there is a long way to go before this treatment can be developed for solid tumors, including colorectal cancer. CAR T-cell therapy for colorectal cancer is still in its early stages, and clinical data are scarce. Major limitations of this therapy include high toxicity, relapses, and an impermeable tumor microenvironment for CAR T-cell therapy in colorectal cancer. In this review, we summarize current knowledge, highlight challenges, and discuss perspectives regarding CAR T-cell therapy in colorectal cancer.
Collapse
Affiliation(s)
- Bouchra Ghazi
- Faculty of Medicine, Mohammed VI University of Health Sciences (UM6SS), Casablanca, Morocco
| | - Adil El Ghanmi
- Mohammed VI International University Hospital, Faculty of Medicine, Mohammed VI University of Health Sciences (UM6SS), Casablanca, Morocco
| | - Sarah Kandoussi
- Immuno-Genetics and Human Pathology Laboratory, Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
| | - Amina Ghouzlani
- Immuno-Genetics and Human Pathology Laboratory, Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
| | - Abdallah Badou
- Immuno-Genetics and Human Pathology Laboratory, Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
| |
Collapse
|
125
|
Valenzuela-Vázquez L, Nuñez-Enriquez JC, Sánchez-Herrera J, Medina-Sanson A, Pérez-Saldivar ML, Jiménez-Hernández E, Martiín-Trejo JA, Del Campo-Martínez MDLÁ, Flores-Lujano J, Amador-Sánchez R, Mora-Ríos FG, Peñaloza-González JG, Duarte-Rodríguez DA, Torres-Nava JR, Espinosa-Elizondo RM, Cortés-Herrera B, Flores-Villegas LV, Merino-Pasaye LE, Almeida-Hernández C, Ramírez-Colorado R, Solís-Labastida KA, Medrano-López F, Pérez-Gómez JA, Velázquez-Aviña MM, Martínez-Ríos A, Aguilar-De los Santos A, Santillán-Juárez JD, Gurrola-Silva A, García-Velázquez AJ, Mata-Rocha M, Hernández-Echáurregui GA, Sepúlveda-Robles OA, Rosas-Vargas H, Mancilla-Herrera I, Jimenez-Morales S, Hidalgo-Miranda A, Martinez-Duncker I, Waight JD, Hance KW, Madauss KP, Mejía-Aranguré JM, Cruz-Munoz ME. NK cells with decreased expression of multiple activating receptors is a dominant phenotype in pediatric patients with acute lymphoblastic leukemia. Front Oncol 2022; 12:1023510. [PMID: 36419901 PMCID: PMC9677112 DOI: 10.3389/fonc.2022.1023510] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 10/17/2022] [Indexed: 11/09/2022] Open
Abstract
NK cells have unique attributes to react towards cells undergoing malignant transformation or viral infection. This reactivity is regulated by activating or inhibitory germline encoded receptors. An impaired NK cell function may result from an aberrant expression of such receptors, a condition often seen in patients with hematological cancers. Acute lymphoblastic leukemia (ALL) is the most common pediatric cancer worldwide and NK cells have emerged as crucial targets for developing immunotherapies. However, there are important gaps concerning the phenotype and behavior of NK cells during emergence of ALL. In this study we analyze the phenotype and function of NK cells from peripheral blood in pediatric patients with ALL at diagnosis. Our results showed that NK cells exhibited an altered phenotype highlighted by a significant reduction in the overall expression and percent representation of activating receptors compared to age-matched controls. No significant differences were found for the expression of inhibitory receptors. Moreover, NK cells with a concurrent reduced expression in various activating receptors, was the dominant phenotype among patients. An alteration in the relative frequencies of NK cells expressing NKG2A and CD57 within the mature NK cell pool was also observed. In addition, NK cells from patients displayed a significant reduction in the ability to sustain antibody-dependent cellular cytotoxicity (ADCC). Finally, an aberrant expression of activating receptors is associated with the phenomenon of leukemia during childhood.
Collapse
Affiliation(s)
- Lucero Valenzuela-Vázquez
- Facultad de Medicina, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico
- Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico
| | - Juan Carlos Nuñez-Enriquez
- Unidad de Investigación Médica en Epidemiología Clínica, Unidad Médica de Alta Especialidad (UMAE) Hospital de Pediatría, Centro Médico Nacional (CMN) “Siglo XXI”, Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
| | - Jacqueline Sánchez-Herrera
- Facultad de Medicina, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico
- Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico
| | - Aurora Medina-Sanson
- Servicio de Oncología Pediátrica, Hospital Infantil de México, “Dr. Federico Gómez Sántos”, Secretaria de Salud, Ciudad de México, Mexico
| | - María Luisa Pérez-Saldivar
- Unidad de Investigación Médica en Epidemiología Clínica, Unidad Médica de Alta Especialidad (UMAE) Hospital de Pediatría, Centro Médico Nacional (CMN) “Siglo XXI”, Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
| | - Elva Jiménez-Hernández
- Servicio de Hematología Pediátrica, Hospital General “Gaudencio González Garza”, Centro Médico Nacional (CMN) “La Raza”, Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
| | - Jorge Alfonso Martiín-Trejo
- Servicio de Hematología Pediátrica, Unidad Médica de Alta Especialidad (UMAE) Hospital de Pediatría, Centro Médico Nacional (CMN) “Siglo XXI”, Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
| | - María de Los Ángeles Del Campo-Martínez
- Servicio de Hematología Pediátrica, Hospital General “Gaudencio González Garza”, Centro Médico Nacional (CMN) “La Raza”, Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
| | - Janet Flores-Lujano
- Unidad de Investigación Médica en Epidemiología Clínica, Unidad Médica de Alta Especialidad (UMAE) Hospital de Pediatría, Centro Médico Nacional (CMN) “Siglo XXI”, Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
| | - Raquel Amador-Sánchez
- Hospital General Regional No. 1 “Carlos McGregor Sánchez Navarro”, Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
| | - Félix Gustavo Mora-Ríos
- Departamento de Hematología, Hospital General Regional Ignacio Zaragoza del Instituto de Seguridad y Servicios Sociales de los Trabajadores del Estado (ISSSTE), Mexico City, Mexico
| | | | - David Aldebarán Duarte-Rodríguez
- Unidad de Investigación Médica en Epidemiología Clínica, Unidad Médica de Alta Especialidad (UMAE) Hospital de Pediatría, Centro Médico Nacional (CMN) “Siglo XXI”, Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
| | - José Refugio Torres-Nava
- Servicio de Oncología, Hospital Pediátrico de Moctezuma, Secretaría de Salud de la Ciudad de México (CDMX), Mexico City, Mexico
| | | | - Beatriz Cortés-Herrera
- Servicio de Hematología Pediátrica, Hospital General de México, Secretaria de Salud (SS), Mexico City, Mexico
| | - Luz Victoria Flores-Villegas
- Servicio de Hematología Pediátrica, Centro Médico Nacional (CMN) “20 de Noviembre”, Instituto de Seguridad Social al Servicio de los Trabajadores del Estado (ISSSTE), Mexico City, Mexico
| | - Laura Elizabeth Merino-Pasaye
- Servicio de Hematología Pediátrica, Centro Médico Nacional (CMN) “20 de Noviembre”, Instituto de Seguridad Social al Servicio de los Trabajadores del Estado (ISSSTE), Mexico City, Mexico
| | - Carolina Almeida-Hernández
- Hospital General de Ecatepec “Las Américas”, Instituto de Salud del Estado de México (ISEM), Mexico City, Mexico
| | - Rosario Ramírez-Colorado
- Hospital Pediátrico La Villa, Secretaría de Salud de la Ciudad de México (SSCDMX), Mexico City, Mexico
| | - Karina Anastacia Solís-Labastida
- Servicio de Hematología Pediátrica, Unidad Médica de Alta Especialidad (UMAE) Hospital de Pediatría, Centro Médico Nacional (CMN) “Siglo XXI”, Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
| | - Francisco Medrano-López
- Hospital General Regional (HGR) No. 72 “Dr. Vicente Santos Guajardo”, Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
| | - Jessica Arleet Pérez-Gómez
- Hospital General Regional (HGR) No. 72 “Dr. Vicente Santos Guajardo”, Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
| | | | - Annel Martínez-Ríos
- Departamento de Hematología, Hospital General Regional Ignacio Zaragoza del Instituto de Seguridad y Servicios Sociales de los Trabajadores del Estado (ISSSTE), Mexico City, Mexico
| | | | - Jessica Denisse Santillán-Juárez
- Servicio de Hemato-oncología Pediátrica, Hospital Regional No. 1° de Octubre, Instituto de Seguridad y Servicios Sociales de los Trabajadores del Estado (ISSSTE), Mexico City, Mexico
| | - Alma Gurrola-Silva
- Hospital Regional Tipo B de Alta Especialidad Bicentenario de la Independencia, Instituto de Seguridad Social al Servicio de los Trabajadores del Estado, Mexico City, Mexico
| | - Alejandra Jimena García-Velázquez
- Servicio de Hemato-oncología Pediátrica, Hospital Regional No. 1° de Octubre, Instituto de Seguridad y Servicios Sociales de los Trabajadores del Estado (ISSSTE), Mexico City, Mexico
| | - Minerva Mata-Rocha
- Unidad de Investigación Médica en Epidemiología Clínica, Unidad Médica de Alta Especialidad (UMAE) Hospital de Pediatría, Centro Médico Nacional (CMN) “Siglo XXI”, Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
| | | | - Omar Alejandro Sepúlveda-Robles
- Unidad de Investigación Médica en Genética Humana, Unidad Médica de Alta Especialidad (UMAE) Hospital de Pediatría, Centro Médico Nacional (CMN) “Siglo XXI”, Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
| | - Haydeé Rosas-Vargas
- Unidad de Investigación Médica en Genética Humana, Unidad Médica de Alta Especialidad (UMAE) Hospital de Pediatría, Centro Médico Nacional (CMN) “Siglo XXI”, Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
| | - Ismael Mancilla-Herrera
- Departamento de Infectología e Inmunología, Instituto Nacional de Perinatología, Mexico City, Mexico
| | - Silvia Jimenez-Morales
- Laboratorio de Genómica del Cáncer, Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| | - Alfredo Hidalgo-Miranda
- Laboratorio de Genómica del Cáncer, Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| | - Ivan Martinez-Duncker
- Centro de Investigación en Dinámica Celular, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico
| | | | | | | | - Juan Manuel Mejía-Aranguré
- Unidad de Investigación Médica en Genética Humana, Unidad Médica de Alta Especialidad (UMAE) Hospital de Pediatría, Centro Médico Nacional (CMN) “Siglo XXI”, Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
- Laboratorio de Genómica del Cáncer, Instituto Nacional de Medicina Genómica, Mexico City, Mexico
- Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
- *Correspondence: Juan Manuel Mejía-Aranguré, ; Mario Ernesto Cruz-Munoz,
| | - Mario Ernesto Cruz-Munoz
- Facultad de Medicina, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico
- *Correspondence: Juan Manuel Mejía-Aranguré, ; Mario Ernesto Cruz-Munoz,
| |
Collapse
|
126
|
Covino DA, Desimio MG, Doria M. Impact of IL-15 and latency reversing agent combinations in the reactivation and NK cell-mediated suppression of the HIV reservoir. Sci Rep 2022; 12:18567. [PMID: 36329160 PMCID: PMC9633760 DOI: 10.1038/s41598-022-23010-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 10/21/2022] [Indexed: 11/06/2022] Open
Abstract
Inhibitors of histone deacetylases (HDACis) are major latency reversing agent (LRA) candidates in 'shock and kill' strategies to eradicate the HIV reservoir in infected patients. The poor achievements of initial HDACi-based trials and subsequent studies have highlighted the need for more efficient approaches such as combinatory and immunostimulating therapies. Here we studied combinations of IL-15 with pan-HDACi (Vorinostat, Romidepsin, Panobinostat) or class I selective-HDACi (Entinostat) with or without a PKC agonist (Prostratin) for their impact on in vitro reactivation and NK cell-mediated suppression of latent HIV. Results showed that pan-HDACis but not Entinostat reduced NK cell viability and function; yet, combined IL-15 reverted the negative effects of pan-HDACis except for Panobinostat. All HDACis were ineffective at reactivating HIV in a CD4+ T cell model of latency, with pan-HDACis suppressing spontaneous and IL-15- or Prostratin-induced HIV release, while IL-15 + Prostratin combination showed maximal activity. Moreover, Panobinostat impaired STAT5 and NF-κB activation by IL-15 and Prostratin, respectively. Finally, by using effectors (NK) and targets (latently infected CD4+ T cells) equally exposed to drug combinations, we found that IL-15-mediated suppression of HIV reactivation by NK cells was inhibited by Panobinostat. Our data raise concerns and encouragements for therapeutic application of IL-15/LRA combinations.
