101
|
De Giorgi M, Enjyoji K, Jiang G, Csizmadia E, Mitsuhashi S, Gumina RJ, Smolenski RT, Robson SC. Complete deletion of Cd39 is atheroprotective in apolipoprotein E-deficient mice. J Lipid Res 2017; 58:1292-1305. [PMID: 28487312 PMCID: PMC5496028 DOI: 10.1194/jlr.m072132] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 04/28/2017] [Indexed: 02/07/2023] Open
Abstract
Cd39 scavenges extracellular ATP and ADP, ultimately generating adenosine, a nucleoside, which has anti-inflammatory effects in the vasculature. We have evaluated the role of Cd39 in the development of atherosclerosis in hyperlipidemic mice. ApoE KO (Cd39+/+/ApoE−/−) and Cd39/ApoE double KO (DKO) (Cd39−/−/ApoE−/−) mice were maintained on chow or Western diet for up to 20 weeks before evaluation of atherosclerotic lesions. We found that DKO mice exhibited significantly fewer atherosclerotic lesions than ApoE KO mice, irrespective of diet. Analyses of plaque composition revealed diminished foam cells in the fatty streaks and smaller necrotic cores in advanced lesions of DKO mice, when compared with those in ApoE KO mice. This atheroprotective phenotype was associated with impaired platelet reactivity to ADP in vitro and prolonged platelet survival, suggesting decreased platelet activation in vivo. Further studies with either genetic deletion or pharmacological inhibition of Cd39 in macrophages revealed increased cholesterol efflux mediated via ABCA1 to ApoA1. This phenomenon was associated with elevated plasma HDL levels in DKO mice. Our findings indicate that complete deletion of Cd39 paradoxically attenuates development of atherosclerosis in hyperlipidemic mice. We propose that this phenotype occurs, at least in part, from diminished platelet activation, increased plasma HDL levels, and enhanced cholesterol efflux and indicates the complexity of purinergic signaling in atherosclerosis.
Collapse
Affiliation(s)
- Marco De Giorgi
- Transplant Institute and Hepatology, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA
| | - Keiichi Enjyoji
- Transplant Institute and Hepatology, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA
| | - Gordon Jiang
- Transplant Institute and Hepatology, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA
| | - Eva Csizmadia
- Transplant Institute and Hepatology, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA
| | - Shuji Mitsuhashi
- Transplant Institute and Hepatology, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA
| | - Richard J Gumina
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | | | - Simon C Robson
- Transplant Institute and Hepatology, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA.
| |
Collapse
|
102
|
Sarduy R, Brito V, Castillo A, Soto Y, Griñán T, Marleau S, Vázquez AM. Dose-Dependent Induction of an Idiotypic Cascade by Anti-Glycosaminoglycan Monoclonal Antibody in apoE -/- Mice: Association with Atheroprotection. Front Immunol 2017; 8:232. [PMID: 28316603 PMCID: PMC5334371 DOI: 10.3389/fimmu.2017.00232] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 02/17/2017] [Indexed: 01/07/2023] Open
Abstract
Atherosclerosis, the underlying pathology of most cardiovascular diseases, is triggered by the retention of apolipoprotein B (apoB)-containing lipoproteins in the arterial wall through electrostatic interactions with glycosaminoglycan (GAG) side chains of proteoglycans. Previously, we reported the antiatherogenic properties of the chimeric monoclonal antibody (mAb) chP3R99-LALA, which binds sulfated GAGs, inhibits low-density lipoprotein (LDL)–chondroitin sulfate (CS) association, and abrogates LDL oxidation and foam cell formation. In preventive and therapeutic settings, apoE-deficient (apoE−/−) mice immunized with 50 μg of this mAb showed reduced atherosclerotic lesions related with the induction of autologous anti-GAG antibodies. Knowing that age and sex are major non-modifiable risk factors in the development of atherosclerosis, the present study aimed to assess the influence of these variables on the capacity of chP3R99-LALA mAb to generate an anti-CS antibody response. Also, we aimed at defining the impact of the dose of chP3R99-LALA on the anti-CS antibody induction and the atheroprotective effect of this mAb in apoE−/− mice. Neither age nor sex had an impact in the IgG anti-CS antibody response induced by s.c. immunization with this mAb. Moreover, chP3R99-LALA mAb reduced atherosclerotic lesions to a similar extent in both young male and female apoE−/− mice fed a hypercholesterolemic diet and, in middle-aged female apoE−/− mice, with spontaneous lesions. On the other hand, increasing the dose of chP3R99-LALA (200 vs. 50 μg) elicited an anti-idiotype antibody cascade characterized by higher levels of anti-idiotype (Ab2), anti-anti-idiotype (Ab3), and anti-CS antibody responses. Moreover, this dose increment resulted in a striking reduction of aortic atherosclerotic lesions in immunized mice.
Collapse
Affiliation(s)
- Roger Sarduy
- Division of Immunobiology, Center of Molecular Immunology , Havana , Cuba
| | - Victor Brito
- Division of Immunobiology, Center of Molecular Immunology , Havana , Cuba
| | - Adriana Castillo
- Division of Immunobiology, Center of Molecular Immunology , Havana , Cuba
| | - Yosdel Soto
- Division of Immunobiology, Center of Molecular Immunology , Havana , Cuba
| | - Tania Griñán
- Division of Immunobiology, Center of Molecular Immunology , Havana , Cuba
| | - Sylvie Marleau
- Faculté de Pharmacie, Université de Montréal , Montréal, QC , Canada
| | - Ana María Vázquez
- Innovation Managing Direction, Center of Molecular Immunology , Havana , Cuba
| |
Collapse
|
103
|
Davegårdh C, Broholm C, Perfilyev A, Henriksen T, García-Calzón S, Peijs L, Hansen NS, Volkov P, Kjøbsted R, Wojtaszewski JFP, Pedersen M, Pedersen BK, Ballak DB, Dinarello CA, Heinhuis B, Joosten LAB, Nilsson E, Vaag A, Scheele C, Ling C. Abnormal epigenetic changes during differentiation of human skeletal muscle stem cells from obese subjects. BMC Med 2017; 15:39. [PMID: 28222718 PMCID: PMC5320752 DOI: 10.1186/s12916-017-0792-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 01/11/2017] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Human skeletal muscle stem cells are important for muscle regeneration. However, the combined genome-wide DNA methylation and expression changes taking place during adult myogenesis have not been described in detail and novel myogenic factors may be discovered. Additionally, obesity is associated with low relative muscle mass and diminished metabolism. Epigenetic alterations taking place during myogenesis might contribute to these defects. METHODS We used Infinium HumanMethylation450 BeadChip Kit (Illumina) and HumanHT-12 Expression BeadChip (Illumina) to analyze genome-wide DNA methylation and transcription before versus after differentiation of primary human myoblasts from 14 non-obese and 14 obese individuals. Functional follow-up experiments were performed using siRNA mediated gene silencing in primary human myoblasts and a transgenic mouse model. RESULTS We observed genome-wide changes in DNA methylation and expression patterns during differentiation of primary human muscle stem cells (myoblasts). We identified epigenetic and transcriptional changes of myogenic transcription factors (MYOD1, MYOG, MYF5, MYF6, PAX7, MEF2A, MEF2C, and MEF2D), cell cycle regulators, metabolic enzymes and genes previously not linked to myogenesis, including IL32, metallothioneins, and pregnancy-specific beta-1-glycoproteins. Functional studies demonstrated IL-32 as a novel target that regulates human myogenesis, insulin sensitivity and ATP levels in muscle cells. Furthermore, IL32 transgenic mice had reduced insulin response and muscle weight. Remarkably, approximately 3.7 times more methylation changes (147,161 versus 39,572) were observed during differentiation of myoblasts from obese versus non-obese subjects. In accordance, DNMT1 expression increased during myogenesis only in obese subjects. Interestingly, numerous genes implicated in metabolic diseases and epigenetic regulation showed differential methylation and expression during differentiation only in obese subjects. CONCLUSIONS Our study identifies IL-32 as a novel myogenic regulator, provides a comprehensive map of the dynamic epigenome during differentiation of human muscle stem cells and reveals abnormal epigenetic changes in obesity.
Collapse
Affiliation(s)
- Cajsa Davegårdh
- Department of Clinical Sciences, Lund University Diabetes Centre, Lund University, Malmö, 205 02, Sweden
| | - Christa Broholm
- Department of Endocrinology, Rigshospitalet, Copenhagen, 2100, Denmark
| | - Alexander Perfilyev
- Department of Clinical Sciences, Lund University Diabetes Centre, Lund University, Malmö, 205 02, Sweden
| | - Tora Henriksen
- The Centre of Inflammation and Metabolism and the Centre for Physical Activity Research, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Sonia García-Calzón
- Department of Clinical Sciences, Lund University Diabetes Centre, Lund University, Malmö, 205 02, Sweden
| | - Lone Peijs
- The Centre of Inflammation and Metabolism and the Centre for Physical Activity Research, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | | | - Petr Volkov
- Department of Clinical Sciences, Lund University Diabetes Centre, Lund University, Malmö, 205 02, Sweden
| | - Rasmus Kjøbsted
- Department of Exercise and Sports Sciences, Faculty of Health, University of Copenhagen, Copenhagen, Denmark
| | - Jørgen F P Wojtaszewski
- Department of Exercise and Sports Sciences, Faculty of Health, University of Copenhagen, Copenhagen, Denmark
| | - Maria Pedersen
- The Centre of Inflammation and Metabolism and the Centre for Physical Activity Research, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Bente Klarlund Pedersen
- The Centre of Inflammation and Metabolism and the Centre for Physical Activity Research, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Dov B Ballak
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, 80309, USA.,Department of Medicine, University of Colorado, Aurora, CO, 80045, USA
| | - Charles A Dinarello
- Department of Medicine, University of Colorado, Aurora, CO, 80045, USA.,Department of Internal Medicine, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Bas Heinhuis
- Department of Internal Medicine, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Leo A B Joosten
- Department of Internal Medicine, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Emma Nilsson
- Department of Clinical Sciences, Lund University Diabetes Centre, Lund University, Malmö, 205 02, Sweden
| | - Allan Vaag
- Department of Endocrinology, Rigshospitalet, Copenhagen, 2100, Denmark.,Early Clinical Development, Translational Medical Unit, AstraZeneca, Mölndal, 431 83, Sweden
| | - Camilla Scheele
- The Centre of Inflammation and Metabolism and the Centre for Physical Activity Research, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark.,Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Charlotte Ling
- Department of Clinical Sciences, Lund University Diabetes Centre, Lund University, Malmö, 205 02, Sweden.
| |
Collapse
|
104
|
Asahina M, Matsumoto H, Yasuhara Y, Suzuki N, Takami R, Takeyama M, Tozawa R. Osborne-Mendel rats simultaneously develop cardiac and renal dysfunction, left atrial thrombosis, peripheral artery occlusion, and ascending aortic dissection. Biochem Biophys Res Commun 2017; 485:550-555. [PMID: 28088517 DOI: 10.1016/j.bbrc.2017.01.049] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 01/11/2017] [Indexed: 11/19/2022]
Abstract
Although chronic kidney disease (CKD) is strongly associated with onsets of cardiovascular disease (CVD), the pathogenic mechanism between these diseases has not been fully understood. To develop and validate new therapeutic strategies for this complication, appropriate experimental models that reflect the complexity of the underlying pathophysiology are needed. The Osborne-Mendel (OM) rat was identified as an atherosclerosis-prone and a premature-death rat strain among 16 inbred rat strains when fed high-cholesterol containing diet. When fed high-cholesterol diet, OM rats showed simultaneous occurrence of aortic aneurysm, aortic dissection, peripheral artery occlusion, and left atrial thrombosis. OM rats had significantly lower max dP/dt and higher min dP/dt than F344 rats did, indicating impaired left ventricle contractility and relaxation. OM rats developed renal dysfunction, showing increased urinary albumin excretion. OM rats also showed mild hypertension, decreased endothelial function, and enhanced coagulation and platelet aggregation, compared with F344 rats. We now report that OM rat would be a novel spontaneous animal model which simultaneously demonstrates cardiac and renal dysfunction, and CVD events. This model could be a useful model for the pre-clinical testing of pharmacological therapies and could provide new insight into potential targets and pathways for the treatment of CKD and CVD.
