101
|
Han SH, Mo JS, Yun KJ, Chae SC. MicroRNA 429 regulates MMPs expression by modulating TIMP2 expression in colon cancer cells and inflammatory colitis. Genes Genomics 2024; 46:763-774. [PMID: 38733517 DOI: 10.1007/s13258-024-01520-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 04/24/2024] [Indexed: 05/13/2024]
Abstract
BACKGROUND In a previous study, we found that the expression of microRNA 429 (MIR429) was decreased in dextran sodium sulfate (DSS)-induced mouse colitis tissues. OBJECTIVE In this study, we aimed to investigate the interaction of MIR429 with TIMP metallopeptidase inhibitor 2 (TIMP2), one of its candidate target genes, in human colorectal cancer (CRC) cells and DSS-induced mouse colitis tissues. METHODS A luciferase reporter system was used to confirm the effect of MIR429 on TIMP2 expression. The expression levels of MIR429 and target genes in cells or tissues were evaluated through quantitative RT-PCR, western blotting, or immunohistochemistry. RESULTS We found that the expression level of MIR429 was downregulated in human CRC tissues, and also showed that TIMP2 is a direct target gene of MIR429 in CRC cell lines. Furthermore, MIR429 regulate TIMP2-mediated matrix metallopeptidases (MMPs) expression in CRC cells. We also generated cell lines stably expressing MIR429 in CRC cell lines and showed that MIR429 regulates the expression of MMPs by mediating TIMP2 expression. In addition to human CRC tissues, we found that TIMP2 was highly expressed in mouse colitis tissues and human ulcerative colitis (UC) tissues. CONCLUSIONS Our findings suggest that the expression of endogenous MIR429 was reduced in human CRC tissues and colitis, leading to upregulation of its target gene TIMP2. The upregulation of TIMP2 by decreased MIR429 expression in CRC tissues and inflamed tissues suggests that it may affect extracellular matrix (ECM) remodeling through downregulation of MMPs. Therefore, MIR429 may have therapeutic value for human CRC and colitis.
Collapse
Affiliation(s)
- Seol-Hee Han
- Department of Pathology, School of Medicine, Wonkwang University, Iksan, Chonbuk, 54538, Republic of Korea
| | - Ji-Su Mo
- Digestive Disease Research Institute, Wonkwang University, Iksan, Chonbuk, 54538, Republic of Korea
| | - Ki-Jung Yun
- Department of Pathology, School of Medicine, Wonkwang University, Iksan, Chonbuk, 54538, Republic of Korea
| | - Soo-Cheon Chae
- Department of Pathology, School of Medicine, Wonkwang University, Iksan, Chonbuk, 54538, Republic of Korea.
- Digestive Disease Research Institute, Wonkwang University, Iksan, Chonbuk, 54538, Republic of Korea.
| |
Collapse
|
102
|
Chen C, Tang F, Zhu M, Wang C, Zhou H, Zhang C, Feng Y. Role of inflammatory mediators in intracranial aneurysms: A review. Clin Neurol Neurosurg 2024; 242:108329. [PMID: 38781806 DOI: 10.1016/j.clineuro.2024.108329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 05/09/2024] [Accepted: 05/10/2024] [Indexed: 05/25/2024]
Abstract
The formation, growth, and rupture of intracranial aneurysms (IAs) involve hemodynamics, blood pressure, external stimuli, and a series of hormonal changes. In addition, inflammatory response causes the release of a series of inflammatory mediators, such as IL, TNF-α, MCP-1, and MMPs, which directly or indirectly promote the development process of IA. However, the specific role of these inflammatory mediators in the pathophysiological process of IA remains unclear. Recently, several anti-inflammatory, lipid-lowering, hormone-regulating drugs have been found to have a potentially protective effect on reducing IA formation and rupture in the population. These therapeutic mechanisms have not been fully elucidated, but we can look for potential therapeutic targets that may interfere with the formation and breakdown of IA by studying the relevant inflammatory response and the mechanism of IA formation and rupture involved in inflammatory mediators.
Collapse
Affiliation(s)
- Cheng Chen
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, Qingdao city, China
| | - Fengjiao Tang
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, Qingdao city, China
| | - Meng Zhu
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, Qingdao city, China
| | - Chao Wang
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, Qingdao city, China
| | - Han Zhou
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, Qingdao city, China
| | - Chonghui Zhang
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, Qingdao city, China
| | - Yugong Feng
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, Qingdao city, China.
| |
Collapse
|
103
|
ten Brink T, Damanik F, Rotmans JI, Moroni L. Unraveling and Harnessing the Immune Response at the Cell-Biomaterial Interface for Tissue Engineering Purposes. Adv Healthc Mater 2024; 13:e2301939. [PMID: 38217464 PMCID: PMC11468937 DOI: 10.1002/adhm.202301939] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 12/14/2023] [Indexed: 01/15/2024]
Abstract
Biomaterials are defined as "engineered materials" and include a range of natural and synthetic products, designed for their introduction into and interaction with living tissues. Biomaterials are considered prominent tools in regenerative medicine that support the restoration of tissue defects and retain physiologic functionality. Although commonly used in the medical field, these constructs are inherently foreign toward the host and induce an immune response at the material-tissue interface, defined as the foreign body response (FBR). A strong connection between the foreign body response and tissue regeneration is suggested, in which an appropriate amount of immune response and macrophage polarization is necessary to trigger autologous tissue formation. Recent developments in this field have led to the characterization of immunomodulatory traits that optimizes bioactivity, the integration of biomaterials and determines the fate of tissue regeneration. This review addresses a variety of aspects that are involved in steering the inflammatory response, including immune cell interactions, physical characteristics, biochemical cues, and metabolomics. Harnessing the advancing knowledge of the FBR allows for the optimization of biomaterial-based implants, aiming to prevent damage of the implant, improve natural regeneration, and provide the tools for an efficient and successful in vivo implantation.
Collapse
Affiliation(s)
- Tim ten Brink
- Complex Tissue Regeneration DepartmentMERLN Institute for Technology‐Inspired Regenerative MedicineMaastricht UniversityUniversiteitssingel 40Maastricht6229ERThe Netherlands
| | - Febriyani Damanik
- Complex Tissue Regeneration DepartmentMERLN Institute for Technology‐Inspired Regenerative MedicineMaastricht UniversityUniversiteitssingel 40Maastricht6229ERThe Netherlands
| | - Joris I. Rotmans
- Department of Internal MedicineLeiden University Medical CenterAlbinusdreef 2Leiden2333ZAThe Netherlands
| | - Lorenzo Moroni
- Complex Tissue Regeneration DepartmentMERLN Institute for Technology‐Inspired Regenerative MedicineMaastricht UniversityUniversiteitssingel 40Maastricht6229ERThe Netherlands
| |
Collapse
|
104
|
Yao C, Liang S, Yu M, Wu H, Ahmed MH, Liu Y, Yu J, Zhao Y, Van der Bruggen B, Huang C, Van Meerbeek B. High-Performance Bioinspired Microspheres for Boosting Dental Adhesion. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310251. [PMID: 38362704 DOI: 10.1002/smll.202310251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/13/2024] [Indexed: 02/17/2024]
Abstract
Dental adhesives are widely used in daily practice for minimally invasive restorative dentistry but suffer from bond degradation and biofilm attack. Bio-inspired by marine mussels having excellent surface-adhesion capability and high chemical affinity of polydopamine (PDA) to metal ions, herein, experimental zinc (Zn)-containing polydopamine-based adhesive formulation, further being referred to as "Zn-PDA@SiO2"-incorporated adhesive is proposed as a novel dental adhesive. Different Zn contents (5 and 10 mm) of Zn-PDA@SiO2 are prepared. Considering the synergistic effect of Zn and PDA, Zn-PDA@SiO2 not only presents excellent antibacterial potential and notably inhibits enzymatic activity (soluble and matrix-bound proteases), but also exhibits superior biocompatibility and biosafety in vitro/vivo. The long-term bond stability is substantially improved by adding 5 wt% 5 mm Zn-PDA@SiO2 to the primer. The aged bond strength of the experimentally formulated dental adhesives applied in self-etch (SE) bonding mode is 1.9 times higher than that of the SE gold-standard adhesive. Molecular dynamics calculations indicate the stable formation of covalent bonds, Zn-assisted coordinative bonds, and hydrogen bonds between PDA and collagen. Overall, this bioinspired dental adhesive provides an avenue technology for innovative biomedical applications and has already revealed promising perspectives for dental restorative dentistry.
Collapse
Affiliation(s)
- Chenmin Yao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
- Department of Oral Health Sciences, BIOMAT & UZ Leuven (University Hospitals Leuven), Dentistry, KU Leuven (University of Leuven), Leuven, 3000, Belgium
| | - Shengjie Liang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Miaoyang Yu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Hongling Wu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Mohammed H Ahmed
- Department of Oral Health Sciences, BIOMAT & UZ Leuven (University Hospitals Leuven), Dentistry, KU Leuven (University of Leuven), Leuven, 3000, Belgium
- Department of Dental Biomaterials, Faculty of Dentistry, Tanta University, Tanta, 31511, Egypt
| | - Yingheng Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Jian Yu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Yan Zhao
- Department of Chemical Engineering, KU Leuven (University of Leuven), Celestijnenlaan 200F, Leuven, B-3001, Belgium
| | - Bart Van der Bruggen
- Department of Chemical Engineering, KU Leuven (University of Leuven), Celestijnenlaan 200F, Leuven, B-3001, Belgium
| | - Cui Huang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Bart Van Meerbeek
- Department of Oral Health Sciences, BIOMAT & UZ Leuven (University Hospitals Leuven), Dentistry, KU Leuven (University of Leuven), Leuven, 3000, Belgium
| |
Collapse
|
105
|
Souza C, Caetano E, Rodrigues S, Lopes M, Mattos B, Santos M, Rizzi E, Dias-Junior C. Isoflurane increases the activity of the vascular matrix metalloproteinase-2 in non-pregnant rats and increases the nitric oxide metabolites in pregnancy. Biosci Rep 2024; 44:BSR20240192. [PMID: 38757914 PMCID: PMC11147811 DOI: 10.1042/bsr20240192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 05/08/2024] [Accepted: 05/16/2024] [Indexed: 05/18/2024] Open
Abstract
Surgeries that require general anesthesia occur in 1.5-2% of gestations. Isoflurane is frequently used because of its lower possibility of affecting fetal growth. Therefore, we examined the isoflurane anesthesia-induced effects on maternal hemodynamic and vascular changes. We hypothesized that isoflurane would enhance endothelium-dependent vasodilation as a consequence of increased nitric oxide and decreased metalloproteinases (MMPs). Female rats (n=28) were randomized into 4 groups (7 rats/group): conscious (non-anesthetized) non-pregnant group, non-pregnant anesthetized group, conscious pregnant group, and pregnant anesthetized group. Anesthesia was performed on the 20th pregnancy day, and hemodynamic parameters were monitored. Nitric oxide metabolites, gelatinolytic activity of MMP-2 and MMP-9, and the vascular function were assessed. Isoflurane caused no significant hemodynamic changes in pregnant compared with non-pregnant anesthetized group. Impaired acetylcholine-induced relaxations were observed only in conscious non-pregnant group (by approximately 62%) versus 81% for other groups. Phenylephrine-induced contractions were greater in endothelium-removed aorta segments of both pregnant groups (with or without isoflurane) compared with non-pregnant groups. Higher nitric oxide metabolites were observed in anesthetized pregnant in comparison with the other groups. Reductions in the 75 kDa activity and concomitant increases in 64 kDa MMP-2 isoforms were observed in aortas of pregnant anesthetized (or not) groups compared with conscious non-pregnant group. Isoflurane anesthesia shows stable effects on hemodynamic parameters and normal MMP-2 activation in pregnancy. Furthermore, there were increases in nitric oxide bioavailability, suggesting that isoflurane provides protective actions to the endothelium in pregnancy.
Collapse
Affiliation(s)
- Carolina Rosa Rodrigues Souza
- Department of Biophysics and Pharmacology, Institute of Biosciences of Botucatu, Sao Paulo State University (UNESP), Botucatu, Sao Paulo, Brazil
- School of Veterinary Medicine and Animal Science, UNESP, Botucatu, Sao Paulo, Brazil
| | - Edileia Souza Paula Caetano
- Department of Biophysics and Pharmacology, Institute of Biosciences of Botucatu, Sao Paulo State University (UNESP), Botucatu, Sao Paulo, Brazil
| | - Serginara David Rodrigues
- Department of Biophysics and Pharmacology, Institute of Biosciences of Botucatu, Sao Paulo State University (UNESP), Botucatu, Sao Paulo, Brazil
| | - Matheus Cleto Lopes
- Department of Biophysics and Pharmacology, Institute of Biosciences of Botucatu, Sao Paulo State University (UNESP), Botucatu, Sao Paulo, Brazil
- School of Veterinary Medicine and Animal Science, UNESP, Botucatu, Sao Paulo, Brazil
| | - Bruna Rahal Mattos
- Unit of Biotechnology, University of Ribeirao Preto, UNAERP, Ribeirao Preto, Sao Paulo, Brazil
| | | | - Elen Rizzi
- Unit of Biotechnology, University of Ribeirao Preto, UNAERP, Ribeirao Preto, Sao Paulo, Brazil
| | - Carlos A. Dias-Junior
- Department of Biophysics and Pharmacology, Institute of Biosciences of Botucatu, Sao Paulo State University (UNESP), Botucatu, Sao Paulo, Brazil
| |
Collapse
|
106
|
Thanh HD, Lee S, Nguyen TT, Huu TN, Ahn EJ, Cho SH, Kim MS, Moon KS, Jung C. Temozolomide promotes matrix metalloproteinase 9 expression through p38 MAPK and JNK pathways in glioblastoma cells. Sci Rep 2024; 14:14341. [PMID: 38906916 PMCID: PMC11192740 DOI: 10.1038/s41598-024-65398-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 06/19/2024] [Indexed: 06/23/2024] Open
Abstract
Glioblastoma (GBM) is a highly aggressive and deadly brain cancer. Temozolomide (TMZ) is the standard chemotherapeutic agent for GBM, but the majority of patients experience recurrence and invasion of tumor cells. We investigated whether TMZ treatment of GBM cells regulates matrix metalloproteinases (MMPs), which have the main function to promote tumor cell invasion. TMZ effectively killed GL261, U343, and U87MG cells at a concentration of 500 µM, and surviving cells upregulated MMP9 expression and its activity but not those of MMP2. TMZ also elevated levels of MMP9 mRNA and MMP9 promoter activity. Subcutaneous graft tumors survived from TMZ treatment also exhibited increased expression of MMP9 and enhanced gelatinolytic activity. TMZ-mediated MMP9 upregulation was specifically mediated through the phosphorylation of p38 and JNK. This then stimulates AP-1 activity through the upregulation of c-Fos and c-Jun. Inhibition of the p38, JNK, or both pathways counteracted the TMZ-induced upregulation of MMP9 and AP-1. This study proposes a potential adverse effect of TMZ treatment for GBM: upregulation of MMP9 expression potentially associated with increased invasion and poor prognosis. This study also provides valuable insights into the molecular mechanisms by which TMZ treatment leads to increased MMP9 expression in GBM cells.
Collapse
Affiliation(s)
- Hien Duong Thanh
- Department of Anatomy, Chonnam National University Medical School, Gwangju, 61469, Korea
| | - Sueun Lee
- Department of Anatomy, Chonnam National University Medical School, Gwangju, 61469, Korea
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, Naju-Si, 58245, Jeollanam-Do, Korea
| | - Thuy Thi Nguyen
- Department of Anatomy, Chonnam National University Medical School, Gwangju, 61469, Korea
| | - Thang Nguyen Huu
- Department of Biochemistry, Chonnam National University Medical School, Gwangju, 61469, Korea
| | - Eun-Jung Ahn
- Department of Neurosurgery, Chonnam National University Hwasun Hospital and Medical School, Hwasun, 58128, Jeollanam-Do, Korea
| | - Sang-Hee Cho
- Department of Hemato-Oncology, Chonnam National University Medical School, Gwangju, 61469, Korea
| | - Min Soo Kim
- Department of Statistics, College of Natural Sciences, Chonnam National University, Gwangju, 61186, Korea
| | - Kyung-Sub Moon
- Department of Neurosurgery, Chonnam National University Hwasun Hospital and Medical School, Hwasun, 58128, Jeollanam-Do, Korea
| | - Chaeyong Jung
- Department of Anatomy, Chonnam National University Medical School, Gwangju, 61469, Korea.
| |
Collapse
|
107
|
Furukawa S, Hirano R, Sugawara A, Fujimura S, Tanaka R. Novel cell therapy with ex vivo cultured peripheral blood mononuclear cells significantly impacts angiogenesis in the murine ischemic limb model. Regen Ther 2024; 26:299-307. [PMID: 38983833 PMCID: PMC11231723 DOI: 10.1016/j.reth.2024.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/06/2024] [Accepted: 06/12/2024] [Indexed: 07/11/2024] Open
Abstract
Introduction Autologous mononuclear cells (MNCs) have been used in vascular regenerative therapy since the identification of endothelial progenitor cells (EPCs). However, the efficacy of autologous EPC therapy for diseases such as diabetes and connective tissue disorders is limited due to deficiencies in the number and function of EPCs. To address this, we developed a novel RE-01 cells that enriches pro-angiogenic cells from peripheral blood MNCs (PBMNCs). Methods PBMNCs were collected from healthy volunteers following ethical guidelines. RE-01 cells were cultured in the presence of specific growth factors for 5 days without media change. Flow cytometry was used to analyze cell surface markers. Tube formation assays, EPC culture assays, and mRNA analysis were performed to evaluate angiogenic potential. The efficacy of RE-01 cells upon transplantation into ischemic hind limbs of mice was evaluated. Results RE-01 cells exhibited a significant increase in pro-angiogenic cells such as M2 macrophages and angiogenic T cells, in contrast to PBMNCs, while the number of inflammatory cells reduced. In vitro assays demonstrated the enhanced angiogenic abilities of RE-01 cells, supported by increased mRNA expression of angiogenesis-related cytokines. In vivo studies using mouse ischemic hind limb models have shown that blood flow and angiogenesis improved following RE-01 cell transplantation. Transplantations for 3 consecutive days significantly improved the number of pericyte-recruited vessels in the severely ischemic hind limbs of mice. Conclusions RE-01 cells showed promising results in enhancing angiogenesis and arteriogenesis, possibly owing to the presence of M2 macrophages and angiogenic T cells. These cells also demonstrated anti-fibrotic effects. The efficacy of RE-01 cells has been confirmed in mouse models, suggesting their potential for treating ischemic vascular diseases. Clinical trials are planned to validate the safety and efficacy of RE-01 cell therapy in patients with connective tissue disease and unhealed ulcers. We hope that this new RE-01 cell therapy will prevent many patients from undergoing amputation.
