101
|
Ge Y, Nash MS, Winnik WM, Bruno M, Padgett WT, Grindstaff RD, Hazari MS, Farraj AK. Proteomics Reveals Divergent Cardiac Inflammatory and Metabolic Responses After Inhalation of Ambient Particulate Matter With or Without Ozone. Cardiovasc Toxicol 2024; 24:1348-1363. [PMID: 39397197 DOI: 10.1007/s12012-024-09931-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 10/05/2024] [Indexed: 10/15/2024]
Abstract
Inhalation of ambient particulate matter (PM) and ozone (O3) has been associated with increased cardiovascular morbidity and mortality. However, the interactive effects of PM and O3 on cardiac dysfunction and disease have not been thoroughly examined, especially at a proteomic level. The purpose of this study was to identify and compare proteome changes in spontaneously hypertensive (SH) rats co-exposed to concentrated ambient particulates (CAPs) and O3, with a focus on investigating inflammatory and metabolic pathways, which are the two major ones implicated in the pathophysiology of cardiac dysfunction. For this, we measured and compared changes in expression status of 9 critical pro- and anti-inflammatory cytokines using multiplexed ELISA and 450 metabolic proteins involved in ATP production, oxidative phosphorylation, cytoskeletal organization, and stress response using two-dimensional electrophoresis (2-DE) and mass spectrometry (MS) in cardiac tissue of SH rats exposed to CAPs alone, O3 alone, and CAPs + O3. Proteomic expression profiling revealed that CAPs alone, O3 alone, and CAPs + O3 differentially altered protein expression patterns, and utilized divergent mechanisms to affect inflammatory and metabolic pathways and responses. Ingenuity Pathway Analysis (IPA) of the proteomic data demonstrated that the metabolic protein network centered by gap junction alpha-1 protein (GJA 1) was interconnected with the inflammatory cytokine network centered by nuclear factor kappa beta (NF-kB) potentially suggesting inflammation-induced alterations in metabolic pathways, or vice versa, collectively contributing to the development of cardiac dysfunction in response to CAPs and O3 exposure. These findings may enhance understanding of the pathophysiology of cardiac dysfunction induced by air pollution and provide testable hypotheses regarding mechanisms of action.
Collapse
Affiliation(s)
- Yue Ge
- The Center for Computational Toxicology and Exposure, US Environmental Protection Agency, Durham, NC, 27711, USA.
| | - Maliha S Nash
- Center for Public Health and Environmental Assessment, US Environmental Protection Agency, Durham, NC, 27711, USA
| | - Witold M Winnik
- Center for Public Health and Environmental Assessment, US Environmental Protection Agency, Durham, NC, 27711, USA
| | - Maribel Bruno
- The Center for Computational Toxicology and Exposure, US Environmental Protection Agency, Durham, NC, 27711, USA
| | - William T Padgett
- Center for Public Health and Environmental Assessment, US Environmental Protection Agency, Durham, NC, 27711, USA
| | - Rachel D Grindstaff
- Center for Public Health and Environmental Assessment, US Environmental Protection Agency, Durham, NC, 27711, USA
| | - Mehdi S Hazari
- Center for Public Health and Environmental Assessment, US Environmental Protection Agency, Durham, NC, 27711, USA
| | - Aimen K Farraj
- Center for Public Health and Environmental Assessment, US Environmental Protection Agency, Durham, NC, 27711, USA
| |
Collapse
|
102
|
Giles LV, Thomson CJ, Lesser I, Brandenburg JP. Running Through the Haze: How Wildfire Smoke Affects Physical Activity and Mental Well-Being. J Phys Act Health 2024; 21:1435-1445. [PMID: 39504954 DOI: 10.1123/jpah.2024-0305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 10/03/2024] [Accepted: 10/07/2024] [Indexed: 11/08/2024]
Abstract
BACKGROUND With a warming climate, extreme wildfires are more likely to occur, which may adversely affect air quality, physical activity (PA), and therefore, mental well-being. METHODS We assessed PA engagement and mental well-being between periods with and without wildfire smoke, and whether there were associations between changes in PA behavior and mental well-being. Questionnaires on PA and mental well-being during a period of wildfire smoke were completed by 348 participants; of these participants, 162 also completed a follow-up PA and mental well-being questionnaire during a period without wildfire smoke. Data were analyzed using generalized/linear mixed models. Relationships between mental well-being and PA were analyzed using repeated-measures correlations. RESULTS Leisure-time walking, moderate PA, and vigorous PA were all significantly lower during periods of smoke compared to periods without smoke. Participants also experienced significantly higher symptoms of stress (11.63 [1.91] vs 10.20 [1.70], P = .039), anxiety (7.75 [2.24] vs 4.38 [1.32], P < .001), and depression (9.67 [0.90] vs 7.27 [0.76], P < .001) during the period of wildfire smoke. Vigorous PA, the proportion of PA time spent outdoors, and the sum of PA during leisure time, were significantly negatively correlated with mental well-being, therefore, it is possible that PA could be used as a tool during times of wildfire smoke. CONCLUSIONS These data suggest that PA and mental well-being are adversely impacted during wildfire smoke events. Future research should consider the impact of strategies to support PA during wildfire events on PA and mental well-being.
Collapse
Affiliation(s)
- Luisa V Giles
- School of Kinesiology, University of the Fraser Valley, Chilliwack, BC, Canada
| | - Cynthia J Thomson
- School of Kinesiology, University of the Fraser Valley, Chilliwack, BC, Canada
| | - Iris Lesser
- School of Kinesiology, University of the Fraser Valley, Chilliwack, BC, Canada
| | - Jason P Brandenburg
- School of Kinesiology, University of the Fraser Valley, Chilliwack, BC, Canada
| |
Collapse
|
103
|
Janssen F, Braun M, Dröge J, Brüggmann D, Groneberg DA. Comparison Between Smoked Tobacco and Medical Cannabis Cigarettes Concerning Particulate Matter. Cannabis Cannabinoid Res 2024; 9:1492-1499. [PMID: 38294845 PMCID: PMC11685293 DOI: 10.1089/can.2023.0201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2024] Open
Abstract
Introduction: Cannabis is a widely used drug like tobacco and alcohol. In the meantime, it is also prescribed for medical treatment in some countries. Tobacco smoke contains chemical carcinogens and particulate matter (PM) that are both harmful to health. Method: In this study, we investigated PM levels in second-hand smoke (SHS) of hand-tamped cannabis cigarettes compared to cigarettes with tubing tobacco and the 3R4F reference cigarette. Results: It could be demonstrated that the largest proportion of the particle mass is attributable to particles with a diameter of less than 1μm and that every tested cigarette emitted more PM than the 3R4F reference cigarette. In addition, our data clearly revealed that cannabis smoke contains higher PM levels in SHS than tobacco cigarettes. Compared to the reference cigarette, the PM1 emissions of cannabis were 105% higher. Also, the cannabis mixed cigarettes had higher PM levels than the 3R4F cigarettes. For instance, the PM10 emissions were 93% higher. Also, the Gauloises Mélange tubing tobacco also reached higher PM concentrations than the 3R4F cigarette. Discussion: Regardless of negative health effects, cannabis is seen as a harmless drug in the public eye. We found strong indications for potential health risks by PM from cannabis products and, therefore, the public should be educated about a potential harm.
Collapse
Affiliation(s)
- Fenna Janssen
- Institute of Occupational Medicine, Social Medicine and Environmental Medicine, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Markus Braun
- Institute of Occupational Medicine, Social Medicine and Environmental Medicine, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Janis Dröge
- Institute of Occupational Medicine, Social Medicine and Environmental Medicine, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Dörthe Brüggmann
- Institute of Occupational Medicine, Social Medicine and Environmental Medicine, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - David A. Groneberg
- Institute of Occupational Medicine, Social Medicine and Environmental Medicine, Goethe University Frankfurt, Frankfurt am Main, Germany
| |
Collapse
|
104
|
Pope CA, Apte JS. Atherosclerotic Cardiovascular Disease Mortality and PM 2.5 Air Pollution - Role of Pollution Sources? NEJM EVIDENCE 2024; 3:EVIDe2400371. [PMID: 39589195 DOI: 10.1056/evide2400371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2024]
Affiliation(s)
- C Arden Pope
- Department of Economics, Brigham Young University, Provo, UT
| | - Joshua S Apte
- School of Public Health and Department of Civil and Environmental Engineering, University of California, Berkeley
| |
Collapse
|
105
|
Park SY, Jang H, Kwon J, Cho YS, Lee JI, Lee CM. Spatiotemporal distribution and source analysis of PM 2.5 and its chemical components in national industrial complexes of Korea: a case study of Ansan and Siheung. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:65406-65426. [PMID: 39580370 DOI: 10.1007/s11356-024-35537-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 11/05/2024] [Indexed: 11/25/2024]
Abstract
This study investigated the sources and distribution characteristics of PM2.5 and its chemical components (ions, carbons, elements) at five locations within the Banwal and Sihwa National Industrial Complexes in Ansan and Siheung. These large-scale industrial clusters, comprising 7642 businesses across sectors such as petrochemicals, steel, machinery, and electronics, operate throughout the year. From 2020 to 2023, the average PM2.5 concentration in the study area was 28.66 ± 16.72 μg/m3, with notable seasonal differences observed across the five measurement points. Ionic components were the primary contributors to PM2.5, while carbon and trace element concentrations fluctuated with the seasons. The coefficient of divergence (COD) analysis indicated that emission source differences between sites were insignificant, with COD values consistently below the threshold of 0.3. Hierarchical cluster analysis (HCA) and principal component analysis (PCA) identified secondary aerosols and vehicle emissions as the main sources of PM2.5, alongside additional contributions from Asian dust, industrial emissions, road dust, coal combustion, metal processing, biomass burning, and soil dust. These results highlight the need for systematic and economical air pollution control strategies in complex industrial areas, using COD to identify source differences and quantify contributions at different sites.
Collapse
Affiliation(s)
- Shin-Young Park
- Department of Chemical and Environmental Engineering, Seokyeong University, Seoul, 02713, Republic of Korea
| | - Hyeok Jang
- Department of Chemical and Environmental Engineering, Seokyeong University, Seoul, 02713, Republic of Korea
| | - Jaymin Kwon
- Department of Public Health, California State University, Fresno, CA, 93740, USA
| | - Yong-Sung Cho
- Department of Chemical and Environmental Engineering, Seokyeong University, Seoul, 02713, Republic of Korea
| | - Jung-Il Lee
- Department of Chemical and Environmental Engineering, Seokyeong University, Seoul, 02713, Republic of Korea
| | - Cheol-Min Lee
- Department of Chemical and Environmental Engineering, Seokyeong University, Seoul, 02713, Republic of Korea.
| |
Collapse
|
106
|
Gotlib IH, Buthmann JL, Uy JP. The growing interdisciplinarity of developmental psychopathology: Implications for science and training. Dev Psychopathol 2024; 36:2338-2348. [PMID: 38516854 PMCID: PMC11416568 DOI: 10.1017/s0954579424000580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
The field of developmental psychopathology has grown exponentially over the past decades, and has become increasingly multifaceted. The initial focus on understanding abnormal child psychology has broadened to the study of the origins of psychopathology, with the goals of preventing and alleviating disorder and promoting healthy development. In this paper, we discuss how technological advances and global events have expanded the questions that researchers in developmental psychopathology can address. We do so by describing a longitudinal study that we have been conducting for the past dozen years. We originally planned to examine the effects of early adversity on trajectories of brain development, endocrine function, and depressive symptoms across puberty; it has since become an interdisciplinary study encompassing diverse domains like inflammation, sleep, biological aging, the environment, and child functioning post-pandemic, that we believe will advance our understanding of neurobehavioral development. This increase in the breadth in our study emerged from an expansion of the field; we encourage researchers to embrace these dynamic changes. In this context, we discuss challenges, opportunities, and institutional changes related to the growing interdisciplinarity of the field with respect to training the next generation of investigators to mitigate the burden of mental illness in youth.
Collapse
Affiliation(s)
- Ian H Gotlib
- Department of Psychology, Stanford University, Stanford, CA, USA
| | | | - Jessica P Uy
- Department of Psychology, Stanford University, Stanford, CA, USA
| |
Collapse
|
107
|
Chanda F, Lin KX, Chaurembo AI, Huang JY, Zhang HJ, Deng WH, Xu YJ, Li Y, Fu LD, Cui HD, Shu C, Chen Y, Xing N, Lin HB. PM 2.5-mediated cardiovascular disease in aging: Cardiometabolic risks, molecular mechanisms and potential interventions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176255. [PMID: 39276993 DOI: 10.1016/j.scitotenv.2024.176255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 09/10/2024] [Accepted: 09/11/2024] [Indexed: 09/17/2024]
Abstract
Air pollution, particularly fine particulate matter (PM2.5) with <2.5 μm in diameter, is a major public health concern. Studies have consistently linked PM2.5 exposure to a heightened risk of cardiovascular diseases (CVDs) such as ischemic heart disease (IHD), heart failure (HF), and cardiac arrhythmias. Notably, individuals with pre-existing age-related cardiometabolic conditions appear more susceptible. However, the specific impact of PM2.5 on CVDs susceptibility in older adults remains unclear. Therefore, this review addresses this gap by discussing the factors that make the elderly more vulnerable to PM2.5-induced CVDs. Accordingly, we focused on physiological aging, increased susceptibility, cardiometabolic risk factors, CVDs, and biological mechanisms. This review concludes by examining potential interventions to reduce exposure and the adverse health effects of PM2.5 in the elderly population. The latter includes dietary modifications, medications, and exploration of the potential benefits of supplements. By comprehensively analyzing these factors, this review aims to provide a deeper understanding of the detrimental effects of PM2.5 on cardiovascular health in older adults. This knowledge can inform future research and guide strategies to protect vulnerable populations from the adverse effects of air pollution.
Collapse
Affiliation(s)
- Francis Chanda
- Zhongshan Institute for Drug Discovery, SIMM, CAS, Zhongshan, Guangdong, China; State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China
| | - Kai-Xuan Lin
- Department of Cardiology, Zhongshan Hospital of Traditional Chinese Medicine Affiliated to Guangzhou University of Traditional Chinese Medicine, Zhongshan, Guangdong, China; Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Abdallah Iddy Chaurembo
- Zhongshan Institute for Drug Discovery, SIMM, CAS, Zhongshan, Guangdong, China; State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China
| | - Jian-Yuan Huang
- Zhongshan Institute for Drug Discovery, SIMM, CAS, Zhongshan, Guangdong, China; School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Hui-Juan Zhang
- Zhongshan Institute for Drug Discovery, SIMM, CAS, Zhongshan, Guangdong, China; School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou, China
| | - Wen-Hui Deng
- Zhongshan Institute for Drug Discovery, SIMM, CAS, Zhongshan, Guangdong, China; School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Yun-Jing Xu
- Zhongshan Institute for Drug Discovery, SIMM, CAS, Zhongshan, Guangdong, China; State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China
| | - Yuan Li
- Zhongshan Institute for Drug Discovery, SIMM, CAS, Zhongshan, Guangdong, China; Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Li-Dan Fu
- Zhongshan Institute for Drug Discovery, SIMM, CAS, Zhongshan, Guangdong, China; School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou, China
| | - Hao-Dong Cui
- Zhongshan Institute for Drug Discovery, SIMM, CAS, Zhongshan, Guangdong, China; School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, Guizhou, China
| | - Chi Shu
- Zhongshan Institute for Drug Discovery, SIMM, CAS, Zhongshan, Guangdong, China; Food Science College, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Yang Chen
- University of Chinese Academy of Sciences, Beijing, China; Research Center for Atmospheric Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, China
| | - Na Xing
- Zhongshan Institute for Drug Discovery, SIMM, CAS, Zhongshan, Guangdong, China.
| | - Han-Bin Lin
- Zhongshan Institute for Drug Discovery, SIMM, CAS, Zhongshan, Guangdong, China; State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
108
|
Aydın GZ, Özkan B. Evaluation of low-and middle-income countries according to cardiovascular disease risk factors by using pythagorean fuzzy AHP and TOPSIS methods. BMC Med Inform Decis Mak 2024; 24:363. [PMID: 39609774 PMCID: PMC11605925 DOI: 10.1186/s12911-024-02769-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 11/14/2024] [Indexed: 11/30/2024] Open
Abstract
BACKGROUND Cardiovascular disease risk factors play a crucial role in determining individuals' future health status and significantly affect health. This paper aimed to address cardiovascular disease risk factors in low- and middle-income countries using multi-criteria decision-making methods. METHODS In line with this objective, 22 evaluation criteria were identified. Due to the unequal importance levels of the criteria, the interval-valued Pythagorean Fuzzy AHP (PF-AHP) method was employed for weighting. The TOPSIS method was utilized to rank the countries. RESULTS The application of interval-valued PF-AHP revealed that metabolic, behavioral, and economic factors are more important in contributing to disease risk. Among adults, tobacco use prevalence was identified as the most significant risk factor. According to the TOPSIS method, Lebanon, Jordan, Solomon Islands, Serbia, and Bulgaria ranked highest, while Timor Leste, Benin, Ghana, Niger, and Ethiopia ranked lowest. CONCLUSIONS Identifying disease risk factors and preventing or reducing risks are crucial in combating cardiovascular diseases. Therefore, it is recommended that countries ranking higher take remedial actions to reduce disease risk.