Collapse
Affiliation(s)
- Makoto Asahina
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Ltd., 26-1, Muraoka-Higashi 2chome, Fujisawa, Kanagawa, 251-8555, Japan.
| | - Hideki Matsumoto
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Ltd., 26-1, Muraoka-Higashi 2chome, Fujisawa, Kanagawa, 251-8555, Japan
| | - Yoshitaka Yasuhara
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Ltd., 26-1, Muraoka-Higashi 2chome, Fujisawa, Kanagawa, 251-8555, Japan
| | - Noriko Suzuki
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Ltd., 26-1, Muraoka-Higashi 2chome, Fujisawa, Kanagawa, 251-8555, Japan
| | - Ritsuko Takami
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Ltd., 26-1, Muraoka-Higashi 2chome, Fujisawa, Kanagawa, 251-8555, Japan
| | - Michiyasu Takeyama
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Ltd., 26-1, Muraoka-Higashi 2chome, Fujisawa, Kanagawa, 251-8555, Japan
| | - Ryuichi Tozawa
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Ltd., 26-1, Muraoka-Higashi 2chome, Fujisawa, Kanagawa, 251-8555, Japan
| |
Collapse
|
105
|
García-Ruiz C, Ribas V, Baulies A, Fernández-Checa JC. Mitochondrial Cholesterol and the Paradox in Cell Death. Handb Exp Pharmacol 2017; 240:189-210. [PMID: 28035533 DOI: 10.1007/164_2016_110] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Mitochondria are considered cholesterol-poor organelles, and obtain their cholesterol load by the action of specialized proteins involved in its delivery from extramitochondrial sources and trafficking within mitochondrial membranes. Although mitochondrial cholesterol fulfills vital physiological functions, such as the synthesis of bile acids in the liver or the formation of steroid hormones in specialized tissues, recent evidence indicates that the accumulation of cholesterol in mitochondria may be a key event in prevalent human diseases, in particular in the development of steatohepatitis (SH) and its progression to hepatocellular carcinoma (HCC). Mitochondrial cholesterol accumulation promotes the transition from simple steatosis to SH due to the sensitization to oxidative stress and cell death. However, mitochondrial cholesterol loading in HCC determines apoptosis resistance and insensitivity to chemotherapy. These opposing functions of mitochondrial cholesterol in SH and HCC define its paradoxical role in cell death as a pro- and anti-apoptotic factor. Further understanding of this conundrum may be useful to modulate the progression from SH to HCC by targeting mitochondrial cholesterol trafficking.
Collapse
Affiliation(s)
- Carmen García-Ruiz
- Department of Cell Death and Proliferation, Instituto Investigaciones Biomedicas de Barcelona, CSIC, C/Rosello 161, 08036, Barcelona, Spain
- Liver Unit, Hospital Clinic, IDIBAPS, Barcelona, Spain
- Centro de Investigación Biomédica en Red (CIBERehd), Barcelona, Spain
- Keck School of Medicine, USC, University of Southern California Research Center for Alcohol Liver and Pancreatic Diseases and Cirrhosis, Los Angeles, CA, USA
| | - Vicente Ribas
- Department of Cell Death and Proliferation, Instituto Investigaciones Biomedicas de Barcelona, CSIC, C/Rosello 161, 08036, Barcelona, Spain
- Liver Unit, Hospital Clinic, IDIBAPS, Barcelona, Spain
- Centro de Investigación Biomédica en Red (CIBERehd), Barcelona, Spain
| | - Anna Baulies
- Department of Cell Death and Proliferation, Instituto Investigaciones Biomedicas de Barcelona, CSIC, C/Rosello 161, 08036, Barcelona, Spain
- Liver Unit, Hospital Clinic, IDIBAPS, Barcelona, Spain
- Centro de Investigación Biomédica en Red (CIBERehd), Barcelona, Spain
| | - Jose C Fernández-Checa
- Department of Cell Death and Proliferation, Instituto Investigaciones Biomedicas de Barcelona, CSIC, C/Rosello 161, 08036, Barcelona, Spain.
- Liver Unit, Hospital Clinic, IDIBAPS, Barcelona, Spain.
- Centro de Investigación Biomédica en Red (CIBERehd), Barcelona, Spain.
- Keck School of Medicine, USC, University of Southern California Research Center for Alcohol Liver and Pancreatic Diseases and Cirrhosis, Los Angeles, CA, USA.
| |
Collapse
|
106
|
Anti-atherosclerotic activity of root bark of Premna integrifolia Linn. in high fat diet induced atherosclerosis model rats. J Pharm Anal 2016; 7:123-128. [PMID: 29404027 PMCID: PMC5686870 DOI: 10.1016/j.jpha.2016.12.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 11/29/2016] [Accepted: 12/30/2016] [Indexed: 11/22/2022] Open
Abstract
Premna integrifolia Linn. is a medicinal plant used in “Dhasamula” drug preparation of Ayurvedic systems of medicine in the treatment of various ailments like bronchitis, dyspepsia, liver disorders, piles, constipation, hyperlipidemia and fever. The anti-atherosclerotic activity of hydroalcoholic extract (HAE) of root bark of P. integrifolia was evaluated in high fat diet induced atherosclerosis rats. Sixty Wistar rats were divided into six groups: the first group served as control, the second group was fed with high fat diet and the other three groups were fed with high fat diet along with various concentrations of HAE and the last group was treated with atorvastatin for 30 days. Lipid and lipoprotein profile, atherogenic index, and cardiac markers and histopathological evaluation of aorta were determined in high fat diet induced atherosclerosis rats. HAE of P. integrifolia produced a significant and dose-dependent anti-atherosclerotic activity in terms of reduction in lipids and lipoprotein profile, atherogenic index, HMG-CoA reductase activity, marker enzymes such as lactate dehydrogenase (LDH), creatine phosphokinase (CPK), aspartate transaminase (AST), alanine transaminase (ALT) and alkaline phosphatase (ALP), alteration in collagen and calcium contents, mild mineralization and focal rupture of intima and media of aorta was noticed in treated groups as compared to the control. The results suggested that anti-atherosclerotic activity of HAE of P. integrifolia Linn. was due to its modulatory activity on metabolic pathway of lipid. The results contribute to the validation of the traditional use of Agnimantha in high fat diet induced atherosclerosis rats.
Collapse
|
107
|
Fang Y, Wang S, Zhu T, Zhang Y, Lian X. Atherogenic high cholesterol/high fat diet induces TLRs-associated pulmonary inflammation in C57BL/6J mice. Inflamm Res 2016; 66:39-47. [PMID: 27653962 DOI: 10.1007/s00011-016-0990-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 08/07/2016] [Accepted: 09/10/2016] [Indexed: 01/22/2023] Open
Abstract
OBJECTIVE To explore the effects of high cholesterol/high fat diet-induced hypercholesterolemia on pulmonary homeostasis of wild-type C57BL/6J mice. MATERIALS AND METHODS Six- to eight-week-old male C57BL/6J mice were randomly divided into two groups and treated with either high cholesterol/high fat diet (HCD, containing 20 % fat, 1.25 % cholesterol and 0.5 % sodium cholate) or a matching regular diet (RD, containing 4 % fat with no cholesterol and cholate added) for 12-16 weeks. RESULTS Twelve to sixteen weeks after HCD diet feeding, hypercholesterolemia and pulmonary lipid accumulation were progressively exacerbated in C57BL/6J mice. Meanwhile, the HCD-fed mice showed distinctive signs of inflammation in the lung, which includes macrophage accumulation in alveolar lumen and lymphocyte infiltration around perivascular area. Simultaneously, the mRNA and protein expression of TLR2 and TLR4 were significantly up-regulated, and the translocation of NFκB into nucleus was activated in HCD-fed mice lung. In vitro, oxidized low-density lipoprotein (oxLDL) could directly up-regulate the expression of TLR2 and TLR4 in both A549 and MLE-12 lung epithelial cell lines. CONCLUSIONS These findings suggested that high cholesterol/high fat diet-induced hypercholesterolemia could result in TLRs/NFκB pathway-associated low-grade pulmonary inflammation in C57BL/6J mice, which might alter the lung's immune responsiveness to a variety of environmental exposures.
Collapse
Affiliation(s)
- Yan Fang
- Department of Nutrition and Food Hygiene, School of Public Health and Management, Chongqing Medical University, No.1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, China.,Key Laboratory of Molecular Biology on Infectious Diseases, Center for Lipid Research, Ministry of Education, Chongqing Medical University, Chongqing, 400016, China
| | - Shuang Wang
- Department of Nutrition and Food Hygiene, School of Public Health and Management, Chongqing Medical University, No.1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, China.,Department of Clinical Nutrition, Taizhou Hospital, Linhai, 317000, Zhejiang Province, China
| | - Tingting Zhu
- Department of Nutrition and Food Hygiene, School of Public Health and Management, Chongqing Medical University, No.1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, China
| | - Yong Zhang
- Department of Nutrition and Food Hygiene, School of Public Health and Management, Chongqing Medical University, No.1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, China
| | - Xuemei Lian
- Department of Nutrition and Food Hygiene, School of Public Health and Management, Chongqing Medical University, No.1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, China. .,Key Laboratory of Molecular Biology on Infectious Diseases, Center for Lipid Research, Ministry of Education, Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
108
|
Betulin attenuates atherosclerosis in apoE -/- mice by up-regulating ABCA1 and ABCG1. Acta Pharmacol Sin 2016; 37:1337-1348. [PMID: 27374487 DOI: 10.1038/aps.2016.46] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 04/28/2016] [Indexed: 12/27/2022]
Abstract
AIM Betulin is a pentacyclic triterpenoid isolated from the bark of yellow and white birch trees with anti-cancer and anti-malaria activities. In this study we examined the effects of betulin on atherosclerosis in apoE-/- mice and the underlying mechanisms. METHODS Murine macrophage RAW264.7 cells and human monocyte-derived THP-1 cells were tested. Foam cell formation was detected with Oil Red O staining. Cholesterol efflux was assessed using [3H]-cholesterol efflux assay. The expression of ATP-binding cassette transporter A1 and G1 (ABCA1 and ABCG1) was examined using RT-PCR and Western-blotting. The ABCA1 promoter activity was evaluated using luciferase activity assay. Male apoE-/- mice fed on a high-fat-diet (HFD), and received betulin (20 and 40 mg·kg-1·d-1, ig) for 12 weeks. The macrophage content and ABCA1 expression in the aortic sinuses were evaluated with immunofluorescence staining. The hepatic, intestinal and fecal cholesterol were also analyzed in the mice. RESULTS In RAW264.7 cells, betulin (0.1-2.5 μg/mL) dose-dependently ameliorated oxLDL-induced cholesterol accumulation and enhanced cholesterol efflux. In both RAW264.7 and THP-1 cells, betulin increased the expression of ABCA1 and ABCG1 via suppressing the transcriptional repressors sterol-responsive element-binding proteins (SREBPs) that bound to E-box motifs in ABCA1 promoter, whereas E-box binding site mutation markedly attenuated betulin-induced ABCA1 promoter activity. In HFD-fed apoE-/- mice, betulin administration significantly reduced lesions in en face aortas and aortic sinuses. Furthermore, betulin administration significantly increased ABCA1 expression and suppressed macrophage positive areas in the aortic sinuses. Moreover, betulin administration improved plasma lipid profiles and enhanced fecal cholesterol excretion in the mice. CONCLUSION Betulin attenuates atherosclerosis in apoE-/- mice by promoting cholesterol efflux in macrophages.
Collapse
|
109
|
Du W, Wong C, Song Y, Shen H, Mori D, Rotllan N, Price N, Dobrian AD, Meng H, Kleinstein SH, Fernandez‐Hernando C, Goldstein DR. Age-associated vascular inflammation promotes monocytosis during atherogenesis. Aging Cell 2016; 15:766-77. [PMID: 27135421 PMCID: PMC4933655 DOI: 10.1111/acel.12488] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/30/2016] [Indexed: 11/30/2022] Open
Abstract
Aging leads to a proinflammatory state within the vasculature without disease, yet whether this inflammatory state occurs during atherogenesis remains unclear. Here, we examined how aging impacts atherosclerosis using Ldlr(-/-) mice, an established murine model of atherosclerosis. We found that aged atherosclerotic Ldlr(-/-) mice exhibited enhanced atherogenesis within the aorta. Aging also led to increased LDL levels, elevated blood pressure on a low-fat diet, and insulin resistance after a high-fat diet (HFD). On a HFD, aging increased a monocytosis in the peripheral blood and enhanced macrophage accumulation within the aorta. When we conducted bone marrow transplant experiments, we found that stromal factors contributed to age-enhanced atherosclerosis. To delineate these stromal factors, we determined that the vasculature exhibited an age-enhanced inflammatory response consisting of elevated production of CCL-2, osteopontin, and IL-6 during atherogenesis. In addition, in vitro cultures showed that aging enhanced the production of osteopontin by vascular smooth muscle cells. Functionally, aged atherosclerotic aortas displayed higher monocyte chemotaxis than young aortas. Hence, our study has revealed that aging induces metabolic dysfunction and enhances vascular inflammation to promote a peripheral monocytosis and macrophage accumulation within the atherosclerotic aorta.
