101
|
Cartland SP, Genner SW, Martínez GJ, Robertson S, Kockx M, Lin RC, O'Sullivan JF, Koay YC, Manuneedhi Cholan P, Kebede MA, Murphy AJ, Masters S, Bennett MR, Jessup W, Kritharides L, Geczy C, Patel S, Kavurma MM. TRAIL-Expressing Monocyte/Macrophages Are Critical for Reducing Inflammation and Atherosclerosis. iScience 2019; 12:41-52. [PMID: 30665196 PMCID: PMC6348195 DOI: 10.1016/j.isci.2018.12.037] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 11/12/2018] [Accepted: 12/28/2018] [Indexed: 12/31/2022] Open
Abstract
Circulating tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) levels are reduced in patients with cardiovascular disease, and TRAIL gene deletion in mice exacerbates atherosclerosis and inflammation. How TRAIL protects against atherosclerosis and why levels are reduced in disease is unknown. Here, multiple strategies were used to identify the protective source of TRAIL and its mechanism(s) of action. Samples from patients with coronary artery disease and bone-marrow transplantation experiments in mice lacking TRAIL revealed monocytes/macrophages as the main protective source. Accordingly, deletion of TRAIL caused a more inflammatory macrophage with reduced migration, displaying impaired reverse cholesterol efflux and efferocytosis. Furthermore, interleukin (IL)-18, commonly increased in plasma of patients with cardiovascular disease, negatively regulated TRAIL transcription and gene expression, revealing an IL-18-TRAIL axis. These findings demonstrate that TRAIL is protective of atherosclerosis by modulating monocyte/macrophage phenotype and function. Manipulating TRAIL levels in these cells highlights a different therapeutic avenue in the treatment of cardiovascular disease.
Collapse
Affiliation(s)
- Siân P Cartland
- Heart Research Institute, 7 Eliza St, Newtown, Sydney, Australia; Sydney Medical School, University of Sydney, Sydney, Australia
| | - Scott W Genner
- Heart Research Institute, 7 Eliza St, Newtown, Sydney, Australia
| | - Gonzalo J Martínez
- Sydney Medical School, University of Sydney, Sydney, Australia; Department of Cardiology, Royal Prince Alfred Hospital, Sydney, Australia; División de Enfermedades Cardiovasculares, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Stacy Robertson
- Heart Research Institute, 7 Eliza St, Newtown, Sydney, Australia; Sydney Medical School, University of Sydney, Sydney, Australia
| | | | - Ruby Cy Lin
- School of Medical Sciences, University of New South Wales, Sydney, Australia
| | - John F O'Sullivan
- Heart Research Institute, 7 Eliza St, Newtown, Sydney, Australia; Sydney Medical School, University of Sydney, Sydney, Australia; Department of Cardiology, Royal Prince Alfred Hospital, Sydney, Australia
| | - Yen Chin Koay
- Heart Research Institute, 7 Eliza St, Newtown, Sydney, Australia; Sydney Medical School, University of Sydney, Sydney, Australia
| | - Pradeep Manuneedhi Cholan
- Heart Research Institute, 7 Eliza St, Newtown, Sydney, Australia; Sydney Medical School, University of Sydney, Sydney, Australia
| | - Melkam A Kebede
- Charles Perkins Centre, School of Life and Environmental Sciences, University of Sydney, Sydney, Australia
| | | | - Seth Masters
- Walter and Elisa Hall Institute of Medical Research, Melbourne, Australia
| | - Martin R Bennett
- Division of Cardiovascular Medicine, University of Cambridge, Cambridge, UK
| | | | | | - Carolyn Geczy
- Heart Research Institute, 7 Eliza St, Newtown, Sydney, Australia; School of Medical Sciences, University of New South Wales, Sydney, Australia
| | - Sanjay Patel
- Heart Research Institute, 7 Eliza St, Newtown, Sydney, Australia; Sydney Medical School, University of Sydney, Sydney, Australia; Department of Cardiology, Royal Prince Alfred Hospital, Sydney, Australia
| | - Mary M Kavurma
- Heart Research Institute, 7 Eliza St, Newtown, Sydney, Australia; Sydney Medical School, University of Sydney, Sydney, Australia.
| |
Collapse
|
102
|
Conjugated Linoleic Acid Effects on Cancer, Obesity, and Atherosclerosis: A Review of Pre-Clinical and Human Trials with Current Perspectives. Nutrients 2019; 11:nu11020370. [PMID: 30754681 PMCID: PMC6413010 DOI: 10.3390/nu11020370] [Citation(s) in RCA: 188] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 02/03/2019] [Accepted: 02/08/2019] [Indexed: 02/07/2023] Open
Abstract
Obesity and its comorbidities, including type 2 diabetes and cardiovascular disease, are straining our healthcare system, necessitating the development of novel strategies for weight loss. Lifestyle modifications, such as exercise and caloric restriction, have proven effective against obesity in the short term, yet obesity persists because of the high predilection for weight regain. Therefore, alternative approaches to achieve long term sustainable weight loss are urgently needed. Conjugated linoleic acid (CLA), a fatty acid found naturally in ruminant animal food products, has been identified as a potential anti-obesogenic agent, with substantial efficacy in mice, and modest efficacy in obese human populations. Originally described as an anti-carcinogenic fatty acid, in addition to its anti-obesogenic effects, CLA has now been shown to possess anti-atherosclerotic properties. This review summarizes the pre-clinical and human studies conducted using CLA to date, which collectively suggest that CLA has efficacy against cancer, obesity, and atherosclerosis. In addition, the potential mechanisms for the many integrative physiological effects of CLA supplementation will be discussed in detail, including an introduction to the gut microbiota as a potential mediator of CLA effects on obesity and atherosclerosis.
Collapse
|
103
|
Rodriguez-Duarte J, Galliussi G, Dapueto R, Rossello J, Malacrida L, Kamaid A, Schopfer FJ, Escande C, López GV, Batthyány C. A novel nitroalkene-α-tocopherol analogue inhibits inflammation and ameliorates atherosclerosis in Apo E knockout mice. Br J Pharmacol 2019; 176:757-772. [PMID: 30588602 DOI: 10.1111/bph.14561] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 11/30/2018] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND AND PURPOSE Atherosclerosis is characterized by chronic low-grade inflammation with concomitant lipid accumulation in the arterial wall. Anti-inflammatory and anti-atherogenic properties have been described for a novel class of endogenous nitroalkenes (nitrated-unsaturated fatty acids), formed during inflammation and digestion/absorption processes. The lipid-associated antioxidant α-tocopherol is transported systemically by LDL particles including to the atheroma lesions. To capitalize on the overlapping and complementary salutary properties of endogenous nitroalkenes and α-tocopherol, we designed and synthesized a novel nitroalkene-α-tocopherol analogue (NATOH) to address chronic inflammation and atherosclerosis, particularly at the lesion sites. EXPERIMENTAL APPROACH We synthesized NATOH, determined its electrophilicity and antioxidant capacity and studied its effects over pro-inflammatory and cytoprotective pathways in macrophages in vitro. Moreover, we demonstrated its incorporation into lipoproteins and tissue both in vitro and in vivo, and determined its effect on atherosclerosis and inflammatory responses in vivo using the Apo E knockout mice model. KEY RESULTS NATOH exhibited similar antioxidant capacity to α-tocopherol and, due to the presence of the nitroalkenyl group, like endogenous nitroalkenes, it exerted electrophilic reactivity. NATOH was incorporated in vivo into the VLDL/LDL lipoproteins particles to reach the atheroma lesions. Furthermore, oral administration of NATOH down-regulated NF-κB-dependent expression of pro-inflammatory markers (including IL-1β and adhesion molecules) and ameliorated atherosclerosis in Apo E knockout mice. CONCLUSIONS AND IMPLICATIONS In toto, the data demonstrate a novel pharmacological strategy for the prevention of atherosclerosis based on a creative, natural and safe drug delivery system of a non-conventional anti-inflammatory compound (NATOH) with significant potential for clinical application.
Collapse
Affiliation(s)
- Jorge Rodriguez-Duarte
- Laboratory of Vascular Biology and Drug Development, INDICYO Program, Institut Pasteur de Montevideo, Montevideo, Uruguay.,Departmento de Química Orgánica, Facultad de Química, Universidad de la República, Montevideo, Uruguay
| | - Germán Galliussi
- Laboratory of Vascular Biology and Drug Development, INDICYO Program, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Rosina Dapueto
- Laboratory of Vascular Biology and Drug Development, INDICYO Program, Institut Pasteur de Montevideo, Montevideo, Uruguay.,Departmento de Química Orgánica, Facultad de Química, Universidad de la República, Montevideo, Uruguay
| | - Jessica Rossello
- Analytical Biochemistry and Proteomics Unit, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Leonel Malacrida
- Analytical Biochemistry and Proteomics Unit, Institut Pasteur de Montevideo, Montevideo, Uruguay.,Pathophysiology Department, Hospital de Clínicas, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Andrés Kamaid
- Analytical Biochemistry and Proteomics Unit, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Francisco J Schopfer
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Carlos Escande
- Laboratory of Metabolic Diseases and Aging, INDICYO Program, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Gloria V López
- Laboratory of Vascular Biology and Drug Development, INDICYO Program, Institut Pasteur de Montevideo, Montevideo, Uruguay.,Departmento de Química Orgánica, Facultad de Química, Universidad de la República, Montevideo, Uruguay
| | - Carlos Batthyány
- Laboratory of Vascular Biology and Drug Development, INDICYO Program, Institut Pasteur de Montevideo, Montevideo, Uruguay.,Analytical Biochemistry and Proteomics Unit, Institut Pasteur de Montevideo, Montevideo, Uruguay
| |
Collapse
|
104
|
Ambient fine particulate matter induce toxicity in lung epithelial-endothelial co-culture models. Toxicol Lett 2019; 301:133-145. [DOI: 10.1016/j.toxlet.2018.11.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 11/13/2018] [Accepted: 11/22/2018] [Indexed: 01/09/2023]
|
105
|
Liu H, Jin H, Han J, Yue X, Yang H, Zayed MA, Gropler RJ, Tu Z. Upregulated Sphingosine 1-Phosphate Receptor 1 Expression in Human and Murine Atherosclerotic Plaques. Mol Imaging Biol 2019; 20:448-456. [PMID: 29134505 DOI: 10.1007/s11307-017-1141-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
PURPOSE Dysregulation of sphingosine 1-phosphate receptor 1 (S1PR1) signaling contributes to inflammation-related pathophysiological changes in cardiovascular diseases including atherosclerosis (AS). S1PR1-targeting compounds significantly reduce lesion size in murine models of AS. Therefore, characterization of S1PR1 expression in vitro and in vivo in atherosclerotic plaque could enable mechanistic studies and inform S1PR1 targeted therapies. PROCEDURES H&E staining and immunostaining studies were performed on variably diseased human femoral endarterectomy plaque specimens, as well as mouse aortic sections from ApoE-/- mice maintained on a high-fat diet (AS mice). In vitro autoradiography study in human femoral plaques was used to confirm the tracer specificity. Micro positron emission tomography (PET) and ex vivo autoradiography studies were conducted in AS mice and their controls using a S1PR1-specific radioligand [11C]TZ3321 for in vivo and ex vivo quantification of S1PR1 expression in mouse aortic plaques. RESULTS Increased S1PR1 expression was observed in areas of human femoral endarterectomy plaque specimens with foam cell accumulation compared with control tissue; in vitro autoradiography study indicated that SEW2781, a S1PR1 compound was able to reduce the uptake of [11C]TZ3321 by 56 %. S1PR1 levels were also upregulated in AS mouse aortic plaques. MicroPET data showed the aorta-to-blood tracer uptake ratio in AS mice was approximately 20 % higher than that in controls. Autoradiographic study also revealed elevated tracer accumulation in AS mouse aorta. CONCLUSIONS Upregulated S1PR1 expression in human and mouse atherosclerotic plaques was successfully identified by immunostaining and radioligand-based methods. This data demonstrates that [11C]TZ3321 PET provides great promise in imaging S1PR1 expression in atherosclerotic plaques.
Collapse
Affiliation(s)
- Hui Liu
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Hongjun Jin
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Junbin Han
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Xuyi Yue
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Hao Yang
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Mohamed A Zayed
- Department of Surgery, Section of Vascular Surgery, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Robert J Gropler
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Zhude Tu
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, 63110, USA.
| |
Collapse
|
106
|
Overexpression of CTRP9 attenuates the development of atherosclerosis in apolipoprotein E-deficient mice. Mol Cell Biochem 2018; 455:99-108. [DOI: 10.1007/s11010-018-3473-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 11/09/2018] [Indexed: 11/28/2022]
|
107
|
Sowers T, Emelianov S. Exogenous imaging contrast and therapeutic agents for intravascular photoacoustic imaging and image-guided therapy. Phys Med Biol 2018; 63:22TR01. [PMID: 30403195 DOI: 10.1088/1361-6560/aae62b] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Intravascular photoacoustic (IVPA) imaging has been developed in recent years as a viable imaging modality for the assessment of atherosclerotic plaques. Exogenous imaging contrast and therapeutic agents further enhance this imaging modality and provide significant benefits. Imaging contrast agents can significantly increase photoacoustic signal, resulting in enhanced plaque detection and characterization. The ability to use these particles to molecularly target markers of disease progression makes it possible to determine patient-specific levels of risk and plan treatments accordingly. With improved diagnosis, clinicians will be able to use therapeutic agents that are synergistic with IVPA imaging to treat atherosclerotic patients. Pre-clinical and clinical studies with relevance to IVPA imaging have shown promise in the area of diagnosis and therapeutics. In this review, we present a variety of imaging contrast agents that are either designed for or are compatible with IVPA imaging, cover uses of therapeutic agents that compliment this imaging modality, and discuss future directions of research in the field.
Collapse
Affiliation(s)
- Timothy Sowers
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, United States of America. George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, United States of America
| | | |
Collapse
|
108
|
Qu L, Li D, Gao X, Li Y, Wu J, Zou W. Di'ao Xinxuekang Capsule, a Chinese Medicinal Product, Decreases Serum Lipids Levels in High-Fat Diet-Fed ApoE -/- Mice by Downregulating PCSK9. Front Pharmacol 2018; 9:1170. [PMID: 30443213 PMCID: PMC6221936 DOI: 10.3389/fphar.2018.01170] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 09/26/2018] [Indexed: 11/13/2022] Open
Abstract
Numerous risk factors are responsible for the development of atherosclerosis, for which an increased serum level of low-density lipoprotein cholesterol (LDL-C) is a driving force. By binding to the low-density lipoprotein cholesterol receptor (LDLR) and inducing LDLR degradation, proprotein convertase subtilisin/kexin type 9 (PCSK9) plays a key role in cholesterol homeostasis regulation. The inducement of PCSK9 expression is also an important reason for statin intolerance. The Di'ao Xinxuekang (DXXK) capsule extracted from Dioscorea nipponica Makino is a well-known traditional Chinese herbal medicinal product used in atherosclerotic cardiovascular disease. Although DXXK has been widely used in atherosclerotic cardiovascular treatment for nearly 30 years, studies on the potential mechanisms of the lipid-lowering effect are very limited. The purpose of the present study was to demonstrate the possible involvement of the PCSK9/LDLR signaling pathway in the lipid-lowering and antiatherosclerotic effect of DXXK in high-fat diet-fed ApoE-/- mice. The results showed that DXXK treatment alleviated hyperlipidemia, fat accumulation, and atherosclerosis formation in ApoE-/- mice. Furthermore, changes in the expression of PCSK9 mRNA in liver tissue and the circulating PCSK9 level in ApoE-/- mice were both reversed after DXXK treatment, and upregulation of LDLR in the liver was also detected in the protein level in DXXK-treated mice. Our study is the first to show that DXXK could alleviate lipid disorder and ameliorate atherosclerosis with downregulation of the PCSK9 in high-fat diet-fed ApoE-/- mice, suggesting that DXXK may be a potential novel therapeutic treatment and may support statin action in the treatment of atherosclerosis.