Collapse
Affiliation(s)
- Satomi Furukawa
- Division of Regenerative Therapy, Juntendo University Graduates School of Medicine, Tokyo, Japan
- Center for Genomic and Regenerative Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Rie Hirano
- Division of Regenerative Therapy, Juntendo University Graduates School of Medicine, Tokyo, Japan
- ReEir. Inc., Tokyo, Japan
| | - Ai Sugawara
- Division of Regenerative Therapy, Juntendo University Graduates School of Medicine, Tokyo, Japan
- Intractable Disease Research Center, Juntendo University Graduates School of Medicine, Tokyo, Japan
| | - Satoshi Fujimura
- Division of Regenerative Therapy, Juntendo University Graduates School of Medicine, Tokyo, Japan
- Intractable Disease Research Center, Juntendo University Graduates School of Medicine, Tokyo, Japan
| | - Rica Tanaka
- Division of Regenerative Therapy, Juntendo University Graduates School of Medicine, Tokyo, Japan
- Department of Plastic and Reconstructive Surgery, Juntendo University School of Medicine, Tokyo, Japan
- Center for Genomic and Regenerative Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Intractable Disease Research Center, Juntendo University Graduates School of Medicine, Tokyo, Japan
- ReEir. Inc., Tokyo, Japan
| |
Collapse
|
108
|
Fukuta T, Furukawa S, Hirano R, Mizuno H, Rica Tanaka. Synergistic effect of ex-vivo quality and quantity cultured mononuclear cells and mesenchymal stem cell therapy in ischemic hind limb model mice. Regen Ther 2024; 26:663-670. [PMID: 39281108 PMCID: PMC11401098 DOI: 10.1016/j.reth.2024.08.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 07/19/2024] [Accepted: 08/18/2024] [Indexed: 09/18/2024] Open
Abstract
Introduction Chronic limb-threatening ischemia (CLTI) is a condition characterized by peripheral arterial disease and tissue damage caused by reduced blood flow. New therapies using various cell types, such as mesenchymal stem cells (MSCs) and mononuclear cells (MNCs), have been developed for the patients unresponsive to conventional therapies. MSCs are promising because of their ability to secrete growth factors essential for vascularization, whereas MNCs contain endothelial progenitor cells that are important for blood vessel formation. However, conventional methods for isolating these cells have limitations, especially in patients with diabetes with dysfunctional cells. To overcome this problem, a culture method called quality and quantity cultured peripheral blood MNCs (MNC-QQ) was developed to efficiently produce high-quality cells from small amounts of peripheral blood. Combining MSCs with MNC-QQs has been hypothesized to enhance therapeutic outcomes. This study aimed to examine the angiogenic efficacy of MSCs with MNC-QQs in models with severe lower limb ischemia. Methods MNC-QQ was manufactured from the peripheral blood of healthy volunteers, while human bone marrow derived MSCs were purchased. To verify the effects of the MSC and MNC-QQs combination in angiogenesis, we conducted the HUVEC tube formation assay. For in vivo experiments, we created an ischemic limb model using BALB/c nude mice. Saline, MSCs alone, and a combination of MSCs and MNC-QQs were administered intramuscularly into the ischemic limbs. Blood flow was measured over time using laser doppler, and the ischemic limbs were harvested 21 days later for HE staining and immunostaining for histological assessment. Results In-vitro studies demonstrated increased angiogenesis when MSCs were combined with MNC-QQs compared with MSCs alone. In vivo experiments using a mouse model of severe lower limb ischemia showed that combination therapy significantly improved blood flow recovery and limb salvage compared with MSCs alone or saline treatment. Histological analysis revealed enhanced vessel density, arteriogenesis, muscle regeneration, and reduced fibrosis in the MSC + MNC-QQ group compared with those in the saline group. Although the specific interactions between MSCs and MNC-QQs have not been fully elucidated, combined therapy leverages the benefits of both cell types, resulting in improved outcomes for vascular regeneration. Conclusions This study highlights the potential of the simultaneous transplantation of MSCs and MNC-QQs as a promising therapeutic approach for CLTI, offering sustained long-term benefits for patients.
Collapse
Affiliation(s)
- Taro Fukuta
- Division of Regenerative Therapy, Juntendo University Graduates School of Medicine, Tokyo, Japan
- Department of Plastic and Reconstructive Surgery, Juntendo University School of Medicine, Tokyo, Japan
| | - Satomi Furukawa
- Division of Regenerative Therapy, Juntendo University Graduates School of Medicine, Tokyo, Japan
- Center for Genomic and Regenerative Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Rie Hirano
- Division of Regenerative Therapy, Juntendo University Graduates School of Medicine, Tokyo, Japan
| | - Hiroshi Mizuno
- Department of Plastic and Reconstructive Surgery, Juntendo University School of Medicine, Tokyo, Japan
| | - Rica Tanaka
- Division of Regenerative Therapy, Juntendo University Graduates School of Medicine, Tokyo, Japan
- Department of Plastic and Reconstructive Surgery, Juntendo University School of Medicine, Tokyo, Japan
- Center for Genomic and Regenerative Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
109
|
Wang X, Zheng W, Zhu Z, Xing B, Yan W, Zhu K, Xiao L, Yang C, Wei M, Yang L, Jin ZB, Bi X, Zhang C. Timp1 Deletion Induces Anxiety-like Behavior in Mice. Neurosci Bull 2024; 40:732-742. [PMID: 38113013 PMCID: PMC11178759 DOI: 10.1007/s12264-023-01163-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 08/25/2023] [Indexed: 12/21/2023] Open
Abstract
The hippocampus is essential for learning and memory, but it also plays an important role in regulating emotional behavior, as hippocampal excitability and plasticity affect anxiety and fear. Brain synaptic plasticity may be regulated by tissue inhibitor of matrix metalloproteinase 1 (TIMP1), a known protein inhibitor of extracellular matrix (ECM), and the expression of TIMP1 in the hippocampus can be induced by neuronal excitation and various stimuli. However, the involvement of Timp1 in fear learning, anxiety, and hippocampal synaptic function remains to be established. Our study of Timp1 function in vivo revealed that Timp1 knockout mice exhibit anxiety-like behavior but normal fear learning. Electrophysiological results suggested that Timp1 knockout mice showed hyperactivity in the ventral CA1 region, but the basic synaptic transmission and plasticity were normal in the Schaffer collateral pathway. Taken together, our results suggest that deletion of Timp1 in vivo leads to the occurrence of anxiety behaviors, but that Timp1 is not crucial for fear learning.
Collapse
Affiliation(s)
- Xiaotong Wang
- State Key Laboratory of Neurology and Oncology Drug Development, Nanjing, 210000, China
- School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Advanced Innovation Center for Human Brain Protection, Beijing Laboratory of Oral Health, Capital Medical University, Beijing, 100069, China
| | - Wei Zheng
- State Key Laboratory of Neurology and Oncology Drug Development, Nanjing, 210000, China
- School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Advanced Innovation Center for Human Brain Protection, Beijing Laboratory of Oral Health, Capital Medical University, Beijing, 100069, China
| | - Ziyi Zhu
- State Key Laboratory of Neurology and Oncology Drug Development, Nanjing, 210000, China
- School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Advanced Innovation Center for Human Brain Protection, Beijing Laboratory of Oral Health, Capital Medical University, Beijing, 100069, China
| | - Biyu Xing
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Weijie Yan
- School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Advanced Innovation Center for Human Brain Protection, Beijing Laboratory of Oral Health, Capital Medical University, Beijing, 100069, China
| | - Ke Zhu
- State Key Laboratory of Neurology and Oncology Drug Development, Nanjing, 210000, China
- School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Advanced Innovation Center for Human Brain Protection, Beijing Laboratory of Oral Health, Capital Medical University, Beijing, 100069, China
| | - Lingli Xiao
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Chaojuan Yang
- Key Laboratory for Biomechanics and Mechanobiology of the Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Engineering Medicine, Beihang University, Beijing, 100191, China
| | - Mengping Wei
- State Key Laboratory of Neurology and Oncology Drug Development, Nanjing, 210000, China
- School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Advanced Innovation Center for Human Brain Protection, Beijing Laboratory of Oral Health, Capital Medical University, Beijing, 100069, China
| | - Lei Yang
- State Key Laboratory of Neurology and Oncology Drug Development, Nanjing, 210000, China
- School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Advanced Innovation Center for Human Brain Protection, Beijing Laboratory of Oral Health, Capital Medical University, Beijing, 100069, China
| | - Zi-Bing Jin
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325035, China.
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, 100005, China.
| | - Xueyun Bi
- State Key Laboratory of Neurology and Oncology Drug Development, Nanjing, 210000, China.
- School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Advanced Innovation Center for Human Brain Protection, Beijing Laboratory of Oral Health, Capital Medical University, Beijing, 100069, China.
| | - Chen Zhang
- State Key Laboratory of Neurology and Oncology Drug Development, Nanjing, 210000, China.
- School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Advanced Innovation Center for Human Brain Protection, Beijing Laboratory of Oral Health, Capital Medical University, Beijing, 100069, China.
- Chinese Institute for Brain Research, Beijing, 102206, China.
| |
Collapse
|
110
|
El Sharkasi L, Bingle L, Martin N, Subka S, Deery C. Correlation between Matrix Metalloproteinase Presence and Caries Surface Appearance. Caries Res 2024; 58:562-572. [PMID: 38815561 DOI: 10.1159/000539580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 05/24/2024] [Indexed: 06/01/2024] Open
Abstract
INTRODUCTION Cariogenic bacterial acids dissolve the inorganic elements in dentine, leaving the dentine matrix exposed. Host-derived matrix metalloproteinases (MMPs) play an essential role in caries progression as they are significant regulators of extracellular matrix turnover and can degrade exposed collagen. This paper investigates the expression of MMP2 and MMP9 across various stages of caries in primary human teeth and relate this with a diagnosis recorded by the International Caries Detection and Assessment System (ICDAS). METHODS Twenty-four sections (150 μm in thickness) from extracted teeth, clinically diagnosed using ICDAS, were immunohistochemically treated with monoclonal anti-MMP2 and anti-MMP9 antibodies. Positive staining was visualised by immunofluorescence using a VectorFluor Duet Double Labeling Kit. Images from triplicate samples for each ICDAS score were analysed using ImageJ software. Collagen degradation in caries lesions was detected using a hydroxyproline assay. RESULTS MMPs were weakly detected in caries with ICDAS 1-2 scores, and an insignificant increase was detected in ICDAS 3. However, a significant increase in MMP expression was seen in caries with an ICDAS score of 4-6. There was a strong positive correlation between the ICDAS score and MMP2 (r [6] = 0.86, p = 0.002) and between ICDAS and MMP9 (r [6] = 0.82, p = 0.004). Data were analysed using two-way ANOVA followed by Tukey multiple comparison test (*p < 0.05). CONCLUSION The use of ICDAS to assess the severity of caries lesions and how this correlates with the presence of MMP in these lesions validates the modern approach to caries management with a minimally invasive concept.
Collapse
Affiliation(s)
- Lamis El Sharkasi
- School of Clinical Dentistry, The University of Sheffield, Sheffield, UK
| | - Lynne Bingle
- School of Clinical Dentistry, The University of Sheffield, Sheffield, UK
| | - Nicolas Martin
- School of Clinical Dentistry, The University of Sheffield, Sheffield, UK
| | - Samiya Subka
- School of Dentistry, University of Leeds, Leeds, UK
| | - Chris Deery
- School of Clinical Dentistry, The University of Sheffield, Sheffield, UK
| |
Collapse
|
111
|
Verovenko V, Tennstedt S, Kleinecke M, Kessler T, Schunkert H, Erdmann J, Ensminger S, Aherrahrou Z. Identification of a functional missense variant in the matrix metallopeptidase 10 (MMP10) gene in two families with premature myocardial infarction. Sci Rep 2024; 14:12212. [PMID: 38806571 PMCID: PMC11133425 DOI: 10.1038/s41598-024-62878-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 05/22/2024] [Indexed: 05/30/2024] Open
Abstract
A positive family history is a major independent risk factor for atherosclerosis, and genetic variation is an important aspect of cardiovascular disease research. We identified a heterozygous missense variant p.L245P in the MMP10 gene in two families with premature myocardial infarction using whole-exome sequencing. The aim of this study was to investigate the consequences of this variant using in-silico and functional in-vitro assays. Molecular dynamics simulations were used to analyze protein interactions, calculate free binding energy, and measure the volume of the substrate-binding cleft of MMP10-TIMP1 models. The p.L245P variant showed an altered protein surface, different intra- and intermolecular interactions of MMP10-TIMP1, a lower total free binding energy between MMP10-TIMP1, and a volume-minimized substrate-binding cleft of MMP10 compared to the wild-type. For the functional assays, human THP-1 cells were transfected with plasmids containing MMP10 cDNA carrying the p.L245P and wild-type variant and differentiated into macrophages. Macrophage adhesion and migration assays were then conducted, and pro-inflammatory chemokine levels were evaluated. The p.L245P variant led to macrophages that were more adherent, less migratory, and secreted higher levels of the pro-inflammatory chemokines CXCL1 and CXCL8 than wild-type macrophages. Thus, the p.L245P variant in MMP10 may influence the pathogenesis of atherosclerosis in families with premature myocardial infarction by altering protein - protein interactions, macrophage adhesion and migration, and expression of pro-inflammatory chemokines, which may increase plaque rupture. These results could contribute to the development of selective MMP10 inhibitors and reduce the risk of atherosclerosis in families with a history of premature myocardial infarction.
Collapse
Affiliation(s)
- Viktor Verovenko
- Institute for Cardiogenetics, University of Luebeck, Luebeck, Germany
- DZHK (German Research Centre for Cardiovascular Research) Partner Site Hamburg/Luebeck/Kiel, Luebeck, Germany
- University Heart Center, Luebeck, Germany
| | - Stephanie Tennstedt
- Institute for Cardiogenetics, University of Luebeck, Luebeck, Germany
- DZHK (German Research Centre for Cardiovascular Research) Partner Site Hamburg/Luebeck/Kiel, Luebeck, Germany
- University Heart Center, Luebeck, Germany
| | - Mariana Kleinecke
- Menzies School of Health Research and Charles Darwin University, Darwin, Northern Territory, 0811, Australia
| | - Thorsten Kessler
- Department of Cardiology, German Heart Centre Munich, Technical University of Munich, Munich, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
| | - Heribert Schunkert
- Department of Cardiology, German Heart Centre Munich, Technical University of Munich, Munich, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
| | - Jeanette Erdmann
- Institute for Cardiogenetics, University of Luebeck, Luebeck, Germany
- DZHK (German Research Centre for Cardiovascular Research) Partner Site Hamburg/Luebeck/Kiel, Luebeck, Germany
- University Heart Center, Luebeck, Germany
| | - Stephan Ensminger
- University Heart Center, Luebeck, Germany
- Clinic for Cardiac and Thoracic Vascular Surgery, UKSH (University Hospital Schleswig-Holstein), Luebeck, Germany
| | - Zouhair Aherrahrou
- Institute for Cardiogenetics, University of Luebeck, Luebeck, Germany.
- DZHK (German Research Centre for Cardiovascular Research) Partner Site Hamburg/Luebeck/Kiel, Luebeck, Germany.
