101
|
Chen X, Tang J, Shuai W, Meng J, Feng J, Han Z. Macrophage polarization and its role in the pathogenesis of acute lung injury/acute respiratory distress syndrome. Inflamm Res 2020; 69:883-895. [PMID: 32647933 PMCID: PMC7347666 DOI: 10.1007/s00011-020-01378-2] [Citation(s) in RCA: 246] [Impact Index Per Article: 49.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 05/30/2020] [Accepted: 07/06/2020] [Indexed: 12/23/2022] Open
Abstract
PURPOSE Macrophages are highly plastic cells. Under different stimuli, macrophages can be polarized into several different subsets. Two main macrophage subsets have been suggested: classically activated or inflammatory (M1) macrophages and alternatively activated or anti-inflammatory (M2) macrophages. Macrophage polarization is governed by a highly complex set of regulatory networks. Many recent studies have shown that macrophages are key orchestrators in the pathogenesis of acute lung injury (ALI)/acute respiratory distress syndrome (ARDS) and that regulation of macrophage polarization may improve the prognosis of ALI/ARDS. A further understanding of the mechanisms of macrophage polarization is expected to be helpful in the development of novel therapeutic targets to treat ALI/ARDS. Therefore, we performed a literature review to summarize the regulatory mechanisms of macrophage polarization and its role in the pathogenesis of ALI/ARDS. METHODS A computer-based online search was performed using the PubMed database and Web of Science database for published articles concerning macrophages, macrophage polarization, and ALI/ARDS. RESULTS In this review, we discuss the origin, polarization, and polarization regulation of macrophages as well as the role of macrophage polarization in various stages of ARDS. According to the current literature, regulating the polarized state of macrophages might be a potential therapeutic strategy against ALI/ARDS.
Collapse
Affiliation(s)
- Xuxin Chen
- Department of Pulmonary and Critical Care Medicine, The Sixth Medical Center of Chinese, PLA General Hospital, No. 6 Fucheng Road, Beijing, 100037, China
| | - Jian Tang
- Department of Pulmonary and Critical Care Medicine, The Sixth Medical Center of Chinese, PLA General Hospital, No. 6 Fucheng Road, Beijing, 100037, China
| | - Weizheng Shuai
- Department of ICU, The Sixth Medical Center of Chinese, PLA General Hospital, Beijing, 100037, China
| | - Jiguang Meng
- Department of Pulmonary and Critical Care Medicine, The Sixth Medical Center of Chinese, PLA General Hospital, No. 6 Fucheng Road, Beijing, 100037, China
| | - Jian Feng
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, No. 25 Taiping Street, Luzhou, 646000, China.
| | - Zhihai Han
- Department of Pulmonary and Critical Care Medicine, The Sixth Medical Center of Chinese, PLA General Hospital, No. 6 Fucheng Road, Beijing, 100037, China.
| |
Collapse
|
102
|
Kulshrestha R, Dhanda H, Pandey A, Singh A, Kumar R. Immunopathogenesis and therapeutic potential of macrophage influx in diffuse parenchymal lung diseases. Expert Rev Respir Med 2020; 14:917-928. [PMID: 32600077 DOI: 10.1080/17476348.2020.1776117] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
INTRODUCTION The diffuse parenchymal lung diseases (DPLD)/interstitial lung diseases (ILD) are progressive lung disorders with usually unclear etiology, poor long-term survival and no effective treatment. Their pathogenesis is characterized by alveolar epithelial cell injury, inflammation, epithelial-mesenchymal transition, and parenchymal fibrosis. Macrophages play diverse roles in their development, both in the acute phase and in tissue repair. AREAS COVERED In this review, we summarize the current state of knowledge regarding the role of macrophages and their phenotypes in the immunopathogenesis of DPLDs; CVD-ILD, UIP, NSIP, DIP, RB-ILD, AIP, HP, Sarcoidosis, etc. Our goal is to update the understanding of the immune mechanisms underlying the initiation and progression of fibrosis in DPLDs. This will help in identification of biomarkers and in developing novel therapeutic strategies for DPLDs. A thorough literature search of the published studies in PubMed (from 1975 to 2020) was done. EXPERT OPINION The macrophage associated inflammatory markers needs to be explored for their potential as biomarkers of disease activity and progression. Pharmacological targeting of macrophage activation may reduce the risk of macrophage activation syndrome (MAS) and help improving the survival and prognosis of these patients.
Collapse
Affiliation(s)
| | - Himanshu Dhanda
- Department of Pathology, V.P.Chest Institute , New Delhi, India
| | - Apoorva Pandey
- Department of Pathology, V.P.Chest Institute , New Delhi, India
| | - Amit Singh
- Department of Pathology, V.P.Chest Institute , New Delhi, India
| | - Raj Kumar
- Department of Pulmonary Medicine, V.P.Chest Institute , New Delhi, India
| |
Collapse
|
103
|
Ham S, Lima LG, Lek E, Möller A. The Impact of the Cancer Microenvironment on Macrophage Phenotypes. Front Immunol 2020; 11:1308. [PMID: 32655574 PMCID: PMC7324670 DOI: 10.3389/fimmu.2020.01308] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 05/22/2020] [Indexed: 12/14/2022] Open
Abstract
Within the tumor microenvironment, there is an intricate communication happening between tumor and stromal cells. This information exchange, in the form of cytokines, growth factors, extracellular vesicles, danger molecules, cell debris, and other factors, is capable of modulating the function of immune cells. The triggering of specific responses, including phenotypic alterations, can ultimately result in either immune surveillance or tumor cell survival. Macrophages are a well-studied cell lineage illustrating the different cellular phenotypes possible, depending on the tumor microenvironmental context. While our understanding of macrophage responses is well documented in vitro, surprisingly, little work has been done to confirm these observations in the cancer microenvironment. In fact, there are examples of opposing reactions of macrophages to cytokines in cell culture and in vivo tumor settings. Additionally, it seems that different macrophage lineages, for example tissue-resident and monocyte-derived macrophages, respond differently to cytokines and other cancer-derived signals. In this review article, we will describe and discuss the diverging reports on how cancer cells influence monocyte-derived and tissue-resident macrophage traits in vivo.
Collapse
Affiliation(s)
- Sunyoung Ham
- Tumor Microenvironment Laboratory, QIMR Berghofer Medical Research Institute, Herston, QLD, Australia.,Faculty of Health, School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD, Australia
| | - Luize G Lima
- Tumor Microenvironment Laboratory, QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
| | - Erica Lek
- Tumor Microenvironment Laboratory, QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
| | - Andreas Möller
- Tumor Microenvironment Laboratory, QIMR Berghofer Medical Research Institute, Herston, QLD, Australia.,Faculty of Health, School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD, Australia
| |
Collapse
|
104
|
Zhang C, Rong HM, Li T, Zhai K, Tong ZH. PD-1 Deficiency Promotes Macrophage Activation and T-Helper Cell Type 1/T-Helper Cell Type 17 Response in Pneumocystis Pneumonia. Am J Respir Cell Mol Biol 2020; 62:767-782. [PMID: 32048861 DOI: 10.1165/rcmb.2019-0234oc] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
- Chao Zhang
- Department of Respiratory and Critical Care Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Heng-Mo Rong
- Department of Respiratory and Critical Care Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Ting Li
- Department of Respiratory and Critical Care Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Kan Zhai
- Department of Respiratory and Critical Care Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Zhao-Hui Tong
- Department of Respiratory and Critical Care Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
105
|
Roquilly A, Jacqueline C, Davieau M, Mollé A, Sadek A, Fourgeux C, Rooze P, Broquet A, Misme-Aucouturier B, Chaumette T, Vourc'h M, Cinotti R, Marec N, Gauttier V, McWilliam HEG, Altare F, Poschmann J, Villadangos JA, Asehnoune K. Alveolar macrophages are epigenetically altered after inflammation, leading to long-term lung immunoparalysis. Nat Immunol 2020; 21:636-648. [PMID: 32424365 DOI: 10.1038/s41590-020-0673-x] [Citation(s) in RCA: 163] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 03/30/2020] [Indexed: 12/21/2022]
Abstract
Sepsis and trauma cause inflammation and elevated susceptibility to hospital-acquired pneumonia. As phagocytosis by macrophages plays a critical role in the control of bacteria, we investigated the phagocytic activity of macrophages after resolution of inflammation. After resolution of primary pneumonia, murine alveolar macrophages (AMs) exhibited poor phagocytic capacity for several weeks. These paralyzed AMs developed from resident AMs that underwent an epigenetic program of tolerogenic training. Such adaptation was not induced by direct encounter of the pathogen but by secondary immunosuppressive signals established locally upon resolution of primary infection. Signal-regulatory protein α (SIRPα) played a critical role in the establishment of the microenvironment that induced tolerogenic training. In humans with systemic inflammation, AMs and also circulating monocytes still displayed alterations consistent with reprogramming six months after resolution of inflammation. Antibody blockade of SIRPα restored phagocytosis in monocytes of critically ill patients in vitro, which suggests a potential strategy to prevent hospital-acquired pneumonia.
Collapse
Affiliation(s)
- Antoine Roquilly
- Université de Nantes, EA3826 Thérapeutiques Anti-Infectieuses, Institut de Recherche en Santé 2 Nantes Biotech, Nantes, France. .,Université de Nantes, CHU Nantes, Pôle Anesthésie-Réanimation, Service d'Anesthésie Réanimation Chirurgicale, Hôtel Dieu, Nantes, France. .,Department of Microbiology and Immunology, Peter Doherty Institute of Infection and Immunity, The University of Melbourne, Parkville, Victoria, Australia.
| | - Cedric Jacqueline
- Université de Nantes, EA3826 Thérapeutiques Anti-Infectieuses, Institut de Recherche en Santé 2 Nantes Biotech, Nantes, France
| | - Marion Davieau
- Université de Nantes, EA3826 Thérapeutiques Anti-Infectieuses, Institut de Recherche en Santé 2 Nantes Biotech, Nantes, France
| | - Alice Mollé
- Université de Nantes, CHU Nantes, Inserm, Centre de Recherche en Transplantation et Immunologie, UMR1064, ITUN, Nantes, France
| | - Abderrahmane Sadek
- Université de Nantes, CHU Nantes, Inserm, Centre de Recherche en Transplantation et Immunologie, UMR1064, ITUN, Nantes, France.,Department of Biology, Faculty of Science, Moulay Ismail University, Zitoune, Meknes, Morocco
| | - Cynthia Fourgeux
- Université de Nantes, CHU Nantes, Inserm, Centre de Recherche en Transplantation et Immunologie, UMR1064, ITUN, Nantes, France
| | - Paul Rooze
- Université de Nantes, EA3826 Thérapeutiques Anti-Infectieuses, Institut de Recherche en Santé 2 Nantes Biotech, Nantes, France.,Université de Nantes, CHU Nantes, Pôle Anesthésie-Réanimation, Service d'Anesthésie Réanimation Chirurgicale, Hôtel Dieu, Nantes, France
| | - Alexis Broquet
- Université de Nantes, EA3826 Thérapeutiques Anti-Infectieuses, Institut de Recherche en Santé 2 Nantes Biotech, Nantes, France
| | - Barbara Misme-Aucouturier
- Université de Nantes, EA3826 Thérapeutiques Anti-Infectieuses, Institut de Recherche en Santé 2 Nantes Biotech, Nantes, France
| | - Tanguy Chaumette
- Université de Nantes, EA3826 Thérapeutiques Anti-Infectieuses, Institut de Recherche en Santé 2 Nantes Biotech, Nantes, France
| | - Mickael Vourc'h
- Université de Nantes, EA3826 Thérapeutiques Anti-Infectieuses, Institut de Recherche en Santé 2 Nantes Biotech, Nantes, France.,Université de Nantes, CHU Nantes, Pôle Anesthésie-Réanimation, Service d'Anesthésie Réanimation Chirurgicale, Hôtel Dieu, Nantes, France
| | - Raphael Cinotti
- Université de Nantes, CHU Nantes, Pôle Anesthésie-Réanimation, Service d'Anesthésie Réanimation Chirurgicale, Hôtel Dieu, Nantes, France
| | - Nadege Marec
- Plateforme Cytocell, SFR François Bonamy, Nantes, France
| | - Vanessa Gauttier
- Université de Nantes, CHU Nantes, Inserm, Centre de Recherche en Transplantation et Immunologie, UMR1064, ITUN, Nantes, France
| | - Hamish E G McWilliam
- Department of Microbiology and Immunology, Peter Doherty Institute of Infection and Immunity, The University of Melbourne, Parkville, Victoria, Australia.,Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, Australia
| | - Frederic Altare
- CRCINA, INSERM, Université de Nantes, CHU de Nantes, Nantes, France
| | - Jeremie Poschmann
- Université de Nantes, CHU Nantes, Inserm, Centre de Recherche en Transplantation et Immunologie, UMR1064, ITUN, Nantes, France.
| | - Jose A Villadangos
- Department of Microbiology and Immunology, Peter Doherty Institute of Infection and Immunity, The University of Melbourne, Parkville, Victoria, Australia. .,Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, Australia.
| | - Karim Asehnoune
- Université de Nantes, EA3826 Thérapeutiques Anti-Infectieuses, Institut de Recherche en Santé 2 Nantes Biotech, Nantes, France. .,Université de Nantes, CHU Nantes, Pôle Anesthésie-Réanimation, Service d'Anesthésie Réanimation Chirurgicale, Hôtel Dieu, Nantes, France.
| |
Collapse
|
106
|
Guillon A, Arafa EI, Barker KA, Belkina AC, Martin I, Shenoy AT, Wooten AK, Lyon De Ana C, Dai A, Labadorf A, Hernandez Escalante J, Dooms H, Blasco H, Traber KE, Jones MR, Quinton LJ, Mizgerd JP. Pneumonia recovery reprograms the alveolar macrophage pool. JCI Insight 2020; 5:133042. [PMID: 31990682 PMCID: PMC7101156 DOI: 10.1172/jci.insight.133042] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 01/22/2020] [Indexed: 12/21/2022] Open
Abstract
Community-acquired pneumonia is a widespread disease with significant morbidity and mortality. Alveolar macrophages are tissue-resident lung cells that play a crucial role in innate immunity against bacteria that cause pneumonia. We hypothesized that alveolar macrophages display adaptive characteristics after resolution of bacterial pneumonia. We studied mice 1 to 6 months after self-limiting lung infections with Streptococcus pneumoniae, the most common cause of bacterial pneumonia. Alveolar macrophages, but not other myeloid cells, recovered from the lung showed long-term modifications of their surface marker phenotype. The remodeling of alveolar macrophages was (a) long-lasting (still observed 6 months after infection), (b) regionally localized (observed only in the affected lobe after lobar pneumonia), and (c) associated with macrophage-dependent enhanced protection against another pneumococcal serotype. Metabolomic and transcriptomic profiling revealed that alveolar macrophages of mice that recovered from pneumonia had new baseline activities and altered responses to infection that better resembled those of adult humans. The enhanced lung protection after mild and self-limiting bacterial respiratory infections includes a profound remodeling of the alveolar macrophage pool that is long-lasting; compartmentalized; and manifest across surface receptors, metabolites, and both resting and stimulated transcriptomes.