Collapse
Affiliation(s)
- Liping Qu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Didi Li
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaoping Gao
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yongwei Li
- Department of New Drug Research and Development, National Engineering Research Center for Natural Medicines, Chengdu, China
| | - Jianming Wu
- Laboratory of Chinese Materia Medica, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Wenjun Zou
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
109
|
Jin P, Bian Y, Wang K, Cong G, Yan R, Sha Y, Ma X, Zhou J, Yuan Z, Jia S. Homocysteine accelerates atherosclerosis via inhibiting LXRα-mediated ABCA1/ABCG1-dependent cholesterol efflux from macrophages. Life Sci 2018; 214:41-50. [PMID: 30393020 DOI: 10.1016/j.lfs.2018.10.060] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Revised: 10/15/2018] [Accepted: 10/26/2018] [Indexed: 11/19/2022]
Abstract
AIMS Macrophage-derived foam-cell formation plays a crucial role in the development of atherosclerosis, and liver X receptor alpha (LXRα) is a key regulator of lipid metabolism in macrophages. Homocysteine (Hcy) is an independent risk factor of atherosclerosis; however, the regulation of lipid metabolism and role of LXRα induced by Hcy in macrophages is still unknown. The present study aimed to investigate the potential role of Hcy in disordered lipid metabolism and atherosclerotic lesions, especially the effects of Hcy on cholesterol efflux in macrophages and the possible mechanisms. MAIN METHODS In vitro, lipid accumulation and cholesterol efflux were evaluated in THP-1 macrophages with Hcy intervention. Real-time quantitative PCR and western blot analyses were used to assess mRNA and protein levels. In vivo, atherosclerotic lesions and lipid profiles were evaluated by methionine diet-induced hyperhomocysteinemia (HHcy) in ApoE-/- mice. The LXRα agonist T0901317 was used to verify the role of LXRα in HHcy-accelerated atherosclerosis. KEY FINDINGS Hcy promoted lipid accumulation and inhibited cholesterol efflux in THP-1 macrophages. HHcy mice showed increased lesion area and lipid accumulation in plaque. Both studies in vitro and in vivo showed decreased expression of ATP binding cassette transporter A1 (ABCA1) and G1 (ABCG1). T0901317 treatment increased ABCA1 and ABCG1 levels; reversed macrophage-derived foam-cell formation in THP-1 macrophages and reduced atherosclerotic lesions in ApoE-/- mice. SIGNIFICANCE Inhibition of LXRα-mediated ABCA1/ABCG1-dependent cholesterol efflux from macrophages is a novel mechanism in Hcy-accelerated atherosclerosis.
Collapse
Affiliation(s)
- Ping Jin
- Department of Clinical Medicine, Ningxia Medical University, Yinchuan, Ningxia 750001, China
| | - Yitong Bian
- Department of Radiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Kai Wang
- Heart Center, General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750001, China
| | - Guangzhi Cong
- Heart Center, General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750001, China
| | - Ru Yan
- Institute of Cardiovascular Diseases, General Hospital of Ningxia Medical University Yinchuan, Ningxia 750001, China
| | - Yong Sha
- Heart Center, General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750001, China
| | - Xueping Ma
- Heart Center, General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750001, China
| | - Juan Zhou
- Department of Cardiovascular Medicine, The First Affiliated Hospital of the Medical School, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Zuyi Yuan
- Department of Cardiovascular Medicine, The First Affiliated Hospital of the Medical School, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Shaobin Jia
- Heart Center, General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750001, China; Institute of Cardiovascular Diseases, General Hospital of Ningxia Medical University Yinchuan, Ningxia 750001, China.
| |
Collapse
|
110
|
Wu X, Wang TTY, Prior RL, Pehrsson PR. Prevention of Atherosclerosis by Berries: The Case of Blueberries. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:9172-9188. [PMID: 30092632 DOI: 10.1021/acs.jafc.8b03201] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Berry consumption has been associated with cardiovascular disease prevention in recent years. Atherosclerosis is one of the major causes of cardiovascular diseases. However, research on the prevention of atherosclerosis through consuming individual whole berries, specifically direct evidence, remains scarce. Therefore, further elucidating the role that berries play in the prevention of atherosclerosis is warranted. In this perspective, blueberries were selected to articulate research strategies for studying atheroprotective effects of berries. Studies from human subjects and various animal models are summarized. The mechanisms by which blueberries may act, through reducing oxidative stress, decreasing inflammation, improving endothelial dysfunction, regulating cholesterol accumulation and trafficking, along with potentially influencing gut microbiota, are also discussed. Blueberries contain high levels of polyphenolic compounds, which were widely indicated as major bioactive compounds. Nonetheless, the metabolites/catabolites after blueberry consumption, such as simple phenolic acids, rather than original compounds in berries, may be the actual in vivo bioactive compounds. Future research should focus on obtaining more direct evidence, preferably in humans, understanding of the mechanisms of action at the molecular level, and identifying bioactive compounds as well as which compounds act synergistically to convey health benefits. The research strategy discussed here may also be applied to the studies of other fruits and berries.
Collapse
Affiliation(s)
| | | | - Ronald L Prior
- Department of Food Science , University of Arkansas , Fayetteville , Arkansas 72704 , United States
| | | |
Collapse
|
111
|
Muhammad RS, Abu-Saleh N, Kinaneh S, Agbaria M, Sabo E, Grajeda-Iglesias C, Volkova N, Hamoud S. Heparanase inhibition attenuates atherosclerosis progression and liver steatosis in E 0 mice. Atherosclerosis 2018; 276:155-162. [PMID: 30075439 DOI: 10.1016/j.atherosclerosis.2018.07.026] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 07/01/2018] [Accepted: 07/18/2018] [Indexed: 01/01/2023]
Abstract
BACKGROUND AND AIMS Increased oxidative stress is associated with accelerated atherosclerosis. Emerging evidence highlights the role of heparanase in atherogenesis, where heparanase inhibitor PG545 reduces oxidative stress in apolipoprotein E deficient mice (E0 mice). Herein, we studied the effects of PG545 on atherosclerosis progression in E0 mice. METHODS Male E0 mice fed a high-fat diet (n = 20) were divided into 3 groups treated with weekly intraperitoneal injections of either low (0.2 mg/mouse) or high dose (0.4 mg/mouse)PG545 or normal saline (controls) for twelve weeks. Body weight and food intake were measured weekly. At the end of the treatment period, blood pressure was measured, animals were sacrificed and serum samples were collected and assessed for biochemical parameters and oxidative stress. Aortic vessels and livers were collected for atherosclerotic plaques and histopathological analysis, respectively. RESULTS Blood pressure decreased in mice treated with low, but not high dose of PG545. In addition, heparanase inhibition caused a dose-dependent reduction in serum oxidative stress, total cholesterol, low-density lipoproteins, triglycerides, high-density lipoproteins, and aryl esterase activity. Although food intake was not reduced by PG545, body weight gain was significantly attenuated in PG545 treated groups. Both doses of PG545 caused a marked reduction in aortic wall thickness and atherosclerosis development, and liver steatosis. Liver enzymes and serum creatinine were not affected by PG545. CONCLUSIONS Heparanase inhibition by PG545 caused a significant reduction in lipid profile and serum oxidative stress along with attenuation of atherosclerosis, aortic wall thickness, and liver steatosis. Moreover, PG545 attenuated weight gain without reducing food intake. Collectively, these findings suggest that heparanase blockade is highly effective in slowing atherosclerosis formation and progression, and decreasing liver steatosis.
Collapse
Affiliation(s)
- Rabia Shekh Muhammad
- Department of Internal Medicine E, Rambam Health Care Campus and Rappaport Faculty of Medicine Haifa, Israel
| | - Niroz Abu-Saleh
- Lipid Research Laboratory, Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Safa Kinaneh
- Department of Physiology, Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Mohammad Agbaria
- Department of Internal Medicine A, Rambam Health Care Campus, Haifa, Israel
| | - Edmond Sabo
- Department of Pathology, Rambam Health Care Campus and Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | | | - Nina Volkova
- Lipid Research Laboratory, Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Shadi Hamoud
- Department of Internal Medicine E, Rambam Health Care Campus and Rappaport Faculty of Medicine Haifa, Israel; Lipid Research Laboratory, Rappaport Faculty of Medicine, Technion, Haifa, Israel.
| |
Collapse
|
112
|
Bagchi S, Genardi S, Wang CR. Linking CD1-Restricted T Cells With Autoimmunity and Dyslipidemia: Lipid Levels Matter. Front Immunol 2018; 9:1616. [PMID: 30061888 PMCID: PMC6055000 DOI: 10.3389/fimmu.2018.01616] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 06/29/2018] [Indexed: 11/13/2022] Open
Abstract
Dyslipidemia, or altered blood lipid content, is a risk factor for developing cardiovascular disease. Furthermore, several autoimmune diseases, including systemic lupus erythematosus, psoriasis, diabetes, and rheumatoid arthritis, are correlated highly with dyslipidemia. One common thread between both autoimmune diseases and altered lipid levels is the presence of inflammation, suggesting that the immune system might act as the link between these related pathologies. Deciphering the role of innate and adaptive immune responses in autoimmune diseases and, more recently, obesity-related inflammation, have been active areas of research. The broad picture suggests that antigen-presenting molecules, which present self-peptides to autoreactive T cells, can result in either aggravation or amelioration of inflammation. However, very little is known about the role of self-lipid reactive T cells in dyslipidemia-associated autoimmune events. Given that a range of autoimmune diseases are linked to aberrant lipid profiles and a majority of lipid-specific T cells are reactive to self-antigens, it is important to examine the role of these T cells in dyslipidemia-related autoimmune ailments and determine if dysregulation of these T cells can be drivers of autoimmune conditions. CD1 molecules present lipids to T cells and are divided into two groups based on sequence homology. To date, most of the information available on lipid-reactive T cells comes from the study of group 2 CD1d-restricted natural killer T (NKT) cells while T cells reactive to group 1 CD1 molecules remain understudied, despite their higher abundance in humans compared to NKT cells. This review evaluates the mechanisms by which CD1-reactive, self-lipid specific T cells contribute to dyslipidemia-associated autoimmune disease progression or amelioration by examining available literature on NKT cells and highlighting recent progress made on the study of group 1 CD1-restricted T cells.
Collapse
Affiliation(s)
| | | | - Chyung-Ru Wang
- Department of Microbiology and Immunology, Northwestern University, Chicago, IL, United States
| |
Collapse
|
113
|
Dang VT, Zhong LH, Huang A, Deng A, Werstuck GH. Glycosphingolipids promote pro-atherogenic pathways in the pathogenesis of hyperglycemia-induced accelerated atherosclerosis. Metabolomics 2018; 14:92. [PMID: 30830446 DOI: 10.1007/s11306-018-1392-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 06/23/2018] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Three out of four people with diabetes will die of cardiovascular disease. However, the molecular mechanisms by which hyperglycemia promotes atherosclerosis, the major underlying cause of cardiovascular disease, are not clear. OBJECTIVES Three distinct models of hyperglycemia-associated accelerated atherosclerosis were used to identify commonly altered metabolites and pathways associated with the disease. METHODS Normoglycemic apolipoprotein-E-deficient mice served as atherosclerotic control. Hyperglycemia was induced by multiple low-dose streptozotocin injections, or by introducing a point-mutation in one copy of insulin-2 gene. Glucosamine-supplemented mice, which experience accelerated atherosclerosis to a similar extent as hyperglycemia-induced models without alterations in glucose or insulin levels, were also included in the analysis. Untargeted plasma metabolomics were used to investigate hyperglycemia-associated accelerated atherosclerosis in three disease models. The effect of specific significantly altered metabolites on pro-atherogenic processes was investigated in cultured human vascular cells. RESULTS Hyperglycemic and glucosamine-supplemented mice showed distinct metabolomic profiles compared to controls. Meta-analysis of three disease models revealed 62 similarly altered metabolite features (FDR-adjusted p < 0.05). Identification of shared metabolites revealed alterations in glycerophospholipid and sphingolipid metabolism, and pro-atherogenic processes including inflammation and oxidative stress. Post-multivariate and pathway analyses indicated that the glycosphingolipid pathway is strongly associated with hyperglycemia-induced accelerated atherosclerosis in these atherogenic mouse models. Glycosphingolipids induced oxidative stress and inflammation in cultured human vascular cells. CONCLUSION Glycosphingolipids are strongly associated with hyperglycemia-induced accelerated atherosclerosis in three distinct models. They also promote pro-atherogenic processes in cultured human cells. These results suggest glycosphingolipid pathway may be a potential therapeutic target to block or slow atherogenesis in diabetic patients.
Collapse
Affiliation(s)
- Vi T Dang
- Thrombosis and Atherosclerosis Research Institute, McMaster University, 237 Barton Street East, Hamilton, ON, L8L 2X2, Canada
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, ON, Canada
| | - Lexy H Zhong
- Thrombosis and Atherosclerosis Research Institute, McMaster University, 237 Barton Street East, Hamilton, ON, L8L 2X2, Canada
| | - Aric Huang
- Thrombosis and Atherosclerosis Research Institute, McMaster University, 237 Barton Street East, Hamilton, ON, L8L 2X2, Canada
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, ON, Canada
| | - Arlinda Deng
- Thrombosis and Atherosclerosis Research Institute, McMaster University, 237 Barton Street East, Hamilton, ON, L8L 2X2, Canada
| | - Geoff H Werstuck
- Thrombosis and Atherosclerosis Research Institute, McMaster University, 237 Barton Street East, Hamilton, ON, L8L 2X2, Canada.
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, ON, Canada.
- Department of Medicine, McMaster University, Hamilton, ON, Canada.
| |
Collapse
|
114
|
Wu X, Li C, Mariyam Z, Jiang P, Zhou M, Zeb F, Haq IU, Chen A, Feng Q. Acrolein-induced atherogenesis by stimulation of hepatic flavin containing monooxygenase 3 and a protection from hydroxytyrosol. J Cell Physiol 2018; 234:475-485. [PMID: 29953618 DOI: 10.1002/jcp.26600] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Accepted: 03/15/2018] [Indexed: 12/24/2022]
Abstract
Acrolein, a highly toxic α, β-unsaturated aldehyde, promotes the progression of atherosclerosis in association with inflammatory signaling pathway and reverse cholesterol transport (RCT) process. Additionally, hepatic flavin containing monooxygenase 3 (FMO3) is involved in the pathogenesis of atherosclerosis by regulating cholesterol metabolism. Hydroxytyrosol (HT), as a major phenolic compound in olive oil, exerts anti-inflammatory and anti-atherogenic activities in vitro and animal models. The current study was designed to evaluate whether FMO3 participated in pro-atherogenic process by acrolein and HT showed protective effect during this process. Here, endothelial cells and macrophage Raw264.7 cells were used as the cell models. Following oxidized low-density lipoprotein (OX-LDL) treatment, acrolein exposure promoted foam cells formation in macrophage Raw264.7 cells. The expression of FMO3 and inflammatory makers such as phospho-NF-κB, IL-1β, TNFα as well as IL-6 were significantly increased. However, ATP-binding cassette transporters subfamily A member 1 (ABCA1), a major transporter in RCT process, was repressed by acrolein. In addition, FMO3 knockdown could suppress inflammatory markers and promote ABCA1 expression. Hydroxytyrosol (HT) was observed to reduce lipid accumulation, FMO3 expression as well as inflammatory response. Moreover, it promoted ABCA1 expression. Therefore, our findings indicated that acrolein-enhanced atherogenesis by increasing FMO3 which increased inflammatory responses and decreased ABCA1 in vitro can be alleviated by HT, which may have a therapeutic potential for the treatment of atherosclerosis.