Collapse
Affiliation(s)
- Daniela Angela Covino
- grid.414603.4Primary Immunodeficiency Research Unit, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy
| | - Maria Giovanna Desimio
- grid.414603.4Primary Immunodeficiency Research Unit, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy
| | - Margherita Doria
- grid.414603.4Primary Immunodeficiency Research Unit, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy
| |
Collapse
|
127
|
Sim TM. Nanoparticle-assisted targeting of the tumour microenvironment. OPENNANO 2022. [DOI: 10.1016/j.onano.2022.100097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
128
|
Li YR, Wilson M, Yang L. Target tumor microenvironment by innate T cells. Front Immunol 2022; 13:999549. [PMID: 36275727 PMCID: PMC9582148 DOI: 10.3389/fimmu.2022.999549] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 09/23/2022] [Indexed: 12/08/2022] Open
Abstract
The immunosuppressive tumor microenvironment (TME) remains one of the most prevailing barriers obstructing the implementation of effective immunotherapy against solid-state cancers. Eminently composed of immunosuppressive tumor associated macrophages (TAMs) and myeloid-derived suppressor cells (MDSCs) among others, the TME attenuates the effects of immune checkpoint blockade and adoptive cell therapies, mandating a novel therapy capable of TME remediation. In this review we explore the potential of three innate-like T cell subsets, invariant natural killer T (iNKT), mucosal-associated invariant T (MAIT) cells, and gamma delta T (γδT) cells, that display an intrinsic anti-TAM/MDSC capacity. Exhibiting both innate and adaptive properties, innate-like T cell types express a subset-specific TCR with distinct recombination, morphology, and target cell recognition, further supplemented by a variety of NK activating receptors. Both NK activating receptor and TCR activation result in effector cell cytotoxicity against targeted immunosuppressive cells for TME remediation. In addition, innate-like T cells showcase moderate levels of tumor cell killing, providing dual antitumor and anti-TAM/MDSC function. This latent antitumor capacity can be further bolstered by chimeric antigen receptor (CAR) engineering for recognition of tumor specific antigens to enhance antitumor targeting. In contrast with established CAR-T cell therapies, adoption of these innate-like cell types provides an enhanced safety profile without the risk of graft versus host disease (GvHD), due to their non-recognition of mismatched major histocompatibility complex (MHC) molecules, for use as widely accessible, allogeneic “off-the-shelf” cancer immunotherapy.
Collapse
Affiliation(s)
- Yan-Ruide Li
- Department of Microbiology, Immunology & Molecular Genetics, University of California Los Angeles, Los Angeles, CA, United States
| | - Matthew Wilson
- Department of Microbiology, Immunology & Molecular Genetics, University of California Los Angeles, Los Angeles, CA, United States
| | - Lili Yang
- Department of Microbiology, Immunology & Molecular Genetics, University of California Los Angeles, Los Angeles, CA, United States
- Molecular Biology Institute, University of California Los Angeles, Los Angeles, CA, United States
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California Los Angeles, Los Angeles, CA, United States
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, United States
- *Correspondence: Lili Yang,
| |
Collapse
|
129
|
Wu F, An Y, Zhou L, Zhao Y, Chen L, Wang J, Wu G. Whole-transcriptome sequencing and ceRNA interaction network of temporomandibular joint osteoarthritis. Front Genet 2022; 13:962574. [PMID: 36276964 PMCID: PMC9581126 DOI: 10.3389/fgene.2022.962574] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 09/20/2022] [Indexed: 11/20/2023] Open
Abstract
Purpose: The aim of this study was to conduct a comprehensive transcriptomic analysis to explore the potential biological functions of noncoding RNA (ncRNAs) in temporomandibular joint osteoarthritis (TMJOA). Methods: Whole transcriptome sequencing was performed to identify differentially expressed genes (DEGs) profiles between the TMJOA and normal groups. The functions and pathways of the DEGs were analyzed using Metascape, and a competitive endogenous RNA (ceRNA) network was constructed using Cytoscape software. Results: A total of 137 DEmRNAs, 65 DEmiRNAs, 132 DElncRNAs, and 29 DEcircRNAs were identified between the TMJOA and normal groups. Functional annotation of the DEmRNAs revealed that immune response and apoptosis are closely related to TMJOA and also suggested key signaling pathways related to TMJOA, including chronic depression and PPAR signaling pathways. We identified vital mRNAs, including Klrk1, Adipoq, Cryab, and Hspa1b. Notably, Adipoq expression in cartilage was significantly upregulated in TMJOA compared with normal groups (10-fold, p < 0.001). According to the functional analysis of DEmRNAs regulated by the ceRNA network, we found that ncRNAs are involved in the regulation of autophagy and apoptosis. In addition, significantly DEncRNAs (lncRNA-COX7A1, lncRNA-CHTOP, lncRNA-UFM1, ciRNA166 and circRNA1531) were verified, and among these, circRNA1531 (14.5-fold, p < 0.001) and lncRNA-CHTOP (14.8-fold, p < 0.001) were the most significantly downregulated ncRNAs. Conclusion: This study showed the potential of lncRNAs, circRNAs, miRNAs, and mRNAs may as clinical biomarkers and provides transcriptomic insights into their functional roles in TMJOA. This study identified the transcriptomic signatures of mRNAs associated with immunity and apoptosis and the signatures of ncRNAs associated with autophagy and apoptosis and provides insight into ncRNAs in TMJOA.