Collapse
Affiliation(s)
- Antoine Guillon
- Pulmonary Center, Boston University School of Medicine, Boston, Massachusetts, USA
- CHRU of Tours, service de Médecine Intensive Réanimation, INSERM, Centre d’Etude des Pathologies Respiratoires (CEPR), UMR 1100, University of Tours, Tours, France
| | - Emad I. Arafa
- Pulmonary Center, Boston University School of Medicine, Boston, Massachusetts, USA
- Department of Medicine
| | - Kimberly A. Barker
- Pulmonary Center, Boston University School of Medicine, Boston, Massachusetts, USA
- Department of Microbiology
| | - Anna C. Belkina
- Pulmonary Center, Boston University School of Medicine, Boston, Massachusetts, USA
- Department of Pathology and Laboratory Medicine, and
- Flow Cytometry Core Facility, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Ian Martin
- Pulmonary Center, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Anukul T. Shenoy
- Pulmonary Center, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Alicia K. Wooten
- Pulmonary Center, Boston University School of Medicine, Boston, Massachusetts, USA
- Department of Medicine
| | - Carolina Lyon De Ana
- Pulmonary Center, Boston University School of Medicine, Boston, Massachusetts, USA
- Department of Microbiology
| | - Anqi Dai
- Bioinformatics Nexus, Boston University, Boston, Massachusetts, USA
| | - Adam Labadorf
- Bioinformatics Nexus, Boston University, Boston, Massachusetts, USA
| | | | - Hans Dooms
- Department of Medicine
- Department of Microbiology
| | - Hélène Blasco
- CHRU of Tours, Medical Pharmacology Department, Inserm U1253, University of Tours, Tours, France
| | - Katrina E. Traber
- Pulmonary Center, Boston University School of Medicine, Boston, Massachusetts, USA
- Department of Medicine
| | - Matthew R. Jones
- Pulmonary Center, Boston University School of Medicine, Boston, Massachusetts, USA
- Department of Medicine
| | - Lee J. Quinton
- Pulmonary Center, Boston University School of Medicine, Boston, Massachusetts, USA
- Department of Medicine
- Department of Microbiology
- Department of Pathology and Laboratory Medicine, and
| | - Joseph P. Mizgerd
- Pulmonary Center, Boston University School of Medicine, Boston, Massachusetts, USA
- Department of Medicine
- Department of Microbiology
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts, USA
| |
Collapse
|
107
|
Janssen WJ, Danhorn T, Harris C, Mould KJ, Lee FFY, Hedin BR, D'Alessandro A, Leach SM, Alper S. Inflammation-Induced Alternative Pre-mRNA Splicing in Mouse Alveolar Macrophages. G3 (BETHESDA, MD.) 2020; 10:555-567. [PMID: 31810980 PMCID: PMC7003074 DOI: 10.1534/g3.119.400935] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 11/26/2019] [Indexed: 12/16/2022]
Abstract
Alveolar macrophages serve as central orchestrators of inflammatory responses in the lungs, both initiating their onset and promoting their resolution. However, the mechanisms that program macrophages for these dynamic responses are not fully understood. Over 95% of all mammalian genes undergo alternative pre-mRNA splicing. While alternative splicing has been shown to regulate inflammatory responses in macrophages in vitro, it has not been investigated on a genome-wide scale in vivo Here we used RNAseq to investigate alternative pre-mRNA splicing in alveolar macrophages isolated from lipopolysaccharide (LPS)-treated mice during the peak of inflammation and during its resolution. We found that lung inflammation induced substantial alternative pre-mRNA splicing in alveolar macrophages. The number of changes in isoform usage was greatest at the peak of inflammation and involved multiple classes of alternative pre-mRNA splicing events. Comparative pathway analysis of inflammation-induced changes in alternative pre-mRNA splicing and differential gene expression revealed overlap of pathways enriched for immune responses such as chemokine signaling and cellular metabolism. Moreover, alternative pre-mRNA splicing of genes in metabolic pathways differed in tissue resident vs. recruited (blood monocyte-derived) alveolar macrophages and corresponded to changes in core metabolism, including a switch to Warburg-like metabolism in recruited macrophages with increased glycolysis and decreased flux through the tricarboxylic acid cycle.
Collapse
Affiliation(s)
- William J Janssen
- Department of Medicine
- Division of Pulmonary Sciences and Critical Care Medicine, and
| | | | - Chelsea Harris
- Center for Genes, Environment and Health, and
- Department of Biomedical Research, National Jewish Health, Denver, CO, 80206
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, 80045
| | - Kara J Mould
- Department of Medicine
- Division of Pulmonary Sciences and Critical Care Medicine, and
| | - Frank Fang-Yao Lee
- Center for Genes, Environment and Health, and
- Department of Biomedical Research, National Jewish Health, Denver, CO, 80206
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, 80045
| | - Brenna R Hedin
- Center for Genes, Environment and Health, and
- Department of Biomedical Research, National Jewish Health, Denver, CO, 80206
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, 80045
| | - Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver, Aurora, CO, 80045
| | - Sonia M Leach
- Center for Genes, Environment and Health, and
- Department of Biomedical Research, National Jewish Health, Denver, CO, 80206
| | - Scott Alper
- Center for Genes, Environment and Health, and
- Department of Biomedical Research, National Jewish Health, Denver, CO, 80206
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, 80045
| |
Collapse
|
108
|
Larson-Casey JL, He C, Carter AB. Mitochondrial quality control in pulmonary fibrosis. Redox Biol 2020; 33:101426. [PMID: 31928788 PMCID: PMC7251238 DOI: 10.1016/j.redox.2020.101426] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 12/19/2019] [Accepted: 01/03/2020] [Indexed: 12/11/2022] Open
Abstract
Mechanisms underlying the pathogenesis of pulmonary fibrosis remain incompletely understood. Emerging evidence suggests changes in mitochondrial quality control are a critical determinant in many lung diseases, including chronic obstructive pulmonary disease, asthma, pulmonary hypertension, acute lung injury, lung cancer, and in the susceptibility to pulmonary fibrosis. Once thought of as the kidney-bean shaped powerhouses of the cell, mitochondria are now known to form interconnected networks that rapidly and continuously change their size to meet cellular metabolic demands. Mitochondrial quality control modulates cell fate and homeostasis, and diminished mitochondrial quality control results in mitochondrial dysfunction, increased reactive oxygen species (ROS) production, reduced ATP production, and often induces intrinsic apoptosis. Here, we review the role of the mitochondria in alveolar epithelial cells, lung macrophages, and fibroblasts within the context of pulmonary fibrosis.
Collapse
Affiliation(s)
- Jennifer L Larson-Casey
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL, 35294, United States
| | - Chao He
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL, 35294, United States
| | - A Brent Carter
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL, 35294, United States; Birmingham VAMC, Birmingham, AL, 35294, United States.
| |
Collapse
|
109
|
Joshi N, Watanabe S, Verma R, Jablonski RP, Chen CI, Cheresh P, Markov NS, Reyfman PA, McQuattie-Pimentel AC, Sichizya L, Lu Z, Piseaux-Aillon R, Kirchenbuechler D, Flozak AS, Gottardi CJ, Cuda CM, Perlman H, Jain M, Kamp DW, Budinger GRS, Misharin AV. A spatially restricted fibrotic niche in pulmonary fibrosis is sustained by M-CSF/M-CSFR signalling in monocyte-derived alveolar macrophages. Eur Respir J 2020; 55:1900646. [PMID: 31601718 PMCID: PMC6962769 DOI: 10.1183/13993003.00646-2019] [Citation(s) in RCA: 201] [Impact Index Per Article: 40.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 09/26/2019] [Indexed: 01/10/2023]
Abstract
Ontologically distinct populations of macrophages differentially contribute to organ fibrosis through unknown mechanisms.We applied lineage tracing, single-cell RNA sequencing and single-molecule fluorescence in situ hybridisation to a spatially restricted model of asbestos-induced pulmonary fibrosis.We demonstrate that tissue-resident alveolar macrophages, tissue-resident peribronchial and perivascular interstitial macrophages, and monocyte-derived alveolar macrophages are present in the fibrotic niche. Deletion of monocyte-derived alveolar macrophages but not tissue-resident alveolar macrophages ameliorated asbestos-induced lung fibrosis. Monocyte-derived alveolar macrophages were specifically localised to fibrotic regions in the proximity of fibroblasts where they expressed molecules known to drive fibroblast proliferation, including platelet-derived growth factor subunit A. Using single-cell RNA sequencing and spatial transcriptomics in both humans and mice, we identified macrophage colony-stimulating factor receptor (M-CSFR) signalling as one of the novel druggable targets controlling self-maintenance and persistence of these pathogenic monocyte-derived alveolar macrophages. Pharmacological blockade of M-CSFR signalling led to the disappearance of monocyte-derived alveolar macrophages and ameliorated fibrosis.Our findings suggest that inhibition of M-CSFR signalling during fibrosis disrupts an essential fibrotic niche that includes monocyte-derived alveolar macrophages and fibroblasts during asbestos-induced fibrosis.
Collapse
Affiliation(s)
- Nikita Joshi
- Division of Pulmonary and Critical Care Medicine, Dept of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- These authors contributed equally to this work
| | - Satoshi Watanabe
- Division of Pulmonary and Critical Care Medicine, Dept of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Dept of Respiratory Medicine, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
- These authors contributed equally to this work
| | - Rohan Verma
- Division of Pulmonary and Critical Care Medicine, Dept of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- These authors contributed equally to this work
| | - Renea P Jablonski
- Division of Pulmonary and Critical Care Medicine, Dept of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Dept of Medicine, Section of Pulmonary and Critical Care, The University of Chicago, Chicago, IL, USA
| | - Ching-I Chen
- Division of Pulmonary and Critical Care Medicine, Dept of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Paul Cheresh
- Division of Pulmonary and Critical Care Medicine, Dept of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Dept of Medicine, Division of Pulmonary and Critical Care Medicine, Jesse Brown VA Medical Center, Chicago, IL, USA
| | - Nikolay S Markov
- Division of Pulmonary and Critical Care Medicine, Dept of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Paul A Reyfman
- Division of Pulmonary and Critical Care Medicine, Dept of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Alexandra C McQuattie-Pimentel
- Division of Pulmonary and Critical Care Medicine, Dept of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Lango Sichizya
- Division of Pulmonary and Critical Care Medicine, Dept of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Ziyan Lu
- Division of Pulmonary and Critical Care Medicine, Dept of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Raul Piseaux-Aillon
- Division of Pulmonary and Critical Care Medicine, Dept of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - David Kirchenbuechler
- Center for Advanced Microscopy, Robert H. Lurie Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Annette S Flozak
- Division of Pulmonary and Critical Care Medicine, Dept of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Cara J Gottardi
- Division of Pulmonary and Critical Care Medicine, Dept of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Carla M Cuda
- Division of Rheumatology, Dept of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Harris Perlman
- Division of Rheumatology, Dept of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Manu Jain
- Division of Pulmonary and Critical Care Medicine, Dept of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Dept of Medicine, Division of Pulmonary and Critical Care Medicine, Jesse Brown VA Medical Center, Chicago, IL, USA
| | - David W Kamp
- Division of Pulmonary and Critical Care Medicine, Dept of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Dept of Medicine, Division of Pulmonary and Critical Care Medicine, Jesse Brown VA Medical Center, Chicago, IL, USA
| | - G R Scott Budinger
- Division of Pulmonary and Critical Care Medicine, Dept of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Dept of Medicine, Division of Pulmonary and Critical Care Medicine, Jesse Brown VA Medical Center, Chicago, IL, USA
- These authors contributed equally to this work
| | - Alexander V Misharin
- Division of Pulmonary and Critical Care Medicine, Dept of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- These authors contributed equally to this work
| |
Collapse
|
110
|
Evren E, Ringqvist E, Willinger T. Origin and ontogeny of lung macrophages: from mice to humans. Immunology 2019; 160:126-138. [PMID: 31715003 DOI: 10.1111/imm.13154] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 11/06/2019] [Accepted: 11/07/2019] [Indexed: 12/19/2022] Open
Abstract
Macrophages are tissue-resident myeloid cells with essential roles in host defense, tissue repair, and organ homeostasis. The lung harbors a large number of macrophages that reside in alveoli. As a result of their strategic location, alveolar macrophages are critical sentinels of healthy lung function and barrier immunity. They phagocytose inhaled material and initiate protective immune responses to pathogens, while preventing excessive inflammatory responses and tissue damage. Apart from alveolar macrophages, other macrophage populations are found in the lung and recent single-cell RNA-sequencing studies indicate that lung macrophage heterogeneity is greater than previously appreciated. The cellular origin and development of mouse lung macrophages has been extensively studied, but little is known about the ontogeny of their human counterparts, despite the importance of macrophages for lung health. In this context, humanized mice (mice with a human immune system) can give new insights into the biology of human lung macrophages by allowing in vivo studies that are not possible in humans. In particular, we have created humanized mouse models that support the development of human lung macrophages in vivo. In this review, we will discuss the heterogeneity, development, and homeostasis of lung macrophages. Moreover, we will highlight the impact of age, the microbiota, and pathogen exposure on lung macrophage function. Altered macrophage function has been implicated in respiratory infections as well as in common allergic and inflammatory lung diseases. Therefore, understanding the functional heterogeneity and ontogeny of lung macrophages should help to develop future macrophage-based therapies for important lung diseases in humans.