Collapse
Affiliation(s)
- Wei Du
- Department of Internal Medicine Yale School of Medicine New Haven CT USA
- Department of Immunobiology Yale School of Medicine New Haven CT USA
| | - Christine Wong
- Department of Internal Medicine Yale School of Medicine New Haven CT USA
- Department of Immunobiology Yale School of Medicine New Haven CT USA
| | - Yang Song
- Department of Internal Medicine Yale School of Medicine New Haven CT USA
- Department of Immunobiology Yale School of Medicine New Haven CT USA
| | - Hua Shen
- Department of Internal Medicine Yale School of Medicine New Haven CT USA
- Department of Immunobiology Yale School of Medicine New Haven CT USA
| | - Daniel Mori
- Department of Internal Medicine Yale School of Medicine New Haven CT USA
- Department of Immunobiology Yale School of Medicine New Haven CT USA
| | - Noemi Rotllan
- Section of Comparative Medicine Yale School of Medicine New Haven CT USA
| | - Nathan Price
- Section of Comparative Medicine Yale School of Medicine New Haven CT USA
| | - Anca D. Dobrian
- Department of Physiological Sciences Eastern Virginia Medical School Norfolk VA USA
| | - Hailong Meng
- Department of Pathology Yale School of Medicine New Haven CT USA
| | - Steven H. Kleinstein
- Department of Immunobiology Yale School of Medicine New Haven CT USA
- Department of Pathology Yale School of Medicine New Haven CT USA
- Interdepartmental Program in Computational Biology and Bioinformatics Yale University New Haven CT USA
| | | | - Daniel R. Goldstein
- Department of Internal Medicine Yale School of Medicine New Haven CT USA
- Department of Immunobiology Yale School of Medicine New Haven CT USA
| |
Collapse
|
110
|
Marin V, Rosso N, Dal Ben M, Raseni A, Boschelle M, Degrassi C, Nemeckova I, Nachtigal P, Avellini C, Tiribelli C, Gazzin S. An Animal Model for the Juvenile Non-Alcoholic Fatty Liver Disease and Non-Alcoholic Steatohepatitis. PLoS One 2016; 11:e0158817. [PMID: 27391242 PMCID: PMC4938400 DOI: 10.1371/journal.pone.0158817] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 06/22/2016] [Indexed: 01/20/2023] Open
Abstract
Non Alcoholic Fatty Liver Disease (NAFLD) and Non-Alcoholic Steatohepatitis (NASH) are the hepatic manifestations of the metabolic syndrome; worrisome is the booming increase in pediatric age. To recreate the full spectrum of juvenile liver pathology and investigate the gender impact, male and female C57Bl/6 mice were fed with high fat diet plus fructose in the drinking water (HFHC) immediately after weaning (equal to 3-years old human), and disease progression followed for 16 weeks, until adults (equal to 30-years old human). 100% of subjects of both genders on HFHC diet developed steatosis in 4weeks, and some degree of fibrosis in 8weeks, with the 86% of males and 15% of females presenting a stage 2 fibrosis at 16weeks. Despite a similar final liver damage both groups, a sex difference in the pathology progression was observed. Alterations in glucose homeostasis, dyslipidemia, hepatomegaly and obese phenotype were evident from the very beginning in males with an increased hepatic inflammatory activity. Conversely, such alterations were present in females only at the end of the HFHC diet (with the exception of insulin resistance and the hepatic inflammatory state). Interestingly, only females showed an altered hepatic redox state. This juvenile model appears a good platform to unravel the underlying gender dependent mechanisms in the progression from NAFLD to NASH, and to characterize novel therapeutic approaches.
Collapse
Affiliation(s)
- Veronica Marin
- Fondazione Italiana Fegato, AREA science Park, Trieste, Italy
| | - Natalia Rosso
- Fondazione Italiana Fegato, AREA science Park, Trieste, Italy
| | - Matteo Dal Ben
- Fondazione Italiana Fegato, AREA science Park, Trieste, Italy
| | - Alan Raseni
- IRCCS Ospedale Burlo Garofolo Pediatric Hospital, Clinical Chemistry Laboratory, Trieste, Italy
| | - Manuela Boschelle
- IRCCS Ospedale Burlo Garofolo Pediatric Hospital, Clinical Chemistry Laboratory, Trieste, Italy
| | | | - Ivana Nemeckova
- Department of Biological and Medical Sciences, Faculty of Pharmacy in Hradec Kralove, Charles University in Prague, Heyrovskeho 1203, Hradec Kralove, 500 05, Czech Republic
| | - Petr Nachtigal
- Department of Biological and Medical Sciences, Faculty of Pharmacy in Hradec Kralove, Charles University in Prague, Heyrovskeho 1203, Hradec Kralove, 500 05, Czech Republic
| | - Claudio Avellini
- Azienda Ospedaliero-Universitaria “Santa Maria della Misericordia”, Dip. Anatomia e Patologia, Udine, Italy
| | - Claudio Tiribelli
- Fondazione Italiana Fegato, AREA science Park, Trieste, Italy
- Department of Medical Sciences, University of Trieste, Trieste, Italy
| | - Silvia Gazzin
- Fondazione Italiana Fegato, AREA science Park, Trieste, Italy
- * E-mail:
| |
Collapse
|
111
|
Getz GS, Reardon CA. Do the Apoe-/- and Ldlr-/- Mice Yield the Same Insight on Atherogenesis? Arterioscler Thromb Vasc Biol 2016; 36:1734-41. [PMID: 27386935 DOI: 10.1161/atvbaha.116.306874] [Citation(s) in RCA: 137] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 06/24/2016] [Indexed: 02/02/2023]
Abstract
Murine models of atherosclerosis are useful for investigating the environmental and genetic influences on lesion formation and composition. Apoe(-/-) and Ldlr(-/-) mice are the 2 most extensively used models. The models differ in important ways with respect to the precise mechanism by which their absence enhances atherosclerosis, including differences in plasma lipoproteins. The majority of the gene function studies have utilized only 1 model, with the results being generalized to atherogenic mechanisms. In only a relatively few cases have studies been conducted in both atherogenic murine models. This review will discuss important differences between the 2 atherogenic models and will point out studies that have been performed in the 2 models where results are comparable and those where different results were obtained.
Collapse
Affiliation(s)
- Godfrey S Getz
- From the Department of Pathology (G.S.G.) and Ben May Institute for Cancer Biology (C.A.R.), University of Chicago, IL.
| | - Catherine A Reardon
- From the Department of Pathology (G.S.G.) and Ben May Institute for Cancer Biology (C.A.R.), University of Chicago, IL
| |
Collapse
|
112
|
Skarpengland T, Holm S, Scheffler K, Gregersen I, Dahl TB, Suganthan R, Segers FM, Østlie I, Otten JJT, Luna L, Ketelhuth DFJ, Lundberg AM, Neurauter CG, Hildrestrand G, Skjelland M, Bjørndal B, Svardal AM, Iversen PO, Hedin U, Nygård S, Olstad OK, Krohg-Sørensen K, Slupphaug G, Eide L, Kuśnierczyk A, Folkersen L, Ueland T, Berge RK, Hansson GK, Biessen EAL, Halvorsen B, Bjørås M, Aukrust P. Neil3-dependent base excision repair regulates lipid metabolism and prevents atherosclerosis in Apoe-deficient mice. Sci Rep 2016; 6:28337. [PMID: 27328939 PMCID: PMC4916448 DOI: 10.1038/srep28337] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 06/01/2016] [Indexed: 12/23/2022] Open
Abstract
Increasing evidence suggests that oxidative DNA damage accumulates in atherosclerosis. Recently, we showed that a genetic variant in the human DNA repair enzyme NEIL3 was associated with increased risk of myocardial infarction. Here, we explored the role of Neil3/NEIL3 in atherogenesis by both clinical and experimental approaches. Human carotid plaques revealed increased NEIL3 mRNA expression which significantly correlated with mRNA levels of the macrophage marker CD68. Apoe−/−Neil3−/− mice on high-fat diet showed accelerated plaque formation as compared to Apoe−/− mice, reflecting an atherogenic lipid profile, increased hepatic triglyceride levels and attenuated macrophage cholesterol efflux capacity. Apoe−/−Neil3−/− mice showed marked alterations in several pathways affecting hepatic lipid metabolism, but no genotypic alterations in genome integrity or genome-wide accumulation of oxidative DNA damage. These results suggest a novel role for the DNA glycosylase Neil3 in atherogenesis in balancing lipid metabolism and macrophage function, potentially independently of genome-wide canonical base excision repair of oxidative DNA damage.
Collapse
Affiliation(s)
- Tonje Skarpengland
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway.,Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Sverre Holm
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Katja Scheffler
- Department of Medical Biochemistry, Oslo University Hospital Rikshospitalet, Oslo, Norway.,Institute of Basic Medical Research, University of Oslo, Oslo, Norway.,Department of Informatics, University of Oslo, Oslo, Norway
| | - Ida Gregersen
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway.,Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Tuva B Dahl
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway.,Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,K.G. Jebsen Inflammatory Research Center, University of Oslo, Oslo, Norway
| | - Rajikala Suganthan
- Department of Microbiology, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Filip M Segers
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Ingunn Østlie
- Department of Pathology,Oslo University Hospital Radiumhospitalet, Oslo, Norway
| | - Jeroen J T Otten
- Department of Experimental Vascular Pathology, University of Maastricht, Maastricht, The Netherlands
| | - Luisa Luna
- Department of Microbiology, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Daniel F J Ketelhuth
- Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Anna M Lundberg
- Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden
| | | | - Gunn Hildrestrand
- Department of Microbiology, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Mona Skjelland
- Department of Neurology, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Bodil Bjørndal
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Asbjørn M Svardal
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Per O Iversen
- Institute of Basic Medical Research, University of Oslo, Oslo, Norway.,Department of Hematology, Oslo University Hospital Rikshospitalet, Oslo, Norway.,Department of Nutrition, University of Oslo, Oslo, Norway
| | - Ulf Hedin
- Department of Surgery, Karolinska University Hospital, Stockholm, Sweden
| | - Ståle Nygård
- Department of Informatics, University of Oslo, Oslo, Norway
| | - Ole K Olstad
- Department of Medical Biochemistry, Oslo University Hospital Ullevål, Oslo, Norway
| | - Kirsten Krohg-Sørensen
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,Department of Thoracic and Cardiovascular Surgery, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Geir Slupphaug
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway.,PROMEC Core Facility for Proteomics and Metabolomics, Norwegian University of Science and Technology, Trondheim, Norway
| | - Lars Eide
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,Department of Medical Biochemistry, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Anna Kuśnierczyk
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway.,PROMEC Core Facility for Proteomics and Metabolomics, Norwegian University of Science and Technology, Trondheim, Norway
| | - Lasse Folkersen
- Center for Biological Sequence Analysis, Technical University of Denmark, Copenhagen, Denmark
| | - Thor Ueland
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway.,Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,K.G. Jebsen Inflammatory Research Center, University of Oslo, Oslo, Norway
| | - Rolf K Berge
- Department of Clinical Science, University of Bergen, Bergen, Norway.,Department of Heart Disease, Haukeland University Hospital, Bergen, Norway
| | - Göran K Hansson
- Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Erik A L Biessen
- Department of Experimental Vascular Pathology, University of Maastricht, Maastricht, The Netherlands
| | - Bente Halvorsen
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway.,Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,K.G. Jebsen Inflammatory Research Center, University of Oslo, Oslo, Norway
| | - Magnar Bjørås
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,Department of Microbiology, Oslo University Hospital Rikshospitalet, Oslo, Norway.,PROMEC Core Facility for Proteomics and Metabolomics, Norwegian University of Science and Technology, Trondheim, Norway
| | - Pål Aukrust
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway.,Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,K.G. Jebsen Inflammatory Research Center, University of Oslo, Oslo, Norway.,Section of Clinical Immunology and Infectious Diseases, Oslo University Hospital Rikshospitalet, Oslo, Norway
| |
Collapse
|
113
|
Pereira PC, Pernomian L, Côco H, Gomes MS, Franco JJ, Marchi KC, Hipólito UV, Uyemura SA, Tirapelli CR, de Oliveira AM. Auto-inhibitory regulation of angiotensin II functionality in hamster aorta during the early phases of dyslipidemia. Eur J Pharmacol 2016; 781:1-9. [DOI: 10.1016/j.ejphar.2016.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Revised: 03/31/2016] [Accepted: 04/07/2016] [Indexed: 10/22/2022]
|
114
|
Abstract
Recent studies indicate that dietary interventions have the potential to prevent and even treat cardiovascular disease, which is the leading cause of death. Many of these studies have focused on various animal models that are able to recreate one or more conditions or elevate risk factors that characterize the disease. Here, we highlight macronutrient-focused interventions in both mammalian model organisms and humans with emphasis on some of the most relevant and well-established diets known to be associated with cardiovascular disease prevention and treatment. We also discuss more recent dietary interventions in rodents, monkeys, and humans, which affect atherosclerosis and cardiovascular diseases with focus on those that also delay aging.
Collapse
|
115
|
Pollock AH, Tedla N, Hancock SE, Cornely R, Mitchell TW, Yang Z, Kockx M, Parton RG, Rossy J, Gaus K. Prolonged Intake of Dietary Lipids Alters Membrane Structure and T Cell Responses in LDLr-/- Mice. THE JOURNAL OF IMMUNOLOGY 2016; 196:3993-4002. [PMID: 27183636 DOI: 10.4049/jimmunol.1501261] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 03/13/2016] [Indexed: 11/19/2022]
Abstract
Although it is recognized that lipids and membrane organization in T cells affect signaling and T cell activation, to what extent dietary lipids alter T cell responsiveness in the absence of obesity and inflammation is not known. In this study, we fed low-density lipoprotein receptor knockout mice a Western high-fat diet for 1 or 9 wk and examined T cell responses in vivo along with T cell lipid composition, membrane order, and activation ex vivo. Our data showed that high levels of circulating lipids for a prolonged period elevated CD4(+) and CD8(+) T cell proliferation and resulted in an increased proportion of CD4(+) central-memory T cells within the draining lymph nodes following induction of contact hypersensitivity. In addition, the 9-wk Western high-fat diet elevated the total phospholipid content and monounsaturated fatty acid level, but decreased saturated phosphatidylcholine and sphingomyelin within the T cells. The altered lipid composition in the circulation, and of T cells, was also reflected by enhanced membrane order at the activation site of ex vivo activated T cells that corresponded to increased IL-2 mRNA levels. In conclusion, dietary lipids can modulate T cell lipid composition and responses in lipoprotein receptor knockout mice even in the absence of excess weight gain and a proinflammatory environment.