Collapse
Affiliation(s)
- Xiaoyue Wu
- Department of Nutrition and Food Hygiene, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Chaofeng Li
- Department of Cardiology, The Second Affiliated Hospital of Southeast University, Nanjing, China
| | - Zahula Mariyam
- Department of Nutrition and Food Hygiene, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Pan Jiang
- Department of Nutrition and Food Hygiene, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Ming Zhou
- Department of Nutrition and Food Hygiene, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Falak Zeb
- Department of Nutrition and Food Hygiene, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Ijaz Ul Haq
- Department of Nutrition and Food Hygiene, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Aochang Chen
- Department of Nutrition and Food Hygiene, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Qing Feng
- Department of Nutrition and Food Hygiene, School of Public Health, Nanjing Medical University, Nanjing, China
| |
Collapse
|
115
|
Drosophila melanogaster as a Model for Diabetes Type 2 Progression. BIOMED RESEARCH INTERNATIONAL 2018; 2018:1417528. [PMID: 29854726 PMCID: PMC5941822 DOI: 10.1155/2018/1417528] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 02/03/2018] [Accepted: 03/13/2018] [Indexed: 12/12/2022]
Abstract
Drosophila melanogaster has been used as a very versatile and potent model in the past few years for studies in metabolism and metabolic disorders, including diabetes types 1 and 2. Drosophila insulin signaling, despite having seven insulin-like peptides with partially redundant functions, is very similar to the human insulin pathway and has served to study many different aspects of diabetes and the diabetic state. Yet, very few studies have addressed the chronic nature of diabetes, key for understanding the full-blown disease, which most studies normally explore. One of the advantages of having Drosophila mutant viable combinations at different levels of the insulin pathway, with significantly reduced insulin pathway signaling, is that the abnormal metabolic state can be studied from the onset of the life cycle and followed throughout. In this review, we look at the chronic nature of impaired insulin signaling. We also compare these results to the results gleaned from vertebrate model studies.
Collapse
|
116
|
Long-term Western diet fed apolipoprotein E-deficient rats exhibit only modest early atherosclerotic characteristics. Sci Rep 2018; 8:5416. [PMID: 29615808 PMCID: PMC5882891 DOI: 10.1038/s41598-018-23835-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 03/22/2018] [Indexed: 12/16/2022] Open
Abstract
In the apolipoprotein E–deficient mouse, the gut microbiota has an impact on the development of atherosclerosis, but whether such correlations are also present in rats requires investigation. Therefore, we studied female SD-Apoetm1sage (Apoe−/−) rats fed either a Western diet or a low-fat control diet with or without gluten, which is known to promote gut microbiota changes, until 20 weeks of age. We hypothesized that the manifestation of atherosclerosis would be more severe in Apoe−/− rats fed the Western high-fat diet, as compared with rats fed the low-fat diet, and that atherosclerosis would be accelerated by gluten. Both Western diet-feeding and gluten resulted in significant changes in gut microbiota, but the microbiota impact of gluten was transient. Compared with Apoe−/− rats fed a low-fat diet, Western diet-fed Apoe−/− rats were heavier and became glucose intolerant with increased levels of oxidative stress. They developed early fatty streak lesions in their aortic sinus, while there was no evidence of atherosclerosis in the thoracic aorta. No conclusions could be made on the impact of gluten on atherosclerosis. Although Western diet-fed Apoe−/− rats exhibited a more human-like LDL dominated blood lipid profile, signs of obesity, type 2 diabetes and cardiovascular disease were modest.
Collapse
|
117
|
Sylvester CB, Abe JI, Patel ZS, Grande-Allen KJ. Radiation-Induced Cardiovascular Disease: Mechanisms and Importance of Linear Energy Transfer. Front Cardiovasc Med 2018; 5:5. [PMID: 29445728 PMCID: PMC5797745 DOI: 10.3389/fcvm.2018.00005] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 01/09/2018] [Indexed: 12/24/2022] Open
Abstract
Radiation therapy (RT) in the form of photons and protons is a well-established treatment for cancer. More recently, heavy charged particles have been used to treat radioresistant and high-risk cancers. Radiation treatment is known to cause cardiovascular disease (CVD) which can occur acutely during treatment or years afterward in the form of accelerated atherosclerosis. Radiation-induced cardiovascular disease (RICVD) can be a limiting factor in treatment as well as a cause of morbidity and mortality in successfully treated patients. Inflammation plays a key role in both acute and chronic RICVD, but the underling pathophysiology is complex, involving DNA damage, reactive oxygen species, and chronic inflammation. While understanding of the molecular mechanisms of RICVD has increased, the growing number of patients receiving RT warrants further research to identify individuals at risk, plans for prevention, and targets for the treatment of RICVD. Research on RICVD is also relevant to the National Aeronautics and Space Administration (NASA) due to the prevalent space radiation environment encountered by astronauts. NASA's current research on RICVD can both contribute to and benefit from concurrent work with cell and animal studies informing radiotoxicities resulting from cancer therapy. This review summarizes the types of radiation currently in clinical use, models of RICVD, current knowledge of the mechanisms by which they cause CVD, and how this knowledge might apply to those exposed to various types of radiation.
Collapse
Affiliation(s)
- Christopher B Sylvester
- Department of Bioengineering, Rice University, Houston, TX, United States.,Medical Scientist Training Program, Baylor College of Medicine, Houston, TX, United States
| | - Jun-Ichi Abe
- Department of Cardiology, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Zarana S Patel
- Science and Space Operations, KBRwyle, Houston, TX, United States
| | | |
Collapse
|
118
|
Vijayan M, Reddy PH. Stroke, Vascular Dementia, and Alzheimer's Disease: Molecular Links. J Alzheimers Dis 2018; 54:427-43. [PMID: 27567871 DOI: 10.3233/jad-160527] [Citation(s) in RCA: 175] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Stroke is a brain disease that occurs when blood flow stops, resulting in reduced oxygen supply to neurons. Stroke occurs at any time and at any age, but increases after the age of 55. It is the second leading cause of death and the third leading cause of disability-adjusted, life-years. The pathophysiology of ischemic stroke is complex and recent molecular, cellular, and animal models and postmortem brain studies have revealed that multiple cellular changes have been implicated, including oxidative stress/mitochondrial dysfunction, inflammatory responses, micro RNA alterations, and marked changes in brain proteins. These cellular changes provide new information for developing therapeutic strategies for ischemic stroke treatment. Research also revealed that stroke increases with a number of modifiable factors and most strokes can be prevented and/or controlled through pharmacological or surgical interventions and lifestyle changes. Ischemic stroke is the major risk factor for vascular dementia and Alzheimer's disease. This review summarizes the latest research findings on stroke, including causal factors and molecular links between stroke and vascular disease/Alzheimer's disease.
Collapse
Affiliation(s)
- Murali Vijayan
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - P Hemachandra Reddy
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, Lubbock, TX, USA.,Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX, USA.,Neuroscience and Pharmacology, Texas Tech University Health Sciences Center, Lubbock, TX, USA.,Department of Neurology, Texas Tech University Health Sciences Center, Lubbock, TX, USA.,Department of Speech, Language and Hearing Sciences Texas Tech University Health Sciences Center, Lubbock, TX, USA.,Garrison Institute on Aging, South West Campus, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| |
Collapse
|
119
|
Martinez JO, Molinaro R, Hartman KA, Boada C, Sukhovershin R, De Rosa E, Kuri D, Zhang S, Evangelopoulos M, Carter AM, Bibb JA, Cooke JP, Tasciotti E. Biomimetic nanoparticles with enhanced affinity towards activated endothelium as versatile tools for theranostic drug delivery. Theranostics 2018; 8:1131-1145. [PMID: 29464004 PMCID: PMC5817115 DOI: 10.7150/thno.22078] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 11/09/2017] [Indexed: 12/30/2022] Open
Abstract
Activation of the vascular endothelium is characterized by increased expression of vascular adhesion molecules and chemokines. This activation occurs early in the progression of several diseases and triggers the recruitment of leukocytes. Inspired by the tropism of leukocytes, we investigated leukocyte-based biomimetic nanoparticles (i.e., leukosomes) as a novel theranostic platform for inflammatory diseases. Methods: Leukosomes were assembled by combining phospholipids and membrane proteins from leukocytes. For imaging applications, phospholipids modified with rhodamine and gadolinium were used. Leukosomes incubated with antibodies blocking lymphocyte function-associated antigen 1 (LFA-1) and CD45 were administered to explore their roles in targeting inflammation. In addition, relaxometric assessment of NPs was evaluated. Results: Liposomes and leukosomes were both spherical in shape with sizes ranging from 140-170 nm. Both NPs successfully integrated 8 and 13 µg of rhodamine and gadolinium, respectively, and demonstrated less than 4% variation in physicochemical features. Leukosomes demonstrated a 16-fold increase in breast tumor accumulation relative to liposomes. Furthermore, quantification of leukosomes in tumor vessels demonstrated a 4.5-fold increase in vessel lumens and a 14-fold increase in vessel walls. Investigating the targeting mechanism of action revealed that blockage of LFA-1 on leukosomes resulted in a 95% decrease in tumor accumulation. Whereas blockage of CD45 yielded a 60% decrease in targeting and significant increases in liver and spleen accumulation. In addition, when administered in mice with atherosclerotic plaques, leukosomes exhibited a 4-fold increase in the targeting of inflammatory vascular lesions. Lastly, relaxometric assessment of NPs demonstrated that the incorporation of membrane proteins into leukosomes did not impact the r1 and r2 relaxivities of the NPs, demonstrating 6 and 30 mM-1s-1, respectively. Conclusion: Our study demonstrates the ability of leukosomes to target activated vasculature and exhibit superior accumulation in tumors and vascular lesions. The versatility of the phospholipid backbone within leukosomes permits the incorporation of various contrast agents. Furthermore, leukosomes can potentially be loaded with therapeutics possessing diverse physical properties and thus warrant further investigation toward the development of powerful theranostic agents.
Collapse
|
120
|
Small DM, Jones JS, Tendler II, Miller PE, Ghetti A, Nishimura N. Label-free imaging of atherosclerotic plaques using third-harmonic generation microscopy. BIOMEDICAL OPTICS EXPRESS 2018; 9:214-229. [PMID: 29359098 PMCID: PMC5772576 DOI: 10.1364/boe.9.000214] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 11/24/2017] [Accepted: 12/02/2017] [Indexed: 05/18/2023]
Abstract
Multiphoton microscopy using laser sources in the mid-infrared range (MIR, 1,300 nm and 1,700 nm) was used to image atherosclerotic plaques from murine and human samples. Third harmonic generation (THG) from atherosclerotic plaques revealed morphological details of cellular and extracellular lipid deposits. Simultaneous nonlinear optical signals from the same laser source, including second harmonic generation and endogenous fluorescence, resulted in label-free images of various layers within the diseased vessel wall. The THG signal adds an endogenous contrast mechanism with a practical degree of specificity for atherosclerotic plaques that complements current nonlinear optical methods for the investigation of cardiovascular disease. Our use of whole-mount tissue and backward scattered epi-detection suggests THG could potentially be used in the future as a clinical tool.
Collapse
Affiliation(s)
- David M. Small
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, 526 N. Campus Rd., Ithaca, NY 14853, USA
- Contributed equally
| | - Jason S. Jones
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, 526 N. Campus Rd., Ithaca, NY 14853, USA
- Contributed equally
| | - Irwin I. Tendler
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, 526 N. Campus Rd., Ithaca, NY 14853, USA
| | - Paul E. Miller
- Anabios Corporation, 3030 Bunker Hill St., San Diego, CA 92109, USA
| | - Andre Ghetti
- Anabios Corporation, 3030 Bunker Hill St., San Diego, CA 92109, USA
| | - Nozomi Nishimura
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, 526 N. Campus Rd., Ithaca, NY 14853, USA
| |
Collapse
|
121
|
Saffron: From Greek mythology to contemporary anti-atherosclerotic medicine. Atherosclerosis 2017; 268:193-195. [PMID: 29198557 DOI: 10.1016/j.atherosclerosis.2017.11.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Accepted: 11/20/2017] [Indexed: 11/23/2022]
|
122
|
Animal models of atherosclerosis. Eur J Pharmacol 2017; 816:3-13. [DOI: 10.1016/j.ejphar.2017.05.010] [Citation(s) in RCA: 296] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 04/07/2017] [Accepted: 05/04/2017] [Indexed: 12/31/2022]
|
123
|
Davies JMS, Cillard J, Friguet B, Cadenas E, Cadet J, Cayce R, Fishmann A, Liao D, Bulteau AL, Derbré F, Rébillard A, Burstein S, Hirsch E, Kloner RA, Jakowec M, Petzinger G, Sauce D, Sennlaub F, Limon I, Ursini F, Maiorino M, Economides C, Pike CJ, Cohen P, Salvayre AN, Halliday MR, Lundquist AJ, Jakowec NA, Mechta-Grigoriou F, Mericskay M, Mariani J, Li Z, Huang D, Grant E, Forman HJ, Finch CE, Sun PY, Pomatto LCD, Agbulut O, Warburton D, Neri C, Rouis M, Cillard P, Capeau J, Rosenbaum J, Davies KJA. The Oxygen Paradox, the French Paradox, and age-related diseases. GeroScience 2017; 39:499-550. [PMID: 29270905 PMCID: PMC5745211 DOI: 10.1007/s11357-017-0002-y] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 11/09/2017] [Indexed: 02/06/2023] Open
Abstract
A paradox is a seemingly absurd or impossible concept, proposition, or theory that is often difficult to understand or explain, sometimes apparently self-contradictory, and yet ultimately correct or true. How is it possible, for example, that oxygen "a toxic environmental poison" could be also indispensable for life (Beckman and Ames Physiol Rev 78(2):547-81, 1998; Stadtman and Berlett Chem Res Toxicol 10(5):485-94, 1997)?: the so-called Oxygen Paradox (Davies and Ursini 1995; Davies Biochem Soc Symp 61:1-31, 1995). How can French people apparently disregard the rule that high dietary intakes of cholesterol and saturated fats (e.g., cheese and paté) will result in an early death from cardiovascular diseases (Renaud and de Lorgeril Lancet 339(8808):1523-6, 1992; Catalgol et al. Front Pharmacol 3:141, 2012; Eisenberg et al. Nat Med 22(12):1428-1438, 2016)?: the so-called, French Paradox. Doubtless, the truth is not a duality and epistemological bias probably generates apparently self-contradictory conclusions. Perhaps nowhere in biology are there so many apparently contradictory views, and even experimental results, affecting human physiology and pathology as in the fields of free radicals and oxidative stress, antioxidants, foods and drinks, and dietary recommendations; this is particularly true when issues such as disease-susceptibility or avoidance, "healthspan," "lifespan," and ageing are involved. Consider, for example, the apparently paradoxical observation that treatment with low doses of a substance that is toxic at high concentrations may actually induce transient adaptations that protect against a subsequent exposure to the same (or similar) toxin. This particular paradox is now mechanistically explained as "Adaptive Homeostasis" (Davies Mol Asp Med 49:1-7, 2016; Pomatto et al. 2017a; Lomeli et al. Clin Sci (Lond) 131(21):2573-2599, 2017; Pomatto and Davies 2017); the non-damaging process by which an apparent toxicant can activate biological signal transduction pathways to increase expression of protective genes, by mechanisms that are completely different from those by which the same agent induces toxicity at high concentrations. In this review, we explore the influences and effects of paradoxes such as the Oxygen Paradox and the French Paradox on the etiology, progression, and outcomes of many of the major human age-related diseases, as well as the basic biological phenomenon of ageing itself.