Collapse
Affiliation(s)
- Elza Evren
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Emma Ringqvist
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Tim Willinger
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
111
|
Allawzi A, McDermott I, Delaney C, Nguyen K, Banimostafa L, Trumpie A, Hernandez-Lagunas L, Riemondy K, Gillen A, Hesselberth J, El Kasmi K, Sucharov CC, Janssen WJ, Stenmark K, Bowler R, Nozik-Grayck E. Redistribution of EC-SOD resolves bleomycin-induced inflammation via increased apoptosis of recruited alveolar macrophages. FASEB J 2019; 33:13465-13475. [PMID: 31560857 PMCID: PMC6894081 DOI: 10.1096/fj.201901038rr] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 08/26/2019] [Indexed: 01/16/2023]
Abstract
A human single nucleotide polymorphism (SNP) in the matrix-binding domain of extracellular superoxide dismutase (EC-SOD), with arginine to glycine substitution at position 213 (R213G), redistributes EC-SOD from the matrix into extracellular fluids. We reported that, following bleomycin (bleo), knockin mice harboring the human R213G SNP (R213G mice) exhibit enhanced resolution of inflammation and protection against fibrosis, compared with wild-type (WT) littermates. In this study, we tested the hypothesis that the EC-SOD R213G SNP promotes resolution via accelerated apoptosis of recruited alveolar macrophage (AM). RNA sequencing and Ingenuity Pathway Analysis 7 d postbleo in recruited AM implicated increased apoptosis and blunted inflammatory responses in the R213G strain exhibiting accelerated resolution. We validated that the percentage of apoptosis was significantly elevated in R213G recruited AM vs. WT at 3 and 7 d postbleo in vivo. Recruited AM numbers were also significantly decreased in R213G mice vs. WT at 3 and 7 d postbleo. ChaC glutathione-specific γ-glutamylcyclotransferase 1 (Chac1), a proapoptotic γ-glutamyl cyclotransferase that depletes glutathione, was increased in the R213G recruited AM. Overexpression of Chac1 in vitro induced apoptosis of macrophages and was blocked by administration of cell-permeable glutathione. In summary, we provide new evidence that redistributed EC-SOD accelerates the resolution of inflammation through redox-regulated mechanisms that increase recruited AM apoptosis.-Allawzi, A., McDermott, I., Delaney, C., Nguyen, K., Banimostafa, L., Trumpie, A., Hernandez-Lagunas, L., Riemondy, K., Gillen, A., Hesselberth, J., El Kasmi, K., Sucharov, C. C., Janssen, W. J., Stenmark, K., Bowler, R., Nozik-Grayck, E. Redistribution of EC-SOD resolves bleomycin-induced inflammation via increased apoptosis of recruited alveolar macrophages.
Collapse
Affiliation(s)
- Ayed Allawzi
- Cardiovascular Pulmonary Research Laboratories, Departments of Pediatrics and Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Ivy McDermott
- Cardiovascular Pulmonary Research Laboratories, Departments of Pediatrics and Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Cassidy Delaney
- Cardiovascular Pulmonary Research Laboratories, Departments of Pediatrics and Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Kianna Nguyen
- Cardiovascular Pulmonary Research Laboratories, Departments of Pediatrics and Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Laith Banimostafa
- Cardiovascular Pulmonary Research Laboratories, Departments of Pediatrics and Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Ashley Trumpie
- Cardiovascular Pulmonary Research Laboratories, Departments of Pediatrics and Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Laura Hernandez-Lagunas
- Cardiovascular Pulmonary Research Laboratories, Departments of Pediatrics and Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Kent Riemondy
- RNA Bioscience Initiative, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Austin Gillen
- RNA Bioscience Initiative, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Jay Hesselberth
- RNA Bioscience Initiative, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Karim El Kasmi
- Cardiovascular Pulmonary Research Laboratories, Departments of Pediatrics and Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Boehringer Ingelheim Pharma, Biberach, Germany
| | - Carmen C. Sucharov
- Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA; and
| | | | - Kurt Stenmark
- Cardiovascular Pulmonary Research Laboratories, Departments of Pediatrics and Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Russell Bowler
- Department of Medicine, National Jewish Health, Denver, Colorado, USA
| | - Eva Nozik-Grayck
- Cardiovascular Pulmonary Research Laboratories, Departments of Pediatrics and Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
112
|
Lim J, Koh VHQ, Cho SSL, Periaswamy B, Choi DPS, Vacca M, De Sessions PF, Kudela P, Lubitz W, Pastorin G, Alonso S. Harnessing the Immunomodulatory Properties of Bacterial Ghosts to Boost the Anti-mycobacterial Protective Immunity. Front Immunol 2019; 10:2737. [PMID: 31824511 PMCID: PMC6883722 DOI: 10.3389/fimmu.2019.02737] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Accepted: 11/08/2019] [Indexed: 12/19/2022] Open
Abstract
Tuberculosis (TB) pathogenesis is characterized by inadequate immune cell activation and delayed T cell response in the host. Recent immunotherapeutic efforts have been directed at stimulating innate immunity and enhancing interactions between antigen presenting cells and T cells subsets to improve the protective immunity against TB. In this study, we investigated the immunostimulatory properties of bacterial ghosts (BG) as a novel approach to potentiate the host immunity against mycobacterial infection. BG are intact cytoplasm-free Escherichia coli envelopes and have been developed as bacterial vaccines and adjuvant/delivery system in cancer immunotherapy. However, BG have yet to be exploited as immunopotentiators in the context of infectious diseases. Here, we showed that BG are potent inducers of dendritic cells (DC), which led to enhanced T cell proliferation and differentiation into effector cells. BG also induced macrophage activation, which was associated with enhanced nitric oxide production, a key anti-mycobacterial weapon. We further demonstrated that the immunostimulatory capability of BG far exceeds that of LPS and involves both TLR4-dependent and independent pathways. Consistently, BG treatment, but not LPS treatment, reduced the bacterial burden in infected mice, which correlated with increased influx of innate and adaptive effector immune cells and increased production of key cytokines in the lungs. Finally and importantly, enhanced bacilli killing was seen in mice co-administered with BG and second-line TB drugs bedaquiline and delamanid. Overall, this work paves the way for BG as potent immunostimulators that may be harnessed to improve mycobacteria killing at the site of infection.
Collapse
Affiliation(s)
- Jieling Lim
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Vanessa Hui Qi Koh
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Sharol Su Lei Cho
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Balamurugan Periaswamy
- Genome Institute of Singapore, Agency for Science, Technology and Research (ASTAR), Singapore, Singapore
| | - Dawn Poh Sum Choi
- Genome Institute of Singapore, Agency for Science, Technology and Research (ASTAR), Singapore, Singapore
| | - Maurizio Vacca
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Paola Florez De Sessions
- Genome Institute of Singapore, Agency for Science, Technology and Research (ASTAR), Singapore, Singapore
| | - Pavol Kudela
- Biotech Innovation Research Development & Consulting (BIRD-C), Vienna, Austria
| | - Werner Lubitz
- Biotech Innovation Research Development & Consulting (BIRD-C), Vienna, Austria
| | - Giorgia Pastorin
- Department of Pharmacy, Faculty of Science, National University of Singapore, Singapore, Singapore
| | - Sylvie Alonso
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| |
Collapse
|
113
|
Macrophage Polarization Favors Epithelial Repair During Acute Respiratory Distress Syndrome. Crit Care Med 2019; 46:e692-e701. [PMID: 29649066 DOI: 10.1097/ccm.0000000000003150] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVES Alveolar macrophage polarization and role on alveolar repair during human acute respiratory distress syndrome remain unclear. This study aimed to determine during human acute respiratory distress syndrome: the alveolar macrophage polarization, the effect of alveolar environment on macrophage polarization, and the role of polarized macrophages on epithelial repair. DESIGN Experimental ex vivo and in vitro investigations. SETTING Four ICUs in three teaching hospitals. PATIENTS Thirty-three patients with early moderate-to-severe acute respiratory distress syndrome were enrolled for assessment of the polarization of alveolar macrophages. INTERVENTIONS Polarization of acute respiratory distress syndrome macrophages was studied by flow cytometry and quantitative polymerase chain reaction. Modulation of macrophage polarization was studied in vitro using phenotypic and functional readouts. Macrophage effect on repair was studied using alveolar epithelial cells in wound healing models. MEASUREMENTS AND MAIN RESULTS Ex vivo, alveolar macrophages from early acute respiratory distress syndrome patients exhibited anti-inflammatory characteristics with high CD163 expression and interleukin-10 production. Accordingly, early acute respiratory distress syndrome-bronchoalveolar lavage fluid drives an acute respiratory distress syndrome-specific anti-inflammatory macrophage polarization in vitro, close to that induced by recombinant interleukin-10. Culture supernatants from macrophages polarized in vitro with acute respiratory distress syndrome-bronchoalveolar lavage fluid or interleukin-10 and ex vivo acute respiratory distress syndrome alveolar macrophages specifically promoted lung epithelial repair. Inhibition of the hepatocyte growth factor pathway in epithelial cells and hepatocyte growth factor production in macrophages both reversed this effect. Finally, hepatocyte growth factor and soluble form of CD163 concentrations expressed relatively to macrophage count were higher in bronchoalveolar lavage fluid from acute respiratory distress syndrome survivors. CONCLUSIONS Early acute respiratory distress syndrome alveolar environment drives an anti-inflammatory macrophage polarization favoring epithelial repair through activation of the hepatocyte growth factor pathway. These results suggest that macrophage polarization may be an important step for epithelial repair and acute respiratory distress syndrome recovery.
Collapse
|
114
|
Lafuse WP, Rajaram MVS, Wu Q, Moliva JI, Torrelles JB, Turner J, Schlesinger LS. Identification of an Increased Alveolar Macrophage Subpopulation in Old Mice That Displays Unique Inflammatory Characteristics and Is Permissive to Mycobacterium tuberculosis Infection. THE JOURNAL OF IMMUNOLOGY 2019; 203:2252-2264. [PMID: 31511357 DOI: 10.4049/jimmunol.1900495] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 08/08/2019] [Indexed: 12/11/2022]
Abstract
The elderly population is more susceptible to pulmonary infections, including tuberculosis. In this article, we characterize the impact of aging on the phenotype of mouse alveolar macrophages (AMs) and their response to Mycobacterium tuberculosis. Uninfected AMs were isolated from bronchoalveolar lavage of young (3 mo) and old (18 mo) C57BL/6 mice. AMs from old mice expressed higher mRNA levels of CCL2, IFN-β, IL-10, IL-12p40, TNF-α, and MIF than young mice, and old mice contained higher levels of CCL2, IL-1β, IFN-β, and MIF in their alveolar lining fluid. We identified two distinct AM subpopulations, a major CD11c+ CD11b- population and a minor CD11c+ CD11b+ population; the latter was significantly increased in old mice (4-fold). Expression of CD206, TLR2, CD16/CD32, MHC class II, and CD86 was higher in CD11c+ CD11b+ AMs, and these cells expressed monocytic markers Ly6C, CX3CR1, and CD115, suggesting monocytic origin. Sorted CD11c+ CD11b+ AMs from old mice expressed higher mRNA levels of CCL2, IL-1β, and IL-6, whereas CD11c+ CD11b- AMs expressed higher mRNA levels of immune-regulatory cytokines IFN-β and IL-10. CD11c+ CD11b+ AMs phagocytosed significantly more M. tuberculosis, which expressed higher RNA levels of genes required for M. tuberculosis survival. Our studies identify two distinct AM populations in old mice: a resident population and an increased CD11c+ CD11b+ AM subpopulation expressing monocytic markers, a unique inflammatory signature, and enhanced M. tuberculosis phagocytosis and survival when compared with resident CD11c+ CD11b- AMs, which are more immune regulatory in nature.
Collapse
Affiliation(s)
- William P Lafuse
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH 43210; and
| | - Murugesan V S Rajaram
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH 43210; and
| | - Qian Wu
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH 43210; and
| | - Juan I Moliva
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH 43210; and.,Texas Biomedical Research Institute, San Antonio, TX 78227
| | - Jordi B Torrelles
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH 43210; and.,Texas Biomedical Research Institute, San Antonio, TX 78227
| | - Joanne Turner
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH 43210; and.,Texas Biomedical Research Institute, San Antonio, TX 78227
| | - Larry S Schlesinger
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH 43210; and.,Texas Biomedical Research Institute, San Antonio, TX 78227
| |
Collapse
|
115
|
Oakley C, Koh M, Baldi R, Soni S, O'Dea K, Takata M, Wilson M. Ventilation following established ARDS: a preclinical model framework to improve predictive power. Thorax 2019; 74:1120-1129. [PMID: 31278170 DOI: 10.1136/thoraxjnl-2019-213460] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 05/09/2019] [Accepted: 06/07/2019] [Indexed: 01/22/2023]
Abstract
BACKGROUND Despite advances in understanding the pathophysiology of acute respiratory distress syndrome, effective pharmacological interventions have proven elusive. We believe this is a consequence of existing preclinical models being designed primarily to explore biological pathways, rather than predict treatment effects. Here, we describe a mouse model in which both therapeutic intervention and ventilation were superimposed onto existing injury and explored the impact of β-agonist treatment, which is effective in simple models but not clinically. METHODS Mice had lung injury induced by intranasal lipopolysaccharide (LPS), which peaked at 48 hours post-LPS based on clinically relevant parameters including hypoxaemia and impaired mechanics. At this peak of injury, mice were treated intratracheally with either terbutaline or tumour necrosis factor (TNF) receptor 1-targeting domain antibody, and ventilated with moderate tidal volume (20 mL/kg) to induce secondary ventilator-induced lung injury (VILI). RESULTS Ventilation of LPS-injured mice at 20 mL/kg exacerbated injury compared with low tidal volume (8 mL/kg). While terbutaline attenuated VILI within non-LPS-treated animals, it was ineffective to reduce VILI in pre-injured mice, mimicking its lack of clinical efficacy. In contrast, anti-TNF receptor 1 antibody attenuated secondary VILI within pre-injured lungs, indicating that the model was treatable. CONCLUSIONS We propose adoption of a practical framework like that described here to reduce the number of ultimately ineffective drugs reaching clinical trials. Novel targets should be evaluated alongside interventions which have been previously tested clinically, using models that recapitulate the (lack of) clinical efficacy. Within such a framework, outperforming a failed pharmacologic should be a prerequisite for drugs entering trials.