Collapse
Affiliation(s)
- Abigail H Pollock
- European Molecular Biology Laboratory Australia Node in Single Molecule Science, School of Medical Sciences, University of New South Wales, Sydney, New South Wales 2052, Australia; Australian Research Council Centre of Excellence in Advanced Molecular Imaging, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Nicodemus Tedla
- School of Medical Sciences, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Sarah E Hancock
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, New South Wales 2522, Australia
| | - Rhea Cornely
- European Molecular Biology Laboratory Australia Node in Single Molecule Science, School of Medical Sciences, University of New South Wales, Sydney, New South Wales 2052, Australia; Australian Research Council Centre of Excellence in Advanced Molecular Imaging, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Todd W Mitchell
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, New South Wales 2522, Australia
| | - Zhengmin Yang
- European Molecular Biology Laboratory Australia Node in Single Molecule Science, School of Medical Sciences, University of New South Wales, Sydney, New South Wales 2052, Australia; Australian Research Council Centre of Excellence in Advanced Molecular Imaging, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Maaike Kockx
- Australian and New Zealand Army Corps Research Institute, Concord Repatriation General Hospital, Concord, New South Wales 2139, Australia; and
| | - Robert G Parton
- Institute of Molecular Bioscience and Centre for Microscopy and Microanalysis, University of Queensland, Australia, St. Lucia, Brisbane, Queensland 4072, Australia
| | - Jérémie Rossy
- European Molecular Biology Laboratory Australia Node in Single Molecule Science, School of Medical Sciences, University of New South Wales, Sydney, New South Wales 2052, Australia; Australian Research Council Centre of Excellence in Advanced Molecular Imaging, University of New South Wales, Sydney, New South Wales 2052, Australia;
| | - Katharina Gaus
- European Molecular Biology Laboratory Australia Node in Single Molecule Science, School of Medical Sciences, University of New South Wales, Sydney, New South Wales 2052, Australia; Australian Research Council Centre of Excellence in Advanced Molecular Imaging, University of New South Wales, Sydney, New South Wales 2052, Australia;
| |
Collapse
|
116
|
Goo YH, Son SH, Yechoor VK, Paul A. Transcriptional Profiling of Foam Cells Reveals Induction of Guanylate-Binding Proteins Following Western Diet Acceleration of Atherosclerosis in the Absence of Global Changes in Inflammation. J Am Heart Assoc 2016; 5:e002663. [PMID: 27091181 PMCID: PMC4859273 DOI: 10.1161/jaha.115.002663] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Background Foam cells are central to two major pathogenic processes in atherogenesis: cholesterol buildup in arteries and inflammation. The main underlying cause of cholesterol deposition in arteries is hypercholesterolemia. This study aimed to assess, in vivo, whether elevated plasma cholesterol also alters the inflammatory balance of foam cells. Methods and Results Apolipoprotein E–deficient mice were fed regular mouse chow through the study or were switched to a Western‐type diet (WD) 2 or 14 weeks before death. Consecutive sections of the aortic sinus were used for lesion quantification or to isolate RNA from foam cells by laser‐capture microdissection (LCM) for microarray and quantitative polymerase chain reaction analyses. WD feeding for 2 or 14 weeks significantly increased plasma cholesterol, but the size of atherosclerotic lesions increased only in the 14‐week WD group. Expression of more genes was affected in foam cells of mice under prolonged hypercholesterolemia than in mice fed WD for 2 weeks. However, most transcripts coding for inflammatory mediators remained unchanged in both WD groups. Among the main players in inflammatory or immune responses, chemokine (C‐X‐C motif) ligand 13 was induced in foam cells of mice under WD for 2 weeks. The interferon‐inducible GTPases, guanylate‐binding proteins (GBP)3 and GBP6, were induced in the 14‐week WD group, and other GBP family members were moderately increased. Conclusions Our results indicate that acceleration of atherosclerosis by hypercholesterolemia is not linked to global changes in the inflammatory balance of foam cells. However, induction of GBPs uncovers a novel family of immune modulators with a potential role in atherogenesis.
Collapse
Affiliation(s)
- Young-Hwa Goo
- Center for Cardiovascular Sciences, Albany Medical College, Albany, NY
| | - Se-Hee Son
- Center for Cardiovascular Sciences, Albany Medical College, Albany, NY
| | - Vijay K Yechoor
- Division of Diabetes, Endocrinology & Metabolism, Department of Medicine, Baylor College of Medicine, Houston, TX
| | - Antoni Paul
- Center for Cardiovascular Sciences, Albany Medical College, Albany, NY
| |
Collapse
|
117
|
Shimizu H, Hagio M, Iwaya H, Tsuneki I, Lee JY, Fukiya S, Yokota A, Miyazaki H, Hara H, Ishizuka S. Deoxycholic acid is involved in the proliferation and migration of vascular smooth muscle cells. J Nutr Sci Vitaminol (Tokyo) 2016; 60:450-4. [PMID: 25866311 DOI: 10.3177/jnsv.60.450] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Obesity is increasingly becoming associated with increased risk of atherosclerosis. Serum levels of the bile acid deoxycholic acid (DCA) are elevated in mice with obesity induced by a high-fat (HF) diet. Therefore, we investigated the influence of DCA on the functions of vascular smooth muscle cells (VSMCs) because the initiation and progression of atherosclerosis are associated with VSMC proliferation and migration. DCA induced c-jun N-terminal kinase (JNK) activation whereas a JNK inhibitor prevented DCA-induced VSMC proliferation and migration. Based on these findings, we examined whether DCA promotes the expression of platelet-derived growth factor β-receptor (PDGFRβ) that has a c-Jun binding site in its promoter region. The mRNA and protein expression levels of PDGFRβ were upregulated in VSMCs after a 24- and 48-h incubation with DCA, respectively. The effects of PDGF such as proliferation and migration of VSMCs were promoted after a 48-h incubation with DCA despite the absence of DCA during PDGF stimulation. These findings suggest that elevated serum concentrations of DCA are involved in the pathogenesis of atherosclerosis in HF-induced obesity.
Collapse
Affiliation(s)
- Hidehisa Shimizu
- Division of Applied Bioscience, Research Faculty of Agriculture, Hokkaido University
| | | | | | | | | | | | | | | | | | | |
Collapse
|
118
|
Khedoe PPSJ, Rensen PCN, Berbée JFP, Hiemstra PS. Murine models of cardiovascular comorbidity in chronic obstructive pulmonary disease. Am J Physiol Lung Cell Mol Physiol 2016; 310:L1011-27. [PMID: 26993520 DOI: 10.1152/ajplung.00013.2016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 03/15/2016] [Indexed: 01/12/2023] Open
Abstract
Patients with chronic obstructive pulmonary disease (COPD) have an increased risk for cardiovascular disease (CVD). Currently, COPD patients with atherosclerosis (i.e., the most important underlying cause of CVD) receive COPD therapy complemented with standard CVD therapy. This may, however, not be the most optimal treatment. To investigate the link between COPD and atherosclerosis and to develop specific therapeutic strategies for COPD patients with atherosclerosis, a substantial number of preclinical studies using murine models have been performed. In this review, we summarize the currently used murine models of COPD and atherosclerosis, both individually and combined, and discuss the relevance of these models for studying the pathogenesis and development of new treatments for COPD patients with atherosclerosis. Murine and clinical studies have provided complementary information showing a prominent role for systemic inflammation and oxidative stress in the link between COPD and atherosclerosis. These and other studies showed that murine models for COPD and atherosclerosis are useful tools and can provide important insights relevant to understanding the link between COPD and CVD. More importantly, murine studies provide good platforms for studying the potential of promising (new) therapeutic strategies for COPD patients with CVD.
Collapse
Affiliation(s)
- P Padmini S J Khedoe
- Department of Pulmonology, Leiden University Medical Center, the Netherlands; Department of Medicine, Division of Endocrinology, Leiden University Medical Center, the Netherlands; and
| | - Patrick C N Rensen
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, the Netherlands; and Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, the Netherlands
| | - Jimmy F P Berbée
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, the Netherlands; and Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, the Netherlands
| | - Pieter S Hiemstra
- Department of Pulmonology, Leiden University Medical Center, the Netherlands
| |
Collapse
|
119
|
Lee-Rueckert M, Escola-Gil JC, Kovanen PT. HDL functionality in reverse cholesterol transport--Challenges in translating data emerging from mouse models to human disease. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1861:566-83. [PMID: 26968096 DOI: 10.1016/j.bbalip.2016.03.004] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2015] [Revised: 02/26/2016] [Accepted: 03/04/2016] [Indexed: 12/18/2022]
Abstract
Whereas LDL-derived cholesterol accumulates in atherosclerotic lesions, HDL particles are thought to facilitate removal of cholesterol from the lesions back to the liver thereby promoting its fecal excretion from the body. Because generation of cholesterol-loaded macrophages is inherent to atherogenesis, studies on the mechanisms stimulating the release of cholesterol from these cells and its ultimate excretion into feces are crucial to learn how to prevent lesion development or even induce lesion regression. Modulation of this key anti-atherogenic pathway, known as the macrophage-specific reverse cholesterol transport, has been extensively studied in several mouse models with the ultimate aim of applying the emerging knowledge to humans. The present review provides a detailed comparison and critical analysis of the various steps of reverse cholesterol transport in mouse and man. We attempt to translate this in vivo complex scenario into practical concepts, which could serve as valuable tools when developing novel HDL-targeted therapies.
Collapse
|
120
|
Onyenibe Nwozo S, Fowokemi Kasumu T, Emmanuel Oyinloye B. Eugenia caryophyllus Extract Exerts Hypocholesterolemic and Antioxidant Effects in High-Cholesterol-Fed Rats. AVICENNA JOURNAL OF MEDICAL BIOCHEMISTRY 2015. [DOI: 10.17795/ajmb-30147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
121
|
Liquid fructose supplementation in LDL-R−/− mice fed a western-type diet enhances lipid burden and atherosclerosis despite identical calorie consumption. ACTA ACUST UNITED AC 2015. [DOI: 10.1016/j.ijcme.2015.10.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
122
|
Nozako M, Koyama T, Nagano C, Sato M, Matsumoto S, Mitani K, Yasufuku R, Kohashi M, Yoshikawa T. An Atherogenic Paigen-Diet Aggravates Nephropathy in Type 2 Diabetic OLETF Rats. PLoS One 2015; 10:e0143979. [PMID: 26606054 PMCID: PMC4659596 DOI: 10.1371/journal.pone.0143979] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 11/11/2015] [Indexed: 11/18/2022] Open
Abstract
Diabetic nephropathy develops in association with hyperglycemia, is aggravated by atherogenic factors such as dyslipidemia, and is sometimes initiated before obvious hyperglycemia is seen. However, the precise mechanisms of progression are still unclear. In this study, we investigated the influence of an atherogenic Paigen diet (PD) on the progression of nephropathy in spontaneous type 2 diabetic OLETF rats. Feeding PD to male OLETF rats for 12 weeks caused an extensive increase in excretion of urinary albumin and markers of tubular injury such as KIM-1 and L-FABP, accompanied by mesangial expansion and tubular atrophy. PD significantly increased plasma total cholesterol concentration, which correlates well with increases in urine albumin excretion and mesangial expansion. Conversely, PD did not change plasma glucose and free fatty acid concentrations. PD enhanced renal levels of mRNA for inflammatory molecules such as KIM-1, MCP-1, TLR4 and TNF-α and promoted macrophage infiltration and lipid accumulation in the tubulointerstitium and glomeruli in OLETF rats. Intriguingly, PD had little effect on urine albumin excretion and renal morphology in normal control LETO rats. This model may be useful in studying the complex mechanisms that aggravate diabetic nephropathy in an atherogenic environment.