Collapse
Affiliation(s)
- Gizem Zevde Aydın
- Department of Healthcare Management, Faculty of Health Sciences, Ondokuz Mayıs University, Samsun, Türkiye.
| | - Barış Özkan
- Department of Industrial Engineering, Faculty of Engineering, Ondokuz Mayıs University, Samsun, Türkiye
| |
Collapse
|
109
|
Kim HJ, Oh YH, Park SJ, Song J, Kim K, Choi D, Jeong S, Park SM. Combined Effects of Air Pollution and Changes in Physical Activity With Cardiovascular Disease in Patients With Dyslipidemia. J Am Heart Assoc 2024:e035933. [PMID: 39604032 DOI: 10.1161/jaha.124.035933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 10/30/2024] [Indexed: 11/29/2024]
Abstract
BACKGROUND Sedentary behavior elevates cardiovascular disease (CVD) risk in patients with dyslipidemia. Increasing physical activity (PA) is recommended alongside pharmacological therapy to prevent CVD, though benefits across environmental conditions are unclear. METHODS AND RESULTS We analyzed data from 113 918 newly diagnosed patients with dyslipidemia (2009-2012) without prior CVD, sourced from the Korea National Health Insurance Service. Ambient particulate matter (PM) 2.5 and PM10 levels were collected from the National Ambient Air Monitoring System in South Korea. Changes in PA, measured in metabolic equivalents of task-min/wk before and after dyslipidemia diagnosis, were evaluated for associations with air pollution levels and CVD risk using Cox proportional hazards regression. Patients were followed from January 1, 2013, until CVD onset, death, or December 31, 2021. Among patients exposed to low to moderate PM2.5 levels (≤25 μg/m3), increasing PA from inactive to ≥1000 metabolic equivalents of tasks-min/wk was associated with a lower risk of CVD (adjusted hazard ratio, 0.82 [95% CI, 0.70-0.97]; P for trend=0.022). In high PM2.5 (>25 μg/m3) conditions, increasing PA from inactive and decreasing PA from ≥1000 metabolic equivalents of task-min/wk was associated with reduced (P for trend=0.010) and elevated (P for trend=0.028) CVD risks, respectively. For PM10, increased PA was linked to reduced CVD risk (P for trend=0.002) and decreased PA to elevated risk (P for trend=0.042) in low to moderate PM10 (≤50 μg/m3) conditions, though benefits diminished at high PM10 (>50 μg/m3) exposures. CONCLUSIONS Promoting PA, while considering the high potential cardiovascular risk associated with air pollution, may be an effective intervention against CVD in patients with dyslipidemia.
Collapse
Affiliation(s)
- Hye Jun Kim
- Department of Biomedical Sciences Seoul National University College of Medicine Seoul South Korea
| | - Yun Hwan Oh
- Department of Family Medicine Chung-Ang University Gwangmyeong Hospital, Chung-Ang University College of Medicine Gwangmyeong South Korea
| | - Sun Jae Park
- Department of Biomedical Sciences Seoul National University College of Medicine Seoul South Korea
| | - Jihun Song
- Department of Biomedical Sciences Seoul National University College of Medicine Seoul South Korea
| | - Kyuwoong Kim
- National Cancer Control Institute, National Cancer Center Goyang South Korea
- Graduate School of Cancer Science and Policy, National Cancer Center Goyang South Korea
| | - Daein Choi
- Department of Medicine Icahn School of Medicine at Mount Sinai, Mount Sinai Beth Israel New York City NY
- Metabolism and Lipids Unit Cardiovascular Institute, Marie-Josee and Henry R. Kravis Center for Cardiovascular Health, Mount Sinai Medical Center, Icahn School of Medicine at Mount Sinai New York NY
| | - Seogsong Jeong
- Department of Biomedical Informatics Korea University College of Medicine Seoul South Korea
- Biomedical Research Center Korea University Guro Hospital, Korea University College of Medicine Seoul South Korea
| | - Sang Min Park
- Department of Biomedical Sciences Seoul National University College of Medicine Seoul South Korea
- Department of Family Medicine Seoul National University Hospital Seoul South Korea
| |
Collapse
|
110
|
Mathieu-Campbell ME, Guo C, Grieshop AP, Richmond-Bryant J. Calibration of PurpleAir low-cost particulate matter sensors: model development for air quality under high relative humidity conditions. ATMOSPHERIC MEASUREMENT TECHNIQUES 2024; 17:6735-6749. [PMID: 40078349 PMCID: PMC11900072 DOI: 10.5194/amt-17-6735-2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/14/2025]
Abstract
The primary source of measurement error from widely used particulate matter (PM) PurpleAir sensors is ambient relative humidity (RH). Recently, the US EPA developed a national correction model for PM2.5 concentrations measured by PurpleAir sensors (Barkjohn model). However, their study included few sites in the southeastern US, the most humid region of the country. To provide high-quality spatial and temporal data and inform community exposure risks in this area, our study developed and evaluated PurpleAir correction models for use in the warm-humid climate zones of the US. We used hourly PurpleAir data and hourly reference-grade PM2.5 data from the EPA Air Quality System database from January 2021 to August 2023. Compared with the Barkjohn model, we found improved performance metrics, with error metrics decreasing by 16 %-23 % when applying a multilinear regression model with RH and temperature as predictive variables. We also tested a novel semi-supervised clustering method and found that a nonlinear effect between PM2.5 and RH emerges around RH of 50 %, with slightly greater accuracy. Therefore, our results suggested that a clustering approach might be more accurate in high humidity conditions to capture the nonlinearity associated with PM particle hygroscopic growth.
Collapse
Affiliation(s)
| | - Chuqi Guo
- Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC 27695, USA
| | - Andrew P. Grieshop
- Department of Civil, Construction and Environmental Engineering, North Carolina State University, Raleigh, NC 27695, USA
| | - Jennifer Richmond-Bryant
- Center for Geospatial Analytics, North Carolina State University, Raleigh, NC 27695, USA
- Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC 27695, USA
| |
Collapse
|
111
|
Zhang F, Wang Z, Li L, Su X, Hu Y, Du Y, Zhan Q, Zhang T, An Q, Liu T, Wu Y. Long-term exposure to low-level ozone and the risk of hypertension: A prospective cohort study conducted in a low-pollution region of southwestern China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 952:175900. [PMID: 39216766 DOI: 10.1016/j.scitotenv.2024.175900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/27/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND The current evidence regarding the association between long-term exposure to ozone (O3) and hypertension incidence is limited and inconclusive, particularly at low O3 concentrations. Therefore, our research aims to investigate the potential link between long-term O3 exposure and hypertension in a region with low pollution levels. METHODS From 2010 to 2012, we conducted a cohort prospective study by recruiting nearly 10,000 attendees through multistage cluster random sampling in Guizhou Province, China. These individuals were followed up from 2016 to 2020, and 5563 cases were finally included in the analysis. We employed a high-resolution model with both temporal and spatial accuracy to estimate the maximum daily 8-h average O3 and utilized annual average O3 concentrations for three exposure periods (2009_10, 2007_10, 2005_10) as the exposure indicator. Time-dependent covariates Cox regression model was exerted to estimate the hazard ratios (HRs) of hypertension incidence. Generalized linear model was employed to assess the association between O3 and systolic, diastolic, pulse, and mean arterial pressure. The dose-response curve was explored using a restricted cubic spline function. RESULTS 1213 hypertension incidents occurred during 39,001.80 person-years, with an incidence density of 31.10/1000 Person Years (PYs). The average O3 concentrations during the three exposure periods were 66.76 μg/m3, 67.85 μg/m3, and 67.21 μg/m3, respectively. Per 1 μg/m3 increase in O3 exposure was associated with 11 % increase in the incidence of hypertension in the single-pollution model, and the association was more pronounced in Han, urban, and higher altitude areas. SBP, PP, and MAP were increased by 0.619 (95 % CI, 0.361-0.877) mm Hg, 0.477 (95 % CI, 0.275-0.679) mm Hg, 0.301 (95 % CI, 0.127-0.475) mm Hg, respectively. Furthermore, we observed a nonlinear exposure-response relationship between O3 and hypertension incidence. CONCLUSIONS Long-term exposure to low-level O3 exposure is associated with an increased risk of hypertension.
Collapse
Affiliation(s)
- Fuyan Zhang
- School of Public Health, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, No. 6 Ankang Road, Guian New Area, Guizhou 561113, China
| | - Ziyun Wang
- School of Public Health, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, No. 6 Ankang Road, Guian New Area, Guizhou 561113, China
| | - Ling Li
- Chronic Disease Prevention and Cure Research Institute, Guizhou Provincial Center for Disease Control and Prevention, Guiyang, Guizhou 555004, China
| | - Xu Su
- Chronic Disease Prevention and Cure Research Institute, Guizhou Provincial Center for Disease Control and Prevention, Guiyang, Guizhou 555004, China
| | - Yuandong Hu
- Chronic Disease Prevention and Cure Research Institute, Guizhou Provincial Center for Disease Control and Prevention, Guiyang, Guizhou 555004, China
| | - Yu Du
- Chronic Disease Prevention and Cure Research Institute, Guizhou Provincial Center for Disease Control and Prevention, Guiyang, Guizhou 555004, China
| | - Qingqing Zhan
- School of Public Health, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, No. 6 Ankang Road, Guian New Area, Guizhou 561113, China
| | - Tianlin Zhang
- School of Public Health, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, No. 6 Ankang Road, Guian New Area, Guizhou 561113, China
| | - Qinyu An
- Guizhou University Medical College, Guiyang, Guizhou 550025, China
| | - Tao Liu
- School of Public Health, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, No. 6 Ankang Road, Guian New Area, Guizhou 561113, China; Chronic Disease Prevention and Cure Research Institute, Guizhou Provincial Center for Disease Control and Prevention, Guiyang, Guizhou 555004, China; Guizhou University Medical College, Guiyang, Guizhou 550025, China.
| | - Yanli Wu
- Chronic Disease Prevention and Cure Research Institute, Guizhou Provincial Center for Disease Control and Prevention, Guiyang, Guizhou 555004, China.
| |
Collapse
|
112
|
Chou X, Fang M, Shen Y, Jiang C, Miao L, Yang L, Wu Z, Yao X, Ma K, Qiao K, Lin Z. Ambient PMs pollution, blood pressure, potential mediation by short-chain fatty acids: A prospective panel study of young adults in China. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 287:117316. [PMID: 39520747 DOI: 10.1016/j.ecoenv.2024.117316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/21/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND The concurrent effects of particulate matter (PM) on both blood pressure (BP) and short-chain fatty acids (SCFAs) are insufficiently explored, with limited research on the potential mediating roles of SCFAs. METHODS In this prospective panel study with 4 follow-ups, we recruited 40 college students in Hefei, China, to assess the impacts of short-term exposure to PM (aerodynamic diameter ≤10 μm (PM10), ≤2.5 μm (PM2.5), and ≤1 μm (PM1)) on BP and SCFAs, along with potential mechanisms. Real-time PM data, urinary SCFAs levels, and BP indicators were systematically collected. Linear mixed-effects models assessed the relationships between PM, SCFAs, and BP. Mediation analyses explored SCFAs' mediating role in the PM-BP association. RESULTS PM exposure was positively linked to BP and negatively associated with SCFAs. For a 10 μg/m3 rise in PM10 at lag 0-72 h, there were notable reductions of 0.0019 % (95 %CI: -0.0028, -0.0010) in Acetic acid, 0.0262 % (-0.0369, -0.0155) in Propionic acid, and 0.0702 % (-0.1025, -0.0378) in Butyric acid. Systolic BP, diastolic BP, and mean arterial pressure (MAP) increased by 2.60 mmHg (0.96, 4.25), 2.24 mmHg (1.18, 3.31), and 2.36 mmHg (1.20, 3.53), respectively, per 10-μg/m3 rise in PM1 at lag 0-24 h. Decreased SCFAs levels explained significant portions (24.69-31.80 %) of the elevated MAP due to PM10. Stronger associations were found in females and individuals with abnormal BMI. CONCLUSIONS Our study shows that PM exposure decreases urinary SCFAs levels, which partially mediate the impact of PM on elevated BP. These findings enhance our comprehension of the pathways linking PM exposure to BP changes.
Collapse
Affiliation(s)
- Xin Chou
- Department of Occupational Disease, Shanghai Pulmonary Hospital affiliated to Tongji University, Shanghai 200433, China
| | - Miao Fang
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei 230032, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei 230032, China
| | - Yue Shen
- Department of Occupational Disease, Shanghai Pulmonary Hospital affiliated to Tongji University, Shanghai 200433, China
| | - Cunzhong Jiang
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei 230032, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei 230032, China
| | - Lin Miao
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei 230032, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei 230032, China
| | - Liyan Yang
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei 230032, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei 230032, China
| | - Zexi Wu
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei 230032, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei 230032, China
| | - Xiangyu Yao
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei 230032, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei 230032, China
| | - Kunpeng Ma
- Department of Occupational Disease, Shanghai Pulmonary Hospital affiliated to Tongji University, Shanghai 200433, China
| | - Kun Qiao
- Center for Reproductive Medicine, Shanghai Tenth People's Hospital Affiliated to Tongji University, Shanghai 200072, China.
| | - Zhijing Lin
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei 230032, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei 230032, China.
| |
Collapse
|
113
|
Zhang J, Luo L, Chen G, Ai B, Wu G, Gao Y, Lip GYH, Lin H, Chen Y. Associations of ambient air pollution with incidence and dynamic progression of atrial fibrillation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175710. [PMID: 39181259 DOI: 10.1016/j.scitotenv.2024.175710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 07/30/2024] [Accepted: 08/20/2024] [Indexed: 08/27/2024]
Abstract
The influence of air pollution on dynamic changes in clinical state from healthy to atrial fibrillation (AF), further AF-related complications and ultimately, death are unclear. We aimed to investigate the relationships between air pollution and the occurrence and progression trajectories of AF. We retrieved 442,150 participants free of heart failure (HF), myocardial infarction (MI), stroke and dementia at baseline from UK Biobank. Exposures to air pollution for each transition stage were estimated at the geocoded residential address of each participant using the bilinear interpolation approach. The outcomes were incident AF, complications, and death. Multi-stage models were used to evaluate the associations between air pollution and dynamic progression of AF. Over a 12.6-year median follow-up, a total of 21,670 incident AF patients were identified, of whom, 4103 developed complications and 1331 died. PM2.5, PM10, NOx and NO2 were differentially positively associated, while O3 was negatively associated with risks of progression trajectories of AF. PM2.5 exposure was significantly associated with an increased risk of progression. The associations of PM2.5, PM10, NOx, and NO2 on incident AF were generally more pronounced compared to other transitions. The cumulative transition probabilities were generally higher in individuals with higher exposure levels of PM2.5, PM10, NOx, and NO2 and lower exposure to O3. Air pollution could potentially have a role in increasing the risk of both the occurrence and progression of AF, emphasizing the significance of air pollution interventions in both the primary prevention of AF and the management of AF-related outcomes.
Collapse
Affiliation(s)
- Junguo Zhang
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Linna Luo
- Department of Endoscopy, Sun Yat-sen University Cancer Center, Guangzhou, China; State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Ge Chen
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Baozhuo Ai
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Gan Wu
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Yanhui Gao
- Department of Medical Statistics, School of Basic Medicine and Public Health, Jinan University, Guangzhou, China
| | - Gregory Y H Lip
- Liverpool Centre for Cardiovascular Science at University of Liverpool, Liverpool John Moores University and Liverpool Heart & Chest Hospital, Liverpool, United Kingdom; Danish Center for Health Services Research, Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - Hualiang Lin
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, China.
| | - Yangxin Chen
- Department of Cardiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.
| |
Collapse
|
114
|
Zhou Y, Li X, Fouxi Zhao, Yao C, Wang Y, Tang E, Wang K, Yu L, Zhou Z, Wei J, Li D, Liu T, Cai T. Rural-urban difference in the association between particulate matters and stroke incidence: The evidence from a multi-city perspective cohort study. ENVIRONMENTAL RESEARCH 2024; 261:119695. [PMID: 39102936 DOI: 10.1016/j.envres.2024.119695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/15/2024] [Accepted: 07/26/2024] [Indexed: 08/07/2024]
Abstract
Available evidence suggests that air pollutants can cause stroke, but little research has investigated the confounding effects of urban-rural differences. Here, we investigated the urban-rural difference in the correlation between particulate matter (PM2.5 and PM10) exposure and stroke. This cohort study was based on a prospective multi-city community-based cohort (Guizhou Population Health Cohort Study (GPHCS)) in Guizhou Province, China. A total of 7988 eligible individuals (≥18 years) were enrolled with baseline assessments from November 2010 to December 2012, and follow-up was completed by June 2020. Two major particulate matters (PMs, including PM2.5 and PM10) were assessed monthly from 2000 by using satellite-based spatiotemporal models. The risk of stroke was estimated using a Cox proportional hazard regression model. The association between particulate matters' exposure and stroke in different areas (total, urban, and rural) and the potential modification effect of comorbidities (hypertension, diabetes, and dyslipidemia) and age (≤65/>65 years) were examined using stratified analyses. The risk of stroke increased for every 10 μg/m3 increase in mean PMs' concentrations during the previous 1 year at the residential address (HR: 1.26, 95%CI: 1.24, 1.29 (PM2.5); HR: 1.13, 95%CI: 1.11, 1.15 (PM10)). The presence of diabetes and dyslipidemia increased the risk of PM10-induced stroke in whole, urban, and rural areas. Specifically, people living in rural areas were more likely to experience the effects of PMs in causing a stroke. The risk of stroke due to PMs was statistically increased in the young and older populations living in rural areas. In conclusion, long-term exposure to PMs increased the risk of stroke and such association was more pronounced in people living in rural areas with lower income levels. Diabetes and dyslipidemia seemed to strengthen the association between PMs and stroke.