Collapse
Affiliation(s)
- Charlotte Oakley
- Department of Anaesthetics, Pain Medicine & Intensive Care, Imperial College London, London, UK
| | - Marissa Koh
- Department of Anaesthetics, Pain Medicine & Intensive Care, Imperial College London, London, UK
| | - Rhianna Baldi
- Department of Anaesthetics, Pain Medicine & Intensive Care, Imperial College London, London, UK
| | - Sanooj Soni
- Department of Anaesthetics, Pain Medicine & Intensive Care, Imperial College London, London, UK
| | - Kieran O'Dea
- Department of Anaesthetics, Pain Medicine & Intensive Care, Imperial College London, London, UK
| | - Masao Takata
- Department of Anaesthetics, Pain Medicine & Intensive Care, Imperial College London, London, UK
| | - Michael Wilson
- Department of Anaesthetics, Pain Medicine & Intensive Care, Imperial College London, London, UK
| |
Collapse
|
116
|
Warheit-Niemi HI, Hult EM, Moore BB. A pathologic two-way street: how innate immunity impacts lung fibrosis and fibrosis impacts lung immunity. Clin Transl Immunology 2019; 8:e1065. [PMID: 31293783 PMCID: PMC6593479 DOI: 10.1002/cti2.1065] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 05/29/2019] [Accepted: 06/06/2019] [Indexed: 12/11/2022] Open
Abstract
Lung fibrosis is characterised by the accumulation of extracellular matrix within the lung and is secondary to both known and unknown aetiologies. This accumulation of scar tissue limits gas exchange causing respiratory insufficiency. The pathogenesis of lung fibrosis is poorly understood, but immunologic‐based treatments have been largely ineffective. Despite this, accumulating evidence suggests that innate immune cells and receptors play important modulatory roles in the initiation and propagation of the disease. Paradoxically, while innate immune signalling may be important for the pathogenesis of fibrosis, there is also evidence to suggest that innate immune function against pathogens may be impaired, leading to dysregulated and/or impaired host defence. This review summarises the evidence for this pathologic two‐way street, highlights new concepts of pathogenesis and recommends future directions for research emphasis.
Collapse
Affiliation(s)
| | - Elissa M Hult
- Department of Molecular and Integrative Physiology University of Michigan Ann Arbor MI USA
| | - Bethany B Moore
- Department of Microbiology and Immunology University of Michigan Ann Arbor MI USA.,Department of Internal Medicine Division of Pulmonary and Critical Care Medicine University of Michigan Ann Arbor MI USA
| |
Collapse
|
117
|
Chen S, Liu G, Chen J, Hu A, Zhang L, Sun W, Tang W, Liu C, Zhang H, Ke C, Wu J, Chen X. Ponatinib Protects Mice From Lethal Influenza Infection by Suppressing Cytokine Storm. Front Immunol 2019; 10:1393. [PMID: 31293574 PMCID: PMC6598400 DOI: 10.3389/fimmu.2019.01393] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 06/03/2019] [Indexed: 12/12/2022] Open
Abstract
Excessive inflammation associated with the uncontrolled release of pro-inflammatory cytokines is the main cause of death from influenza virus infection. Previous studies have indicated that inhibition of interferon gamma-induced protein 10 (IP-10), interleukin-8 (IL-8), monocyte chemoattractant protein 1 (MCP-1), or their cognate receptors has beneficial effects. Here, by using monocytic U937 cells that capable of secreting the three important cytokines during influenza A virus infection, we measured the inhibitory activities on the production of three cytokines of six anti-inflammatory compounds reported in other models of inflammation. We found that ponatinib had a highly inhibitory effect on the production of all three cytokines. We tested ponatinib in a mouse influenza model to assess its therapeutic effects with different doses and administration times and found that the delayed administration of ponatinib was protective against lethal influenza A virus infection without reducing virus titers. Therefore, we suggest that ponatinib may serve as a new immunomodulator in the treatment of influenza.
Collapse
Affiliation(s)
- Si Chen
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Ge Liu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Jungang Chen
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Ao Hu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Li Zhang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Wenyu Sun
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Wei Tang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Chunlan Liu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Haiwei Zhang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Chang Ke
- Wuhan Virolead Biopharmaceutical Company, Wuhan, China
| | - Jianguo Wu
- Guangzhou Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou, China
| | - Xulin Chen
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
118
|
Watanabe S, Alexander M, Misharin AV, Budinger GRS. The role of macrophages in the resolution of inflammation. J Clin Invest 2019; 129:2619-2628. [PMID: 31107246 DOI: 10.1172/jci124615] [Citation(s) in RCA: 589] [Impact Index Per Article: 98.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Macrophages are tissue-resident or infiltrated immune cells critical for innate immunity, normal tissue development, homeostasis, and repair of damaged tissue. Macrophage function is a sum of their ontogeny, the local environment in which they reside, and the type of injuries or pathogen to which they are exposed. In this Review, we discuss the role of macrophages in the restoration of tissue function after injury, highlighting important questions about how they respond to and modify the local microenvironment to restore homeostasis.
Collapse
Affiliation(s)
- Satoshi Watanabe
- Division of Pulmonary and Critical Care Medicine, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA.,Department of Respiratory Medicine, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Ishikawa, Japan
| | - Michael Alexander
- Division of Pulmonary and Critical Care Medicine, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
| | - Alexander V Misharin
- Division of Pulmonary and Critical Care Medicine, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
| | - G R Scott Budinger
- Division of Pulmonary and Critical Care Medicine, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
| |
Collapse
|
119
|
Bae EH, Seo SH, Kim CU, Jang MS, Song MS, Lee TY, Jeong YJ, Lee MS, Park JH, Lee P, Kim YS, Kim SH, Kim DJ. Bacterial Outer Membrane Vesicles Provide Broad-Spectrum Protection against Influenza Virus Infection via Recruitment and Activation of Macrophages. J Innate Immun 2019; 11:316-329. [PMID: 30844806 DOI: 10.1159/000494098] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 09/16/2018] [Indexed: 12/24/2022] Open
Abstract
Influenza A virus (IAV) poses a constant worldwide threat to human health. Although conventional vaccines are available, their protective efficacy is type or strain specific, and their production is time-consuming. For the control of an influenza pandemic in particular, agents that are immediately effective against a wide range of virus variants should be developed. Although pretreatment of various Toll-like receptor (TLR) ligands have already been reported to be effective in the defense against subsequent IAV infection, the efficacy was limited to specific subtypes, and safety concerns were also raised. In this study, we investigated the protective effect of an attenuated bacterial outer membrane vesicle -harboring modified lipid A moiety of lipopolysaccharide (fmOMV) against IAV infection and the underlying mechanisms. Administration of fmOMV conferred significant protection against a lethal dose of pandemic H1N1, PR8, H5N2, and highly pathogenic H5N1 viruses; this broad antiviral activity was dependent on macrophages but independent of neutrophils. fmOMV induced recruitment and activation of macrophages and elicited type I IFNs. Intriguingly, fmOMV showed a more significant protective effect than other TLR ligands tested in previous reports, without exhibiting any adverse effect. These results show the potential of fmOMV as a prophylactic agent for the defense against influenza virus infection.
Collapse
Affiliation(s)
- Eun-Hye Bae
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Sang Hwan Seo
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Chang-Ung Kim
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea.,Department of Biochemistry, Chungnam National University, Daejeon, Republic of Korea
| | - Min Seong Jang
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Min-Suk Song
- College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju, Republic of Korea
| | - Tae-Young Lee
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Yu-Jin Jeong
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Moo-Seung Lee
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea.,University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Jong-Hwan Park
- College of Veterinary Medicine, Chonnam National University, Gwangju, Republic of Korea
| | - Pureum Lee
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea.,University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Young Sang Kim
- Department of Biochemistry, Chungnam National University, Daejeon, Republic of Korea
| | - Sang-Hyun Kim
- College of Veterinary Medicine, Gyeongsang National University, Jinju, Republic of Korea
| | - Doo-Jin Kim
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea, .,Department of Biochemistry, Chungnam National University, Daejeon, Republic of Korea, .,University of Science and Technology (UST), Daejeon, Republic of Korea,
| |
Collapse
|
120
|
Mould KJ, Jackson ND, Henson PM, Seibold M, Janssen WJ. Single cell RNA sequencing identifies unique inflammatory airspace macrophage subsets. JCI Insight 2019; 4:126556. [PMID: 30721157 DOI: 10.1172/jci.insight.126556] [Citation(s) in RCA: 168] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 01/29/2019] [Indexed: 02/06/2023] Open
Abstract
Macrophages are well recognized for their dual roles in orchestrating inflammatory responses and regulating tissue repair. In almost all acutely inflamed tissues, 2 main subclasses of macrophages coexist. These include embryonically derived resident tissue macrophages and BM-derived recruited macrophages. While it is clear that macrophage subsets categorized in this fashion display distinct transcriptional and functional profiles, whether all cells within these categories and in the same inflammatory microenvironment share similar functions or whether further specialization exists has not been determined. To investigate inflammatory macrophage heterogeneity on a more granular level, we induced acute lung inflammation in mice and performed single cell RNA sequencing of macrophages isolated from the airspaces during health, peak inflammation, and resolution of inflammation. In doing so, we confirm that cell origin is the major determinant of alveolar macrophage (AM) programing, and, to our knowledge, we describe 2 previously uncharacterized, transcriptionally distinct subdivisions of AMs based on proliferative capacity and inflammatory programing.
Collapse
Affiliation(s)
- Kara J Mould
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, National Jewish Health, Denver, Colorado, USA.,Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado - Anschutz Medical Campus, Aurora, Colorado, USA
| | | | - Peter M Henson
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado - Anschutz Medical Campus, Aurora, Colorado, USA.,Program for Cell Biology, Department of Pediatrics, National Jewish Health, Denver, Colorado, USA
| | - Max Seibold
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado - Anschutz Medical Campus, Aurora, Colorado, USA.,Center for Genes, Environment, and Health and.,Program for Cell Biology, Department of Pediatrics, National Jewish Health, Denver, Colorado, USA
| | - William J Janssen
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, National Jewish Health, Denver, Colorado, USA.,Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado - Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
121
|
Potey PM, Rossi AG, Lucas CD, Dorward DA. Neutrophils in the initiation and resolution of acute pulmonary inflammation: understanding biological function and therapeutic potential. J Pathol 2019; 247:672-685. [PMID: 30570146 PMCID: PMC6492013 DOI: 10.1002/path.5221] [Citation(s) in RCA: 148] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 12/12/2018] [Accepted: 12/17/2018] [Indexed: 12/13/2022]
Abstract
Acute respiratory distress syndrome (ARDS) is the often fatal sequelae of a broad range of precipitating conditions. Despite decades of intensive research and clinical trials there remain no therapies in routine clinical practice that target the dysregulated and overwhelming inflammatory response that characterises ARDS. Neutrophils play a central role in the initiation, propagation and resolution of this complex inflammatory environment by migrating into the lung and executing a variety of pro-inflammatory functions. These include degranulation with liberation of bactericidal proteins, release of cytokines and reactive oxygen species as well as production of neutrophil extracellular traps. Although these functions are advantageous in clearing bacterial infection, the consequence of associated tissue damage, the contribution to worsening acute inflammation and prolonged neutrophil lifespan at sites of inflammation are deleterious. In this review, the importance of the neutrophil will be considered, together with discussion of recent advances in understanding neutrophil function and the factors that influence them throughout the phases of inflammation in ARDS. From a better understanding of neutrophils in this context, potential therapeutic targets are identified and discussed. © 2018 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Philippe Md Potey
- The University of Edinburgh Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Adriano G Rossi
- The University of Edinburgh Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Christopher D Lucas
- The University of Edinburgh Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - David A Dorward
- The University of Edinburgh Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
122
|
Morgan DJ, Casulli J, Chew C, Connolly E, Lui S, Brand OJ, Rahman R, Jagger C, Hussell T. Innate Immune Cell Suppression and the Link With Secondary Lung Bacterial Pneumonia. Front Immunol 2018; 9:2943. [PMID: 30619303 PMCID: PMC6302086 DOI: 10.3389/fimmu.2018.02943] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 11/30/2018] [Indexed: 12/20/2022] Open
Abstract
Secondary infections arise as a consequence of previous or concurrent conditions and occur in the community or in the hospital setting. The events allowing secondary infections to gain a foothold have been studied for many years and include poor nutrition, anxiety, mental health issues, underlying chronic diseases, resolution of acute inflammation, primary immune deficiencies, and immune suppression by infection or medication. Children, the elderly and the ill are particularly susceptible. This review is concerned with secondary bacterial infections of the lung that occur following viral infection. Using influenza virus infection as an example, with comparisons to rhinovirus and respiratory syncytial virus infection, we will update and review defective bacterial innate immunity and also highlight areas for potential new investigation. It is currently estimated that one in 16 National Health Service (NHS) hospital patients develop an infection, the most common being pneumonia, lower respiratory tract infections, urinary tract infections and infection of surgical sites. The continued drive to understand the mechanisms of why secondary infections arise is therefore of key importance.
