101
|
Wolf D, Gerhardt T, Winkels H, Michel NA, Pramod AB, Ghosheh Y, Brunel S, Buscher K, Miller J, McArdle S, Baas L, Kobiyama K, Vassallo M, Ehinger E, Dileepan T, Ali A, Schell M, Mikulski Z, Sidler D, Kimura T, Sheng X, Horstmann H, Hansen S, Mitre LS, Stachon P, Hilgendorf I, Gaddis DE, Hedrick C, Benedict CA, Peters B, Zirlik A, Sette A, Ley K. Pathogenic Autoimmunity in Atherosclerosis Evolves From Initially Protective Apolipoprotein B 100-Reactive CD4 + T-Regulatory Cells. Circulation 2020; 142:1279-1293. [PMID: 32703007 PMCID: PMC7515473 DOI: 10.1161/circulationaha.119.042863] [Citation(s) in RCA: 119] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Throughout the inflammatory response that accompanies atherosclerosis, autoreactive CD4+ T-helper cells accumulate in the atherosclerotic plaque. Apolipoprotein B100 (apoB), the core protein of low-density lipoprotein, is an autoantigen that drives the generation of pathogenic T-helper type 1 (TH1) cells with proinflammatory cytokine secretion. Clinical data suggest the existence of apoB-specific CD4+ T cells with an atheroprotective, regulatory T cell (Treg) phenotype in healthy individuals. Yet, the function of apoB-reactive Tregs and their relationship with pathogenic TH1 cells remain unknown. METHODS To interrogate the function of autoreactive CD4+ T cells in atherosclerosis, we used a novel tetramer of major histocompatibility complex II to track T cells reactive to the mouse self-peptide apo B978-993 (apoB+) at the single-cell level. RESULTS We found that apoB+ T cells build an oligoclonal population in lymph nodes of healthy mice that exhibit a Treg-like transcriptome, although only 21% of all apoB+ T cells expressed the Treg transcription factor FoxP3 (Forkhead Box P3) protein as detected by flow cytometry. In single-cell RNA sequencing, apoB+ T cells formed several clusters with mixed TH signatures that suggested overlapping multilineage phenotypes with pro- and anti-inflammatory transcripts of TH1, T helper cell type 2 (TH2), and T helper cell type 17 (TH17), and of follicular-helper T cells. ApoB+ T cells were increased in mice and humans with atherosclerosis and progressively converted into pathogenic TH1/TH17-like cells with proinflammatory properties and only a residual Treg transcriptome. Plaque T cells that expanded during progression of atherosclerosis consistently showed a mixed TH1/TH17 phenotype in single-cell RNA sequencing. In addition, we observed a loss of FoxP3 in a fraction of apoB+ Tregs in lineage tracing of hyperlipidemic Apoe-/- mice. In adoptive transfer experiments, converting apoB+ Tregs failed to protect from atherosclerosis. CONCLUSIONS Our results demonstrate an unexpected mixed phenotype of apoB-reactive autoimmune T cells in atherosclerosis and suggest an initially protective autoimmune response against apoB with a progressive derangement in clinical disease. These findings identify apoB autoreactive Tregs as a novel cellular target in atherosclerosis.
Collapse
Affiliation(s)
- Dennis Wolf
- Laboratory of Inflammation Biology(D.W., T.G., H.W., A.B.P., Y.G., K.B., J.M., L.B., K.K., M.V., E.E., A.A., M.S., T.K., K.L.), La Jolla Institute for Immunology, CA.,Department of Cardiology/Angiology I, University Heart Center Freiburg-Bad Krozingen, Germany (D.W., T.G., N.A.M., X.S., H.H., S.H., L.S.M., P.S., I.H.).,Medical Faculty, University of Freiburg, Germany (D.W., N.A.M., X.S., H.H., S.H., L.S.M., P.S., I.H.)
| | - Teresa Gerhardt
- Laboratory of Inflammation Biology(D.W., T.G., H.W., A.B.P., Y.G., K.B., J.M., L.B., K.K., M.V., E.E., A.A., M.S., T.K., K.L.), La Jolla Institute for Immunology, CA.,Department of Cardiology/Angiology I, University Heart Center Freiburg-Bad Krozingen, Germany (D.W., T.G., N.A.M., X.S., H.H., S.H., L.S.M., P.S., I.H.).,Department of Cardiology, Charité - University Medicine Berlin (Campus Benjamin Franklin), Germany (T.G.)
| | - Holger Winkels
- Laboratory of Inflammation Biology(D.W., T.G., H.W., A.B.P., Y.G., K.B., J.M., L.B., K.K., M.V., E.E., A.A., M.S., T.K., K.L.), La Jolla Institute for Immunology, CA
| | - Nathaly Anto Michel
- Department of Cardiology/Angiology I, University Heart Center Freiburg-Bad Krozingen, Germany (D.W., T.G., N.A.M., X.S., H.H., S.H., L.S.M., P.S., I.H.).,Medical Faculty, University of Freiburg, Germany (D.W., N.A.M., X.S., H.H., S.H., L.S.M., P.S., I.H.).,Department of Cardiology, Medical University Graz, Austria (N.A.M., A.Z.)
| | - Akula Bala Pramod
- Laboratory of Inflammation Biology(D.W., T.G., H.W., A.B.P., Y.G., K.B., J.M., L.B., K.K., M.V., E.E., A.A., M.S., T.K., K.L.), La Jolla Institute for Immunology, CA.,Department of Psychiatry, University of California San Diego, La Jolla (A.B.P.)
| | - Yanal Ghosheh
- Laboratory of Inflammation Biology(D.W., T.G., H.W., A.B.P., Y.G., K.B., J.M., L.B., K.K., M.V., E.E., A.A., M.S., T.K., K.L.), La Jolla Institute for Immunology, CA
| | - Simon Brunel
- Division of Immune Regulation (S.B., D.S., C.A.B.), La Jolla Institute for Immunology, CA
| | - Konrad Buscher
- Laboratory of Inflammation Biology(D.W., T.G., H.W., A.B.P., Y.G., K.B., J.M., L.B., K.K., M.V., E.E., A.A., M.S., T.K., K.L.), La Jolla Institute for Immunology, CA
| | - Jacqueline Miller
- Laboratory of Inflammation Biology(D.W., T.G., H.W., A.B.P., Y.G., K.B., J.M., L.B., K.K., M.V., E.E., A.A., M.S., T.K., K.L.), La Jolla Institute for Immunology, CA
| | - Sara McArdle
- Microscopy Core Facility (S.M.), La Jolla Institute for Immunology, CA
| | - Livia Baas
- Laboratory of Inflammation Biology(D.W., T.G., H.W., A.B.P., Y.G., K.B., J.M., L.B., K.K., M.V., E.E., A.A., M.S., T.K., K.L.), La Jolla Institute for Immunology, CA
| | - Kouji Kobiyama
- Laboratory of Inflammation Biology(D.W., T.G., H.W., A.B.P., Y.G., K.B., J.M., L.B., K.K., M.V., E.E., A.A., M.S., T.K., K.L.), La Jolla Institute for Immunology, CA
| | - Melanie Vassallo
- Laboratory of Inflammation Biology(D.W., T.G., H.W., A.B.P., Y.G., K.B., J.M., L.B., K.K., M.V., E.E., A.A., M.S., T.K., K.L.), La Jolla Institute for Immunology, CA
| | - Erik Ehinger
- Laboratory of Inflammation Biology(D.W., T.G., H.W., A.B.P., Y.G., K.B., J.M., L.B., K.K., M.V., E.E., A.A., M.S., T.K., K.L.), La Jolla Institute for Immunology, CA
| | | | - Amal Ali
- Laboratory of Inflammation Biology(D.W., T.G., H.W., A.B.P., Y.G., K.B., J.M., L.B., K.K., M.V., E.E., A.A., M.S., T.K., K.L.), La Jolla Institute for Immunology, CA
| | - Maximilian Schell
- Laboratory of Inflammation Biology(D.W., T.G., H.W., A.B.P., Y.G., K.B., J.M., L.B., K.K., M.V., E.E., A.A., M.S., T.K., K.L.), La Jolla Institute for Immunology, CA
| | - Zbigniew Mikulski
- Laboratory of Inflammation Biology(D.W., T.G., H.W., A.B.P., Y.G., K.B., J.M., L.B., K.K., M.V., E.E., A.A., M.S., T.K., K.L.), La Jolla Institute for Immunology, CA
| | - Daniel Sidler
- Laboratory of Inflammation Biology(D.W., T.G., H.W., A.B.P., Y.G., K.B., J.M., L.B., K.K., M.V., E.E., A.A., M.S., T.K., K.L.), La Jolla Institute for Immunology, CA
| | - Takayuki Kimura
- Laboratory of Inflammation Biology(D.W., T.G., H.W., A.B.P., Y.G., K.B., J.M., L.B., K.K., M.V., E.E., A.A., M.S., T.K., K.L.), La Jolla Institute for Immunology, CA
| | - Xia Sheng
- Department of Cardiology/Angiology I, University Heart Center Freiburg-Bad Krozingen, Germany (D.W., T.G., N.A.M., X.S., H.H., S.H., L.S.M., P.S., I.H.).,Medical Faculty, University of Freiburg, Germany (D.W., N.A.M., X.S., H.H., S.H., L.S.M., P.S., I.H.)
| | - Hauke Horstmann
- Department of Cardiology/Angiology I, University Heart Center Freiburg-Bad Krozingen, Germany (D.W., T.G., N.A.M., X.S., H.H., S.H., L.S.M., P.S., I.H.).,Medical Faculty, University of Freiburg, Germany (D.W., N.A.M., X.S., H.H., S.H., L.S.M., P.S., I.H.)
| | - Sophie Hansen
- Department of Cardiology/Angiology I, University Heart Center Freiburg-Bad Krozingen, Germany (D.W., T.G., N.A.M., X.S., H.H., S.H., L.S.M., P.S., I.H.).,Medical Faculty, University of Freiburg, Germany (D.W., N.A.M., X.S., H.H., S.H., L.S.M., P.S., I.H.)
| | - Lucia Sol Mitre
- Department of Cardiology/Angiology I, University Heart Center Freiburg-Bad Krozingen, Germany (D.W., T.G., N.A.M., X.S., H.H., S.H., L.S.M., P.S., I.H.).,Medical Faculty, University of Freiburg, Germany (D.W., N.A.M., X.S., H.H., S.H., L.S.M., P.S., I.H.)
| | - Peter Stachon
- Department of Cardiology/Angiology I, University Heart Center Freiburg-Bad Krozingen, Germany (D.W., T.G., N.A.M., X.S., H.H., S.H., L.S.M., P.S., I.H.).,Medical Faculty, University of Freiburg, Germany (D.W., N.A.M., X.S., H.H., S.H., L.S.M., P.S., I.H.)
| | - Ingo Hilgendorf
- Department of Cardiology/Angiology I, University Heart Center Freiburg-Bad Krozingen, Germany (D.W., T.G., N.A.M., X.S., H.H., S.H., L.S.M., P.S., I.H.).,Medical Faculty, University of Freiburg, Germany (D.W., N.A.M., X.S., H.H., S.H., L.S.M., P.S., I.H.)