Collapse
Affiliation(s)
- Masanori Nozako
- Free Radical Research Project, Otsuka Pharmaceutical Co., Ltd., Tokushima, Tokushima, Japan
- Department of Toxicology, Drug Safety Research Center, Tokushima Research Institute, Otsuka Pharmaceutical Co., Ltd., Tokushima, Tokushima, Japan
| | - Takashi Koyama
- Free Radical Research Project, Otsuka Pharmaceutical Co., Ltd., Tokushima, Tokushima, Japan
- Department of Toxicology, Drug Safety Research Center, Tokushima Research Institute, Otsuka Pharmaceutical Co., Ltd., Tokushima, Tokushima, Japan
| | - Chifumi Nagano
- Free Radical Research Project, Otsuka Pharmaceutical Co., Ltd., Tokushima, Tokushima, Japan
- Department of Toxicology, Drug Safety Research Center, Tokushima Research Institute, Otsuka Pharmaceutical Co., Ltd., Tokushima, Tokushima, Japan
| | - Makoto Sato
- Department of Toxicology, Drug Safety Research Center, Tokushima Research Institute, Otsuka Pharmaceutical Co., Ltd., Tokushima, Tokushima, Japan
| | - Satoshi Matsumoto
- Department of Toxicology, Drug Safety Research Center, Tokushima Research Institute, Otsuka Pharmaceutical Co., Ltd., Tokushima, Tokushima, Japan
| | - Kiminobu Mitani
- Free Radical Research Project, Otsuka Pharmaceutical Co., Ltd., Tokushima, Tokushima, Japan
| | - Reiko Yasufuku
- Free Radical Research Project, Otsuka Pharmaceutical Co., Ltd., Tokushima, Tokushima, Japan
| | - Masayuki Kohashi
- Free Radical Research Project, Otsuka Pharmaceutical Co., Ltd., Tokushima, Tokushima, Japan
| | - Tomohiro Yoshikawa
- Free Radical Research Project, Otsuka Pharmaceutical Co., Ltd., Tokushima, Tokushima, Japan
- * E-mail:
| |
Collapse
|
123
|
Shim J, Al-Mashhadi RH, Sørensen CB, Bentzon JF. Large animal models of atherosclerosis - new tools for persistent problems in cardiovascular medicine. J Pathol 2015; 238:257-66. [DOI: 10.1002/path.4646] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2015] [Revised: 09/15/2015] [Accepted: 09/18/2015] [Indexed: 11/06/2022]
Affiliation(s)
- J Shim
- Department of Clinical Medicine; Aarhus University, and Department of Cardiology, Aarhus University Hospital; Denmark
| | - RH Al-Mashhadi
- Department of Clinical Medicine; Aarhus University, and Department of Cardiology, Aarhus University Hospital; Denmark
| | - CB Sørensen
- Department of Clinical Medicine; Aarhus University, and Department of Cardiology, Aarhus University Hospital; Denmark
| | - JF Bentzon
- Department of Clinical Medicine; Aarhus University, and Department of Cardiology, Aarhus University Hospital; Denmark
- Centro Nacional de Investigaciones Cardiovasculares Carlos III; Madrid Spain
| |
Collapse
|
124
|
Akerele OA, Cheema SK. Fatty acyl composition of lysophosphatidylcholine is important in atherosclerosis. Med Hypotheses 2015; 85:754-60. [PMID: 26604024 DOI: 10.1016/j.mehy.2015.10.013] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 09/24/2015] [Accepted: 10/14/2015] [Indexed: 12/11/2022]
Abstract
Atherosclerosis is a major cause of death for mankind. Although the pathophysiology of atherosclerosis is a complex and multifactorial process, growing body of evidence has identified phospholipids-mediated signaling as an important factor in the induction and progression of atherosclerosis. Lysophosphatidylcholine (LPC) is a major phospholipid in oxidized low-density lipoprotein, and is generally considered to be atherogenic. However, some studies have shown anti-atherogenic properties of LPC. The controversial findings surrounding the pro- or anti-atherogenic properties of LPC appear to be due to the chain length and the degree of saturation of the fatty acyl moiety of LPC. Studies have suggested that the presence of omega (n)-polyunsaturated fatty acids (PUFA) at the sn-1 position of LPC modulates the inflammatory response thereby making LPC anti-atherogenic. We have recently shown that feeding a diet high in n-3 PUFA resulted in the enrichment of LPC in both plasma and liver of C57BL/6 mice with n-3 PUFA. Others have also shown that supplementation with fish oil leads to preferential incorporation of n-3 PUFA into LPC. We also found that plasma obtained from mice fed a diet high in n-3 PUFA showed higher cholesterol efflux capacity compared to animals fed a low n-3 PUFA diet, despite no changes in high-density lipoprotein concentrations. We are therefore hypothesizing that n-3 PUFA enriched LPC has anti-atherogenic properties by promoting cholesterol efflux from macrophages and by reducing inflammation. Our anticipated long term objective is to establish that the fatty acyl moiety of LPC can be used as a potential biomarker for the risk of developing atherosclerosis. Validating this hypothesis would have a substantial impact on the public health with respect to early diagnosis of cardiovascular risks, and designing dietary based therapeutic strategies for the prevention and management of atherosclerosis and other heart related diseases.
Collapse
|
125
|
Triglyceride-Rich Lipoproteins Modulate the Distribution and Extravasation of Ly6C/Gr1(low) Monocytes. Cell Rep 2015; 12:1802-15. [PMID: 26344769 PMCID: PMC4590546 DOI: 10.1016/j.celrep.2015.08.020] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Revised: 05/26/2015] [Accepted: 08/06/2015] [Indexed: 11/22/2022] Open
Abstract
Monocytes are heterogeneous effector cells involved in the maintenance and restoration of tissue integrity. However, their response to hyperlipidemia remains poorly understood. Here, we report that in the presence of elevated levels of triglyceride-rich lipoproteins, induced by administration of poloxamer 407, the blood numbers of non-classical Ly6C/Gr1(low) monocytes drop, while the number of bone marrow progenitors remains similar. We observed an increased crawling and retention of the Gr1(low) monocytes at the endothelial interface and a marked accumulation of CD68(+) macrophages in several organs. Hypertriglyceridemia was accompanied by an increased expression of tissue, and plasma CCL4 and blood Gr1(low) monocyte depletion involved a pertussis-toxin-sensitive receptor axis. Collectively, these findings demonstrate that a triglyceride-rich environment can alter blood monocyte distribution, promoting the extravasation of Gr1(low) cells. The behavior of these cells in response to dyslipidemia highlights the significant impact that high levels of triglyceride-rich lipoproteins may have on innate immune cells.
Collapse
|
126
|
Raddatz BB, Sun W, Brogden G, Sun Y, Kammeyer P, Kalkuhl A, Colbatzky F, Deschl U, Naim HY, Baumgärtner W, Ulrich R. Central Nervous System Demyelination and Remyelination is Independent from Systemic Cholesterol Level in Theiler's Murine Encephalomyelitis. Brain Pathol 2015; 26:102-19. [PMID: 25959295 DOI: 10.1111/bpa.12266] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 04/29/2015] [Indexed: 12/18/2022] Open
Abstract
High dietary fat and/or cholesterol intake is a risk factor for multiple diseases and has been debated for multiple sclerosis. However, cholesterol biosynthesis is a key pathway during myelination and disturbances are described in demyelinating diseases. To address the possible interaction of dyslipidemia and demyelination, cholesterol biosynthesis gene expression, composition of the body's major lipid repositories and Paigen diet-induced, systemic hypercholesterolemia were examined in Theiler's murine encephalomyelitis (TME) using histology, immunohistochemistry, serum clinical chemistry, microarrays and high-performance thin layer chromatography. TME-virus (TMEV)-infected mice showed progressive loss of motor performance and demyelinating leukomyelitis. Gene expression associated with cholesterol biosynthesis was overall down-regulated in the spinal cord of TMEV-infected animals. Spinal cord levels of galactocerebroside and sphingomyelin were reduced on day 196 post TMEV infection. Paigen diet induced serum hypercholesterolemia and hepatic lipidosis. However, high dietary fat and cholesterol intake led to no significant differences in clinical course, inflammatory response, astrocytosis, and the amount of demyelination and remyelination in the spinal cord of TMEV-infected animals. The results suggest that down-regulation of cholesterol biosynthesis is a transcriptional marker for demyelination, quantitative loss of myelin-specific lipids, but not cholesterol occurs late in chronic demyelination, and serum hypercholesterolemia exhibited no significant effect on TMEV infection.
Collapse
Affiliation(s)
- Barbara B Raddatz
- Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany.,Center for Systems Neuroscience, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Wenhui Sun
- Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany.,Center for Systems Neuroscience, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Graham Brogden
- Fish Disease Research Unit, University of Veterinary Medicine Hannover, Hannover, Germany.,Department of Physiological Chemistry, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Yanyong Sun
- Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany.,Center for Systems Neuroscience, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Patricia Kammeyer
- Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Arno Kalkuhl
- Department of Non-Clinical Drug Safety, Boehringer Ingelheim Pharma GmbH & Co KG, Biberach (Riß), Germany
| | - Florian Colbatzky
- Department of Non-Clinical Drug Safety, Boehringer Ingelheim Pharma GmbH & Co KG, Biberach (Riß), Germany
| | - Ulrich Deschl
- Department of Non-Clinical Drug Safety, Boehringer Ingelheim Pharma GmbH & Co KG, Biberach (Riß), Germany
| | - Hassan Y Naim
- Department of Physiological Chemistry, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Wolfgang Baumgärtner
- Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany.,Center for Systems Neuroscience, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Reiner Ulrich
- Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany.,Center for Systems Neuroscience, University of Veterinary Medicine Hannover, Hannover, Germany
| |
Collapse
|
127
|
Smith BW, Simpson DG, Sarwate S, Miller RJ, Erdman JW, O'Brien WD. Contrast Ultrasound Imaging of the Aorta Does Not Affect Progression of Atherosclerosis or Cardiovascular Biomarkers in ApoE-/- Mice. JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2015; 34:1115-1122. [PMID: 26014332 PMCID: PMC4471945 DOI: 10.7863/ultra.34.6.1115] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
OBJECTIVES Ultrasound contrast agents (UCAs) enhance cardiovascular ultrasound imaging. Adverse biological effects have occurred after administration of UCAs, and more research is needed for a comprehensive understanding of the risks involved. We used the ApoE(-/-) mouse model of atherosclerosis to characterize the effects of ultrasound and UCAs on atherosclerosis and plasma biomarkers. METHODS Male ApoE(-/-) mice (8 weeks old; n = 24) were intravenously infused with a UCA (2 × 10(10) Definity microbubbles per hour; Lantheus Medical Imaging, North Billerica, MA) and exposed to 2.8-MHz center frequency ultrasound (10 Hz pulse repetition frequency, 1.4 microseconds pulse duration, 2 minutes exposure duration, and 2 sites) at 1 of 3 derated peak rarefactional pressure amplitudes (0, 1.9, or 3.8 MPa), and then consumed either a chow or Western diet for 4 weeks (n = 4 per group). Blood plasma samples were collected before ultrasound exposure and at 2 and 4 weeks after exposure and assayed for total cholesterol and von Willebrand Factor (vWF). A pathologist measured atheroma thickness in formalin-fixed, hematoxylin-eosin-stained transverse aorta sections and scored them for severity of atherosclerosis. RESULTS Plasma total cholesterol initially averaged 286 mg/dL in the Western diet group and increased to 861 mg/dL after 4 weeks on the diet (P < .0001). Total cholesterol did not increase significantly in the chow diet group. Plasma vWF increased after 2 weeks on the Western diet (P < .0001). Atheroma thickness was greater in animals consuming the Western diet than in chow-fed animals (P < .05). Ultrasound had no significant effect on plasma total cholesterol, plasma vWF, or atheroma thickness. CONCLUSIONS Contrast ultrasound did not increase the severity of atherosclerosis or alter cardiovascular biomarkers in the ApoE(-/-) mouse model.
Collapse
Affiliation(s)
- Brendon W Smith
- Bioacoustics Research Laboratory, Department of Electrical and Computer Engineering (B.W.S., S.S., R.J.M., W.D.O.), Division of Nutritional Sciences (B.W.S., J.W.E., W.D.O.), and Departments of Statistics (D.G.S.), Pathology (S.S.), and Food Science and Human Nutrition (J.W.E.), University of Illinois at Urbana-Champaign, Urbana, Illinois USA
| | - Douglas G Simpson
- Bioacoustics Research Laboratory, Department of Electrical and Computer Engineering (B.W.S., S.S., R.J.M., W.D.O.), Division of Nutritional Sciences (B.W.S., J.W.E., W.D.O.), and Departments of Statistics (D.G.S.), Pathology (S.S.), and Food Science and Human Nutrition (J.W.E.), University of Illinois at Urbana-Champaign, Urbana, Illinois USA
| | - Sandhya Sarwate
- Bioacoustics Research Laboratory, Department of Electrical and Computer Engineering (B.W.S., S.S., R.J.M., W.D.O.), Division of Nutritional Sciences (B.W.S., J.W.E., W.D.O.), and Departments of Statistics (D.G.S.), Pathology (S.S.), and Food Science and Human Nutrition (J.W.E.), University of Illinois at Urbana-Champaign, Urbana, Illinois USA
| | - Rita J Miller
- Bioacoustics Research Laboratory, Department of Electrical and Computer Engineering (B.W.S., S.S., R.J.M., W.D.O.), Division of Nutritional Sciences (B.W.S., J.W.E., W.D.O.), and Departments of Statistics (D.G.S.), Pathology (S.S.), and Food Science and Human Nutrition (J.W.E.), University of Illinois at Urbana-Champaign, Urbana, Illinois USA
| | - John W Erdman
- Bioacoustics Research Laboratory, Department of Electrical and Computer Engineering (B.W.S., S.S., R.J.M., W.D.O.), Division of Nutritional Sciences (B.W.S., J.W.E., W.D.O.), and Departments of Statistics (D.G.S.), Pathology (S.S.), and Food Science and Human Nutrition (J.W.E.), University of Illinois at Urbana-Champaign, Urbana, Illinois USA
| | - William D O'Brien
- Bioacoustics Research Laboratory, Department of Electrical and Computer Engineering (B.W.S., S.S., R.J.M., W.D.O.), Division of Nutritional Sciences (B.W.S., J.W.E., W.D.O.), and Departments of Statistics (D.G.S.), Pathology (S.S.), and Food Science and Human Nutrition (J.W.E.), University of Illinois at Urbana-Champaign, Urbana, Illinois USA.
| |
Collapse
|
128
|
Felix AS, Monteiro N, Rocha VN, Oliveira G, Nascimento AL, de Carvalho L, Thole A, Carvalho J. Structural and ultrastructural evaluation of the aortic wall after transplantation of bone marrow-derived cells (BMCs) in a model for atherosclerosis. Biochem Cell Biol 2015; 93:367-75. [PMID: 26151357 DOI: 10.1139/bcb-2015-0006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Stem cells are characterized by their ability to differentiate into multiple cell lineages and display the paracrine effect. The aim of this work was to evaluate the effect of therapy with bone marrow-derived cells (BMCs) on glucose, lipid metabolism, and aortic wall remodeling in mice through the administration of a high-fat diet and subsequent BMCs transplantation. C57BL/6 mice were fed a control diet (CO group) or an atherogenic diet (AT group). After 16 weeks, the AT group was divided into 4 subgroups: an AT 14 days group and AT 21 days group that were given an injection of vehicle and sacrificed after 14 and 21 days, respectively, and an AT-BMC 14 days group and AT-BMC 21 days group that were given an injection of BMCs and sacrificed after 14 and 21 days, respectively. The BMCs transplant had reduced blood glucose, triglycerides, and total cholesterol. There was no significant difference in relation to body mass between the transplanted groups and non-transplanted groups, and all were different than CO. There was no significant difference in the glycemic curve among AT 14 days, AT-BMC 14 days, and AT 21 days, and these were different than the CO and the AT-BMC 21 days groups. The increased thickness of the aortic wall was observed in all atherogenic groups, but was significantly smaller in group AT-BMC 21 days compared to AT 14 days and AT 21 days. Vacuoles in the media tunic, delamination and the thinning of the elastic lamellae were observed in AT 14 days and AT 21 days. The smallest number of these was displayed on the AT-BMC 14 days and AT-BMC 21 days. Marking to CD105, CD133, and CD68 were observed in AT 14 days and AT 21 days. These markings were not observed in AT-BMC 14 days or in AT-BMC 21 days. Electron micrographs show the beneficial remodeling in AT-BMC 14 days and AT-BMC 21 days, and the structural organization was similar to the CO group. Vesicles of pinocytosis, projection of smooth muscle cells, and delamination of the internal elastic lamina are seen in groups AT 14 days and AT 21 days. Endothelial cells were preserved, and regular and continuous contour in internal elastic lamelae were observed in the CO, the AT-BMC 14 days, and AT-BMC 21 days groups. In conclusion, in an atherosclerotic model using mice and atherogenic diet, the injection of BMCs improves glucose, lipid metabolism, and causes a beneficial remodeling of the aortic wall.