- University Heart Center, Luebeck, Germany.
| |
Collapse
|
112
|
Yabe Y, Takemura T, Hattori S, Ishikawa K, Aizawa T. Comparative Gene-Expression Analysis of the Ligamentum Flavum of Patients with Lumbar Spinal Canal Stenosis: Comparison between the Dural and Dorsal Sides of the Thickened Ligamentum Flavum. TOHOKU J EXP MED 2024; 263:43-50. [PMID: 38355112 DOI: 10.1620/tjem.2024.j015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
Thickening of the ligamentum flavum is the main factor in the development of lumbar spinal canal stenosis (LSCS). Although previous studies have reported factors related to ligamentum flavum thickening, its etiology has not been clarified. Furthermore, it is often difficult to set proper controls to investigate the pathologies of thickening due to differences in patient characteristics, such as age, sex, obesity, and comorbidities. This study aimed to elucidate the pathologies of ligamentum flavum thickening by comparing the dural and dorsal sides of the thickened ligamentum flavum in patients with LSCS. Ligamentum flavum samples were collected from 19 patients with LSCS. The samples were divided into the dural and dorsal sides. The dural side was used as a control to assess the pathologies occurring on the dorsal side. Elastic Masson staining was used to assess the elastic fibres. Gene expression levels were comprehensively assessed using quantitative reverse transcription polymerase chain reaction and DNA microarray analyses. Gene ontology analysis was used to identify biological processes associated with differentially expressed genes. The elastic fibres were significantly decreased on the dorsal side of the thickened ligamentum flavum. Genes related to fibrosis, inflammation, tissue repair, remodeling, and chondrometaplasia, such as COL1A2, COL3A1, COL5A1, TGFB1, VEGFA, TNFA, MMP2, COL10A1, and ADAMTS4, were highly expressed on the dorsal side of the thickened ligamentum flavum. The biological processes occurring on the dorsal side of the thickened ligamentum flavum were extracellular matrix organization, cell adhesion, extracellular matrix disassembly, and proteolysis.These are considered important pathologies of ligamentum flavum thickening.
Collapse
Affiliation(s)
- Yutaka Yabe
- Department of Orthopaedic Surgery, National Hospital Organization Sendai Nishitaga Hospital
- Department of Orthopaedic Surgery, Tohoku University Graduate School of Medicine
| | - Taro Takemura
- Nanotechnology Innovation Station, National Institute for Materials Science
| | - Shinya Hattori
- Nanotechnology Innovation Station, National Institute for Materials Science
| | - Keisuke Ishikawa
- Department of Orthopaedic Surgery, Tohoku University Graduate School of Medicine
| | - Toshimi Aizawa
- Department of Orthopaedic Surgery, Tohoku University Graduate School of Medicine
| |
Collapse
|
113
|
Murakami K, Miyamoto K, Koh J, Kajimoto Y, Ito H. Three-year follow-up of rheumatoid meningitis with matrix metalloprotease-9 levels in the serum and cerebrospinal fluid as indicators of disease activity: A case report. J Neuroimmunol 2024; 390:578331. [PMID: 38552529 DOI: 10.1016/j.jneuroim.2024.578331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/11/2024] [Accepted: 03/15/2024] [Indexed: 05/13/2024]
Abstract
Rheumatoid meningitis (RM) is an extra-articular complication of rheumatoid arthritis (RA). Although reports of RM sine arthritis exist, most patients with this presentation were diagnosed with RA within one year of RM onset. There are no established biomarkers reflecting the disease activity of RM. This case report highlights the elevation of matrix metalloprotease (MMP)-9 levels during the acute phase of RM and decline during remission. Additionally, this is the first case report of RA diagnosed three years after the onset of RM. It is important to further validate the utility of MMP-9 and conduct long-term follow-up of RM sine arthritis.
Collapse
Affiliation(s)
- Keishu Murakami
- Department of Neurology, Wakayama Medical University, Wakayama, Japan.
| | | | - Jinsoo Koh
- Department of Neurology, Wakayama Medical University, Wakayama, Japan
| | | | - Hidefumi Ito
- Department of Neurology, Wakayama Medical University, Wakayama, Japan
| |
Collapse
|
114
|
Seo J, Liu H, Young K, Zhang X, Keku TO, Jones CD, North KE, Sandler RS, Peery AF. Genetic and transcriptomic landscape of colonic diverticulosis. Gut 2024; 73:932-940. [PMID: 38443061 PMCID: PMC11088512 DOI: 10.1136/gutjnl-2023-331267] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 02/15/2024] [Indexed: 03/07/2024]
Abstract
OBJECTIVE Colonic diverticulosis is a prevalent condition among older adults, marked by the presence of thin-walled pockets in the colon wall that can become inflamed, infected, haemorrhage or rupture. We present a case-control genetic and transcriptomic study aimed at identifying the genetic and cellular determinants underlying this condition and the relationship with other gastrointestinal disorders. DESIGN We conducted DNA and RNA sequencing on colonic tissue from 404 patients with (N=172) and without (N=232) diverticulosis. We investigated variation in the transcriptome associated with diverticulosis and further integrated this variation with single-cell RNA-seq data from the human intestine. We also integrated our expression quantitative trait loci with genome-wide association study using Mendelian randomisation (MR). Furthermore, a Polygenic Risk Score analysis gauged associations between diverticulosis severity and other gastrointestinal disorders. RESULTS We discerned 38 genes with differential expression and 17 with varied transcript usage linked to diverticulosis, indicating tissue remodelling as a primary diverticula formation mechanism. Diverticula formation was primarily linked to stromal and epithelial cells in the colon including endothelial cells, myofibroblasts, fibroblasts, goblet, tuft, enterocytes, neurons and glia. MR highlighted five genes including CCN3, CRISPLD2, ENTPD7, PHGR1 and TNFSF13, with potential causal effects on diverticulosis. Notably, ENTPD7 upregulation was confirmed in diverticulosis cases. Additionally, diverticulosis severity was positively correlated with genetic predisposition to diverticulitis. CONCLUSION Our results suggest that tissue remodelling is a primary mechanism for diverticula formation. Individuals with an increased genetic proclivity to diverticulitis exhibit a larger numbers of diverticula on colonoscopy.
Collapse
Affiliation(s)
- Jungkyun Seo
- Department of Epidemiology, The University of North Carolina, Chapel Hill, North Carolina, USA
| | - Hongwei Liu
- Department of Genetics, The University of North Carolina, Chapel Hill, North Carolina, USA
| | - Kristin Young
- Department of Epidemiology, The University of North Carolina, Chapel Hill, North Carolina, USA
| | - Xinruo Zhang
- Department of Epidemiology, The University of North Carolina, Chapel Hill, North Carolina, USA
| | - Temitope O Keku
- Center for Gastrointestinal Biology and Disease, The University of North Carolina, Chapel Hill, North Carolina, USA
| | - Corbin D Jones
- Department of Biology and Integrative Program for Biological and Genome Sciences, The University of North Carolina, Chapel Hill, North Carolina, USA
| | - Kari E North
- Department of Epidemiology, The University of North Carolina, Chapel Hill, North Carolina, USA
| | - Robert S Sandler
- Gastroenterology and Hepatology, The University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Anne F Peery
- Center for Gastrointestinal Biology and Disease, The University of North Carolina, Chapel Hill, North Carolina, USA
| |
Collapse
|
115
|
Wang XL, Xian Y, Chen XL. YAP/TAZ Signaling Enhances Angiogenesis of Retinal Microvascular Endothelial Cells in a High-Glucose Environment. Curr Eye Res 2024; 49:524-532. [PMID: 38305219 DOI: 10.1080/02713683.2024.2309217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 01/12/2024] [Indexed: 02/03/2024]
Abstract
PURPOSE Diabetic retinopathy (DR) is a major cause of irreversible blindness in the working-age population. Neovascularization is an important hallmark of advanced DR. There is evidence that Yes-associated protein (YAP)/transcriptional co-activator with a PDZ binding domain (TAZ) plays an important role in angiogenesis and that its activity is regulated by vascular endothelial growth factor (VEGF). Therefore, the aim of this study was to investigate the effect of YAP/TAZ-VEGF crosstalk on the angiogenic capacity of human retinal microvascular endothelial cells (hRECs) in a high-glucose environment. METHODS The expression of YAP and TAZ of hRECs under normal conditions, hypertonic conditions and high glucose were observed. YAP overexpression (OE-YAP), YAP silencing (sh-YAP), VEGF overexpression (OE-VEGF) and VEGF silencing (sh-VEGF) plasmids were constructed. Cell counting kit-8 assay was performed to detect cells proliferation ability, transwell assay to detect cells migration ability, and tube formation assay to detect tube formation ability. The protein expression of YAP, TAZ, VEGF, matrix metalloproteinase (MMP)-8, MMP-13, vessel endothelium (VE)-cadherin and alpha smooth muscle actin (α-SMA) was measured by western blot. RESULTS The proliferation of hRECs was significantly higher in the high glucose group compared with the normal group, as well as the protein expression of YAP and TAZ (p < 0.01). YAP and VEGF promoted the proliferation, migration and tube formation of hRECs in the high glucose environment (p < 0.01), and increased the expression of TAZ, VEGF, MMP-8, MMP-13 and α-SMA while reducing the expression of VE-cadherin (p < 0.01). Knockdown of YAP effectively reversed the above promoting effects of OE-VEGF (p < 0.01) and overexpression of YAP significantly reversed the inhibition effects of sh-VEGF on above cell function (p < 0.01). CONCLUSION In a high-glucose environment, YAP/TAZ can significantly promote the proliferation, migration and tube formation ability of hRECs, and the mechanism may be related to the regulation of VEGF expression.
Collapse
Affiliation(s)
- Xing-Li Wang
- Department of Ophthalmology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yang Xian
- Department of Ophthalmology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xiao-Long Chen
- Department of Ophthalmology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
116
|
Huang Y, Yan B, Meng C, Zhang L, Wang C. Matrix metalloproteinases in chronic rhinosinusitis. Expert Rev Clin Immunol 2024; 20:547-558. [PMID: 38251631 DOI: 10.1080/1744666x.2024.2302362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 01/03/2024] [Indexed: 01/23/2024]
Abstract
INTRODUCTION Matrix metalloproteinases (MMPs) are a group of enzymes that are essential in maintaining extracellular matrix (ECM) homeostasis, regulating inflammation and tissue remodeling. In chronic rhinosinusitis (CRS), the overexpression of certain MMPs can contribute to chronic nasal tissue inflammation, ECM remodeling, and tissue repair. AREAS COVERED This review provides a comprehensive overview of the biological characteristics and functions of the MMP family, particularly focusing on the expression and activity of MMPs in patients with CRS, and delves into their role in the pathogenesis of CRS and their potential as therapeutic targets. EXPERT OPINION MMPs are important in tissue remodeling and have been implicated in the pathophysiology of CRS. Previous studies have shown that the expression of MMPs is upregulated in the nasal mucosa of patients with CRS and positively correlates with the severity of CRS. However, there is still a large gap in the research content of MMP in CRS, and the specific expression and pathogenic mechanism of MMP still need to be clarified. The significance and value of the ratio of MMP to tissue inhibitors of metalloproteinase (TIMP) in diseases still need to be demonstrated. Moreover, further studies are needed to assess the efficacy and safety of biologics that target MMPs in patients with CRS.
Collapse
Affiliation(s)
- Yuqing Huang
- Department of Otolaryngology, Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Otolaryngology, Beijing Laboratory of Allergic Diseases, Beijing Key Laboratory of Nasal Diseases, Key Laboratory of Otolaryngology Head and Neck Surgery, Ministry of Education, Capital Medical University, Beijing, China
- Research Unit of Diagnosis and Treatment of Chronic Nasal Diseases, Chinese Academy of Medical Sciences, Beijing, China
| | - Bing Yan
- Department of Otolaryngology, Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Otolaryngology, Beijing Laboratory of Allergic Diseases, Beijing Key Laboratory of Nasal Diseases, Key Laboratory of Otolaryngology Head and Neck Surgery, Ministry of Education, Capital Medical University, Beijing, China
- Research Unit of Diagnosis and Treatment of Chronic Nasal Diseases, Chinese Academy of Medical Sciences, Beijing, China
| | - Chen Meng
- Department of Otolaryngology, Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Otolaryngology, Beijing Laboratory of Allergic Diseases, Beijing Key Laboratory of Nasal Diseases, Key Laboratory of Otolaryngology Head and Neck Surgery, Ministry of Education, Capital Medical University, Beijing, China
- Research Unit of Diagnosis and Treatment of Chronic Nasal Diseases, Chinese Academy of Medical Sciences, Beijing, China
| | - Luo Zhang
- Department of Otolaryngology, Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Otolaryngology, Beijing Laboratory of Allergic Diseases, Beijing Key Laboratory of Nasal Diseases, Key Laboratory of Otolaryngology Head and Neck Surgery, Ministry of Education, Capital Medical University, Beijing, China
- Research Unit of Diagnosis and Treatment of Chronic Nasal Diseases, Chinese Academy of Medical Sciences, Beijing, China
- Department of Allergy, Beijing TongRen Hospital, Capital Medical University, Beijing, China
| | - Chengshuo Wang
- Department of Otolaryngology, Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Otolaryngology, Beijing Laboratory of Allergic Diseases, Beijing Key Laboratory of Nasal Diseases, Key Laboratory of Otolaryngology Head and Neck Surgery, Ministry of Education, Capital Medical University, Beijing, China
- Research Unit of Diagnosis and Treatment of Chronic Nasal Diseases, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
117
|
Nieradko-Iwanicka B, Piasecki J, Borzęcki A. Treatment with bestatin (the exogenous synthetic inhibitor of metalloproteinases) reduces the activity of metalloproteinase 2 and 12 in the spleen and lung tissues of rats in a model of lipopolysaccharide-induced sepsis. Biomed Pharmacother 2024; 174:116480. [PMID: 38547765 DOI: 10.1016/j.biopha.2024.116480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/11/2024] [Accepted: 03/19/2024] [Indexed: 05/01/2024] Open
Abstract
Sepsis is caused by an inadequate or dysregulated host response to infection. Enzymes causing cellular degradation are matrix metalloproteinases (MMPs). Lipopolysaccharide (LPS) is used in models of sepsis in laboratory settings The aim of the study was to measure MMP 2 and 12 concentrations in spleen and lungs in rats in which septic shock was induced by LPS. The experiment was carried out on 40 male Wistar rats (5 groups of 8): 0. controls 1. administered LPS 2. administered bestatin 3. LPS and bestatin 4.bestatin and after 6 hours LPS Animals were decapitated. Lungs and spleens were collected. Concentrations of MMP-2 and MMP-12 were determined using immunoenzymatic methods. Mean (±SD) MMP-2 in the controls was 43.57 ± 20.53 ng/ml in the lungs and 1.7 ± 0.72 ng/ml in the spleen; Group 1: 31.28 ± 13.13 ng/ml, 0.83 ± 0.8 ng/ml; Group 2: 44.24 ± 22.75 ng /ml, 1.01 ± 0.32 ng/ml; Group 3: 35.94 ± 15.13 ng/ml, 0.41 ± 0.03 ng/ml; Group 4:79.42 ± 44.70 ng/ml, 0.45 ± 0.15, respectively. Mean MMP-12 in controls was 19.79 ± 10.01 ng/ml in lungs and 41.13 ± 15.99 ng/ml in the spleen; Group 1:27.97 ± 15.1 ng/ml; 40.44 ± 11.2 ng/ml; Group 2: 37.93 ± 25.38 ng/ml 41.05 ± 18.08 ng/ml; Group 3: 40.59 ± 11.46 ng/ml, 35.16 ± 12.89 ng/ml; Group 4: 39.4 ± 17.83 ng/ml, 42.04 ± 12.35 ng/ml, respectively. CONCLUSIONS: 1. Bestatin reduces MMP 2 and 12 levels in spleen and lungs. 2. Treatment with bestatin minimizes the effect of LPS.
Collapse
Affiliation(s)
- Barbara Nieradko-Iwanicka
- Hygiene and Epidemiology Department, Medical University of Lublin, Poland Medical University of Lublin, Hygiene and Epidemiology Department, Chodzki 7 Street, Lublin 20-093, Poland.
| | - Jarosław Piasecki
- Doctoral School, Medical University of Lublin, Chodzki 7 Street, Lublin 20-093, Poland
| | - Andrzej Borzęcki
- Hygiene and Epidemiology Department, Medical University of Lublin, Poland Medical University of Lublin, Hygiene and Epidemiology Department, Chodzki 7 Street, Lublin 20-093, Poland
| |
Collapse
|
118
|
Guo Y, Kong Y, Sun J, Jiao Y, Hong Y, Wang Y. Alleviation of ultraviolet-B radiation-induced photoaging using Saussurea medusa Maxim polysaccharide. Photochem Photobiol 2024; 100:622-632. [PMID: 37732548 DOI: 10.1111/php.13855] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 08/04/2023] [Accepted: 08/22/2023] [Indexed: 09/22/2023]
Abstract
Saussurea medusa polysaccharide, the polysaccharide extract of Saussurea medusa Maxim, a traditional Chinese herbal medicine, is used to combat intense ultraviolet radiation, cold, and hypoxia in patients, as well as during drought. This polysaccharide has rich medicinal and ecological values. We aimed to determine whether saussurea medusa polysaccharides can reduce ultraviolet B (UVB)-induced skin photoaging. Seventy-five male Kunming mice were divided into five groups: control, UVB-only, UVB plus vitamin E (VE group), UVB plus saussurea medusa (2 g/kg), and UVB plus saussurea medusa (6 g/kg). The control group was irradiated with normal light, while the other four groups were subcutaneously administered 10 mL/kg/day D-galactose and irradiated with narrow-spectrum UVB for 40 min daily. From day 11, the VE group was administered 0.25 g/kg/day vitamin E, while the saussurea medusa intervention groups were administered 2 and 6 g/kg/day saussurea medusa polysaccharide. After 30 days of continuous administration, treatment with saussurea medusa polysaccharides was found to reduce UVB-induced skin photoaging in mice by elevating the levels of superoxide dismutase, glutathione peroxidase, and hydroxyproline (HYP), while reducing the level of MDA, and inhibiting the EGFR/MEK/ERK/c-Fos pathway. Overall, our findings suggest that treatment with saussurea medusa polysaccharides positively influences skin photoaging.