Collapse
Affiliation(s)
- Fan Wu
- School of Basic Medicine, Heilongjiang Key Lab of Oral Biomedicine Materials and Clinical Application, Experimental Center for Stomatology Engineering, Jiamusi University, Jiamusi, China
- Department of Implantology, School of Stomatology, National Clinical Research Center for Oral Diseases & State Key Laboratory of Military Stomatology & Shaanxi Key Laboratory of Stomatology, Fourth Military Medical University, Xi’an, China
| | - Yanxin An
- Department of General Surgery, The First Affiliated Hospital of Xi’an Medical University, Xi’an, China
| | - Libo Zhou
- School of Basic Medicine, Heilongjiang Key Lab of Oral Biomedicine Materials and Clinical Application, Experimental Center for Stomatology Engineering, Jiamusi University, Jiamusi, China
| | - Yuqing Zhao
- School of Stomatology, Heilongjiang Key Lab of Oral Biomedicine Materials and Clinical Application, Experimental Center for Stomatology Engineering, Jiamusi University, Jiamusi, China
| | - Lei Chen
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Shandong University, Jinan, China
| | - Jing Wang
- Department of Implantology, School of Stomatology, National Clinical Research Center for Oral Diseases & State Key Laboratory of Military Stomatology & Shaanxi Key Laboratory of Stomatology, Fourth Military Medical University, Xi’an, China
| | - Gaoyi Wu
- School of Basic Medicine, Heilongjiang Key Lab of Oral Biomedicine Materials and Clinical Application, Experimental Center for Stomatology Engineering, Jiamusi University, Jiamusi, China
| |
Collapse
|
130
|
IL-2 Combined with IL-15 Enhanced the Expression of NKG2D Receptor on Patient Autologous NK Cells to Inhibit Wilms’ Tumor via MAPK Signaling Pathway. JOURNAL OF ONCOLOGY 2022; 2022:4544773. [PMID: 36213822 PMCID: PMC9546681 DOI: 10.1155/2022/4544773] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 08/20/2022] [Accepted: 08/30/2022] [Indexed: 11/17/2022]
Abstract
Objective The dysfunction of immune surveillance, a hot spot in cancer research, could lead to the occurrence and development in multicancers. However, the potential mechanisms of immunity in Wilms' tumor (WT) remain unclear on Wilms' tumor (WT). In this study, we aim to investigate the immune cell in WT and explore the underlying treatment strategy. Method We quantified stromal and immune scores by using ESTIMATE algorithm based on gene expression matrix of WT patients in TCGA and GEO databases. Different expression genes (DEGs) and functional enrichments were analyzed by R studio and DAVID tools. Flow cytometry, immunofluorescence staining, ELISA assay, and qRT-PCR were used for detecting the NK cells, cytotoxic cytokines (INF-γ, PRF, and GZMB), and NK cell receptor expression, respectively. WT patient autologous NK cells were stimulated by IL-2 and IL-15, and the cytotoxicity of NK cells against WT cell lines was detected by LDH assay. Western blot experiment was used for measuring the MAPK signaling pathway protein maker in NK cells. Results ESTIMATE indicated that WT tissue had a lower immune score than adjacent kidney tissue. Meanwhile, the low immune score group was associated with poorly outcomes. DEG functional enrichment analysis showed that NK cell-mediated cytotoxicity was significantly different in low and high immune score groups. Although few of proportion of NK cells in WT patients were increased, most of that were significantly lower than normal children. Moreover, the proportion of NK cells and the expression level of INF-γ, PRF, and GZMB in WT tissue were lower than adjacent kidney tissue. Importantly, the NKG2D expression level of NK cells was significantly lower in WT tissue. Furthermore, in vitro, compared with uncultured NK cells, IL-2 and IL-15 could effectively enhance the cytotoxicity of NK cells on killing the WT cell lines. The FACS and WB results showed that the NKG2D and p-PI3K ratio PI3K, MEK1/2, and p-ERK1/2 ratio ERK1/2 were significantly increased in IL-2 and IL15 group compared with uncultured groups. Conclusion The abnormal NK cell-mediated cytotoxicity may cause the occurrence of WT. Costimulation of WT patients autologous NK cells could effectively enhance the antitumor reaction which involved in activation of NKG2D-mediated MAPK signaling pathway.
Collapse
|
131
|
Yaping W, Zhe W, Zhuling C, Ruolei L, Pengyu F, Lili G, Cheng J, Bo Z, Liuyin L, Guangdong H, Yaoling W, Niuniu H, Rui L. The soldiers needed to be awakened: Tumor-infiltrating immune cells. Front Genet 2022; 13:988703. [PMID: 36246629 PMCID: PMC9558824 DOI: 10.3389/fgene.2022.988703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 08/29/2022] [Indexed: 11/18/2022] Open
Abstract
In the tumor microenvironment, tumor-infiltrating immune cells (TIICs) are a key component. Different types of TIICs play distinct roles. CD8+ T cells and natural killer (NK) cells could secrete soluble factors to hinder tumor cell growth, whereas regulatory T cells (Tregs) and myeloid-derived suppressor cells (MDSCs) release inhibitory factors to promote tumor growth and progression. In the meantime, a growing body of evidence illustrates that the balance between pro- and anti-tumor responses of TIICs is associated with the prognosis in the tumor microenvironment. Therefore, in order to boost anti-tumor response and improve the clinical outcome of tumor patients, a variety of anti-tumor strategies for targeting TIICs based on their respective functions have been developed and obtained good treatment benefits, including mainly immune checkpoint blockade (ICB), adoptive cell therapies (ACT), chimeric antigen receptor (CAR) T cells, and various monoclonal antibodies. In recent years, the tumor-specific features of immune cells are further investigated by various methods, such as using single-cell RNA sequencing (scRNA-seq), and the results indicate that these cells have diverse phenotypes in different types of tumors and emerge inconsistent therapeutic responses. Hence, we concluded the recent advances in tumor-infiltrating immune cells, including functions, prognostic values, and various immunotherapy strategies for each immune cell in different tumors.
Collapse
Affiliation(s)
- Wang Yaping
- Department of Thyroid, Breast and Vascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Wang Zhe
- Department of Thyroid, Breast and Vascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Chu Zhuling
- Department of General Surgery, Eastern Theater Air Force Hospital of PLA, Nanjing, China
| | - Li Ruolei
- Department of Thyroid, Breast and Vascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Fan Pengyu
- Department of Thyroid, Breast and Vascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Guo Lili
- Department of Thyroid, Breast and Vascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Ji Cheng
- Department of Thyroid, Breast and Vascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Zhang Bo
- Department of Thyroid, Breast and Vascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Liu Liuyin
- Department of Thyroid, Breast and Vascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Hou Guangdong
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Wang Yaoling
- Department of Geriatrics, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hou Niuniu
- Department of Thyroid, Breast and Vascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China
- Department of General Surgery, Eastern Theater Air Force Hospital of PLA, Nanjing, China
- *Correspondence: Hou Niuniu, ; Ling Rui,
| | - Ling Rui
- Department of Thyroid, Breast and Vascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China
- *Correspondence: Hou Niuniu, ; Ling Rui,
| |
Collapse
|
132
|
Chimienti R, Baccega T, Torchio S, Manenti F, Pellegrini S, Cospito A, Amabile A, Lombardo MT, Monti P, Sordi V, Lombardo A, Malnati M, Piemonti L. Engineering of immune checkpoints B7-H3 and CD155 enhances immune compatibility of MHC-I -/- iPSCs for β cell replacement. Cell Rep 2022; 40:111423. [PMID: 36170817 PMCID: PMC9532846 DOI: 10.1016/j.celrep.2022.111423] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 06/09/2022] [Accepted: 09/06/2022] [Indexed: 12/02/2022] Open
Abstract
Induced pluripotent stem cells (iPSCs) represent a source from which β cells can be derived for diabetes replacement therapy. However, their application may be hindered by immune-mediated responses. Although abrogation of major histocompatibility complex class I (MHC-I) can address this issue, it may trigger natural killer (NK) cells through missing-self recognition mechanisms. By profiling the relevant NK-activating ligands on iPSCs during in vitro differentiation into pancreatic β cells, we find that they express high levels of B7-H3 and CD155. Hypothesizing that such surface ligands could be involved in the amplification of NK-activating signals following missing-self, we generate MHC-I-deprived B7-H3−/−, CD155−/−, and B7-H3−/−/CD155−/− iPSCs. All engineered lines correctly differentiate into insulin-secreting β cells and are protected from cell lysis mediated by CD16dim and CD16+ NK subpopulations both in vitro and in vivo in NSG mice. Our data support targeted disruption of NK-activating ligands to enhance the transplant compatibility of MHC-I−/− iPSC pancreatic derivatives. MHC-I−/− cells are killed by NK cells via missing-self recognition mechanisms Stem cell-derived pancreatic progenitors (PPs) express B7-H3 and CD155 NK ligands B7-H3/CD155 knockout (KO) prevents killing of the MHC-I−/− cells by NKs in vitro B7-H3/CD155 KO increases immune compatibility of MHC-I−/− PPs in a mouse model
Collapse
Affiliation(s)
- Raniero Chimienti
- Diabetes Research Institute (DRI), IRCCS Ospedale San Raffaele, Via Olgettina 60, 20132 Milan, Italy; Unit of Viral Transmission and Evolution, Division of Immunology, Transplantation and Infectious Disease (DITID), IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milan, Italy
| | - Tania Baccega
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milan, Italy; Vita-Salute San Raffaele University, Via Olgettina 58, 20132 Milan, Italy
| | - Silvia Torchio
- Diabetes Research Institute (DRI), IRCCS Ospedale San Raffaele, Via Olgettina 60, 20132 Milan, Italy; Vita-Salute San Raffaele University, Via Olgettina 58, 20132 Milan, Italy
| | - Fabio Manenti
- Diabetes Research Institute (DRI), IRCCS Ospedale San Raffaele, Via Olgettina 60, 20132 Milan, Italy
| | - Silvia Pellegrini
- Diabetes Research Institute (DRI), IRCCS Ospedale San Raffaele, Via Olgettina 60, 20132 Milan, Italy
| | - Alessandro Cospito
- Diabetes Research Institute (DRI), IRCCS Ospedale San Raffaele, Via Olgettina 60, 20132 Milan, Italy
| | - Angelo Amabile
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Marta Tiffany Lombardo
- Diabetes Research Institute (DRI), IRCCS Ospedale San Raffaele, Via Olgettina 60, 20132 Milan, Italy
| | - Paolo Monti
- Diabetes Research Institute (DRI), IRCCS Ospedale San Raffaele, Via Olgettina 60, 20132 Milan, Italy
| | - Valeria Sordi
- Diabetes Research Institute (DRI), IRCCS Ospedale San Raffaele, Via Olgettina 60, 20132 Milan, Italy
| | - Angelo Lombardo
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milan, Italy
| | - Mauro Malnati
- Unit of Viral Transmission and Evolution, Division of Immunology, Transplantation and Infectious Disease (DITID), IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milan, Italy
| | - Lorenzo Piemonti
- Diabetes Research Institute (DRI), IRCCS Ospedale San Raffaele, Via Olgettina 60, 20132 Milan, Italy; Vita-Salute San Raffaele University, Via Olgettina 58, 20132 Milan, Italy.