Collapse
Affiliation(s)
- Joanna M S Davies
- The Medical Group, Internal Medicine, Rheumatology & Osteoporosis, Dermatology, Pulmonology, Ophthalmology, and Cardiology; the Hospital of the Good Samaritan, Los Angeles, CA, 90017, USA
- Leonard Davis School of Gerontology of the Ethel Percy Andrus Gerontology Center, University of Southern California, Los Angeles, CA, 90089-0191, USA
| | - Josiane Cillard
- Lab de Biologie Cellulaire et Végétale, Faculté de Pharmacie, Université de Rennes, 35043, Rennes Cedex, France
| | - Bertrand Friguet
- Institut de Biologie Paris-Seine (IBPS), UMR CNRS 8256, Biological Adaptation and Ageing, Sorbonne Universités, UPMC Univ Paris 06, 75005, Paris, France
- INSERM ERL U1164, 75005, Paris, France
| | - Enrique Cadenas
- Leonard Davis School of Gerontology of the Ethel Percy Andrus Gerontology Center, University of Southern California, Los Angeles, CA, 90089-0191, USA
- School of Pharmacy, University of Southern California, Los Angeles, CA, 90089-9121, USA
- Department of Biochemistry & Molecular Medicine, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, 90033, USA
| | - Jean Cadet
- Département de Médecine nucléaire et Radiobiologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Québec, J1H 5N4, Canada
| | - Rachael Cayce
- The Medical Group, Internal Medicine, Rheumatology & Osteoporosis, Dermatology, Pulmonology, Ophthalmology, and Cardiology; the Hospital of the Good Samaritan, Los Angeles, CA, 90017, USA
| | - Andrew Fishmann
- The Medical Group, Internal Medicine, Rheumatology & Osteoporosis, Dermatology, Pulmonology, Ophthalmology, and Cardiology; the Hospital of the Good Samaritan, Los Angeles, CA, 90017, USA
| | - David Liao
- The Medical Group, Internal Medicine, Rheumatology & Osteoporosis, Dermatology, Pulmonology, Ophthalmology, and Cardiology; the Hospital of the Good Samaritan, Los Angeles, CA, 90017, USA
| | - Anne-Laure Bulteau
- Institut de Génomique Fonctionnelle de Lyon,ENS de Lyon, CNRS, 69364, Lyon Cedex 07, France
| | - Frédéric Derbré
- Laboratory for Movement, Sport and Health Sciences-EA 1274, M2S, Université de Rennes 2-ENS, Bruz, 35170, Rennes, France
| | - Amélie Rébillard
- Laboratory for Movement, Sport and Health Sciences-EA 1274, M2S, Université de Rennes 2-ENS, Bruz, 35170, Rennes, France
| | - Steven Burstein
- The Medical Group, Internal Medicine, Rheumatology & Osteoporosis, Dermatology, Pulmonology, Ophthalmology, and Cardiology; the Hospital of the Good Samaritan, Los Angeles, CA, 90017, USA
| | - Etienne Hirsch
- INSERM UMR 1127-CNRS UMR 7225, Institut du cerveau et de la moelle épinière-ICM Thérapeutique Expérimentale de la Maladie de Parkinson, Université Pierre et Marie Curie, 75651, Paris Cedex 13, France
| | - Robert A Kloner
- Huntington Medical Research Institutes, Pasadena, CA, 91105, USA
| | - Michael Jakowec
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Giselle Petzinger
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Delphine Sauce
- Chronic infections and Immune ageing, INSERM U1135, Hopital Pitie-Salpetriere, Pierre et Marie Curie University, 75013, Paris, France
| | | | - Isabelle Limon
- Institut de Biologie Paris-Seine (IBPS), UMR CNRS 8256, Biological Adaptation and Ageing, Sorbonne Universités, UPMC Univ Paris 06, 75005, Paris, France
| | - Fulvio Ursini
- Department of Molecular Medicine, University of Padova, 35121, Padova, Italy
| | - Matilde Maiorino
- Department of Molecular Medicine, University of Padova, 35121, Padova, Italy
| | - Christina Economides
- Los Angeles Cardiology Associates, Hospital of the Good Samaritan, Los Angeles, CA, 90017, USA
| | - Christian J Pike
- Leonard Davis School of Gerontology of the Ethel Percy Andrus Gerontology Center, University of Southern California, Los Angeles, CA, 90089-0191, USA
- Division of Neurobiology, Department of Biological Sciences of the Dornsife College of Letters, Arts, and Sciences, University of Southern California, Los Angeles, CA, 90089-0191, USA
| | - Pinchas Cohen
- Leonard Davis School of Gerontology of the Ethel Percy Andrus Gerontology Center, University of Southern California, Los Angeles, CA, 90089-0191, USA
- Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, 90033, USA
| | - Anne Negre Salvayre
- Lipid peroxidation, Signalling and Vascular Diseases INSERM U1048, 31432, Toulouse Cedex 4, France
| | - Matthew R Halliday
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Adam J Lundquist
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Nicolaus A Jakowec
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | | | - Mathias Mericskay
- Laboratoire de Signalisation et Physiopathologie Cardiovasculaire-Inserm UMR-S 1180, Faculté de Pharmacie, Université Paris-Sud, 92296 Châtenay-Malabry, Paris, France
| | - Jean Mariani
- Institut de Biologie Paris-Seine (IBPS), UMR CNRS 8256, Biological Adaptation and Ageing, Sorbonne Universités, UPMC Univ Paris 06, 75005, Paris, France
| | - Zhenlin Li
- Institut de Biologie Paris-Seine (IBPS), UMR CNRS 8256, Biological Adaptation and Ageing, Sorbonne Universités, UPMC Univ Paris 06, 75005, Paris, France
- INSERM ERL U1164, 75005, Paris, France
| | - David Huang
- Department of Radiation Oncology, Hospital of the Good Samaritan, Los Angeles, CA, 90017, USA
| | - Ellsworth Grant
- Department of Oncology & Hematology, Hospital of the Good Samaritan, Los Angeles, CA, 90017, USA
| | - Henry J Forman
- Leonard Davis School of Gerontology of the Ethel Percy Andrus Gerontology Center, University of Southern California, Los Angeles, CA, 90089-0191, USA
| | - Caleb E Finch
- Leonard Davis School of Gerontology of the Ethel Percy Andrus Gerontology Center, University of Southern California, Los Angeles, CA, 90089-0191, USA
- Los Angeles Cardiology Associates, Hospital of the Good Samaritan, Los Angeles, CA, 90017, USA
- Division of Molecular & Computational Biology, Department of Biological Sciences of the Dornsife College of Letters, Arts, and Sciences, University of Southern California, Los Angeles, CA, 90089-0191, USA
| | - Patrick Y Sun
- Leonard Davis School of Gerontology of the Ethel Percy Andrus Gerontology Center, University of Southern California, Los Angeles, CA, 90089-0191, USA
- Division of Molecular & Computational Biology, Department of Biological Sciences of the Dornsife College of Letters, Arts, and Sciences, University of Southern California, Los Angeles, CA, 90089-0191, USA
| | - Laura C D Pomatto
- Leonard Davis School of Gerontology of the Ethel Percy Andrus Gerontology Center, University of Southern California, Los Angeles, CA, 90089-0191, USA
- Division of Molecular & Computational Biology, Department of Biological Sciences of the Dornsife College of Letters, Arts, and Sciences, University of Southern California, Los Angeles, CA, 90089-0191, USA
| | - Onnik Agbulut
- Institut de Biologie Paris-Seine (IBPS), UMR CNRS 8256, Biological Adaptation and Ageing, Sorbonne Universités, UPMC Univ Paris 06, 75005, Paris, France
| | - David Warburton
- Children's Hospital of Los Angeles, Developmental Biology, Regenerative Medicine and Stem Cell Therapeutics program and the Center for Environmental Impact on Global Health Across the Lifespan at The Saban Research Institute, Los Angeles, CA, 90027, USA
- Department of Pediatrics, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, 90033, USA
| | - Christian Neri
- Institut de Biologie Paris-Seine (IBPS), UMR CNRS 8256, Biological Adaptation and Ageing, Sorbonne Universités, UPMC Univ Paris 06, 75005, Paris, France
| | - Mustapha Rouis
- Institut de Biologie Paris-Seine (IBPS), UMR CNRS 8256, Biological Adaptation and Ageing, Sorbonne Universités, UPMC Univ Paris 06, 75005, Paris, France
- INSERM ERL U1164, 75005, Paris, France
| | - Pierre Cillard
- Lab de Biologie Cellulaire et Végétale, Faculté de Pharmacie, Université de Rennes, 35043, Rennes Cedex, France
| | - Jacqueline Capeau
- DR Saint-Antoine UMR_S938, UPMC, Inserm Faculté de Médecine, Université Pierre et Marie Curie, 75012, Paris, France
| | - Jean Rosenbaum
- Scientific Service of the Embassy of France in the USA, Consulate General of France in Los Angeles, Los Angeles, CA, 90025, USA
| | - Kelvin J A Davies
- Leonard Davis School of Gerontology of the Ethel Percy Andrus Gerontology Center, University of Southern California, Los Angeles, CA, 90089-0191, USA.
- Department of Biochemistry & Molecular Medicine, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, 90033, USA.
- Division of Molecular & Computational Biology, Department of Biological Sciences of the Dornsife College of Letters, Arts, and Sciences, University of Southern California, Los Angeles, CA, 90089-0191, USA.
| |
Collapse
|
124
|
Korber M, Klein I, Daum G. Steryl ester synthesis, storage and hydrolysis: A contribution to sterol homeostasis. Biochim Biophys Acta Mol Cell Biol Lipids 2017; 1862:1534-1545. [DOI: 10.1016/j.bbalip.2017.09.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 08/25/2017] [Accepted: 09/05/2017] [Indexed: 02/01/2023]
|
125
|
Teng B, Labazi H, Sun C, Yang Y, Zeng X, Mustafa SJ, Zhou Z. Divergent coronary flow responses to uridine adenosine tetraphosphate in atherosclerotic ApoE knockout mice. Purinergic Signal 2017; 13:591-600. [PMID: 28929376 PMCID: PMC5714849 DOI: 10.1007/s11302-017-9586-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 08/31/2017] [Indexed: 01/11/2023] Open
Abstract
Uridine adenosine tetraphosphate (Up4A) exerts potent relaxation in porcine coronary arteries that is reduced following myocardial infarction, suggesting a crucial role for Up4A in the regulation of coronary flow (CF) in cardiovascular disorders. We evaluated the vasoactive effects of Up4A on CF in atherosclerosis using ApoE knockout (KO) mice ex vivo and in vivo. Functional studies were conducted in isolated mouse hearts using the Langendorff technique. Immunofluorescence was performed to assess purinergic P2X1 receptor (P2X1R) expression in isolated mouse coronary arteries. In vivo effects of Up4A on coronary blood flow (CBF) were assessed using ultrasound. Infusion of Up4A (10-9-10-5 M) into isolated mouse hearts resulted in a concentration-dependent reduction in CF in WT and ApoE KO mice to a similar extent; this effect was exacerbated in ApoE KO mice fed a high-fat diet (HFD). The P2X1R antagonist MRS2159 restored Up4A-mediated decreases in CF more so in ApoE KO + HFD than ApoE KO mice. The smooth muscle to endothelial cell ratio of coronary P2X1R expression was greater in ApoE KO + HFD than ApoE KO or WT mice, suggesting a net vasoconstrictor potential of P2X1R in ApoE KO + HFD mice. In contrast, Up4A (1.6 mg/kg) increased CBF to a similar extent among the three groups. In conclusion, Up4A decreases CF more in ApoE KO + HFD mice, likely through a net upregulation of vasoconstrictor P2X1R. In contrast, Up4A increases CBF in vivo regardless of the atherosclerotic model.
Collapse
Affiliation(s)
- Bunyen Teng
- Department of Physiology and Pharmacology, Clinical and Translational Science Institute, West Virginia University, Morgantown, WV, USA
- Coagulation and Blood Research Task Area, US Army Institute of Surgical Research, San Antonio, TX, USA
| | - Hicham Labazi
- Department of Physiology and Pharmacology, Clinical and Translational Science Institute, West Virginia University, Morgantown, WV, USA
- Center for Cardiovascular Research and The Heart Center, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Changyan Sun
- Department of Physiology and Pharmacology, Clinical and Translational Science Institute, West Virginia University, Morgantown, WV, USA
- Molecular Vascular Medicine, Department of Medicine, Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Yan Yang
- Key Laboratory of Medical Electrophysiology of Ministry of Education, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Xiaorong Zeng
- Key Laboratory of Medical Electrophysiology of Ministry of Education, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - S Jamal Mustafa
- Department of Physiology and Pharmacology, Clinical and Translational Science Institute, West Virginia University, Morgantown, WV, USA
| | - Zhichao Zhou
- Department of Physiology and Pharmacology, Clinical and Translational Science Institute, West Virginia University, Morgantown, WV, USA.
- Division of Cardiology, Department of Medicine, Karolinska University Hospital, Karolinska Institutet, 17176, Stockholm, Sweden.
| |
Collapse
|
126
|
oude Egbrink M, Heijnen V, Megens R, Engels W, Vink H, W. Slaaf D, van Zandvoort M, Reitsma S. Endothelial glycocalyx thickness and platelet-vessel wall interactions during atherogenesis. Thromb Haemost 2017; 106:939-46. [DOI: 10.1160/th11-02-0133] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2011] [Accepted: 07/05/2011] [Indexed: 01/01/2023]
Abstract
SummaryThe endothelial glycocalyx (EG), the luminal cover of endothelial cells, is considered to be atheroprotective. During atherogenesis, platelets adhere to the vessel wall, possibly triggered by simultaneous EG modulation. It was the objective of this study to investigate both EG thickness and platelet-vessel wall interactions during atherogenesis in the same experimental model. Intravital fluorescence microscopy was used to study platelet-vessel wall interactions in vivo in common carotid arteries and bifurcations of C57bl6/J (B6) and apolipoprotein E knock-out (ApoE-/-) mice (age 7 – 31 weeks). At the same locations, EG thickness was determined ex vivo using two-photon laser scanning microscopy. In ApoE-/- bifurcations the overall median level of adhesion was 48 platelets/mm2 (interquartile range: 16 – 80), which was significantly higher than in B6 bifurcations (0 (0 – 16), p = 0.001). This difference appeared to result from a significant age-dependent increase in ApoE-/- mice, while no such change was observed in B6 mice. At the same time, the EG in ApoE-/- bifurcations was significantly thinner than in B6 bifurcations (2.2 vs. 2.5 μm, respectively; p < 0.05). This resulted from the fact that in B6 bifurcations EG thickness increased with age (from 2.4 μm in young mice to 3.0 μm in aged ones), while in bifurcations of ApoE-/- mice this growth appeared to be absent (2.2 μm at all ages). During atherogenesis, platelet adhesion to the wall of the carotid artery bifurcation increases significantly. At the same location, EG growth with age is hampered. Therefore, glycocalyx-reinforcing strategies could possibly ameliorate atherosclerosis.
Collapse
|
127
|
Kim M, Sahu A, Kim GB, Nam GH, Um W, Shin SJ, Jeong YY, Kim IS, Kim K, Kwon IC, Tae G. Comparison of in vivo targeting ability between cRGD and collagen-targeting peptide conjugated nano-carriers for atherosclerosis. J Control Release 2017; 269:337-346. [PMID: 29175140 DOI: 10.1016/j.jconrel.2017.11.033] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 11/17/2017] [Accepted: 11/20/2017] [Indexed: 01/04/2023]
Abstract
Atherosclerosis plaque is a major cause of cardiovascular diseases across the globe and a silent killer. There are no physical symptoms of the disease in its early stage and current diagnostic techniques cannot detect the small plaques effectively or safely. Plaques formed in blood vessels can cause serious clinical problems such as impaired blood flow or sudden death, regardless of their size. Thus, detecting early stage of plaques is especially more important to effectively reduce the risk of atherosclerosis. Nanoparticle based delivery systems are recognized as a promising option to fight against this disease, and various targeting ligands are typically used to improve their efficiency. So, the choice of appropriate targeting ligand is a crucial factor for optimal targeting efficiency. cRGD peptide and collagen IV targeting peptide, which binds with the αvβ3 integrin overexpressed in the neovasculature of the plaque and collagen type IV present in the plaque, respectively, are frequently used for the targeting of nanoparticles. However, at present no study has directly compared these two peptides. Therefore, in this study, we have prepared cRGD or collagen IV targeting (Col IV-tg-) peptide conjugated and iron oxide nanoparticle (IONP) loaded Pluronic based nano-carriers for systemic comparison of their targeting ability towards in vivo atherosclerotic plaque in Apolipoprotein E deficient (Apo E-/-) mouse model. Nano-carriers with similar size, surface charge, and IONP loading content but with different targeting ligands were analyzed through in vitro and in vivo experiments. Near infrared fluorescence imaging and magnetic resonance imaging techniques as well as Prussian blue staining were used to compare the accumulation of different ligand conjugated nano-caariers in the aorta of atherosclerotic mice. Our results indicate that cRGD based targeting is more efficient than Col IV-tg-peptide in the early stage of atherosclerosis.