Collapse
Affiliation(s)
- Yan Guo
- Department of Medical Cosmetology, Qinghai University Affiliated Hospital, Xining, China
| | - Yue Kong
- Department of Immunology, College of Basic Medicine and Public Hygiene, Jinan University, Guangzhou, China
| | - Juan Sun
- Department of Neurology, Qinghai University Affiliated Hospital, Xining, China
| | - Yang Jiao
- Department of Medical Cosmetology, Qinghai University Affiliated Hospital, Xining, China
| | - Yan Hong
- Department of Dermatology and Venereology, Qinghai University Affiliated Hospital, Xining, China
| | - Yan Wang
- Department of Dermatology and Venereology, Qinghai University Affiliated Hospital, Xining, China
| |
Collapse
|
119
|
Mohtashamian A, Soleimani A, Gilasi HR, Kheiripour N, Moeini Taba SM, Sharifi N. Association between Dietary Intake, Profibrotic Markers, and Blood Pressure in Patients with Chronic Kidney Disease. Adv Biomed Res 2024; 13:29. [PMID: 39234436 PMCID: PMC11373720 DOI: 10.4103/abr.abr_204_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 10/17/2023] [Accepted: 10/21/2023] [Indexed: 09/06/2024] Open
Abstract
Background Among profibrotic and oxidant factors, matrix metalloproteinases (MMPs) and advanced glycation end products (AGEs) have a major impact on the progression of chronic kidney disease (CKD). However, very limited studies evaluated the relationships between nutrient intake and the mentioned factors in patients with CKD. Therefore, the present study aimed to investigate the correlation between dietary intake and the levels of MMPs, AGEs, and blood pressure (BP) in these patients. Materials and Methods This cross-sectional study was performed on 90 patients with CKD (stages 2-5). To evaluate the dietary intake of patients, three days of 24-hour food recall were completed through face-to-face and telephone interviews. Measurement of MMP-2 and MMP-9 concentration was done by enzyme-linked immunosorbent assay. The fluorimetric technique was used to measure the total serum AGEs. Results The patients' average dietary intake of sodium, potassium, phosphorus, energy, and protein was 725 mg/day, 1600 mg/day, 703 mg/day, 1825 kcal/day, and 64.83 g/day, respectively. After adjustment of confounding variables, a significant inverse relationship was observed between dietary intake of insoluble fiber and serum levels of MMP-2 (β = -0.218, P = 0.05). In addition, a significant positive relationship was found between molybdenum (Mo) intake and diastolic BP (β =0.229, P = 0.036). Conclusion A higher intake of insoluble fiber might be associated with lower serum levels of MMP-2. Also, a higher Mo intake can be correlated to a higher DBP in patients with CKD. It is suggested to conduct future studies with longitudinal designs and among various populations to better elucidate the observed relationships.
Collapse
Affiliation(s)
- Abbas Mohtashamian
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Alireza Soleimani
- Department of Internal Medicine, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Hamid Reza Gilasi
- Department of Epidemiology and Biostatistics, Faculty of Health, Kashan University of Medical Sciences, Kashan, Iran
| | - Nejat Kheiripour
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| | - Seyed Masoud Moeini Taba
- Department of Internal Medicine, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Nasrin Sharifi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
120
|
Montecillo J, Pirker T, Pemberton C, Chew-Harris J. suPAR in cardiovascular disease. Adv Clin Chem 2024; 121:89-131. [PMID: 38797545 DOI: 10.1016/bs.acc.2024.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Soluble urokinase plasminogen activator receptor (suPAR), the soluble counterpart of urokinase plasminogen activator receptor, is found in the circulation at various levels. suPAR and its parent molecule, cell surface uPAR, exhibit similar structure and extracellular functional roles facilitating fibrinolysis, cellular adhesion, and migration. Studies have assessed the correlation between suPAR in cardiovascular disease (CVD). It is postulated that suPAR may serve as an indicator of inflammatory activation and burden during CVD progression. Increased suPAR independently predicts poorer outcomes in acute coronary syndromes, in heart failure, as well as in coronary artery disease and atherosclerosis. To guide translation into clinical utization, suPAR has been assessed in numerous CVD settings for improved risk discrimination independently or in association with established traditional risk factors. Whilst the involvement of suPAR has been explored in other diseases such as kidney diseases and cancer, there is only emerging evidence of suPAR's mechanistic involvement in cardiovascular disease. In this review, we provide a background into suPAR and its potential role as a biomarker in CVD.
Collapse
Affiliation(s)
- Jaya Montecillo
- Christchurch Heart Institute, University of Otago, Christchurch, New Zealand
| | - Thomas Pirker
- Christchurch Heart Institute, University of Otago, Christchurch, New Zealand
| | | | - Janice Chew-Harris
- Christchurch Heart Institute, University of Otago, Christchurch, New Zealand.
| |
Collapse
|
121
|
Frommer ML, Langridge BJ, Beedie A, Jasionowska S, Awad L, Denton CP, Abraham DJ, Abu-Hanna J, Butler PEM. Exploring Anti-Fibrotic Effects of Adipose-Derived Stem Cells: Transcriptome Analysis upon Fibrotic, Inflammatory, and Hypoxic Conditioning. Cells 2024; 13:693. [PMID: 38667308 PMCID: PMC11049044 DOI: 10.3390/cells13080693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/08/2024] [Accepted: 04/13/2024] [Indexed: 04/28/2024] Open
Abstract
Autologous fat transfers show promise in treating fibrotic skin diseases, reversing scarring and stiffness, and improving quality of life. Adipose-derived stem cells (ADSCs) within these grafts are believed to be crucial for this effect, particularly their secreted factors, though the specific mechanisms remain unclear. This study investigates transcriptomic changes in ADSCs after in vitro fibrotic, inflammatory, and hypoxic conditioning. High-throughput gene expression assays were conducted on ADSCs exposed to IL1-β, TGF-β1, and hypoxia and in media with fetal bovine serum (FBS). Flow cytometry characterized the ADSCs. RNA-Seq analysis revealed distinct gene expression patterns between the conditions. FBS upregulated pathways were related to the cell cycle, replication, wound healing, and ossification. IL1-β induced immunomodulatory pathways, including granulocyte chemotaxis and cytokine production. TGF-β1 treatment upregulated wound healing and muscle tissue development pathways. Hypoxia led to the downregulation of mitochondria and cellular activity.
Collapse
Affiliation(s)
- Marvin L. Frommer
- Charles Wolfson Centre for Reconstructive Surgery, Royal Free Hospital, London NW3 2QG, UK
- Department of Surgical Biotechnology, Division of Surgery & Interventional Science, University College London, London NW3 2QG, UK
- Department of Plastic Surgery, Royal Free Hospital, London NW3 2QG, UK
| | - Benjamin J. Langridge
- Charles Wolfson Centre for Reconstructive Surgery, Royal Free Hospital, London NW3 2QG, UK
- Department of Surgical Biotechnology, Division of Surgery & Interventional Science, University College London, London NW3 2QG, UK
- Department of Plastic Surgery, Royal Free Hospital, London NW3 2QG, UK
| | - Alexandra Beedie
- Charles Wolfson Centre for Reconstructive Surgery, Royal Free Hospital, London NW3 2QG, UK
- Department of Plastic Surgery, Royal Free Hospital, London NW3 2QG, UK
| | - Sara Jasionowska
- Charles Wolfson Centre for Reconstructive Surgery, Royal Free Hospital, London NW3 2QG, UK
- Department of Plastic Surgery, Royal Free Hospital, London NW3 2QG, UK
| | - Laura Awad
- Charles Wolfson Centre for Reconstructive Surgery, Royal Free Hospital, London NW3 2QG, UK
- Department of Plastic Surgery, Royal Free Hospital, London NW3 2QG, UK
| | - Christopher P. Denton
- Centre for Rheumatology, Department of Inflammation and Rare Diseases, Division of Medicine, University College London, London NW3 2QG, UK
| | - David J. Abraham
- Centre for Rheumatology, Department of Inflammation and Rare Diseases, Division of Medicine, University College London, London NW3 2QG, UK
| | - Jeries Abu-Hanna
- Charles Wolfson Centre for Reconstructive Surgery, Royal Free Hospital, London NW3 2QG, UK
- Division of Medical Sciences, University of Oxford, Oxford OX3 9DU, UK
| | - Peter E. M. Butler
- Charles Wolfson Centre for Reconstructive Surgery, Royal Free Hospital, London NW3 2QG, UK
- Department of Surgical Biotechnology, Division of Surgery & Interventional Science, University College London, London NW3 2QG, UK
- Department of Plastic Surgery, Royal Free Hospital, London NW3 2QG, UK
| |
Collapse
|
122
|
Chniguir A, Saguem MH, Dang PMC, El-Benna J, Bachoual R. Eugenol Inhibits Neutrophils Myeloperoxidase In Vitro and Attenuates LPS-Induced Lung Inflammation in Mice. Pharmaceuticals (Basel) 2024; 17:504. [PMID: 38675465 PMCID: PMC11054673 DOI: 10.3390/ph17040504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/29/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
Eugenol (Eug) is a polyphenol extracted from the essential oil of Syzygium aromaticum (L.) Merr. and Perry (Myrtaceae). The health benefits of eugenol in human diseases were proved in several studies. This work aims to evaluate the effect of eugenol on lung inflammatory disorders. For this, using human neutrophils, the antioxidant activity of eugenol was investigated in vitro. Furthermore, a model of LPS-induced lung injury in mice was used to study the anti-inflammatory effect of eugenol in vivo. Results showed that eugenol inhibits luminol-amplified chemiluminescence of resting neutrophils and after stimulation with N-formyl-methionyl-leucyl-phenylalanine (fMLF) peptide or phorbol myristate acetate (PMA). This effect was dose dependent and was significant from a low concentration of 0.1 µg/mL. Furthermore, eugenol inhibited myeloperoxidase (MPO) activity without affecting its degranulation. Eugenol has no scavenging effect on hydrogen peroxide (H2O2) and superoxide anion (O2-). Pretreatment of mice with eugenol prior to the administration of intra-tracheal LPS significantly reduced neutrophil accumulation in the bronchoalveolar lavage fluid (BALF) and decreased total proteins concentration. Moreover, eugenol clearly inhibited the activity of matrix metalloproteinases MMP-2 (21%) and MMP-9 (28%), stimulated by LPS administration. These results suggest that the anti-inflammatory effect of eugenol against the LPS-induced lung inflammation could be exerted via inhibiting myeloperoxidase and metalloproteinases activity. Thus, eugenol could be a promising molecule for the treatment of lung inflammatory diseases.
Collapse
Affiliation(s)
- Amina Chniguir
- Faculty of Sciences of Gabes, University of Gabes, Gabes 6029, Tunisia;
| | | | - Pham My-Chan Dang
- INSERM U1149, CNRS ERL8252 Inflammation Research Center, 75018 Paris, France; (P.M.-C.D.); (J.E.-B.)
- Inflamex Laboratories, Faculty of Medicine, University of Paris City, Xavier Bichat, 75018 Paris, France
| | - Jamel El-Benna
- INSERM U1149, CNRS ERL8252 Inflammation Research Center, 75018 Paris, France; (P.M.-C.D.); (J.E.-B.)
- Inflamex Laboratories, Faculty of Medicine, University of Paris City, Xavier Bichat, 75018 Paris, France
| | - Rafik Bachoual
- Faculty of Sciences of Gabes, University of Gabes, Gabes 6029, Tunisia;
| |
Collapse
|
123
|
Barakat N, Jangir H, Gallo L, Grillo M, Guo X, Hickman J. Inhibition of Metalloproteinases Extends Longevity and Function of In Vitro Human iPSC-Derived Skeletal Muscle. Biomedicines 2024; 12:856. [PMID: 38672210 PMCID: PMC11047953 DOI: 10.3390/biomedicines12040856] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/02/2024] [Accepted: 04/03/2024] [Indexed: 04/28/2024] Open
Abstract
In vitro culture longevity has long been a concern for disease modeling and drug testing when using contractable cells. The dynamic nature of certain cells, such as skeletal muscle, contributes to cell surface release, which limits the system's ability to conduct long-term studies. This study hypothesized that regulating the extracellular matrix (ECM) dynamics should be able to prolong cell attachment on a culture surface. Human induced pluripotent stem cell (iPSC)-derived skeletal muscle (SKM) culture was utilized to test this hypothesis due to its forceful contractions in mature muscle culture, which can cause cell detachment. By specifically inhibiting matrix metalloproteinases (MMPs) that work to digest components of the ECM, it was shown that the SKM culture remained adhered for longer periods of time, up to 80 days. Functional testing of myofibers indicated that cells treated with the MMP inhibitors, tempol, and doxycycline, displayed a significantly reduced fatigue index, although the fidelity was not affected, while those treated with the MMP inducer, PMA, indicated a premature detachment and increased fatigue index. The MMP-modulating activity by the inhibitors and inducer was further validated by gel zymography analysis, where the MMP inhibitor showed minimally active MMPs, while the inducer-treated cells indicated high MMP activity. These data support the hypotheses that regulating the ECM dynamics can help maximize in vitro myotube longevity. This proof-of-principle strategy would benefit the modeling of diseases that require a long time to develop and the evaluation of chronic effects of potential therapeutics.
Collapse
Affiliation(s)
- Natali Barakat
- NanoScience Technology Center, University of Central Florida, 12424 Research Parkway, Suite 400, Orlando, FL 32826, USA; (N.B.); (H.J.); (L.G.); (M.G.); (X.G.)
- Department of Chemistry, University of Central Florida, Orlando, FL 32828, USA
| | - Himanshi Jangir
- NanoScience Technology Center, University of Central Florida, 12424 Research Parkway, Suite 400, Orlando, FL 32826, USA; (N.B.); (H.J.); (L.G.); (M.G.); (X.G.)
| | - Leandro Gallo
- NanoScience Technology Center, University of Central Florida, 12424 Research Parkway, Suite 400, Orlando, FL 32826, USA; (N.B.); (H.J.); (L.G.); (M.G.); (X.G.)
| | - Marcella Grillo
- NanoScience Technology Center, University of Central Florida, 12424 Research Parkway, Suite 400, Orlando, FL 32826, USA; (N.B.); (H.J.); (L.G.); (M.G.); (X.G.)
| | - Xiufang Guo
- NanoScience Technology Center, University of Central Florida, 12424 Research Parkway, Suite 400, Orlando, FL 32826, USA; (N.B.); (H.J.); (L.G.); (M.G.); (X.G.)
| | - James Hickman
- NanoScience Technology Center, University of Central Florida, 12424 Research Parkway, Suite 400, Orlando, FL 32826, USA; (N.B.); (H.J.); (L.G.); (M.G.); (X.G.)
- Department of Chemistry, University of Central Florida, Orlando, FL 32828, USA
| |
Collapse
|
124
|
Ranta J, Havulinna AS, Tervahartiala T, Niemi K, Aarabi G, Vihervaara T, Salomaa V, Sorsa T, Pussinen PJ, Salminen A. Serum MMP-8 and TIMP-1 concentrations in a population-based cohort: effects of age, gender, and health status. FRONTIERS IN DENTAL MEDICINE 2024; 5:1315596. [PMID: 39917664 PMCID: PMC11797797 DOI: 10.3389/fdmed.2024.1315596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 03/11/2024] [Indexed: 02/09/2025] Open
Abstract
Background Matrix-degrading proteinases and their regulators, such as matrix metalloproteinase 8 (MMP-8) and tissue inhibitor of matrix metalloproteinase 1 (TIMP-1), may contribute to various pathological events. Elevated MMP-8 concentrations have been associated with e.g., cardiovascular diseases and periodontitis. However, there is little knowledge on the physiological concentrations of these molecules in serum, or the effect of demographic or lifestyle factors on their levels. Design and methods We investigated the effect of various demographic characteristics and behavioral habits, such as aging, sex, smoking, and BMI, on serum concentrations of MMP-8 and TIMP-1. We used the FINRISK97 cohort (n = 8,446), which has comprehensive information on demographic and lifestyle factors, clinical data, laboratory measurements, and register data available. Further, we investigated the concentrations of MMP-8, TIMP-1, and the MMP-8/TIMP-1 ratio in different age groups of healthy and diseased participants. A t-test was used to compare log-transformed mean levels in different groups and linear regression was used to evaluate the association between MMP-8 and TIMP-1 and selected diseases and background variables. Results MMP-8 levels decreased with increasing age in the whole population and for women, while TIMP-1 concentration increased slightly with age for the whole population and both genders separately (p for linear trend <0.001). The concentrations of MMP-8 were lower and TIMP-1 higher in men compared to women (p < 0.001). Additionally, a significant positive association was found for MMP-8 and smoking, CRP, and an inverse association with obesity and fasting time. For TIMP-1, significant positive associations were found with smoking, CRP and obesity, and an inverse association with prevalent diabetes. Conclusion The association of serum MMP-8 and TIMP-1 concentrations with cardiometabolic risk is frequently investigated. MMP-8 levels decrease significantly with age and fasting time. In addition, sex, smoking, and obesity are associated with both MMP-8 and TIMP-1 concentrations. These factors should be carefully considered in epidemiological studies on serum MMP-8 and TIMP-1.