Collapse
Affiliation(s)
- Yumeng Zhou
- Department of Epidemiology, College of Preventive Medicine, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Xuejiao Li
- Guizhou Center for Disease Control and Prevention, Guiyang, Guizhou, 550004, China
| | - Fouxi Zhao
- Guizhou Center for Disease Control and Prevention, Guiyang, Guizhou, 550004, China
| | - Chunyan Yao
- Department of Epidemiology, College of Preventive Medicine, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Yiying Wang
- Guizhou Center for Disease Control and Prevention, Guiyang, Guizhou, 550004, China
| | - Enjie Tang
- Department of Epidemiology, College of Preventive Medicine, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Kexue Wang
- Department of Epidemiology, College of Preventive Medicine, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Lisha Yu
- Guizhou Center for Disease Control and Prevention, Guiyang, Guizhou, 550004, China
| | - Zhujuan Zhou
- Department of Neurology, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Jing Wei
- Department of Atmospheric and Oceanic Science, Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD, 20742, United States
| | - Dawei Li
- Department of Epidemiology, College of Preventive Medicine, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Tao Liu
- Guizhou Center for Disease Control and Prevention, Guiyang, Guizhou, 550004, China.
| | - Tongjian Cai
- Department of Epidemiology, College of Preventive Medicine, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University (Third Military Medical University), Chongqing, 400038, China.
| |
Collapse
|
115
|
Forastiere F, Orru H, Krzyzanowski M, Spadaro JV. The last decade of air pollution epidemiology and the challenges of quantitative risk assessment. Environ Health 2024; 23:98. [PMID: 39543692 PMCID: PMC11566658 DOI: 10.1186/s12940-024-01136-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Accepted: 10/21/2024] [Indexed: 11/17/2024]
Abstract
Epidemiologic research and quantitative risk assessment play a crucial role in transferring fundamental scientific knowledge to policymakers so they can take action to reduce the burden of ambient air pollution. This commentary addresses several challenges in quantitative risk assessment of air pollution that require close attention. The background to this discussion provides a summary of and conclusions from the epidemiological evidence on ambient air pollution and health outcomes accumulated since the 1990s. We focus on identifying relevant exposure-health outcome pairs, the associated concentration-response functions to be applied in a risk assessment, and several caveats in their application. We propose a structured and comprehensive framework for assessing the evidence levels associated with each exposure-health outcome pair within a health impact assessment context. Specific issues regarding the use of global or regional concentration-response functions, their shape, and the range of applicability are discussed.
Collapse
Affiliation(s)
- Francesco Forastiere
- National Research Council, IFT, Palermo, Italy.
- Environmental Research Group, Imperial College, London, UK.
| | - Hans Orru
- Unit of Sustainable Health, Umea University, Umea, Sweden
- Institute of Family Medicine and Public Health, University of Tartu, Tartu, Estonia
| | | | - Joseph V Spadaro
- Spadaro Environmental Research Consultants (SERC), Philadelphia, PA, USA
| |
Collapse
|
116
|
Lachowicz JI, Gać P. Short- and Long-Term Effects of Inhaled Ultrafine Particles on Blood Pressure: A Systematic Review and Meta-Analysis. J Clin Med 2024; 13:6802. [PMID: 39597946 PMCID: PMC11594296 DOI: 10.3390/jcm13226802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 11/04/2024] [Accepted: 11/07/2024] [Indexed: 11/29/2024] Open
Abstract
Background: Air pollution contributes to up to 60% of premature mortality worldwide by worsening cardiovascular conditions. Ultrafine particles (UFPs) may negatively affect cardiovascular outcomes, and epidemiological studies have linked them to short- and long-term blood pressure (BP) imbalance. Methods: We conducted a systematic review and meta-analysis of the short- and long-term effects of UFP exposure on systolic (SBP) and diastolic (DBP) blood pressure. Eligibility criteria were established using the Population, Exposure, Comparator, Outcome, and Study Design (PECOS) model, and literature searches were conducted in Web of Science, PubMed, Embase, and Scopus for studies published between 1 January 2013 and 9 October 2024. Risk of Bias (RoB) was assessed following World Health Organization (WHO) instructions. Separate meta-analyses were performed for the short- and long-term effects of UFP exposure on SBP and DBP. Additionally, we analyzed SBP and DBP imbalances across different timespans following short-term exposure. Results: The results showed an increase in BP during short-term UFP exposure, which returned to baseline values after a few hours. Changes in SBP were greater than in DBP following both short- and long-term exposure. Prolonged exposure to UFPs is associated with increased SBP and concurrently low DBP values. Chronic exposure to UFPs may lead to a persistent increase in SBP, even without a concurrent increase in DBP. Conclusions: The findings presented here highlight that UFPs may contribute to worsening cardiovascular outcomes in vulnerable populations living in air-polluted areas.
Collapse
Affiliation(s)
- Joanna Izabela Lachowicz
- Department of Population Health, Division of Environmental Health, Occupational Medicine and Epidemiology, Wroclaw Medical University, Mikulicza-Radeckiego 7, PL 50-368 Wroclaw, Poland;
| | | |
Collapse
|
117
|
Shi H, Zheng G, Wang C, Qian SE, Zhang J, Wang X, Vaughn MG, McMillin SE, Lin H. Air pollution associated with cardiopulmonary disease and mortality among participants with preserved ratio impaired spirometry. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 950:175395. [PMID: 39122030 DOI: 10.1016/j.scitotenv.2024.175395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 07/25/2024] [Accepted: 08/06/2024] [Indexed: 08/12/2024]
Abstract
BACKGROUND Epidemiological evidence regarding the association between air pollutants and cardiopulmonary disease, mortality in individuals with preserved ratio impaired spirometry (PRISm), and their combined effects remains unclear. METHODS We followed 36,149 participants with PRISm in the UK Biobank study. Annual concentrations of PM2.5, PM10, NO2, NOx, and SO2 at residential addresses were determined using a bilinear interpolation method, accounting for address changes. A multistate model assessed the dynamic associations between air pollutants and cardiopulmonary diseases and mortality in PRISm. Quantile g-computation was used to investigate the joint effects of air pollutants. RESULTS Long-term exposure to PM2.5, PM10, NO2, NOx, and SO2 was significantly associated with the risk of cardiopulmonary disease in PRISm. The corresponding hazard ratios (HRs) [95 % confidence intervals (95 % CIs)] per interquartile range (IQR) were 1.49 (1.43, 1.54), 1.52 (1.46, 1.57), 1.34 (1.30, 1.39), 1.30 (1.26, 1.34), and 1.44 (1.41, 1.48), respectively. For mortality, the corresponding HRs (95 % CIs) per IQR were 1.36 (1.25, 1.47), 1.35 (1.24, 1.46), 1.27 (1.18, 1.36), 1.23 (1.15, 1.31), and 1.29 (1.20, 1.39), respectively. In PRISm, quantile g-computation analysis demonstrated that a quartile increase in exposure to a mixture of all air pollutants was positively associated with the risk of cardiopulmonary disease and mortality, with HRs (95 % CIs) of 1.84 (1.76, 3.84) and 1.45 (1.32, 1.57), respectively. CONCLUSION Long-term individual and joint exposure to air pollutants (PM2.5, PM10, NO2, NOx, and SO2) might be an important risk factor for cardiopulmonary disease and mortality in high-risk populations with PRISm.
Collapse
Affiliation(s)
- Hui Shi
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Guzhengyue Zheng
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Chongjian Wang
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Samantha E Qian
- College for Public Health & Social Justice, Saint Louis University, Saint Louis, MO 63104, USA
| | - Jingyi Zhang
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Xiaojie Wang
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Michael G Vaughn
- School of Social Work, College for Public Health & Social Justice, Saint Louis University, Saint Louis, MO 63103, USA
| | - Stephen Edward McMillin
- School of Social Work, College for Public Health & Social Justice, Saint Louis University, Saint Louis, MO 63103, USA
| | - Hualiang Lin
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| |
Collapse
|
118
|
Tian Y, Ma Y, Xu R, Wu Y, Li S, Hu Y, Guo Y. Landscape fire PM 2.5 and hospital admissions for cause-specific cardiovascular disease in urban China. Nat Commun 2024; 15:9604. [PMID: 39505861 PMCID: PMC11542041 DOI: 10.1038/s41467-024-54095-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 10/29/2024] [Indexed: 11/08/2024] Open
Abstract
There is a growing interest in the health impacts of PM2.5 originating from landscape fires. We conducted a time-series study to investigate the association between daily exposure to landscape fire PM2.5 and hospital admissions for cardiovascular events in 184 major Chinese cities. We developed a machine learning model combining outputs from chemical transport models, meteorological information and observed air pollution data to determine daily concentrations of landscape fire PM2.5. Furthermore, we fitted quasi-Poisson regression to evaluate the link between landscape fire PM2.5 concentrations and cardiovascular hospitalizations in each city, and conducted random-effects meta-analysis to pool the city-specific estimates. Here we show that, on a national scale, a rise of 1-μg/m3 in landscape fire PM2.5 concentrations is positively related to a same-day 0.16% (95% confidence interval: 0.01%-0.32%) increase in hospital admissions for cardiovascular disease, 0.28% (0.12%-0.44%) for ischemic heart disease, and 0.25% (0.02%-0.47%) for ischemic stroke. The associations remain significant even after adjusting for other sources of PM2.5. Our findings indicate that transient elevation in landscape fire PM2.5 levels may increase risk of cardiovascular diseases.
Collapse
Affiliation(s)
- Yaohua Tian
- Ministry of Education Key Laboratory of Environment and Health, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No.13 Hangkong Road, Wuhan, China
| | - Yudiyang Ma
- Ministry of Education Key Laboratory of Environment and Health, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No.13 Hangkong Road, Wuhan, China
| | - Rongbin Xu
- Climate, Air Quality Research Unit, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Yao Wu
- Climate, Air Quality Research Unit, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Shanshan Li
- Climate, Air Quality Research Unit, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Yonghua Hu
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, No.38 Xueyuan Road, Beijing, China.
| | - Yuming Guo
- Climate, Air Quality Research Unit, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia.
| |
Collapse
|
119
|
Khraishah H, Rajagopalan S. Inhaling Poor Health: The Impact of Air Pollution on Cardiovascular Kidney Metabolic Syndrome. Methodist Debakey Cardiovasc J 2024; 20:47-58. [PMID: 39525378 PMCID: PMC11545917 DOI: 10.14797/mdcvj.1487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 09/20/2024] [Indexed: 11/16/2024] Open
Abstract
Air pollution, mostly from fossil fuel sources, is the leading environmental cause of global morbidity and mortality and is intricately linked to climate change. There is emerging evidence indicating that air pollution imposes most of its risk through proximate cardiovascular kidney and metabolic (CKM) etiologies. Indeed, there is compelling evidence linking air pollution to the genesis of insulin resistance, type 2 diabetes, hypertension, and other risk factors. Air pollution frequently coexists with factors such as noise, with levels and risks influenced substantially by additional factors such as social determinants and natural and built environment features. Persistent disparities regarding the impact and new sources of air pollution, such as wildfires attributable to climate change, have renewed the urgency to better understand root sources, characterize their health effects, and disseminate this information for personal protection and policy impacts. In this review, we summarize evidence associating air pollution with cardiovascular health, the impact of air pollution on CKM health, and how interactions with other exposures and personal characteristics may modify these associations. Finally, we discuss new integrated approaches to capture risk from air pollution in the context of an exposomic framework.
Collapse
Affiliation(s)
- Haitham Khraishah
- University Hospitals, Harrington Heart & Vascular Institute, Case Western Reserve University, Cleveland, Ohio, US
| | - Sanjay Rajagopalan
- University Hospitals, Harrington Heart & Vascular Institute, Case Western Reserve University, Cleveland, Ohio, US
| |
Collapse
|
120
|
Gaona GA, Kassamali AA, Isakadze N, Martin SS. Harnessing Wearables and Digital Technologies to Decode the Cardiovascular Exposome. Methodist Debakey Cardiovasc J 2024; 20:59-70. [PMID: 39525376 PMCID: PMC11545923 DOI: 10.14797/mdcvj.1459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 08/29/2024] [Indexed: 11/16/2024] Open
Abstract
The cardiovascular exposome encompasses the array of external and internal factors affecting cardiovascular health throughout life, inviting comprehensive monitoring and analysis to enhance prevention, diagnosis, and treatment strategies. Wearable and digital technologies have emerged as promising tools in this domain, offering longitudinal, real-time data on physiological parameters such as heart rate, heart rhythm, physical activity, and sleep patterns. This review explores the advancements in wearable sensor technology, the methodologies for data collection and analysis, and the integration of these technologies into clinical practice and research. Primary findings indicate significant improvements in device accuracy and functionality, facilitated by enhanced sensor technology, artificial intelligence, and data connectivity. These advancements enable precise monitoring, early detection of cardiovascular anomalies, and personalized healthcare interventions. Ultimately, wearables and digital health technologies have the potential to facilitate a deeper understanding of cardiovascular disease and behavior and bridge gaps in traditional healthcare models to help usher in more efficient, personalized, patient-centered care.
Collapse
Affiliation(s)
- Geyner A. Gaona
- Osler Medical Residency, Johns Hopkins Hospital, Baltimore, Maryland, US
| | | | - Nino Isakadze
- Johns Hopkins School of Medicine, Baltimore, Maryland, US
| | - Seth S. Martin
- Johns Hopkins School of Medicine, Baltimore, Maryland, US
| |
Collapse
|
121
|
Dong S, Yu B, Yin C, Li Y, Zhong W, Feng C, Lin X, Qiao X, Yin Y, Wang Z, Chen T, Liu H, Jia P, Li X, Yang S. Associations between PM 2.5 and its chemical constituents and blood pressure: a cross-sectional study. J Hypertens 2024; 42:1897-1905. [PMID: 39248113 DOI: 10.1097/hjh.0000000000003795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 05/31/2024] [Indexed: 09/10/2024]
Abstract
OBJECTIVES To investigate the associations between PM 2.5 and its chemical constituents with blood pressure (BP), assess effects across BP quantiles, and identify the key constituent elevating BP. METHODS A total of 36 792 adults were included in the cross-sectional study, representing 25 districts/counties of southeast China. Quantile regression models were applied to estimate the associations of PM 2.5 and its chemical constituents (ammonium [NH 4+ ], nitrate [NO 3- ], sulfate [SO 42- ], black carbon [BC], organic matter [OM]) with systolic blood pressure (SBP), diastolic blood pressure (DBP), and mean artery pressure (MAP). A weighted quantile sum (WQS) index was used to estimate the relative importance of each PM 2.5 chemical constituent to the joint effect on BP. RESULTS The adverse effects of each interquartile range (IQR) increase in PM 2.5 , NH 4+ , NO 3- , SO 42- , and BC on BP were found to be greater with elevated BP, especially when SBP exceeded 133 mmHg and DBP exceeded 82 mmHg. Each IQR increase in all five PM 2.5 chemical constituents was associated with elevated SBP ( β [95% CI]: 0.90 [0.75, 1.05]), DBP ( β : 0.44 [0.34, 0.53]), and MAP ( β : 0.57 [0.45, 0.69]), NH 4+ (for SBP: weight = 99.43%; for DBP: 12.78%; for MAP: 60.73%) and BC (for DBP: 87.06%; for MAP: 39.07%) predominantly influencing these effects. The joint effect of PM 2.5 chemical constituents on risks for elevated SBP and DBP exhibited an upward trend from the 70 th quantile (SBP exceeded 133 mmHg, DBP exceeded 82 mmHg). CONCLUSION Long-term exposure to PM 2.5 and its chemical constituents was associated with increased risk for elevated BP, with NH 4+ and BC being the main contributors, and such associations were significantly stronger at 70th to 90th quantiles (SBP exceeded 133 mmHg, DBP exceeded 82 mmHg).