Collapse
Affiliation(s)
- Manse Kim
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Abhishek Sahu
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Gi Beom Kim
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea; KU-KIST School of Converging Science and Technology, Korea University, Seoul, Republic of Korea
| | - Gi Hoon Nam
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea; KU-KIST School of Converging Science and Technology, Korea University, Seoul, Republic of Korea
| | - Wooram Um
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea; Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul 06351, Republic of Korea
| | - So Jin Shin
- Department of Radiology, Chonnam National University Medical School, Chonnam National University Hwasun Hospital, Gwangju 61469, Republic of Korea
| | - Yong Yeon Jeong
- Department of Radiology, Chonnam National University Medical School, Chonnam National University Hwasun Hospital, Gwangju 61469, Republic of Korea
| | - In-San Kim
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea; KU-KIST School of Converging Science and Technology, Korea University, Seoul, Republic of Korea
| | - Kwangmeyung Kim
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea; KU-KIST School of Converging Science and Technology, Korea University, Seoul, Republic of Korea
| | - Ick Chan Kwon
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea; KU-KIST School of Converging Science and Technology, Korea University, Seoul, Republic of Korea
| | - Giyoong Tae
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea.
| |
Collapse
|
128
|
Establishment and phenotyping of disease model cells created by cell-resealing technique. Sci Rep 2017; 7:15167. [PMID: 29123170 PMCID: PMC5680332 DOI: 10.1038/s41598-017-15443-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 10/23/2017] [Indexed: 12/28/2022] Open
Abstract
Cell-based assays are growing in importance for screening drugs and investigating their mechanisms of action. Most of the assays use so-called “normal” cell strain because it is difficult to produce cell lines in which the disease conditions are reproduced. In this study, we used a cell-resealing technique, which reversibly permeabilizes the plasma membrane, to develop diabetic (Db) model hepatocytes into which cytosol from diabetic mouse liver had been introduced. Db model hepatocytes showed several disease-specific phenotypes, namely disturbance of insulin-induced repression of gluconeogenic gene expression and glucose secretion. Quantitative image analysis and principal component analysis revealed that the ratio of phosphorylated Akt (pAkt) to Akt was the best index to describe the difference between wild-type and Db model hepatocytes. By performing image-based drug screening, we found pioglitazone, a PPARγ agonist, increased the pAkt/Akt ratio, which in turn ameliorated the insulin-induced transcriptional repression of the gluconeogenic gene phosphoenolpyruvate carboxykinase 1. The disease-specific model cells coupled with image-based quantitative analysis should be useful for drug development, enabling the reconstitution of disease conditions at the cellular level and the discovery of disease-specific markers.
Collapse
|
129
|
On phagocytes and macular degeneration. Prog Retin Eye Res 2017; 61:98-128. [DOI: 10.1016/j.preteyeres.2017.06.002] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 05/29/2017] [Accepted: 06/05/2017] [Indexed: 12/17/2022]
|
130
|
Heparanase Inhibition Reduces Glucose Levels, Blood Pressure, and Oxidative Stress in Apolipoprotein E Knockout Mice. BIOMED RESEARCH INTERNATIONAL 2017; 2017:7357495. [PMID: 29226146 PMCID: PMC5684525 DOI: 10.1155/2017/7357495] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Revised: 08/07/2017] [Accepted: 09/17/2017] [Indexed: 02/07/2023]
Abstract
Background Atherosclerosis is a multifactorial process. Emerging evidence highlights a role of the enzyme heparanase in various disease states, including atherosclerosis formation and progression. Objective The aim of the study was to investigate the effect of heparanase inhibition on blood pressure, blood glucose levels, and oxidative stress in apoE−/− mice. Methods Male apoE−/− mice were divided into two groups: one treated by the heparanase inhibitor PG545, administered intraperitoneally weekly for seven weeks, and the other serving as control group (injected with saline). Blood pressure was measured a day before sacrificing the animals. Serum glucose levels and lipid profile were measured. Assessment of oxidative stress was performed as well. Results PG545 significantly lowered blood pressure and serum glucose levels in treated mice. It also caused significant reduction of the serum oxidative stress. For safety concerns, liver enzymes were assessed, and PG545 caused significant elevation only of alanine aminotransferase, but not of the other hepatic enzymes. Conclusion Heparanase inhibition by PG545 caused marked reduction of blood pressure, serum glucose levels, and oxidative stress in apolipoprotein E deficient mice, possibly via direct favorable metabolic and hemodynamic changes caused by the inhibitor. Possible hepatotoxic and weight wasting effects are subject for future investigation.
Collapse
|
131
|
Duan L, Xiong X, Hu J, Liu Y, Li J, Wang J. Panax notoginseng Saponins for Treating Coronary Artery Disease: A Functional and Mechanistic Overview. Front Pharmacol 2017; 8:702. [PMID: 29089889 PMCID: PMC5651167 DOI: 10.3389/fphar.2017.00702] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 09/20/2017] [Indexed: 12/29/2022] Open
Abstract
Coronary artery disease (CAD) is a major public health problem and the chief cause of morbidity and mortality worldwide. Panax notoginseng, a valuable herb in traditional Chinese medicine (TCM) with obvious efficacy and favorable safety, shows a great promise as a novel option for CAD and is increasingly recognized clinically. Firstly, this review introduced recent clinical trials on treatment with PNS either alone or in combination with conventional drugs as novel treatment strategies. Then we discussed the mechanisms of P. notoginseng and Panax notoginseng saponins (PNS), which can regulate signaling pathways associated with inflammation, lipid metabolism, the coagulation system, apoptosis, angiogenesis, atherosclerosis, and myocardial ischaemia.
Collapse
Affiliation(s)
- Lian Duan
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Science, Beijing, China
- Graduate School, Beijing University of Traditional Chinese Medicine, Beijing, China
| | - Xingjiang Xiong
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Science, Beijing, China
| | - Junyuan Hu
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Science, Beijing, China
- Graduate School, Beijing University of Traditional Chinese Medicine, Beijing, China
| | - Yongmei Liu
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Science, Beijing, China
| | - Jun Li
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Science, Beijing, China
| | - Jie Wang
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Science, Beijing, China
| |
Collapse
|
132
|
Angelovich TA, Hearps AC, Maisa A, Kelesidis T, Jaworowski A. Quantification of Monocyte Transmigration and Foam Cell Formation from Individuals with Chronic Inflammatory Conditions. J Vis Exp 2017:56293. [PMID: 29155735 PMCID: PMC5752417 DOI: 10.3791/56293] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Coronary artery disease (CAD) is a leading cause of morbidity and mortality worldwide. Atherosclerosis, a leading cause of CAD, is initiated by the transmigration of innate immune monocytes to inflammatory sites of deposited lipid called fatty streaks, which are present in arterial walls of medium to large arteries. The key pathogenic feature of lesions at this early stage of atherosclerosis is the maturation of monocytes which migrate into arteries to form foam cells or lipid-laden macrophages. Considerable evidence supports the hypothesis that risk of atherosclerosis is increased by chronic inflammatory conditions accompanying diseases such as rheumatoid arthritis and HIV, as well as general ageing, and that this risk is predicted by monocyte activation. While mouse models provide a good platform to investigate the role of monocytes in atherogenesis in vivo, they require genetic alteration of natural cholesterol metabolism and drastic alteration of normal mouse diets, and have limited suitability for the study of atherogenic influences of human comorbid diseases. This motivated us to develop a human in vitro model to measure the atherogenic potential of monocytes isolated from individuals with defined disease states. Currently, human in vitro models are limiting in that they evaluate monocyte transmigration and foam cell formation in isolation. Here we describe a protocol in which monocytes isolated from patient blood transmigrate across human endothelial cells into a type 1 collagen matrix, and their propensity to mature into foam cells in the presence or absence of exogenous lipid is measured. The protocol has been validated for the use of human monocytes purified from individuals with HIV infection and elderly HIV uninfected individuals. This model is versatile and allows monocyte transmigration and foam cell formation to be evaluated using either microscopy or flow cytometry as well as allowing the assessment of atherogenic factors present in serum or plasma.
Collapse
Affiliation(s)
- Thomas A Angelovich
- Centre for Biomedical Research, Burnet Institute; School of Health and Biomedical Sciences, RMIT University
| | - Anna C Hearps
- Centre for Biomedical Research, Burnet Institute; Department of Infectious Diseases, Monash University
| | - Anna Maisa
- Centre for Biomedical Research, Burnet Institute
| | | | - Anthony Jaworowski
- Centre for Biomedical Research, Burnet Institute; Department of Infectious Diseases, Monash University;
| |
Collapse
|
133
|
Herold V, Herz S, Winter P, Gutjahr FT, Andelovic K, Bauer WR, Jakob PM. Assessment of local pulse wave velocity distribution in mice using k-t BLAST PC-CMR with semi-automatic area segmentation. J Cardiovasc Magn Reson 2017; 19:77. [PMID: 29037199 PMCID: PMC5641989 DOI: 10.1186/s12968-017-0382-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 08/22/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Local aortic pulse wave velocity (PWV) is a measure for vascular stiffness and has a predictive value for cardiovascular events. Ultra high field CMR scanners allow the quantification of local PWV in mice, however these systems are yet unable to monitor the distribution of local elasticities. METHODS In the present study we provide a new accelerated method to quantify local aortic PWV in mice with phase-contrast cardiovascular magnetic resonance imaging (PC-CMR) at 17.6 T. Based on a k-t BLAST (Broad-use Linear Acquisition Speed-up Technique) undersampling scheme, total measurement time could be reduced by a factor of 6. The fast data acquisition enables to quantify the local PWV at several locations along the aortic blood vessel based on the evaluation of local temporal changes in blood flow and vessel cross sectional area. To speed up post processing and to eliminate operator bias, we introduce a new semi-automatic segmentation algorithm to quantify cross-sectional areas of the aortic vessel. The new methods were applied in 10 eight-month-old mice (4 C57BL/6J-mice and 6 ApoE (-/-)-mice) at 12 adjacent locations along the abdominal aorta. RESULTS Accelerated data acquisition and semi-automatic post-processing delivered reliable measures for the local PWV, similiar to those obtained with full data sampling and manual segmentation. No statistically significant differences of the mean values could be detected for the different measurement approaches. Mean PWV values were elevated for the ApoE (-/-)-group compared to the C57BL/6J-group (3.5 ± 0.7 m/s vs. 2.2 ± 0.4 m/s, p < 0.01). A more heterogeneous PWV-distribution in the ApoE (-/-)-animals could be observed compared to the C57BL/6J-mice, representing the local character of lesion development in atherosclerosis. CONCLUSION In the present work, we showed that k-t BLAST PC-MRI enables the measurement of the local PWV distribution in the mouse aorta. The semi-automatic segmentation method based on PC-CMR data allowed rapid determination of local PWV. The findings of this study demonstrate the ability of the proposed methods to non-invasively quantify the spatial variations in local PWV along the aorta of ApoE (-/-)-mice as a relevant model of atherosclerosis.
Collapse
Affiliation(s)
- Volker Herold
- Department of Experimental Physics, University of Würzburg, Am Hubland, Würzburg, 97074 Germany
| | - Stefan Herz
- Comprehensive Heart Failure Center/Deutsches Zentrum für Herzinsuffizienz, University of Würzburg, Würzburg, Germany
| | - Patrick Winter
- Department of Experimental Physics, University of Würzburg, Am Hubland, Würzburg, 97074 Germany
| | - Fabian Tobias Gutjahr
- Department of Experimental Physics, University of Würzburg, Am Hubland, Würzburg, 97074 Germany
| | - Kristina Andelovic
- Department of Internal Medicine I, University Hospital Würzburg, Würzburg, Germany
| | | | - Peter Michael Jakob
- Department of Experimental Physics, University of Würzburg, Am Hubland, Würzburg, 97074 Germany
| |
Collapse
|
134
|
Doumouchtsis EK, Tzani A, Doulamis IP, Konstantopoulos P, Laskarina-Maria K, Agrogiannis G, Agapitos E, Moschos MM, Kostakis A, Perrea DN. Effect of Saffron on Metabolic Profile and Retina in Apolipoprotein E-Knockout Mice Fed a High-Fat Diet. J Diet Suppl 2017; 15:471-481. [PMID: 28937827 DOI: 10.1080/19390211.2017.1356417] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Saffron is a spice that has been traditionally used as a regimen for a variety of diseases due to its potent antioxidant attributes. It is well documented that impaired systemic oxidative status is firmly associated with diverse adverse effects including retinal damage. The aim of this study was to investigate the role of saffron administration against the retinal damage in apoE -/- mice fed a high-fat diet, since they constitute a designated experimental model susceptible to oxidative stress. Twenty-one mice were allocated into three groups: Group A (control, n = 7 c57bl/6 mice) received standard chow diet; Group B (high-fat, n = 7 apoE -/- mice) received a high-fat diet; and Group C (high-fat and saffron, n = 7 apoE -/- mice) received a high-fat diet and saffron (25 mg/kg/d) through their drinking water. The duration of the study was 20 weeks. Lipidemic profile, glucose, C-reactive protein (CRP), and total oxidative capacity (PerOX) were measured in blood serum. Histological analysis of retina was also conducted. Administration of saffron resulted in enhanced glycemic control and preservation of retinal thickness when compared with apoE -/- mice fed a high-fat diet. The outcomes of the study suggest the potential protective role of saffron against retinal damage induced by oxidative stress. Nevertheless, verification of these results in humans is required before any definite conclusions can be drawn.
Collapse
Affiliation(s)
- Evangelos K Doumouchtsis
- a Faculty of Medicine, Laboratory of Experimental Surgery and Surgical Research "N.S. Christeas," National and Kapodistrian University of Athens , Athens , Greece
| | - Aspasia Tzani
- a Faculty of Medicine, Laboratory of Experimental Surgery and Surgical Research "N.S. Christeas," National and Kapodistrian University of Athens , Athens , Greece
| | - Ilias P Doulamis
- a Faculty of Medicine, Laboratory of Experimental Surgery and Surgical Research "N.S. Christeas," National and Kapodistrian University of Athens , Athens , Greece
| | - Panagiotis Konstantopoulos
- a Faculty of Medicine, Laboratory of Experimental Surgery and Surgical Research "N.S. Christeas," National and Kapodistrian University of Athens , Athens , Greece
| | - Korou Laskarina-Maria
- a Faculty of Medicine, Laboratory of Experimental Surgery and Surgical Research "N.S. Christeas," National and Kapodistrian University of Athens , Athens , Greece
| | - Georgios Agrogiannis
- b Faculty of Medicine, 1st Department of Pathology , National and Kapodistrian University of Athens , Athens , Greece
| | - Emmanouil Agapitos
- b Faculty of Medicine, 1st Department of Pathology , National and Kapodistrian University of Athens , Athens , Greece
| | - Marilita M Moschos
- c Faculty of Medicine, University Eye Clinic, General Hospital of Athens "G. Gennimatas," National and Kapodistrian University of Athens , Athens , Greece
| | - Alkiviadis Kostakis
- a Faculty of Medicine, Laboratory of Experimental Surgery and Surgical Research "N.S. Christeas," National and Kapodistrian University of Athens , Athens , Greece
| | - Despina N Perrea
- a Faculty of Medicine, Laboratory of Experimental Surgery and Surgical Research "N.S. Christeas," National and Kapodistrian University of Athens , Athens , Greece
| |
Collapse
|
135
|
Yang X, Li Y, Li Y, Ren X, Zhang X, Hu D, Gao Y, Xing Y, Shang H. Oxidative Stress-Mediated Atherosclerosis: Mechanisms and Therapies. Front Physiol 2017; 8:600. [PMID: 28878685 PMCID: PMC5572357 DOI: 10.3389/fphys.2017.00600] [Citation(s) in RCA: 287] [Impact Index Per Article: 35.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 08/03/2017] [Indexed: 12/14/2022] Open
Abstract
Atherogenesis, the formation of atherosclerotic plaques, is a complex process that involves several mechanisms, including endothelial dysfunction, neovascularization, vascular proliferation, apoptosis, matrix degradation, inflammation, and thrombosis. The pathogenesis and progression of atherosclerosis are explained differently by different scholars. One of the most common theories is the destruction of well-balanced homeostatic mechanisms, which incurs the oxidative stress. And oxidative stress is widely regarded as the redox status realized when an imbalance exists between antioxidant capability and activity species including reactive oxygen (ROS), nitrogen (RNS) and halogen species, non-radical as well as free radical species. This occurrence results in cell injury due to direct oxidation of cellular protein, lipid, and DNA or via cell death signaling pathways responsible for accelerating atherogenesis. This paper discusses inflammation, mitochondria, autophagy, apoptosis, and epigenetics as they induce oxidative stress in atherosclerosis, as well as various treatments for antioxidative stress that may prevent atherosclerosis.