Collapse
Affiliation(s)
- Julia Ranta
- Oral and Maxillofacial Diseases, Helsinki University, Helsinki, Finland
| | - Aki S. Havulinna
- Finnish Institute for Health and Welfare, Helsinki, Finland
- Institute for Molecular Medicine Finland, FIMM-HiLIFE, Helsinki, Finland
| | | | - Katriina Niemi
- Oral and Maxillofacial Diseases, Helsinki University, Helsinki, Finland
| | - Ghazal Aarabi
- Department of Periodontics, Preventive and Restorative Dentistry, Center for Dental and Oral Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Veikko Salomaa
- Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Timo Sorsa
- Oral and Maxillofacial Diseases, Helsinki University, Helsinki, Finland
| | - Pirkko J. Pussinen
- Oral and Maxillofacial Diseases, Helsinki University, Helsinki, Finland
- Institute of Dentistry, University of Eastern Finland, Kuopio, Finland
| | - Aino Salminen
- Oral and Maxillofacial Diseases, Helsinki University, Helsinki, Finland
| |
Collapse
|
125
|
Fijardo M, Kwan JYY, Bissey PA, Citrin DE, Yip KW, Liu FF. The clinical manifestations and molecular pathogenesis of radiation fibrosis. EBioMedicine 2024; 103:105089. [PMID: 38579363 PMCID: PMC11002813 DOI: 10.1016/j.ebiom.2024.105089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/25/2024] [Accepted: 03/12/2024] [Indexed: 04/07/2024] Open
Abstract
Advances in radiation techniques have enabled the precise delivery of higher doses of radiotherapy to tumours, while sparing surrounding healthy tissues. Consequently, the incidence of radiation toxicities has declined, and will likely continue to improve as radiotherapy further evolves. Nonetheless, ionizing radiation elicits tissue-specific toxicities that gradually develop into radiation-induced fibrosis, a common long-term side-effect of radiotherapy. Radiation fibrosis is characterized by an aberrant wound repair process, which promotes the deposition of extensive scar tissue, clinically manifesting as a loss of elasticity, tissue thickening, and organ-specific functional consequences. In addition to improving the existing technologies and guidelines directing the administration of radiotherapy, understanding the pathogenesis underlying radiation fibrosis is essential for the success of cancer treatments. This review integrates the principles for radiotherapy dosimetry to minimize off-target effects, the tissue-specific clinical manifestations, the key cellular and molecular drivers of radiation fibrosis, and emerging therapeutic opportunities for both prevention and treatment.
Collapse
Affiliation(s)
- Mackenzie Fijardo
- Research Institute, Princess Margaret Cancer Centre, Toronto, Ontario, Canada; Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Jennifer Yin Yee Kwan
- Research Institute, Princess Margaret Cancer Centre, Toronto, Ontario, Canada; Radiation Medicine Program, Princess Margaret Cancer Centre, Toronto, Ontario, Canada; Department of Radiation Oncology, University of Toronto, Toronto, Ontario, Canada; Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | | | - Deborah E Citrin
- Radiation Oncology Branch, National Cancer Institute, Bethesda, MD, United States of America
| | - Kenneth W Yip
- Research Institute, Princess Margaret Cancer Centre, Toronto, Ontario, Canada; Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Fei-Fei Liu
- Research Institute, Princess Margaret Cancer Centre, Toronto, Ontario, Canada; Radiation Medicine Program, Princess Margaret Cancer Centre, Toronto, Ontario, Canada; Department of Radiation Oncology, University of Toronto, Toronto, Ontario, Canada; Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada; Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
126
|
Sekerci CA, Yucel S, Tarcan T. Urinary biomarkers in children with neurogenic and non-neurogenic lower urinary tract dysfunction: A systematic review and meta-analysis. Neurourol Urodyn 2024; 43:1003-1018. [PMID: 38238982 DOI: 10.1002/nau.25382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/13/2023] [Accepted: 12/17/2023] [Indexed: 04/19/2024]
Abstract
AIM The aim of this systematic review is to assess urinary biomarkers studied in children with neurogenic and non-neurogenic lower urinary tract dysfunction (LUTD). MATERIALS AND METHODS The systematic review was conducted in accordance with the PRISMA guidelines. The screening was performed on PUBMED without any publication date limitation. Only original articles were included. Parameters related to the following topics were obtained: study design, characteristics of participants, number of participants, age, control group, types of biomarkers, measurement technique in urine, subgroup analysis, urodynamic findings, and outcome. Dutch Cochrane Checklist (DCC) and level of evidence by EBRO platform were used for quality assessment. Meta-analysis was performed with the Comprehensive Meta-Analysis Version 4 program. RESULTS A total of 494 studies were screened and 16 studies were included. 11 (68.75%) were conducted in children with non-neurogenic LUTD and 5 (31.25%) neurogenic LUTD. Nerve growth factor (NGF) was evaluated in 12 studies, brain-derived neurotrophic factor (BDNF) in 5, Tissue Inhibitor of Metalloproteinase-2 (TIMP-2) in 2, transforming growth factor beta-1 (TGF Beta-1) in 2, neutrophil gelatinase-associated lipocalin (NGAL) in 1, and Aquaporin-2 in 1. According to DCC, 10 (62.5%) articles were evaluated on 4 (37.5%) items and 4 articles on 5 items. The average score was 3.91+/-0.56. The level of evidence was found as B for 13 (81.25%) articles and C for 3 (18.75%). In meta-analysis, urinary NGF levels in children with non-neurogenic LUTS were significantly higher than in the healthy control group (Hedges's g = 1.867, standard error = 0.344, variance = 0.119, p = 0.0001). CONCLUSION Urinary biomarkers are promising for the future with their noninvasive features. However, prospective studies with larger sample sizes are needed to better understand the potential of urinary biomarkers to reflect urodynamic and clinical findings in children with LUTD.
Collapse
Affiliation(s)
- Cagri Akin Sekerci
- Department of Urology, Division of Pediatric Urology, School of Medicine, Marmara University, Istanbul, Turkey
| | - Selcuk Yucel
- Department of Urology, Division of Pediatric Urology, School of Medicine, Marmara University, Istanbul, Turkey
| | - Tufan Tarcan
- Department of Urology, Division of Pediatric Urology, School of Medicine, Marmara University, Istanbul, Turkey
- Department of Urology, School of Medicine, Koç University, Istanbul, Turkey
| |
Collapse
|
127
|
Flis W, Socha MW. The Role of the NLRP3 Inflammasome in the Molecular and Biochemical Mechanisms of Cervical Ripening: A Comprehensive Review. Cells 2024; 13:600. [PMID: 38607039 PMCID: PMC11012148 DOI: 10.3390/cells13070600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/27/2024] [Accepted: 03/27/2024] [Indexed: 04/13/2024] Open
Abstract
The uterine cervix is one of the key factors involved in ensuring a proper track of gestation and labor. At the end of the gestational period, the cervix undergoes extensive changes, which can be summarized as a transformation from a non-favorable cervix to one that is soft and prone to dilation. During a process called cervical ripening, fundamental remodeling of the cervical extracellular matrix (ECM) occurs. The cervical ripening process is a derivative of many interlocking and mutually driving biochemical and molecular pathways under the strict control of mediators such as inflammatory cytokines, nitric oxide, prostaglandins, and reactive oxygen species. A thorough understanding of all these pathways and learning about possible triggering factors will allow us to develop new, better treatment algorithms and therapeutic goals that could protect women from both dysfunctional childbirth and premature birth. This review aims to present the possible role of the NLRP3 inflammasome in the cervical ripening process, emphasizing possible mechanisms of action and regulatory factors.
Collapse
Affiliation(s)
- Wojciech Flis
- Department of Perinatology, Gynecology and Gynecologic Oncology, Faculty of Health Sciences, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, Łukasiewicza 1, 85-821 Bydgoszcz, Poland;
- Department of Obstetrics and Gynecology, St. Adalbert’s Hospital in Gdańsk, Copernicus Healthcare Entity, Jana Pawła II 50, 80-462 Gdańsk, Poland
| | - Maciej W. Socha
- Department of Perinatology, Gynecology and Gynecologic Oncology, Faculty of Health Sciences, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, Łukasiewicza 1, 85-821 Bydgoszcz, Poland;
- Department of Obstetrics and Gynecology, St. Adalbert’s Hospital in Gdańsk, Copernicus Healthcare Entity, Jana Pawła II 50, 80-462 Gdańsk, Poland
| |
Collapse
|
128
|
Zheng X, Xie X, Wang W, Wang L, Tan B. Silencing of matrix metalloprotease-12 delays the progression of castration-resistant prostate cancer by regulating autophagy and lipolysis. Braz J Med Biol Res 2024; 57:e13351. [PMID: 38511770 PMCID: PMC10946229 DOI: 10.1590/1414-431x2024e13351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 02/13/2024] [Indexed: 03/22/2024] Open
Abstract
The complex pathogenesis of castration-resistant prostate cancer (CRPC) makes it challenging to identify effective treatment methods. Matrix metalloproteinase (MMP)-12 can degrade elastin as well as various extracellular matrix (ECM) components, which is associated with cancer progression. However, the relationship between MMP-12 and CRPC progression is poorly understood. In this study, we observed the effect of MMP-12 on the progression of CRPC and further explored its potential mechanism of action. High levels of MMP-12 were observed in patients with CRPC. We therefore developed cell co-culture and mouse models to study the function of MMP-12. Silencing MMP-12 in CRPC cells disrupted lipid utilization and autophagy marker expression via the CD36/CPT1 and P62/LC3 pathways, respectively, leading to reduced CRPC cell migration and invasion. Moreover, animal experiments confirmed that MMP-12-knockdown CRPC xenograft tumors exhibited reduced tumor growth, and the mechanisms involved the promotion of cancer cell autophagy and the inhibition of lipid catabolism. According to our results, MMP-12 played important roles in the progression of CRPC by disrupting adipocyte maturation and regulating cancer migration and invasion via the modulation of autophagy and lipid catabolism pathways.
Collapse
Affiliation(s)
- Xiaoyu Zheng
- School of Clinical Medicine, Chongqing Medical and Pharmaceutical College, Chongqing, China
| | - Xiaoqin Xie
- Department of Clinical Laboratory, Chongqing Blood Center, Chongqing, China
| | - Wei Wang
- Department of Orthopedics, The People's Hospital of Yubei District of Chongqing City, Chongqing, China
| | - Liang Wang
- Department of Dermatology, Daping Hospital, Army Medical University, Chongqing, China
| | - Bing Tan
- School of Clinical Medicine, Chongqing Medical and Pharmaceutical College, Chongqing, China
- Department of Urology and Medical Sciences Research Center, University-Town Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
129
|
Ibarrola J, Xiang RR, Sun Z, Lu Q, Hill MA, Jaffe IZ. Inhibition of the histone methyltransferase EZH2 induces vascular stiffness. Clin Sci (Lond) 2024; 138:251-268. [PMID: 38362910 PMCID: PMC11948989 DOI: 10.1042/cs20231478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 02/14/2024] [Accepted: 02/16/2024] [Indexed: 02/17/2024]
Abstract
Vascular stiffness increases with aging, obesity and hypertension and predicts cardiovascular risk. The levels of histone H3-lysine-27 methylation (H3K27me) and the histone methyltransferase EZH2 both decrease in aging vessels, driving vascular stiffness. The impact of EZH2 inhibitors on vascular stiffness is unknown. We tested the hypothesis that the EZH2 inhibitor GSK126, currently in development for cancer treatment, increases vascular stiffness and explored underlying molecular mechanisms. Young (3 month) and middle-aged (12 month) male mice were treated with GSK126 for 1-2 months and primary human aortic smooth muscle cells (HASMCs) from young male and female donors were treated with GSK126 for 24-48 h. Stiffness was measured in vivo by pulse wave velocity and in vitro by atomic force microscopy (AFM) and vascular structure was quantified histologically. Extracellular matrix proteins were studied by qRT-PCR, immunoblotting, zymography and chromatin immunoprecipitation. GSK126 treatment decreased H3K27 methylation (H3K27me) and increased acetylation (H3K27ac) in mouse vessels and in HASMCs. In GSK126-treated mice, aortic stiffness increased without changes in vascular fibrosis. EZH2 inhibition enhanced elastin fiber degradation and matrix metalloprotease-2 (MMP2) expression. In HASMCs, GSK126 treatment increased synthetic phenotype markers and intrinsic HASMCs stiffness by AFM with altered cytoskeletal structure and increased nuclear actin staining. GSK126 also increased MMP2 protein expression, activity and enrichment of H3K27ac at the MMP2 promoter in HASMCs. GSK126 causes vascular stiffening, inducing MMP2 activity, elastin degradation, and modulation of SMC phenotype and cytoskeletal stiffness. These findings suggest that EZH2 inhibitors used to treat cancer could negatively impact the vasculature by enhancing stiffness and merits examination in human trials.
Collapse
Affiliation(s)
- Jaime Ibarrola
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA 02111, USA
| | - Rachel R. Xiang
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA 02111, USA
| | - Zhe Sun
- Department of Medical Pharmacology and Physiology, Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO 65203, USA
| | - Qing Lu
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA 02111, USA
| | - Michael A. Hill
- Department of Medical Pharmacology and Physiology, Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO 65203, USA
| | - Iris Z. Jaffe
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA 02111, USA
| |
Collapse
|
130
|
Mude L, Jupudi S, Swaroop AK, Tallapaneni V, Karri VVSR. Molecular insights in repurposing selective COX-2 inhibitor celecoxib against matrix metalloproteinases in potentiating delayed wound healing: a molecular docking and MMPB/SA based analysis of molecular dynamic simulations. J Biomol Struct Dyn 2024; 42:2437-2448. [PMID: 37160705 DOI: 10.1080/07391102.2023.2209666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 04/14/2023] [Indexed: 05/11/2023]
Abstract
Matrix metalloproteinases (MMPs) are proteolytic enzymes that play a role in healing, including reducing inflammation, promoting fibroblast and keratinocyte migration, and modifying scar tissue. Due to their pleiotropic functions in the wound-healing process in diabetic wounds, MMPs constitute a significant cause of delayed wound closure. COX-2 inhibitors are proven to inhibit inflammation. The present study aims to repurpose celecoxib against MMP-2, MMP-8 and MMP-9 through in silico approaches, such as molecular docking, molecular dynamics, and MMPB/SA analysis. We considered five selective COX-2 inhibitors (celecoxib, etoricoxib, lumiracoxib, rofecoxib and valdecoxib) for our study against MMPs. Based on molecular docking study and hydrogen bonding pattern, celecoxib in complex with three MMPs was further analyzed using 1 µs (1000 ns) molecular dynamics simulation and MMPB/SA techniques. These studies identified that celecoxib exhibited significant binding affinity -8.8, -7.9 and -8.3 kcal/mol, respectively, against MMP-2, MMP-8 and MMP-9. Celecoxib formed hydrogen bonding and hydrophobic (π-π) interactions with crucial substrate pocket amino acids, which may be accountable for their inhibitory nature. The MMPB/SA studies showed that electrostatic and van der Waal energy terms favoured the total free binding energy component, while polar solvation terms were highly disfavored. The in silico analysis of the secondary structures showed that the celecoxib binding conformation maintains relatively stable along the simulation trajectories. These findings provide some key clues regarding the accommodation of celecoxib in the substrate binding S1' pocket and also provide structural insights and challenges in repurposing drugs as new MMP inhibitors with anti-inflammatory and anti-inflammatory wound-healing properties.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Lavanya Mude
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Tamil Nadu, India
| | - Srikanth Jupudi
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Tamil Nadu, India
| | - Akey Krishna Swaroop
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Tamil Nadu, India
| | - Vyshnavi Tallapaneni
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Tamil Nadu, India
| | - Veera Venkata Satyanarayana Reddy Karri
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Tamil Nadu, India
- Centre of Excellence in Nanoscience & Technology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Tamil Nadu, India
| |
Collapse
|
131
|
Su P, Jiang C, Zhang Y. The implication of infection with respiratory syncytial virus in pediatric recurrent wheezing and asthma: knowledge expanded post-COVID-19 era. Eur J Clin Microbiol Infect Dis 2024; 43:403-416. [PMID: 38153660 DOI: 10.1007/s10096-023-04744-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 12/21/2023] [Indexed: 12/29/2023]
Abstract
BACKGROUND Respiratory syncytial virus (RSV) infection has been identified to serve as the primary cause of acute lower respiratory infectious diseases in children under the age of one and a significant risk factor for the emergence and development of pediatric recurrent wheezing and asthma, though the exact mechanism is still unknown. METHODS AND RESULTS In this study, we discuss the key routes that lead to recurrent wheezing and bronchial asthma following RSV infection. It is interesting to note that following the coronavirus disease 2019 (COVID-19) epidemic, the prevalence of RSV changes significantly. This presents us with a rare opportunity to better understand the associated mechanism for RSV infection, its effects on the respiratory system, and the immunological response to RSV following the COVID-19 epidemic. To better understand the associated mechanisms in the occurrence and progression of pediatric asthma, we thoroughly described how the RSV infection directly destroys the physical barrier of airway epithelial tissue, promotes inflammatory responses, enhances airway hyper-responsiveness, and ultimately causes the airway remodeling. More critically, extensive discussion was also conducted regarding the potential impact of RSV infection on host pulmonary immune response. CONCLUSION In conclusion, this study offers a comprehensive perspective to better understand how the RSV infection interacts in the control of the host's pulmonary immune system, causing recurrent wheezing and the development of asthma, and it sheds fresh light on potential avenues for pharmaceutical therapy in the future.