| |
Collapse
|
133
|
Restricted Recruitment of NK Cells with Impaired Function Is Caused by HPV-Driven Immunosuppressive Microenvironment of Papillomas in Aggressive Juvenile-Onset Recurrent Respiratory Papillomatosis Patients. J Virol 2022; 96:e0094622. [PMID: 36154611 DOI: 10.1128/jvi.00946-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Laryngopharynx epithelium neoplasia induced by HPV6/11 infection in juvenile-onset recurrent respiratory papillomatosis (JO-RRP) causes a great health issue characteristic of frequent relapse and aggressive disease progression. Local cell-mediated immunity shaped by the recruitment and activation of cytotoxic effector cells is critical for viral clearance. In this study, we found that NK cells in the papillomas of aggressive JO-RRP patients, in contrast to massive infiltrated T cells, were scarce in number and impaired in activation and cytotoxicity as they were in peripheral blood. Data from cell infiltration analysis indicated that the migration of NK cell to papilloma was restricted in aggressive JO-RRP patients. Further study showed that the skewed chemokine expression in the papillomas and elevated ICAM-1 expression in hyperplastic epithelia cells favored the T cell but not NK cell recruitment in aggressive JO-RRP patients. In parallel to the increased CD3+ T cells, we observed a dramatical increase in Tregs and Treg-promoting cytokines such as IL-4, IL-10 and TGFβ in papillomas of aggressive JO-RRP patients. Our study suggested that likely initialized by the intrinsic change in neoplastic epithelial cells with persistent HPV infection, the aggressive papillomas built an entry barrier for NK cell infiltration and formed an immunosuppressive clump to fend off the immune attack from intra-papillomas NK cells. IMPORTANCE Frequent relapse and aggressive disease progression of juvenile-onset recurrent respiratory papillomatosis (JO-RRP) pose a great challenge to the complete remission of HPV 6/11 related laryngeal neoplasia. Local immune responses in papillomas are more relevant to the disease control considering the locale infected restriction of HPV virus in epitheliums. In our study, the restricted NK cell number and reduced expression of activating NKp30 receptor suggested one possible mechanism underlying impaired NK cell defense ability in aggressive JO-RRP papillomas. Meanwhile, the negative impact of HPV persistent infection on NK cell number and function represented yet another example of a chronic pathogen subverting NK cell behavior, affirming a potentially important role for NK cells in viral containment. Further, the skewed chemokine/cytokine expression in the papillomas and the elevated adhesion molecules expression in hyperplastic epithelia cells provided important clues for understanding blocked infiltration and antiviral dysfunction of NK cells in papilloma.
Collapse
|
134
|
Li S, Zhao R, Zheng D, Qin L, Cui Y, Li Y, Jiang Z, Zhong M, Shi J, Li M, Wang X, Tang Z, Wu Q, Long Y, Hu D, Wang S, Yao Y, Liu S, Yang LH, Zhang Z, Tang Q, Liu P, Li Y, Li P. DAP10 integration in CAR-T cells enhances the killing of heterogeneous tumors by harnessing endogenous NKG2D. Mol Ther Oncolytics 2022; 26:15-26. [PMID: 35784403 PMCID: PMC9218287 DOI: 10.1016/j.omto.2022.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 06/01/2022] [Indexed: 12/04/2022] Open
Abstract
Although chimeric antigen receptor T (CAR-T) cells have achieved remarkable successes in hematological malignancies, the efficacies of CAR-T cells against solid tumors remains unsatisfactory. Heterogeneous antigen expression is one of the obstacles on its effective elimination of solid cancer cells. DNAX-activating protein 10 (DAP10) interacts with natural killer group 2D (NKG2D), acting as an adaptor that targets various malignant cells for surveillance. Here, we designed a DAP10 chimeric receptor that utilized native NKG2D on T cells to target NKG2D ligand-expressing cancer cells. We then tandemly incorporated it with anti-glypican 3 (GPC3) single-chain variable fragment (scFv) to construct a dual-antigen-targeting system. T cells expressing DAP10 chimeric receptor (DAP10-T cells) displayed with an enhancement on both cytotoxicity and cytokine secretion against solid cancer cell lines, and its tandem connection with anti-GPC3 scFv (CAR GPC3-DAP10-T cells) exhibited a dual-antigen-targeting capacity on eliminating heterogeneous cancer cells in vitro and suppressing the growth of heterogeneous cancer in vivo. Thus, this novel dual-targeting system enabled a high efficacy on killing cancer cells and extended the recognition profile of CAR-T cells toward tumors, which providing a potential strategy on treatment of solid cancer clinically.
Collapse
Affiliation(s)
- Shanglin Li
- China-New Zealand Joint Laboratory of Biomedicine and Health, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Ruocong Zhao
- Institute of Hematology, Medical College, Jinan University, Guangzhou, China.,Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong SAR, China
| | - Diwei Zheng
- China-New Zealand Joint Laboratory of Biomedicine and Health, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Le Qin
- China-New Zealand Joint Laboratory of Biomedicine and Health, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Yuanbin Cui
- China-New Zealand Joint Laboratory of Biomedicine and Health, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yao Li
- China-New Zealand Joint Laboratory of Biomedicine and Health, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Zhiwu Jiang
- China-New Zealand Joint Laboratory of Biomedicine and Health, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Mengjun Zhong
- Institute of Hematology, Medical College, Jinan University, Guangzhou, China
| | - Jingxuan Shi
- China-New Zealand Joint Laboratory of Biomedicine and Health, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Ming Li
- Anhui University, Hefei, China
| | - Xindong Wang
- Bioland Laboratory, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China
| | - Zhaoyang Tang
- Guangdong Zhaotai InVivo Biomedicine Co., Ltd., Guangzhou, China.,Guangdong Zhaotai Cell Biology Technology, Ltd., Foshan, China
| | - Qiting Wu
- China-New Zealand Joint Laboratory of Biomedicine and Health, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Youguo Long
- China-New Zealand Joint Laboratory of Biomedicine and Health, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Duo Hu
- Bioland Laboratory, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China
| | - Suna Wang
- China-New Zealand Joint Laboratory of Biomedicine and Health, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Yao Yao
- China-New Zealand Joint Laboratory of Biomedicine and Health, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Shuang Liu
- Department of Hematology, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Li-Hua Yang
- Department of Pediatric Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Zhenfeng Zhang
- Department of Radiology, Translational Provincial Education Department Key Laboratory of Nano-Immmunoregulation Tumor Microenvironment, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Qiannan Tang
- School of Biomedical Sciences, Stem Cell and Regenerative Medicine Consortium, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Pentao Liu
- School of Biomedical Sciences, Stem Cell and Regenerative Medicine Consortium, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Yangqiu Li
- Institute of Hematology, Medical College, Jinan University, Guangzhou, China
| | - Peng Li
- China-New Zealand Joint Laboratory of Biomedicine and Health, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Bioland Laboratory, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China.,Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong SAR, China
| |
Collapse
|
135
|
Seliger B, Koehl U. Underlying mechanisms of evasion from NK cells as rational for improvement of NK cell-based immunotherapies. Front Immunol 2022; 13:910595. [PMID: 36045670 PMCID: PMC9422402 DOI: 10.3389/fimmu.2022.910595] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 07/20/2022] [Indexed: 11/13/2022] Open
Abstract
Natural killer (NK) cells belong to the family of innate immune cells with the capacity to recognize and kill tumor cells. Different phenotypes and functional properties of NK cells have been described in tumor patients, which could be shaped by the tumor microenvironment. The discovery of HLA class I-specific inhibitory receptors controlling NK cell activity paved the way to the fundamental concept of modulating immune responses that are regulated by an array of inhibitory receptors, and emphasized the importance to explore the potential of NK cells in cancer therapy. Although a whole range of NK cell-based approaches are currently being developed, there are still major challenges that need to be overcome for improved efficacy of these therapies. These include escape of tumor cells from NK cell recognition due to their expression of inhibitory molecules, immune suppressive signals of NK cells, reduced NK cell infiltration of tumors, an immune suppressive micromilieu and limited in vivo persistence of NK cells. Therefore, this review provides an overview about the NK cell biology, alterations of NK cell activities, changes in tumor cells and the tumor microenvironment contributing to immune escape or immune surveillance by NK cells and their underlying molecular mechanisms as well as the current status and novel aspects of NK cell-based therapeutic strategies including their genetic engineering and their combination with conventional treatment options to overcome tumor-mediated evasion strategies and improve therapy efficacy.
Collapse
Affiliation(s)
- Barbara Seliger
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
- Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
- *Correspondence: Barbara Seliger,
| | - Ulrike Koehl
- Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
- Institute of Clinical Immunology, University of Leipzig, Leipzig, Germany
- Institute of Cellular Therapeutics, Hannover Medical School, Hannover, Germany
| |
Collapse
|
136
|
Dakhel S, Galbiati A, Migliorini F, Comacchio C, Oehler S, Prati L, Scheuermann J, Cazzamalli S, Neri D, Bassi G, Favalli N. Isolation of a Natural Killer Group 2D Small-Molecule Ligand from DNA-Encoded Chemical Libraries. ChemMedChem 2022; 17:e202200350. [PMID: 35929380 DOI: 10.1002/cmdc.202200350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/04/2022] [Indexed: 11/11/2022]
Abstract
Natural Killer Group 2D (NKG2D) is a homo-dimeric transmembrane protein which is typically expressed on the surface of natural killer (NK) cells, natural killer T (NKT) cells, gamma delta T (γδT) cells, activated CD8 positive T-cells and activated macrophages. Bispecific molecules, capable of bridging NKG2D with a target protein expressed on the surface of tumor cells, may be used to redirect the cytotoxic activity of NK-cells towards antigen-positive malignanT-cells. In this work, we report the discovery of a novel NKG2D small molecule binder [K D = (410±60) nM], isolated from a DNA-Encoded Chemical Library (DEL). The discovery of small organic NKG2D ligands may facilitate the generation of fully synthetic bispecific adaptors, which may serve as an alternative to bispecific antibody products and which may benefit from better tumor targeting properties.