Collapse
Affiliation(s)
- Alyne Souza Felix
- a Laboratory of Ultrastructure and Tissue Biology, Histology and Embryology Department, Institute of Biology Roberto Alcantara Gomes, State University of Rio de Janeiro, (UERJ), Bouvelard 28 de Setembro Avn, 77, Vila Isabel, Cep 20.551-030 Rio de Janeiro, Brazil
| | - Nemesis Monteiro
- a Laboratory of Ultrastructure and Tissue Biology, Histology and Embryology Department, Institute of Biology Roberto Alcantara Gomes, State University of Rio de Janeiro, (UERJ), Bouvelard 28 de Setembro Avn, 77, Vila Isabel, Cep 20.551-030 Rio de Janeiro, Brazil
| | - Vinícius Novaes Rocha
- c Department of Veterinary medicine, Federal University of Juiz de Fora, Minas Gerais, Brazil
| | - Genilza Oliveira
- b Research Laboratory of Stem Cells, Histology and Embryology Department, Institute of Biology Roberto Alcantara Gomes, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ana Lucia Nascimento
- a Laboratory of Ultrastructure and Tissue Biology, Histology and Embryology Department, Institute of Biology Roberto Alcantara Gomes, State University of Rio de Janeiro, (UERJ), Bouvelard 28 de Setembro Avn, 77, Vila Isabel, Cep 20.551-030 Rio de Janeiro, Brazil
| | - Laís de Carvalho
- b Research Laboratory of Stem Cells, Histology and Embryology Department, Institute of Biology Roberto Alcantara Gomes, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Alessandra Thole
- b Research Laboratory of Stem Cells, Histology and Embryology Department, Institute of Biology Roberto Alcantara Gomes, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Jorge Carvalho
- a Laboratory of Ultrastructure and Tissue Biology, Histology and Embryology Department, Institute of Biology Roberto Alcantara Gomes, State University of Rio de Janeiro, (UERJ), Bouvelard 28 de Setembro Avn, 77, Vila Isabel, Cep 20.551-030 Rio de Janeiro, Brazil
| |
Collapse
|
129
|
Abstract
Cardiovascular disease is the major cause of death in most developed nations and the social and economic burden of this disease is quite high. Atherosclerosis is a major underlying basis for most cardiovascular diseases including myocardial infarction and stroke. Genetically modified mouse models, particularly mice deficient in apoprotein E or the LDL receptor, have been widely used in preclinical atherosclerosis studies to gain insight into the mechanisms underlying this pathology. This chapter reviews several mouse models of atherosclerosis progression and regression as well as the role of immune cells in disease progression and the genetics of murine atherogenesis.
Collapse
Affiliation(s)
- Godfrey S Getz
- Department of Pathology, University of Chicago, Box MC 1089, 5841 S. Maryland Avenue, Chicago, IL, 60637, USA.
| | - Catherine A Reardon
- Department of Pathology, University of Chicago, Box MC 1089, 5841 S. Maryland Avenue, Chicago, IL, 60637, USA
| |
Collapse
|
130
|
Progatzky F, Sangha NJ, Yoshida N, McBrien M, Cheung J, Shia A, Scott J, Marchesi JR, Lamb JR, Bugeon L, Dallman MJ. Dietary cholesterol directly induces acute inflammasome-dependent intestinal inflammation. Nat Commun 2014; 5:5864. [PMID: 25536194 PMCID: PMC4284652 DOI: 10.1038/ncomms6864] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Accepted: 11/14/2014] [Indexed: 02/06/2023] Open
Abstract
Prolonged ingestion of a cholesterol- or saturated fatty acid-enriched diet induces chronic, often systemic, auto-inflammatory responses resulting in significant health problems worldwide. In vivo information regarding the local and direct inflammatory effect of these dietary components in the intestine and, in particular, on the intestinal epithelium is lacking. Here we report that both mice and zebrafish exposed to high-fat (HFDs) or high-cholesterol (HCDs) diets develop acute innate inflammatory responses within hours, reflected in the localized interleukin-1β-dependent accumulation of myeloid cells in the intestine. Acute HCD-induced intestinal inflammation is dependent on cholesterol uptake via Niemann-Pick C1-like 1 and inflammasome activation involving apoptosis-associated Speck-like protein containing a caspase recruitment domain, which leads to Caspase-1 activity in intestinal epithelial cells. Extended exposure to HCD results in localized, inflammation-dependent, functional dysregulation as well as systemic pathologies. Our model suggests that dietary cholesterol initiates intestinal inflammation in epithelial cells. Chronic consumption of a Western-type diet leads to systemic inflammation of undefined origin, which contributes to metabolic disease. Here Progatzky et al. identify an immediate early step in the process by showing that dietary cholesterol rapidly activates inflammasomes in the gut epithelium.
Collapse
Affiliation(s)
- Fränze Progatzky
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, Sir Alexander Fleming Building, London SW7 2AZ, UK
| | - Navjyot J Sangha
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, Sir Alexander Fleming Building, London SW7 2AZ, UK
| | - Nagisa Yoshida
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, Sir Alexander Fleming Building, London SW7 2AZ, UK
| | - Marie McBrien
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, Sir Alexander Fleming Building, London SW7 2AZ, UK
| | - Jackie Cheung
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, Sir Alexander Fleming Building, London SW7 2AZ, UK
| | - Alice Shia
- 1] Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, Sir Alexander Fleming Building, London SW7 2AZ, UK [2] National Heart and Lung Institute, Imperial College London, London W12 0NN, UK
| | - James Scott
- National Heart and Lung Institute, Imperial College London, London W12 0NN, UK
| | - Julian R Marchesi
- 1] Computational and Systems Medicine, Faculty of Medicine, Department of Surgery and Cancer, Imperial College London, London SW7 2AZ, UK [2] Section of Hepatology, Imperial College London, Norfolk Place, London W2 1NY, UK [3] Centre for Digestive and Gut Health, Imperial College London, London W2 1NY, UK [4] School of Biosciences, Cardiff University, Museum Avenue, Cardiff CF10 3AX, UK
| | - Jonathan R Lamb
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, Sir Alexander Fleming Building, London SW7 2AZ, UK
| | - Laurence Bugeon
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, Sir Alexander Fleming Building, London SW7 2AZ, UK
| | - Margaret J Dallman
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, Sir Alexander Fleming Building, London SW7 2AZ, UK
| |
Collapse
|
131
|
Syndecan 4 is required for endothelial alignment in flow and atheroprotective signaling. Proc Natl Acad Sci U S A 2014; 111:17308-13. [PMID: 25404299 DOI: 10.1073/pnas.1413725111] [Citation(s) in RCA: 133] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Atherosclerotic plaque localization correlates with regions of disturbed flow in which endothelial cells (ECs) align poorly, whereas sustained laminar flow correlates with cell alignment in the direction of flow and resistance to atherosclerosis. We now report that in hypercholesterolemic mice, deletion of syndecan 4 (S4(-/-)) drastically increased atherosclerotic plaque burden with the appearance of plaque in normally resistant locations. Strikingly, ECs from the thoracic aortas of S4(-/-) mice were poorly aligned in the direction of the flow. Depletion of S4 in human umbilical vein endothelial cells (HUVECs) using shRNA also inhibited flow-induced alignment in vitro, which was rescued by re-expression of S4. This effect was highly specific, as flow activation of VEGF receptor 2 and NF-κB was normal. S4-depleted ECs aligned in cyclic stretch and even elongated under flow, although nondirectionally. EC alignment was previously found to have a causal role in modulating activation of inflammatory versus antiinflammatory pathways by flow. Consistent with these results, S4-depleted HUVECs in long-term laminar flow showed increased activation of proinflammatory NF-κB and decreased induction of antiinflammatory kruppel-like factor (KLF) 2 and KLF4. Thus, S4 plays a critical role in sensing flow direction to promote cell alignment and inhibit atherosclerosis.
Collapse
|
132
|
Early onset intrauterine growth restriction in a mouse model of gestational hypercholesterolemia and atherosclerosis. BIOMED RESEARCH INTERNATIONAL 2014; 2014:280497. [PMID: 25295255 PMCID: PMC4176652 DOI: 10.1155/2014/280497] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 05/23/2014] [Accepted: 06/20/2014] [Indexed: 01/30/2023]
Abstract
The susceptibility to develop atherosclerosis is increased by intrauterine growth restriction and prenatal exposure to maternal hypercholesterolemia. Here, we studied whether mouse gestational hypercholesterolemia and atherosclerosis affected fetal development and growth at different stages of gestation. Female LDLR KO mice fed a proatherogenic, high cholesterol (HC) diet for 3 weeks before conception and during pregnancy exhibited a significant increase in non-HDL cholesterol and developed atherosclerosis. At embryonic days 12.5 (E12.5), E15.5, and E18.5, maternal gestational hypercholesterolemia and atherosclerosis were associated to a 22-24% reduction in male and female fetal weight without alterations in fetal number/litter or morphology nor placental weight or structure. Feeding the HC diet exclusively at the periconceptional period did not alter fetal growth, suggesting that maternal hypercholesterolemia affected fetal weight only after implantation. Vitamin E supplementation (1,000 UI of α-tocopherol/kg) of HC-fed females did not change the mean weight of E18.5 fetuses but reduced the percentage of fetuses exhibiting body weights below the 10th percentile of weight (HC: 90% vs. HC/VitE: 68%). In conclusion, our results showed that maternal gestational hypercholesterolemia and atherosclerosis in mice were associated to early onset fetal growth restriction and that dietary vitamin E supplementation had a beneficial impact on this condition.
Collapse
|
133
|
O’Connor A, Quizon PM, Albright JE, Lin FT, Bennett BJ. Responsiveness of cardiometabolic-related microbiota to diet is influenced by host genetics. Mamm Genome 2014; 25:583-99. [PMID: 25159725 PMCID: PMC4239785 DOI: 10.1007/s00335-014-9540-0] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Accepted: 08/04/2014] [Indexed: 01/04/2023]
Abstract
Intestinal microbial community structure is driven by host genetics in addition to environmental factors such as diet. In comparison with environmental influences, the effect of host genetics on intestinal microbiota, and how host-driven differences alter host metabolism is unclear. Additionally, the interaction between host genetics and diet, and the impact on the intestinal microbiome and possible down-stream effect on host metabolism is not fully understood, but represents another aspects of inter-individual variation in disease risk. The objectives of this study were to investigate how diet and genetic background shape microbial communities, and how these diet- and genetic-driven microbial differences relate to cardiometabolic phenotypes. To determine these effects, we used the 8 progenitor strains of the collaborative cross/diversity outbred mapping panels (C57BL/6J, A/J, NOD/ShiLtJ, NZO/HILtJ, WSB/EiJ, CAST/EiJ, PWK/PhJ, and 129S1/SvImJ). 16s rRNA profiling of enteric microbial communities in addition to the assessment of phenotypes central to cardiometabolic health was conducted under baseline nutritional conditions and in response to diets varying in atherogenic nutrient (fat, cholesterol, cholic acid) composition. These studies revealed strain-driven differences in enteric microbial communities which were retained with dietary intervention. Diet–strain interactions were seen for a core group of cardiometabolic-related microbial taxa. In conclusion, these studies highlight diet and genetically regulated cardiometabolic-related microbial taxa. Furthermore, we demonstrate the progenitor model is useful for nutrigenomic-based studies and screens seeking to investigate the interaction between genetic background and the phenotypic and microbial response to diet.