Collapse
Affiliation(s)
- Shu Dong
- West China School of Public Health and West China Fourth Hospital, Sichuan University
| | - Bin Yu
- West China School of Public Health and West China Fourth Hospital, Sichuan University
- Institute for Disaster Management and Reconstruction, Sichuan University - The Hong Kong Polytechnic University, Chengdu
| | - Chun Yin
- School of Resource and Environmental Sciences
- International Institute of Spatial Lifecourse Health (ISLE), Wuhan University, Wuhan, China
| | - Yuchen Li
- International Institute of Spatial Lifecourse Health (ISLE), Wuhan University, Wuhan, China
- MRC Epidemiology Unit, University of Cambridge, Cambridge, UK
| | - Wenling Zhong
- Fujian Provincial Center for Disease Control and Prevention, Fuzhou
| | - Chuanteng Feng
- West China School of Public Health and West China Fourth Hospital, Sichuan University
- Institute for Disaster Management and Reconstruction, Sichuan University - The Hong Kong Polytechnic University, Chengdu
| | - Xi Lin
- Fujian Provincial Center for Disease Control and Prevention, Fuzhou
| | - Xu Qiao
- West China School of Public Health and West China Fourth Hospital, Sichuan University
- Institute for Disaster Management and Reconstruction, Sichuan University - The Hong Kong Polytechnic University, Chengdu
| | - Yanrong Yin
- Fujian Provincial Center for Disease Control and Prevention, Fuzhou
| | - Zihang Wang
- West China School of Public Health and West China Fourth Hospital, Sichuan University
| | - Tiehui Chen
- Fujian Provincial Center for Disease Control and Prevention, Fuzhou
| | - Hongyun Liu
- West China School of Public Health and West China Fourth Hospital, Sichuan University
| | - Peng Jia
- School of Resource and Environmental Sciences
- International Institute of Spatial Lifecourse Health (ISLE), Wuhan University, Wuhan, China
- Hubei Luojia Laboratory
- School of Public Health, Wuhan University, Wuhan, China
| | - Xiaoqing Li
- Fujian Provincial Center for Disease Control and Prevention, Fuzhou
| | - Shujuan Yang
- West China School of Public Health and West China Fourth Hospital, Sichuan University
- International Institute of Spatial Lifecourse Health (ISLE), Wuhan University, Wuhan, China
| |
Collapse
|
122
|
Li Y, Wang H, Xiao Y, Yang H, Wang S, Liu L, Cai H, Zhang X, Tang H, Wu T, Qiu G. Lipidomics identified novel cholesterol-independent predictors for risk of incident coronary heart disease: Mediation of risk from diabetes and aggravation of risk by ambient air pollution. J Adv Res 2024; 65:273-282. [PMID: 38104795 PMCID: PMC11519734 DOI: 10.1016/j.jare.2023.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 09/16/2023] [Accepted: 12/10/2023] [Indexed: 12/19/2023] Open
Abstract
INTRODUCTION Previous lipidomics studies have identified various lipid predictors for cardiovascular risk, however, with limited predictive increment, sometimes using too many predictor variables at the expense of practical efficiency. OBJECTIVES To search for lipid predictors of future coronary heart disease (CHD) with stronger predictive power and efficiency to guide primary intervention. METHODS We conducted a prospective nested case-control study involving 1,621 incident CHD cases and 1:1 matched controls. Lipid profiling of 161 lipid species for baseline fasting plasma was performed by liquid chromatography-mass spectrometry. RESULTS In search of CHD predictors, seven lipids were selected by elastic-net regression during over 90% of 1000 cross-validation repetitions, and the derived composite lipid score showed an adjusted odds ratio of 3.75 (95% confidence interval: 3.15, 4.46) per standard deviation increase. Addition of the lipid score into traditional risk model increased c-statistic to 0.736 by an increment of 0.077 (0.063, 0.092). From the seven lipids, we found mediation of CHD risk from baseline diabetes through sphingomyelin (SM) 41:1b with a considerable mediation proportion of 36.97% (P < 0.05). We further found that the positive associations of phosphatidylcholine (PC) 36:0a, SM 41:1b, lysophosphatidylcholine (LPC) 18:0 and LPC 20:3 were more pronounced among participants with higher exposure to fine particulate matter or its certain components, also to ozone for LPC 18:0 and LPC 20:3, while the negative association of cholesteryl ester (CE) 18:2 was attenuated with higher black carbon exposure (P < 0.05). CONCLUSION We identified seven lipid species with greatest predictive increment so-far achieved for incident CHD, and also found novel biomarkers for CHD risk stratification among individuals with diabetes or heavy air pollution exposure.
Collapse
Affiliation(s)
- Yingmei Li
- Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Hao Wang
- Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Yang Xiao
- Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Handong Yang
- Department of Cardiovascular Disease, Sinopharm Dongfeng General Hospital, Hubei University of Medicine, Shiyan, China
| | - Sihan Wang
- Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Ling Liu
- Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Hao Cai
- Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Xiaomin Zhang
- Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Huiru Tang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Metabonomics and Systems Biology Laboratory at Shanghai International Centre for Molecular Phenomics, Human Phenome Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Tangchun Wu
- Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.
| | - Gaokun Qiu
- Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.
| |
Collapse
|
123
|
Welker C, Huang J, Ramakrishna H. Air Quality and Cardiovascular Mortality: Analysis of Recent Data. J Cardiothorac Vasc Anesth 2024; 38:2801-2804. [PMID: 39214795 DOI: 10.1053/j.jvca.2024.07.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 07/24/2024] [Indexed: 09/04/2024]
Affiliation(s)
- Carson Welker
- Department of Anesthesia/Critical Care Medicine, Mayo Clinic, Rochester, Minnesota
| | - Jeffrey Huang
- Department of Critical Care Medicine, Mayo Clinic, Rochester, Minnesota
| | - Harish Ramakrishna
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota.
| |
Collapse
|
124
|
Thompson EJ, Alexander SE, Moneghetti K, Howden EJ. The interplay of climate change and physical activity: Implications for cardiovascular health. AMERICAN HEART JOURNAL PLUS : CARDIOLOGY RESEARCH AND PRACTICE 2024; 47:100474. [PMID: 39493443 PMCID: PMC11530813 DOI: 10.1016/j.ahjo.2024.100474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/01/2024] [Accepted: 10/05/2024] [Indexed: 11/05/2024]
Abstract
Cardiovascular disease (CVD) is one of the top contributors to global disease burden. Meeting the physical activity guidelines can effectively control and prevent several CVD risk factors, including obesity, hypertension and diabetes mellitus. The effects of climate change are multifactorial and have direct impacts on cardiovascular health. Increasing ambient temperatures, worsening air and water quality and urbanisation and loss of greenspace will also have indirect effects of cardiovascular health by impacting the ability and opportunity to participate in physical activity. A changing climate also has implications for large scale sporting events and policies regarding risk mitigation during exercise in hot climates. This review will discuss the impact of a changing climate on cardiovascular health and physical activity and the implications for the future of organised sport.
Collapse
Affiliation(s)
| | | | - Kegan Moneghetti
- Cardiometabolic Health and Exercise Physiology, Baker Heart and Diabetes Institute, Melbourne, Victoria 3004, Australia
| | - Erin J. Howden
- Cardiometabolic Health and Exercise Physiology, Baker Heart and Diabetes Institute, Melbourne, Victoria 3004, Australia
| |
Collapse
|
125
|
Azab SM, Doiron D, Schulze KM, Brook JR, Brauer M, Smith EE, Moody AR, Desai D, Friedrich MG, Bangdiwala SI, Zeraatkar D, Lee D, Dummer TJB, Poirier P, Tardif JC, Teo KK, Lear S, Yusuf S, Anand SS, de Souza RJ. Exposure to air pollutants and subclinical carotid atherosclerosis measured by magnetic resonance imaging: A cross-sectional analysis. PLoS One 2024; 19:e0309912. [PMID: 39480801 PMCID: PMC11527219 DOI: 10.1371/journal.pone.0309912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 08/20/2024] [Indexed: 11/02/2024] Open
Abstract
OBJECTIVES Long-term exposure to air pollution has been associated with higher risk of cardiovascular mortality. Less is known about the association of air pollution with initial development of cardiovascular disease. Herein, the association between low-level exposure to air pollutants and subclinical carotid atherosclerosis in adults without known clinical cardiovascular disease was investigated. DESIGN Cross-sectional analysis within a prospective cohort study. SETTING The Canadian Alliance for Healthy Hearts and Minds Cohort Study; a pan-Canadian cohort of cohorts. PARTICIPANTS Canadian adults (n = 6645) recruited between 2014-2018 from the provinces of British Columbia, Alberta, Ontario, Quebec, and Nova Scotia, were studied, for whom averages of exposures to nitrogen dioxide (NO2), ozone (O3), and fine particulate matter (PM2.5) were estimated for the years 2008-2012. MAIN OUTCOME MEASURE Carotid vessel wall volume (CWV) measured by magnetic resonance imaging (MRI). RESULTS In adjusted linear mixed models, PM2.5 was not consistently associated with CWV (per 5 μg/m3 PM2.5; adjusted estimate = -8.4 mm3; 95% Confidence Intervals (CI) -23.3 to 6.48; p = 0.27). A 5 ppb higher NO2 concentration was associated with 11.8 mm3 lower CWV (95% CI -16.2 to -7.31; p<0.0001). A 3 ppb increase in O3 was associated with 9.34 mm3 higher CWV (95% CI 4.75 to 13.92; p<0.0001). However, the coarse/insufficient O3 resolution (10 km) is a limitation. CONCLUSIONS In a cohort of healthy Canadian adults there was no consistent association between PM2.5 or NO2 and increased CWV as a measure of subclinical atherosclerosis by MRI. The reasons for these inconsistent associations warrant further study.
Collapse
Affiliation(s)
- Sandi M. Azab
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, Ontario, Canada
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Dany Doiron
- Research Institute of McGill University Health Centre, Montreal, Canada
| | - Karleen M. Schulze
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
- Population Health Research Institute, Hamilton, Ontario, Canada
| | - Jeffrey R. Brook
- Occupational and Environmental Health Division, Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
| | - Michael Brauer
- School of Population and Public Health, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Eric E. Smith
- Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta
| | - Alan R. Moody
- Department of Medical Imaging, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada
| | - Dipika Desai
- Population Health Research Institute, Hamilton, Ontario, Canada
| | - Matthias G. Friedrich
- Department of Medicine and Diagnostic Radiology, McGill University, Montreal, Quebec, Canada
| | - Shrikant I. Bangdiwala
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, Ontario, Canada
- Population Health Research Institute, Hamilton, Ontario, Canada
| | - Dena Zeraatkar
- Department of Biomedical Informatics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Douglas Lee
- Programming and Biostatistics, Institute for Clinical Evaluative Sciences, Toronto, Ontario, Canada
| | - Trevor J. B. Dummer
- School of Population and Public Health, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Paul Poirier
- Faculté de Pharmacie, Institut Universitaire de Cardiologie et de Pneumologie de Québec, Quebec City, Quebec, Canada
| | - Jean-Claude Tardif
- Montreal Heart Institute, Université de Montréal, Montreal, Quebec, Canada
| | - Koon K. Teo
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
- Population Health Research Institute, Hamilton, Ontario, Canada
| | - Scott Lear
- Faculty of Health Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Salim Yusuf
- Population Health Research Institute, Hamilton, Ontario, Canada
| | - Sonia S. Anand
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, Ontario, Canada
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
- Population Health Research Institute, Hamilton, Ontario, Canada
| | - Russell J. de Souza
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, Ontario, Canada
- Population Health Research Institute, Hamilton, Ontario, Canada
| | | |
Collapse
|
126
|
Wu T, Lan Y, Li G, Wang K, You Y, Zhu J, Ren L, Wu S. Association Between Long-Term Exposure to Ambient Air Pollution and Fasting Blood Glucose: A Systematic Review and Meta-Analysis. TOXICS 2024; 12:792. [PMID: 39590972 PMCID: PMC11598464 DOI: 10.3390/toxics12110792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 10/20/2024] [Accepted: 10/21/2024] [Indexed: 11/28/2024]
Abstract
Increasing studies are indicating a potential association between ambient air pollution exposure and fasting blood glucose (FBG), an indicator of prediabetes and diabetes. However, there is inconsistency within the existing literature. The aim of this study was to summarize the associations of exposures to particulate matters (PMs) (with aerodynamic diameters of ≤1 μm (PM1), ≤2.5 μm (PM2.5), and ≤10 μm (PM10), respectively) and gaseous pollutants (sulfur dioxide (SO2), nitrogen dioxide (NO2) and ozone (O3)) with FBG based on the existing epidemiological research for a better understanding of the relationship between air pollution and diabetes. Up to 2 July 2024, we performed a comprehensive literature retrieval from various electronic databases (PubMed, Web of Science, Scopus, and Embase). Random-effect and fixed-effect models were utilized to estimate the pooled percent changes (%) and 95% confidence intervals (CIs). Then, subgroup meta-analyses and meta-regression analyses were applied to recognize the sources of heterogeneity. There were 33 studies eligible for the meta-analysis. The results showed that for each 10 μg/m3 increase in long-term exposures to PM1, PM2.5, PM10, and SO2, the pooled percent changes in FBG were 2.24% (95% CI: 0.54%, 3.96%), 1.72% (95% CI: 0.93%, 2.25%), 1.19% (95% CI: 0.41%, 1.97%), and 0.52% (95% CI:0.40%, 0.63%), respectively. Long-term exposures to ambient NO2 and O3 were not related to alterations in FBG. In conclusion, our findings support that long-term exposures to PMs of various aerodynamic diameters and SO2 are associated with significantly elevated FBG levels.
Collapse
Affiliation(s)
- Tong Wu
- Department of Occupational and Environmental Health, School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China
- Key Laboratory of Environment and Genes Related to Diseases (Xi’an Jiaotong University), Ministry of Education, Xi’an 710061, China
- Key Laboratory of Trace Elements and Endemic Diseases in Ministry of Health, Xi’an 710061, China
- Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi’an 710061, China
| | - Yang Lan
- Department of Occupational and Environmental Health, School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China
- Key Laboratory of Environment and Genes Related to Diseases (Xi’an Jiaotong University), Ministry of Education, Xi’an 710061, China
- Key Laboratory of Trace Elements and Endemic Diseases in Ministry of Health, Xi’an 710061, China
- Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi’an 710061, China
| | - Ge Li
- Department of Occupational and Environmental Health, School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China
- Shaanxi Provincial Center for Disease Control and Prevention (Shaanxi Provincial Institute for Endemic Disease Control), Xi’an 710061, China
| | - Kai Wang
- Department of Occupational and Environmental Health, School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China
- Key Laboratory of Environment and Genes Related to Diseases (Xi’an Jiaotong University), Ministry of Education, Xi’an 710061, China
- Key Laboratory of Trace Elements and Endemic Diseases in Ministry of Health, Xi’an 710061, China
- Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi’an 710061, China
| | - Yu You
- Department of Occupational and Environmental Health, School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China
- Key Laboratory of Environment and Genes Related to Diseases (Xi’an Jiaotong University), Ministry of Education, Xi’an 710061, China
- Key Laboratory of Trace Elements and Endemic Diseases in Ministry of Health, Xi’an 710061, China
- Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi’an 710061, China
| | - Jiaqi Zhu
- Department of Occupational and Environmental Health, School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China
- Key Laboratory of Environment and Genes Related to Diseases (Xi’an Jiaotong University), Ministry of Education, Xi’an 710061, China
- Key Laboratory of Trace Elements and Endemic Diseases in Ministry of Health, Xi’an 710061, China
- Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi’an 710061, China
| | - Lihua Ren
- School of Nursing, Peking University, Beijing 100871, China
| | - Shaowei Wu
- Department of Occupational and Environmental Health, School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China
- Key Laboratory of Environment and Genes Related to Diseases (Xi’an Jiaotong University), Ministry of Education, Xi’an 710061, China
- Key Laboratory of Trace Elements and Endemic Diseases in Ministry of Health, Xi’an 710061, China
- Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi’an 710061, China
| |
Collapse
|
127
|
Shi S, Chen R, Wang P, Zhang H, Kan H, Meng X. An Ensemble Machine Learning Model to Enhance Extrapolation Ability of Predicting Coarse Particulate Matter with High Resolutions in China. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:19325-19337. [PMID: 39417584 DOI: 10.1021/acs.est.4c08610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Accurate exposure assessment is important for conducting PM10-2.5-related epidemiological studies, which have been limited thus far. In this study, we aimed to develop an ensemble machine learning method to estimate PM10-2.5 concentrations in mainland China during 2013-2020. The study was conducted in two stages. In the first stage, we developed two methods: the indirect method refers to developing models for PM2.5 and PM10 separately and subsequently calculating PM10-2.5 as the difference between them; and the direct method refers to establishing a model between PM10-2.5 measurements and relevant predictors directly. In the second stage, we employed an ensemble method by integrating predictions from both indirect and direct methods. Internal and external cross-validation (CV) were performed to validate the extrapolation capacity of models. The ensemble method demonstrated enhanced extrapolation accuracy in both internal and external CV compared to indirect and direct methods. The predictions produced by the ensemble method captured the spatiotemporal pattern of PM10-2.5, even in the sand and dust storm seasons. Our study introduces an ensemble strategy leveraging the strengths of both indirect and direct methods to estimate PM10-2.5 concentrations, which holds significant potential to support future epidemiological studies to address knowledge gaps in understanding the health effects of PM10-2.5.