Collapse
Affiliation(s)
- Peipei Su
- Xi'an Medical University, Xi'an, 710068, Shaanxi, China
- Key Laboratory of Precision Medicine to Pediatric Diseases of Shaanxi Province, National Regional Children's Medical Centre (Northwest), Xi'an Key Laboratory of Children's Health and Diseases, Shaanxi Institute for Pediatric Diseases, Xi'an Children's Hospital, Affiliated Children's Hospital of Xi'an Jiaotong University, Xi'an, 710003, Shaanxi, China
| | - Congshan Jiang
- Key Laboratory of Precision Medicine to Pediatric Diseases of Shaanxi Province, National Regional Children's Medical Centre (Northwest), Xi'an Key Laboratory of Children's Health and Diseases, Shaanxi Institute for Pediatric Diseases, Xi'an Children's Hospital, Affiliated Children's Hospital of Xi'an Jiaotong University, Xi'an, 710003, Shaanxi, China
| | - Yanmin Zhang
- Key Laboratory of Precision Medicine to Pediatric Diseases of Shaanxi Province, National Regional Children's Medical Centre (Northwest), Xi'an Key Laboratory of Children's Health and Diseases, Shaanxi Institute for Pediatric Diseases, Xi'an Children's Hospital, Affiliated Children's Hospital of Xi'an Jiaotong University, Xi'an, 710003, Shaanxi, China.
- Department of Cardiology, Xi'an Children's Hospital, Affiliated Children's Hospital of Xi'an Jiaotong University, Xi'an, 710003, Shaanxi, China.
| |
Collapse
|
132
|
Crossley RM, Johnson S, Tsingos E, Bell Z, Berardi M, Botticelli M, Braat QJS, Metzcar J, Ruscone M, Yin Y, Shuttleworth R. Modeling the extracellular matrix in cell migration and morphogenesis: a guide for the curious biologist. Front Cell Dev Biol 2024; 12:1354132. [PMID: 38495620 PMCID: PMC10940354 DOI: 10.3389/fcell.2024.1354132] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 02/12/2024] [Indexed: 03/19/2024] Open
Abstract
The extracellular matrix (ECM) is a highly complex structure through which biochemical and mechanical signals are transmitted. In processes of cell migration, the ECM also acts as a scaffold, providing structural support to cells as well as points of potential attachment. Although the ECM is a well-studied structure, its role in many biological processes remains difficult to investigate comprehensively due to its complexity and structural variation within an organism. In tandem with experiments, mathematical models are helpful in refining and testing hypotheses, generating predictions, and exploring conditions outside the scope of experiments. Such models can be combined and calibrated with in vivo and in vitro data to identify critical cell-ECM interactions that drive developmental and homeostatic processes, or the progression of diseases. In this review, we focus on mathematical and computational models of the ECM in processes such as cell migration including cancer metastasis, and in tissue structure and morphogenesis. By highlighting the predictive power of these models, we aim to help bridge the gap between experimental and computational approaches to studying the ECM and to provide guidance on selecting an appropriate model framework to complement corresponding experimental studies.
Collapse
Affiliation(s)
- Rebecca M. Crossley
- Wolfson Centre for Mathematical Biology, Mathematical Institute, University of Oxford, Oxford, United Kingdom
| | - Samuel Johnson
- Wolfson Centre for Mathematical Biology, Mathematical Institute, University of Oxford, Oxford, United Kingdom
| | - Erika Tsingos
- Computational Developmental Biology Group, Institute of Biodynamics and Biocomplexity, Utrecht University, Utrecht, Netherlands
| | - Zoe Bell
- Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Massimiliano Berardi
- LaserLab, Department of Physics and Astronomy, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Optics11 life, Amsterdam, Netherlands
| | | | - Quirine J. S. Braat
- Department of Applied Physics and Science Education, Eindhoven University of Technology, Eindhoven, Netherlands
| | - John Metzcar
- Department of Intelligent Systems Engineering, Indiana University, Bloomington, IN, United States
- Department of Informatics, Indiana University, Bloomington, IN, United States
| | | | - Yuan Yin
- Wolfson Centre for Mathematical Biology, Mathematical Institute, University of Oxford, Oxford, United Kingdom
| | | |
Collapse
|
133
|
Mukherjee A, Das B. The role of inflammatory mediators and matrix metalloproteinases (MMPs) in the progression of osteoarthritis. BIOMATERIALS AND BIOSYSTEMS 2024; 13:100090. [PMID: 38440290 PMCID: PMC10910010 DOI: 10.1016/j.bbiosy.2024.100090] [Citation(s) in RCA: 39] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 12/04/2023] [Accepted: 02/20/2024] [Indexed: 03/06/2024] Open
Abstract
Osteoarthritis (OA) is a chronic musculoskeletal disorder characterized by an imbalance between (synthesis) and catabolism (degradation) in altered homeostasis of articular cartilage mediated primarily by the innate immune system. OA degenerates the joints resulting in synovial hyperplasia, degradation of articular cartilage with damage of the structural and functional integrity of the cartilage extracellular matrix, subchondral sclerosis, osteophyte formation, and is characterized by chronic pain, stiffness, and loss of function. Inflammation triggered by factors like biomechanical stress is involved in the development of osteoarthritis. In OA apart from catabolic effects, anti-inflammatory anabolic processes also occur continually. There is also an underlying chronic inflammation present, not only in cartilage tissue but also within the synovium, which perpetuates tissue destruction of the OA joint. The consideration of inflammation in OA considers synovitis and/or other cellular and molecular events in the synovium during the progression of OA. In this review, we have presented the progression of joint degradation that results in OA. The critical role of inflammation in the pathogenesis of OA is discussed in detail along with the dysregulation within the cytokine networks composed of inflammatory and anti-inflammatory cytokines that drive catabolic pathways, inhibit matrix synthesis, and promote cellular apoptosis. OA pathogenesis, fluctuation of synovitis, and its clinical impact on disease progression are presented here along with the role of synovial macrophages in promoting inflammatory and destructive responses in OA. The role of interplay between different cytokines, structure, and function of their receptors in the inter-cellular signaling pathway is further explored. The effect of cytokines in the increased synthesis and release of matrix-decomposing proteolytic enzymes, such as matrix metalloproteinase (MMPs) and a disintegrin-like and metalloproteinase with thrombospondin motif (ADAMTS), is elaborated emphasizing the potential impact of MMPs on the chondrocytes, synovial cells, articular and periarticular tissues, and other immune system cells migrating to the site of inflammation. We also shed light on the pathogenesis of OA via oxidative damage particularly due to nitric oxide (NO) via its angiogenic response to inflammation. We concluded by presenting the current knowledge about the tissue inhibitors of metalloproteinases (TIMPs). Synthetic MMP inhibitors include zinc binding group (ZBG), non-ZBG, and mechanism-based inhibitors, all of which have the potential to be therapeutically beneficial in the treatment of osteoarthritis. Improving our understanding of the signaling pathways and molecular mechanisms that regulate the MMP gene expression, may open up new avenues for the creation of therapies that can stop the joint damage associated with OA.
Collapse
Affiliation(s)
- Anwesha Mukherjee
- Department of Biomedical Engineering, Indian Institute of Technology Ropar, India
| | - Bodhisatwa Das
- Department of Biomedical Engineering, Indian Institute of Technology Ropar, India
| |
Collapse
|
134
|
Radzki D, Negri A, Kusiak A, Obuchowski M. Matrix Metalloproteinases in the Periodontium-Vital in Tissue Turnover and Unfortunate in Periodontitis. Int J Mol Sci 2024; 25:2763. [PMID: 38474009 DOI: 10.3390/ijms25052763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/24/2024] [Accepted: 02/26/2024] [Indexed: 03/14/2024] Open
Abstract
The extracellular matrix (ECM) is a complex non-cellular three-dimensional macromolecular network present within all tissues and organs, forming the foundation on which cells sit, and composed of proteins (such as collagen), glycosaminoglycans, proteoglycans, minerals, and water. The ECM provides a fundamental framework for the cellular constituents of tissue and biochemical support to surrounding cells. The ECM is a highly dynamic structure that is constantly being remodeled. Matrix metalloproteinases (MMPs) are among the most important proteolytic enzymes of the ECM and are capable of degrading all ECM molecules. MMPs play a relevant role in physiological as well as pathological processes; MMPs participate in embryogenesis, morphogenesis, wound healing, and tissue remodeling, and therefore, their impaired activity may result in several problems. MMP activity is also associated with chronic inflammation, tissue breakdown, fibrosis, and cancer invasion and metastasis. The periodontium is a unique anatomical site, composed of a variety of connective tissues, created by the ECM. During periodontitis, a chronic inflammation affecting the periodontium, increased presence and activity of MMPs is observed, resulting in irreversible losses of periodontal tissues. MMP expression and activity may be controlled in various ways, one of which is the inhibition of their activity by an endogenous group of tissue inhibitors of metalloproteinases (TIMPs), as well as reversion-inducing cysteine-rich protein with Kazal motifs (RECK).
Collapse
Affiliation(s)
- Dominik Radzki
- Department of Periodontology and Oral Mucosa Diseases, Faculty of Medicine, Medical University of Gdańsk, 80-208 Gdańsk, Poland
- Division of Molecular Bacteriology, Institute of Medical Biotechnology and Experimental Oncology, Intercollegiate Faculty of Biotechnology, Medical University of Gdańsk, 80-211 Gdańsk, Poland
| | - Alessandro Negri
- Division of Molecular Bacteriology, Institute of Medical Biotechnology and Experimental Oncology, Intercollegiate Faculty of Biotechnology, Medical University of Gdańsk, 80-211 Gdańsk, Poland
| | - Aida Kusiak
- Department of Periodontology and Oral Mucosa Diseases, Faculty of Medicine, Medical University of Gdańsk, 80-208 Gdańsk, Poland
| | - Michał Obuchowski
- Division of Molecular Bacteriology, Institute of Medical Biotechnology and Experimental Oncology, Intercollegiate Faculty of Biotechnology, Medical University of Gdańsk, 80-211 Gdańsk, Poland
| |
Collapse
|
135
|
Rossi B, Previtali L, Salvi M, Gerami R, Tomasoni LR, Quiros-Roldan E. Female Genital Schistosomiasis: A Neglected among the Neglected Tropical Diseases. Microorganisms 2024; 12:458. [PMID: 38543509 PMCID: PMC10972284 DOI: 10.3390/microorganisms12030458] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/19/2024] [Accepted: 02/22/2024] [Indexed: 11/12/2024] Open
Abstract
Schistosomiasis is a neglected parasitic disease linked to water, posing a global public health concern with a significant burden in sub-Saharan Africa. It is transmitted by Schistosoma spp., causing both acute and chronic effects affecting the urogenital or the hepato-intestinal system. Through granuloma formation, chronic schistosomiasis weakens host immunity, heightening susceptibility to coinfections. Notably, female genital schistosomiasis (FGS), a disregarded gynecological condition, adversely affects girls' and women's reproductive health and increases vulnerability to HIV. This review explores the intricate interplay between schistosomiasis and HIV, considering their geographical overlap. We delve into the clinical features of this coinfection, underlying mutual influences on transmission, diagnostic challenges, and therapeutic approaches. Understanding the dynamics of FGS and HIV coinfection is pivotal for integrated healthcare strategies in regions with co-endemicity, aiming to mitigate the impact of the two infections on vulnerable populations.
Collapse
Affiliation(s)
- Benedetta Rossi
- Unit of Infectious and Tropical Diseases, Department of Clinical and Experimental Sciences, University of Brescia and ASST Spedali Civili di Brescia, 25123 Brescia, Italy; (L.P.); (M.S.); (R.G.); (E.Q.-R.)
- School of Advanced Studies, Department of Experimental Medicine and Public Health, University of Camerino, 62032 Camerino, Italy
| | - Letizia Previtali
- Unit of Infectious and Tropical Diseases, Department of Clinical and Experimental Sciences, University of Brescia and ASST Spedali Civili di Brescia, 25123 Brescia, Italy; (L.P.); (M.S.); (R.G.); (E.Q.-R.)
| | - Martina Salvi
- Unit of Infectious and Tropical Diseases, Department of Clinical and Experimental Sciences, University of Brescia and ASST Spedali Civili di Brescia, 25123 Brescia, Italy; (L.P.); (M.S.); (R.G.); (E.Q.-R.)
| | - Roberta Gerami
- Unit of Infectious and Tropical Diseases, Department of Clinical and Experimental Sciences, University of Brescia and ASST Spedali Civili di Brescia, 25123 Brescia, Italy; (L.P.); (M.S.); (R.G.); (E.Q.-R.)
| | - Lina Rachele Tomasoni
- Unit of Infectious and Tropical Diseases, ASST Spedali Civili di Brescia, 25123 Brescia, Italy;
| | - Eugenia Quiros-Roldan
- Unit of Infectious and Tropical Diseases, Department of Clinical and Experimental Sciences, University of Brescia and ASST Spedali Civili di Brescia, 25123 Brescia, Italy; (L.P.); (M.S.); (R.G.); (E.Q.-R.)
| |
Collapse
|
136
|
Chua PJ, Ow SH, Ng CT, Huang WH, Low JT, Tan PH, Chan MWY, Bay BH. Peroxiredoxin 3 regulates breast cancer progression via ERK-mediated MMP-1 expression. Cancer Cell Int 2024; 24:59. [PMID: 38321552 PMCID: PMC10845805 DOI: 10.1186/s12935-024-03248-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 01/29/2024] [Indexed: 02/08/2024] Open
Abstract
Peroxiredoxin 3 (PRDX3), a mitochondrial hydrogen peroxide scavenger, is known to be upregulated during tumorigenesis and cancer progression. In this study, we provide evidence for the first time that PRDX3 could regulate cellular signaling pathways associated with Matrix Metalloproteinase-1 (MMP-1) expression and activity in breast cancer progression. We show that shRNA-mediated gene silencing of PRDX3 inhibits cell migration and invasion in two triple-negative breast cancer cell lines. Reciprocal experiments show that PRDX3 overexpression promotes invasion and migration of the cancer cells, processes which are important in the metastatic cascade. Notably, this phenomenon may be attributed to the activation of MMP-1, which is observed to be upregulated by PRDX3 in the breast cancer cells. Moreover, immunohistochemical staining of breast cancer tissues revealed a positive correlation between PRDX3 and MMP-1 expression in both epithelial and stromal parts of the tissues. Further pathway reporter array and luciferase assay demonstrated that activation of ERK signaling is responsible for the transcriptional activation of MMP-1 in PRDX3-overexpressed cells. These findings suggest that PRDX3 could mediate cancer spread via ERK-mediated activation of MMP-1. Targeted inhibition of ERK signaling may be able to inhibit tumor metastasis in triple-negative breast cancer.
Collapse
Affiliation(s)
- Pei-Jou Chua
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Queenstown, 117594, Singapore
| | - Suet-Hui Ow
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Queenstown, 117594, Singapore
| | - Cheng-Teng Ng
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Queenstown, 117594, Singapore
| | - Wan-Hong Huang
- Department of Biomedical Sciences, National Chung Cheng University, Min-Hsiung, Chia-Yi, 62102, Taiwan
- Epigenomics and Human Diseases Research Center, National Chung Cheng University, Min-Hsiung, Chia-Yi, 62102, Taiwan
| | - Jie-Ting Low
- Department of Biomedical Sciences, National Chung Cheng University, Min-Hsiung, Chia-Yi, 62102, Taiwan
- Epigenomics and Human Diseases Research Center, National Chung Cheng University, Min-Hsiung, Chia-Yi, 62102, Taiwan
| | - Puay Hoon Tan
- Division of Pathology, Singapore General Hospital, Singapore, 169608, Singapore
- Luma Medical Centre, Royal Square, 329565, Singapore
| | - Michael W Y Chan
- Department of Biomedical Sciences, National Chung Cheng University, Min-Hsiung, Chia-Yi, 62102, Taiwan.
- Epigenomics and Human Diseases Research Center, National Chung Cheng University, Min-Hsiung, Chia-Yi, 62102, Taiwan.