| | - Dalia E Gaddis
- Center for Autoimmunity and Inflammation (D.E.G., C.H., K.L.), La Jolla Institute for Immunology, CA
| | - Catherine Hedrick
- Center for Autoimmunity and Inflammation (D.E.G., C.H., K.L.), La Jolla Institute for Immunology, CA
| | - Chris A Benedict
- Division of Immune Regulation (S.B., D.S., C.A.B.), La Jolla Institute for Immunology, CA
| | - Bjoern Peters
- Division of Vaccine Discovery (B.P., A.S.), La Jolla Institute for Immunology, CA
| | - Andreas Zirlik
- Department of Cardiology, Medical University Graz, Austria (N.A.M., A.Z.)
| | - Alessandro Sette
- Division of Vaccine Discovery (B.P., A.S.), La Jolla Institute for Immunology, CA
| | - Klaus Ley
- Laboratory of Inflammation Biology(D.W., T.G., H.W., A.B.P., Y.G., K.B., J.M., L.B., K.K., M.V., E.E., A.A., M.S., T.K., K.L.), La Jolla Institute for Immunology, CA.,Center for Autoimmunity and Inflammation (D.E.G., C.H., K.L.), La Jolla Institute for Immunology, CA
| |
Collapse
|
102
|
Sharma M, Schlegel MP, Afonso MS, Brown EJ, Rahman K, Weinstock A, Sansbury BE, Corr EM, van Solingen C, Koelwyn GJ, Shanley LC, Beckett L, Peled D, Lafaille JJ, Spite M, Loke P, Fisher EA, Moore KJ. Regulatory T Cells License Macrophage Pro-Resolving Functions During Atherosclerosis Regression. Circ Res 2020; 127:335-353. [PMID: 32336197 PMCID: PMC7367765 DOI: 10.1161/circresaha.119.316461] [Citation(s) in RCA: 179] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 04/24/2020] [Indexed: 12/17/2022]
Abstract
RATIONALE Regression of atherosclerosis is an important clinical goal; however, the pathways that mediate the resolution of atherosclerotic inflammation and reversal of plaques are poorly understood. Regulatory T cells (Tregs) have been shown to be atheroprotective, yet the numbers of these immunosuppressive cells decrease with disease progression, and whether they contribute to atherosclerosis regression is not known. OBJECTIVE We investigated the roles of Tregs in the resolution of atherosclerotic inflammation, tissue remodeling, and plaque contraction during atherosclerosis regression. METHODS AND RESULTS Using multiple independent mouse models of atherosclerosis regression, we demonstrate that an increase in plaque Tregs is a common signature of regressing plaques. Single-cell RNA-sequencing of plaque immune cells revealed that unlike Tregs from progressing plaques that expressed markers of natural Tregs derived from the thymus, Tregs in regressing plaques lacked Nrp1 expression, suggesting that they are induced in the periphery during lipid-lowering therapy. To test whether Tregs are required for resolution of atherosclerotic inflammation and plaque regression, Tregs were depleted using CD25 monoclonal antibody in atherosclerotic mice during apolipoprotein B antisense oligonucleotide-mediated lipid lowering. Morphometric analyses revealed that Treg depletion blocked plaque remodeling and contraction, and impaired hallmarks of inflammation resolution, including dampening of the T helper 1 response, alternative activation of macrophages, efferocytosis, and upregulation of specialized proresolving lipid mediators. CONCLUSIONS Our data establish essential roles for Tregs in resolving atherosclerotic cardiovascular disease and provide mechanistic insight into the pathways governing plaque remodeling and regression of disease.
Collapse
MESH Headings
- Animals
- Antibodies/pharmacology
- Aorta/drug effects
- Aorta/immunology
- Aorta/metabolism
- Aorta/pathology
- Apolipoprotein B-100/genetics
- Apolipoprotein B-100/metabolism
- Atherosclerosis/drug therapy
- Atherosclerosis/immunology
- Atherosclerosis/metabolism
- Atherosclerosis/pathology
- Cells, Cultured
- Diet, High-Fat
- Disease Models, Animal
- Female
- Inflammation Mediators/metabolism
- Interleukin-2 Receptor alpha Subunit/antagonists & inhibitors
- Interleukin-2 Receptor alpha Subunit/metabolism
- Macrophage Activation/drug effects
- Macrophages/drug effects
- Macrophages/immunology
- Macrophages/metabolism
- Male
- Mice, Knockout, ApoE
- Neuropilin-1/genetics
- Neuropilin-1/metabolism
- Oligonucleotides, Antisense/genetics
- Oligonucleotides, Antisense/metabolism
- Plaque, Atherosclerotic
- Proprotein Convertase 9/genetics
- Proprotein Convertase 9/metabolism
- Receptors, LDL/genetics
- Receptors, LDL/metabolism
- T-Lymphocytes, Regulatory/drug effects
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/metabolism
Collapse
Affiliation(s)
- Monika Sharma
- Department of Medicine, Leon H. Charney Division of Cardiology, New York University Grossman School of Medicine, New York, 10016, USA
| | - Martin P. Schlegel
- Department of Medicine, Leon H. Charney Division of Cardiology, New York University Grossman School of Medicine, New York, 10016, USA
| | - Milessa S. Afonso
- Department of Medicine, Leon H. Charney Division of Cardiology, New York University Grossman School of Medicine, New York, 10016, USA
| | - Emily J. Brown
- Department of Medicine, Leon H. Charney Division of Cardiology, New York University Grossman School of Medicine, New York, 10016, USA
| | - Karishma Rahman
- Department of Medicine, Leon H. Charney Division of Cardiology, New York University Grossman School of Medicine, New York, 10016, USA
| | - Ada Weinstock
- Department of Medicine, Leon H. Charney Division of Cardiology, New York University Grossman School of Medicine, New York, 10016, USA
| | - Brian E. Sansbury
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston MA 02115, USA
| | - Emma M. Corr
- Department of Medicine, Leon H. Charney Division of Cardiology, New York University Grossman School of Medicine, New York, 10016, USA
| | - Coen van Solingen
- Department of Medicine, Leon H. Charney Division of Cardiology, New York University Grossman School of Medicine, New York, 10016, USA
| | - Graeme J. Koelwyn
- Department of Medicine, Leon H. Charney Division of Cardiology, New York University Grossman School of Medicine, New York, 10016, USA
| | - Lianne C. Shanley
- Department of Medicine, Leon H. Charney Division of Cardiology, New York University Grossman School of Medicine, New York, 10016, USA
| | - Lauren Beckett
- Department of Medicine, Leon H. Charney Division of Cardiology, New York University Grossman School of Medicine, New York, 10016, USA
| | - Daniel Peled
- Department of Medicine, Leon H. Charney Division of Cardiology, New York University Grossman School of Medicine, New York, 10016, USA
| | - Juan J. Lafaille
- Department of Pathology, Kimmel Center for Biology and Medicine at the Skirball Institute, New York University School of Medicine, New York, NY, 10016, USA
| | - Matthew Spite
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston MA 02115, USA
| | - P’ng Loke
- Department of Microbiology (Parasitology), New York University School of Medicine, New York, NY, 10016, USA, and
| | - Edward A. Fisher
- Department of Medicine, Leon H. Charney Division of Cardiology, New York University Grossman School of Medicine, New York, 10016, USA
- Department of Cell Biology, New York University Grossman School of Medicine, New York, 10016, USA
| | - Kathryn J. Moore
- Department of Medicine, Leon H. Charney Division of Cardiology, New York University Grossman School of Medicine, New York, 10016, USA
- Department of Cell Biology, New York University Grossman School of Medicine, New York, 10016, USA
| |
Collapse
|
103
|
Zernecke A, Winkels H, Cochain C, Williams JW, Wolf D, Soehnlein O, Robbins CS, Monaco C, Park I, McNamara CA, Binder CJ, Cybulsky MI, Scipione CA, Hedrick CC, Galkina EV, Kyaw T, Ghosheh Y, Dinh HQ, Ley K. Meta-Analysis of Leukocyte Diversity in Atherosclerotic Mouse Aortas. Circ Res 2020; 127:402-426. [PMID: 32673538 PMCID: PMC7371244 DOI: 10.1161/circresaha.120.316903] [Citation(s) in RCA: 267] [Impact Index Per Article: 53.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The diverse leukocyte infiltrate in atherosclerotic mouse aortas was recently analyzed in 9 single-cell RNA sequencing and 2 mass cytometry studies. In a comprehensive meta-analysis, we confirm 4 known macrophage subsets-resident, inflammatory, interferon-inducible cell, and Trem2 (triggering receptor expressed on myeloid cells-2) foamy macrophages-and identify a new macrophage subset resembling cavity macrophages. We also find that monocytes, neutrophils, dendritic cells, natural killer cells, innate lymphoid cells-2, and CD (cluster of differentiation)-8 T cells form prominent and separate immune cell populations in atherosclerotic aortas. Many CD4 T cells express IL (interleukin)-17 and the chemokine receptor CXCR (C-X-C chemokine receptor)-6. A small number of regulatory T cells and T helper 1 cells is also identified. Immature and naive T cells are present in both healthy and atherosclerotic aortas. Our meta-analysis overcomes limitations of individual studies that, because of their experimental approach, over- or underrepresent certain cell populations. Mass cytometry studies demonstrate that cell surface phenotype provides valuable information beyond the cell transcriptomes. The present analysis helps resolve some long-standing controversies in the field. First, Trem2+ foamy macrophages are not proinflammatory but interferon-inducible cell and inflammatory macrophages are. Second, about half of all foam cells are smooth muscle cell-derived, retaining smooth muscle cell transcripts rather than transdifferentiating to macrophages. Third, Pf4, which had been considered specific for platelets and megakaryocytes, is also prominently expressed in the main population of resident vascular macrophages. Fourth, a new type of resident macrophage shares transcripts with cavity macrophages. Finally, the discovery of a prominent innate lymphoid cell-2 cluster links the single-cell RNA sequencing work to recent flow cytometry data suggesting a strong atheroprotective role of innate lymphoid cells-2. This resolves apparent discrepancies regarding the role of T helper 2 cells in atherosclerosis based on studies that predated the discovery of innate lymphoid cells-2 cells.