Collapse
Affiliation(s)
- Annalouise O’Connor
- UNC Chapel Hill Nutrition Research Institute, 500 Laureate Way, Kannapolis, NC 28081 USA
| | - Pamela M. Quizon
- UNC Chapel Hill Nutrition Research Institute, 500 Laureate Way, Kannapolis, NC 28081 USA
| | - Jody E. Albright
- UNC Chapel Hill Nutrition Research Institute, 500 Laureate Way, Kannapolis, NC 28081 USA
| | - Fred T. Lin
- UNC Chapel Hill Nutrition Research Institute, 500 Laureate Way, Kannapolis, NC 28081 USA
| | - Brian J. Bennett
- UNC Chapel Hill Nutrition Research Institute, 500 Laureate Way, Kannapolis, NC 28081 USA
- Department of Genetics, University of North Carolina Chapel Hill, Chapel Hill, NC 27599 USA
- Department of Nutrition, University of North Carolina Chapel Hill, Chapel Hill, NC 27599 USA
| |
Collapse
|
134
|
Affiliation(s)
- Noam Zelcer
- From the Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands (N.Z., M.W.); and Division of Molecular Medicine, Department of Medicine, Columbia University, New York, NY (M.W.)
| | - Marit Westerterp
- From the Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands (N.Z., M.W.); and Division of Molecular Medicine, Department of Medicine, Columbia University, New York, NY (M.W.).
| |
Collapse
|
135
|
Zhang N, Xie X, Chen H, Chen H, Yu H, Wang JA. Stem cell-based therapies for atherosclerosis: perspectives and ongoing controversies. Stem Cells Dev 2014; 23:1731-40. [PMID: 24702267 DOI: 10.1089/scd.2014.0078] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Atherosclerosis is a major contributor to life-threatening cardiovascular events, the leading cause of death worldwide. Since the mechanisms of atherosclerosis have not been fully understood, currently, there are no effective approaches to regressing atherosclerosis. Therefore, there is a dire need to explore the mechanisms and potential therapeutic strategies to prevent or reverse the progression of atherosclerosis. In recent years, stem cell-based therapies have held promises to various diseases, including atherosclerosis. Unfortunately, the efficacy of stem cell-based therapies for atherosclerosis as reported in the literature has been inconsistent or even conflicting. In this review, we summarize the current literature of stem cell-based therapies for atherosclerosis and discuss possible mechanisms and future directions of these potential therapies.
Collapse
Affiliation(s)
- Na Zhang
- 1 Department of Cardiology, Second Affiliated Hospital of Zhejiang University School of Medicine , Hangzhou, China
| | | | | | | | | | | |
Collapse
|
136
|
|
137
|
Genetic experimental preparations for studying atherosclerosis. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2014. [PMID: 24751424 DOI: 10.1016/b978-0-12-386930-2.00001-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register]
Abstract
Atherosclerosis is a pathological process with several inputs (biological, chemical, physiological, and others) interacting slowly over a lifetime leading to coronary artery disease, significant morbidity, and a limited lifespan. Over the past two decades, biologists have used experimental preparations from cells, animals, and man to understand the biology of atherosclerosis. Much has been discovered but our use of the standard gene-targeted experimental preparations is now nearing its limit. Better preparations to answer the remaining questions in the field of atherosclerosis biology are needed.
Collapse
|
138
|
Bjørklund MM, Hollensen AK, Hagensen MK, Dagnaes-Hansen F, Christoffersen C, Mikkelsen JG, Bentzon JF. Induction of atherosclerosis in mice and hamsters without germline genetic engineering. Circ Res 2014; 114:1684-9. [PMID: 24677271 DOI: 10.1161/circresaha.114.302937] [Citation(s) in RCA: 204] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
RATIONALE Atherosclerosis can be achieved in animals by germline genetic engineering, leading to hypercholesterolemia, but such models are constrained to few species and strains, and they are difficult to combine with other powerful techniques involving genetic manipulation or variation. OBJECTIVE To develop a method for induction of atherosclerosis without germline genetic engineering. METHODS AND RESULTS Recombinant adeno-associated viral vectors were engineered to encode gain-of-function proprotein convertase subtilisin/kexin type 9 mutants, and mice were given a single intravenous vector injection followed by high-fat diet feeding. Plasma proprotein convertase subtilisin/kexin type 9 and total cholesterol increased rapidly and were maintained at high levels, and after 12 weeks, mice had atherosclerotic lesions in the aorta. Histology of the aortic root showed progression of lesions to the fibroatheromatous stage. To demonstrate the applicability of this method for rapid analysis of the atherosclerosis susceptibility of a mouse strain and for providing temporal control over disease induction, we demonstrated the accelerated atherosclerosis of mature diabetic Akita mice. Furthermore, the versatility of this approach for creating atherosclerosis models also in nonmurine species was demonstrated by inducing hypercholesterolemia and early atherosclerosis in Golden Syrian hamsters. CONCLUSIONS Single injections of proprotein convertase subtilisin/kexin type 9-encoding recombinant adeno-associated viral vectors are a rapid and versatile method to induce atherosclerosis in animals. This method should prove useful for experiments that are high-throughput or involve genetic techniques, strains, or species that do not combine well with current genetically engineered models.
Collapse
Affiliation(s)
- Martin Maeng Bjørklund
- From the Departments of Clinical Medicine (M.M.B., M.K.H., J.F.B.) and Biomedicine (A.K.H., F.D.-H., J.G.M.), Aarhus University, Aarhus, Denmark; Department of Cardiology, Aarhus University Hospital, Aarhus, Denmark (M.M.B., M.K.H., J.F.B.); and Department of Clinical Biochemistry, Rigshospitalet, Copenhagen, Denmark (C.C.)
| | - Anne Kruse Hollensen
- From the Departments of Clinical Medicine (M.M.B., M.K.H., J.F.B.) and Biomedicine (A.K.H., F.D.-H., J.G.M.), Aarhus University, Aarhus, Denmark; Department of Cardiology, Aarhus University Hospital, Aarhus, Denmark (M.M.B., M.K.H., J.F.B.); and Department of Clinical Biochemistry, Rigshospitalet, Copenhagen, Denmark (C.C.)
| | - Mette Kallestrup Hagensen
- From the Departments of Clinical Medicine (M.M.B., M.K.H., J.F.B.) and Biomedicine (A.K.H., F.D.-H., J.G.M.), Aarhus University, Aarhus, Denmark; Department of Cardiology, Aarhus University Hospital, Aarhus, Denmark (M.M.B., M.K.H., J.F.B.); and Department of Clinical Biochemistry, Rigshospitalet, Copenhagen, Denmark (C.C.)
| | - Frederik Dagnaes-Hansen
- From the Departments of Clinical Medicine (M.M.B., M.K.H., J.F.B.) and Biomedicine (A.K.H., F.D.-H., J.G.M.), Aarhus University, Aarhus, Denmark; Department of Cardiology, Aarhus University Hospital, Aarhus, Denmark (M.M.B., M.K.H., J.F.B.); and Department of Clinical Biochemistry, Rigshospitalet, Copenhagen, Denmark (C.C.)
| | - Christina Christoffersen
- From the Departments of Clinical Medicine (M.M.B., M.K.H., J.F.B.) and Biomedicine (A.K.H., F.D.-H., J.G.M.), Aarhus University, Aarhus, Denmark; Department of Cardiology, Aarhus University Hospital, Aarhus, Denmark (M.M.B., M.K.H., J.F.B.); and Department of Clinical Biochemistry, Rigshospitalet, Copenhagen, Denmark (C.C.)
| | - Jacob Giehm Mikkelsen
- From the Departments of Clinical Medicine (M.M.B., M.K.H., J.F.B.) and Biomedicine (A.K.H., F.D.-H., J.G.M.), Aarhus University, Aarhus, Denmark; Department of Cardiology, Aarhus University Hospital, Aarhus, Denmark (M.M.B., M.K.H., J.F.B.); and Department of Clinical Biochemistry, Rigshospitalet, Copenhagen, Denmark (C.C.)
| | - Jacob Fog Bentzon
- From the Departments of Clinical Medicine (M.M.B., M.K.H., J.F.B.) and Biomedicine (A.K.H., F.D.-H., J.G.M.), Aarhus University, Aarhus, Denmark; Department of Cardiology, Aarhus University Hospital, Aarhus, Denmark (M.M.B., M.K.H., J.F.B.); and Department of Clinical Biochemistry, Rigshospitalet, Copenhagen, Denmark (C.C.).
| |
Collapse
|
139
|
Wu H, Roks AJ. Genomic instability and vascular aging: A focus on nucleotide excision repair. Trends Cardiovasc Med 2014; 24:61-8. [DOI: 10.1016/j.tcm.2013.06.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2013] [Revised: 06/19/2013] [Accepted: 06/20/2013] [Indexed: 11/26/2022]
|
140
|
Venegas-Pino DE, Banko N, Khan MI, Shi Y, Werstuck GH. Quantitative analysis and characterization of atherosclerotic lesions in the murine aortic sinus. J Vis Exp 2013:50933. [PMID: 24335758 DOI: 10.3791/50933] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Atherosclerosis is a disease of the large arteries and a major underlying cause of myocardial infarction and stroke. Several different mouse models have been developed to facilitate the study of the molecular and cellular pathophysiology of this disease. In this manuscript we describe specific techniques for the quantification and characterization of atherosclerotic lesions in the murine aortic sinus and ascending aorta. The advantage of this procedure is that it provides an accurate measurement of the cross-sectional area and total volume of the lesion, which can be used to compare atherosclerotic progression across different treatment groups. This is possible through the use of the valve leaflets as an anatomical landmark, together with careful adjustment of the sectioning angle. We also describe basic staining methods that can be used to begin to characterize atherosclerotic progression. These can be further modified to investigate antigens of specific interest to the researcher. The described techniques are generally applicable to a wide variety of existing and newly created dietary and genetically-induced models of atherogenesis.
Collapse
|
141
|
Rensing KL, de Jager SC, Stroes ES, Vos M, Twickler MT, Dallinga-Thie GM, de Vries CJ, Kuiper J, Bot I, von der Thüsen JH. Akt2/LDLr double knockout mice display impaired glucose tolerance and develop more complex atherosclerotic plaques than LDLr knockout mice. Cardiovasc Res 2013; 101:277-87. [DOI: 10.1093/cvr/cvt252] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
142
|
Dietary phytosterol does not accumulate in the arterial wall and prevents atherosclerosis of LDLr-KO mice. Atherosclerosis 2013; 231:442-7. [PMID: 24267264 DOI: 10.1016/j.atherosclerosis.2013.10.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Revised: 10/03/2013] [Accepted: 10/16/2013] [Indexed: 12/16/2022]
Abstract
SCOPE There have been conflicting reports on the usefulness of phytosterols (PS) in preventing atherosclerosis. We evaluated the effects of dietary PS supplementation in LDLr-KO male mice on the plasma and aorta sterol concentrations and on atherosclerotic lesion development. METHODS AND RESULTS Mice were fed a high fat diet (40% of energy) supplemented with or without PS (2% w/w, n = 10). Plasma and arterial wall cholesterol and PS concentrations, lesion area, macrophage infiltration, and mRNA expression from LOX-1, CD36, ABCA1 and ABCG1 in peritoneal macrophages were measured. After 16 weeks, the plasma cholesterol concentration in PS mice was lower than that in the controls (p = 0.02) and in the arterial wall (p = 0.03). Plasma PS concentrations were higher in PS-fed animals than in controls (p < 0.0001); however, the arterial wall PS concentration did not differ between groups. The atherosclerotic lesion area in the PS group (n = 5) was smaller than that in controls (p = 0.0062) and the macrophage area (p = 0.0007). PS correlates negatively with arterial lipid content and macrophage (r = -0.76; p < 0.05). PS supplementation induced lower ABCG1 mRNA expression (p < 0.05). CONCLUSIONS Despite inducing an increase in PS plasma concentration, PS supplementation is not associated with its accumulation in the arterial wall and prevents atherosclerotic lesion development.
Collapse
|
143
|
Pei Y, Chen X, Aboutouk D, Fuller MT, Dadoo O, Yu P, White EJ, Igdoura SA, Trigatti BL. SR-BI in bone marrow derived cells protects mice from diet induced coronary artery atherosclerosis and myocardial infarction. PLoS One 2013; 8:e72492. [PMID: 23967310 PMCID: PMC3742605 DOI: 10.1371/journal.pone.0072492] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2011] [Accepted: 07/17/2013] [Indexed: 01/01/2023] Open
Abstract
SR-BI deficient mice that are also hypomorphic for apolipoprotein E expression develop diet induced occlusive coronary artery atherosclerosis, myocardial infarction and early death. To test the role of SR-BI in bone marrow derived cells, we used bone marrow transplantation to generate SR-BI-null; apoE-hypomorphic mice in which SR-BI expression was restored solely in bone marrow derived cells. SR-BI-null; apoE-hypomorphic mice were transplanted with SR-BI+/+apoE-hypomorphic, or control, autologous SR-BI-null; apoE-hypomorphic bone marrow. Four weeks later, mice were fed a high-fat, high-cholesterol, cholate-containing diet to induce coronary artery atherosclerosis. Mice transplanted with autologous bone marrow developed extensive aortic atherosclerosis and severe occlusive coronary artery atherosclerosis after 4 weeks of feeding. This was accompanied by myocardial fibrosis and increased heart weights. In contrast, restoration of SR-BI expression in bone marrow derived-cells reduced diet induced aortic and coronary artery atherosclerosis, myocardial fibrosis and the increase in heart weights in SR-BI-null; apoE-hypomorphic mice. Restoration of SR-BI in bone marrow derived cells did not, however, affect steady state lipoprotein cholesterol levels, but did reduce plasma levels of IL-6. Monocytes from SR-BI-null mice exhibited a greater capacity to bind to VCAM-1 and ICAM-1 than those from SR-BI+/+ mice. Furthermore, restoration of SR-BI expression in bone marrow derived cells attenuated monocyte recruitment into atherosclerotic plaques in mice fed high fat, high cholesterol cholate containing diet. These data demonstrate directly that SR-BI in bone marrow-derived cells protects against both aortic and CA atherosclerosis.