- Center for Innovative Research on Aging Society (CIRAS), National Chung Cheng University, Min-Hsiung, Chia-Yi, 62102, Taiwan.
| | - Boon-Huat Bay
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Queenstown, 117594, Singapore.
| |
Collapse
|
137
|
Hu D, Tian T, Ren Q, Han S, Li Z, Deng Y, Lu Z, Zhang L. Novel biomimetic peptide-loaded chitosan nanoparticles improve dentin bonding via promoting dentin remineralization and inhibiting endogenous matrix metalloproteinases. Dent Mater 2024; 40:160-172. [PMID: 37951748 DOI: 10.1016/j.dental.2023.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 10/25/2023] [Accepted: 11/04/2023] [Indexed: 11/14/2023]
Abstract
OBJECTIVE This study aims to synthesize novel chitosan nanoparticles loaded with an amelogenin-derived peptide QP5 (TMC-QP5/NPs), investigate their remineralization capability and inhibitory effects on endogenous matrix metalloproteinases (MMPs), and evaluate the dentin bonding properties of remineralized dentin regulated by TMC-QP5/NPs. METHODS TMC-QP5/NPs were prepared by ionic crosslinking method and characterized by dynamic light scattering method, scanning electron microscopy, transmission electron microscope, atomic force microscope, Fourier transform infrared spectroscopy, and differential scanning calorimetry. The encapsulation and loading efficiency of TMC-QP5/NPs and the release of QP5 were examined. To evaluate the remineralization capability of TMC-QP5/NPs, the mechanical properties, and the changes in structure and composition of differently conditioned dentin were characterized. The MMPs inhibitory effects of TMC-QP5/NPs were explored by MMP Activity Assay and in-situ zymography. The dentin bonding performance was detected by interfacial microleakage and microshear bond strength (μSBS). RESULTS TMC-QP5/NPs were successfully synthesized, with uniform size, good stability and biosafety. The encapsulation and loading efficiency of TMC-QP5/NPs was respectively 69.63 ± 2.22% and 13.21 ± 0.73%, with a sustained release of QP5. TMC-QP5/NPs could induce mineral deposits on demineralized collagen fibers and partial occlusion of dentin tubules, and recover the surface microhardness of dentin, showing better remineralization effects than QP5. Besides, TMC-QP5/NPs significantly inhibited the endogenous MMPs activity. The remineralized dentin induced by TMC-QP5/NPs exhibited less interfacial microleakage and higher μSBS, greatly improved dentin bonding. SIGNIFICANCE This novel peptide-loaded chitosan nanoparticles improved resin-dentin bonding by promoting dentin remineralization and inactivating MMPs, suggesting a promising strategy for optimizing dentin adhesive restorations.
Collapse
Affiliation(s)
- Die Hu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China; Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Tian Tian
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Qian Ren
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China; Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Sili Han
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China; Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Zhongcheng Li
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China; Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yudi Deng
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China; Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Ziqian Lu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China; Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Linglin Zhang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China; Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
138
|
Clark CR, Khalil RA. Regulation of vascular angiotensin II type 1 and type 2 receptor and angiotensin-(1-7)/MasR signaling in normal and hypertensive pregnancy. Biochem Pharmacol 2024; 220:115963. [PMID: 38061417 PMCID: PMC10860599 DOI: 10.1016/j.bcp.2023.115963] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/29/2023] [Accepted: 11/30/2023] [Indexed: 01/01/2024]
Abstract
Normal pregnancy (Norm-Preg) is associated with a slight reduction in blood pressure (BP) and decreased BP response to vasoconstrictor stimuli such as angiotensin II (Ang II), although the renin-angiotensin-aldosterone system (RAAS) is upregulated. Preeclampsia (PE) is a complication of pregnancy manifested as hypertension-in-pregnancy (HTN-Preg), and dysregulation of angiotensin biosynthesis and signaling have been implicated. Ang II activates vascular Ang II type-1 receptor (AT1R) and Ang II type-2 receptor (AT2R), while angiotensin-(1-7) promotes Ang-(1-7)/MasR signaling. The role of AT1R in vasoconstriction and the activated cellular mechanisms are well-characterized. The sensitivity of vascular AT1R to Ang II and consequent activation of vasoconstrictor mechanisms decrease during Norm-Preg, but dramatically increase in HTN-Preg. Placental ischemia in late pregnancy could also initiate the release of AT1R agonistic autoantibodies (AT1AA) with significant impact on endothelial dysfunction and activation of contraction pathways in vascular smooth muscle including [Ca2+]c and protein kinase C. On the other hand, the role of AT2R and Ang-(1-7)/MasR in vascular relaxation, particularly during Norm-Preg and PE, is less clear. During Norm-Preg, increases in the expression/activity of vascular AT2R and Ang-(1-7)/MasR promote the production of endothelium-derived relaxing factors such as nitric oxide (NO), prostacyclin and endothelium-derived hyperpolarizing factor leading to generalized vasodilation. Aortic segments of Preg rats show prominent endothelial AT2R staining and increased relaxation and NO production in response to AT2R agonist CGP42112A, and treatment with AT2R antagonist PD123319 enhances phenylephrine-induced contraction. Decreased vascular AT2R and Ang-(1-7)/MasR expression and receptor-mediated mechanisms of vascular relaxation have been suggested in HTN-Preg animal models, but their role in human PE needs further testing. Changes in angiotensin-converting enzyme-2 (ACE2) have been observed in COVID-19 patients, and whether ACE2 influences the course of COVID-19 viral infection/immunity in Norm-Preg and PE is an intriguing area for research.
Collapse
Affiliation(s)
- Caroline R Clark
- Vascular Surgery Research Laboratories, Division of Vascular and Endovascular Surgery, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA 02115, USA
| | - Raouf A Khalil
- Vascular Surgery Research Laboratories, Division of Vascular and Endovascular Surgery, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
139
|
Zhang X, Tang X, Xu J, Zheng Y, Lin J, Zou H. Transcriptome analysis reveals dysfunction of the endoplasmic reticulum protein processing in the sonic muscle of small yellow croaker (Larimichthys polyactis) following noise exposure. MARINE ENVIRONMENTAL RESEARCH 2024; 194:106299. [PMID: 38154196 DOI: 10.1016/j.marenvres.2023.106299] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 10/25/2023] [Accepted: 12/05/2023] [Indexed: 12/30/2023]
Abstract
Noise pollution is increasingly prevalent in aquatic ecosystems, causing detrimental effects on growth and behavior of marine fishes. The physiological responses of fish to underwater noise are poorly understood. In this study, we used RNA-sequencing (RNA-seq) to study the transcriptome of the sonic muscle in small yellow croaker (Larimichthys polyactis) after exposure to a 120 dB noise for 30 min. The behavioral experiment revealed that noise exposure resulted in accelerated tail swimming behavior at the beginning of the exposure period, followed by loss of balance at the end of experiment. Transcriptomic analysis found that most highly expressed genes in the sonic muscle, including parvalbumin, slc25a4, and troponin C were related with energy metabolism and locomotor function. Further, a total of 1261 differentially expressed genes (DEGs) were identified, including 284 up-regulated and 977 down-regulated genes in the noise exposure group compared with the control group. Gene ontology (GO) analysis indicated that the most enriched categories of DEGs included protein folding and response to unfolding protein. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis found over-represented pathways including protein processing in the endoplasmic reticulum, chaperones and folding catalysts, as well as arginine and proline metabolism. Specifically, many genes related to fatty acid and collagen metabolism were up-regulated in the noise exposure group. Taken together, our results indicate that exposure to noise stressors alters the swimming behavior of croaker, inducing endoplasmic reticulum stress, disrupting lipid metabolism, and causing collagen degradation in the sonic muscle of L. polyactis.
Collapse
Affiliation(s)
- Xuguang Zhang
- Engineering Technology Research Center of Marine Ranching, College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, 201306, China
| | - Xianming Tang
- Hainan Provincial Key Laboratory of Tropical Maricultural Technology, Hainan Academy of Ocean and Fisheries Sciences, Haikou, Hainan, 571126, China
| | - Jianan Xu
- Shanghai Aquatic Wildlife Conservation Research Center, Shanghai, 200003, China
| | - Yueping Zheng
- Shanghai Aquatic Wildlife Conservation Research Center, Shanghai, 200003, China
| | - Jun Lin
- Engineering Technology Research Center of Marine Ranching, College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, 201306, China.
| | - Huafeng Zou
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China.
| |
Collapse
|
140
|
Ma X, Zheng J, He K, Wang L, Wang Z, Wang K, Liu Z, San Z, Zhao L, Wang L. TGFA expression is associated with poor prognosis and promotes the development of cervical cancer. J Cell Mol Med 2024; 28:e18086. [PMID: 38152044 PMCID: PMC10844698 DOI: 10.1111/jcmm.18086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 11/30/2023] [Accepted: 12/10/2023] [Indexed: 12/29/2023] Open
Abstract
Cervical squamous cell carcinoma and endocervical adenocarcinoma (CESC) are the second most common cancers in women aged 20-39. While HPV screening can help with early detection of cervical cancer, many patients are already in the medium to late stages when they are identified. As a result, searching for novel biomarkers to predict CESC prognosis and propose molecular treatment targets is critical. TGFA is a polypeptide growth factor with a high affinity for the epidermal growth factor receptor. Several studies have shown that TGFA can improve cancer growth and progression, but data on its impact on the occurrence and advancement of CESC is limited. In this study, we used clinical data analysis and bioinformatics techniques to explore the relationship between TGFA and CESC. The results showed that TGFA was highly expressed in cervical cancer tissues and cells. TGFA knockdown can inhibit the proliferation, migration and invasion of cervical cancer cells. In addition, after TGFA knockout, the expression of IL family and MMP family proteins in CESC cell lines was significantly reduced. In conclusion, TGFA plays an important role in the occurrence and development of cervical cancer. Therefore, TGFA may become a new target for cervical cancer treatment.
Collapse
Affiliation(s)
- Xiaoxuan Ma
- Department of RehabilitationSchool of NursingJilin UniversityChangchunChina
| | - Jingying Zheng
- Department of Gynecology and ObstetricsSecond Hospital of Jilin UniversityChangchunChina
| | - Kang He
- Department of RehabilitationSchool of NursingJilin UniversityChangchunChina
| | - Liangjia Wang
- Department of Gynecology and ObstetricsSecond Hospital of Jilin UniversityChangchunChina
| | - Zeyu Wang
- Department of RehabilitationSchool of NursingJilin UniversityChangchunChina
| | - Kai Wang
- Department of RehabilitationSchool of NursingJilin UniversityChangchunChina
| | - Zunlong Liu
- Department of RehabilitationSchool of NursingJilin UniversityChangchunChina
| | - Zhiqiang San
- Department of RehabilitationSchool of NursingJilin UniversityChangchunChina
| | - Lijing Zhao
- Department of RehabilitationSchool of NursingJilin UniversityChangchunChina
| | - Lisheng Wang
- Department of RehabilitationSchool of NursingJilin UniversityChangchunChina
| |
Collapse
|
141
|
Wang Y, Jiao L, Qiang C, Chen C, Shen Z, Ding F, Lv L, Zhu T, Lu Y, Cui X. The role of matrix metalloproteinase 9 in fibrosis diseases and its molecular mechanisms. Biomed Pharmacother 2024; 171:116116. [PMID: 38181715 DOI: 10.1016/j.biopha.2023.116116] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/25/2023] [Accepted: 12/29/2023] [Indexed: 01/07/2024] Open
Abstract
Fibrosis is a process of tissue repair that results in the slow creation of scar tissue to replace healthy tissue and can affect any tissue or organ. Its primary feature is the massive deposition of extracellular matrix (mainly collagen), eventually leading to tissue dysfunction and organ failure. The progression of fibrotic diseases has put a significant strain on global health and the economy, and as a result, there is an urgent need to find some new therapies. Previous studies have identified that inflammation, oxidative stress, some cytokines, and remodeling play a crucial role in fibrotic diseases and are essential avenues for treating fibrotic diseases. Among them, matrix metalloproteinases (MMPs) are considered the main targets for the treatment of fibrotic diseases since they are the primary driver involved in ECM degradation, and tissue inhibitors of metalloproteinases (TIMPs) are natural endogenous inhibitors of MMPs. Through previous studies, we found that MMP-9 is an essential target for treating fibrotic diseases. However, it is worth noting that MMP-9 plays a bidirectional regulatory role in different fibrotic diseases or different stages of the same fibrotic disease. Previously identified MMP-9 inhibitors, such as pirfenidone and nintedanib, suffer from some rather pronounced side effects, and therefore, there is an urgent need to investigate new drugs. In this review, we explore the mechanism of action and signaling pathways of MMP-9 in different tissues and organs, hoping to provide some ideas for developing safer and more effective biologics.
Collapse
Affiliation(s)
- Yuling Wang
- Department of Cardiovascular Unit, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China; Graduate School of Beijing University of Chinese Medicine, Beijing, China
| | - Linke Jiao
- Department of Cardiovascular Unit, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China; Graduate School of Beijing University of Chinese Medicine, Beijing, China
| | - Caoxia Qiang
- Department of Traditional Chinese Medicine, Tumor Hospital Affiliated to Nantong University, Jiangsu, China
| | - Chen Chen
- Department of Cardiovascular Unit, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zihuan Shen
- Department of Cardiovascular Unit, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China; Graduate School of Beijing University of Chinese Medicine, Beijing, China
| | - Fan Ding
- Department of Cardiovascular Unit, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China; Graduate School of Beijing University of Chinese Medicine, Beijing, China
| | - Lifei Lv
- Department of Cardiovascular Unit, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Tingting Zhu
- Department of Cardiovascular Unit, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yingdong Lu
- Department of Cardiovascular Unit, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiangning Cui
- Department of Cardiovascular Unit, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| |
Collapse
|
142
|
Badulescu OV, Badescu MC, Bojan IB, Vladeanu M, Filip N, Dobreanu S, Tudor R, Ciuntu BM, Tanevski A, Ciocoiu M. Thrombotic Disease in Hemophilic Patients: Is This a Paradox in a State of Hypocoagulability? Diagnostics (Basel) 2024; 14:286. [PMID: 38337802 PMCID: PMC10854955 DOI: 10.3390/diagnostics14030286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 01/20/2024] [Accepted: 01/23/2024] [Indexed: 02/12/2024] Open
Abstract
Hemophilia patients have a deficiency in or dysfunction of clotting factors, which can lead to a bleeding tendency. However, paradoxically, some hemophilia patients may also be at an increased risk of developing thrombotic events such as deep vein thrombosis or pulmonary embolism. The pathophysiology of thrombosis in hemophilia patients is not fully understood, but it is thought to involve a complex interplay of various factors, including the severity of the hemophilia, the presence of other risk factors such as obesity, smoking, or the use of hormonal therapies, and the presence of certain genetic mutations that increase the risk of thrombosis. In addition, it has been suggested that the use of clotting factor replacement therapy, which is a standard treatment for hemophilia, may also contribute to the development of thrombosis in some cases.
Collapse
Affiliation(s)
- Oana Viola Badulescu
- Department of Pathophysiology, Morpho-Functional Sciences (II), Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (O.V.B.); (M.V.); (M.C.)
| | - Minerva Codruta Badescu
- Department of Internal Medicine, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Iris Bararu Bojan
- Department of Pathophysiology, Morpho-Functional Sciences (II), Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (O.V.B.); (M.V.); (M.C.)
| | - Maria Vladeanu
- Department of Pathophysiology, Morpho-Functional Sciences (II), Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (O.V.B.); (M.V.); (M.C.)
| | - Nina Filip
- Department of Biochemistry, Morpho-Functional Sciences (II), Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
| | - Stefan Dobreanu
- Institute of Cardiovascular Diseases, G.I.M. Georgescu, 700503 Iasi, Romania
| | - Razvan Tudor
- Department of Orthopedics and Traumatology, Surgical Science (II), Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
| | - Bogdan-Mihnea Ciuntu
- Department of General Surgery, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania; (B.-M.C.); (A.T.)
| | - Adelina Tanevski
- Department of General Surgery, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania; (B.-M.C.); (A.T.)
| | - Manuela Ciocoiu
- Department of Pathophysiology, Morpho-Functional Sciences (II), Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (O.V.B.); (M.V.); (M.C.)
| |
Collapse
|
143
|
Ago Y, Rintz E, Musini KS, Ma Z, Tomatsu S. Molecular Mechanisms in Pathophysiology of Mucopolysaccharidosis and Prospects for Innovative Therapy. Int J Mol Sci 2024; 25:1113. [PMID: 38256186 PMCID: PMC10816168 DOI: 10.3390/ijms25021113] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/09/2024] [Accepted: 01/10/2024] [Indexed: 01/24/2024] Open
Abstract
Mucopolysaccharidoses (MPSs) are a group of inborn errors of the metabolism caused by a deficiency in the lysosomal enzymes required to break down molecules called glycosaminoglycans (GAGs). These GAGs accumulate over time in various tissues and disrupt multiple biological systems, including catabolism of other substances, autophagy, and mitochondrial function. These pathological changes ultimately increase oxidative stress and activate innate immunity and inflammation. We have described the pathophysiology of MPS and activated inflammation in this paper, starting with accumulating the primary storage materials, GAGs. At the initial stage of GAG accumulation, affected tissues/cells are reversibly affected but progress irreversibly to: (1) disruption of substrate degradation with pathogenic changes in lysosomal function, (2) cellular dysfunction, secondary/tertiary accumulation (toxins such as GM2 or GM3 ganglioside, etc.), and inflammatory process, and (3) progressive tissue/organ damage and cell death (e.g., skeletal dysplasia, CNS impairment, etc.). For current and future treatment, several potential treatments for MPS that can penetrate the blood-brain barrier and bone have been proposed and/or are in clinical trials, including targeting peptides and molecular Trojan horses such as monoclonal antibodies attached to enzymes via receptor-mediated transport. Gene therapy trials with AAV, ex vivo LV, and Sleeping Beauty transposon system for MPS are proposed and/or underway as innovative therapeutic options. In addition, possible immunomodulatory reagents that can suppress MPS symptoms have been summarized in this review.
Collapse
Affiliation(s)
- Yasuhiko Ago
- Nemours Children’s Health, 1600 Rockland Rd., Wilmington, DE 19803, USA; (Y.A.); (K.S.M.); (Z.M.)
| | - Estera Rintz
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, 80-308 Gdansk, Poland;
| | - Krishna Sai Musini
- Nemours Children’s Health, 1600 Rockland Rd., Wilmington, DE 19803, USA; (Y.A.); (K.S.M.); (Z.M.)