Collapse
Affiliation(s)
- Alma Zernecke
- Institute of Experimental Biomedicine, University Hospital Würzburg, Würzburg, Germany
| | - Holger Winkels
- Heart Center, University Hospital Cologne, Cologne, Germany
- Clinic III for Internal Medicine, Department of Cardiology, University of Cologne, Cologne, Germany
| | - Clément Cochain
- Institute of Experimental Biomedicine, University Hospital Würzburg, Würzburg, Germany
- Comprehensive Heart Failure Center, University Hospital Würzburg, Wüzburg, Germany
| | - Jesse W. Williams
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, MN USA
- Center for Immunology, University of Minnesota Medical School, Minneapolis, MN USA
| | - Dennis Wolf
- Department of Cardiology and Angiology I, University Heart Center, and Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Oliver Soehnlein
- Institute for Cardiovascular Prevention (IPEK), Klinikum LMU Munich, Munich, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
- Department of Physiology and Pharmacology (FyFa), Karolinska Institute, Stockholm, Sweden
| | - Clint S. Robbins
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S1A1, Canada
- Department of Immunology, University of Toronto, Toronto, ON M5S1A1, Canada
- Toronto General Research Institute, University Health Network, Toronto, ON, Canada
- Peter Munk Cardiac Centre, Toronto, ON M5G1L7, Canada
| | - Claudia Monaco
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford OX3 7FY, UK
| | - Inhye Park
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford OX3 7FY, UK
| | - Coleen A. McNamara
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, USA
- Division of Cardioascular Medicine, University of Virginia School of Medicine, Charlottesville, USA
| | - Christoph J. Binder
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Myron I. Cybulsky
- Toronto General Research Institute, University Health Network, and Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Corey A. Scipione
- Toronto General Research Institute, University Health Network, and Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | | | - Elena V. Galkina
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, 700 West Olney Road, Norfolk, VA USA
| | - Tin Kyaw
- Vascular Biology and Atherosclerosis Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
- Centre for Inflammatory Diseases, Department of Medicine, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, VIC, Australia
| | | | - Huy Q. Dinh
- La Jolla Institute for Immunology, La Jolla, CA USA
| | - Klaus Ley
- La Jolla Institute for Immunology, La Jolla, CA USA
- Department of Bioengineering, University of California San Diego, CA, USA
| |
Collapse
|
104
|
Fung TH, Yang KY, Lui KO. An emerging role of regulatory T-cells in cardiovascular repair and regeneration. Theranostics 2020; 10:8924-8938. [PMID: 32802172 PMCID: PMC7415793 DOI: 10.7150/thno.47118] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 06/16/2020] [Indexed: 12/12/2022] Open
Abstract
Accumulating evidence has demonstrated that immune cells play an important role in the regulation of tissue repair and regeneration. After injury, danger signals released by the damaged tissue trigger the initial pro-inflammatory phase essential for removing pathogens or cellular debris that is later replaced by the anti-inflammatory phase responsible for tissue healing. On the other hand, impaired immune regulation can lead to excessive scarring and fibrosis that could be detrimental for the restoration of organ function. Regulatory T-cells (Treg) have been revealed as the master regulator of the immune system that have both the immune and regenerative functions. In this review, we will summarize their immune role in the induction and maintenance of self-tolerance; as well as their regenerative role in directing tissue specific response for repair and regeneration. The latter is clearly demonstrated when Treg enhance the differentiation of stem or progenitor cells such as satellite cells to replace the damaged skeletal muscle, as well as the proliferation of parenchymal cells including neonatal cardiomyocytes for functional regeneration. Moreover, we will also discuss the reparative and regenerative role of Treg with a particular focus on blood vessels and cardiac tissues. Last but not least, we will describe the ongoing clinical trials with Treg in the treatment of autoimmune diseases that could give clinically relevant insights into the development of Treg therapy targeting tissue repair and regeneration.
Collapse
|
105
|
Baardman J, Lutgens E. Regulatory T Cell Metabolism in Atherosclerosis. Metabolites 2020; 10:metabo10070279. [PMID: 32650487 PMCID: PMC7408402 DOI: 10.3390/metabo10070279] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 06/18/2020] [Accepted: 07/04/2020] [Indexed: 12/13/2022] Open
Abstract
Regulatory T cells (Tregs) are capable of suppressing excessive immune responses to prevent autoimmunity and chronic inflammation. Decreased numbers of Tregs and impaired suppressive function are associated with the progression of atherosclerosis, a chronic inflammatory disease of the arterial wall and the leading cause of cardiovascular disease. Therefore, therapeutic strategies to improve Treg number or function could be beneficial to preventing atherosclerotic disease development. A growing body of evidence shows that intracellular metabolism of Tregs is a key regulator of their proliferation, suppressive function, and stability. Here we evaluate the role of Tregs in atherosclerosis, their metabolic regulation, and the links between their metabolism and atherosclerosis.
Collapse
Affiliation(s)
- Jeroen Baardman
- Department of Medical Biochemistry, Experimental Vascular Biology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands;
- Correspondence:
| | - Esther Lutgens
- Department of Medical Biochemistry, Experimental Vascular Biology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands;
- Institute for Cardiovascular Prevention (IPEK), Klinikum der Universität München (KUM), Ludwig-Maximilians-Universität (LMU) München, 80336 Munich, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, 80336 Munich, Germany
| |
Collapse
|
106
|
Abstract
Atherosclerosis is a chronic inflammatory disease of the arterial wall and the primary underlying cause of cardiovascular disease. Data from in vivo imaging, cell-lineage tracing and knockout studies in mice, as well as clinical interventional studies and advanced mRNA sequencing techniques, have drawn attention to the role of T cells as critical drivers and modifiers of the pathogenesis of atherosclerosis. CD4+ T cells are commonly found in atherosclerotic plaques. A large body of evidence indicates that T helper 1 (TH1) cells have pro-atherogenic roles and regulatory T (Treg) cells have anti-atherogenic roles. However, Treg cells can become pro-atherogenic. The roles in atherosclerosis of other TH cell subsets such as TH2, TH9, TH17, TH22, follicular helper T cells and CD28null T cells, as well as other T cell subsets including CD8+ T cells and γδ T cells, are less well understood. Moreover, some T cells seem to have both pro-atherogenic and anti-atherogenic functions. In this Review, we summarize the knowledge on T cell subsets, their functions in atherosclerosis and the process of T cell homing to atherosclerotic plaques. Much of our understanding of the roles of T cells in atherosclerosis is based on findings from experimental models. Translating these findings into human disease is challenging but much needed. T cells and their specific cytokines are attractive targets for developing new preventive and therapeutic approaches including potential T cell-related therapies for atherosclerosis.
Collapse
Affiliation(s)
- Ryosuke Saigusa
- Division of Inflammation Biology, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Holger Winkels
- Division of Inflammation Biology, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Klaus Ley
- Division of Inflammation Biology, La Jolla Institute for Immunology, La Jolla, CA, USA.
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
107
|
Vigario FL, Kuiper J, Slütter B. Tolerogenic vaccines for the treatment of cardiovascular diseases. EBioMedicine 2020; 57:102827. [PMID: 32574952 PMCID: PMC7322234 DOI: 10.1016/j.ebiom.2020.102827] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/18/2020] [Accepted: 05/26/2020] [Indexed: 12/20/2022] Open
Abstract
Atherosclerosis is the main pathology behind most cardiovascular diseases. It is a chronic inflammatory disease characterized by the formation of lipid-rich plaques in arteries. Atherosclerotic plaques are initiated by the deposition of cholesterol-rich LDL particles in the arterial walls leading to the activation of innate and adaptive immune responses. Current treatments focus on the reduction of LDL blood levels using statins, however the critical components of inflammation and autoimmunity have been mostly ignored as therapeutic targets. The restoration of immune tolerance towards atherosclerosis-relevant antigens can arrest lesion development as shown in pre-clinical models. In this review, we evaluate the clinical development of similar strategies for the treatment of inflammatory and autoimmune diseases like rheumatoid arthritis, type 1 diabetes or multiple sclerosis and analyse the potential of tolerogenic vaccines for atherosclerosis and the challenges that need to be overcome to bring this therapy to patients.
Collapse
Affiliation(s)
- Fernando Lozano Vigario
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Einsteinweg 55, PO Box 9502, 2300RA Leiden, the Netherlands
| | - Johan Kuiper
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Einsteinweg 55, PO Box 9502, 2300RA Leiden, the Netherlands.
| | - Bram Slütter
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Einsteinweg 55, PO Box 9502, 2300RA Leiden, the Netherlands
| |
Collapse
|
108
|
Yvan-Charvet L, Bonacina F, Guinamard RR, Norata GD. Immunometabolic function of cholesterol in cardiovascular disease and beyond. Cardiovasc Res 2020; 115:1393-1407. [PMID: 31095280 DOI: 10.1093/cvr/cvz127] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 03/20/2019] [Accepted: 05/07/2019] [Indexed: 12/16/2022] Open
Abstract
Inflammation represents the driving feature of many diseases, including atherosclerosis, cancer, autoimmunity and infections. It is now established that metabolic processes shape a proper immune response and within this context the alteration in cellular cholesterol homeostasis has emerged as a culprit of many metabolic abnormalities observed in chronic inflammatory diseases. Cholesterol accumulation supports the inflammatory response of myeloid cells (i.e. augmentation of toll-like receptor signalling, inflammasome activation, and production of monocytes and neutrophils) which is beneficial in the response to infections, but worsens diseases associated with chronic metabolic inflammation including atherosclerosis. In addition to the innate immune system, cells of adaptive immunity, upon activation, have also been shown to undergo a reprogramming of cellular cholesterol metabolism, which results in the amplification of inflammatory responses. Aim of this review is to discuss (i) the molecular mechanisms linking cellular cholesterol metabolism to specific immune functions; (ii) how cellular cholesterol accumulation sustains chronic inflammatory diseases such as atherosclerosis; (iii) the immunometabolic profile of patients with defects of genes affecting cholesterol metabolism including familial hypercholesterolaemia, cholesteryl ester storage disease, Niemann-Pick type C, and immunoglobulin D syndrome/mevalonate kinase deficiency. Available data indicate that cholesterol immunometabolism plays a key role in directing immune cells function and set the stage for investigating the repurposing of existing 'metabolic' drugs to modulate the immune response.
Collapse
Affiliation(s)
- Laurent Yvan-Charvet
- Institut National de la Santé et de la Recherche Médicale (Inserm) U1065, Université Côte d'Azur, Centre Méditerranéen de Médecine Moléculaire (C3M), Fédération Hospitalo-Universitaire (FHU) Oncoage, Nice, France
| | - Fabrizia Bonacina
- Department of Excellence of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Rodolphe Renè Guinamard
- Institut National de la Santé et de la Recherche Médicale (Inserm) U1065, Université Côte d'Azur, Centre Méditerranéen de Médecine Moléculaire (C3M), Fédération Hospitalo-Universitaire (FHU) Oncoage, Nice, France
| | - Giuseppe Danilo Norata
- Institut National de la Santé et de la Recherche Médicale (Inserm) U1065, Université Côte d'Azur, Centre Méditerranéen de Médecine Moléculaire (C3M), Fédération Hospitalo-Universitaire (FHU) Oncoage, Nice, France.,Center for the Study of Atherosclerosis, E. Bassini Hospital, Cinisello Balsamo, Milan, Italy
| |
Collapse
|
109
|
Roy P, Ali AJ, Kobiyama K, Ghosheh Y, Ley K. Opportunities for an atherosclerosis vaccine: From mice to humans. Vaccine 2020; 38:4495-4506. [PMID: 31964554 PMCID: PMC7939143 DOI: 10.1016/j.vaccine.2019.12.039] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 12/05/2019] [Accepted: 12/13/2019] [Indexed: 01/14/2023]
Abstract
Atherosclerosis, the major underlying cause of cardiovascular diseases (CVD), is the number one killer globally. The disease pathogenesis involves a complex interplay between metabolic and immune components. Although lipid-lowering drugs such as statins curb the risks associated with CVD, significant residual inflammatory risk remains. Substantial evidence from experimental models and clinical studies has established the role of inflammation and immune effector mechanisms in the pathogenesis of atherosclerosis. Several stages of the disease are affected by host-mediated antigen-specific adaptive immune responses that play either protective or proatherogenic roles. Therefore, strategies to boost an anti-atherogenic humoral and T regulatory cell response are emerging as preventative or therapeutic strategies to lowering inflammatory residual risks. Vaccination holds promise as an efficient, durable and relatively inexpensive approach to induce protective adaptive immunity in atherosclerotic patients. In this review, we discuss the status and opportunities for a human atherosclerosis vaccine. We describe (1) some of the immunomodulatory therapeutic interventions tested in atherosclerosis (2) the immune targets identified in pre-clinical and clinical investigations (3) immunization strategies evaluated in animal models (4) past and ongoing clinical trials to examine the safety and efficacy of human atherosclerosis vaccines and (5) strategies to improve and optimize vaccination in humans (antigen selection, formulation, dose and delivery).