Collapse
Affiliation(s)
- Xinyu Yang
- Guang'anmen Hospital, Chinese Academy of Chinese Medical SciencesBeijing, China.,Key Laboratory of Chinese Internal Medicine of the Ministry of Education, Dongzhimen Hospital, Beijing University of Chinese MedicineBeijing, China
| | - Yang Li
- Department of Cardiology, General Hospital of People's Liberation ArmyBeijing, China
| | - Yanda Li
- Guang'anmen Hospital, Chinese Academy of Chinese Medical SciencesBeijing, China
| | - Xiaomeng Ren
- Guang'anmen Hospital, Chinese Academy of Chinese Medical SciencesBeijing, China.,Key Laboratory of Chinese Internal Medicine of the Ministry of Education, Dongzhimen Hospital, Beijing University of Chinese MedicineBeijing, China
| | - Xiaoyu Zhang
- Key Laboratory of Chinese Internal Medicine of the Ministry of Education, Dongzhimen Hospital, Beijing University of Chinese MedicineBeijing, China
| | - Dan Hu
- Masonic Medical Research LaboratoryUtica, NY, United States
| | - Yonghong Gao
- Key Laboratory of Chinese Internal Medicine of the Ministry of Education, Dongzhimen Hospital, Beijing University of Chinese MedicineBeijing, China
| | - Yanwei Xing
- Guang'anmen Hospital, Chinese Academy of Chinese Medical SciencesBeijing, China
| | - Hongcai Shang
- Key Laboratory of Chinese Internal Medicine of the Ministry of Education, Dongzhimen Hospital, Beijing University of Chinese MedicineBeijing, China
| |
Collapse
|
136
|
Wiśniewska A, Olszanecki R, Totoń-Żurańska J, Kuś K, Stachowicz A, Suski M, Gębska A, Gajda M, Jawień J, Korbut R. Anti-Atherosclerotic Action of Agmatine in ApoE-Knockout Mice. Int J Mol Sci 2017; 18:ijms18081706. [PMID: 28777310 PMCID: PMC5578096 DOI: 10.3390/ijms18081706] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 07/31/2017] [Accepted: 08/01/2017] [Indexed: 12/30/2022] Open
Abstract
Atherosclerosis is an inflammatory disease in which dysfunction of mitochondria play an important role, and disorders of lipid management intensify this process. Agmatine, an endogenous polyamine formed by decarboxylation of arginine, exerts a protective effect on mitochondria and modulates fatty acid metabolism. We investigated the effect of exogenous agmatine on the development of atherosclerosis and changes in lipid profile in apolipoprotein E knockout (apoE-/-) mice. Agmatine caused an approximate 40% decrease of atherosclerotic lesions, as estimated by en face and cross-section methods with an influence on macrophage but not on smooth muscle content in the plaques. Agmatine treatment did not changed gelatinase activity within the plaque area. What is more, the action of agmatine was associated with an increase in the number of high density lipoproteins (HDL) in blood. Real-Time PCR analysis showed that agmatine modulates liver mRNA levels of many factors involved in oxidation of fatty acid and cholesterol biosynthesis. Two-dimensional electrophoresis coupled with mass spectrometry identified 27 differentially expressed mitochondrial proteins upon agmatine treatment in the liver of apoE-/- mice, mostly proteins related to metabolism and apoptosis. In conclusion, prolonged administration of agmatine inhibits atherosclerosis in apoE-/- mice; however, the exact mechanisms linking observed changes and elevations of HDL plasma require further investigation.
Collapse
Affiliation(s)
- Anna Wiśniewska
- Department of Pharmacology, Jagiellonian University Medical College, 31-531 Krakow, Poland.
| | - Rafał Olszanecki
- Department of Pharmacology, Jagiellonian University Medical College, 31-531 Krakow, Poland.
| | - Justyna Totoń-Żurańska
- Department of Pharmacology, Jagiellonian University Medical College, 31-531 Krakow, Poland.
| | - Katarzyna Kuś
- Department of Pharmacology, Jagiellonian University Medical College, 31-531 Krakow, Poland.
| | - Aneta Stachowicz
- Department of Pharmacology, Jagiellonian University Medical College, 31-531 Krakow, Poland.
| | - Maciej Suski
- Department of Pharmacology, Jagiellonian University Medical College, 31-531 Krakow, Poland.
| | - Anna Gębska
- Department of Pharmacology, Jagiellonian University Medical College, 31-531 Krakow, Poland.
| | - Mariusz Gajda
- Department of Histology, Jagiellonian University Medical College, 31-034 Krakow, Poland.
| | - Jacek Jawień
- Department of Pharmacology, Jagiellonian University Medical College, 31-531 Krakow, Poland.
| | - Ryszard Korbut
- Department of Pharmacology, Jagiellonian University Medical College, 31-531 Krakow, Poland.
| |
Collapse
|
137
|
Phie J, Krishna SM, Moxon JV, Omer SM, Kinobe R, Golledge J. Flavonols reduce aortic atherosclerosis lesion area in apolipoprotein E deficient mice: A systematic review and meta-analysis. PLoS One 2017; 12:e0181832. [PMID: 28742839 PMCID: PMC5526572 DOI: 10.1371/journal.pone.0181832] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Accepted: 07/08/2017] [Indexed: 01/24/2023] Open
Abstract
Diets rich in flavonoids have been reported to have beneficial effects in the primary prevention of cardiovascular events. There are limited data, however, on the cardiovascular benefits of purified flavonoids. The aim of this systematic review and meta-analysis was to examine the reported effects of isolated flavonoids on aortic atherosclerosis in a mouse model. Medline, Pubmed, Science direct and Web of Science were searched to identify studies which examined the effect of isolated flavonoids on aortic atherosclerosis in apolipoprotein E deficient mice. A meta-analysis was performed to determine the overall effect of the flavonoids, and sub-analyses were performed to compare the effects of the flavonols and flavan-3-ols. Eleven studies, which examined a total of 208 mice receiving a flavonoid and 126 control mice, were included. Overall the flavonoids significantly reduced aortic atherosclerosis (SMD 1.10, 95% CI 0.69, 1.51). Of the 18 flavonoid interventions examined 12 were flavonols and 3 were flavan-3-ols. Sub-analyses suggested that the flavonols (SMD 1.31, 95% CI 0.66, 1.91) but not the flavan-3-ols (SMD 0.33, 95% CI -0.19, 0.85) significantly decreased atherosclerosis area. Of the eleven studies, only one examined histological markers of atherosclerosis plaque stability. Most studies did not report blinding of outcome assessors or reproducibility of the primary outcome, and did not justify the sample size used and flavonoid dose administered. Based on the included studies, the flavonols appear to be the most effective flavonoids for reducing aortic atherosclerotic lesion area in apolipoprotein E deficient mice.
Collapse
Affiliation(s)
- James Phie
- The Vascular Biology Unit, Queensland Research Centre for Peripheral Vascular Disease, School of Medicine & Dentistry, James Cook University, Townsville, Queensland, Australia
| | - Smriti M. Krishna
- The Vascular Biology Unit, Queensland Research Centre for Peripheral Vascular Disease, School of Medicine & Dentistry, James Cook University, Townsville, Queensland, Australia
| | - Joseph V. Moxon
- The Vascular Biology Unit, Queensland Research Centre for Peripheral Vascular Disease, School of Medicine & Dentistry, James Cook University, Townsville, Queensland, Australia
| | - Safraz M. Omer
- The Vascular Biology Unit, Queensland Research Centre for Peripheral Vascular Disease, School of Medicine & Dentistry, James Cook University, Townsville, Queensland, Australia
| | - Robert Kinobe
- College of Public Health, Medical & Veterinary Sciences, James Cook University, Townsville, Queensland, Australia
| | - Jonathan Golledge
- The Vascular Biology Unit, Queensland Research Centre for Peripheral Vascular Disease, School of Medicine & Dentistry, James Cook University, Townsville, Queensland, Australia
- Department of Vascular and Endovascular Surgery, The Townsville Hospital, Townsville, Queensland, Australia
- * E-mail:
| |
Collapse
|
138
|
Yang G, Lei Y, Inoue A, Piao L, Hu L, Jiang H, Sasaki T, Wu H, Xu W, Yu C, Zhao G, Ogasawara S, Okumura K, Kuzuya M, Cheng XW. Exenatide mitigated diet-induced vascular aging and atherosclerotic plaque growth in ApoE-deficient mice under chronic stress. Atherosclerosis 2017; 264:1-10. [PMID: 28734203 DOI: 10.1016/j.atherosclerosis.2017.07.014] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 07/03/2017] [Accepted: 07/12/2017] [Indexed: 01/30/2023]
Abstract
BACKGROUND AND AIMS Exposure to psychosocial stress is a risk factor for cardiovascular disorders. Because the glucagon-like peptide-1 (GLP-1) receptor (GLP-1R) agonist prevents cardiovascular injury, we investigated the beneficial effects and mechanism of the GLP-1 analogue exenatide on stress-related vascular senescence and atherosclerosis in apolipoprotein E-deficient (ApoE-/-) mice fed a high-fat (HF) diet. METHODS ApoE-/- mice fed the HF diet were assigned to non-stressed and immobilized-stress groups for 12 weeks. Mice fed the HF diet were divided into 2 groups and administered vehicle or exenatide for 12 weeks under stress conditions. RESULTS Chronic stress enhanced vascular endothelial senescence and atherosclerotic plaque growth. The stress increased the levels of plasma depeptidyl peptidase-4 activity and decreased the levels of plasma GLP-1 and both plasma and adipose adiponectin (APN). As compared with the mice subjected to stress alone, the exenatide-treated mice had decreased plaque microvessel density, macrophage accumulation, broken elastin, and enhanced plaque collagen volume, and lowered levels of peroxisome proliferator-activated receptor-α, gp91phox osteopontin, C-X-C chemokine receptor-4, toll-like receptor-2 (TLR2), TLR4, and cathepsins K, L, and S mRNAs and/or proteins. Exenatide reduced aortic matrix metalloproteinase-9 (MMP-9) and MMP-2 gene expression and activities. Exenatide also stimulated APN expression of preadipocytes and inhibited ox-low density lipoprotein-induced foam cell formation of monocytes in stressed mice. CONCLUSIONS These results indicate that the exenatide-mediated beneficial vascular actions are likely attributable, at least in part, to the enhancement of APN production and the attenuation of plaque oxidative stress, inflammation, and proteolysis in ApoE-/- mice under chronic stress.
Collapse
Affiliation(s)
- Guang Yang
- Department of Cardiology and ICU, Yanbian University Hospital, Yanjin, Jilin PR., 13000, China
| | - Yanna Lei
- Department of Cardiology and ICU, Yanbian University Hospital, Yanjin, Jilin PR., 13000, China
| | - Aiko Inoue
- Institute of Innovation for Future Society, Nagoya University, Nagoya, 4668550, Japan; Department of Community Health & Geriatrics, Nagoya University Graduate School of Medicine, Nagoya, 4668550, Japan
| | - Limei Piao
- Department of Cardiology and ICU, Yanbian University Hospital, Yanjin, Jilin PR., 13000, China; Institute of Innovation for Future Society, Nagoya University, Nagoya, 4668550, Japan
| | - Lina Hu
- Department of Public Health, Guilin Medical College, Guilin, Guangxi P. R., 541004, China
| | - Haiying Jiang
- Department of Cardiology and ICU, Yanbian University Hospital, Yanjin, Jilin PR., 13000, China
| | - Takeshi Sasaki
- Department of Anatomy and Neuroscience, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, 4313192, Japan
| | - Hongxian Wu
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Wenhu Xu
- Department of Cardiology and ICU, Yanbian University Hospital, Yanjin, Jilin PR., 13000, China; Institute of Innovation for Future Society, Nagoya University, Nagoya, 4668550, Japan
| | - Chenglin Yu
- Department of Cardiology and ICU, Yanbian University Hospital, Yanjin, Jilin PR., 13000, China; Institute of Innovation for Future Society, Nagoya University, Nagoya, 4668550, Japan
| | - Guangxian Zhao
- Department of Cardiology and ICU, Yanbian University Hospital, Yanjin, Jilin PR., 13000, China
| | - Shinyu Ogasawara
- Institute of Innovation for Future Society, Nagoya University, Nagoya, 4668550, Japan
| | - Kenji Okumura
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Masafumi Kuzuya
- Institute of Innovation for Future Society, Nagoya University, Nagoya, 4668550, Japan; Department of Community Health & Geriatrics, Nagoya University Graduate School of Medicine, Nagoya, 4668550, Japan
| | - Xian-Wu Cheng
- Department of Cardiology and ICU, Yanbian University Hospital, Yanjin, Jilin PR., 13000, China; Institute of Innovation for Future Society, Nagoya University, Nagoya, 4668550, Japan; Department of Community Health & Geriatrics, Nagoya University Graduate School of Medicine, Nagoya, 4668550, Japan; Department of Internal Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea.
| |
Collapse
|
139
|
Alaarg A, Senders ML, Varela-Moreira A, Pérez-Medina C, Zhao Y, Tang J, Fay F, Reiner T, Fayad ZA, Hennink WE, Metselaar JM, Mulder WJM, Storm G. A systematic comparison of clinically viable nanomedicines targeting HMG-CoA reductase in inflammatory atherosclerosis. J Control Release 2017; 262:47-57. [PMID: 28700897 DOI: 10.1016/j.jconrel.2017.07.013] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 06/27/2017] [Accepted: 07/07/2017] [Indexed: 12/21/2022]
Abstract
Atherosclerosis is a leading cause of worldwide morbidity and mortality whose management could benefit from novel targeted therapeutics. Nanoparticles are emerging as targeted drug delivery systems in chronic inflammatory disorders. To optimally exploit nanomedicines, understanding their biological behavior is crucial for further development of clinically relevant and efficacious nanotherapeutics intended to reduce plaque inflammation. Here, three clinically relevant nanomedicines, i.e., high-density lipoprotein ([S]-HDL), polymeric micelles ([S]-PM), and liposomes ([S]-LIP), that are loaded with the HMG-CoA reductase inhibitor simvastatin [S], were evaluated in the apolipoprotein E-deficient (Apoe-/-) mouse model of atherosclerosis. We systematically employed quantitative techniques, including in vivo positron emission tomography imaging, gamma counting, and flow cytometry to evaluate the biodistribution, nanomedicines' uptake by plaque-associated macrophages/monocytes, and their efficacy to reduce macrophage burden in atherosclerotic plaques. The three formulations demonstrated distinct biological behavior in Apoe-/- mice. While [S]-PM and [S]-LIP possessed longer circulation half-lives, the three platforms accumulated to similar levels in atherosclerotic plaques. Moreover, [S]-HDL and [S]-PM showed higher uptake by plaque macrophages in comparison to [S]-LIP, while [S]-PM demonstrated the highest uptake by Ly6Chigh monocytes. Among the three formulations, [S]-PM displayed the highest efficacy in reducing macrophage burden in advanced atherosclerotic plaques. In conclusion, our data demonstrate that [S]-PM is a promising targeted drug delivery system, which can be advanced for the treatment of atherosclerosis and other inflammatory disorders in the clinical settings. Our results also emphasize the importance of a thorough understanding of nanomedicines' biological performance, ranging from the whole body to the target cells, as well drug retention in the nanoparticles. Such systematic investigations would allow rational applications of nanomaterials', beyond cancer, facilitating the expansion of the nanomedicine horizon.