Collapse
Affiliation(s)
- David J Morgan
- Manchester Collaborative Centre for Inflammation Research, The Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, United Kingdom
| | - Joshua Casulli
- Manchester Collaborative Centre for Inflammation Research, The Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, United Kingdom
| | - Christine Chew
- Manchester Collaborative Centre for Inflammation Research, The Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, United Kingdom
| | - Emma Connolly
- Manchester Collaborative Centre for Inflammation Research, The Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, United Kingdom
| | - Sylvia Lui
- Manchester Collaborative Centre for Inflammation Research, The Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, United Kingdom
| | - Oliver J Brand
- Manchester Collaborative Centre for Inflammation Research, The Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, United Kingdom
| | - Rizwana Rahman
- Manchester Collaborative Centre for Inflammation Research, The Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, United Kingdom
| | - Christopher Jagger
- Manchester Collaborative Centre for Inflammation Research, The Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, United Kingdom
| | - Tracy Hussell
- Manchester Collaborative Centre for Inflammation Research, The Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
123
|
Krishnamoorthy N, Abdulnour REE, Walker KH, Engstrom BD, Levy BD. Specialized Proresolving Mediators in Innate and Adaptive Immune Responses in Airway Diseases. Physiol Rev 2018; 98:1335-1370. [PMID: 29717929 DOI: 10.1152/physrev.00026.2017] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Airborne pathogens and environmental stimuli evoke immune responses in the lung. It is critical to health that these responses be controlled to prevent tissue damage and the compromise of organ function. Resolution of inflammation is a dynamic process that is coordinated by biochemical and cellular mechanisms. Recently, specialized proresolving mediators (SPMs) have been identified in resolution exudates. These molecules orchestrate anti-inflammatory and proresolving actions that are cell type specific. In this review, we highlight SPM biosynthesis, the influence of SPMs on the innate and adaptive immune responses in the lung, as well as recent insights from SPMs on inflammatory disease pathophysiology. Uncovering these mediators and cellular mechanisms for resolution is providing new windows into physiology and disease pathogenesis.
Collapse
Affiliation(s)
- Nandini Krishnamoorthy
- Pulmonary and Critical Care Medicine, Brigham and Women's Hospital and Harvard Medical School , Boston, Massachusetts ; and Department of Anesthesiology, Center for Experimental Therapeutics and Reperfusion Injury, Perioperative and Pain Medicine, Brigham and Women's Hospital and Harvard Medical School , Boston, Massachusetts
| | - Raja-Elie E Abdulnour
- Pulmonary and Critical Care Medicine, Brigham and Women's Hospital and Harvard Medical School , Boston, Massachusetts ; and Department of Anesthesiology, Center for Experimental Therapeutics and Reperfusion Injury, Perioperative and Pain Medicine, Brigham and Women's Hospital and Harvard Medical School , Boston, Massachusetts
| | - Katherine H Walker
- Pulmonary and Critical Care Medicine, Brigham and Women's Hospital and Harvard Medical School , Boston, Massachusetts ; and Department of Anesthesiology, Center for Experimental Therapeutics and Reperfusion Injury, Perioperative and Pain Medicine, Brigham and Women's Hospital and Harvard Medical School , Boston, Massachusetts
| | - Braden D Engstrom
- Pulmonary and Critical Care Medicine, Brigham and Women's Hospital and Harvard Medical School , Boston, Massachusetts ; and Department of Anesthesiology, Center for Experimental Therapeutics and Reperfusion Injury, Perioperative and Pain Medicine, Brigham and Women's Hospital and Harvard Medical School , Boston, Massachusetts
| | - Bruce D Levy
- Pulmonary and Critical Care Medicine, Brigham and Women's Hospital and Harvard Medical School , Boston, Massachusetts ; and Department of Anesthesiology, Center for Experimental Therapeutics and Reperfusion Injury, Perioperative and Pain Medicine, Brigham and Women's Hospital and Harvard Medical School , Boston, Massachusetts
| |
Collapse
|
124
|
Eguíluz-Gracia I, Malmstrom K, Dheyauldeen SA, Lohi J, Sajantila A, Aaløkken R, Sundaram AYM, Gilfillan GD, Makela M, Baekkevold ES, Jahnsen FL. Monocytes accumulate in the airways of children with fatal asthma. Clin Exp Allergy 2018; 48:1631-1639. [PMID: 30184280 DOI: 10.1111/cea.13265] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 06/21/2018] [Accepted: 07/10/2018] [Indexed: 12/17/2022]
Abstract
BACKGROUND Activated T helper type 2 (Th2) cells are believed to play a pivotal role in allergic airway inflammation, but which cells attract and activate Th2 cells locally have not been fully determined. Recently, it was shown in an experimental human model of allergic rhinitis (AR) that activated monocytes rapidly accumulate in the nasal mucosa after local allergen challenge, where they promote recruitment of Th2 cells and eosinophils. OBJECTIVE To investigate whether monocytes are recruited to the lungs in paediatric asthma. METHODS Tissue samples obtained from children and adolescents with fatal asthma attack (n = 12), age-matched non-atopic controls (n = 9) and allergen-challenged AR patients (n = 8) were subjected to in situ immunostaining. RESULTS Monocytes, identified as CD68+S100A8/A9+ cells, were significantly increased in the lower airway mucosa and in the alveoli of fatal asthma patients compared with control individuals. Interestingly, cellular aggregates containing CD68+S100A8/A9+ monocytes obstructing the lumen of bronchioles were found in asthmatics (8 out of 12) but not in controls. Analysing tissue specimens from challenged AR patients, we confirmed that co-staining with CD68 and S100A8/A9 was a valid method to identify recently recruited monocytes. We also showed that the vast majority of accumulating monocytes both in the lungs and in the nasal mucosa expressed matrix metalloproteinase 10, suggesting that this protein may be involved in their migration within the tissue. CONCLUSIONS AND CLINICAL RELEVANCE Monocytes accumulated in the lungs of children and adolescents with fatal asthma attack. This finding strongly suggests that monocytes are directly involved in the immunopathology of asthma and that these pro-inflammatory cells are potential targets for therapy.
Collapse
Affiliation(s)
- Ibon Eguíluz-Gracia
- Department of Pathology and Centre for Immune Regulation, Oslo University Hospital-Rikshospitalet and University of Oslo, Oslo, Norway
| | - Kristiina Malmstrom
- Department of Allergy, Helsinki University Central Hospital, Helsinki, Finland
| | - Sinan Ahmed Dheyauldeen
- Department of Otorhinolaryngology, Head and Neck Surgery, Oslo University Hospital-Rikshospitalet and University of Oslo, Oslo, Norway
| | - Jouko Lohi
- Department of Pathology, Helsinki University Central Hospital, Helsinki, Finland
| | - Antti Sajantila
- Department of Forensic Medicine, Hjelt Institute, University of Helsinki, Helsinki, Finland
| | - Ragnhild Aaløkken
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Arvind Y M Sundaram
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Gregor D Gilfillan
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Mika Makela
- Department of Allergy, Helsinki University Central Hospital, Helsinki, Finland
| | - Espen S Baekkevold
- Department of Pathology and Centre for Immune Regulation, Oslo University Hospital-Rikshospitalet and University of Oslo, Oslo, Norway
| | - Frode L Jahnsen
- Department of Pathology and Centre for Immune Regulation, Oslo University Hospital-Rikshospitalet and University of Oslo, Oslo, Norway
| |
Collapse
|
125
|
Downey J, Pernet E, Coulombe F, Divangahi M. Dissecting host cell death programs in the pathogenesis of influenza. Microbes Infect 2018; 20:560-569. [PMID: 29679740 PMCID: PMC7110448 DOI: 10.1016/j.micinf.2018.03.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 03/27/2018] [Accepted: 03/28/2018] [Indexed: 02/06/2023]
Abstract
Influenza A virus (IAV) is a pulmonary pathogen, responsible for significant yearly morbidity and mortality. Due to the absence of highly effective antiviral therapies and vaccine, as well as the constant threat of an emerging pandemic strain, there is considerable need to better understand the host-pathogen interactions and the factors that dictate a protective versus detrimental immune response to IAV. Even though evidence of IAV-induced cell death in human pulmonary epithelial and immune cells has been observed for almost a century, very little is known about the consequences of cell death on viral pathogenesis. Recent study indicates that both the type of cell death program and its kinetics have major implications on host defense and survival. In this review, we discuss advances in our understanding of cell death programs during influenza virus infection, in hopes of fostering new areas of investigation for targeted clinical intervention.
Collapse
Affiliation(s)
- Jeffrey Downey
- Department of Medicine, Department of Microbiology & Immunology, Department of Pathology, McGill University Health Centre, McGill International TB Centre, Meakins-Christie Laboratories, McGill University, 1001 Decarie Boulevard, Montreal, Quebec H4A 3J1, Canada
| | - Erwan Pernet
- Department of Medicine, Department of Microbiology & Immunology, Department of Pathology, McGill University Health Centre, McGill International TB Centre, Meakins-Christie Laboratories, McGill University, 1001 Decarie Boulevard, Montreal, Quebec H4A 3J1, Canada
| | - François Coulombe
- Department of Medicine, Department of Microbiology & Immunology, Department of Pathology, McGill University Health Centre, McGill International TB Centre, Meakins-Christie Laboratories, McGill University, 1001 Decarie Boulevard, Montreal, Quebec H4A 3J1, Canada
| | - Maziar Divangahi
- Department of Medicine, Department of Microbiology & Immunology, Department of Pathology, McGill University Health Centre, McGill International TB Centre, Meakins-Christie Laboratories, McGill University, 1001 Decarie Boulevard, Montreal, Quebec H4A 3J1, Canada.
| |
Collapse
|
126
|
Lyu JJ, Mehta JL, Li Y, Ye L, Sun SN, Sun HS, Li JC, Zhang DM, Wei J. Mitochondrial Autophagy and NLRP3 Inflammasome in Pulmonary Tissues from Severe Combined Immunodeficient Mice after Cardiac Arrest and Cardiopulmonary Resuscitation. Chin Med J (Engl) 2018; 131:1174-1184. [PMID: 29722336 PMCID: PMC5956768 DOI: 10.4103/0366-6999.231519] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Background: The incidence of cancer, diabetes, and autoimmune diseases has been increasing. Furthermore, there are more and more patients with solid organ transplants. The survival rate of these immunocompromised individuals is extremely low when they are severely hit-on. In this study, we established cardiac arrest cardiopulmonary resuscitation (CPR) model in severe combined immunodeficient (SCID) mice, analyzed the expression and activation of mitochondrial autophagy and NLRP3 inflammasome/caspase-1, and explored mitochondrial repair and inflammatory injury in immunodeficiency individual during systemic ischemia-reperfusion injury. Methods: A potassium chloride-induced cardiac arrest model was established in C57BL/6 and nonobese diabetic/SCID (NOD/SCID) mice. One hundred male C57BL/6 mice and 100 male NOD/SCID mice were randomly divided into five groups (control, 2 h post-CPR, 12 h post-CPR, 24 h post-CPR, and 48 h post-CPR). A temporal dynamic view of alveolar epithelial cells, macrophages, and neutrophils from bronchoalveolar lavage fluid (BALF) was obtained using Giemsa staining. Spatial characterization of phenotypic analysis of macrophages in the lung interstitial tissue was analyzed by flow cytometry. The morphological changes of mitochondria 48 h after CPR were studied by transmission electron microscopy and quantified according to the Flameng grading system. Western blotting analysis was used to detect the expression and activation of the markers of mitochondrial autophagy, NLRP3 inflammasome, and caspase-1. Results: (1) In NOD/SCID mice, macrophages were disintegrated in BALF, and many alveolar epithelial cells were shed at 48 h after resuscitation. Compared with C57BL/6 mice, the ratio of macrophages/total cells peaked at 12 h and was significantly higher in NOD/SCID mice (31.17 ± 4.13 vs. 49.69 ± 2.43, t = 14.46, P = 0.001). After 24 h, the results showed a downward trend. Furthermore, a large number of macrophages were disintegrated in the BALF. (2) Mitochondrial autophagy was present in both C57BL/6 and NOD/SCID mice after CPR, but it began late in the NOD/SCID mice. Compared with C57BL/6 mice, phos-ULK1 (Ser327) expression was significantly lower at 2 h and 12 h after CPR (2 h after CPR: 1.88 ± 0.36 vs. 1.12 ± 0.11, t = −1.36, P < 0.01 and 12 h after CPR: 1.52 ± 0.16 vs. 1.05 ± 0.12, t = −0.33, P < 0.01), whereas phos-ULK1 (Ser757) expression was significantly higher at 2 h and 12 h after CPR in NOD/SCID mice (2 h after CPR: 1.28 ± 0.12 vs. 1.69 ± 0.14, t = 1.7, P < 0.01 and 12 h after CPR: 1.33 ± 0.10 vs. 1.94 ± 0.13, t = 2.75, P < 0.01). (3) Furthermore, NLRP3 inflammasome/caspase-1 activation in the pulmonary tissues occurred early and for only a short time in C57BL/6 mice, but this phenomenon was sustained in NOD/SCID mice. The expression of the NLRP3 inflammasome increased modestly in the C57 mice, but the increase was higher in the NOD/SCID mice than in the C57BL/6 mice, especially at 12, 24, 48 h after CPR (48 h after CPR: 1.46 ± 0.13 vs. 2.97 ± 0.19, t = 5.34, P = 0.001). The expression of caspase-1-20 generally followed the same pattern as the NLRP3 inflammasome. Conclusions: There is a regulatory relationship between the NLRP3 inflammasome and mitochondrial autophagy after CPR in the healthy mice. This regulatory relationship was disturbed in the NOD/SCID mice because the signals for mitochondrial autophagy occurred late, and NLRP3 inflammasome- and caspase-1-dependent cell injury was sustained.