Collapse
Affiliation(s)
- Payel Roy
- Division of Inflammation Biology, La Jolla Institute for Immunology, 9420, Athena Circle Drive, La Jolla, CA 92037, USA
| | - Amal J Ali
- Division of Inflammation Biology, La Jolla Institute for Immunology, 9420, Athena Circle Drive, La Jolla, CA 92037, USA
| | - Kouji Kobiyama
- Division of Inflammation Biology, La Jolla Institute for Immunology, 9420, Athena Circle Drive, La Jolla, CA 92037, USA; Division of Vaccine Science, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Yanal Ghosheh
- Division of Inflammation Biology, La Jolla Institute for Immunology, 9420, Athena Circle Drive, La Jolla, CA 92037, USA
| | - Klaus Ley
- Division of Inflammation Biology, La Jolla Institute for Immunology, 9420, Athena Circle Drive, La Jolla, CA 92037, USA; Department of Bioengineering, University of California San Diego, 9500 Gilman Drive, MC0412, La Jolla, CA 92093, USA.
| |
Collapse
|
110
|
Shao Y, Saredy J, Yang WY, Sun Y, Lu Y, Saaoud F, Drummer C, Johnson C, Xu K, Jiang X, Wang H, Yang X. Vascular Endothelial Cells and Innate Immunity. Arterioscler Thromb Vasc Biol 2020; 40:e138-e152. [PMID: 32459541 PMCID: PMC7263359 DOI: 10.1161/atvbaha.120.314330] [Citation(s) in RCA: 192] [Impact Index Per Article: 38.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In addition to the roles of endothelial cells (ECs) in physiological processes, ECs actively participate in both innate and adaptive immune responses. We previously reported that, in comparison to macrophages, a prototypic innate immune cell type, ECs have many innate immune functions that macrophages carry out, including cytokine secretion, phagocytic function, antigen presentation, pathogen-associated molecular patterns-, and danger-associated molecular patterns-sensing, proinflammatory, immune-enhancing, anti-inflammatory, immunosuppression, migration, heterogeneity, and plasticity. In this highlight, we introduce recent advances published in both ATVB and many other journals: (1) several significant characters classify ECs as novel immune cells not only in infections and allograft transplantation but also in metabolic diseases; (2) several new receptor systems including conditional danger-associated molecular pattern receptors, nonpattern receptors, and homeostasis associated molecular patterns receptors contribute to innate immune functions of ECs; (3) immunometabolism and innate immune memory determine the innate immune functions of ECs; (4) a great induction of the immune checkpoint receptors in ECs during inflammations suggests the immune tolerogenic functions of ECs; and (5) association of immune checkpoint inhibitors with cardiovascular adverse events and cardio-oncology indicates the potential contributions of ECs as innate immune cells.
Collapse
Affiliation(s)
- Ying Shao
- Centers of Inflammation, Translational & Clinical Lung Research, Thrombosis Research, Departments of Pharmacology, Microbiology and Immunology, Temple University Lewis Katz School of Medicine, Philadelphia, PA, 19140
| | - Jason Saredy
- Metabolic Disease Research, Cardiovascular Research, Thrombosis Research, Departments of Pharmacology, Microbiology and Immunology, Temple University Lewis Katz School of Medicine, Philadelphia, PA, 19140
| | - William Y. Yang
- Metabolic Disease Research, Cardiovascular Research, Thrombosis Research, Departments of Pharmacology, Microbiology and Immunology, Temple University Lewis Katz School of Medicine, Philadelphia, PA, 19140
| | - Yu Sun
- Centers of Inflammation, Translational & Clinical Lung Research, Thrombosis Research, Departments of Pharmacology, Microbiology and Immunology, Temple University Lewis Katz School of Medicine, Philadelphia, PA, 19140
| | - Yifan Lu
- Centers of Inflammation, Translational & Clinical Lung Research, Thrombosis Research, Departments of Pharmacology, Microbiology and Immunology, Temple University Lewis Katz School of Medicine, Philadelphia, PA, 19140
| | - Fatma Saaoud
- Centers of Inflammation, Translational & Clinical Lung Research, Thrombosis Research, Departments of Pharmacology, Microbiology and Immunology, Temple University Lewis Katz School of Medicine, Philadelphia, PA, 19140
| | - Charles Drummer
- Centers of Inflammation, Translational & Clinical Lung Research, Thrombosis Research, Departments of Pharmacology, Microbiology and Immunology, Temple University Lewis Katz School of Medicine, Philadelphia, PA, 19140
| | - Candice Johnson
- Centers of Inflammation, Translational & Clinical Lung Research, Thrombosis Research, Departments of Pharmacology, Microbiology and Immunology, Temple University Lewis Katz School of Medicine, Philadelphia, PA, 19140
| | - Keman Xu
- Centers of Inflammation, Translational & Clinical Lung Research, Thrombosis Research, Departments of Pharmacology, Microbiology and Immunology, Temple University Lewis Katz School of Medicine, Philadelphia, PA, 19140
| | - Xiaohua Jiang
- Centers of Inflammation, Translational & Clinical Lung Research, Thrombosis Research, Departments of Pharmacology, Microbiology and Immunology, Temple University Lewis Katz School of Medicine, Philadelphia, PA, 19140
- Metabolic Disease Research, Cardiovascular Research, Thrombosis Research, Departments of Pharmacology, Microbiology and Immunology, Temple University Lewis Katz School of Medicine, Philadelphia, PA, 19140
| | - Hong Wang
- Metabolic Disease Research, Cardiovascular Research, Thrombosis Research, Departments of Pharmacology, Microbiology and Immunology, Temple University Lewis Katz School of Medicine, Philadelphia, PA, 19140
| | - Xiaofeng Yang
- Centers of Inflammation, Translational & Clinical Lung Research, Thrombosis Research, Departments of Pharmacology, Microbiology and Immunology, Temple University Lewis Katz School of Medicine, Philadelphia, PA, 19140
- Metabolic Disease Research, Cardiovascular Research, Thrombosis Research, Departments of Pharmacology, Microbiology and Immunology, Temple University Lewis Katz School of Medicine, Philadelphia, PA, 19140
| |
Collapse
|
111
|
Abstract
Adaptive as well as innate immune responses contribute to the development of atherosclerosis. Studies performed in experimental animals have revealed that some of these immune responses are protective while others contribute to the progression of disease. These observations suggest that it may be possible to develop novel therapies for cardiovascular disease by selectively modulating such atheroprotective and proatherogenic immunity. Recent advances in cancer treatment using immune check inhibitors and CAR (chimeric antigen receptor) T-cell therapy serve as excellent examples of the possibilities of targeting the immune system to combat disease. LDL (low-density lipoprotein) that has accumulated in the artery wall is a key autoantigen in atherosclerosis, and activation of antigen-specific T helper 1–type T cells is thought to fuel plaque inflammation. Studies aiming to prove this concept by immunizing experimental animals with oxidized LDL particles unexpectedly resulted in activation of atheroprotective immunity involving regulatory T cells. This prompted several research groups to try to develop vaccines against atherosclerosis. In this review, we will discuss the experimental and clinical data supporting the possibility of developing immune-based therapies for lowering cardiovascular risk. We will also summarize ongoing clinical studies and discuss the challenges associated with developing an effective and safe atherosclerosis vaccine.
Collapse
Affiliation(s)
- Jan Nilsson
- From the Department of Clinical Sciences Malmö, Lund University, Sweden (J.N.)
| | - Göran K. Hansson
- Department of Medicine, Karolinska University Hospital Solna, Karolinska Institute, Sweden (G.K.H.)
| |
Collapse
|
112
|
Ospina-Quintero L, Jaramillo JC, Tabares-Guevara JH, Ramírez-Pineda JR. Reformulating Small Molecules for Cardiovascular Disease Immune Intervention: Low-Dose Combined Vitamin D/Dexamethasone Promotes IL-10 Production and Atheroprotection in Dyslipidemic Mice. Front Immunol 2020; 11:743. [PMID: 32395119 PMCID: PMC7197409 DOI: 10.3389/fimmu.2020.00743] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 04/01/2020] [Indexed: 12/15/2022] Open
Abstract
The targeting of proinflammatory pathways has a prophylactic and therapeutic potential on atherosclerotic cardiovascular diseases (CVD). An alternative/complementary strategy is the promotion of endogenous atheroprotective mechanisms that are impaired during atherosclerosis progression, such as the activity of tolerogenic dendritic cells (tolDC) and regulatory T cells (Treg). There is a need to develop novel low cost, safe and effective tolDC/Treg-inducing formulations that are atheroprotective and that can be of easy translation into clinical settings. We found that apolipoprotein E-deficient (ApoE–/–) mice treated with a low-dose combined formulation of Vitamin D and Dexamethasone (VitD/Dexa), delivered repetitively and subcutaneously (sc) promoted interleukin-10 (IL-10) production by dendritic cells and other antigen presenting cells in the lymph nodes draining the site of injection and the spleens. Expectedly, the treatment also increased the numbers of IL-10-producing CD4+ T cells. Concomitantly, the frequency of IFNγ-producing CD4+ and CD8+ T cells in the spleen, and the IFNγ response of splenocytes to polyclonal stimulation ex vivo were lower after VitD/Dexa treatment, indicating a reduced proatherogenic Th1 response. Interestingly, VitD/Dexa-treated mice had smaller atherosclerotic lesions, with reduced lipid content and lower inflammatory infiltrate of macrophages and T cells in the aortic root. No hypolipidemic or antioxidant effect could be detected, suggesting that a dominantly immunomodulatory mechanism of atheroprotection was engaged under the low-dose sc VitD/Dexa conditions used. Finally, no evidence of clinical, biochemical or immune toxicity was observed in treated ApoE–/– mice and, most importantly, C57BL/6 mice latently infected with Leishmania parasites and treated with an identical VitD/Dexa dose/scheme showed no clinical or microbiological signs of disease reactivation, suggesting the absence of general immunosuppression. Altogether, these results indicate that a non-toxic, non-immunosuppressive, low-dose of VitD/Dexa, administered subcutaneously and repetitively, exerts atheroprotective effects in dyslipidemic mice, apparently due to the induction of an IL-10-producing network of lymphoid and myeloid immune cells. These well known, widely available, and inexpensive small molecules can be easily co-formulated into a simple and accessible agent with a potential use as a prophylactic or therapeutic immune intervention for CVD and other chronic inflammatory diseases.