Collapse
Affiliation(s)
- Su Shi
- School of Public Health, Key Laboratory of Public Health Safety of the Ministry of Education and National Health Commission (NHC) Key Laboratory of Health Technology Assessment of the Ministry of Health, IRDR ICoE on Risk Interconnectivity and Governance on Weather/Climate Extremes Impact and Public Health, Fudan University, Shanghai 200433, China
| | - Renjie Chen
- School of Public Health, Key Laboratory of Public Health Safety of the Ministry of Education and National Health Commission (NHC) Key Laboratory of Health Technology Assessment of the Ministry of Health, IRDR ICoE on Risk Interconnectivity and Governance on Weather/Climate Extremes Impact and Public Health, Fudan University, Shanghai 200433, China
| | - Peng Wang
- Department of Atmospheric and Oceanic Sciences, Institute of Atmospheric Sciences, Fudan University, Shanghai 200438, China
| | - Hongliang Zhang
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China
| | - Haidong Kan
- School of Public Health, Key Laboratory of Public Health Safety of the Ministry of Education and National Health Commission (NHC) Key Laboratory of Health Technology Assessment of the Ministry of Health, IRDR ICoE on Risk Interconnectivity and Governance on Weather/Climate Extremes Impact and Public Health, Fudan University, Shanghai 200433, China
| | - Xia Meng
- School of Public Health, Key Laboratory of Public Health Safety of the Ministry of Education and National Health Commission (NHC) Key Laboratory of Health Technology Assessment of the Ministry of Health, IRDR ICoE on Risk Interconnectivity and Governance on Weather/Climate Extremes Impact and Public Health, Fudan University, Shanghai 200433, China
- Shanghai Typhoon Institute/CMA, Shanghai Key Laboratory of Meteorology and Health, Shanghai 200030, China
| |
Collapse
|
128
|
Münzel T, Khraishah H, Schneider A, Lelieveld J, Daiber A, Rajagopalan S. Challenges posed by climate hazards to cardiovascular health and cardiac intensive care: implications for mitigation and adaptation. EUROPEAN HEART JOURNAL. ACUTE CARDIOVASCULAR CARE 2024; 13:731-744. [PMID: 39468673 PMCID: PMC11518858 DOI: 10.1093/ehjacc/zuae113] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Accepted: 09/23/2024] [Indexed: 10/30/2024]
Abstract
Global warming, driven by increased greenhouse gas emissions, has led to unprecedented extreme weather events, contributing to higher morbidity and mortality rates from a variety of health conditions, including cardiovascular disease (CVD). The disruption of multiple planetary boundaries has increased the probability of connected, cascading, and catastrophic disasters with magnified health impacts on vulnerable populations. While the impact of climate change can be manifold, non-optimal air temperatures (NOTs) pose significant health risks from cardiovascular events. Vulnerable populations, especially those with pre-existing CVD, face increased risks of acute cardiovascular events during NOT. Factors such as age, socio-economic status, minority populations, and environmental conditions (especially air pollution) amplify these risks. With rising global surface temperatures, the frequency and intensity of heatwaves and cold spells are expected to increase, emphasizing the need to address their health impacts. The World Health Organization recommends implementing heat-health action plans, which include early warning systems, public education on recognizing heat-related symptoms, and guidelines for adjusting medications during heatwaves. Additionally, intensive care units must be prepared to handle increased patient loads and the specific challenges posed by extreme heat. Comprehensive and proactive adaptation and mitigation strategies with health as a primary consideration and measures to enhance resilience are essential to protect vulnerable populations and reduce the health burden associated with NOTs. The current educational review will explore the impact on cardiovascular events, future health projections, pathophysiology, drug interactions, and intensive care challenges and recommend actions for effective patient care.
Collapse
Affiliation(s)
- Thomas Münzel
- University Medical Center Mainz, Department of Cardiology, Johannes Gutenberg University, Langenbeckstr. 1, 55131 Mainz, Germany
| | - Haitham Khraishah
- Harrington Heart and Vascular Institute, University Hospitals at Case Western Reserve University, Cleveland, OH, USA
| | - Alexandra Schneider
- Institute of Epidemiology, Helmholtz Zentrum München – German Research Center for Environmental Health, Neuherberg, Germany
| | - Jos Lelieveld
- Max Planck Institute for Chemistry, 55128 Mainz, Germany
| | - Andreas Daiber
- University Medical Center Mainz, Department of Cardiology, Johannes Gutenberg University, Langenbeckstr. 1, 55131 Mainz, Germany
| | - Sanjay Rajagopalan
- Case Cardiovascular Research Institute, Case Western Reserve University School of Medicine and University Hospitals Harrington Heart and Vascular Institute, 11100 Euclid Ave, Cleveland, OH 44106, USA
| |
Collapse
|
129
|
Liu M, Gao M, Zhu Z, Hu J, Wu J, Chen H, Kuang X, Chen J. Air pollutants, residential greenspace, and the risk of kidney stone disease: a large prospective cohort study from the UK Biobank. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2024:10.1038/s41370-024-00728-0. [PMID: 39438733 DOI: 10.1038/s41370-024-00728-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 10/08/2024] [Accepted: 10/10/2024] [Indexed: 10/25/2024]
Abstract
BACKGROUND The epidemiological evidence regarding the correlation between air pollution, residential greenspace, and the risk of kidney stone disease (KSD) is limited, with no large-scale prospective studies conducted on this relationship. OBJECTIVE We conducted a large-scale prospective study from the UK Biobank to explore the correlation between air pollution, residential greenspace, and the risk of KSD. METHODS This study included 419,835 UK Biobank participants who did not have KSD at baseline. An air pollution score was derived through the summation of concentrations for five air pollutants, including particulate matter (PM) with aerodynamic diameter ≤2.5 μm (PM2.5), ranging from 2.5 to 10 μm (PM2.5-10), ≤10 μm (PM10), nitrogen dioxide (NO2), and nitrogen oxides (NOx). Various covariates were adjusted for in Cox proportional hazard regression to evaluate the risk of KSD associated with air pollution score, single air pollutant, and residential greenspace. RESULTS During a follow-up period of 12.7 years, 4503 cases of KSD were diagnosed. Significant associations were found between KSD risk and air pollution score (HR: 1.08, 95% CI: 1.03-1.13), PM2.5 (1.06, 1.02-1.11), PM10 (1.04, 1.01-1.07), NO2 (1.09, 1.02-1.16), NOx (1.08, 1.02-1.11), greenspace buffered at 300 m (0.95, 0.91-0.99), and greenspace buffered at 1000 m (0.92, 0.86-0.98) increase per interquartile range (IQR). PM2.5 and NO2 reductions may be a key mechanism for the protective impact of residential greenspace on KSD (P for indirect path < 0.05). IMPACT Prolonged exposure to air pollution was correlated with a higher risk of KSD, while residential greenspace exhibits an inverse association with KSD risk, partially mediated by the reduction in air pollutants concentrations. These findings emphasize the significance of mitigating air pollution and maintaining substantial greenspace exposure as preventive measures against KSD.
Collapse
Affiliation(s)
- Minghui Liu
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Meng Gao
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Zewu Zhu
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Jiao Hu
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Jian Wu
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Hequn Chen
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Xiaogen Kuang
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
- Department of Urology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China.
| | - Jinbo Chen
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
- Office of Public Health and Medical Emergency Management, Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
130
|
Cheng X, Yu J, Su D, Gao S, Chen L, Sun Y, Kong S, Wang H. Spatial source, simulating improvement, and short-term health effect of high PM 2.5 exposure during mutation event in the key urban agglomeration regions in China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 359:124738. [PMID: 39147223 DOI: 10.1016/j.envpol.2024.124738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/11/2024] [Accepted: 08/13/2024] [Indexed: 08/17/2024]
Abstract
Air quality in China has significantly improved owing to the effective implementation of pollution control measures. However, mutation events caused by short-term spikes in PM2.5 in urban agglomeration regions continue to occur frequently. Identifying the spatial sources and influencing factors, as well as improving the prediction accuracy of high PM2.5 during mutation events, are crucial for public health. In this study, we firstly introduced discrete wavelet transform (DWT) to identify the mutation events with high PM2.5 concentration in the four key urban agglomerations, and evaluated the spatial sources for the polluted scenario using Hybrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT) model. Additionally, DWT was combined with a widely used artificial neural network (ANN) to improve the prediction accuracy of PM2.5 concentration seven days in advance (seven-day forecast). Results indicated that mutation events commonly occurred in the northern regions during winter time, which were under the control of both short-range transportation of dirty airmass as well as negative meteorology conditions. Compared with the ANN model alone, the average band errors decreased by 9% when using DWT-ANN model. The average correlation coefficient (R) and root mean square error (RMSE) obtained using the DWT-ANN improved by 10% and 12% compared to those obtained using the ANN, indicating the efficiency and accuracy of simulating PM2.5, by combining the DWT and ANN. The short-term mortality during mutation events was then calculated, with the total averted all-cause, cardiovascular, and respiratory deaths in the four regions, being 4751, 2554, and 582 persons, respectively. A declining trend in prevented deaths from 2018 to 2020 demonstrated that the pollution intensity during mutation events gradually decreased owing to the implementation of the Three-Year Action Plan to Win the Blue Sky Defense War. The method proposed in this study can be used by policymakers to take preventive measures in response to a sudden increase in PM2.5, thereby ensuring public health.
Collapse
Affiliation(s)
- Xin Cheng
- School of Geographic and Environmental Sciences, Tianjin Normal University, Tianjin, China.
| | - Jie Yu
- School of Geographic and Environmental Sciences, Tianjin Normal University, Tianjin, China
| | - Die Su
- School of Geographic and Environmental Sciences, Tianjin Normal University, Tianjin, China
| | - Shuang Gao
- School of Geographic and Environmental Sciences, Tianjin Normal University, Tianjin, China.
| | - Li Chen
- School of Geographic and Environmental Sciences, Tianjin Normal University, Tianjin, China
| | - Yanling Sun
- School of Geographic and Environmental Sciences, Tianjin Normal University, Tianjin, China
| | - Shaofei Kong
- Department of Atmospheric Sciences, School of Environmental Studies, China University of Geosciences, Wuhan, 430074, China.
| | - Hui Wang
- Tianjin Changhai Environmental Monitoring Service Corporation, Tianjin, China
| |
Collapse
|
131
|
Li L, Wang W, Chang HH, Alonso A, Liu Y. Wildland Fire-Related Smoke PM 2.5 and Cardiovascular Disease ED Visits in the Western United States. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.10.08.24314367. [PMID: 39484248 PMCID: PMC11527094 DOI: 10.1101/2024.10.08.24314367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Background The impact of short-term exposure to fine particulate matter (PM 2.5 ) due to wildland fire smoke on the risk of cardiovascular disease (CVD) remains unclear. We investigated the association between short-term exposure to wildfire smoke PM 2.5 and Emergency Department (ED) visits for acute CVD in the Western United States from 2007 to 2018. Methods ED visits for primary or secondary diagnoses of atrial fibrillation (AF), acute myocardial infarction (AMI), heart failure (HF), stroke, and total CVD were obtained from hospital associations or state health departments in California, Arizona, Nevada, Oregon, and Utah. ED visits included those that were subsequently hospitalized. Daily smoke, non-smoke, and total PM 2.5 were estimated using a satellite-driven multi-stage model with a high resolution of 1 km. The data were aggregated to the zip code level and a case-crossover study design was employed. Temperature, relative humidity, and day of the year were included as covariates. Results We analyzed 49,759,958 ED visits for primary or secondary CVD diagnoses, which included 6,808,839 (13.7%) AFs, 1,222,053 (2.5%) AMIs, 7,194,474 (14.5%) HFs, and 808,396 (1.6%) strokes. Over the study period from 2007-01-01 to 2018-12-31, the mean smoke PM 2.5 was 1.27 (Q1: 0, Q3: 1.29) µg/m 3 . A 10 µg/m 3 increase in smoke PM 2.5 was associated with a minuscule decreased risk for AF (OR 0.994, 95% CI 0.991-0.997), HF (OR 0.995, 95% CI 0.992-0.998), and CVD (OR 0.9997, 95% CI 0.996-0.998), but not for AMI and stroke. Adjusting for non-smoke PM 2.5 did not alter these associations. A 10 µg/m 3 increase in total PM 2.5 was linked to a small increased risk for all outcomes except stroke (OR for CVD 1.006, 95% CI 1.006-1.007). Associations were similar across sex and age groups. Conclusion We identified an unexpected slight lower risk of CVD ED visits associated with short-term wildfire smoke PM 2.5 exposure. Whether these findings are due to methodological issues, behavioral changes, or other factors requires further investigation.
Collapse
|
132
|
Woeckel M, Rospleszcz S, Wolf K, Breitner-Busch S, Ingrisch M, Bamberg F, Ricke J, Schlett CL, Storz C, Schneider A, Stoecklein S, Peters A. Association between Long-Term Exposure to Traffic-Related Air Pollution and Cardio-Metabolic Phenotypes: An MRI Data-Based Analysis. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:18064-18075. [PMID: 39365792 PMCID: PMC11483729 DOI: 10.1021/acs.est.4c03163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 08/13/2024] [Accepted: 09/15/2024] [Indexed: 10/06/2024]
Abstract
Long-term exposure to traffic-related air pollution (TRAP) is associated with cardiometabolic disease; however, its role in subclinical stages of disease development is unclear. Thus, we aimed to explore this association in a cross-sectional analysis, with cardiometabolic phenotypes derived from magnetic resonance imaging (MRI). Phenotypes of the left (LV) and right cardiac ventricle, whole-body adipose tissue (AT), and organ-specific AT were obtained by MRI in 400 participants of the KORA cohort. Land-use regression models were used to estimate residential long-term exposures to TRAP, e.g., nitrogen dioxides (NO2) or particle number concentration (PNC). Associations between TRAP and MRI phenotypes were modeled using linear regression. Participants' mean age was 56 ± 9 years, and 42% were female. Long-term exposure to TRAP was associated with decreased LV wall thickness; a 6.0 μg/m3 increase in NO2 was associated with a -1.9% [95% confidence interval: -3.7%; -0.1%] decrease in mean global LV wall thickness. Furthermore, we found associations between TRAP and increased cardiac AT. A 2,242 n/cm3 increase in PNC was associated with a 4.3% [-1.7%; 10.4%] increase in mean total cardiac AT. Associations were more pronounced in women and in participants with diabetes. Our exploratory study indicates that long-term exposure to TRAP is associated with subclinical cardiometabolic disease states, particularly in metabolically vulnerable subgroups.
Collapse
Affiliation(s)
- Margarethe Woeckel
- Institute
of Epidemiology, German Research Center for Environmental Health,
Helmholtz Zentrum München, Neuherberg 85764, Germany
- Chair
of Epidemiology, Institute for Medical Information Processing, Biometry
and Epidemiology, Medical Faculty, Ludwig-Maximilians-Universität
München (LMU Munich), Munich 81377, Germany
| | - Susanne Rospleszcz
- Institute
of Epidemiology, German Research Center for Environmental Health,
Helmholtz Zentrum München, Neuherberg 85764, Germany
- Chair
of Epidemiology, Institute for Medical Information Processing, Biometry
and Epidemiology, Medical Faculty, Ludwig-Maximilians-Universität
München (LMU Munich), Munich 81377, Germany
- Department
of Diagnostic and Interventional Radiology, Medical Center, Faculty
of Medicine, University of Freiburg, Freiburg 79106, Germany
| | - Kathrin Wolf
- Institute
of Epidemiology, German Research Center for Environmental Health,
Helmholtz Zentrum München, Neuherberg 85764, Germany
| | - Susanne Breitner-Busch
- Institute
of Epidemiology, German Research Center for Environmental Health,
Helmholtz Zentrum München, Neuherberg 85764, Germany
- Chair
of Epidemiology, Institute for Medical Information Processing, Biometry
and Epidemiology, Medical Faculty, Ludwig-Maximilians-Universität
München (LMU Munich), Munich 81377, Germany
| | - Michael Ingrisch
- Department
of Radiology, Ludwig-Maximilians-Universität
Hospital Munich, Munich 81377, Germany
| | - Fabian Bamberg
- Department
of Diagnostic and Interventional Radiology, Medical Center, Faculty
of Medicine, University of Freiburg, Freiburg 79106, Germany
| | - Jens Ricke
- Department
of Radiology, Ludwig-Maximilians-Universität
Hospital Munich, Munich 81377, Germany
| | - Christopher L Schlett
- Department
of Diagnostic and Interventional Radiology, Medical Center, Faculty
of Medicine, University of Freiburg, Freiburg 79106, Germany
| | - Corinna Storz
- Department
of Neuroradiology, Medical Center, University
of Freiburg, Freiburg 79106, Germany
| | - Alexandra Schneider
- Institute
of Epidemiology, German Research Center for Environmental Health,
Helmholtz Zentrum München, Neuherberg 85764, Germany
| | - Sophia Stoecklein
- Department
of Radiology, Ludwig-Maximilians-Universität
Hospital Munich, Munich 81377, Germany
| | - Annette Peters
- Institute
of Epidemiology, German Research Center for Environmental Health,
Helmholtz Zentrum München, Neuherberg 85764, Germany
- Chair
of Epidemiology, Institute for Medical Information Processing, Biometry
and Epidemiology, Medical Faculty, Ludwig-Maximilians-Universität
München (LMU Munich), Munich 81377, Germany
- German Center
for Cardiovascular Disease Research (DZHK), Munich Heart Alliance, Munich 80336, Germany
| |
Collapse
|
133
|
Liu Q, Pan L, He H, Hu Y, Tu J, Zhang L, Sun Z, Cui Z, Han X, Huang H, Lin B, Fan Y, Ji Y, Shan G. Effects of long-term exposure to air pollutant mixture on blood pressure in typical areas of North China. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 285:116987. [PMID: 39299210 DOI: 10.1016/j.ecoenv.2024.116987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 08/22/2024] [Accepted: 08/30/2024] [Indexed: 09/22/2024]
Abstract
BACKGROUND Studies about the combined effects of gaseous air pollutants and particulate matters are still rare. OBJECTIVES This study was performed based on baseline survey of the Diverse Life-Course Cohort in the Beijing-Tianjin-Hebei (BTH) Region of North China to evaluate the association of long-term air pollutants with blood pressure and the combined effect of the air pollutants mixture among 32821 natural han population aged 20 years or above. METHODS Three-year average exposure to air pollutants (PM10, PM2.5, PM1, O3, SO2, NO2, and CO) and PM2.5 components [black carbon (BC), ammonium (NH4+), nitrate (NO3-), sulfate (SO42-), and organic matter (OM)] of residential areas were calculated based on well-validated models. Generalized linear mixed models (GLMMs) were used to estimate the associations of air pollutants exposure with the systolic blood pressure (SBP), diastolic blood pressure (DBP), Mean arterial pressure (MAP), pulse pressure (PP) and prevalent hypertension. Quantile g-Computation and Bayesian Kernel Machine Regression (BKMR) were employed to assess the combined effect of the air pollutant mixture. RESULTS We found that long-term exposures of O3, PM2.5, and PM2.5 components were stably and strongly associated with elevated SBP, DBP, and MAP and prevalent hypertension. O3 increased SBP, DBP, and MAP at a similar extent, but with greater effects; while, PM2.5 and PM2.5 components had a greater impact on SBP than DBP, which increased PP simultaneously. In multi-pollutant models, the combined effects of the air pollutant mixture on blood pressure and prevalent hypertension was predominantly influenced by O3, PM2.5, and O3, OM in different models, respectively. For example, O3, PM2.5 contributed 57.25 %, 39.22 % of the positive combined effect of the air pollutant mixture on SBP; and O3, OM positively contributed 70.00 %, 30.00 % on prevalent hypertension, respectively. There were interactions between O3, CO, SO2 and PM2.5 components on hbp, SBP and PP. CONCLUSIONS The results showed positive associations of air pollutant mixtures with blood pressure, where O3 and PM2.5 (especially OM) might be primary contributors. There were interactions between gaseous air pollutants and PM2.5 components on blood pressure and prevalent hypertension.