Collapse
Affiliation(s)
- Jing-Jun Lyu
- Department of Emergency, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Jawahar L Mehta
- Department of Medicine, Central Arkansas Veterans Healthcare System, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Yi Li
- Department of Emergency, Peking Union Medical College Hospital, Beijing 100032, China
| | - Lu Ye
- Department of Emergency, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Sheng-Nan Sun
- Department of Emergency, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Hong-Shuang Sun
- Department of Emergency, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Jia-Chang Li
- Department of Emergency, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Dong-Mei Zhang
- Department of Emergency, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Jie Wei
- Department of Emergency, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| |
Collapse
|
127
|
Wade MF, Collins MK, Richards D, Mack DG, Martin AK, Dinarello CA, Fontenot AP, McKee AS. TLR9 and IL-1R1 Promote Mobilization of Pulmonary Dendritic Cells during Beryllium Sensitization. THE JOURNAL OF IMMUNOLOGY 2018; 201:2232-2243. [PMID: 30185516 DOI: 10.4049/jimmunol.1800303] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 08/13/2018] [Indexed: 11/19/2022]
Abstract
Metal-induced hypersensitivity is driven by dendritic cells (DCs) that migrate from the site of exposure to the lymph nodes, upregulate costimulatory molecules, and initiate metal-specific CD4+ T cell responses. Chronic beryllium disease (CBD), a life-threatening metal-induced hypersensitivity, is driven by beryllium-specific CD4+ Th1 cells that expand in the lung-draining lymph nodes (LDLNs) after beryllium exposure (sensitization phase) and are recruited back to the lung, where they orchestrate granulomatous lung disease (elicitation phase). To understand more about how beryllium exposures impact DC function during sensitization, we examined the early events in the lung and LDLNs after pulmonary exposure to different physiochemical forms of beryllium. Exposure to soluble or crystalline forms of beryllium induced alveolar macrophage death/release of IL-1α and DNA, enhanced migration of CD80hi DCs to the LDLNs, and sensitized HLA-DP2 transgenic mice after single low-dose exposures, whereas exposures to insoluble particulate forms beryllium did not. IL-1α and DNA released by alveolar macrophages upregulated CD80 on immature BMDC via IL-1R1 and TLR9, respectively. Intrapulmonary exposure of mice to IL-1R and TLR9 agonists without beryllium was sufficient to drive accumulation of CD80hi DCs in the LDLNs, whereas blocking both pathways prevented accumulation of CD80hi DCs in the LDLNs of beryllium-exposed mice. Thus, in contrast to particulate forms of beryllium, which are poor sensitizers, soluble or crystalline forms of beryllium promote death of alveolar macrophages and their release of IL-1α and DNA, which act as damage-associated molecular pattern molecules to enhance DC function during beryllium sensitization.
Collapse
Affiliation(s)
- Morgan F Wade
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Morgan K Collins
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Denay Richards
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045.,Webb Waring Summer Research Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045; and
| | - Douglas G Mack
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Allison K Martin
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Charles A Dinarello
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Andrew P Fontenot
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045.,Department of Microbiology and Immunology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Amy S McKee
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045; .,Department of Microbiology and Immunology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| |
Collapse
|
128
|
Joshi N, Walter JM, Misharin AV. Alveolar Macrophages. Cell Immunol 2018; 330:86-90. [DOI: 10.1016/j.cellimm.2018.01.005] [Citation(s) in RCA: 209] [Impact Index Per Article: 29.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Revised: 01/07/2018] [Accepted: 01/11/2018] [Indexed: 12/15/2022]
|
129
|
Solano-Gálvez SG, Abadi-Chiriti J, Gutiérrez-Velez L, Rodríguez-Puente E, Konstat-Korzenny E, Álvarez-Hernández DA, Franyuti-Kelly G, Gutiérrez-Kobeh L, Vázquez-López R. Apoptosis: Activation and Inhibition in Health and Disease. Med Sci (Basel) 2018; 6:E54. [PMID: 29973578 PMCID: PMC6163961 DOI: 10.3390/medsci6030054] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 06/28/2018] [Accepted: 06/29/2018] [Indexed: 12/16/2022] Open
Abstract
There are many types of cell death, each involving multiple and complex molecular events. Cell death can occur accidentally when exposed to extreme physical, chemical, or mechanical conditions, or it can also be regulated, which involves a genetically coded complex machinery to carry out the process. Apoptosis is an example of the latter. Apoptotic cell death can be triggered through different intracellular signalling pathways that lead to morphological changes and eventually cell death. This is a normal and biological process carried out during maturation, remodelling, growth, and development in tissues. To maintain tissue homeostasis, regulatory, and inhibitory mechanisms must control apoptosis. Paradoxically, these same pathways are utilized during infection by distinct intracellular microorganisms to evade recognition by the immune system and therefore survive, reproduce and develop. In cancer, neoplastic cells inhibit apoptosis, thus allowing their survival and increasing their capability to invade different tissues and organs. The purpose of this work is to review the generalities of the molecular mechanisms and signalling pathways involved in apoptosis induction and inhibition. Additionally, we compile the current evidence of apoptosis modulation during cancer and Leishmania infection as a model of apoptosis regulation by an intracellular microorganism.
Collapse
Affiliation(s)
- Sandra Georgina Solano-Gálvez
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico.
| | - Jack Abadi-Chiriti
- Departamento de Microbiología, Centro de Investigación en Ciencias de la Salud, Facultad de Ciencias de la Salud, Universidad Anáhuac México Campus Norte, Huixquilucán Estado de México 52786, México.
| | - Luis Gutiérrez-Velez
- Departamento de Microbiología, Centro de Investigación en Ciencias de la Salud, Facultad de Ciencias de la Salud, Universidad Anáhuac México Campus Norte, Huixquilucán Estado de México 52786, México.
| | - Eduardo Rodríguez-Puente
- Departamento de Microbiología, Centro de Investigación en Ciencias de la Salud, Facultad de Ciencias de la Salud, Universidad Anáhuac México Campus Norte, Huixquilucán Estado de México 52786, México.
| | - Enrique Konstat-Korzenny
- Departamento de Microbiología, Centro de Investigación en Ciencias de la Salud, Facultad de Ciencias de la Salud, Universidad Anáhuac México Campus Norte, Huixquilucán Estado de México 52786, México.
| | - Diego-Abelardo Álvarez-Hernández
- Departamento de Microbiología, Centro de Investigación en Ciencias de la Salud, Facultad de Ciencias de la Salud, Universidad Anáhuac México Campus Norte, Huixquilucán Estado de México 52786, México.
| | - Giorgio Franyuti-Kelly
- Medical IMPACT, Infectious Disease Department, Mexico City 53900, Estado de México, Mexico.
| | - Laila Gutiérrez-Kobeh
- Unidad de Investigación UNAM-INC, División Investigación, Facultad de Medicina, Universidad Nacional Autónoma de México, Instituto Nacional de Cardiología, Mexico City, 14080, Mexico.
| | - Rosalino Vázquez-López
- Departamento de Microbiología, Centro de Investigación en Ciencias de la Salud, Facultad de Ciencias de la Salud, Universidad Anáhuac México Campus Norte, Huixquilucán Estado de México 52786, México.
| |
Collapse
|
130
|
Quinton LJ, Walkey AJ, Mizgerd JP. Integrative Physiology of Pneumonia. Physiol Rev 2018; 98:1417-1464. [PMID: 29767563 PMCID: PMC6088146 DOI: 10.1152/physrev.00032.2017] [Citation(s) in RCA: 174] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 12/08/2017] [Accepted: 01/16/2018] [Indexed: 02/07/2023] Open
Abstract
Pneumonia is a type of acute lower respiratory infection that is common and severe. The outcome of lower respiratory infection is determined by the degrees to which immunity is protective and inflammation is damaging. Intercellular and interorgan signaling networks coordinate these actions to fight infection and protect the tissue. Cells residing in the lung initiate and steer these responses, with additional immunity effectors recruited from the bloodstream. Responses of extrapulmonary tissues, including the liver, bone marrow, and others, are essential to resistance and resilience. Responses in the lung and extrapulmonary organs can also be counterproductive and drive acute and chronic comorbidities after respiratory infection. This review discusses cell-specific and organ-specific roles in the integrated physiological response to acute lung infection, and the mechanisms by which intercellular and interorgan signaling contribute to host defense and healthy respiratory physiology or to acute lung injury, chronic pulmonary disease, and adverse extrapulmonary sequelae. Pneumonia should no longer be perceived as simply an acute infection of the lung. Pneumonia susceptibility reflects ongoing and poorly understood chronic conditions, and pneumonia results in diverse and often persistent deleterious consequences for multiple physiological systems.
Collapse
Affiliation(s)
- Lee J Quinton
- Pulmonary Center, Boston University School of Medicine , Boston, Massachusetts
| | - Allan J Walkey
- Pulmonary Center, Boston University School of Medicine , Boston, Massachusetts
| | - Joseph P Mizgerd
- Pulmonary Center, Boston University School of Medicine , Boston, Massachusetts
| |
Collapse
|
131
|
Califano D, Furuya Y, Metzger DW. Effects of Influenza on Alveolar Macrophage Viability Are Dependent on Mouse Genetic Strain. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2018; 201:134-144. [PMID: 29760191 PMCID: PMC6008236 DOI: 10.4049/jimmunol.1701406] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 04/26/2018] [Indexed: 01/02/2023]
Abstract
Secondary bacterial coinfections following influenza virus pose a serious threat to human health. Therefore, it is of significant clinical relevance to understand the immunological causes of this increased susceptibility. Influenza-induced alterations in alveolar macrophages (AMs) have been shown to be a major underlying cause of the increased susceptibility to bacterial superinfection. However, the mechanisms responsible for this remain under debate, specifically in terms of whether AMs are depleted in response to influenza infection or are maintained postinfection, but with disrupted phagocytic activity. The data presented in this article resolves this issue by showing that either mechanism can differentially occur in individual mouse strains. BALB/c mice exhibited a dramatic IFN-γ-dependent reduction in levels of AMs following infection with influenza A, whereas AM levels in C57BL/6 mice were maintained throughout the course of influenza infection, although the cells displayed an altered phenotype, namely an upregulation in CD11b expression. These strain differences were observed regardless of whether infection was performed with low or high doses of influenza virus. Furthermore, infection with either the H1N1 A/California/04/2009 (CA04) or H1N1 A/PR8/1934 (PR8) virus strain yielded similar results. Regardless of AM viability, both BALB/c and C57BL/6 mice showed a high level of susceptibility to postinfluenza bacterial infection. These findings resolve the apparent inconsistencies in the literature, identify mouse strain-dependent differences in the AM response to influenza infection, and ultimately may facilitate translation of the mouse model to clinical application.
Collapse
Affiliation(s)
- Danielle Califano
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY 12208
| | - Yoichi Furuya
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY 12208
| | - Dennis W Metzger
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY 12208
| |
Collapse
|
132
|
Thomas SY, Whitehead GS, Takaku M, Ward JM, Xu X, Nakano K, Lyons-Cohen MR, Nakano H, Gowdy KM, Wade PA, Cook DN. MyD88-dependent dendritic and epithelial cell crosstalk orchestrates immune responses to allergens. Mucosal Immunol 2018; 11:796-810. [PMID: 29067999 PMCID: PMC5918466 DOI: 10.1038/mi.2017.84] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 08/22/2017] [Indexed: 02/04/2023]
Abstract
Sensitization to inhaled allergens is dependent on activation of conventional dendritic cells (cDCs) and on the adaptor molecule, MyD88. However, many cell types in the lung express Myd88, and it is unclear how signaling in these different cell types reprograms cDCs and leads to allergic inflammation of the airway. By combining ATAC-seq with RNA profiling, we found that MyD88 signaling in cDCs maintained open chromatin at select loci even at steady state, allowing genes to be rapidly induced during allergic sensitization. A distinct set of genes related to metabolism was indirectly controlled in cDCs through MyD88 signaling in airway epithelial cells (ECs). In mouse models of asthma, Myd88 expression in ECs was critical for eosinophilic inflammation, whereas Myd88 expression in cDCs was required for Th17 cell differentiation and consequent airway neutrophilia. Thus, both cell-intrinsic and cell-extrinsic MyD88 signaling controls gene expression in cDCs and orchestrates immune responses to inhaled allergens.
Collapse
Affiliation(s)
- Seddon Y. Thomas
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, North Carolina 27709, USA
| | - Gregory S. Whitehead
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, North Carolina 27709, USA
| | - Motoki Takaku
- Embryonic Stem Cell and Chromatin Biology Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, North Carolina 27709, USA
| | - James M. Ward
- Integrated Bioinformatics, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, North Carolina 27709, USA
| | - Xiaojiang Xu
- Integrated Bioinformatics, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, North Carolina 27709, USA
| | - Keiko Nakano
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, North Carolina 27709, USA
| | - Miranda R. Lyons-Cohen
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, North Carolina 27709, USA
| | - Hideki Nakano
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, North Carolina 27709, USA
| | - Kymberly M. Gowdy
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, North Carolina 27709, USA
- Department of Pharmacology & Toxicology, Brody School of Medicine at East Carolina University, Greenville, North Carolina 27834, USA
| | - Paul A. Wade
- Embryonic Stem Cell and Chromatin Biology Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, North Carolina 27709, USA
| | - Donald N. Cook
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, North Carolina 27709, USA
| |
Collapse
|
133
|
Nosaka T, Baba T, Tanabe Y, Sasaki S, Nishimura T, Imamura Y, Yurino H, Hashimoto S, Arita M, Nakamoto Y, Mukaida N. Alveolar Macrophages Drive Hepatocellular Carcinoma Lung Metastasis by Generating Leukotriene B 4. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2018; 200:1839-1852. [PMID: 29378914 DOI: 10.4049/jimmunol.1700544] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Accepted: 12/29/2017] [Indexed: 11/19/2022]
Abstract
Macrophages in lungs can be classified into two subpopulations, alveolar macrophages (AMs) and interstitial macrophages (IMs), which reside in the alveolar and interstitial spaces, respectively. Accumulating evidence indicates the involvement of IMs in lung metastasis, but the roles of AMs in lung metastasis still remain elusive. An i.v. injection of a mouse hepatocellular carcinoma (HCC) cell line, BNL, caused lung metastasis foci with infiltration of AMs and IMs. Comprehensive determination of arachidonic acid metabolite levels revealed increases in leukotrienes and PGs in lungs in this metastasis model. A 5-lipoxygenase (LOX) inhibitor but not a cyclooxygenase inhibitor reduced the numbers of metastatic foci, particularly those of a larger size. A major 5-LOX metabolite, LTB4, augmented in vitro cell proliferation of human HCC cell lines as well as BNL cells. Moreover, in this lung metastasis course, AMs exhibited higher expression levels of the 5-LOX and LTB4 than IMs. Consistently, 5-LOX-expressing AMs increased in the lungs of human HCC patients with lung metastasis, compared with those without lung metastasis. Furthermore, intratracheal clodronate liposome injection selectively depleted AMs but not IMs, together with reduced LTB4 content and metastatic foci numbers in this lung metastasis process. Finally, IMs in mouse metastatic foci produced CCL2, thereby recruiting blood-borne, CCR2-expressing AMs into lungs. Thus, AMs can be recruited under the guidance of IM-derived CCL2 into metastatic lungs and can eventually contribute to the progression of lung metastasis by providing a potent arachidonic acid-derived tumor growth promoting mediator, LTB4.