Collapse
Affiliation(s)
- Ying Pei
- Department of Biochemistry and Biomedical Sciences and Thrombosis and Atherosclerosis Research Institute, McMaster University, Hamilton, Ontario, Canada
| | - Xing Chen
- Department of Biochemistry and Biomedical Sciences and Thrombosis and Atherosclerosis Research Institute, McMaster University, Hamilton, Ontario, Canada
| | - Dina Aboutouk
- Department of Biochemistry and Biomedical Sciences and Thrombosis and Atherosclerosis Research Institute, McMaster University, Hamilton, Ontario, Canada
| | - Mark T. Fuller
- Department of Biochemistry and Biomedical Sciences and Thrombosis and Atherosclerosis Research Institute, McMaster University, Hamilton, Ontario, Canada
| | - Omid Dadoo
- Department of Biochemistry and Biomedical Sciences and Thrombosis and Atherosclerosis Research Institute, McMaster University, Hamilton, Ontario, Canada
| | - Pei Yu
- Department of Biochemistry and Biomedical Sciences and Thrombosis and Atherosclerosis Research Institute, McMaster University, Hamilton, Ontario, Canada
| | - Elizabeth J. White
- Department of Biology and Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Suleiman A. Igdoura
- Department of Biology and Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Bernardo L. Trigatti
- Department of Biochemistry and Biomedical Sciences and Thrombosis and Atherosclerosis Research Institute, McMaster University, Hamilton, Ontario, Canada
- * E-mail:
| |
Collapse
|
144
|
Establishment of a novel murine model of ischemic cardiomyopathy with multiple diffuse coronary lesions. PLoS One 2013; 8:e70755. [PMID: 23950999 PMCID: PMC3741297 DOI: 10.1371/journal.pone.0070755] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Accepted: 06/22/2013] [Indexed: 12/04/2022] Open
Abstract
Objectives Atherosclerotic lesions of the coronary arteries are the pathological basis for myocardial infarction and ischemic cardiomyopathy. Progression of heart failure after myocardial infarction is associated with cardiac remodeling, which has been studied by means of coronary ligation in mice. However, this ligation model requires excellent techniques. Recently, a new murine model, HypoE mouse was reported to exhibit atherogenic Paigen diet-induced coronary atherosclerosis and myocardial infarction; however, the HypoE mice died too early to make possible investigation of cardiac remodeling. Therefore, we aimed to modify the HypoE mouse model to establish a novel model for ischemic cardiomyopathy caused by atherosclerotic lesions, which the ligation model does not exhibit. Methods and Results In our study, the sustained Paigen diet for the HypoE mice was shortened to 7 or 10 days, allowing the mice to survive longer. The 7-day Paigen diet intervention starting when the mice were 8 weeks old was adequate to permit the mice to survive myocardial infarction. Our murine model, called the “modified HypoE mouse”, was maintained until 8 weeks, with a median survival period of 36 days, after the dietary intervention (male, n = 222). Echocardiography demonstrated that the fractional shortening 2 weeks after the Paigen diet (n = 14) significantly decreased compared with that just before the Paigen diet (n = 6) (31.4±11.9% vs. 54.4±2.6%, respectively, P<0.01). Coronary angiography revealed multiple diffuse lesions. Cardiac remodeling and fibrosis were identified by serial analyses of cardiac morphological features and mRNA expression levels in tissue factors such as MMP-2, MMP-9, TIMP-1, collagen-1, and TGF-β. Conclusion Modified HypoE mice are a suitable model for ischemic cardiomyopathy with multiple diffuse lesions and may be considered as a novel and convenient model for investigations of cardiac remodeling on a highly atherogenic background.
Collapse
|
145
|
Al-Mashhadi RH, Sørensen CB, Kragh PM, Christoffersen C, Mortensen MB, Tolbod LP, Thim T, Du Y, Li J, Liu Y, Moldt B, Schmidt M, Vajta G, Larsen T, Purup S, Bolund L, Nielsen LB, Callesen H, Falk E, Mikkelsen JG, Bentzon JF. Familial hypercholesterolemia and atherosclerosis in cloned minipigs created by DNA transposition of a human PCSK9 gain-of-function mutant. Sci Transl Med 2013; 5:166ra1. [PMID: 23283366 DOI: 10.1126/scitranslmed.3004853] [Citation(s) in RCA: 145] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Lack of animal models with human-like size and pathology hampers translational research in atherosclerosis. Mouse models are missing central features of human atherosclerosis and are too small for intravascular procedures and imaging. Modeling the disease in minipigs may overcome these limitations, but it has proven difficult to induce rapid atherosclerosis in normal pigs by high-fat feeding alone, and genetically modified models similar to those created in mice are not available. D374Y gain-of-function mutations in the proprotein convertase subtilisin/kexin type 9 (PCSK9) gene cause severe autosomal dominant hypercholesterolemia and accelerates atherosclerosis in humans. Using Sleeping Beauty DNA transposition and cloning by somatic cell nuclear transfer, we created Yucatan minipigs with liver-specific expression of human D374Y-PCSK9. D374Y-PCSK9 transgenic pigs displayed reduced hepatic low-density lipoprotein (LDL) receptor levels, impaired LDL clearance, severe hypercholesterolemia, and spontaneous development of progressive atherosclerotic lesions that could be visualized by noninvasive imaging. This model should prove useful for several types of translational research in atherosclerosis.
Collapse
Affiliation(s)
- Rozh H Al-Mashhadi
- Department of Cardiology, Aarhus University Hospital, and Department of Clinical Medicine, Aarhus University, Brendstrupgaardsvej 100, DK-8200 Aarhus N, Denmark
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
146
|
Atherosclerosis and cardiac function assessment in low-density lipoprotein receptor-deficient mice undergoing body weight cycling. Nutr Diabetes 2013; 3:e79. [PMID: 23797386 PMCID: PMC3697407 DOI: 10.1038/nutd.2013.19] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Background: Obesity has become an epidemic in many countries and is supporting a billion dollar industry involved in promoting weight loss through diet, exercise and surgical procedures. Because of difficulties in maintaining body weight reduction, a pattern of weight cycling often occurs (so called ‘yo-yo' dieting) that may result in deleterious outcomes to health. There is controversy about cardiovascular benefits of yo-yo dieting, and an animal model is needed to better understand the contributions of major diet and body weight changes on heart and vascular functions. Our purpose is to determine the effects of weight cycling on cardiac function and atherosclerosis development in a mouse model. Methods: We used low-density lipoprotein receptor-deficient mice due to their sensitivity to metabolic syndrome and cardiovascular diseases when fed high-fat diets. Alternating ad libitum feeding of high-fat and low-fat (rodent chow) diets was used to instigate weight cycling during a 29-week period. Glucose tolerance and insulin sensitivity tests were done at 22 and 24 weeks, echocardiograms at 25 weeks and atherosclerosis and plasma lipoproteins assessed at 29 weeks. Results: Mice subjected to weight cycling showed improvements in glucose homeostasis during the weight loss cycle. Weight-cycled mice showed a reduction in the severity of atherosclerosis as compared with high-fat diet-fed mice. However, atherosclerosis still persisted in weight-cycled mice as compared with mice fed rodent chow. Cardiac function was impaired in weight-cycled mice and matched with that of mice fed only the high-fat diet. Conclusion: This model provides an initial structure in which to begin detailed studies of diet, calorie restriction and surgical modifications on energy balance and metabolic diseases. This model also shows differential effects of yo-yo dieting on metabolic syndrome and cardiovascular diseases.
Collapse
|
147
|
Vickers KC, Shoucri BM, Levin MG, Wu H, Pearson DS, Osei-Hwedieh D, Collins FS, Remaley AT, Sethupathy P. MicroRNA-27b is a regulatory hub in lipid metabolism and is altered in dyslipidemia. Hepatology 2013; 57:533-42. [PMID: 22777896 PMCID: PMC3470747 DOI: 10.1002/hep.25846] [Citation(s) in RCA: 177] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2011] [Accepted: 05/05/2012] [Indexed: 12/15/2022]
Abstract
UNLABELLED Cellular and plasma lipid levels are tightly controlled by complex gene regulatory mechanisms. Elevated plasma lipid content, or hyperlipidemia, is a significant risk factor for cardiovascular morbidity and mortality. MicroRNAs (miRNAs) are posttranscriptional regulators of gene expression and have emerged as important modulators of lipid homeostasis, but the extent of their role has not been systematically investigated. In this study we performed high-throughput small RNA sequencing and detected ≈ 150 miRNAs in mouse liver. We then employed an unbiased, in silico strategy to identify miRNA regulatory hubs in lipid metabolism, and miR-27b was identified as the strongest such hub in human and mouse liver. In addition, hepatic miR-27b levels were determined to be sensitive to plasma hyperlipidemia, as evidenced by its ≈ 3-fold up-regulation in the liver of mice on a high-fat diet (42% calories from fat). Further, we showed in a human hepatocyte cell line (Huh7) that miR-27b regulates the expression (messenger RNA [mRNA] and protein) of several key lipid-metabolism genes, including Angptl3 and Gpam. Finally, we demonstrated that hepatic miR-27b and its target genes are inversely altered in a mouse model of dyslipidemia and atherosclerosis. CONCLUSION miR-27b is responsive to lipid levels and controls multiple genes critical to dyslipidemia.
Collapse
Affiliation(s)
- Kasey C. Vickers
- Lipoprotein Metabolism Section, Bethesda, Maryland,Correspondence should be addressed to K.C.V. () or P.S. ()
| | | | | | - Han Wu
- DNA Sequencing and Computational Biology Core, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Daniel S. Pearson
- Genome Technology Branch, National Human Genome Research Institute, Bethesda, Maryland
| | | | - Francis S. Collins
- Genome Technology Branch, National Human Genome Research Institute, Bethesda, Maryland
| | | | - Praveen Sethupathy
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA,Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA,Correspondence should be addressed to K.C.V. () or P.S. ()
| |
Collapse
|
148
|
Mukhopadhyay R. Mouse models of atherosclerosis: explaining critical roles of lipid metabolism and inflammation. J Appl Genet 2013; 54:185-92. [PMID: 23361320 DOI: 10.1007/s13353-013-0134-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Revised: 01/14/2013] [Accepted: 01/15/2013] [Indexed: 10/27/2022]
Abstract
Atherosclerosis is the most common cause of death globally. It is a complex disease involving morphological and cellular changes in vascular walls. Studying molecular mechanism of the disease is hindered by disease complexity and lack of robust noninvasive diagnostics in human. Mouse models are the most popular animal models that allow researchers to study the mechanism of disease progression. In this review we discuss the advantage and development of mouse as a model for atherosclerotic research. Along with commonly used models, this review discusses strains that are used to study the role of two critical processes associated with the disease-lipid metabolism and inflammation.
Collapse
Affiliation(s)
- Rupak Mukhopadhyay
- Department of Molecular Biology and Biotechnology, Tezpur University, Napaam, Assam, 784 028, India.
| |
Collapse
|
149
|
|
150
|
Spann NJ, Garmire LX, McDonald JG, Myers DS, Milne SB, Shibata N, Reichart D, Fox JN, Shaked I, Heudobler D, Raetz CRH, Wang EW, Kelly SL, Sullards MC, Murphy RC, Merrill AH, Brown HA, Dennis EA, Li AC, Ley K, Tsimikas S, Fahy E, Subramaniam S, Quehenberger O, Russell DW, Glass CK. Regulated accumulation of desmosterol integrates macrophage lipid metabolism and inflammatory responses. Cell 2012; 151:138-52. [PMID: 23021221 DOI: 10.1016/j.cell.2012.06.054] [Citation(s) in RCA: 464] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2012] [Revised: 05/21/2012] [Accepted: 06/12/2012] [Indexed: 11/19/2022]
Abstract
Inflammation and macrophage foam cells are characteristic features of atherosclerotic lesions, but the mechanisms linking cholesterol accumulation to inflammation and LXR-dependent response pathways are poorly understood. To investigate this relationship, we utilized lipidomic and transcriptomic methods to evaluate the effect of diet and LDL receptor genotype on macrophage foam cell formation within the peritoneal cavities of mice. Foam cell formation was associated with significant changes in hundreds of lipid species and unexpected suppression, rather than activation, of inflammatory gene expression. We provide evidence that regulated accumulation of desmosterol underlies many of the homeostatic responses, including activation of LXR target genes, inhibition of SREBP target genes, selective reprogramming of fatty acid metabolism, and suppression of inflammatory-response genes, observed in macrophage foam cells. These observations suggest that macrophage activation in atherosclerotic lesions results from extrinsic, proinflammatory signals generated within the artery wall that suppress homeostatic and anti-inflammatory functions of desmosterol.
Collapse
Affiliation(s)
- Nathanael J Spann
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, 92093-0651, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|