Collapse
Affiliation(s)
- Laura Ospina-Quintero
- Grupo Inmunomodulación (GIM), Instituto de Investigaciones Médicas, Facultad de Medicina, Corporación Académica para el Estudio de Patologías Tropicales (CAEPT), Universidad de Antioquia, Medellin, Colombia
| | - Julio C Jaramillo
- Grupo Inmunomodulación (GIM), Instituto de Investigaciones Médicas, Facultad de Medicina, Corporación Académica para el Estudio de Patologías Tropicales (CAEPT), Universidad de Antioquia, Medellin, Colombia
| | - Jorge H Tabares-Guevara
- Grupo Inmunomodulación (GIM), Instituto de Investigaciones Médicas, Facultad de Medicina, Corporación Académica para el Estudio de Patologías Tropicales (CAEPT), Universidad de Antioquia, Medellin, Colombia
| | - José R Ramírez-Pineda
- Grupo Inmunomodulación (GIM), Instituto de Investigaciones Médicas, Facultad de Medicina, Corporación Académica para el Estudio de Patologías Tropicales (CAEPT), Universidad de Antioquia, Medellin, Colombia
| |
Collapse
|
113
|
Lio WM, Cercek B, Yano J, Yang W, Ghermezi J, Zhao X, Zhou J, Zhou B, Freeman MR, Chyu KY, Shah PK, Dimayuga PC. Sex as a Determinant of Responses to a Coronary Artery Disease Self-Antigen Identified by Immune-Peptidomics. Front Immunol 2020; 11:694. [PMID: 32373127 PMCID: PMC7187896 DOI: 10.3389/fimmu.2020.00694] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 03/27/2020] [Indexed: 12/27/2022] Open
Abstract
A significant body of work implicates the adaptive immune response in atherosclerosis, the main underlying cause of coronary artery disease (CAD), yet specific antigens involved remain to be fully identified. The pathobiology of CAD is influenced by sex with many factors that may be involved in the underlying mechanisms. Given the reported sexual dimorphic nature of immune-inflammatory responses, we investigated the influence of sex on potential CAD self-antigens from acute coronary syndrome (ACS) patients using immune-precipitation of soluble HLA Class-I/peptide complexes and mass spectrometry. Relevance of identified self-antigens to atherosclerosis, the major underlying cause of CAD, was tested in the apoE–/– atherosclerotic mouse model. Soluble HLA Class-I complexes from ACS patients and self-reported controls were immune-precipitated and subjected to elution, denaturation and size-exclusion to obtain HLA-bound peptides. Peptides were then subjected to mass spectrometry and patient-unique self-peptides were grouped as common to both female and male, or unique to either sex. Three peptides common to both female and male patients (COL6A1, CDSN, and SAA2), and 2 peptides each unique to female (COL1A1 and COL5A2) or male (SAA1 and KRT 9) patients were selected and mouse homologs of the peptides were screened for self-reactive immune responses in apoE–/– mice. The screening step revealed potential sex-influenced immune responses which was associated with differential immune profiles. Based on the frequency in patient plasma, COL6A1, COL5A2, and KRT 9 peptides were then tested in immunization studies. Neither COL5A2 nor KRT 9 peptide immunization resulted in significant effects on atherosclerosis compared to controls. On the other hand, female mice immunized with COL6A1 peptide had significantly reduced atherosclerosis whereas male mice had significantly increased atherosclerosis, associated with differential immune profiles. Our study identified potential self-antigens involved in atherosclerosis using the immune peptidome of CAD patients. Altering self-reactive immune responses to COL6A1 in apoE–/– mice resulted in differential effects on atherosclerosis burden with sex as a determinant of outcome.
Collapse
Affiliation(s)
- Wai Man Lio
- Oppenheimer Atherosclerosis Research Center, Department of Cardiology, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Bojan Cercek
- Oppenheimer Atherosclerosis Research Center, Department of Cardiology, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Juliana Yano
- Oppenheimer Atherosclerosis Research Center, Department of Cardiology, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Wei Yang
- Division of Cancer Biology and Therapeutics, Departments of Surgery and Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Jonathan Ghermezi
- Oppenheimer Atherosclerosis Research Center, Department of Cardiology, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Xiaoning Zhao
- Oppenheimer Atherosclerosis Research Center, Department of Cardiology, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Jianchang Zhou
- Oppenheimer Atherosclerosis Research Center, Department of Cardiology, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Bo Zhou
- Division of Cancer Biology and Therapeutics, Departments of Surgery and Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Michael R Freeman
- Division of Cancer Biology and Therapeutics, Departments of Surgery and Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Kuang-Yuh Chyu
- Oppenheimer Atherosclerosis Research Center, Department of Cardiology, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Prediman K Shah
- Oppenheimer Atherosclerosis Research Center, Department of Cardiology, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Paul C Dimayuga
- Oppenheimer Atherosclerosis Research Center, Department of Cardiology, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| |
Collapse
|
114
|
Zhao TX, Newland SA, Mallat Z. 2019 ATVB Plenary Lecture: Interleukin-2 Therapy in Cardiovascular Disease: The Potential to Regulate Innate and Adaptive Immunity. Arterioscler Thromb Vasc Biol 2020; 40:853-864. [PMID: 32078364 DOI: 10.1161/atvbaha.119.312287] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Regulatory T cells and type-2 innate lymphoid cells represent 2 subsets of immune cells, which have been shown in preclinical models to be important in atherosclerosis and myocardial repair. Regulatory T cells play a crucial role in immune homeostasis and tolerance via their interactions with effector T cells, dendritic cells, and monocytes/macrophages. They also utilize and secrete inhibitory cytokines, including interleukin 10 and transforming growth factor β, to regulate or suppress pathogenic immune responses. Type-2 innate lymphoid cells have an important role in type-2 immune responses and tissue repair through secreting interleukins 5 and 13, as well as a variety of biological mediators and growth factors. Intriguingly, interleukin-2 has emerged as a common cytokine, which can be harnessed to upregulate both cell types, and also has important translational consequences as clinical trials are ongoing for its use in cardiovascular disease. Here, we briefly review the biology of these regulatory immune cell types, discuss the preclinical and clinical evidence for their functions in cardiovascular disease, examine the prospects for clinical translation and current ongoing trials, and finally, postulate how overlap in the mechanisms of upregulation may be leveraged in future treatments for patients.
Collapse
Affiliation(s)
- Tian X Zhao
- From the Division of Cardiovascular Medicine, Department of Medicine, University of Cambridge, United Kingdom (T.X.Z., S.A.N., Z.M.)
| | - Stephen A Newland
- From the Division of Cardiovascular Medicine, Department of Medicine, University of Cambridge, United Kingdom (T.X.Z., S.A.N., Z.M.)
| | - Ziad Mallat
- From the Division of Cardiovascular Medicine, Department of Medicine, University of Cambridge, United Kingdom (T.X.Z., S.A.N., Z.M.)
- Paris-Descartes Université, Inserm U970, France (Z.M.)
| |
Collapse
|
115
|
Atherosclerosis: Insights into Vascular Pathobiology and Outlook to Novel Treatments. J Cardiovasc Transl Res 2020; 13:744-757. [PMID: 32072564 DOI: 10.1007/s12265-020-09961-y] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 01/22/2020] [Indexed: 12/14/2022]
Abstract
The pathobiology of atherosclerosis and its current and potential future treatments are summarized, with a spotlight on three central cell types involved: (i) endothelial cells (ECs), (ii) macrophages, and (iii) vascular smooth muscle cells (VSMCs). (i) EC behaviour is regulated by the central transcription factors YAP/TAZ in reaction to biomechanical forces, such as hemodynamic shear stress. (ii) VSMC transdifferentiation (phenotype switching) to a macrophage-like phenotype contributes to the majority of cells positive for common cell surface macrophage markers in atherosclerotic plaques. (iii) Intra-plaque macrophages originate in a significant number from vascular resident macrophages. They can be activated via pattern recognition receptors on cell membrane (e.g. toll-like receptors) and inside cells (e.g. inflammasomes), requiring priming by neutrophil extracellular traps (NETs). ECs and macrophages can also be characterized by single-cell RNA sequencing. Adaptive immunity plays an important role in the inflammatory process. Future therapeutic options include vaccination, TRAF-STOPs, senolysis, or CD47 blockade. Graphical Abstract.
Collapse
|
116
|
Cinoku II, Mavragani CP, Moutsopoulos HM. Atherosclerosis: Beyond the lipid storage hypothesis. The role of autoimmunity. Eur J Clin Invest 2020; 50:e13195. [PMID: 31868918 DOI: 10.1111/eci.13195] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 12/04/2019] [Accepted: 12/09/2019] [Indexed: 12/15/2022]
Abstract
Atherosclerosis has long been considered as a lipid storage disease. Recent data suggest that autoimmune mechanisms seem to be involved in the pathophysiology of atherosclerosis. The presence of activated endothelial vascular cells, neutrophils, macrophages, T and to a lesser extent B cells in atherosclerotic plaques, together with the proinflammatory cytokine burden suggest mobilization of both innate and adaptive immune pathways in atherosclerosis pathobiology. The development of antibodies to oxidized low-density lipoprotein (ox-LDL), the experimental induction of atherosclerosis either via the transfer of T cells or immunization with autoantigens such as β2 glycoprotein Ι (β2-GPI) and heat shock proteins (HSP) further support the autoimmune nature of atherosclerosis. However, classical immunosuppressive and immune-modulatory drugs, successfully used in the therapy of autoimmune rheumatic diseases have shown limited benefits so far in the treatment of atherosclerosis.
Collapse
Affiliation(s)
- Ilir I Cinoku
- Department of Physiology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Clio P Mavragani
- Department of Physiology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece.,Department of Pathophysiology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Haralampos M Moutsopoulos
- Department of Pathophysiology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece.,Academy of Athens, Athens, Greece
| |
Collapse
|
117
|
Thomas R, Wang W, Su DM. Contributions of Age-Related Thymic Involution to Immunosenescence and Inflammaging. IMMUNITY & AGEING 2020; 17:2. [PMID: 31988649 PMCID: PMC6971920 DOI: 10.1186/s12979-020-0173-8] [Citation(s) in RCA: 257] [Impact Index Per Article: 51.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 01/02/2020] [Indexed: 01/10/2023]
Abstract
Immune system aging is characterized by the paradox of immunosenescence (insufficiency) and inflammaging (over-reaction), which incorporate two sides of the same coin, resulting in immune disorder. Immunosenescence refers to disruption in the structural architecture of immune organs and dysfunction in immune responses, resulting from both aged innate and adaptive immunity. Inflammaging, described as a chronic, sterile, systemic inflammatory condition associated with advanced age, is mainly attributed to somatic cellular senescence-associated secretory phenotype (SASP) and age-related autoimmune predisposition. However, the inability to reduce senescent somatic cells (SSCs), because of immunosenescence, exacerbates inflammaging. Age-related adaptive immune system deviations, particularly altered T cell function, are derived from age-related thymic atrophy or involution, a hallmark of thymic aging. Recently, there have been major developments in understanding how age-related thymic involution contributes to inflammaging and immunosenescence at the cellular and molecular levels, including genetic and epigenetic regulation, as well as developments of many potential rejuvenation strategies. Herein, we discuss the research progress uncovering how age-related thymic involution contributes to immunosenescence and inflammaging, as well as their intersection. We also describe how T cell adaptive immunity mediates inflammaging and plays a crucial role in the progression of age-related neurological and cardiovascular diseases, as well as cancer. We then briefly outline the underlying cellular and molecular mechanisms of age-related thymic involution, and finally summarize potential rejuvenation strategies to restore aged thymic function.