Collapse
Affiliation(s)
- Qihang Liu
- Epidemiology and Statistics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, Beijing, China; State Key Laboratory of Common Mechanism Research for Major Diseases, Beijing, China
| | - Li Pan
- Epidemiology and Statistics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, Beijing, China; State Key Laboratory of Common Mechanism Research for Major Diseases, Beijing, China
| | - Huijing He
- Epidemiology and Statistics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, Beijing, China; State Key Laboratory of Common Mechanism Research for Major Diseases, Beijing, China
| | - Yaoda Hu
- Epidemiology and Statistics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, Beijing, China; State Key Laboratory of Common Mechanism Research for Major Diseases, Beijing, China
| | - Ji Tu
- Epidemiology and Statistics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, Beijing, China; State Key Laboratory of Common Mechanism Research for Major Diseases, Beijing, China
| | - Ling Zhang
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, and Beijing Municipal Key Laboratory of Clinical Epidemiology, Beijing, China
| | - Zhiwei Sun
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, China; Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, China
| | - Ze Cui
- Hebei Provicel Center for diseases prevention and control, Shijiazhuang, Hebei, China
| | - Xiaoyan Han
- Chaoyang District Center for Disease Control and Prevention, Beijing, China
| | - Haibo Huang
- Epidemiology and Statistics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, Beijing, China; State Key Laboratory of Common Mechanism Research for Major Diseases, Beijing, China
| | - Binbin Lin
- Epidemiology and Statistics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, Beijing, China; State Key Laboratory of Common Mechanism Research for Major Diseases, Beijing, China
| | - Yajiao Fan
- Department of Preventive Medicine, School of Public Health, Hebei University, Baoding, Hebei, China
| | - Yanxin Ji
- Baoding Center for Disease Control and Prevention, Hebei, China
| | - Guangliang Shan
- Epidemiology and Statistics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, Beijing, China; State Key Laboratory of Common Mechanism Research for Major Diseases, Beijing, China.
| |
Collapse
|
134
|
Mao Q, Zhu X, Zhang X, Kong Y. Effect of air pollution on the global burden of cardiovascular diseases and forecasting future trends of the related metrics: a systematic analysis from the Global Burden of Disease Study 2021. Front Med (Lausanne) 2024; 11:1472996. [PMID: 39464269 PMCID: PMC11502364 DOI: 10.3389/fmed.2024.1472996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 09/23/2024] [Indexed: 10/29/2024] Open
Abstract
BACKGROUND This study assesses the worldwide cardiovascular disease (CVD) burden attributed to air pollution, utilizing data from the Global Burden of Disease Study 2021. METHODS We explored the impact of air pollution on CVDs globally, regionally, and nationally, while considering correlations with age, gender, and socio-demographic index (SDI). A decomposition analysis was conducted to discern the contributions of aging, population growth, and epidemiological shifts to the changes in disability-adjusted life years (DALYs) from 1990 to 2021. Additionally, an ARIMA model was used to forecast the future CVD burden through 2050. RESULTS In 2021, air pollution was responsible for approximately 2.46 million deaths and 58.3 million disability-adjusted life years (DALYs) attributable to CVDs, with a discernible decrease over the period studied. The greatest impacts were observed in individuals aged 75-79 and over 80, particularly among males. The decomposition analysis indicated that shifts in epidemiology were the primary factors driving these changes. Future projections suggest potential increases in mortality and DALY rates in regions with low and high-middle SDI, alongside rising age-standardized death and mortality rates in high SDI areas. CONCLUSION These findings underscore the urgency of implementing targeted CVD prevention and air pollution control strategies to mitigate the impact on public health.
Collapse
Affiliation(s)
- Qingsong Mao
- Hepatobiliary Pancreatic Surgery, Banan Hospital Affiliated of Chongqing Medical University, Chongqing, China
| | - Xiaoyi Zhu
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Xinyi Zhang
- College of Education, Wenzhou University, Wenzhou, China
| | - Yuzhe Kong
- Xiangya School of Medicine, Central South University, Changsha, China
| |
Collapse
|
135
|
Shirangi A, Lin T, Yun G, Williamson GJ, Franklin P, Jian L, Reid CM, Xiao J. Impact of elevated fine particulate matter (PM 2.5 ) during landscape fire events on cardiorespiratory hospital admissions in Perth, Western Australia. J Epidemiol Community Health 2024; 78:705-712. [PMID: 39013602 DOI: 10.1136/jech-2024-222072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 06/08/2024] [Indexed: 07/18/2024]
Abstract
BACKGROUND Australia has experienced extreme fire weather in recent years. Information on the impact of fine particulate matter (PM 2.5 ) from landscape fires (LFs) on cardiorespiratory hospital admissions is limited. METHODS We conducted a population-based time series study to assess associations between modelled daily elevated PM 2.5 at a 1.5×1.5 km resolution using a modified empirical PM 2.5 exposure model during LFs and hospital admissions for all-cause and cause-specific respiratory and cardiovascular diseases for the study period (2015-2017) in Perth, Western Australia. Multivariate Poisson regressions were used to estimate cumulative risk ratios (RR) with lag effects of 0-3 days, adjusted for sociodemographic factors, weather and time. RESULTS All-cause hospital admissions and overall cardiovascular admissions increased significantly across each elevated PM 2.5 concentration on most lag days, with the strongest associations of 3% and 7%, respectively, at the high level of ≥12.60 µg/m3 on lag 1 day. For asthma hospitalisation, there was an excess relative risk of up to 16% (RR 1.16, 95% CI 1.00 to 1.35) with same-day exposure for all people, up to 93% on a lag of 1 day in children and up to 52% on a lag of 3 days in low sociodemographic groups. We also observed an increase of up to 12% (RR 1.12, 95% CI 1.02 to 1.24) for arrhythmias on the same exposure day and with over 154% extra risks for angina and 12% for heart failure in disadvantaged groups. CONCLUSIONS Exposure to elevated PM 2.5 concentrations during LFs was associated with increased risks of all-cause hospital admissions, total cardiovascular conditions, asthma and arrhythmias.
Collapse
Affiliation(s)
- Adeleh Shirangi
- School of Population Health, Curtin University, Perth, Western Australia, Australia
- Epidemiology, Department of Health, Government of Western Australia, East Perth, WA, Australia
- School of Humanities, Arts, and Social Sciences, Murdoch University, Murdoch, WA, Australia
| | - Ting Lin
- Epidemiology, Department of Health, Government of Western Australia, East Perth, WA, Australia
| | - Grace Yun
- Epidemiology, Department of Health, Government of Western Australia, East Perth, WA, Australia
| | - Grant J Williamson
- School of Natural Sciences, University of Tasmania, Hobart, Tasmania, Australia
| | - Peter Franklin
- School of Population Health, University of Western Australia, Crawley, WA, Australia
| | - Le Jian
- Epidemiology, Department of Health, Government of Western Australia, East Perth, WA, Australia
| | - Christopher M Reid
- School of Population Health, Curtin University, Perth, Western Australia, Australia
- School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, Australia
| | - Jianguo Xiao
- Epidemiology, Department of Health, Government of Western Australia, East Perth, WA, Australia
| |
Collapse
|
136
|
He G, Jiang M, Tian S, He L, Bai X, Chen S, Li G, Wang C, Zhang Z, Wu Y, Su M, Li X, Guo X, Yang Y, Zhang X, Cui J, Xu W, Song L, Yang H, He W, Zhang Y, Li X, Gao X, Chen L. Clean air policy reduces the atherogenic lipid profile levels: Results from China Health Evaluation And risk Reduction through nationwide Teamwork (ChinaHEART) Study. JOURNAL OF HAZARDOUS MATERIALS 2024; 478:135394. [PMID: 39128148 DOI: 10.1016/j.jhazmat.2024.135394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/16/2024] [Accepted: 07/30/2024] [Indexed: 08/13/2024]
Abstract
Evidence of the associations between long-term exposure to PM2.5 and O3 and human blood lipid concentrations is abundant yet inconclusive. Whether clean air policies could improve lipid profiles remains unclear. In total, 2979312 participants from a Chinese nationwide prospective study were included. For cross-sectional analyses, linear mixed-effects models were utilized to assess the associations of pollutants with lipid profiles (TC, LDL-C, TG, HDL-C). For longitudinal analyses, a quasi-experimental design and difference-in-differences models were employed to investigate the impact of China's Clean Air Act. In the cross-sectional analyses, each IQR increase in PM2.5 was associated with 2.49 % (95 % CI: 2.36 %, 2.62 %), 2.51 % (95 % CI: 2.26 %, 2.75 %), 3.94 % (95 % CI: 3.65 %, 4.23 %), and 1.54 % (95 % CI: 1.38 %, 1.70 %) increases in TC, LDL-C, TG, and HDL-C, respectively. For each IQR increase in O3, TC, LDL-C, TG, and HDL-C changed by 1.06 % (95 % CI: 0.95 %, 1.17 %), 1.21 % (95 % CI: 1.01 %, 1.42 %), 1.78 % (95 % CI: 1.54 %, 2.02 %), and -0.63 % (95 % CI: -0.76 %, -0.49 %), respectively. Longitudinal analyses showed that the intervention group experienced greater TC, LDL-C, and HDL-C reductions (1.77 %, 4.26 %, and 7.70 %, respectively). Our findings suggest that clean air policies could improve lipid metabolism and should be implemented in countries with heavy air pollution burdens.
Collapse
Affiliation(s)
- Guangda He
- National Clinical Research Center for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Meijie Jiang
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, China
| | - Sifan Tian
- National Clinical Research Center for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, China
| | - Linkang He
- National Clinical Research Center for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xueke Bai
- National Clinical Research Center for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shi Chen
- National Clinical Research Center for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Guangyu Li
- National Clinical Research Center for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; 4+4 Medical Doctor Program, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Chunqi Wang
- National Clinical Research Center for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zenglei Zhang
- National Clinical Research Center for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yi Wu
- National Clinical Research Center for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Mingming Su
- National Clinical Research Center for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiangjie Li
- National Clinical Research Center for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xinxin Guo
- National Clinical Research Center for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yang Yang
- National Clinical Research Center for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaoyan Zhang
- National Clinical Research Center for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jianlan Cui
- National Clinical Research Center for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wei Xu
- National Clinical Research Center for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lijuan Song
- National Clinical Research Center for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hao Yang
- National Clinical Research Center for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wenyan He
- National Clinical Research Center for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yan Zhang
- National Clinical Research Center for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xi Li
- National Clinical Research Center for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xu Gao
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, China.
| | - Liang Chen
- National Clinical Research Center for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
137
|
Goderis D, Xiao Y, Alotbi A, Ahtsham A, Dvonch JT, Mason AJ, Ault AP. 3D printed micro-cyclones with improved geometries for low-cost aerosol size separation. AEROSOL SCIENCE AND TECHNOLOGY : THE JOURNAL OF THE AMERICAN ASSOCIATION FOR AEROSOL RESEARCH 2024; 59:238-251. [PMID: 40248517 PMCID: PMC12002565 DOI: 10.1080/02786826.2024.2403574] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Accepted: 08/27/2024] [Indexed: 04/19/2025]
Abstract
The impact of suspended particles on health, climate, and industrial applications is highly size-dependent. Thus, regulations are typically based on particles with diameters below a specific size, such as particulate matter less than 2.5 μm (PM2.5). For over a century, cyclones have been employed to isolate particles below a certain diameter by removing large particles from a gas stream, but cyclones are typically relatively large, heavy, and expensive to fabricate compared to objects made with low-cost 3-dimensional (3D) printers. Herein, we present one-piece 3D-printed micro-cyclones (PM2.5 and PM1) to isolate particles smaller than a specific diameter. The collection efficiencies and 50% cut-off diameters (d50) of multiple cyclones were evaluated with both monodisperse and polydisperse standards ranging from 0.1 to 3 μm, as well as ambient aerosol. By altering the inlet orientation relative to the micro-cyclone centerline (orthogonal, 50% offset, and fully offset), we show that shifting the inlet radially outward increased the steepness of the transmission curve resulting in a sharper cut-point. The d50 also decreased below the designed for diameter, (PM1 = 1.4, 1.0, and 0.9 μm; PM2.5 = 3.2, 2.0, 1.9 μm), which was attributed to imperfect models, internal surface roughness, and print errors versus machining. These single piece, 3D-printed cyclones provide a cheaper (< $1), faster, and more accessible approach to manufacture micro-cyclones for use in a range of aerosol applications.
Collapse
Affiliation(s)
- Derek Goderis
- Department of Electrical and Computer Engineering, Michigan State University, East Lansing, Michigan, USA
| | - Yao Xiao
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan, USA
| | - Ali Alotbi
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan, USA
| | - Arsh Ahtsham
- Department of Electrical and Computer Engineering, Michigan State University, East Lansing, Michigan, USA
| | - J. Timothy Dvonch
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, Michigan, USA
| | - Andrew J. Mason
- Department of Electrical and Computer Engineering, Michigan State University, East Lansing, Michigan, USA
| | - Andrew P. Ault
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
138
|
Hughes F, Parsons L, Levy JH, Shindell D, Alhanti B, Ohnuma T, Kasibhatla P, Montgomery H, Krishnamoorthy V. Impact of Wildfire Smoke on Acute Illness. Anesthesiology 2024; 141:779-789. [PMID: 39105660 DOI: 10.1097/aln.0000000000005115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
Climate change increases wildfire smoke exposure. Inhaled smoke causes inflammation, oxidative stress, and coagulation, which exacerbate cardiovascular and respiratory disease while worsening obstetric and neonatal outcomes.
Collapse
Affiliation(s)
- Fintan Hughes
- Department of Anesthesiology, Duke University School of Medicine, Durham, North Carolina
| | - Luke Parsons
- Global Science, Nature Conservancy and Nicholas School of the Environment, Duke University, Durham, North Carolina
| | - Jerrold H Levy
- Departments of Anesthesiology and Surgery (Cardiothoracic), Duke University School of Medicine, Durham, North Carolina
| | - Drew Shindell
- Nicholas School of the Environment, Duke University, Durham, North Carolina
| | - Brooke Alhanti
- Duke Clinical Research Institute, Duke University, Durham, North Carolina
| | - Tetsu Ohnuma
- Department of Anesthesiology, Duke University School of Medicine, Durham, North Carolina
| | - Prasad Kasibhatla
- Nicholas School of the Environment, Duke University, Durham, North Carolina
| | - Hugh Montgomery
- Department of Intensive Care Medicine, University College London, London, United Kingdom
| | - Vijay Krishnamoorthy
- Department of Anesthesiology, Duke University School of Medicine, Durham, North Carolina
| |
Collapse
|
139
|
Yang L, Wang M, Xuan C, Yu C, Zhu Y, Luo H, Meng X, Shi S, Wang Y, Chu H, Chen R, Yan J. Long-term exposure to particulate matter pollution and incidence of ischemic and hemorrhagic stroke: A prospective cohort study in Eastern China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 358:124446. [PMID: 38945192 DOI: 10.1016/j.envpol.2024.124446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/18/2024] [Accepted: 06/24/2024] [Indexed: 07/02/2024]
Abstract
Although epidemiological studies have demonstrated significant associations of long-term exposure to particulate matter (PM) air pollution with stroke, evidence on the long-term effects of PM exposure on cause-specific stroke incidence is scarce and inconsistent. We incorporated 33,282 and 33,868 individuals aged 35-75 years without a history of ischemic or hemorrhagic stroke at the baseline in 2014, who were followed up till 2021. Residential exposures to particulate matter with an aerodynamic diameter less than 2.5 μm (PM2.5) and particulate matter with an aerodynamic diameter less than 10 μm (PM10) for each participant were predicted using a satellite-based model with a spatial resolution of 1 × 1 km. We employed time-varying Cox proportional hazards models to assess the long-term effect of PM pollution on incident stroke. We identified 926 cases of ischemic stroke and 211 of hemorrhagic stroke. Long-term PM exposure was significantly associated with increased incidence of both ischemic and hemorrhagic stroke, with almost 2 times higher risk on hemorrhagic stroke. Specifically, a 10 μg/m³ increase in 3-year average concentrations of PM2.5 was linked to a hazard ratio (HR) of 1.35 (95% confidence interval (CI): 1.18-1.54) for incident ischemic stroke and 1.79 (95% CI: 1.36-2.34) for incident hemorrhagic stroke. The HR related to PM10, though smaller, remained statistically significant, with a HR of 1.25 for ischemic stroke and a HR of 1.51 for hemorrhagic stroke. The excess risks are larger among rural residents and individuals with lower educational attainment. The present cohort study contributed to the mounting evidence on the increased risk of incident stroke associated with long-term PM exposures. Our results further provide valuable evidence on the heightened sensitivity of hemorrhagic stroke to air pollution exposures compared with ischemic stroke.