Collapse
Affiliation(s)
| | | | | | | | | | - Luca Prati
- Philogen SpA, R&D (Philochem), SWITZERLAND
| | - Jörg Scheuermann
- ETH Zürich: Eidgenossische Technische Hochschule Zurich, chemistry and applied biosciences, SWITZERLAND
| | | | | | | | - Nicholas Favalli
- Philogen SpA, R&D (Philochem), Libernstrasse 3, 8112, Otelfingen, SWITZERLAND
| |
Collapse
|
137
|
Peipp M, Klausz K, Boje AS, Zeller T, Zielonka S, Kellner C. Immunotherapeutic targeting of activating natural killer cell receptors and their ligands in cancer. Clin Exp Immunol 2022; 209:22-32. [PMID: 35325068 PMCID: PMC9307233 DOI: 10.1093/cei/uxac028] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/15/2022] [Accepted: 03/22/2022] [Indexed: 02/06/2023] Open
Abstract
Natural killer (NK) cells exert an important role in cancer immune surveillance. Recognition of malignant cells and controlled activation of effector functions are facilitated by the expression of activating and inhibitory receptors, which is a complex interplay that allows NK cells to discriminate malignant cells from healthy tissues. Due to their unique profile of effector functions, the recruitment of NK cells is attractive in cancer treatment and a key function of NK cells in antibody therapy is widely appreciated. In recent years, besides the low-affinity fragment crystallizable receptor for immunoglobulin G (FcγRIIIA), the activating natural killer receptors p30 (NKp30) and p46 (NKp46), as well as natural killer group 2 member D (NKG2D), have gained increasing attention as potential targets for bispecific antibody-derivatives to redirect NK cell cytotoxicity against tumors. Beyond modulation of the receptor activity on NK cells, therapeutic targeting of the respective ligands represents an attractive approach. Here, novel therapeutic approaches to unleash NK cells by engagement of activating NK-cell receptors and alternative strategies targeting their tumor-expressed ligands in cancer therapy are summarized.
Collapse
Affiliation(s)
- Matthias Peipp
- Division of Antibody-Based Immunotherapy, Department of Internal Medicine II, Christian Albrechts University and University Hospital Schleswig-Holstein, Kiel, Germany
| | - Katja Klausz
- Division of Antibody-Based Immunotherapy, Department of Internal Medicine II, Christian Albrechts University and University Hospital Schleswig-Holstein, Kiel, Germany
| | - Ammelie Svea Boje
- Division of Antibody-Based Immunotherapy, Department of Internal Medicine II, Christian Albrechts University and University Hospital Schleswig-Holstein, Kiel, Germany
| | - Tobias Zeller
- Division of Transfusion Medicine, Cell Therapeutics and Haemostaseology, University Hospital, LMU Munich, Munich, Germany
| | - Stefan Zielonka
- Protein Engineering and Antibody Technologies, Merck Healthcare KGaA, Darmstadt, Germany
| | - Christian Kellner
- Correspondence: Christian Kellner, Division of Transfusion Medicine, Cell Therapeutics and Haemostaseology, University Hospital, LMU Munich, Munich, Germany.
| |
Collapse
|
138
|
Zhao W, Jin L, Chen P, Li D, Gao W, Dong G. Colorectal cancer immunotherapy-Recent progress and future directions. Cancer Lett 2022; 545:215816. [PMID: 35810989 DOI: 10.1016/j.canlet.2022.215816] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 06/12/2022] [Accepted: 07/01/2022] [Indexed: 12/09/2022]
Abstract
Compared with conventional chemotherapy and targeted therapy, immunotherapy has changed the treatment prospects of various solid tumors and has recently become the main treatment method for metastatic or recurrent solid tumors, including malignant melanoma, non-small-cell lung cancer, and renal cell carcinoma. The application of immune checkpoint inhibitor (ICI)-based immunotherapy in patients with colorectal cancer (CRC) has yielded satisfactory results in terms of safety and efficacy, and several immunotherapeutic agents, including pembrolizumab, nivolumab, and ipilimumab, have been approved for the treatment of advanced CRC. The advent of other immunotherapies, such as chimeric antigen receptor-modified T (CAR-T) cells or cancer vaccines, have also contributed to the development of immunotherapy for CRC. Here, we summarize the findings of recent clinical trials on the efficacy of immunotherapy in CRC and briefly describe the mechanisms associated with tumor-intrinsic resistance to ICIs. We then discuss potential biomarkers for predicting the efficacy of immunotherapy.
Collapse
Affiliation(s)
- Wen Zhao
- School of Medicine, Nankai University, Tianjin, 300071, China; Department of General Surgery, Chinese PLA General Hospital, Beijing, 100853, China
| | - Lujia Jin
- Department of General Surgery, Chinese PLA General Hospital, Beijing, 100853, China
| | - Peng Chen
- Department of General Surgery, Chinese PLA General Hospital, Beijing, 100853, China
| | - Dingchang Li
- Department of General Surgery, Chinese PLA General Hospital, Beijing, 100853, China
| | - Wenxing Gao
- Department of General Surgery, Chinese PLA General Hospital, Beijing, 100853, China
| | - Guanglong Dong
- School of Medicine, Nankai University, Tianjin, 300071, China; Department of General Surgery, Chinese PLA General Hospital, Beijing, 100853, China.
| |
Collapse
|
139
|
Gutiérrez-Bautista JF, Martinez-Chamorro A, Rodriguez-Nicolas A, Rosales-Castillo A, Jiménez P, Anderson P, López-Ruz MÁ, López-Nevot MÁ, Ruiz-Cabello F. Major Histocompatibility Complex Class I Chain-Related α (MICA) STR Polymorphisms in COVID-19 Patients. Int J Mol Sci 2022; 23:ijms23136979. [PMID: 35805975 PMCID: PMC9266713 DOI: 10.3390/ijms23136979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 06/21/2022] [Accepted: 06/22/2022] [Indexed: 02/01/2023] Open
Abstract
The SARS-CoV-2 disease presents different phenotypes of severity. Comorbidities, age, and being overweight are well established risk factors for severe disease. However, innate immunity plays a key role in the early control of viral infections and may condition the gravity of COVID-19. Natural Killer (NK) cells are part of innate immunity and are important in the control of virus infection by killing infected cells and participating in the development of adaptive immunity. Therefore, we studied the short tandem repeat (STR) transmembrane polymorphisms of the major histocompatibility complex class I chain-related A (MICA), an NKG2D ligand that induces activation of NK cells, among other cells. We compared the alleles and genotypes of MICA in COVID-19 patients versus healthy controls and analyzed their relation to disease severity. Our results indicate that the MICA*A9 allele is related to infection as well as to symptomatic disease but not to severe disease. The MICA*A9 allele may be a risk factor for SARS-CoV-2 infection and symptomatic disease.
Collapse
Affiliation(s)
- Juan Francisco Gutiérrez-Bautista
- Servicio de Análisis Clínicos e Inmunología, Hospital Universitario Virgen de las Nieves, 18012 Granada, Spain; (J.F.G.-B.); (A.R.-N.); (P.J.); (P.A.)
- Programa de Doctorado en Biomedicina, University of Granada, 18016 Granada, Spain
- Departamento Bioquímica, Biología Molecular e Inmunología III, University of Granada, 18071 Granada, Spain
| | | | - Antonio Rodriguez-Nicolas
- Servicio de Análisis Clínicos e Inmunología, Hospital Universitario Virgen de las Nieves, 18012 Granada, Spain; (J.F.G.-B.); (A.R.-N.); (P.J.); (P.A.)
| | - Antonio Rosales-Castillo
- Servicio de Medicina Interna, Hospital Universitario Virgen de las Nieves, 18012 Granada, Spain;
| | - Pilar Jiménez
- Servicio de Análisis Clínicos e Inmunología, Hospital Universitario Virgen de las Nieves, 18012 Granada, Spain; (J.F.G.-B.); (A.R.-N.); (P.J.); (P.A.)
| | - Per Anderson
- Servicio de Análisis Clínicos e Inmunología, Hospital Universitario Virgen de las Nieves, 18012 Granada, Spain; (J.F.G.-B.); (A.R.-N.); (P.J.); (P.A.)
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain
| | - Miguel Ángel López-Ruz
- Departamento de Medicina, University of Granada, 18071 Granada, Spain;
- Servicio de Enfermedades Infecciosas, Hospital Universitario Virgen de las Nieves, 18012 Granada, Spain
| | - Miguel Ángel López-Nevot
- Servicio de Análisis Clínicos e Inmunología, Hospital Universitario Virgen de las Nieves, 18012 Granada, Spain; (J.F.G.-B.); (A.R.-N.); (P.J.); (P.A.)
- Departamento Bioquímica, Biología Molecular e Inmunología III, University of Granada, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain
- Correspondence: (M.Á.L.-N.); (F.R.-C.)
| | - Francisco Ruiz-Cabello
- Servicio de Análisis Clínicos e Inmunología, Hospital Universitario Virgen de las Nieves, 18012 Granada, Spain; (J.F.G.-B.); (A.R.-N.); (P.J.); (P.A.)