Collapse
Affiliation(s)
- Amr Alaarg
- Department of Biomaterials Science and Technology, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede 7500 AE, The Netherlands; Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht 3584 CG, The Netherlands
| | - Max L Senders
- Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Medical Biochemistry, Academic Medical Center, 1105 AZ Amsterdam, The Netherlands
| | - Aida Varela-Moreira
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht 3584 CG, The Netherlands; Department of Clinical Chemistry and Haematology, University Medical Centre Utrecht, Utrecht 3584 CX, The Netherlands
| | - Carlos Pérez-Medina
- Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Yiming Zhao
- Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jun Tang
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Francois Fay
- Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Chemistry, York College of The City University of New York, New York, NY 11451, USA
| | - Thomas Reiner
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Department of Radiology, Weill Cornell Medical College, New York, NY 10065, USA
| | - Zahi A Fayad
- Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Wim E Hennink
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht 3584 CG, The Netherlands
| | - Josbert M Metselaar
- Department of Biomaterials Science and Technology, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede 7500 AE, The Netherlands; Department of Experimental Molecular Imaging, University Clinic and Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, Aachen 52074, Germany
| | - Willem J M Mulder
- Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Medical Biochemistry, Academic Medical Center, 1105 AZ Amsterdam, The Netherlands.
| | - Gert Storm
- Department of Biomaterials Science and Technology, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede 7500 AE, The Netherlands; Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht 3584 CG, The Netherlands; Imaging Division, University Medical Centre Utrecht, Utrecht 3584 CX, The Netherlands.
| |
Collapse
|
140
|
Sfyri P, Matsakas A. Crossroads between peripheral atherosclerosis, western-type diet and skeletal muscle pathophysiology: emphasis on apolipoprotein E deficiency and peripheral arterial disease. J Biomed Sci 2017; 24:42. [PMID: 28688452 PMCID: PMC5502081 DOI: 10.1186/s12929-017-0346-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 06/07/2017] [Indexed: 12/16/2022] Open
Abstract
Atherosclerosis is a chronic inflammatory process that, in the presence of hyperlipidaemia, promotes the formation of atheromatous plaques in large vessels of the cardiovascular system. It also affects peripheral arteries with major implications for a number of other non-vascular tissues such as the skeletal muscle, the liver and the kidney. The aim of this review is to critically discuss and assimilate current knowledge on the impact of peripheral atherosclerosis and its implications on skeletal muscle homeostasis. Accumulating data suggests that manifestations of peripheral atherosclerosis in skeletal muscle originates in a combination of increased i)-oxidative stress, ii)-inflammation, iii)-mitochondrial deficits, iv)-altered myofibre morphology and fibrosis, v)-chronic ischemia followed by impaired oxygen supply, vi)-reduced capillary density, vii)- proteolysis and viii)-apoptosis. These structural, biochemical and pathophysiological alterations impact on skeletal muscle metabolic and physiologic homeostasis and its capacity to generate force, which further affects the individual's quality of life. Particular emphasis is given on two major areas representing basic and applied science respectively: a)-the abundant evidence from a well-recognised atherogenic model; the Apolipoprotein E deficient mouse and the role of a western-type diet and b)-on skeletal myopathy and oxidative stress-induced myofibre damage from human studies on peripheral arterial disease. A significant source of reactive oxygen species production and oxidative stress in cardiovascular disease is the family of NADPH oxidases that contribute to several pathologies. Finally, strategies targeting NADPH oxidases in skeletal muscle in an attempt to attenuate cellular oxidative stress are highlighted, providing a better understanding of the crossroads between peripheral atherosclerosis and skeletal muscle pathophysiology.
Collapse
Affiliation(s)
- Peggy Sfyri
- Molecular Physiology Laboratory, Centre for Atherothrombotic & Metabolic Disease, Hull York Medical School, University of Hull, Cottingham Road, Hull, HU6 7RX, United Kingdom
| | - Antonios Matsakas
- Molecular Physiology Laboratory, Centre for Atherothrombotic & Metabolic Disease, Hull York Medical School, University of Hull, Cottingham Road, Hull, HU6 7RX, United Kingdom.
| |
Collapse
|
141
|
Tudorache IF, Trusca VG, Gafencu AV. Apolipoprotein E - A Multifunctional Protein with Implications in Various Pathologies as a Result of Its Structural Features. Comput Struct Biotechnol J 2017; 15:359-365. [PMID: 28660014 PMCID: PMC5476973 DOI: 10.1016/j.csbj.2017.05.003] [Citation(s) in RCA: 116] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 05/15/2017] [Accepted: 05/22/2017] [Indexed: 12/31/2022] Open
Abstract
Apolipoprotein E (apoE), a 34 kDa glycoprotein, mediates hepatic and extrahepatic uptake of plasma lipoproteins and cholesterol efflux from lipid-laden macrophages. In humans, three structural different apoE isoforms occur, with subsequent functional changes and pathological consequences. Here, we review data supporting the involvement of apoE structural domains and isoforms in normal and altered lipid metabolism, cardiovascular and neurodegenerative diseases, as well as stress-related pathological states. Studies using truncated apoE forms provided valuable information regarding the regions and residues responsible for its properties. ApoE3 renders protection against cardiovascular diseases by maintaining lipid homeostasis, while apoE2 is associated with dysbetalipoproteinemia. ApoE4 is a recognized risk factor for Alzheimer's disease, although the exact mechanism of the disease initiation and progression is not entirely elucidated. ApoE is also implicated in infections with herpes simplex type-1, hepatitis C and human immunodeficiency viruses. Interacting with both viral and host molecules, apoE isoforms differently interfere with the viral life cycle. ApoE exerts anti-inflammatory effects, switching macrophage phenotype from the proinflammatory M1 to the anti-inflammatory M2, suppressing CD4+ and CD8+ lymphocytes, and reducing IL-2 production. The anti-oxidative properties of apoE are isoform-dependent, modulating the levels of various molecules (Nrf2 target genes, metallothioneins, paraoxonase). Mimetic peptides were designed to exploit apoE beneficial properties. The "structure correctors" which convert apoE4 into apoE3-like molecules have pharmacological potential. Despite no successful strategy is yet available for apoE-related disorders, several promising candidates deserve further improvement and exploitation.
Collapse
Key Words
- AD, Alzheimer's disease
- ApoE
- ApoE, Apolipoprotein E
- CVD, cardiovascular disease
- HCV, hepatitis C virus
- HDL, high-density lipoprotein
- HIV, human immunodeficiency virus
- HLP, phospholipid transfer protein
- HSPGs, heparan sulfate proteoglycans
- HSV-1, herpes simplex virus type-1
- Isoform
- LDL, low density lipoprotein
- LPG, lipoprotein glomerulopathy
- LPL, lipoprotein lipase
- Mimetic peptide
- NS5A, nonstructural protein 5A
- PLTP, type III hyperlipoproteinemia
- Structural domain
- TG, triglyceride
- Truncated molecule
- VLDL, very-low-density lipoprotein
Collapse
Affiliation(s)
| | | | - Anca Violeta Gafencu
- Institute of Cellular Biology and Pathology “Nicolae Simionescu” of the Romanian Academy, 8 B. P. Hasdeu Street, Sector 5, 050568 Bucharest, Romania
| |
Collapse
|
142
|
Kong SK, Choe MK, Kim HJ, Kim YS, Binas B, Kim HJ. An ApoB100-mimetic vaccine prevents obesity and liver steatosis in ApoE-/- mice. Pharmacol Rep 2017; 69:1140-1144. [PMID: 29128792 DOI: 10.1016/j.pharep.2017.05.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 04/17/2017] [Accepted: 05/22/2017] [Indexed: 12/27/2022]
Abstract
BACKGROUND Recently, a peptide vaccine (B4T) was developed that prevents high fat diet (HFD)-induced obesity and liver steatosis in wild type mice and appears to target an epitope present in ApoB100 but not ApoB48. Here, we ask whether B4T remains effective in ApoE knockout (ApoE-ko) mice, which exhibit a greatly increased ApoB48/ApoB100 ratio and develop atherosclerosis under HFD. METHODS HFD-fed male ApoE-ko mice were injected with B4T or vehicle 3 times between 5 and 15 weeks of age. Until 45 weeks of age, they were regularly weighed and antibody titers determined. In the end, adiposity and organ histologies were examined. RESULTS We find that in the ApoE-ko mice, B4T prevents HFD-induced body weight increases (p<0.01) to a comparable degree as previously shown in wild type mice. Also, liver steatosis was prevented as previously shown in wild type mice. By contrast, atherosclerotic plaque formation was not prevented in any of the vaccinated mice studied, in line with the observation that antibody production paralleled the weight reduction but largely preceded atherogenesis. CONCLUSION The findings demonstrate effectiveness of B4T despite the increased ApoB48/B100 ratio, but argue against an effect on de novo plaque formation. At least under the current vaccination schedule, the obesity- and atherosclerosis-related roles of ApoB appear to be dissociable.
Collapse
Affiliation(s)
- Su-Kang Kong
- Department of Molecular and Life Sciences, College of Science and Technology, Hanyang University (ERICA campus), Ansan, Korea
| | - Moon Kyung Choe
- Department of Molecular and Life Sciences, College of Science and Technology, Hanyang University (ERICA campus), Ansan, Korea
| | - Hyung-Ji Kim
- Department of Neurology, Dankook University Hospital, Cheonan, Chungnam, Korea
| | - Young-Sik Kim
- Department of Pathology, Korea University Ansan Hospital, Ansan, Korea
| | - Bert Binas
- Department of Molecular and Life Sciences, College of Science and Technology, Hanyang University (ERICA campus), Ansan, Korea.
| | - Hyo Joon Kim
- Department of Molecular and Life Sciences, College of Science and Technology, Hanyang University (ERICA campus), Ansan, Korea; SJBiomed Inc., HBI 604, Ansan, Korea.
| |
Collapse
|
143
|
Marek I, Canu M, Cordasic N, Rauh M, Volkert G, Fahlbusch FB, Rascher W, Hilgers KF, Hartner A, Menendez-Castro C. Sex differences in the development of vascular and renal lesions in mice with a simultaneous deficiency of Apoe and the integrin chain Itga8. Biol Sex Differ 2017; 8:19. [PMID: 28572914 PMCID: PMC5450388 DOI: 10.1186/s13293-017-0141-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 05/23/2017] [Indexed: 01/21/2023] Open
Abstract
Background Apoe-deficient (Apoe−/−) mice develop progressive atherosclerotic lesions with age but no severe renal pathology in the absence of additional challenges. We recently described accelerated atherosclerosis as well as marked renal injury in Apoe−/− mice deficient in the mesenchymal integrin chain Itga8 (Itga8−/−). Here, we used this Apoe−/−, Itga8−/− mouse model to investigate the sex differences in the development of atherosclerosis and concomitant renal injury. We hypothesized that aging female mice are protected from vascular and renal damage in this mouse model. Methods Apoe−/− mice were backcrossed with Itga8−/− mice. Mice were kept on a normal diet. At the age of 12 months, the aortae and kidneys of male and female Apoe−/−Itga8+/+ mice or Apoe−/−Itga8−/− mice were studied. En face preparations of the aorta were stained with Sudan IV (lipid deposition) or von Kossa (calcification). In kidney tissue, immunostaining for collagen IV, CD3, F4/80, and PCNA and real-time PCR analyses for Il6, Vegfa, Col1a1 (collagen I), and Ssp1 (secreted phosphoprotein 1, synonym osteopontin) as well as ER stress markers were performed. Results When compared to male mice, Apoe−/−Itga8+/+ female mice had a lower body weight, equal serum cholesterol levels, and lower triglyceride levels. However, female mice had increased aortic lipid deposition and more aortic calcifications than males. Male Apoe−/− mice with the additional deficiency of Itga8 developed increased serum urea, glomerulosclerosis, renal immune cell infiltration, and reduced glomerular cell proliferation. In females of the same genotype, these renal changes were less pronounced and were accompanied by lower expression of interleukin-6 and collagen I, while osteopontin expression was higher and markers of ER stress were not different. Conclusions In this model of atherosclerosis, the female sex is a risk factor to develop more severe atherosclerotic lesions, even though serum fat levels are higher in males. In contrast, female mice are protected from renal damage, which is accompanied by attenuated inflammation and matrix deposition. Thus, sex affects vascular and renal injury in a differential manner. Electronic supplementary material The online version of this article (doi:10.1186/s13293-017-0141-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ines Marek
- Department of Pediatrics and Adolescent Medicine, University Hospital of Erlangen-Nuernberg, Loschgestrasse 15, 91054 Erlangen, Germany
| | - Maurizio Canu
- Department of Pediatrics and Adolescent Medicine, University Hospital of Erlangen-Nuernberg, Loschgestrasse 15, 91054 Erlangen, Germany
| | - Nada Cordasic
- Department of Nephrology and Hypertension, University Hospital of Erlangen-Nuernberg, Erlangen, Germany
| | - Manfred Rauh
- Department of Pediatrics and Adolescent Medicine, University Hospital of Erlangen-Nuernberg, Loschgestrasse 15, 91054 Erlangen, Germany
| | - Gudrun Volkert
- Department of Pediatrics and Adolescent Medicine, University Hospital of Erlangen-Nuernberg, Loschgestrasse 15, 91054 Erlangen, Germany
| | - Fabian B Fahlbusch
- Department of Pediatrics and Adolescent Medicine, University Hospital of Erlangen-Nuernberg, Loschgestrasse 15, 91054 Erlangen, Germany
| | - Wolfgang Rascher
- Department of Pediatrics and Adolescent Medicine, University Hospital of Erlangen-Nuernberg, Loschgestrasse 15, 91054 Erlangen, Germany
| | - Karl F Hilgers
- Department of Nephrology and Hypertension, University Hospital of Erlangen-Nuernberg, Erlangen, Germany
| | - Andrea Hartner
- Department of Pediatrics and Adolescent Medicine, University Hospital of Erlangen-Nuernberg, Loschgestrasse 15, 91054 Erlangen, Germany
| | - Carlos Menendez-Castro
- Department of Pediatrics and Adolescent Medicine, University Hospital of Erlangen-Nuernberg, Loschgestrasse 15, 91054 Erlangen, Germany
| |
Collapse
|
144
|
Seifert R, Scherzinger A, Kiefer F, Hermann S, Jiang X, Schäfers MA. Statistical Permutation-based Artery Mapping (SPAM): a novel approach to evaluate imaging signals in the vessel wall. BMC Med Imaging 2017; 17:36. [PMID: 28549448 PMCID: PMC5446712 DOI: 10.1186/s12880-017-0207-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 05/09/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Cardiovascular diseases are the leading cause of death worldwide. A prominent cause of cardiovascular events is atherosclerosis, a chronic inflammation of the arterial wall that leads to the formation of so called atherosclerotic plaques. There is a strong clinical need to develop new, non-invasive vascular imaging techniques in order to identify high-risk plaques, which might escape detection using conventional methods based on the assessment of the luminal narrowing. In this context, molecular imaging strategies based on fluorescent tracers and fluorescence reflectance imaging (FRI) seem well suited to assess molecular and cellular activity. However, such an analysis demands a precise and standardized analysis method, which is orientated on reproducible anatomical landmarks, ensuring to compare equivalent regions across different subjects. METHODS We propose a novel method, Statistical Permutation-based Artery Mapping (SPAM). Our approach is especially useful for the understanding of complex and heterogeneous regional processes during the course of atherosclerosis. Our method involves three steps, which are (I) standardisation with an additional intensity normalization, (II) permutation testing, and (III) cluster-enhancement. Although permutation testing and cluster enhancement are already well-established in functional magnetic resonance imaging, to the best of our knowledge these strategies have so far not been applied in cardiovascular molecular imaging. RESULTS We tested our method using FRI images of murine aortic vessels in order to find recurring patterns in atherosclerotic plaques across multiple subjects. We demonstrate that our pixel-wise and cluster-enhanced testing approach is feasible and useful to analyse tracer distributions in FRI data sets of aortic vessels. CONCLUSIONS We expect our method to be a useful tool within the field of molecular imaging of atherosclerotic plaques since cluster-enhanced permutation testing is a powerful approach for finding significant differences of tracer distributions in inflamed atherosclerotic vessels.