Collapse
Affiliation(s)
- Takuto Nosaka
- Division of Molecular Bioregulation, Cancer Research Institute, Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
- Second Department of Internal Medicine, Faculty of Medical Sciences, University of Fukui, Yoshida-gun, Fukui 910-1193, Japan
| | - Tomohisa Baba
- Division of Molecular Bioregulation, Cancer Research Institute, Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan;
| | - Yamato Tanabe
- Division of Molecular Bioregulation, Cancer Research Institute, Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
- Japan Society for the Promotion of Science, Tokyo 102-0083, Japan
| | - Soichiro Sasaki
- Division of Molecular Bioregulation, Cancer Research Institute, Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
| | - Tatsunori Nishimura
- Division of Cancer Cell Biology, Cancer Research Institute, Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
| | - Yoshiaki Imamura
- Division of Surgical Pathology, University of Fukui, Yoshida-gun, Fukui 910-1193, Japan
| | - Hideaki Yurino
- Division of Nephrology, Department of Laboratory Medicine, Kanazawa University, Kanazawa, Ishikawa 920-8641, Japan
| | - Shinichi Hashimoto
- Division of Nephrology, Department of Laboratory Medicine, Kanazawa University, Kanazawa, Ishikawa 920-8641, Japan
- Japan Science and Technology Agency, Core Research for Evolutional Science and Technology, Chiyoda-ku, Tokyo 102-8666, Japan
| | - Makoto Arita
- Laboratory for Metabolomics, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
- Graduate School of Medical Life Science, Yokohama City University, Yokohama, Kanagawa 236-0027, Japan; and
- Division of Physiological Chemistry and Metabolism, Graduate School of Pharmaceutical Sciences, Keio University, Minato-ku, Tokyo 108-8345, Japan
| | - Yasunari Nakamoto
- Second Department of Internal Medicine, Faculty of Medical Sciences, University of Fukui, Yoshida-gun, Fukui 910-1193, Japan
| | - Naofumi Mukaida
- Division of Molecular Bioregulation, Cancer Research Institute, Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
| |
Collapse
|
134
|
McCubbrey AL, Barthel L, Mohning MP, Redente EF, Mould KJ, Thomas SM, Leach SM, Danhorn T, Gibbings SL, Jakubzick CV, Henson PM, Janssen WJ. Deletion of c-FLIP from CD11b hi Macrophages Prevents Development of Bleomycin-induced Lung Fibrosis. Am J Respir Cell Mol Biol 2018; 58:66-78. [PMID: 28850249 DOI: 10.1165/rcmb.2017-0154oc] [Citation(s) in RCA: 130] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Idiopathic pulmonary fibrosis is a progressive lung disease with complex pathophysiology and fatal prognosis. Macrophages (MΦ) contribute to the development of lung fibrosis; however, the underlying mechanisms and specific MΦ subsets involved remain unclear. During lung injury, two subsets of lung MΦ coexist: Siglec-Fhi resident alveolar MΦ and a mixed population of CD11bhi MΦ that primarily mature from immigrating monocytes. Using a novel inducible transgenic system driven by a fragment of the human CD68 promoter, we targeted deletion of the antiapoptotic protein cellular FADD-like IL-1β-converting enzyme-inhibitory protein (c-FLIP) to CD11bhi MΦ. Upon loss of c-FLIP, CD11bhi MΦ became susceptible to cell death. Using this system, we were able to show that eliminating CD11bhi MΦ present 7-14 days after bleomycin injury was sufficient to protect mice from fibrosis. RNA-seq analysis of lung MΦ present during this time showed that CD11bhi MΦ, but not Siglec-Fhi MΦ, expressed high levels of profibrotic chemokines and growth factors. Human MΦ from patients with idiopathic pulmonary fibrosis expressed many of the same profibrotic chemokines identified in murine CD11bhi MΦ. Elimination of monocyte-derived MΦ may help in the treatment of fibrosis. We identify c-FLIP and the associated extrinsic cell death program as a potential pathway through which these profibrotic MΦ may be pharmacologically targeted.
Collapse
Affiliation(s)
- Alexandra L McCubbrey
- 1 Division of Pulmonary Diseases and Critical Care Medicine, Department of Medicine, University of Colorado Denver School of Medicine, Aurora, Colorado.,2 Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, and
| | - Lea Barthel
- 2 Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, and
| | - Michael P Mohning
- 1 Division of Pulmonary Diseases and Critical Care Medicine, Department of Medicine, University of Colorado Denver School of Medicine, Aurora, Colorado.,2 Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, and
| | - Elizabeth F Redente
- 1 Division of Pulmonary Diseases and Critical Care Medicine, Department of Medicine, University of Colorado Denver School of Medicine, Aurora, Colorado.,3 Program in Cell Biology, Department of Pediatrics, National Jewish Health, Denver, Colorado.,4 Department of Research, Veterans Affairs Eastern Colorado Health Care System, Denver, Colorado
| | - Kara J Mould
- 1 Division of Pulmonary Diseases and Critical Care Medicine, Department of Medicine, University of Colorado Denver School of Medicine, Aurora, Colorado
| | - Stacey M Thomas
- 2 Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, and
| | - Sonia M Leach
- 5 Center for Genes, Environment, and Health, and.,6 Department of Biomedical Research, National Jewish Health, Denver, Colorado; and
| | - Thomas Danhorn
- 5 Center for Genes, Environment, and Health, and.,6 Department of Biomedical Research, National Jewish Health, Denver, Colorado; and
| | - Sophie L Gibbings
- 3 Program in Cell Biology, Department of Pediatrics, National Jewish Health, Denver, Colorado
| | - Claudia V Jakubzick
- 3 Program in Cell Biology, Department of Pediatrics, National Jewish Health, Denver, Colorado.,7 Integrated Department of Immunology, National Jewish Health and University of Colorado Denver Anshutz Campus, Denver, Colorado
| | - Peter M Henson
- 3 Program in Cell Biology, Department of Pediatrics, National Jewish Health, Denver, Colorado
| | - William J Janssen
- 1 Division of Pulmonary Diseases and Critical Care Medicine, Department of Medicine, University of Colorado Denver School of Medicine, Aurora, Colorado.,2 Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, and
| |
Collapse
|
135
|
McQuattie-Pimentel AC, Budinger GRS, Ballinger MN. Monocyte-derived Alveolar Macrophages: The Dark Side of Lung Repair? Am J Respir Cell Mol Biol 2018; 58:5-6. [PMID: 29286855 DOI: 10.1165/rcmb.2017-0328ed] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Affiliation(s)
| | - G R Scott Budinger
- 1 Division of Pulmonary and Critical Care Northwestern University Chicago, Illinois and
| | - Megan N Ballinger
- 2 Division of Pulmonary, Critical Care and Sleep Medicine The Ohio State University Columbus, Ohio
| |
Collapse
|
136
|
McCubbrey AL, Janssen WJ. Modulation of Myeloid Cell Function Using Conditional and Inducible Transgenic Approaches. Methods Mol Biol 2018; 1809:145-168. [PMID: 29987790 DOI: 10.1007/978-1-4939-8570-8_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Transgenic mice have emerged as a central tool in the study of lung myeloid cells during homeostasis and disease. The use of Cre/Lox site-specific recombination allows for conditional deletion of a gene of interest in a spatially controlled manner. The basic Cre/Lox system can be further refined to include an inducible trigger, enabling conditional deletion of a gene of interest in a spatially and temporally controlled manner. Here we provide an overview of commercially available conditional and inducible conditional mouse strains that target lung myeloid cells and describe the appropriate breeding schemes and controls for transgenic animal systems that can be used to modulate myeloid cell function.
Collapse
Affiliation(s)
- Alexandra L McCubbrey
- Department of Medicine, National Jewish Health, Denver, CO, USA.
- Division of Critical Care Medicine and Pulmonary Sciences, Department of Medicine, University of Colorado, Denver, CO, USA.
| | - William J Janssen
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, National Jewish Health, Denver, CO, USA
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado Denver, Aurora, CO, USA
| |
Collapse
|
137
|
Baghdadi MB, Tajbakhsh S. Regulation and phylogeny of skeletal muscle regeneration. Dev Biol 2018; 433:200-209. [DOI: 10.1016/j.ydbio.2017.07.026] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 07/30/2017] [Accepted: 07/31/2017] [Indexed: 12/31/2022]
|
138
|
Gibbings SL, Jakubzick CV. Isolation and Characterization of Mononuclear Phagocytes in the Mouse Lung and Lymph Nodes. Methods Mol Biol 2018; 1809:33-44. [PMID: 29987780 DOI: 10.1007/978-1-4939-8570-8_3] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
There is a diverse population of mononuclear phagocytes (MPs) in the lungs, comprised of macrophages, dendritic cells (DCs), and monocytes. The existence of these various cell types suggests that there is a clear division of labor and delicate balance between the MPs under steady-state and inflammatory conditions. Here we describe how to identify pulmonary MPs using flow cytometry and how to isolate them via cell sorting. In steady-state conditions, murine lungs contain a uniform population of alveolar macrophages (AMs), three distinct interstitial macrophage (IM) populations, three DC subtypes, and a small number of tissue-trafficking monocytes. During an inflammatory response, the monocyte population is more abundant and complex since it acquires either macrophage-like or DC-like features. All in all, studying how these cell types interact with each other, structural cells, and other leukocytes within the environment will be important to understanding their role in maintaining homeostasis and during the development of disease.
Collapse
Affiliation(s)
| | - Claudia V Jakubzick
- Department of Pediatrics, National Jewish Health, Denver, CO, USA.
- Department of Microbiology and Immunology, University of Colorado, Denver, CO, USA.
| |
Collapse
|
139
|
Kulkarni N, Kantar A, Costella S, Ragazzo V, Piacentini G, Boner A, O'Callaghan C. Macrophage Phagocytosis and Allergen Avoidance in Children With Asthma. Front Pediatr 2018; 6:206. [PMID: 30116724 PMCID: PMC6082964 DOI: 10.3389/fped.2018.00206] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 07/02/2018] [Indexed: 01/07/2023] Open
Abstract
Background and Objective: Airway macrophages perform the crucial functions of presenting antigens, clearing pathogens, and apoptotic cells. Macrophage phagocytosis is increased in adults with mild asthma and allergen exposure is known to activate macrophages. However, it is not clear whether the mechanism behind this is due to a primary defect or environmental factors such as allergen or lipopolysaccaride (LPS) exposure. Our aim was to assess the phagocytic function of airway macrophages in children with mild to moderate asthma after residence in a low allergen\LPS environment at high altitude. Methods: Sputum induction was performed in children with asthma at baseline and after residence for a 3 weeks' period at a high-altitude asthma center that has very low ambient allergen levels. The markers of eosinophilic inflammation (including percentage of macrophage cytoplasm with red hue) and phagocytosis of fluorescein isothiocyanate-labeled, heat-killed Staphylococcus aureus by airway macrophages was analyzed. Internalized bacteria were quantified using confocal microscopy. Results: The median bacterial count [mean (standard deviation)] per macrophage was significantly lower [39.55 (4.51) vs. 73.26 (39.42) (p = 0.006)] after residence at high altitude. No association was observed between markers of eosinophilic inflammation and bacterial phagocytosis. Conclusions: The results suggest that the mechanism behind the enhanced phagocytosis of bacteria in childhood asthma may be secondary to allergen or possibly LPS exposure.