- Departamento Bioquímica, Biología Molecular e Inmunología III, University of Granada, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain
- Correspondence: (M.Á.L.-N.); (F.R.-C.)
| |
Collapse
|
140
|
Garcinuño S, Gil-Etayo FJ, Mancebo E, López-Nevado M, Lalueza A, Díaz-Simón R, Pleguezuelo DE, Serrano M, Cabrera-Marante O, Allende LM, Paz-Artal E, Serrano A. Effective Natural Killer Cell Degranulation Is an Essential Key in COVID-19 Evolution. Int J Mol Sci 2022; 23:ijms23126577. [PMID: 35743021 PMCID: PMC9224310 DOI: 10.3390/ijms23126577] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/09/2022] [Accepted: 06/10/2022] [Indexed: 02/05/2023] Open
Abstract
NK degranulation plays an important role in the cytotoxic activity of innate immunity in the clearance of intracellular infections and is an important factor in the outcome of the disease. This work has studied NK degranulation and innate immunological profiles and functionalities in COVID-19 patients and its association with the severity of the disease. A prospective observational study with 99 COVID-19 patients was conducted. Patients were grouped according to hospital requirements and severity. Innate immune cell subpopulations and functionalities were analyzed. The profile and functionality of innate immune cells differ between healthy controls and severe patients; CD56dim NK cells increased and MAIT cells and NK degranulation rates decreased in the COVID-19 subjects. Higher degranulation rates were observed in the non-severe patients and in the healthy controls compared to the severe patients. Benign forms of the disease had a higher granzymeA/granzymeB ratio than complex forms. In a multivariate analysis, the degranulation capacity resulted in a protective factor against severe forms of the disease (OR: 0.86), whereas the permanent expression of NKG2D in NKT cells was an independent risk factor (OR: 3.81; AUC: 0.84). In conclusion, a prompt and efficient degranulation functionality in the early stages of infection could be used as a tool to identify patients who will have a better evolution.
Collapse
Affiliation(s)
- Sara Garcinuño
- Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain; (S.G.); (F.J.G.-E.); (E.M.); (M.L.-N.); (A.L.); (D.E.P.); (M.S.); (O.C.-M.); (L.M.A.); (E.P.-A.)
| | - Francisco Javier Gil-Etayo
- Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain; (S.G.); (F.J.G.-E.); (E.M.); (M.L.-N.); (A.L.); (D.E.P.); (M.S.); (O.C.-M.); (L.M.A.); (E.P.-A.)
- Department of Immunology, Hospital Universitario 12 de Octubre, 28041 Madrid, Spain
| | - Esther Mancebo
- Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain; (S.G.); (F.J.G.-E.); (E.M.); (M.L.-N.); (A.L.); (D.E.P.); (M.S.); (O.C.-M.); (L.M.A.); (E.P.-A.)
- Department of Immunology, Hospital Universitario 12 de Octubre, 28041 Madrid, Spain
| | - Marta López-Nevado
- Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain; (S.G.); (F.J.G.-E.); (E.M.); (M.L.-N.); (A.L.); (D.E.P.); (M.S.); (O.C.-M.); (L.M.A.); (E.P.-A.)
| | - Antonio Lalueza
- Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain; (S.G.); (F.J.G.-E.); (E.M.); (M.L.-N.); (A.L.); (D.E.P.); (M.S.); (O.C.-M.); (L.M.A.); (E.P.-A.)
- Department of Internal Medicine, Hospital Universitario 12 de Octubre, 28041 Madrid, Spain;
| | - Raquel Díaz-Simón
- Department of Internal Medicine, Hospital Universitario 12 de Octubre, 28041 Madrid, Spain;
| | - Daniel Enrique Pleguezuelo
- Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain; (S.G.); (F.J.G.-E.); (E.M.); (M.L.-N.); (A.L.); (D.E.P.); (M.S.); (O.C.-M.); (L.M.A.); (E.P.-A.)
- Department of Immunology, Hospital Universitario 12 de Octubre, 28041 Madrid, Spain
| | - Manuel Serrano
- Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain; (S.G.); (F.J.G.-E.); (E.M.); (M.L.-N.); (A.L.); (D.E.P.); (M.S.); (O.C.-M.); (L.M.A.); (E.P.-A.)
- Department of Immunology, Hospital Universitario 12 de Octubre, 28041 Madrid, Spain
| | - Oscar Cabrera-Marante
- Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain; (S.G.); (F.J.G.-E.); (E.M.); (M.L.-N.); (A.L.); (D.E.P.); (M.S.); (O.C.-M.); (L.M.A.); (E.P.-A.)
- Department of Immunology, Hospital Universitario 12 de Octubre, 28041 Madrid, Spain
| | - Luis M. Allende
- Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain; (S.G.); (F.J.G.-E.); (E.M.); (M.L.-N.); (A.L.); (D.E.P.); (M.S.); (O.C.-M.); (L.M.A.); (E.P.-A.)
- Department of Immunology, Hospital Universitario 12 de Octubre, 28041 Madrid, Spain
- Department of Immunology, Ophthalmology and Otorhinolaryngology, Facultad de Medicina, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Estela Paz-Artal
- Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain; (S.G.); (F.J.G.-E.); (E.M.); (M.L.-N.); (A.L.); (D.E.P.); (M.S.); (O.C.-M.); (L.M.A.); (E.P.-A.)
- Department of Immunology, Hospital Universitario 12 de Octubre, 28041 Madrid, Spain
- Department of Immunology, Ophthalmology and Otorhinolaryngology, Facultad de Medicina, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Antonio Serrano
- Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain; (S.G.); (F.J.G.-E.); (E.M.); (M.L.-N.); (A.L.); (D.E.P.); (M.S.); (O.C.-M.); (L.M.A.); (E.P.-A.)
- Department of Immunology, Hospital Universitario 12 de Octubre, 28041 Madrid, Spain
- Biomedical Research Centre Network for Epidemiology and Public Health (CIBERESP), 28029 Madrid, Spain
- Correspondence: ; Tel.: +34-652-085-293
| |
Collapse
|
141
|
Casado JA, Valeri A, Sanchez-Domínguez R, Vela P, Lopez A, Navarro S, Alberquilla O, Hanenberg H, Pujol R, Segovia JC, Minguillón J, Surrallés J, Diaz-de-Heredia C, Sevilla J, Rio P, Bueren JA. Upregulation of NKG2D ligands impairs hematopoietic stem cell function in Fanconi anemia. J Clin Invest 2022; 132:142842. [PMID: 35671096 PMCID: PMC9337828 DOI: 10.1172/jci142842] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 05/25/2022] [Indexed: 11/21/2022] Open
Abstract
Fanconi anemia (FA) is the most prevalent inherited bone marrow failure (BMF) syndrome. Nevertheless, the pathophysiological mechanisms of BMF in FA have not been fully elucidated. Since FA cells are defective in DNA repair, we hypothesized that FA hematopoietic stem and progenitor cells (HSPCs) might express DNA damage–associated stress molecules such as natural killer group 2 member D ligands (NKG2D-Ls). These ligands could then interact with the activating NKG2D receptor expressed in cytotoxic NK or CD8+ T cells, which may result in progressive HSPC depletion. Our results indeed demonstrated upregulated levels of NKG2D-Ls in cultured FA fibroblasts and T cells, and these levels were further exacerbated by mitomycin C or formaldehyde. Notably, a high proportion of BM CD34+ HSPCs from patients with FA also expressed increased levels of NKG2D-Ls, which correlated inversely with the percentage of CD34+ cells in BM. Remarkably, the reduced clonogenic potential characteristic of FA HSPCs was improved by blocking NKG2D–NKG2D-L interactions. Moreover, the in vivo blockage of these interactions in a BMF FA mouse model ameliorated the anemia in these animals. Our study demonstrates the involvement of NKG2D–NKG2D-L interactions in FA HSPC functionality, suggesting an unexpected role of the immune system in the progressive BMF that is characteristic of FA.
Collapse
Affiliation(s)
- Jose A Casado
- Division of Innovative Therapies, CIEMAT and Advanced Therapies Unit, IIS-Fundación Jimenez Diaz and Autónoma University, Madrid, Spain
| | - Antonio Valeri
- Division of Innovative Therapies, CIEMAT and Advanced Therapies Unit, IIS-Fundación Jimenez Diaz and Autónoma University, Madrid, Spain
| | - Rebeca Sanchez-Domínguez
- Division of Innovative Therapies, CIEMAT and Advanced Therapies Unit, IIS-Fundación Jimenez Diaz and Autónoma University, Madrid, Spain
| | - Paula Vela
- Division of Innovative Therapies, CIEMAT and Advanced Therapies Unit, IIS-Fundación Jimenez Diaz and Autónoma University, Madrid, Spain
| | - Andrea Lopez
- Division of Innovative Therapies, CIEMAT and Advanced Therapies Unit, IIS-Fundación Jimenez Diaz and Autónoma University, Madrid, Spain
| | - Susana Navarro
- Division of Innovative Therapies, CIEMAT and Advanced Therapies Unit, IIS-Fundación Jimenez Diaz and Autónoma University, Madrid, Spain
| | - Omaira Alberquilla
- Division of Innovative Therapies, CIEMAT and Advanced Therapies Unit, IIS-Fundación Jimenez Diaz and Autónoma University, Madrid, Spain
| | - Helmut Hanenberg
- Department of Pediatrics, University Hospital, University Duisburg-Essen, Essen, Germany
| | - Roser Pujol
- Department of Genetics and Microbiology, Universitat Autónoma de Barcelona, Barcelona, Spain
| | - Jose C Segovia
- Division of Innovative Therapies, CIEMAT and Advanced Therapies Unit, IIS-Fundación Jimenez Diaz and Autónoma University, Madrid, Spain
| | - Jordi Minguillón
- Department of Genetics and Microbiology, Universitat Autónoma de Barcelona, Barcelona, Spain
| | - Jordi Surrallés
- Department of Genetics and Microbiology, Universitat Autónoma de Barcelona, Barcelona, Spain
| | | | - Julián Sevilla
- Hospital Universitari Vall d'Hebron, Vall d'Hebron Institut de Recerca, Barcelona, Spain
| | - Paula Rio
- Division of Innovative Therapies, CIEMAT and Advanced Therapies Unit, IIS-Fundación Jimenez Diaz and Autónoma University, Madrid, Spain
| | - Juan A Bueren
- Division of Innovative Therapies, CIEMAT and Advanced Therapies Unit, IIS-Fundación Jimenez Diaz and Autónoma University, Madrid, Spain
| |
Collapse
|
142
|
Effect of different cytokines in combination with IL-15 on the expression of activating receptors in NK cells of patients with Behçet's disease. Immunol Res 2022; 70:654-666. [PMID: 35661971 DOI: 10.1007/s12026-022-09298-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 05/23/2022] [Indexed: 12/16/2022]
Abstract
Behçet's disease (BD) is a systemic, autoinflammatory, chronic disorder which affects various parts of the body in genetically susceptible individuals. BD has a multi-factorial etiopathogenesis which encompasses both innate and adaptive arms of immunity. NK cells, which kill virus-infected or malign cells and provide interaction between adaptive and innate immune system, are also known to involve in the pathogenesis of autoimmune/autoinflammatory diseases including BD. NK cells function in immune responses via the signals obtained from surface-expressed activating and inhibitory receptors. In this study, we aimed to explore NK cell activation status by measuring the levels of activation marker CD69 and activating receptors NKG2D, NKp30, and NKp46 as well as proliferative and cytotoxic capacities in response to stimulation with interleukin (IL)-15-combined cytokines in BD patients. CD4+ and CD8+ T cell responses were also evaluated to compare with those of NK cells. As a result, the expression of activating receptors on NK cells was demonstrated to be varied among patients with active and inactive BD and healthy controls. The proliferation levels of NK cells were elevated in BD patients, especially in inactive phase of disease compared to healthy controls. Additionally, CD107a levels of inactive BD patients were detected to be lower in comparison with healthy controls and active BD patients. These findings suggest that BD patients in active and inactive phases display different activation status of NK cells which indicate NK cells might be associated with immune attacks and remissions during the course of BD.