Collapse
Affiliation(s)
- Robert Seifert
- European Institute for Molecular Imaging (EIMI), University of Münster, Münster, Germany.
| | - Aaron Scherzinger
- Department of Mathematics and Computer Science, University of Münster, Münster, Germany
| | - Friedemann Kiefer
- Max Planck Institute for Molecular Biomedicine, Münster, Germany.,DFG Cluster of Excellence 1003 'CiM - Cells in Motion', Münster, Germany
| | - Sven Hermann
- European Institute for Molecular Imaging (EIMI), University of Münster, Münster, Germany.,DFG Cluster of Excellence 1003 'CiM - Cells in Motion', Münster, Germany
| | - Xiaoyi Jiang
- European Institute for Molecular Imaging (EIMI), University of Münster, Münster, Germany.,Department of Mathematics and Computer Science, University of Münster, Münster, Germany.,DFG Cluster of Excellence 1003 'CiM - Cells in Motion', Münster, Germany
| | - Michael A Schäfers
- European Institute for Molecular Imaging (EIMI), University of Münster, Münster, Germany.,DFG Cluster of Excellence 1003 'CiM - Cells in Motion', Münster, Germany.,Department of Nuclear Medicine, University Hospital Münster, Münster, Germany
| |
Collapse
|
145
|
Schött HF, Baumgartner S, Husche C, Luister A, Friedrichs S, Miller CM, McCarthy FO, Plat J, Laufs U, Weingärtner O, Lütjohann D. Oxidation of sitosterol and transport of its 7-oxygenated products from different tissues in humans and ApoE knockout mice. J Steroid Biochem Mol Biol 2017; 169:145-151. [PMID: 27132025 DOI: 10.1016/j.jsbmb.2016.04.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 04/18/2016] [Accepted: 04/20/2016] [Indexed: 12/24/2022]
Abstract
The most common phytosterols in the human diet are sitosterol and campesterol, which originate exclusively from plant derived food. These phytosterols are taken up by NPC1L1 transport from the intestine into the enterocytes together with cholesterol and other xenosterols. Phytosterols are selectively pumped back from the enterocytes into the intestinal lumen and on the liver site from hepatocytes into bile by heterodimeric ABCG5/G8 transporters. Like cholesterol, both phytosterols are prone to ring and side chain oxidation. It could be shown that oxyphytosterols, found in atherosclerotic tissue, are most likely of in situ oxidation (Schött et al.; Biochem. Biophys. Res. Commun. 2014 Apr 11;446(3):805-10). However, up to now, the entire mechanism of phytosterol oxidation is not clearly understood. Here, we provide further information about the oxidation of sitosterol and the transport of its oxidation products out of tissue. Our survey includes data of 104 severe aortic stenosis patients that underwent an elective aortic valve cusp replacement. We studied their phytosterol concentrations, as well as absolute and substrate corrected oxyphytosterol levels in plasma and valve cusp tissue. In addition, we also examined phytosterol and oxyphytosterol concentrations in plasma and tissues (from brain and liver) of 10 male ApoE knockout mice. The ratio of 7-oxygenated-sitosterol-to-sitosterol exceeds the ratio for 7-oxygenated-campesterol-to-campesterol in plasma and tissue of both humans and mice. This finding indicates that sitosterol is oxidized to a higher amount than campesterol and that a selective oxidative mechanism might exist which can differentiate between certain phytosterols. Secondly, the concentrations of oxyphytosterols found in plasma and tissue support the idea that oxysitosterols are preferably transported out of individual tissues. Selective oxidation of sitosterol and preferred transport of sitosterol oxidation products out of tissue seem to be a metabolic pathway of forced sitosterol clearance from tissue compartments.
Collapse
Affiliation(s)
- Hans-Frieder Schött
- Institute for Clinical Chemistry and Clinical Pharmacology, University Clinics Bonn, Germany; Department of Human Biology, Maastricht University, Maastricht, The Netherlands
| | - Sabine Baumgartner
- Department of Human Biology, Maastricht University, Maastricht, The Netherlands
| | - Constanze Husche
- Institute for Clinical Chemistry and Clinical Pharmacology, University Clinics Bonn, Germany
| | - Alexandra Luister
- Klinik für Innere Medizin III, Kardiologie, Angiologie und Internistische Intensivmedizin, Universitätsklinikum des Saarlandes, Homburg/Saar, Germany
| | - Silvia Friedrichs
- Institute for Clinical Chemistry and Clinical Pharmacology, University Clinics Bonn, Germany
| | - Charlotte M Miller
- Department of Chemistry and Analytical and Biological Chemistry Research Facility, University College Cork, Cork, Ireland
| | - Florence O McCarthy
- Department of Chemistry and Analytical and Biological Chemistry Research Facility, University College Cork, Cork, Ireland
| | - Jogchum Plat
- Department of Human Biology, Maastricht University, Maastricht, The Netherlands
| | - Ulrich Laufs
- Klinik für Innere Medizin III, Kardiologie, Angiologie und Internistische Intensivmedizin, Universitätsklinikum des Saarlandes, Homburg/Saar, Germany
| | - Oliver Weingärtner
- Klinik für Innere Medizin III, Kardiologie, Angiologie und Internistische Intensivmedizin, Universitätsklinikum des Saarlandes, Homburg/Saar, Germany; Department of Cardiology, Klinikum Oldenburg, Carl von Ossietzky University, European Medical School Oldenburg-Groningen, Oldenburg, Germany
| | - Dieter Lütjohann
- Institute for Clinical Chemistry and Clinical Pharmacology, University Clinics Bonn, Germany.
| |
Collapse
|
146
|
Krämer M, Motaal AG, Herrmann KH, Löffler B, Reichenbach JR, Strijkers GJ, Hoerr V. Cardiac 4D phase-contrast CMR at 9.4 T using self-gated ultra-short echo time (UTE) imaging. J Cardiovasc Magn Reson 2017; 19:39. [PMID: 28359292 PMCID: PMC5374606 DOI: 10.1186/s12968-017-0351-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 03/02/2017] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Time resolved 4D phase contrast (PC) cardiovascular magnetic resonance (CMR) in mice is challenging due to long scan times, small animal ECG-gating and the rapid blood flow and cardiac motion of small rodents. To overcome several of these technical challenges we implemented a retrospectively self-gated 4D PC radial ultra-short echo-time (UTE) acquisition scheme and assessed its performance in healthy mice by comparing the results with those obtained with an ECG-triggered 4D PC fast low angle shot (FLASH) sequence. METHODS Cardiac 4D PC CMR images were acquired at 9.4 T in healthy mice using the proposed self-gated radial center-out UTE acquisition scheme (TE/TR of 0.5 ms/3.1 ms) and a standard Cartesian 4D PC imaging sequence (TE/TR of 2.1 ms/5.0 ms) with a four-point Hadamard flow encoding scheme. To validate the proposed UTE flow imaging technique, experiments on a flow phantom with variable pump rates were performed. RESULTS The anatomical images and flow velocity maps of the proposed 4D PC UTE technique showed reduced artifacts and an improved SNR (left ventricular cavity (LV): 8.9 ± 2.5, myocardium (MC): 15.7 ± 1.9) compared to those obtained using a typical Cartesian FLASH sequence (LV: 5.6 ± 1.2, MC: 10.1 ± 1.4) that was used as a reference. With both sequences comparable flow velocities were obtained in the flow phantom as well as in the ascending aorta (UTE: 132.8 ± 18.3 cm/s, FLASH: 134.7 ± 13.4 cm/s) and pulmonary artery (UTE: 78.5 ± 15.4 cm/s, FLASH: 86.6 ± 6.2 cm/s) of the animals. Self-gated navigator signals derived from information of the oversampled k-space center were successfully extracted for all animals with a higher gating efficiency of time spent on acquiring gated data versus total measurement time (UTE: 61.8 ± 11.5%, FLASH: 48.5 ± 4.9%). CONCLUSIONS The proposed self-gated 4D PC UTE sequence enables robust and accurate flow velocity mapping of the mouse heart in vivo at high magnetic fields. At the same time SNR, gating efficiency, flow artifacts and image quality all improved compared to the images obtained using the well-established, ECG-triggered, 4D PC FLASH sequence.
Collapse
Affiliation(s)
- M. Krämer
- Medical Physics Group, Institute of Diagnostic and Interventional Radiology, Jena University Hospital - Friedrich Schiller University Jena, Philosophenweg 3, D-07743 Jena, Germany
| | - A. G. Motaal
- Biomedical NMR, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
| | - K-H. Herrmann
- Medical Physics Group, Institute of Diagnostic and Interventional Radiology, Jena University Hospital - Friedrich Schiller University Jena, Philosophenweg 3, D-07743 Jena, Germany
| | - B. Löffler
- Institute of Medical Microbiology, Jena University Hospital, Friedrich Schiller University Jena, Jena, Germany
| | - J. R. Reichenbach
- Medical Physics Group, Institute of Diagnostic and Interventional Radiology, Jena University Hospital - Friedrich Schiller University Jena, Philosophenweg 3, D-07743 Jena, Germany
- Michael Stifel Center for Data-driven and Simulation Science Jena, Friedrich Schiller University Jena, Jena, Germany
- Abbe School of Photonics, Friedrich Schiller University Jena, Jena, Germany
- Center of Medical Optics and Photonics, Friedrich Schiller University Jena, Jena, Germany
| | - G. J. Strijkers
- Biomedical NMR, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
- Biomedical Engineering and Physics, Academic Medical Center, Amsterdam, Netherlands
| | - V. Hoerr
- Institute of Medical Microbiology, Jena University Hospital, Friedrich Schiller University Jena, Jena, Germany
| |
Collapse
|
147
|
Gotschy A, Bauer WR, Winter P, Nordbeck P, Rommel E, Jakob PM, Herold V. Local versus global aortic pulse wave velocity in early atherosclerosis: An animal study in ApoE-/--mice using ultrahigh field MRI. PLoS One 2017; 12:e0171603. [PMID: 28207773 PMCID: PMC5313136 DOI: 10.1371/journal.pone.0171603] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Accepted: 01/23/2017] [Indexed: 11/25/2022] Open
Abstract
Increased aortic stiffness is known to be associated with atherosclerosis and has a predictive value for cardiovascular events. This study aims to investigate the local distribution of early arterial stiffening due to initial atherosclerotic lesions. Therefore, global and local pulse wave velocity (PWV) were measured in ApoE-/- and wild type (WT) mice using ultrahigh field MRI. For quantification of global aortic stiffness, a new multi-point transit-time (TT) method was implemented and validated to determine the global PWV in the murine aorta. Local aortic stiffness was measured by assessing the local PWV in the upper abdominal aorta, using the flow/area (QA) method. Significant differences between age matched ApoE-/- and WT mice were determined for global and local PWV measurements (global PWV: ApoE-/-: 2.7±0.2m/s vs WT: 2.1±0.2m/s, P<0.03; local PWV: ApoE-/-: 2.9±0.2m/s vs WT: 2.2±0.2m/s, P<0.03). Within the WT mouse group, the global PWV correlated well with the local PWV in the upper abdominal aorta (R2 = 0.75, P<0.01), implying a widely uniform arterial elasticity. In ApoE-/- animals, however, no significant correlation between individual local and global PWV was present (R2 = 0.07, P = 0.53), implying a heterogeneous distribution of vascular stiffening in early atherosclerosis. The assessment of global PWV using the new multi-point TT measurement technique was validated against a pressure wire measurement in a vessel phantom and showed excellent agreement. The experimental results demonstrate that vascular stiffening caused by early atherosclerosis is unequally distributed over the length of large vessels. This finding implies that assessing heterogeneity of arterial stiffness by multiple local measurements of PWV might be more sensitive than global PWV to identify early atherosclerotic lesions.
Collapse
Affiliation(s)
- Alexander Gotschy
- Department of Experimental Physics V, University of Würzburg, Würzburg, Germany
- Department of Cardiology, University Heart Center, University Hospital Zurich, Zurich, Switzerland
- Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland
- * E-mail:
| | - Wolfgang R. Bauer
- Department of Internal Medicine I, University Hospital Würzburg, Würzburg, Germany
- Comprehensive Heart Failure Center / Deutsches Zentrum für Herzinsuffizienz, University of Würzburg, Würzburg, Germany
| | - Patrick Winter
- Department of Experimental Physics V, University of Würzburg, Würzburg, Germany
| | - Peter Nordbeck
- Department of Internal Medicine I, University Hospital Würzburg, Würzburg, Germany
- Comprehensive Heart Failure Center / Deutsches Zentrum für Herzinsuffizienz, University of Würzburg, Würzburg, Germany
| | - Eberhard Rommel
- Department of Experimental Physics V, University of Würzburg, Würzburg, Germany
| | - Peter M. Jakob
- Department of Experimental Physics V, University of Würzburg, Würzburg, Germany
- Comprehensive Heart Failure Center / Deutsches Zentrum für Herzinsuffizienz, University of Würzburg, Würzburg, Germany
| | - Volker Herold
- Department of Experimental Physics V, University of Würzburg, Würzburg, Germany
| |
Collapse
|
148
|
Abstract
Imaging mass spectrometry (IMS) is a novel quantitative technique used to investigative diverse biomolecules in tissue sections. Specifically, IMS uses analytical separation of mass spectrometry to determine the spatial distribution of certain lipids and/or proteins located directly on biological sections from a single tissue sample. Typically, IMS is combined with histological analysis to reveal additional distribution details of characterized biomolecules including cell type and/or subcellular localization. In this chapter, we describe the use of Matrix-Assisted Laser Desorption/Ionization (MALDI) Time-Of-Flight/Time-Of-Flight (TOF/TOF) to analyze various cholesterol and phosphatidylcholine species in atherosclerotic plaque of murine heart aortic valves. In particular, we detail animals used, tissue collection, preparation, matrix application, spectra acquisition for generating a color-coded image based on IMS spectral characteristics.
Collapse
|
149
|
Chan YK, El-Nezami H, Chen Y, Kinnunen K, Kirjavainen PV. Probiotic mixture VSL#3 reduce high fat diet induced vascular inflammation and atherosclerosis in ApoE(-/-) mice. AMB Express 2016; 6:61. [PMID: 27576894 PMCID: PMC5005234 DOI: 10.1186/s13568-016-0229-5] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 08/12/2016] [Indexed: 02/07/2023] Open
Abstract
Atherosclerosis results from chronic inflammation potentially caused by translocation of bacterial components from the oro-gastrointestinal tract to circulation. Specific probiotics have anti-inflammatory effects and may reduce bacterial translocation. We thereby tested whether a probiotic mixture with documented anti-inflammatory potential could reduce atherosclerosis. ApoE−/− mice were fed high fat diet alone or with VSL#3 or a positive control treatment, telmisartan or both for 12 weeks. All treatments reduced atherosclerotic plaques significantly compared to high fat diet alone. VSL#3 significantly reduced proinflammatory adhesion molecules and risk factors of plaque rupture, reduced vascular inflammation and atherosclerosis to a comparable extent to telmisartan; and VSL#3 treated mice had the most distinctly different intestinal microbiota composition from the control groups. Combining the VSL#3 and telmisartan brought no further benefits. Our findings showed the therapeutic potential of VSL#3 in reducing atherosclerosis and vascular inflammation.
Collapse
|
150
|
Comprehensive Plasma Metabolomic Analyses of Atherosclerotic Progression Reveal Alterations in Glycerophospholipid and Sphingolipid Metabolism in Apolipoprotein E-deficient Mice. Sci Rep 2016; 6:35037. [PMID: 27721472 PMCID: PMC5056345 DOI: 10.1038/srep35037] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 09/22/2016] [Indexed: 01/04/2023] Open
Abstract
Atherosclerosis is the major underlying cause of most cardiovascular diseases. Despite recent advances, the molecular mechanisms underlying the pathophysiology of atherogenesis are not clear. In this study, comprehensive plasma metabolomics were used to investigate early-stage atherosclerotic development and progression in chow-fed apolipoprotein E-deficient mice at 5, 10 and 15 weeks of age. Comprehensive plasma metabolomic profiles, based on 4365 detected metabolite features, differentiate atherosclerosis-prone from atherosclerosis-resistant models. Metabolites in the sphingomyelin pathway were significantly altered prior to detectable lesion formation and at all subsequent time-points. The cytidine diphosphate-diacylglycerol pathway was up-regulated during stage I of atherosclerosis, while metabolites in the phosphatidylethanolamine and glycosphingolipid pathways were augmented in mice with stage II lesions. These pathways, involving glycerophospholipid and sphingolipid metabolism, were also significantly affected during the course of atherosclerotic progression. Our findings suggest that distinct plasma metabolomic profiles can differentiate the different stages of atherosclerotic progression. This study reveals that alteration of specific, previously unreported pathways of glycerophospholipid and sphingolipid metabolism are associated with atherosclerosis. The clear difference in the level of several metabolites supports the use of plasma lipid profiling as a diagnostic tool of atherogenesis.
Collapse
|