Collapse
Affiliation(s)
- Li Yang
- Zhejiang Hospital, Hangzhou, Zhejiang, China
| | - Menghao Wang
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai, China
| | - Cheng Xuan
- Chronic Disease Control Department, Zhuji Second People's Hospital, Zhuji, Zhejiang, China
| | - Caiyan Yu
- Chronic Disease Control Department, Zhuji Second People's Hospital, Zhuji, Zhejiang, China
| | - Yixiang Zhu
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai, China
| | - Huihuan Luo
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai, China
| | - Xia Meng
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai, China
| | - Su Shi
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai, China
| | - Yali Wang
- Zhejiang Hospital, Hangzhou, Zhejiang, China
| | - Hongjie Chu
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai, China
| | - Renjie Chen
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai, China
| | - Jing Yan
- Zhejiang Hospital, Hangzhou, Zhejiang, China.
| |
Collapse
|
140
|
Sarkar S, Dontham A, Revand R, Kandpal A, Dasgupta D, Ray B, Kumar M, Patil A. Whole-body exposure to filtered fraction of diesel exhaust induced localized testicular damage through attenuated functional response of glutathione-s-transferase in adult male Wistar rats. Reprod Toxicol 2024; 129:108682. [PMID: 39117124 DOI: 10.1016/j.reprotox.2024.108682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/01/2024] [Accepted: 08/03/2024] [Indexed: 08/10/2024]
Abstract
The possible vulnerability of the male reproductive system to environmental pollutants such as air pollution necessitates a thorough investigation of the underlying mechanisms involved in the dysregulation of male reproductive function. The present study was designed to investigate the influence of the filtered fraction of diesel exhaust (predominantly comprising gases) on male reproductive function in Wistar rat model. Adult male rats were randomly assigned into three groups (n=8/group): Control (unexposed) group (CG-A), the Clean air group in WBE chamber (CAG-A), and Filtered diesel exhaust group in WBE chamber (FDG-A). The exposure protocol for CAG-A and FDG-A was 6 h/day x 5d/week x 6 weeks,evaluation of sperm parameters, testicular histopathology, quantification of hormones (testosterone, LH, FSH, 17β-Estradiol, and prolactin), and GST levels were performed. Results showed that WBE to FDE leads to a significant decline in sperm concentration (p=0.008, CG-A vs FDG-A; p=0.014, CAG-A vs FDG-A), motility (p=0.008, CG-A vs FDG-A; p=0.029, CAG-A vs FDG-A), serum testosterone (p=0.024, CG-A vs FDG-A; p=0.007, CAG-A vs FDG-A), testicular testosterone (p=0.008, CG-A vs FDG-A; p=0.028, CAG-A vs FDG-A), 17β-Estradiol (p=0.007, CG-A vs FDG-A), and GST levels (p=0.0002, CG-A vs FDG-A; p=0.0019, CAG-A vs FDG-A). These findings demonstrate the disruption of testosterone-estradiol balance in the intratesticular milieu without significant alterations in other principal pituitary hormones in adult rats exposed to FDE. The predominant presence of gaseous components in FDE can cause testicular damage due to oxidative imbalance. This underscores the causality of FDE exposure and impaired male reproductive outcomes.
Collapse
Affiliation(s)
- Swarnabha Sarkar
- Department of Physiology, All India Institute of Medical Sciences, New Delhi, India
| | - Aditya Dontham
- Department of Physiology, All India Institute of Medical Sciences, New Delhi, India
| | - Ravindran Revand
- Department of Physiology, All India Institute of Medical Sciences, New Delhi, India
| | - Abhishek Kandpal
- Department of Mechanical Engineering, Indian Institute of Technology, New Delhi, India
| | - Debabrata Dasgupta
- Department of Mechanical Engineering, Indian Institute of Technology, New Delhi, India
| | - Bahni Ray
- Department of Mechanical Engineering, Indian Institute of Technology, New Delhi, India
| | - Mayank Kumar
- Department of Mechanical Engineering, Indian Institute of Technology, New Delhi, India
| | - Asmita Patil
- Department of Physiology, All India Institute of Medical Sciences, New Delhi, India.
| |
Collapse
|
141
|
Amubieya O, Weigt S, Shino MY, Jackson NJ, Belperio J, Ong MK, Norris K. Ambient Air Pollution Exposure and Outcomes in Patients Receiving Lung Transplant. JAMA Netw Open 2024; 7:e2437148. [PMID: 39418024 PMCID: PMC11581506 DOI: 10.1001/jamanetworkopen.2024.37148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 08/09/2024] [Indexed: 10/19/2024] Open
Abstract
Importance Elevated ambient fine particulate matter (PM2.5) air pollution exposure has been associated with poor health outcomes across several domains, but its associated outcomes among lung transplant recipients are poorly understood. Objective To investigate whether greater PM2.5 exposure at the zip code of residence is associated with a higher hazard for mortality and graft failure in patients with lung transplants. Design, Setting, and Participants This retrospective cohort study used panel data provided by the United Network for Organ Sharing, which includes patients receiving transplants across all active US lung transplant programs. Adult patients who received lung transplants between May 2005 and December 2016 were included, with a last follow-up of September 10, 2020. Data were analyzed from September 2022 to May 2023. Exposure Zip code-level annual PM2.5 exposure was constructed using previously published North American estimates. Main Outcomes and Measures The primary outcome was time to death or lung allograft failure after lung transplant. A gamma shared frailty Cox proportional hazards model was used to produce unadjusted and adjusted hazard ratios (HRs) to estimate the association of zip code PM2.5 exposure at the time of transplant with graft failure or mortality. Results Among 18 265 lung transplant recipients (mean [SD] age, 55.3 [13.2] years; 7328 female [40.2%]), the resident zip code's annual PM2.5 exposure level was greater than or equal to the Environmental Protection Agency (EPA) standard of 12μg/m3 for 1790 patients (9.8%) and less than the standard for 16 475 patients (90.2%). In unadjusted analysis, median graft survival was 4.87 years (95% CI, 4.57-5.23 years) for recipients living in high PM2.5 areas and 5.84 years (95% CI, 5.71-5.96 years) for recipients in the low PM2.5 group. Having an annual PM2.5 exposure level greater than or equal to the EPA standard 12 μg/m3 was associated with an increase in the hazard of death or graft failure (HR, 1.11; 95% CI, 1.05-1.18; P < .001) in the unadjusted analysis and after adjusting for covariates (HR, 1.08; 95% CI, 1.01-1.15; P = .02). Each 1 μg/m3 increase in exposure was associated with an increase in the hazard of death or graft failure (adjusted HR, 1.01; 95% CI, 1.00-1.02; P = .004) when treating PM2.5 exposure as a continuous variable. Conclusions and Relevance In this study, elevated zip code-level ambient PM2.5 exposure was associated with an increased hazard of death or graft failure in lung transplant recipients. Further study is needed to better understand this association, which may help guide risk modification strategies at individual and population levels.
Collapse
Affiliation(s)
- Olawale Amubieya
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles
| | - Sam Weigt
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles
| | - Michael Y. Shino
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles
| | - Nicholas J. Jackson
- Statistics Core, Division of General Internal Medicine and Health Services Research, David Geffen School of Medicine, University of California, Los Angeles
| | - John Belperio
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles
| | - Michael K. Ong
- Division of General Internal Medicine and Health Services Research, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles
- Department of Medicine, Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, California
- Department of Health Policy and Management, Fielding School of Public Health, University of California, Los Angeles
| | - Keith Norris
- Division of General Internal Medicine and Health Services Research, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles
| |
Collapse
|
142
|
Zhang L, Liu Z, Zeng J, Wu M. Long-term effects of air quality on hospital readmission for heart failure in patients with acute myocardial infarction. Int J Cardiol 2024; 412:132344. [PMID: 38977226 DOI: 10.1016/j.ijcard.2024.132344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/03/2024] [Accepted: 07/05/2024] [Indexed: 07/10/2024]
Abstract
BACKGROUND Cardiovascular disease (CVD) is the leading cause of death worldwide, with air pollution posing significant risks to cardiovascular health. The effect of air quality on heart failure (HF) readmission in acute myocardial infarction (AMI) patients is unclear.The aim of this study was to evaluate the role of a single measure of air pollution exposure collected on the day of first hospitalization. METHODS We retrospectively analyzed data from 12,857 acute coronary syndrome (ACS) patients (January 2015-March 2023). After multiple screenings, 4023 AMI patients were included. The air pollution data is updated by the automatic monitoring data of the national urban air quality monitoring stations in real time and synchronized to the China Environmental Monitoring Station. Cox proportional hazards regression assessed the impact of air quality indicators on admission and outcomes in 4013 AMI patients. A decision tree model identified the most susceptible groups. RESULTS After adjusting for confounders, NO2 (HR 1.009, 95% CI 1.004-1.015, P = 0.00066) and PM10 (HR 1.006, 95% CI 1.002-1.011, P = 0.00751) increased the risk of HF readmission in ST-segment elevation myocardial infarction (STEMI) patients. No significant effect was observed in non-STEMI (NSTEMI) patients (P > 0.05). STEMI patients had a 2.8-fold higher risk of HF readmission with NO2 > 13 μg/m3 (HR 2.857, 95% CI 1.439-5.670, P = 0.00269) and a 1.65-fold higher risk with PM10 > 55 μg/m3 (HR 1.654, 95% CI 1.124-2.434, P = 0.01064). CONCLUSION NO2 and PM10 are linked to increased HF readmission risk in STEMI patients, particularly when NO2 exceeds 13 μg/m3 and PM10 exceeds 55 μg/m3. Younger, less symptomatic male STEMI patients with fewer underlying conditions are more vulnerable to these pollutants.
Collapse
Affiliation(s)
- Lingling Zhang
- Department of Cardiology, Xiangtan Central Hospital, Xiangtan 411100, China; Chest Pain Centre, Xiangtan Central Hospital, Xiangtan 411100, China; Department of Scientific Research, Xiangtan Central Hospital, Xiangtan 411100, China.
| | - Zhican Liu
- Department of Cardiology, Xiangtan Central Hospital, Xiangtan 411100, China; Department of Pulmonary and Critical Care Medicine, Xiangtan Central Hospital, Xiangtan 411100, China; Department of Scientific Research, Xiangtan Central Hospital, Xiangtan 411100, China.
| | - Jianping Zeng
- Department of Cardiology, Xiangtan Central Hospital, Xiangtan 411100, China; Chest Pain Centre, Xiangtan Central Hospital, Xiangtan 411100, China; Department of Scientific Research, Xiangtan Central Hospital, Xiangtan 411100, China.
| | - Mingxin Wu
- Department of Cardiology, Xiangtan Central Hospital, Xiangtan 411100, China; Chest Pain Centre, Xiangtan Central Hospital, Xiangtan 411100, China; Department of Scientific Research, Xiangtan Central Hospital, Xiangtan 411100, China; Graduate Collaborative Training Base of Xiangtan Central Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China.
| |
Collapse
|
143
|
Zarnke A, Rhodes S, DeBono N, Berriault C, Dorman SC. Incidence of cardiovascular disease in a cohort of mine workers exposed to ultrafine aluminum powder in Ontario, Canada. Am J Ind Med 2024; 67:933-941. [PMID: 39180259 DOI: 10.1002/ajim.23646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 07/29/2024] [Accepted: 07/31/2024] [Indexed: 08/26/2024]
Abstract
BACKGROUND A retrospective cohort study was conducted to estimate associations between an ultrafine aluminum powder, McIntyre Powder (MP), and cardiovascular disease incidence in a cohort of mine workers from Ontario, Canada. Disease outcomes included ischemic heart disease (IHD), acute myocardial infarction (AMI), congestive heart failure (CHF), and strokes and transient ischemic attacks (STIA). METHODS Using work history records from the Ontario Mining Master File (MMF) mine workers were followed for disease incidence in administrative health records. The analysis included 25,813 mine workers who were exposed to MP between 1943 and 1979 and followed for cardiovascular disease (CVD) diagnoses between 2006 and 2018. Cardiovascular disease cases were ascertained using physician, hospital, and ambulatory care records. Poisson regression models were used to estimate age and birth-year adjusted incidence rate ratios (RR) and 95% confidence intervals (CI) for associations between MP exposure and CVD outcomes. RESULTS Ever-exposure to MP was positively associated with modest increases in the incidence rate of IHD, AMI, and CHF, but not STIA, using both assessment approaches. Duration of self-reported MP exposure was positively associated with monotonically increasing rates of IHD and AMI compared to never-exposed miners, with the greatest association observed among miners with >20 years of exposure (for IHD: RR 1.24, 95% CI: 0.91-1.68; and for AMI: RR 1.52, 95% CI 1.01-2.28). CONCLUSION Mine workers ever-exposed to MP had modestly elevated rates of CVD. The rate of CVD diagnoses appeared to increase with longer duration of exposure when assessed by both self-reported exposure and through historical records.
Collapse
Affiliation(s)
- Andrew Zarnke
- School of Kinesiology and Health Sciences, Laurentian University, Sudbury, Ontario, Canada
- The Occupational Health Clinics for Ontario Workers, Sudbury, Ontario, Canada
- The Centre for Research in Occupational Safety and Health (CROSH), Laurentian University, Sudbury, Ontario, Canada
| | - Sarah Rhodes
- The Occupational Health Clinics for Ontario Workers, Sudbury, Ontario, Canada
| | - Nathan DeBono
- Occupational Cancer Research Centre, Ontario Health, Toronto, Ontario, Canada
- Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
| | - Colin Berriault
- Occupational Cancer Research Centre, Ontario Health, Toronto, Ontario, Canada
| | - Sandra C Dorman
- School of Kinesiology and Health Sciences, Laurentian University, Sudbury, Ontario, Canada
- The Centre for Research in Occupational Safety and Health (CROSH), Laurentian University, Sudbury, Ontario, Canada
| |
Collapse
|
144
|
Lin X, Cai M, Pan J, Liu E, Wang X, Song C, Lin H, Pan J. PM 2.5 chemical components are associated with in-hospital case fatality among acute myocardial infarction patients in China. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 284:116898. [PMID: 39181075 DOI: 10.1016/j.ecoenv.2024.116898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/14/2024] [Accepted: 08/14/2024] [Indexed: 08/27/2024]
Abstract
Recent studies have linked the cardiovascular events with the exposure to ambient fine particulate matter (PM2.5); however, the impact of PM2.5 chemical components on acute myocardial infarction (AMI) case fatality remains poorly understood. To address this gap, we included 178,340 hospitalised patients with AMI utilising the inpatient discharge database from Sichuan, Shanxi, Guangxi, and Guangdong, China spanning 2014-2019. We evaluated exposure to PM2.5 and its components (black carbon (BC), organic matter (OM), sulphate (SO42-), nitrate (NO3-), and ammonium (NH4+)) using bilinear interpolation based on the patient's residential address. We used mixed-effects logistic regression models to investigate the associations of PM2.5 and its five components with in-hospital AMI case fatality. Per interquartile range (IQR) increment in short-term exposure (7-day average) to overall PM2.5 (odds ratio (OR): 1.086, 95 % confidence interval (CI): 1.045-1.128), SO42-(1.063, 1.024-1.104), BC (1.055, 1.023-1.089), OM (1.052, 1.019-1.086, and NO3- (1.045, 1.003-1.089) were significantly associated with high risk of in-hospital AMI case fatality. The ORs per IQR increment in long-term exposure (annual average) were 1.323 (95 % CI: 1.255-1.394) for PM2.5, followed by BC (1.271, 1.210-1.335), OM (1.243, 1.188-1.300), SO42- (1.212, 1.157-1.270), NO3- (1.116, 1.075-1.159), and NH4+ (1.068, 1.031-1.106). Our study suggests that PM2.5 chemical components might be important risk factors for in-hospital AMI case fatality, highlighting the importance of targeted reduction of PM2.5 emissions, particularly BC, OM, and SO42-.