Collapse
Affiliation(s)
- Rachel Thomas
- Cell Biology, Immunology, and Microbiology Graduate Program, Graduate School of Biomedical Sciences, Fort Worth, Texas 76107 USA
| | - Weikan Wang
- Cell Biology, Immunology, and Microbiology Graduate Program, Graduate School of Biomedical Sciences, Fort Worth, Texas 76107 USA
| | - Dong-Ming Su
- 2Department of Microbiology, Immunology, and Genetics, University of North Texas Health Science Center, Fort Worth, Texas 76107 USA
| |
Collapse
|
118
|
Tripodi GL, Prieto MB, Abdalla DSP. Inflammasome Activation in Human Macrophages Induced by a LDL (-) Mimetic Peptide. Inflammation 2019; 43:722-730. [PMID: 31858317 DOI: 10.1007/s10753-019-01159-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The inflammasome is responsible for maturation of interleukin-1β (IL-1β) and interleukin-18 (IL-18) contributing to the inflammatory process in atherosclerosis. It is shown here that an electronegative low-density lipoprotein [LDL (-)] apoB-100 mimetic peptide can activate the transcriptional and posttranslational signs needed for complete inflammasome activation. This peptide, named p2C7, can activate the Toll-like receptor 4 (TLR4) that induces NF-κB activation and the transcription of inflammasome components. After blocking TLR4 with a neutralizing antibody, inflammasome component (NLRP3, CASP1, and ASC) and IL1b and IL18 gene downregulation occurred in human-derived macrophages stimulated with p2C7 or LDL (-). Moreover, the posttranslational signal was activated by the interaction between p2C7 and the lectin-type oxidized LDL receptor 1 (LOX-1), as demonstrated by the induction of caspase-1 cleavage in macrophages. The blockage of either TLR4 or LOX-1 decreased IL-1β and IL-18 secretion by human-derived macrophages as both pathways are necessary for complete inflammasome activation. These findings suggest a mechanism by which macrophages transduce the pro-inflammatory signal provided by LDL (-) ApoB-100 and its mimetic peptides to activate the inflammasome protein complex what may be relevant for the inflammatory process in atherosclerosis.
Collapse
Affiliation(s)
- Gustavo Luis Tripodi
- Department of Clinical and Toxicological Analyses, Faculty of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo, 05508-000, Brazil
| | - Marcela Bach Prieto
- Department of Clinical and Toxicological Analyses, Faculty of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo, 05508-000, Brazil
| | - Dulcineia Saes Parra Abdalla
- Department of Clinical and Toxicological Analyses, Faculty of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo, 05508-000, Brazil.
| |
Collapse
|
119
|
Kim YU, Kee P, Danila D, Teng BB. A Critical Role of PCSK9 in Mediating IL-17-Producing T Cell Responses in Hyperlipidemia. Immune Netw 2019; 19:e41. [PMID: 31921471 PMCID: PMC6943168 DOI: 10.4110/in.2019.19.e41] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 10/12/2019] [Accepted: 10/15/2019] [Indexed: 12/13/2022] Open
Abstract
We previously demonstrated that atherogenic Ldlr -/- Apobec1 -/- (LDb) double knockout mice lacking both low-density lipoprotein receptor (LDLR) and apolipoprotein B mRNA-editing catalytic polypeptide-1 (Apobec1) had increased serum IL-17 levels, with T cell programming shifted towards Th17 cells. In this study, we assessed the role of proprotein convertase subtilisin/kexin type 9 (PCSK9) in T cell programming and atherogenesis. We deleted the Pcsk9 gene from LDb mice to generate Ldlr -/- Apobec1 -/- Pcsk9 -/- (LTp) triple knockout mice. Atherosclerosis in the aortic sinus and aorta were quantitated. Lymphoid cells were analyzed by flow cytometry, ELISA and real-time PCR. Despite of dyslipidemia, LTp mice developed barely detectable atherosclerotic lesions. The IL-17, was very low in plasma and barely detectable in the aortic sinus in the LTp mice. In the spleen, the number of CD4+CD8- cells and splenocytes were much lower in the LDb mice than LTp mice, whereas, the IL-17-producing cells of γδTCR+ T cells and effector memory CD4+ T cells (CD44hiCD4+) in the spleen were significantly higher in the LDb mice than in the LTp mice. The Rorc mRNA expression levels were elevated in LDb mice compared to LTp mice. When re-stimulated with an anti-CD3 Ab, CD44hiCD4+ T cells from LDb mice secreted more IL-17 than those from LTp mice. T cells from LDb mice (with PCSK9) produce more IL-17 at basal and stimulated conditions when compared with LTp mice (without PCSK9). Despite the dyslipidemic profile and the lack of LDLR, atherogenesis is markedly reduced in LTp mice. These results suggest that PCSK9 is associated with changes in T cell programming that contributes to the development of atherosclerosis.
Collapse
Affiliation(s)
- Young Uk Kim
- Center for Immunology and Autoimmune Diseases, The Brown Foundation Institute of Molecular Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Patrick Kee
- Department of Internal Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Delia Danila
- Department of Internal Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Ba-Bie Teng
- Center for Human Genetics, The Brown Foundation Institute of Molecular Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA.,Graduate School of Biomedical Sciences, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| |
Collapse
|
120
|
Patel J, Smits A. Highlights of AHA Scientific Sessions 2018: a report from the Scientists of Tomorrow. Cardiovasc Res 2019; 115:e184-e186. [PMID: 30753362 DOI: 10.1093/cvr/cvz005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Affiliation(s)
- Jyoti Patel
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Anke Smits
- Cardiovascular Cell Biology, Department of Cell and Chemical Biology, Postzone S-1-P, Leiden University Medical Center, RC Leiden, The Netherlands
| |
Collapse
|
121
|
Abstract
There is now overwhelming experimental and clinical evidence that atherosclerosis is a chronic inflammatory disease. Lessons from genome-wide association studies, advanced in vivo imaging techniques, transgenic lineage tracing mice, and clinical interventional studies have shown that both innate and adaptive immune mechanisms can accelerate or curb atherosclerosis. Here, we summarize and discuss the pathogenesis of atherosclerosis with a focus on adaptive immunity. We discuss some limitations of animal models and the need for models that are tailored to better translate to human atherosclerosis and ultimately progress in prevention and treatment.
Collapse
Affiliation(s)
- Dennis Wolf
- From the Department of Cardiology and Angiology I, University Heart Center Freiburg, Germany (D.W.).,Faculty of Medicine, University of Freiburg, Germany (D.W.)
| | - Klaus Ley
- Division of Inflammation Biology, La Jolla Institute for Immunology, CA (K.L.).,Department of Bioengineering, University of California San Diego, La Jolla (K.L.)
| |
Collapse
|
122
|
Affiliation(s)
- Kouji Kobiyama
- From the Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, CA (K.K., K.L.)
| | - Klaus Ley
- From the Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, CA (K.K., K.L.).,Department of Bioengineering, University of California San Diego, La Jolla (K.L.)
| |
Collapse
|
123
|
Faulin TDES, Kazuma SM, Tripodi GL, Cavalcante MF, Wakasuqui F, Oliveira CLP, Degenhardt MFDS, Michaloski J, Giordano RJ, Ketelhuth DFJ, Abdalla DSP. Proinflammatory Action of a New Electronegative Low-Density Lipoprotein Epitope. Biomolecules 2019; 9:biom9080386. [PMID: 31434316 PMCID: PMC6723646 DOI: 10.3390/biom9080386] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 08/03/2019] [Accepted: 08/13/2019] [Indexed: 01/02/2023] Open
Abstract
The electronegative low-density lipoprotein, LDL (-), is an endogenously modified LDL subfraction with cytotoxic and proinflammatory actions on endothelial cells, monocytes, and macrophages contributing to the progression of atherosclerosis. In this study, epitopes of LDL (-) were mapped using a phage display library of peptides and monoclonal antibodies reactive to this modified lipoprotein. Two different peptide libraries (X6 and CX8C for 6- and 8-amino acid-long peptides, respectively) were used in the mapping. Among all tested peptides, two circular peptides, P1A3 and P2C7, were selected based on their high affinities for the monoclonal antibodies. Small-angle X-ray scattering analysis confirmed their structures as circular rings. P1A3 or P2C7 were quickly internalized by bone marrow-derived murine macrophages as shown by confocal microscopy. P2C7 increased the expression of TNFα, IL-1 β and iNOS as well as the secretion of TNFα, CCL2, and nitric oxide by murine macrophages, similar to the responses induced by LDL (-), although less intense. In contrast, P1A3 did not show pro-inflammatory effects. We identified a mimetic epitope associated with LDL (-), the P2C7 circular peptide, that activates macrophages. Our data suggest that this conformational epitope represents an important danger-associated molecular pattern of LDL (-) that triggers proinflammatory responses.
Collapse
Affiliation(s)
- Tanize do Espirito Santo Faulin
- Department of Clinical and Toxicological Analyses, Faculty of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo 05508-000, Brazil
| | - Soraya Megumi Kazuma
- Department of Clinical and Toxicological Analyses, Faculty of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo 05508-000, Brazil
| | - Gustavo Luis Tripodi
- Department of Clinical and Toxicological Analyses, Faculty of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo 05508-000, Brazil
| | - Marcela Frota Cavalcante
- Department of Clinical and Toxicological Analyses, Faculty of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo 05508-000, Brazil
| | - Felipe Wakasuqui
- Department of Clinical and Toxicological Analyses, Faculty of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo 05508-000, Brazil
| | | | | | - Jussara Michaloski
- Department of Biochemistry, Institute of Chemistry, University of Sao Paulo, Sao Paulo 05508-000, SP, Brazil
| | - Ricardo José Giordano
- Department of Biochemistry, Institute of Chemistry, University of Sao Paulo, Sao Paulo 05508-000, SP, Brazil
| | - Daniel Francisco Jacon Ketelhuth
- Centre for Molecular Medicine, Department of Medicine, Karolinska University Hospital, Karolinska Institute, 17164 Stockholm, Sweden
- Department of Cardiovascular and Renal Research, Institute for Molecular Medicine, University of Southern Denmark (SDU), 5000 Odense, Denmark
| | - Dulcineia Saes Parra Abdalla
- Department of Clinical and Toxicological Analyses, Faculty of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo 05508-000, Brazil.
| |
Collapse
|
124
|
Bartlett B, Ludewick HP, Misra A, Lee S, Dwivedi G. Macrophages and T cells in atherosclerosis: a translational perspective. Am J Physiol Heart Circ Physiol 2019; 317:H375-H386. [DOI: 10.1152/ajpheart.00206.2019] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Atherosclerosis is now considered a chronic maladaptive inflammatory disease. The hallmark feature in both human and murine disease is atherosclerotic plaques. Macrophages and various T-cell lineages play a crucial role in atherosclerotic plaque establishment and disease progression. Humans and mice share many of the same processes that occur within atherogenesis. The various similarities enable considerable insight into disease mechanisms and those which contribute to cardiovascular complications. The apolipoprotein E-null and low-density lipoprotein receptor-null mice have served as the foundation for further immunological pathway manipulation to identify pro- and antiatherogenic pathways in attempt to reveal more novel therapeutic targets. In this review, we provide a translational perspective and discuss the roles of macrophages and various T-cell lineages in contrasting proatherosclerotic and atheroprotective settings.