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | - Zhengyu Ma
- Nemours Children’s Health, 1600 Rockland Rd., Wilmington, DE 19803, USA; (Y.A.); (K.S.M.); (Z.M.)
| | - Shunji Tomatsu
- Nemours Children’s Health, 1600 Rockland Rd., Wilmington, DE 19803, USA; (Y.A.); (K.S.M.); (Z.M.)
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
- Department of Pediatrics, Graduate School of Medicine, Gifu University, Gifu 501-1112, Japan
- Department of Pediatrics, Thomas Jefferson University, Philadelphia, PA 19144, USA
| |
Collapse
|
144
|
Fu Y, Song C, Qin Y, Zheng T, Zhou X, Zhao X, Zou J, Huang B. Clinical value of serum MMP-3 in chronic kidney disease. Clin Chim Acta 2024; 553:117725. [PMID: 38128817 DOI: 10.1016/j.cca.2023.117725] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 11/26/2023] [Accepted: 12/14/2023] [Indexed: 12/23/2023]
Abstract
BACKGROUND Chronic kidney disease (CKD) is defined as the progressive deterioration of renal parenchyma and decline in renal unit function. In the early stages of CKD(G1 + G2), symptoms are usually not obvious and cannot be effectively recognized on the basis of available clinical markers. Progression to the middle and late stages of CKD results in severe kidney damage with multiple complications causing adverse outcomes, including death. Therefore, the early diagnosis and monitoring of CKD is critical. Matrix metalloproteinase-3 (MMP-3), an extracellular matrix-degrading enzyme, plays an important role in kidney diseases. However, the clinical significance of serum MMP-3 levels in CKD has rarely been reported. METHODS We quantified the serum MMP-3 levels of 237 patients with CKD and 96 healthy individuals by using a highly sensitive time-resolved fluorescence immunoassay and analyzed differences in MMP-3 levels among the stages of CKD and the correlations of these changes with clinical indicators. RESULTS The serum MMP-3 concentrations of patients with CKD (171.76 ± 165.22 ng/mL) were significantly higher than those of healthy controls (34.05 ± 22.93 ng/mL; P < 0.0001). In CKD, serum MMP-3 levels were significantly correlated with estimated glomerular filtration rate (eGFR) (r = - 0.5804, P < 0.0001), serum creatinine (CREA) (r = 0.5823, P < 0.0001), blood urea nitrogen (BUN) (r = 0.6106, P < 0.0001), and protein-to-creatinine ratio (r = 0.4992, P < 0.0001). Randomized forest analysis finds CREA, BUN, and MMP-3 most significant influences on CKD disease severity. The critical value of MMP-3 concentration of 40.39 ng/mL combined with eGFR was effective in diagnosing positive patients in the early (G1 + G2) stage of CKD and showed a positivity rate of 73.45 %. Moreover, in the early stages of CKD, patients with CKD who had serum MMP-3 concentration > 100 ng/mL had more severe renal impairment and inflammation than those with CKD who have lower serum MMP-3 concentrations. CONCLUSION Elevated serum MMP-3 levels are correlated with decreased kidney function in CKD progression, and patients with concomitant inflammation may express high levels of serum MMP-3. Serum MMP-3 may assist eGFR in improving the diagnosis of patients with early CKD.
Collapse
Affiliation(s)
- Yulin Fu
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Cheng Song
- The Taihu Sanatorium of Jiangsu Province (The Taihu Rehabilitation Hospital of Jiangsu Province), Wuxi, Jiangsu 214086, China
| | - Yuan Qin
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Tianyu Zheng
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Xiumei Zhou
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Xueqin Zhao
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Jian Zou
- Department of Laboratory Medicine, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, Jiangsu 214023, China
| | - Biao Huang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China.
| |
Collapse
|
145
|
Wang Z, Chen X, Chen N, Yan H, Wu K, Li J, Ru Q, Deng R, Liu X, Kang R. Mechanical Factors Regulate Annulus Fibrosus (AF) Injury Repair and Remodeling: A Review. ACS Biomater Sci Eng 2024; 10:219-233. [PMID: 38149967 DOI: 10.1021/acsbiomaterials.3c01091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
Low back pain is a common chronic disease that can severely affect the patient's work and daily life. The breakdown of spinal mechanical homeostasis caused by intervertebral disc (IVD) degeneration is a leading cause of low back pain. Annulus fibrosus (AF), as the outer layer structure of the IVD, is often the first affected part. AF injury caused by consistent stress overload will further accelerate IVD degeneration. Therefore, regulating AF injury repair and remodeling should be the primary goal of the IVD repair strategy. Mechanical stimulation has been shown to promote AF regeneration and repair, but most studies only focus on the effect of single stress on AF, and lack realistic models and methods that can mimic the actual mechanical environment of AF. In this article, we review the effects of different types of stress stimulation on AF injury repair and remodeling, suggest possible beneficial load combinations, and explore the underlying molecular mechanisms. It will provide the theoretical basis for designing better tissue engineering therapy using mechanical factors to regulate AF injury repair and remodeling in the future.
Collapse
Affiliation(s)
- Zihan Wang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province 210028, P.R. China
| | - Xin Chen
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province 210028, P.R. China
| | - Nan Chen
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province 210028, P.R. China
| | - Hongjie Yan
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province 210028, P.R. China
| | - Ke Wu
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province 210028, P.R. China
| | - Jitao Li
- School of Physics and Telecommunications Engineering, Zhoukou Normal University, Zhoukou, Henan Province 466001, P.R. China
| | - Qingyuan Ru
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province 210028, P.R. China
| | - Rongrong Deng
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province 210028, P.R. China
| | - Xin Liu
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province 210028, P.R. China
| | - Ran Kang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province 210028, P.R. China
- Department of Orthopedics, Nanjing Lishui Hospital of Traditional Chinese Medicine, Nanjing, Jiangsu Province 210028, P.R. China
| |
Collapse
|
146
|
Duan C, Yu X, Feng X, Shi L, Wang D. Expression Profiles of Matrix Metalloproteinases and Their Inhibitors in Nasal Polyps. J Inflamm Res 2024; 17:29-39. [PMID: 38193041 PMCID: PMC10771793 DOI: 10.2147/jir.s438581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 12/28/2023] [Indexed: 01/10/2024] Open
Abstract
Purpose Nasal polyp (NP) is characterized by inflammation of the sinonasal mucosa with predominant inflammatory cell infiltration. Matrix metalloproteinases (MMPs) and tissue inhibitor of metalloproteinases (TIMPs) are recognized to play an important role in leukocyte migration in airway inflammation. Herein, efforts were made to confirm the expression levels of MMPs/TIMPs and study the relationship between the infiltration of inflammatory cells and local expression levels of MMPs/TIMPs in NPs. Patients and Methods NP tissues were obtained from 42 Chinese patients with bilateral nasal polyps during the endoscopic sinus surgery. Inferior turbinate (IT) tissues from 19 patients with septal deviation were taken during the rhinoplasty surgery as controls. mRNA and protein levels of MMP1, MMP9, MMP10, MMP12, TIMP1 and TIMP3 were assessed by quantitative PCR and immunohistochemistry. Results Eosinophilia (72%, 23/32 samples), neutrophilia (41%, 13/32 samples), and increase in macrophages (38%, 12/32 samples) were found in NP tissues. mRNA expression of MMP1 (10.9-fold), MMP9 (4.1-fold), MMP10 (6.7-fold) and MMP12 (3.5-fold) were significantly up-regulated, while TIMP1 (1.5-fold) and TIMP3 (6.0-fold) were significantly down-regulated in NPs (n=42) as compared to the controls (n=19). The immunostaining levels of all 4 MMPs and two TIMPs were higher in NPs than those in controls. The co-localization of MMP1/MMP10/MMP12 and macrophages were identified in NPs. MMP9 was mainly expressed in neutrophils, while TIMP1 or TIMP3 were mostly found in eosinophils in NPs. Conclusion The results of our study indicate that tissue remodeling is significant in NPs, where MMPs/TIMPs play important roles in both tissue remodeling and inflammatory cells infiltration.
Collapse
Affiliation(s)
- Chen Duan
- Department of Otorhinolaryngology, Qilu Hospital of Shandong University, National Health Commission (NHC) Key Laboratory of Otorhinolaryngology, Shandong University, Jinan, Shandong, 250000, People’s Republic of China
| | - Xuemin Yu
- Department of Otorhinolaryngology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, NHC Key Laboratory of Otorhinolaryngology (Shandong University), Qingdao, Shandong, 250000, People’s Republic of China
| | - Xin Feng
- Department of Otorhinolaryngology, Qilu Hospital of Shandong University, National Health Commission (NHC) Key Laboratory of Otorhinolaryngology, Shandong University, Jinan, Shandong, 250000, People’s Republic of China
| | - Li Shi
- Department of Otolaryngology, The Second Hospital of Shandong University, Jinan, Shandong, 250000, People’s Republic of China
| | - Deyun Wang
- Department of Otolaryngology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
147
|
Ateeq M, Broadwin M, Sellke FW, Abid MR. Extracellular Vesicles' Role in Angiogenesis and Altering Angiogenic Signaling. Med Sci (Basel) 2024; 12:4. [PMID: 38249080 PMCID: PMC10801520 DOI: 10.3390/medsci12010004] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/15/2023] [Accepted: 12/21/2023] [Indexed: 01/23/2024] Open
Abstract
Angiogenesis, the process of new blood vessels formation from existing vasculature, plays a vital role in development, wound healing, and various pathophysiological conditions. In recent years, extracellular vesicles (EVs) have emerged as crucial mediators in intercellular communication and have gained significant attention for their role in modulating angiogenic processes. This review explores the multifaceted role of EVs in angiogenesis and their capacity to modulate angiogenic signaling pathways. Through comprehensive analysis of a vast body of literature, this review highlights the potential of utilizing EVs as therapeutic tools to modulate angiogenesis for both physiological and pathological purposes. A good understanding of these concepts holds promise for the development of novel therapeutic interventions targeting angiogenesis-related disorders.
Collapse
Affiliation(s)
- Maryam Ateeq
- Division of Cardiothoracic Surgery, Department of Surgery, Cardiovascular Research Center, Rhode Island Hospital, The Warren Alpert Medical School of Brown University, Providence, RI 02903, USA; (M.A.); (M.B.); (F.W.S.)
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
| | - Mark Broadwin
- Division of Cardiothoracic Surgery, Department of Surgery, Cardiovascular Research Center, Rhode Island Hospital, The Warren Alpert Medical School of Brown University, Providence, RI 02903, USA; (M.A.); (M.B.); (F.W.S.)
| | - Frank W. Sellke
- Division of Cardiothoracic Surgery, Department of Surgery, Cardiovascular Research Center, Rhode Island Hospital, The Warren Alpert Medical School of Brown University, Providence, RI 02903, USA; (M.A.); (M.B.); (F.W.S.)
| | - M. Ruhul Abid
- Division of Cardiothoracic Surgery, Department of Surgery, Cardiovascular Research Center, Rhode Island Hospital, The Warren Alpert Medical School of Brown University, Providence, RI 02903, USA; (M.A.); (M.B.); (F.W.S.)
| |
Collapse
|
148
|
Ghorbani R, Rasouli M, Sefat F, Heidari Keshel S. Pathogenesis of Common Ocular Diseases: Emerging Trends in Extracellular Matrix Remodeling. Semin Ophthalmol 2024; 39:27-39. [PMID: 37424085 DOI: 10.1080/08820538.2023.2233601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 06/27/2023] [Accepted: 07/02/2023] [Indexed: 07/11/2023]
Abstract
The prevalence of visual impairments in human societies is worrying due to retinopathy complications of several chronic diseases such as diabetes, cardiovascular diseases, and many more that are on the rise worldwide. Since the proper function of this organ plays a pivotal role in people's quality of life, identifying factors affecting the development/exacerbation of ocular diseases is of particular interest among ophthalmology researchers. The extracellular matrix (ECM) is a reticular, three-dimensional (3D) structure that determines the shape and dimensions of tissues in the body. The ECM remodeling/hemostasis is a critical process in both physiological and pathological conditions. It consists of ECM deposition, degradation, and decrease/increase in the ECM components. However, disregulation of this process and an imbalance between the synthesis and degradation of ECM components are associated with many pathological situations, including ocular disorders. Despite the impact of ECM alterations on the development of ocular diseases, there is not much research conducted in this regard. Therefore, a better understanding in this regard, can pave the way toward discovering plausible strategies to either prevent or treat eye disorders. In this review, we will discuss the importance of ECM changes as a sentimental factor in various ocular diseases based on the research done up to now.
Collapse
Affiliation(s)
- Raziyeh Ghorbani
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehdi Rasouli
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farshid Sefat
- Department of Biomedical and Electronics Engineering, School of Engineering, University of Bradford, Bradford, UK
- Interdisciplinary Research Centre in Polymer Science & Technology (Polymer IRC), University of Bradford, Bradford, UK
| | - Saeed Heidari Keshel
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
149
|
Cates WT, Denbeigh JM, Salvagno RT, Kakar S, van Wijnen AJ, Eaton C. Inflammatory Markers Involved in the Pathogenesis of Dupuytren's Contracture. Crit Rev Eukaryot Gene Expr 2024; 34:1-35. [PMID: 38912961 DOI: 10.1615/critreveukaryotgeneexpr.2024052889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
Dupuytren's disease is a common fibroproliferative disease that can result in debilitating hand deformities. Partial correction and return of deformity are common with surgical or clinical treatments at present. While current treatments are limited to local procedures for relatively late effects of the disease, the pathophysiology of this connective tissue disorder is associated with both local and systemic processes (e.g., fibrosis, inflammation). Hence, a better understanding of the systemic circulation of Dupuytren related cytokines and growth factors may provide important insights into disease progression. In addition, systemic biomarker analysis could yield new concepts for treatments of Dupuytren that attenuate circulatory factors (e.g., anti-inflammatory agents, neutralizing antibodies). Progress in the development of any disease modifying biologic treatment for Dupuytren has been hampered by the lack of clinically useful biomarkers. The characterization of nonsurgical Dupuytren biomarkers will permit disease staging from diagnostic and prognostic perspectives, as well as allows evaluation of biologic responses to treatment. Identification of such markers may transcend their use in Dupuytren treatment, because fibrotic biological processes fundamental to Dupuytren are relevant to fibrosis in many other connective tissues and organs with collagen-based tissue compartments. There is a wide range of potential Dupuytren biomarker categories that could be informative, including disease determinants linked to genetics, collagen metabolism, as well as immunity and inflammation (e.g., cytokines, chemokines). This narrative review provides a broad overview of previous studies and emphasizes the importance of inflammatory mediators as candidate circulating biomarkers for monitoring Dupuytren's disease.
Collapse
Affiliation(s)
- William T Cates
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN 55905, USA
| | - Janet M Denbeigh
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN 55905, USA
| | | | - Sanjeev Kakar
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN 55905, USA
| | - Andre J van Wijnen
- Department of Biochemistry, University of Vermont, Burlington, VT 05405, USA
| | | |
Collapse
|
150
|
Avey AM, Devos F, Roberts AG, Essawy ESE, Baar K. Inhibiting JAK1, not NF-κB, reverses the effect of pro-inflammatory cytokines on engineered human ligament function. Matrix Biol 2024; 125:100-112. [PMID: 38151137 DOI: 10.1016/j.matbio.2023.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/23/2023] [Accepted: 12/23/2023] [Indexed: 12/29/2023]
Abstract
The role of inflammation in chronic tendon/ligament injury is hotly debated. There is less debate about inflammation following acute injury. To better understand the effect of acute inflammation, in this study we developed a multi-cytokine model of inflammatory tendinitis. The combined treatment with TNF-α, IL-1β, and IL-6, at dosages well below what are routinely used in vitro, decreased the mechanical properties and collagen content of engineered human ligaments. Treatment with this cytokine mixture resulted in an increase in phospho-NF-κB and MMP-1, did not affect procollagen production, and decreased STAT3 phosphorylation relative to controls. Using this more physiologically relevant model of acute inflammation, we inhibited NF-κB or JAK1 signaling in an attempt to reverse the negative effects of the cytokine mixture. Surprisingly, NF-κB inhibition led to an even greater decrease in mechanical function and collagen content. By contrast, inhibiting JAK1 led to an increase in mechanical properties, collagen content and thermal stability concomitant with a decrease in MMP-1. Our results suggest that inhibition of JAK1, not NF-κB, reverses the negative effects of pro-inflammatory cytokines on collagen content and mechanics in engineered human ligaments.
Collapse
Affiliation(s)
- Alec M Avey
- Department of Neurobiology, Physiology and Behavior, University of California Davis, Davis, CA 95616, United States
| | - Florence Devos
- Department of Neurobiology, Physiology and Behavior, University of California Davis, Davis, CA 95616, United States
| | - Albany G Roberts
- Department of Neurobiology, Physiology and Behavior, University of California Davis, Davis, CA 95616, United States
| | - El Sayed El Essawy
- Department of Neurobiology, Physiology and Behavior, University of California Davis, Davis, CA 95616, United States; Department of Sport Psychology, Mansoura University, Dakahlia Governorate 35516, Egypt
| | - Keith Baar
- Department of Neurobiology, Physiology and Behavior, University of California Davis, Davis, CA 95616, United States; Department of Physiology and Membrane Biology, University of California Davis, Davis, CA 95616, United States; VA Northern California Health Care System, Mather, CA 95655, United States.
| |
Collapse
|