Collapse
Affiliation(s)
- Xiaojun Lin
- HEOA Group, West China School of Public Health and West China Fourth Hospital, Sichuan University, No. 16, Section 3, Ren Min Nan Road, Chengdu, Sichuan 610041, China; Institute for Healthy Cities and West China Research Center for Rural Health Development, Sichuan University, No. 16, Section 3, Ren Min Nan Road, Chengdu, Sichuan 610041, China
| | - Miao Cai
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, No. 74, Zhongshan 2nd road, Yuexiu District, Guangzhou, Guangdong 510080, China
| | - Jingping Pan
- Health Information Center of Sichuan Province, No. 39, Wangjiaguai Street, Chengdu, Sichuan 610041, China
| | - Echu Liu
- Department of Health Management and Policy, College for Public Health and Social Justice, Saint Louis University, St. Louis, MO 63103, USA
| | - Xiuli Wang
- HEOA Group, West China School of Public Health and West China Fourth Hospital, Sichuan University, No. 16, Section 3, Ren Min Nan Road, Chengdu, Sichuan 610041, China; Institute for Healthy Cities and West China Research Center for Rural Health Development, Sichuan University, No. 16, Section 3, Ren Min Nan Road, Chengdu, Sichuan 610041, China
| | - Chao Song
- HEOA Group, West China School of Public Health and West China Fourth Hospital, Sichuan University, No. 16, Section 3, Ren Min Nan Road, Chengdu, Sichuan 610041, China; Institute for Healthy Cities and West China Research Center for Rural Health Development, Sichuan University, No. 16, Section 3, Ren Min Nan Road, Chengdu, Sichuan 610041, China
| | - Hualiang Lin
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, No. 74, Zhongshan 2nd road, Yuexiu District, Guangzhou, Guangdong 510080, China.
| | - Jay Pan
- HEOA Group, West China School of Public Health and West China Fourth Hospital, Sichuan University, No. 16, Section 3, Ren Min Nan Road, Chengdu, Sichuan 610041, China; School of Public Administration, Sichuan University, No.24 South Section I, Yihuan Road, Chengdu, Sichuan 610065, China.
| |
Collapse
|
145
|
Cao F, Wang R, Wang L, Li YZ, Wei YF, Zheng G, Nan YX, Sun MH, Liu FH, Xu HL, Zou BJ, Li XY, Qin X, Huang DH, Chen RJ, Gao S, Meng X, Gong TT, Wu QJ. Plant-based diet indices and their interaction with ambient air pollution on the ovarian cancer survival: A prospective cohort study. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 284:116894. [PMID: 39154500 DOI: 10.1016/j.ecoenv.2024.116894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 07/15/2024] [Accepted: 08/13/2024] [Indexed: 08/20/2024]
Abstract
BACKGROUND Ambient air pollution might serve as a prognostic factor for ovarian cancer (OC) survival, yet the relationships between plant-based diet indices (PDIs) and OC survival remain unclear. We aimed to investigate the associations of comprehensive air pollution and PDIs with OC survival and explored the effects of air pollution-diet interactions. METHODS The present study encompassed 658 patients diagnosed with OC. The overall plant-based diet index (PDI), the healthful PDI (hPDI), and the unhealthful PDI (uPDI) were evaluated by a self-reported validated food frequency questionnaire. In addition, an air pollution score (APS) was formulated by summing the concentrations of particulate matter with a diameter of 2.5 microns or less, ozone, and nitrogen dioxide. Cox proportional hazard models were applied to calculate hazard ratios (HRs) and 95 % confidence intervals (CIs). The potential interactions of APS with PDIs in relation to overall survival (OS) were assessed on both multiplicative and additive scales. RESULTS Throughout a median follow-up of 37.60 (interquartile: 24.77-50.70) months, 123 deaths were confirmed. Comparing to the lowest tertiles, highest uPDI was associated with lower OS of OC (HR = 2.06, 95 % CI = 1.30, 3.28; P-trend < 0.01), whereas no significant associations were found between either overall PDI or hPDI and OC survival. Higher APS (HR for per interquartile range = 1.27, 95 % CI = 1.01, 1.60) was significantly associated with worse OC survival, and the association was exacerbated by adherence to uPDI. Notably, an additive interaction was identified between combined air pollution and uPDI (P < 0.005 for high APS and high uPDI). We also found that adherence to overall PDI aggravated associations of air pollution with OC survival (P-interaction = 0.006). CONCLUSIONS Joint exposure to various ambient air pollutants was significantly associated with lower survival among patients with OC, particularly for those who predominantly consumed unhealthy plant-based foods.
Collapse
Affiliation(s)
- Fan Cao
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China; Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China; Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China
| | - Ran Wang
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China; Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China; Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China
| | - Lan Wang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yi-Zi Li
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China; Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China; Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yi-Fan Wei
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China; Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China; Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China
| | - Gang Zheng
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China; Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China; Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yu-Xin Nan
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China; Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China; Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China
| | - Ming-Hui Sun
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China; Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China; Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China
| | - Fang-Hua Liu
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China; Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China; Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China
| | - He-Li Xu
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China; Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China; Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China
| | - Bing-Jie Zou
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China; Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China; Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xiao-Ying Li
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China; Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China; Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xue Qin
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Dong-Hui Huang
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China; Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China; Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China
| | - Ren-Jie Chen
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai, China
| | - Song Gao
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xia Meng
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai, China.
| | - Ting-Ting Gong
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China.
| | - Qi-Jun Wu
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China; Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China; Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China; Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China; NHC Key Laboratory of Advanced Reproductive Medicine and Fertility (China Medical University), National Health Commission, Shenyang, China.
| |
Collapse
|
146
|
Polemiti E, Hese S, Schepanski K, Yuan J, Schumann G. How does the macroenvironment influence brain and behaviour-a review of current status and future perspectives. Mol Psychiatry 2024; 29:3268-3286. [PMID: 38658771 PMCID: PMC11449798 DOI: 10.1038/s41380-024-02557-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 04/03/2024] [Accepted: 04/08/2024] [Indexed: 04/26/2024]
Abstract
The environment influences brain and mental health, both detrimentally and beneficially. Existing research has emphasised the individual psychosocial 'microenvironment'. Less attention has been paid to 'macroenvironmental' challenges, including climate change, pollution, urbanicity, and socioeconomic disparity. Notably, the implications of climate and pollution on brain and mental health have only recently gained prominence. With the advent of large-scale big-data cohorts and an increasingly dense mapping of macroenvironmental parameters, we are now in a position to characterise the relation between macroenvironment, brain, and behaviour across different geographic and cultural locations globally. This review synthesises findings from recent epidemiological and neuroimaging studies, aiming to provide a comprehensive overview of the existing evidence between the macroenvironment and the structure and functions of the brain, with a particular emphasis on its implications for mental illness. We discuss putative underlying mechanisms and address the most common exposures of the macroenvironment. Finally, we identify critical areas for future research to enhance our understanding of the aetiology of mental illness and to inform effective interventions for healthier environments and mental health promotion.
Collapse
Affiliation(s)
- Elli Polemiti
- Centre of Population Neuroscience and Stratified Medicine (PONS), Department of Psychiatry and Clinical Neuroscience CCM, Charité-Universitätsmedizin Berlin, Berlin, Germany.
| | - Sören Hese
- Institute of Geography, Friedrich Schiller University Jena, Jena, Germany
| | | | - Jiacan Yuan
- Department of Atmospheric and Oceanic Sciences & Institute of Atmospheric Sciences & CMA-FDU Joint Laboratory of Marine Meteorology & IRDR-ICOE on Risk Interconnectivity and Governance on Weather/Climate Extremes Impact and Public Health, Fudan University, Shanghai, China
| | - Gunter Schumann
- Centre of Population Neuroscience and Stratified Medicine (PONS), Department of Psychiatry and Clinical Neuroscience CCM, Charité-Universitätsmedizin Berlin, Berlin, Germany.
- Centre for Population Neuroscience and Stratified Medicine (PONS), Institute for Science and Technology of Brain-inspired Intelligence (ISTBI), Fudan University, Shanghai, China.
| |
Collapse
|
147
|
Feng Z, Zheng L, Ren B, Liu D, Huang J, Xue N. Feasibility of low-cost particulate matter sensors for long-term environmental monitoring: Field evaluation and calibration. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 945:174089. [PMID: 38897458 DOI: 10.1016/j.scitotenv.2024.174089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/05/2024] [Accepted: 06/16/2024] [Indexed: 06/21/2024]
Abstract
Low-cost sensor networks offer the potential to reduce monitoring costs while providing high-resolution spatiotemporal data on pollutant levels. However, these sensors come with limitations, and many aspects of their field performance remain underexplored. During October to December 2023, this study deployed two identical low-cost sensor systems near an urban standard monitoring station to record PM2.5 and PM10 concentrations, along with environmental temperature and humidity. Our evaluation of the monitoring performance of these sensors revealed a broad data distribution with a systematic overestimation; this overestimation was more pronounced in PM10 readings. The sensors showed good consistency (R2 > 0.9, NRMSE<5 %), and normalization residuals were tracked to assess stability, which, despite occasional environmental influences, remained generally stable. A lateral comparison of four calibration models (MLR, SVR, RF, XGBoost) demonstrated superior performance of RF and XGBoost over others, particularly with RF showing enhanced effectiveness on the test set. SHAP analysis identified sensor readings as the most critical variable, underscoring their pivotal role in predictive modeling. Relative humidity consistently proved more significant than dew point and temperature, with higher RH levels typically having a positive impact on model outputs. The study indicates that, with appropriate calibration, sensors can supplement the sparse networks of regulatory-grade instruments, enabling dense neighborhood-scale monitoring and a better understanding of temporal air quality trends.
Collapse
Affiliation(s)
- Zikang Feng
- School of Safety Engineering, China University of Mining and Technology, Xuzhou, People's Republic of China
| | - Lina Zheng
- Jiangsu Engineering Research Center for Dust Control and Occupational Protection, China University of Mining and Technology, Xuzhou, People's Republic of China; School of Safety Engineering, China University of Mining and Technology, Xuzhou, People's Republic of China; Institute of Occupational Health, China University of Mining and Technology, Xuzhou, People's Republic of China.
| | - Bilin Ren
- School of Safety Engineering, China University of Mining and Technology, Xuzhou, People's Republic of China
| | - Dou Liu
- School of Safety Engineering, China University of Mining and Technology, Xuzhou, People's Republic of China
| | - Jing Huang
- School of Safety Engineering, China University of Mining and Technology, Xuzhou, People's Republic of China
| | - Ning Xue
- Joycontrol (Shanghai) Environment Technology Co., Ltd, Shanghai, People's Republic of China
| |
Collapse
|
148
|
Yan Y, Yang Z, Chen L. High-quality models for assessing the effects of environmental pollutants on the nervous system: 3D brain organoids. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 284:116876. [PMID: 39146594 DOI: 10.1016/j.ecoenv.2024.116876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 08/07/2024] [Accepted: 08/09/2024] [Indexed: 08/17/2024]
Abstract
The prevalence of environmental problems and the increasing risk of human exposure to environmental pollutants have become a global concern. The increasing environmental pollution is one of the main reasons for the rising incidence of most neurological-related diseases in recent years. However, the ethical constraints of direct human research and the racial limitations of animal models have slowed the progress of research in this area. The purpose of this study is to review the neurotoxicity of different environmental pollutants on the brain using brain organoids as a new model and to conclude that brain organoids may play a key role in assessing the mechanisms by which environmental pollutants affect neurogenesis and cause neurological pathogenesis. To accurately determine the negative effects of environmental pollutants on the nervous system, self-organizing brain organoids that are highly similar to the developing brain have become a new model system for studying the effects of environmental pollutants on human brain development and disease. This study uses brain organoids as a model to summarize the neurotoxicity of different environmental pollutants on the nervous system, including structural changes in brain organoids, inhibition of neuronal differentiation and migration, impairment of mitochondrial function, damage to cellular cilia, and influence on signaling pathways. In conclusion, exposure to environmental pollutants may cause different neurotoxicity to the nervous system. Therefore, it is crucial to understand how to use brain organoids to ameliorate neurological disorders caused by environmental pollution.
Collapse
Affiliation(s)
- Yu Yan
- Academy of Medical Engineering and Translational Medicine, Medical College, Tianjin University, Tianjin 300072, China
| | - Ziye Yang
- Academy of Medical Engineering and Translational Medicine, Medical College, Tianjin University, Tianjin 300072, China
| | - Liqun Chen
- Academy of Medical Engineering and Translational Medicine, Medical College, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
149
|
Chin WS, Guo YLL, Chang YK, Huang LF, Hsu CC. Long-term exposure to NO 2 and PM 2.5 and the occurrence of chronic kidney disease among patients with type 2 diabetes in Taiwan. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 284:116940. [PMID: 39232296 DOI: 10.1016/j.ecoenv.2024.116940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 08/23/2024] [Accepted: 08/23/2024] [Indexed: 09/06/2024]
Abstract
BACKGROUND Individuals diagnosed with type 2 diabetes (T2D) frequently exhibit chronic kidney disease (CKD) which may be caused by environmental hazards such as exposure to air pollutants. However, limited research has explored the effects of prolonged exposure to air pollutants on CKD development in this population. This study examines the relationship between long-term exposure to air pollutants and CKD incidence in a longitudinal cohort of individuals with type 2 diabetes in Taiwan METHODS: Between 2003 and 2005, we recruited 1316 T2D patients (693 females [52.66 %]; mean age 56.16 ± 8.97 years). Patients were followed until December 31, 2012, with at least two clinical visits. Baseline demographics, medical history, and biomarker levels were collected. The development of CKD was determined by eGFR level < 60 mL/min/1.73 m2. Monthly averages of nitrogen dioxide (NO2) and fine particulate matter [PM ≤ 2.5 μm in aerodynamic diameter (PM2.5)] were acquired from 72 ambient air monitoring stations. The kriging method was employed to estimate the exposure levels to PM2.5, NO2, temperature, and relative humidity in the participants' residential areas. Cox regression with time-dependent covariates regression was applied to assess the impact of long-term exposure to air pollutants and CKD risk. RESULTS Of 992 patients with normal renal function at baseline, 411 (41.43 %) experienced CKD occurrence over a median follow-up period of 5.45 years. The incidence of CKD was 93.96 cases per 1000 person-years. In multivariable adjusted models, patients exposed to PM2.5 levels above the third quartile of (>33.44 μg/m3) and NO2 levels above the fourth quartile (>22.55 ppb) were found to have an increased risk of CKD occurrence compared to lower exposure levels. CONCLUSIONS This longitudinal study highlights the increased risk of CKD in individuals with type 2 diabetes due to prolonged exposure to NO2 and PM2.5, emphasizing the need for tailored air quality management strategies for this high-risk population.
Collapse
Affiliation(s)
- Wei-Shan Chin
- School of Nursing, College of Medicine, National Taiwan University and National Taiwan University Hospital, Taipei, Taiwan.
| | - Yue-Liang Leon Guo
- Department of Environmental and Occupational Medicine, National Taiwan University (NTU) College of medicine and NTU Hospital, Taipei, Taiwan; National Institute of Environmental Health Science, National Health Research Institutes, Miaoli County, Taiwan; Institute of Environmental and Occupational Health Sciences, NTU College of Public Health, Taipei, Taiwan.
| | - Yu-Kang Chang
- Department of Medical Research, Tung's Taichung Metro Harbor Hospital, Taichung City, Taiwan; Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung, Taiwan.; Department of Nursing, Jenteh Junior College of Medicine, Nursing and Management, Miaoli, Taiwan.
| | - Li-Feng Huang
- Institute of Population Health Sciences, National Health Research Institutes, Miaoli County, Taiwan.
| | - Chih-Cheng Hsu
- Institute of Population Health Sciences, National Health Research Institutes, Miaoli County, Taiwan; Department of Health Services Administration, China Medical University, Taichung, Taiwan; Department of Family Medicine, Min-Sheng General Hospital, Taoyuan, Taiwan; National Center for Geriatrics and Welfare Research, National Health Research Institutes, Yunlin County, Taiwan.
| |
Collapse
|
150
|
Wang Y, Danesh Yazdi M, Wei Y, Schwartz JD. Air pollution below US regulatory standards and cardiovascular diseases using a double negative control approach. Nat Commun 2024; 15:8451. [PMID: 39349441 PMCID: PMC11444044 DOI: 10.1038/s41467-024-52117-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 08/23/2024] [Indexed: 10/02/2024] Open
Abstract
Growing evidence suggests that long-term air pollution exposure is a risk factor for cardiovascular mortality and morbidity. However, few studies have investigated air pollution below current regulatory limits, and causal evidence is limited. We use a double negative control approach to examine the association between long-term exposure to air pollution at low concentration and cardiovascular hospitalizations among US Medicare beneficiaries aged ≥65 years between 2000 and 2016. The expected values of the negative outcome control (preceding-year hospitalizations) regressed on exposure and negative exposure control (subsequent-year exposure) are treated as a surrogate for omitted confounders. With analyses separately restricted to low-pollution areas (PM2.5 < 9 μg/m³, NO2 < 75.2 µg/m3 [40 ppb], warm-season O3 < 88.2 μg/m3 [45 ppb]), we observed positive associations of the three pollutants with hospitalization rates of stroke, heart failure, and atrial fibrillation and flutter. The associations generally persisted in demographic subgroups. Stricter national air quality standards should be considered.
Collapse
Affiliation(s)
- Yichen Wang
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
- School of the Environment, Yale University, New Haven, CT, USA.
| | - Mahdieh Danesh Yazdi
- Program in Public Health, Department of Family, Population, & Preventive Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Yaguang Wei
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Environmental Medicine and Climate Science, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Joel D Schwartz
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| |
Collapse
|