Collapse
Affiliation(s)
- Benjamin Bartlett
- Department of Advanced Clinical and Translational Cardiovascular Imaging, Harry Perkins Institute of Medical Research, Murdoch, Western Australia, Australia
- School of Medicine, University of Western Australia, Perth, Western Australia, Australia
| | - Herbert P. Ludewick
- Department of Advanced Clinical and Translational Cardiovascular Imaging, Harry Perkins Institute of Medical Research, Murdoch, Western Australia, Australia
| | - Ashish Misra
- Heart Research Institute, Sydney Medical School, University of Sydney, Sydney, Australia
| | - Silvia Lee
- Department of Advanced Clinical and Translational Cardiovascular Imaging, Harry Perkins Institute of Medical Research, Murdoch, Western Australia, Australia
- Department of Microbiology, Pathwest Laboratory Medicine, Perth, Western Australia, Australia
| | - Girish Dwivedi
- Department of Advanced Clinical and Translational Cardiovascular Imaging, Harry Perkins Institute of Medical Research, Murdoch, Western Australia, Australia
- School of Medicine, University of Western Australia, Perth, Western Australia, Australia
- Department of Cardiology, Fiona Stanley Hospital, Murdoch, Western Australia, Australia
| |
Collapse
|
125
|
Gu BH, Sprouse ML, Madison MC, Hong MJ, Yuan X, Tung HY, Landers CT, Song LZ, Corry DB, Bettini M, Kheradmand F. A Novel Animal Model of Emphysema Induced by Anti-Elastin Autoimmunity. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2019; 203:349-359. [PMID: 31182478 PMCID: PMC6688643 DOI: 10.4049/jimmunol.1900113] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 05/13/2019] [Indexed: 12/21/2022]
Abstract
Loss of immune tolerance to self-antigens can promote chronic inflammation and disrupt the normal function of multiple organs, including the lungs. Degradation of elastin, a highly insoluble protein and a significant component of the lung structural matrix, generates proinflammatory molecules. Elastin fragments (EFs) have been detected in the serum of smokers with emphysema, and elastin-specific T cells have also been detected in the peripheral blood of smokers with emphysema. However, an animal model that could recapitulate T cell-specific autoimmune responses by initiating and sustaining inflammation in the lungs is lacking. In this study, we report an animal model of autoimmune emphysema mediated by the loss of tolerance to elastin. Mice immunized with a combination of human EFs plus rat EFs but not mouse EFs showed increased infiltration of innate and adaptive immune cells to the lungs and developed emphysema. We cloned and expanded mouse elastin-specific CD4+ T cells from the lung and spleen of immunized mice. Finally, we identified TCR sequences from the autoreactive T cell clones, suggesting possible pathogenic TCRs that can cause loss of immune tolerance against elastin. This new autoimmune model of emphysema provides a useful tool to examine the immunological factors that promote loss of immune tolerance to self.
Collapse
Affiliation(s)
- Bon-Hee Gu
- Department of Medicine, Pulmonary and Critical Care, Baylor College of Medicine, Houston, TX 77030
| | - Maran L Sprouse
- Section of Diabetes and Endocrinology, Department of Pediatrics, McNair Medical Institute, Baylor College of Medicine, Texas Children's Hospital, Houston, TX 77030
| | - Matthew C Madison
- Department of Medicine, Pulmonary and Critical Care, Baylor College of Medicine, Houston, TX 77030
| | - Monica J Hong
- Department of Medicine, Pulmonary and Critical Care, Baylor College of Medicine, Houston, TX 77030
| | - Xiaoyi Yuan
- Department of Medicine, Pulmonary and Critical Care, Baylor College of Medicine, Houston, TX 77030
| | - Hui-Ying Tung
- Department of Medicine, Pulmonary and Critical Care, Baylor College of Medicine, Houston, TX 77030
| | - Cameron T Landers
- Department of Medicine, Pulmonary and Critical Care, Baylor College of Medicine, Houston, TX 77030
| | - Li-Zhen Song
- Department of Medicine, Pulmonary and Critical Care, Baylor College of Medicine, Houston, TX 77030
| | - David B Corry
- Department of Medicine, Pulmonary and Critical Care, Baylor College of Medicine, Houston, TX 77030
- Center for Translational Research in Inflammatory Diseases, Michael E. DeBakey VA Medical Center, Houston, TX 77030
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030; and
- Biology of Inflammation Center, Baylor College of Medicine, Houston, TX 77030
| | - Maria Bettini
- Section of Diabetes and Endocrinology, Department of Pediatrics, McNair Medical Institute, Baylor College of Medicine, Texas Children's Hospital, Houston, TX 77030;
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030; and
- Biology of Inflammation Center, Baylor College of Medicine, Houston, TX 77030
| | - Farrah Kheradmand
- Department of Medicine, Pulmonary and Critical Care, Baylor College of Medicine, Houston, TX 77030;
- Center for Translational Research in Inflammatory Diseases, Michael E. DeBakey VA Medical Center, Houston, TX 77030
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030; and
- Biology of Inflammation Center, Baylor College of Medicine, Houston, TX 77030
| |
Collapse
|
126
|
Williams JW, Huang LH, Randolph GJ. Cytokine Circuits in Cardiovascular Disease. Immunity 2019; 50:941-954. [PMID: 30995508 PMCID: PMC6924925 DOI: 10.1016/j.immuni.2019.03.007] [Citation(s) in RCA: 124] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 03/08/2019] [Accepted: 03/12/2019] [Indexed: 02/06/2023]
Abstract
Arterial inflammation is a hallmark of atherosclerosis, and appropriate management of this inflammation represents a major unmet therapeutic need for cardiovascular disease patients. Here, we review the diverse contributions of immune cells to atherosclerosis, the mechanisms of immune cell activation in this context, and the cytokine circuits that underlie disease progression. We discuss the recent application of these insights in the form of immunotherapy to treat cardiovascular disease and highlight how studies on the cardiovascular co-morbidity that arises in autoimmunity might reveal additional roles for cytokines in atherosclerosis. Currently, data point to interleukin-1β (IL-1β), tumor necrosis factor (TNF), and IL-17 as cytokines that, at least in some settings, are effective targets to reduce cardiovascular disease progression.
Collapse
Affiliation(s)
- Jesse W Williams
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63139, USA
| | - Li-Hao Huang
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63139, USA
| | - Gwendalyn J Randolph
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63139, USA.
| |
Collapse
|
127
|
Bertero A, Fields PA, Ramani V, Bonora G, Yardimci GG, Reinecke H, Pabon L, Noble WS, Shendure J, Murry CE. Dynamics of genome reorganization during human cardiogenesis reveal an RBM20-dependent splicing factory. Nat Commun 2019; 10:1538. [PMID: 30948719 PMCID: PMC6449405 DOI: 10.1038/s41467-019-09483-5] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 03/08/2019] [Indexed: 01/25/2023] Open
Abstract
Functional changes in spatial genome organization during human development are poorly understood. Here we report a comprehensive profile of nuclear dynamics during human cardiogenesis from pluripotent stem cells by integrating Hi-C, RNA-seq and ATAC-seq. While chromatin accessibility and gene expression show complex on/off dynamics, large-scale genome architecture changes are mostly unidirectional. Many large cardiac genes transition from a repressive to an active compartment during differentiation, coincident with upregulation. We identify a network of such gene loci that increase their association inter-chromosomally, and are targets of the muscle-specific splicing factor RBM20. Genome editing studies show that TTN pre-mRNA, the main RBM20-regulated transcript in the heart, nucleates RBM20 foci that drive spatial proximity between the TTN locus and other inter-chromosomal RBM20 targets such as CACNA1C and CAMK2D. This mechanism promotes RBM20-dependent alternative splicing of the resulting transcripts, indicating the existence of a cardiac-specific trans-interacting chromatin domain (TID) functioning as a splicing factory.
Collapse
Affiliation(s)
- Alessandro Bertero
- Department of Pathology, University of Washington, 1959 NE Pacific Street, Seattle, WA, 98195, USA.,Center for Cardiovascular Biology, University of Washington, 850 Republican Street, Brotman Building, Seattle, WA, 98109, USA.,Institute for Stem Cell and Regenerative Medicine, University of Washington, 850 Republican Street, Seattle, 98109, WA, USA
| | - Paul A Fields
- Department of Pathology, University of Washington, 1959 NE Pacific Street, Seattle, WA, 98195, USA.,Center for Cardiovascular Biology, University of Washington, 850 Republican Street, Brotman Building, Seattle, WA, 98109, USA.,Institute for Stem Cell and Regenerative Medicine, University of Washington, 850 Republican Street, Seattle, 98109, WA, USA
| | - Vijay Ramani
- Department of Genome Sciences, University of Washington, William H. Foege Hall, 3720 15th Ave NE, Seattle, 98195, WA, USA
| | - Giancarlo Bonora
- Department of Genome Sciences, University of Washington, William H. Foege Hall, 3720 15th Ave NE, Seattle, 98195, WA, USA
| | - Galip G Yardimci
- Department of Genome Sciences, University of Washington, William H. Foege Hall, 3720 15th Ave NE, Seattle, 98195, WA, USA
| | - Hans Reinecke
- Department of Pathology, University of Washington, 1959 NE Pacific Street, Seattle, WA, 98195, USA.,Center for Cardiovascular Biology, University of Washington, 850 Republican Street, Brotman Building, Seattle, WA, 98109, USA.,Institute for Stem Cell and Regenerative Medicine, University of Washington, 850 Republican Street, Seattle, 98109, WA, USA
| | - Lil Pabon
- Department of Pathology, University of Washington, 1959 NE Pacific Street, Seattle, WA, 98195, USA.,Center for Cardiovascular Biology, University of Washington, 850 Republican Street, Brotman Building, Seattle, WA, 98109, USA.,Institute for Stem Cell and Regenerative Medicine, University of Washington, 850 Republican Street, Seattle, 98109, WA, USA
| | - William S Noble
- Department of Genome Sciences, University of Washington, William H. Foege Hall, 3720 15th Ave NE, Seattle, 98195, WA, USA
| | - Jay Shendure
- Department of Genome Sciences, University of Washington, William H. Foege Hall, 3720 15th Ave NE, Seattle, 98195, WA, USA.,Howard Hughes Medical Institute, Seattle, WA, USA
| | - Charles E Murry
- Department of Pathology, University of Washington, 1959 NE Pacific Street, Seattle, WA, 98195, USA. .,Center for Cardiovascular Biology, University of Washington, 850 Republican Street, Brotman Building, Seattle, WA, 98109, USA. .,Institute for Stem Cell and Regenerative Medicine, University of Washington, 850 Republican Street, Seattle, 98109, WA, USA. .,Department of Medicine/Cardiology, 1959 NE Pacific Street, University of Washington, Seattle, 98195, WA, USA. .,Department of Bioengineering, University of Washington, 3720 15th Ave NE, Seattle, WA, 98195, USA.
| |
Collapse
|
128
|
Impfung zur Behandlung der Arteriosklerose – eine realistische Vision? Herz 2019; 44:93-95. [DOI: 10.1007/s00059-019-4793-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
129
|
Abstract
There is now overwhelming experimental and clinical evidence that arteriosclerosis is a chronic inflammatory disease. Lessons learned from genome-wide association studies, advanced in vivo imaging techniques, transgenic lineage tracing mice models and clinical interventional studies have shown that both innate and adaptive immune mechanisms can accelerate or curb arteriosclerosis. This article summarizes and discusses the pathogenesis of arteriosclerosis with a focus on the role of the adaptive immune system. Some limitations of animal models are discussed and the need for models that are tailored to better translate to human atherosclerosis and ultimately progress in prevention and treatment are emphasized.