Collapse
|
143
|
Tetramethylpyrazine: A review on its mechanisms and functions. Biomed Pharmacother 2022; 150:113005. [PMID: 35483189 DOI: 10.1016/j.biopha.2022.113005] [Citation(s) in RCA: 94] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 04/15/2022] [Accepted: 04/19/2022] [Indexed: 11/21/2022] Open
Abstract
Ligusticum chuanxiong Hort (known as Chuanxiong in China, CX) is one of the most widely used and long-standing medicinal herbs in China. Tetramethylpyrazine (TMP) is an alkaloid and one of the active components of CX. Over the past few decades, TMP has been proven to possess several pharmacological properties. It has been used to treat a variety of diseases with excellent therapeutic effects. Here, the pharmacological characteristics and molecular mechanism of TMP in recent years are reviewed, with an emphasis on the signal-regulation mechanism of TMP. This review shows that TMP has many physiological functions, including anti-oxidant, anti-inflammatory, and anti-apoptosis properties; autophagy regulation; vasodilation; angiogenesis regulation; mitochondrial damage suppression; endothelial protection; reduction of proliferation and migration of vascular smooth muscle cells; and neuroprotection. At present, TMP is used in treating cardiovascular, nervous, and digestive system conditions, cancer, and other conditions and has achieved good curative effects. The therapeutic mechanism of TMP involves multiple targets, multiple pathways, and bidirectional regulation. TMP is, thus, a promising drug with great research potential.
Collapse
|
144
|
Fittje P, Hœlzemer A, Garcia-Beltran WF, Vollmers S, Niehrs A, Hagemann K, Martrus G, Körner C, Kirchhoff F, Sauter D, Altfeld M. HIV-1 Nef-mediated downregulation of CD155 results in viral restriction by KIR2DL5+ NK cells. PLoS Pathog 2022; 18:e1010572. [PMID: 35749424 PMCID: PMC9231786 DOI: 10.1371/journal.ppat.1010572] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 05/05/2022] [Indexed: 01/02/2023] Open
Abstract
Antiviral NK cell activity is regulated through the interaction of activating and inhibitory NK cell receptors with their ligands on infected cells. HLA class I molecules serve as ligands for most killer cell immunoglobulin-like receptors (KIRs), but no HLA class I ligands for the inhibitory NK cell receptor KIR2DL5 have been identified to date. Using a NK cell receptor/ligand screening approach, we observed no strong binding of KIR2DL5 to HLA class I or class II molecules, but confirmed that KIR2DL5 binds to the poliovirus receptor (PVR, CD155). Functional studies using primary human NK cells revealed a significantly decreased degranulation of KIR2DL5+ NK cells in response to CD155-expressing target cells. We subsequently investigated the role of KIR2DL5/CD155 interactions in HIV-1 infection, and showed that multiple HIV-1 strains significantly decreased CD155 expression levels on HIV-1-infected primary human CD4+ T cells via a Nef-dependent mechanism. Co-culture of NK cells with HIV-1-infected CD4+ T cells revealed enhanced anti-viral activity of KIR2DL5+ NK cells against wild-type versus Nef-deficient viruses, indicating that HIV-1-mediated downregulation of CD155 renders infected cells more susceptible to recognition by KIR2DL5+ NK cells. These data show that CD155 suppresses the antiviral activity of KIR2DL5+ NK cells and is downmodulated by HIV-1 Nef protein as potential trade-off counteracting activating NK cell ligands, demonstrating the ability of NK cells to counteract immune escape mechanisms employed by HIV-1. HIV infection remains a global health emergency that has caused around 36 million deaths. NK cells play an important role in the control of HIV-1 infections, and are able to detect and destroy infected cells using a large array of activating and inhibitory receptors, including KIRs. Here we demonstrate that CD155 serves as a functional interaction partner for the inhibitory NK cell receptor KIR2DL5, and that KIR2DL5+ NK cells are inhibited by CD155-expressing target cells. CD155 surface expression on HIV-1-infected CD4+ T cells was downregulated by the HIV-1 Nef protein, resulting in increased anti-viral activity of KIR2DL5+ NK cells through the loss of inhibitory signals. Taken together, these studies demonstrate functional consequences of the novel interaction between KIR2DL5 and CD155 for the antiviral activity of KIR2DL5+ NK cells during HIV-1 infection.
Collapse
Affiliation(s)
- Pia Fittje
- Leibniz Institute of Virology (LIV), Hamburg, Germany
| | - Angelique Hœlzemer
- Leibniz Institute of Virology (LIV), Hamburg, Germany
- First Department of Internal Medicine, Division of Infectious Diseases, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
| | - Wilfredo F. Garcia-Beltran
- Leibniz Institute of Virology (LIV), Hamburg, Germany
- Department of Pathology, Massachusetts General Hospital/Harvard Medical School, Boston, Massachusetts, United States of America
| | | | - Annika Niehrs
- Leibniz Institute of Virology (LIV), Hamburg, Germany
| | | | | | | | - Frank Kirchhoff
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Daniel Sauter
- Institute for Medical Virology and Epidemiology of Viral Diseases, University Hospital Tübingen, Tübingen, Germany
| | - Marcus Altfeld
- Leibniz Institute of Virology (LIV), Hamburg, Germany
- German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
- * E-mail:
| |
Collapse
|
145
|
Badrinath S, Dellacherie MO, Li A, Zheng S, Zhang X, Sobral M, Pyrdol JW, Smith KL, Lu Y, Haag S, Ijaz H, Connor-Stroud F, Kaisho T, Dranoff G, Yuan GC, Mooney DJ, Wucherpfennig KW. A vaccine targeting resistant tumours by dual T cell plus NK cell attack. Nature 2022; 606:992-998. [PMID: 35614223 PMCID: PMC10253041 DOI: 10.1038/s41586-022-04772-4] [Citation(s) in RCA: 83] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 04/19/2022] [Indexed: 12/17/2022]
Abstract
Most cancer vaccines target peptide antigens, necessitating personalization owing to the vast inter-individual diversity in major histocompatibility complex (MHC) molecules that present peptides to T cells. Furthermore, tumours frequently escape T cell-mediated immunity through mechanisms that interfere with peptide presentation1. Here we report a cancer vaccine that induces a coordinated attack by diverse T cell and natural killer (NK) cell populations. The vaccine targets the MICA and MICB (MICA/B) stress proteins expressed by many human cancers as a result of DNA damage2. MICA/B serve as ligands for the activating NKG2D receptor on T cells and NK cells, but tumours evade immune recognition by proteolytic MICA/B cleavage3,4. Vaccine-induced antibodies increase the density of MICA/B proteins on the surface of tumour cells by inhibiting proteolytic shedding, enhance presentation of tumour antigens by dendritic cells to T cells and augment the cytotoxic function of NK cells. Notably, this vaccine maintains efficacy against MHC class I-deficient tumours resistant to cytotoxic T cells through the coordinated action of NK cells and CD4+ T cells. The vaccine is also efficacious in a clinically important setting: immunization following surgical removal of primary, highly metastatic tumours inhibits the later outgrowth of metastases. This vaccine design enables protective immunity even against tumours with common escape mutations.
Collapse
Affiliation(s)
- Soumya Badrinath
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Immunology, Harvard Medical School, Boston, MA, USA
| | - Maxence O Dellacherie
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - Aileen Li
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
- Lyell Immunopharma, South San Francisco, CA, USA
| | - Shiwei Zheng
- Department of Data Sciences, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Genetics and Genomic Sciences, Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Xixi Zhang
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Immunology, Harvard Medical School, Boston, MA, USA
| | - Miguel Sobral
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - Jason W Pyrdol
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Kathryn L Smith
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Yuheng Lu
- Department of Data Sciences, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Sabrina Haag
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Immunology, Harvard Medical School, Boston, MA, USA
| | - Hamza Ijaz
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - Fawn Connor-Stroud
- Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
| | - Tsuneyasu Kaisho
- Department of Immunology, Institute of Advanced Medicine, Wakayama Medical University, Wakayama, Japan
| | - Glenn Dranoff
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Novartis Institutes for BioMedical Research, Cambridge, MA, USA
| | - Guo-Cheng Yuan
- Department of Data Sciences, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Genetics and Genomic Sciences, Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - David J Mooney
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - Kai W Wucherpfennig
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA.
- Department of Immunology, Harvard Medical School, Boston, MA, USA.
- Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA.
| |
Collapse
|
146
|
Dong R, Zhang Y, Xiao H, Zeng X. Engineering γδ T Cells: Recognizing and Activating on Their Own Way. Front Immunol 2022; 13:889051. [PMID: 35603176 PMCID: PMC9120431 DOI: 10.3389/fimmu.2022.889051] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 04/11/2022] [Indexed: 11/25/2022] Open
Abstract
Adoptive cell therapy (ACT) with engineered T cells has emerged as a promising strategy for the treatment of malignant tumors. Among them, there is great interest in engineered γδ T cells for ACT. With both adaptive and innate immune characteristics, γδ T cells can be activated by γδ TCRs to recognize antigens in a MHC-independent manner, or by NK receptors to recognize stress-induced molecules. The dual recognition system enables γδ T cells with unique activation and cytotoxicity profiles, which should be considered for the design of engineered γδ T cells. However, the current designs of engineered γδ T cells mostly follow the strategies that used in αβ T cells, but not making good use of the specific characteristics of γδ T cells. Therefore, it is no surprising that current engineered γδ T cells in preclinical or clinical trials have limited efficacy. In this review, we summarized the patterns of antigen recognition of γδ T cells and the features of signaling pathways for the functions of γδ T cells. This review will additionally discuss current progress in engineered γδ T cells and provide insights in the design of engineered γδ T cells based on their specific characteristics.
Collapse
Affiliation(s)
- Ruoyu Dong
- Department of Hematology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yixi Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Haowen Xiao
- Department of Hematology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xun Zeng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
147
|
Curio S, Edwards SC, Suzuki T, McGovern J, Triulzi C, Yoshida N, Jonsson G, Glauner T, Rami D, Wiesheu R, Kilbey A, Violet Purcell R, Coffelt SB, Guerra N. NKG2D signaling regulates IL-17A-producing γδT cells in mice to promote cancer progression. DISCOVERY IMMUNOLOGY 2022; 1:kyac002. [PMID: 36277678 PMCID: PMC9580227 DOI: 10.1093/discim/kyac002] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 03/28/2022] [Accepted: 04/20/2022] [Indexed: 11/14/2022]
Abstract
γδT cells are unconventional T cells particularly abundant in mucosal tissues that play an important role in tissue surveillance, homeostasis, and cancer. γδT cells recognize stressed cells or cancer cells through the NKG2D receptor to kill these cells and maintain normality. Contrary to the well-established anti-tumor function of these NKG2D-expressing γδT cells, we show here that, in mice, NKG2D regulates a population of pro-tumor γδT cells capable of producing IL-17A. Germline deletion of Klrk1, the gene encoding NKG2D, reduced the frequency of γδT cells in the tumor microenvironment and delayed tumor progression. We further show that blocking NKG2D reduced the capability of γδT cells to produce IL-17A in the pre-metastatic lung and that co-culture of lung T cells with NKG2D ligand-expressing tumor cells specifically increased the frequency of γδT cells. Together, these data support the hypothesis that, in a tumor microenvironment where NKG2D ligands are constitutively expressed, γδT cells accumulate in an NKG2D-dependent manner and drive tumor progression by secreting pro-inflammatory cytokines, such as IL-17A.
Collapse
Affiliation(s)
- Sophie Curio
- Department of Life Sciences, Imperial College London, London, UK
| | - Sarah C Edwards
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
- Cancer Research UK Beatson Institute, Glasgow, UK
| | - Toshiyasu Suzuki
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
- Cancer Research UK Beatson Institute, Glasgow, UK
| | - Jenny McGovern
- Department of Life Sciences, Imperial College London, London, UK
| | - Chiara Triulzi
- Department of Life Sciences, Imperial College London, London, UK
| | - Nagisa Yoshida
- Department of Life Sciences, Imperial College London, London, UK
| | - Gustav Jonsson
- Department of Life Sciences, Imperial College London, London, UK
| | - Teresa Glauner
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
- Cancer Research UK Beatson Institute, Glasgow, UK
| | - Damiano Rami
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
- Cancer Research UK Beatson Institute, Glasgow, UK
| | - Robert Wiesheu
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
- Cancer Research UK Beatson Institute, Glasgow, UK
| | - Anna Kilbey
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
- Cancer Research UK Beatson Institute, Glasgow, UK
| | | | - Seth B Coffelt
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
- Cancer Research UK Beatson Institute, Glasgow, UK
| | - Nadia Guerra
- Department of Life Sciences, Imperial College London, London, UK
| |
Collapse
|
148
|
Jones AB, Rocco A, Lamb LS, Friedman GK, Hjelmeland AB. Regulation of NKG2D Stress Ligands and Its Relevance in Cancer Progression. Cancers (Basel) 2022; 14:2339. [PMID: 35565467 PMCID: PMC9105350 DOI: 10.3390/cancers14092339] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/22/2022] [Accepted: 04/26/2022] [Indexed: 01/27/2023] Open
Abstract
Under cellular distress, multiple facets of normal homeostatic signaling are altered or disrupted. In the context of the immune landscape, external and internal stressors normally promote the expression of natural killer group 2 member D (NKG2D) ligands that allow for the targeted recognition and killing of cells by NKG2D receptor-bearing effector populations. The presence or absence of NKG2D ligands can heavily influence disease progression and impact the accessibility of immunotherapy options. In cancer, tumor cells are known to have distinct regulatory mechanisms for NKG2D ligands that are directly associated with tumor progression and maintenance. Therefore, understanding the regulation of NKG2D ligands in cancer will allow for targeted therapeutic endeavors aimed at exploiting the stress response pathway. In this review, we summarize the current understanding of regulatory mechanisms controlling the induction and repression of NKG2D ligands in cancer. Additionally, we highlight current therapeutic endeavors targeting NKG2D ligand expression and offer our perspective on considerations to further enhance the field of NKG2D ligand biology.
Collapse
Affiliation(s)
- Amber B. Jones
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35233, USA;
| | - Abbey Rocco
- Department of Pediatrics, Division of Pediatric Hematology and Oncology, University of Alabama at Birmingham, Birmingham, AL 35233, USA; (A.R.); (G.K.F.)
| | | | - Gregory K. Friedman
- Department of Pediatrics, Division of Pediatric Hematology and Oncology, University of Alabama at Birmingham, Birmingham, AL 35233, USA; (A.R.); (G.K.F.)
| | - Anita B. Hjelmeland
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35233, USA;
| |
Collapse
|
149
|
Poggi A, Zocchi MR. Anti-cancer γδ T lymphocytes: contradictory past and promising future. EXPLORATION OF IMMUNOLOGY 2022:220-228. [DOI: 10.37349/ei.2022.00047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 03/14/2022] [Indexed: 08/15/2024]
Abstract
Recent anti-cancer strategies are based on the stimulation of anti-tumor immune reaction, exploiting distinct lymphocyte subsets. Among them, γδ T cells represent optimal anti-cancer candidates, especially in those tissues where they are highly localized, such as the respiratory or gastrointestinal tract. One important challenge has been the identification of stimulating drugs able to induce and maintain γδ T cell-mediated anti-cancer immune response. Amino-bisphosphonates (N-BPs) have been largely employed in anti-cancer clinical trials due to their ability to upregulate the accumulation of pyrophosphates that promote the activation of Vγ9Vδ2 T cells. This activation depends on the butyrophilin A family, which is crucial in contributing to Vγ9Vδ2 T cells stimulation but is not equally expressed in all cancer tissues. Thus, the clinical outcome of such treatments is still a challenge. In this viewpoint, a critical picture of γδ T cells as effective anti-cancer effectors is designed, with a specific focus on the best immune-stimulating therapeutic schemes involving this lymphocyte subset and the tools available to measure their efficacy and presence in tumor tissues. Some pre-clinical models, useful to measure γδ T cell anti-cancer potential and their response to stimulating drugs, therapeutic monoclonal antibodies, or bispecific antibodies are described. Computerized imaging and digital pathology are also proposed as a help in the identification of co-stimulatory molecules and localization of γδ T cell effectors. Finally, two types of novel drug preparation are proposed: nanoparticles loaded with N-BPs and pro-drug formulations that enhance the effectiveness of γδ T lymphocyte stimulation.
Collapse
Affiliation(s)
- Alessandro Poggi
- Molecular Oncology and Angiogenesis Unit, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Maria Raffaella Zocchi
- Department of Immunology, Transplants and Infectious Diseases, IRCCS Scientific Institute San Raffaele, 20132 Milan, Italy
| |
Collapse
|
150
|
Tang J, Gong Y, Ma X. Bispecific Antibodies Progression in Malignant Melanoma. Front Pharmacol 2022; 13:837889. [PMID: 35401191 PMCID: PMC8984188 DOI: 10.3389/fphar.2022.837889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 02/28/2022] [Indexed: 02/05/2023] Open
Abstract
The discovery of oncogenes and immune checkpoints has revolutionized the treatment of melanoma in the past 10 years. However, the current PD-L1 checkpoints lack specificity for tumors and target normal cells expressing PD-L1, thus reducing the efficacy on malignant melanoma and increasing the side effects. In addition, the treatment options for primary or secondary drug-resistant melanoma are limited. Bispecific antibodies bind tumor cells and immune cells by simultaneously targeting two antigens, enhancing the anti-tumor targeting effect and cytotoxicity and reducing drug-resistance in malignant melanoma, thus representing an emerging strategy to improve the clinical efficacy. This review focused on the treatment of malignant melanoma by bispecific antibodies and summarized the effective results of the experiments that have been conducted, also discussing the different aspects of these therapies. The role of the melanoma epitopes, immune cell activation, cell death and cytotoxicity induced by bispecific antibodies were evaluated in the clinical or preclinical stage, as these therapies appear to be the most suitable in the treatment of malignant melanoma.
Collapse
Affiliation(s)
- Juan Tang
- Department of Oncology, West China Hospital of Sichuan University, Chengdu, China
| | - Youling Gong
- Department of Oncology, West China Hospital of Sichuan University, Chengdu, China
| | - Xuelei Ma
- Department of Oncology, West China Hospital of Sichuan University, Chengdu, China
| |
Collapse
|