Collapse
Affiliation(s)
- D Wolf
- Abteilung für Kardiologie und Angiologie I, Universitäts-Herzzentrum Freiburg, Freiburg, Deutschland
- Medizinische Fakultät, Universität Freiburg, Freiburg, Deutschland
| | - K Ley
- Division of Inflammation Biology, La Jolla Institute for Immunology, 9420 Athena Cir, 92037, La Jolla, CA, USA.
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
130
|
Zhao TX, Mallat Z. Targeting the Immune System in Atherosclerosis. J Am Coll Cardiol 2019; 73:1691-1706. [DOI: 10.1016/j.jacc.2018.12.083] [Citation(s) in RCA: 121] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 12/20/2018] [Accepted: 12/30/2018] [Indexed: 02/08/2023]
|
131
|
Vaccination against atherosclerosis. Curr Opin Immunol 2019; 59:15-24. [PMID: 30928800 DOI: 10.1016/j.coi.2019.02.008] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 02/11/2019] [Accepted: 02/22/2019] [Indexed: 12/30/2022]
Abstract
Atherosclerosis is a chronic inflammatory disease that causes most heart attacks and strokes, making it the biggest killer in the world. Although cholesterol-lowering drugs have dramatically reduced these major adverse cardiovascular events, there remains a high residual risk called inflammatory risk. Atherosclerosis has an autoimmune component that can be manipulated by immunologic approaches including vaccination. Vaccination is attractive, because it is antigen-specific, does not impair host defense, and provides long-term protection. Several candidate antigens for atherosclerosis vaccine development have been identified and have been shown to reduce atherosclerosis in animal models. In this review, we focus on two different types of atherosclerosis vaccines: antibody-inducing and regulatory T cell-inducing.
Collapse
|
132
|
Matthis J, King V, Reijonen H. Production of Antigen-Specific Human CD4 + T Cell Lines and Clones. Methods Mol Biol 2019; 1988:387-402. [PMID: 31147954 DOI: 10.1007/978-1-4939-9450-2_27] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Methodologies to generate single antigen-specific T cells are based on the T cell specificity, activation, or other subsequent functional measures. One of the most powerful tools to isolate human CD4+ T cell clones is utilization of MHC Class II tetramers. Flow cytometer-based tetramer technology mimics the recognition of the specific antigenic peptide in the context of HLA class II (tetramer) by the T cell receptor. MHC class II tetramers, which can be exogenously loaded to contain any peptide of interest that binds to them (T cell epitopes), provide a valuable tool for detection of T cells in the peripheral blood or the tissue that are specific for antigens from different viruses, tumors, or self-proteins (autoimmunity). Generation of T cell clones with a defined antigen specificity allows for a deeper characterization and functional assessment at single cell level. This is important for determination of the epitope specificity and functional phenotype of the disease associated T cells. Single cell cloning can be utilized in the direct sequencing of the T cell receptor alpha/beta pairs that are prevalent in the disease and therefore provides a platform for T cell receptor engineering, which has applications in the immunotherapy.
Collapse
Affiliation(s)
| | - Victoria King
- City of Hope Medical Center, Beckman Research Institute, Duarte, CA, USA
| | - Helena Reijonen
- City of Hope Medical Center, Beckman Research Institute, Duarte, CA, USA.
| |
Collapse
|
133
|
Amersfoort J, Douna H, Schaftenaar FH, Foks AC, Kröner MJ, van Santbrink PJ, van Puijvelde GHM, Bot I, Kuiper J. Defective Autophagy in T Cells Impairs the Development of Diet-Induced Hepatic Steatosis and Atherosclerosis. Front Immunol 2018; 9:2937. [PMID: 30619297 PMCID: PMC6299070 DOI: 10.3389/fimmu.2018.02937] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 11/29/2018] [Indexed: 12/24/2022] Open
Abstract
Macroautophagy (or autophagy) is a conserved cellular process in which cytoplasmic cargo is targeted for lysosomal degradation. Autophagy is crucial for the functional integrity of different subsets of T cells in various developmental stages. Since atherosclerosis is an inflammatory disease of the vessel wall which is partly characterized by T cell mediated autoimmunity, we investigated how advanced atherosclerotic lesions develop in mice with T cells that lack autophagy-related protein 7 (Atg7), a protein required for functional autophagy. Mice with a T cell-specific knock-out of Atg7 (Lck-Cre Atg7f/f) had a diminished naïve CD4+ and CD8+ T cell compartment in the spleen and mediastinal lymph node as compared to littermate controls (Atg7f/f). Lck-Cre Atg7f/f and Atg7f/f mice were injected intravenously with rAAV2/8-D377Y-mPCSK9 and fed a Western-type diet to induce atherosclerosis. While Lck-Cre Atg7f/f mice had equal serum Proprotein Convertase Subtilisin/Kexin type 9 levels as compared to Atg7f/f mice, serum cholesterol levels were significantly diminished in Lck-Cre Atg7f/f mice. Histological analysis of the liver revealed less steatosis, and liver gene expression profiling showed decreased expression of genes associated with hepatic steatosis in Lck-Cre Atg7f/f mice as compared to Atg7f/f mice. The level of hepatic CD4+ and CD8+ T cells was greatly diminished but both CD4+ and CD8+ T cells showed a relative increase in their IFNγ and IL-17 production upon Atg7 deficiency. Atg7 deficiency furthermore reduced the hepatic NKT cell population which was decreased to < 0.1% of the lymphocyte population. Interestingly, T cell-specific knock-out of Atg7 decreased the mean atherosclerotic lesion size in the tri-valve area by over 50%. Taken together, T cell-specific deficiency of Atg7 resulted in a decrease in hepatic steatosis and limited inflammatory potency in the (naïve) T cell compartment in peripheral lymphoid tissues, which was associated with a strong reduction in experimental atherosclerosis.
Collapse
Affiliation(s)
- Jacob Amersfoort
- Division of BioTherapeutics, LACDR, Leiden University, Leiden, Netherlands
| | - Hidde Douna
- Division of BioTherapeutics, LACDR, Leiden University, Leiden, Netherlands
| | | | - Amanda C Foks
- Division of BioTherapeutics, LACDR, Leiden University, Leiden, Netherlands
| | - Mara J Kröner
- Division of BioTherapeutics, LACDR, Leiden University, Leiden, Netherlands
| | | | | | - Ilze Bot
- Division of BioTherapeutics, LACDR, Leiden University, Leiden, Netherlands
| | - Johan Kuiper
- Division of BioTherapeutics, LACDR, Leiden University, Leiden, Netherlands
| |
Collapse
|
134
|
Benne N, van Duijn J, Lozano Vigario F, Leboux RJT, van Veelen P, Kuiper J, Jiskoot W, Slütter B. Anionic 1,2-distearoyl-sn-glycero-3-phosphoglycerol (DSPG) liposomes induce antigen-specific regulatory T cells and prevent atherosclerosis in mice. J Control Release 2018; 291:135-146. [PMID: 30365993 DOI: 10.1016/j.jconrel.2018.10.028] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 09/27/2018] [Accepted: 10/22/2018] [Indexed: 01/14/2023]
Abstract
Atherosclerosis is the predominant underlying pathology of many types of cardiovascular disease and is one of the leading causes of death worldwide. It is characterized by the retention of oxidized low-density lipoprotein (ox-LDL) in lipid-rich macrophages (foam cells) in the intima of arteries. Autoantigens derived from oxLDL can be used to vaccinate against atherosclerosis. However, a major challenge is the induction of antigen-specific Tregs in a safe and effective way. Here we report that liposomes containing the anionic phospholipid 1,2-distearoyl-sn-glycero-3-phosphoglycerol (DSPG) induce Tregs that are specific for the liposomes' cargo. Mechanistically, we show a crucial role for the protein corona that forms on the liposomes in the circulation, as uptake of DSPG-liposomes by antigen-presenting cells is mediated via complement component 1q (C1q) and scavenger receptors (SRs). Vaccination of atherosclerotic mice on a western-type diet with DSPG-liposomes encapsulating an LDL-derived peptide antigen significantly reduced plaque formation by 50% and stabilized the plaques, and reduced serum cholesterol concentrations. These results indicate that DSPG-liposomes have potential as a delivery system in vaccination against atherosclerosis.
Collapse
Affiliation(s)
- Naomi Benne
- Divison of BioTherapeutics, Leiden Academic Center for Drug Research, Leiden, The Netherlands
| | - Janine van Duijn
- Divison of BioTherapeutics, Leiden Academic Center for Drug Research, Leiden, The Netherlands
| | - Fernando Lozano Vigario
- Divison of BioTherapeutics, Leiden Academic Center for Drug Research, Leiden, The Netherlands
| | - Romain J T Leboux
- Divison of BioTherapeutics, Leiden Academic Center for Drug Research, Leiden, The Netherlands
| | - Peter van Veelen
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Johan Kuiper
- Divison of BioTherapeutics, Leiden Academic Center for Drug Research, Leiden, The Netherlands
| | - Wim Jiskoot
- Divison of BioTherapeutics, Leiden Academic Center for Drug Research, Leiden, The Netherlands
| | - Bram Slütter
- Divison of BioTherapeutics, Leiden Academic Center for Drug Research, Leiden, The Netherlands.
| |
Collapse
|
135
|
Kobiyama K, Vassallo M, Mitzi J, Winkels H, Pei H, Kimura T, Miller J, Wolf D, Ley K. A clinically applicable adjuvant for an atherosclerosis vaccine in mice. Eur J Immunol 2018; 48:1580-1587. [PMID: 29932463 DOI: 10.1002/eji.201847584] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 05/11/2018] [Accepted: 06/20/2018] [Indexed: 12/25/2022]
Abstract
Vaccination with MHC-II-restricted peptides from Apolipoprotein B (ApoB) with complete and incomplete Freund's adjuvant (CFA/IFA) is known to protect mice from atherosclerosis. This vaccination induces antigen-specific IgG1 and IgG2c antibody responses and a robust CD4 T cell response in lymph nodes. However, CFA/IFA cannot be used in humans. To find a clinically applicable adjuvant, we tested the effect of vaccinating Apoe-deficient mice with ApoB peptide P6 (TGAYSNASSTESASY). In a broad screening experiment, Addavax, a squalene-based oil-in-water adjuvant similar to MF59, was the only adjuvant that showed similar efficacy as CFA/IFA. This was confirmed in a confirmation experiment for both the aortic arch and whole aorta analyzed by en face analysis after atherosclerotic lesion staining. Mechanistically, restimulated peritoneal cells from mice immunized with P6 in Addavax released significant amounts of IL-10. Unlike P6 in CFA/IFA, vaccination with P6 in Addavax did not induce any detectable IgG1 or IgG2c antibodies to P6. These data suggest that squalene-based adjuvants such as MF59 are good candidate adjuvants for developing a clinically effective atherosclerosis vaccine.
Collapse
Affiliation(s)
- Kouji Kobiyama
- Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, La Jolla, CA, USA
| | - Melanie Vassallo
- Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, La Jolla, CA, USA
| | - Jessica Mitzi
- Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, La Jolla, CA, USA
| | - Holger Winkels
- Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, La Jolla, CA, USA
| | - Hong Pei
- Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, La Jolla, CA, USA
| | - Takayuki Kimura
- Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, La Jolla, CA, USA
| | - Jacqueline Miller
- Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, La Jolla, CA, USA
| | - Dennis Wolf
- Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, La Jolla, CA, USA
| | - Klaus Ley
- Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, La Jolla, CA, USA.,Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|