Collapse
Affiliation(s)
- Neeta Kulkarni
- Department of Infection, Immunity and Inflammation, Institute for Lung Health, University of Leicester, Leicester, United Kingdom
| | - Ahmad Kantar
- Pediatric Cough and Asthma Center, Istituti Ospedalieri Bergamaschi, University and Research Hospitals, Bergamo, Italy
| | - Silvia Costella
- High Altitude Paediatric Asthma Centre in Misurina, Pio XII Institute, Belluno, Italy
| | - Vincenzo Ragazzo
- Department of Pediatrics, Versilia Hospital, Lido di Camaiore, Italy
| | - Giorgio Piacentini
- Pediatrics Section, Department of Surgery, Dentistry, Paediatrics, and Gynaecology, University of Verona, Verona, Italy
| | - Attilio Boner
- Pediatrics Section, Department of Surgery, Dentistry, Paediatrics, and Gynaecology, University of Verona, Verona, Italy
| | - Christopher O'Callaghan
- Respiratory, Critical Care and Anaesthesia, UCL Great Ormond Street Institute of Child Health, NIHR Great Ormond Street Hospital Biomedical Research Centre, Great Ormond Street Children's Hospital, London, United Kingdom
| |
Collapse
|
140
|
Atif SM, Gibbings SL, Jakubzick CV. Isolation and Identification of Interstitial Macrophages from the Lungs Using Different Digestion Enzymes and Staining Strategies. Methods Mol Biol 2018; 1784:69-76. [PMID: 29761388 DOI: 10.1007/978-1-4939-7837-3_6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Interstitial macrophages (IMs) are present in multiple organs. Although there is limited knowledge of the unique functional role IM subtypes play, macrophages, in general, are known for their contribution in homeostatic tissue maintenance and inflammation such as clearing pathogens and debris and secreting inflammatory mediators and growth factors. IM subtypes have been identified in the heart, skin, and gut, and more recently we identified three distinct IMs in the lung. IMs express on their surface high levels of MerTK, CD64, and CD11b, with differences in CD11c, CD206, and MHC II expression, and referred to the three pulmonary IM subtypes as IM1 (CD11cloCD206+MHCIIlo), IM2 (CD11cloCD206+MHCIIhi), and IM3 (CD11chiCD206loMHCIIhi). In this chapter, we highlight how to extract IMs from the lung using three different digestion enzymes: elastase, collagenase D, and Liberase TM. Of these three commonly used enzymes, Liberase TM was the most effective at IM extraction, particularly IM3. Furthermore, alternative staining strategies to identify IMs were examined, which included CD64, MerTK, F4/80, and Tim4. Thus, future studies highlighting the functional role of IM subtypes will help further our understanding of how tissue homeostasis is maintained and inflammatory conditions are induced and resolved.
Collapse
Affiliation(s)
- Shaikh M Atif
- Department of Pediatrics, National Jewish Health, Denver, CO, USA
| | | | - Claudia V Jakubzick
- Department of Pediatrics, National Jewish Health, Denver, CO, USA.
- Department of Microbiology and Immunology, University of Colorado, Denver, CO, USA.
| |
Collapse
|
141
|
Wujak L, Schnieder J, Schaefer L, Wygrecka M. LRP1: A chameleon receptor of lung inflammation and repair. Matrix Biol 2017; 68-69:366-381. [PMID: 29262309 DOI: 10.1016/j.matbio.2017.12.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 12/12/2017] [Accepted: 12/12/2017] [Indexed: 12/17/2022]
Abstract
The lung displays a remarkable capability to regenerate following injury. Considerable effort has been made thus far to understand the cardinal processes underpinning inflammation and reconstruction of lung tissue. However, the factors determining the resolution or persistence of inflammation and efficient wound healing or aberrant remodeling remain largely unknown. Low density lipoprotein receptor-related protein 1 (LRP1) is an endocytic/signaling cell surface receptor which controls cellular and molecular mechanisms driving the physiological and pathological inflammatory reactions and tissue remodeling in several organs. In this review, we will discuss the impact of LRP1 on the consecutive steps of the inflammatory response and its role in the balanced tissue repair and aberrant remodeling in the lung.
Collapse
Affiliation(s)
- Lukasz Wujak
- Department of Biochemistry, Justus Liebig University, Friedrichstrasse 24, 35392 Giessen, Germany
| | - Jennifer Schnieder
- Department of Biochemistry, Justus Liebig University, Friedrichstrasse 24, 35392 Giessen, Germany
| | - Liliana Schaefer
- Goethe University School of Medicine, University Hospital, Theodor-Stern Kai 7, 60590 Frankfurt am Main, Germany
| | - Malgorzata Wygrecka
- Department of Biochemistry, Justus Liebig University, Friedrichstrasse 24, 35392 Giessen, Germany; Member of the German Center for Lung Research (DZL), Germany.
| |
Collapse
|
142
|
McCubbrey AL, Allison KC, Lee-Sherick AB, Jakubzick CV, Janssen WJ. Promoter Specificity and Efficacy in Conditional and Inducible Transgenic Targeting of Lung Macrophages. Front Immunol 2017; 8:1618. [PMID: 29225599 PMCID: PMC5705560 DOI: 10.3389/fimmu.2017.01618] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 11/08/2017] [Indexed: 12/13/2022] Open
Abstract
Conditional and inducible Cre-loxP systems are used to target gene deletion to specific cell lineages and tissues through promoter-restricted expression of the bacterial DNA recombinase, Cre. Although Cre-loxP systems are widely used to target gene deletion in lung macrophages, limited data are published on the specificity and efficiency of “macrophage targeting” Cre lines. Using R26-stopfl/fl-TdTomato and tetOn-GFP reporter lines, we assessed the specificity and efficiency of four commercially available Cre driver lines that are often considered “macrophage specific.” We evaluated two conditional (Csf1r-Cre and LysM-Cre) and two inducible [CX3CR1-estrogen receptor-Cre (ERCre) and CD68-rtTA] lines. We assessed Cre activation in six resident lung myeloid populations, as well as activation in lung leukocytes, lung epithelial and endothelial cells, peripheral blood leukocytes, and tissue macrophages of the spleen, bone marrow, and peritoneal cavity. Although Csf1r-Cre and LysM-Cre target resident alveolar macrophages (ResAM) and interstitial macrophages (IM) with high efficiency, neither line is specific for macrophages. Csf1r-Cre targets all leukocyte populations, while LysM-Cre targets dendritic cell, neutrophils, monocytes, and a quarter of lung epithelial cells. CX3CR1-ERCre and CD68-rtTA both target IM, but do not target ResAM. Further, although neither line is specific for macrophages, a pulse-wait administration of tamoxifen or doxycycline can be used to significantly improve IM specificity in these inducible lines. In summary, while Cre-loxP remains a powerful tool to study macrophage function, numerous pitfalls exist. Herein, we document strengths and weaknesses of Csf1r-Cre, LysM-Cre, CX3CR1-ERCre, and CD68-rtTA systems for targeting specific macrophage populations in the lungs and provide data that will aid investigators in selecting the proper strain.
Collapse
Affiliation(s)
- Alexandra L McCubbrey
- Department of Medicine, National Jewish Health, Denver, CO, United States.,Division of Critical Care Medicine and Pulmonary Sciences, University of Colorado Denver, Denver, CO, United States
| | - Kristen C Allison
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Alisa B Lee-Sherick
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | | | - William J Janssen
- Department of Medicine, National Jewish Health, Denver, CO, United States.,Division of Critical Care Medicine and Pulmonary Sciences, University of Colorado Denver, Denver, CO, United States
| |
Collapse
|
143
|
Nie M, Wang Y, Lu Y, Yuan Y, Liu Y, Li X. Protective effects of fucoidan against hyperoxic lung injury via the ERK signaling pathway. Mol Med Rep 2017; 17:1813-1818. [PMID: 29138816 DOI: 10.3892/mmr.2017.8022] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 05/08/2017] [Indexed: 11/05/2022] Open
Abstract
High oxygen mechanical ventilation is widely used to treat various lung diseases; however, it may result in hyperoxia, which induces inflammation and lung injury. Fucoidan is an extract of the seaweed Fucus vesiculosus, which has previously been reported to exert effects against diabetic nephropathy. The present study is the first, to the best of our knowledge, to investigate the protective effects of fucoidan against hyperoxic lung injury. Balb/c mice were ventilated with 100% oxygen, with or without the atomization inhalation of fucoidan, for 36 h. Hyperoxia reduced the body weight and increased the relative lung weight of the mice. In addition, cell quantity and differentiation were determined using a hemocytometer, hyperoxia increased the total number of cells, and the number of macrophages, neutrophils and lymphocytes in the bronchoalveolar lavage fluid. Reverse transcription‑quantitative polymerase chain reaction (RT‑qPCR) demonstrated that hyperoxia also increased the mRNA expression levels of cluster of differentiation (CD)68, F4/80, CD64 and CD19 in lung tissue, and induced lung morphological alterations. Furthermore, western blotting assay demonstrated that hyperoxia increased the expression levels of interleukin (IL)‑1, IL‑6 and tumor necrosis factor (TNF)‑α, and the phosphorylation of extracellular signal‑regulated kinase (ERK)1/2. Conversely, hyperoxia‑induced inflammation and morphological alterations were significantly attenuated in the mice treated with fucoidan. Atomization inhalation of fucoidan also reduced the hyperoxia‑induced expression of IL‑1, IL‑6 and TNF‑α, and the phosphorylation of ERK1/2. These findings suggested that fucoidan may attenuate hyperoxic lung injury via the ERK1/2 signaling pathway.
Collapse
Affiliation(s)
- Minghao Nie
- Department of Pathology, Heilongjiang Provincial Hospital, Harbin, Heilongjiang 150036, P.R. China
| | - Yan Wang
- Department of Pathology, Heilongjiang Provincial Hospital, Harbin, Heilongjiang 150036, P.R. China
| | - Yanhong Lu
- Department of Pathology, Heilongjiang Provincial Hospital, Harbin, Heilongjiang 150036, P.R. China
| | - Ying Yuan
- Department of Pathology, Heilongjiang Provincial Hospital, Harbin, Heilongjiang 150036, P.R. China
| | - Yingying Liu
- Department of Pathology, Heilongjiang Provincial Hospital, Harbin, Heilongjiang 150036, P.R. China
| | - Xiurong Li
- Department of Pathology, Heilongjiang Provincial Hospital, Harbin, Heilongjiang 150036, P.R. China
| |
Collapse
|
144
|
Lax S, Rayes J, Thickett DR, Watson SP. Effect of anti-podoplanin antibody administration during lipopolysaccharide-induced lung injury in mice. BMJ Open Respir Res 2017; 4:e000257. [PMID: 29435346 PMCID: PMC5687585 DOI: 10.1136/bmjresp-2017-000257] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 10/24/2017] [Accepted: 10/25/2017] [Indexed: 12/02/2022] Open
Abstract
Introduction Acute respiratory distress syndrome (ARDS) is a devastating pulmonary condition in the critically ill patient. A therapeutic intervention is yet to be found that can prevent progression to ARDS. We recently demonstrated that the interaction between podoplanin expressed on inflammatory alveolar macrophages (iAMs) and its endogenous ligand, platelet C-type lectin-like 2 (CLEC-2), protects against exaggerated lung inflammation during a mouse model of ARDS. In this study, we aim to investigate the therapeutic use of a crosslinking/activating anti-podoplanin antibody (α-PDPN, clone 8.1.1) during lipopolysaccharide (LPS)-induced lung inflammation in mice. Methods Intravenous administration of α-PDPN was performed 6 hours after intratracheal LPS in wildtype, C57Bl/6 mice. Lung function decline was measured by pulse oximetry as well as markers of local inflammation including bronchoalveolar lavage neutrophilia and cytokine/chemokine expression. In parallel, alveolar macrophages were isolated and cultured in vitro from haematopoietic-specific podoplanin-deficient mice (Pdpnfl/flVAV1cre+) and floxed-only controls treated with or without LPS in the presence or absence of α-PDPN. Results Lung function decline as well as alveolar neutrophil recruitment was significantly decreased in mice treated with the crosslinking/activating α-PDPN in vivo. Furthermore, we demonstrate that, in vitro, activation of podoplanin on iAMs regulates their secretion of proinflammatory cytokines and chemokines. Conclusions These data confirm the importance of the CLEC-2–podoplanin pathway during intratracheal (IT)-LPS and demonstrate the beneficial effect of targeting podoplanin during IT-LPS in mice possibly via modulation of local cytokine/chemokine expression. Moreover, these data suggest that podoplanin-targeted therapies may have a beneficial effect in patients at risk of developing ARDS.
Collapse
Affiliation(s)
- Sian Lax
- Institute of Cardiovascular Science, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Julie Rayes
- Institute of Cardiovascular Science, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - David R Thickett
- Institute of Inflammation and Ageing, University of Birmingham Research Labs, QE Hospital, Birmingham, UK
| | - Steve P Watson
- Institute of Cardiovascular Science, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| |
Collapse
|
145
|
On phagocytes and macular degeneration. Prog Retin Eye Res 2017; 61:98-128. [DOI: 10.1016/j.preteyeres.2017.06.002] [Citation(s) in RCA: 134] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 05/29/2017] [Accepted: 06/05/2017] [Indexed: 12/17/2022]
|
146
|
Mohning MP, Thomas SM, Barthel L, Mould KJ, McCubbrey AL, Frasch SC, Bratton DL, Henson PM, Janssen WJ. Phagocytosis of microparticles by alveolar macrophages during acute lung injury requires MerTK. Am J Physiol Lung Cell Mol Physiol 2017; 314:L69-L82. [PMID: 28935638 DOI: 10.1152/ajplung.00058.2017] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Microparticles are a newly recognized class of mediators in the pathophysiology of lung inflammation and injury, but little is known about the factors that regulate their accumulation and clearance. The primary objective of our study was to determine whether alveolar macrophages engulf microparticles and to elucidate the mechanisms by which this occurs. Alveolar microparticles were quantified in bronchoalveolar fluid of mice with lung injury induced by LPS and hydrochloric acid. Microparticle numbers were greatest at the peak of inflammation and declined as inflammation resolved. Isolated, fluorescently labeled particles were placed in culture with macrophages to evaluate ingestion in the presence of endocytosis inhibitors. Ingestion was blocked with cytochalasin D and wortmannin, consistent with a phagocytic process. In separate experiments, mice were treated intratracheally with labeled microparticles, and their uptake was assessed though microscopy and flow cytometry. Resident alveolar macrophages, not recruited macrophages, were the primary cell-ingesting microparticles in the alveolus during lung injury. In vitro, microparticles promoted inflammatory signaling in LPS primed epithelial cells, signifying the importance of microparticle clearance in resolving lung injury. Microparticles were found to have phosphatidylserine exposed on their surfaces. Accordingly, we measured expression of phosphatidylserine receptors on macrophages and found high expression of MerTK and Axl in the resident macrophage population. Endocytosis of microparticles was markedly reduced in MerTK-deficient macrophages in vitro and in vivo. In conclusion, microparticles are released during acute lung injury and peak in number at the height of inflammation. Resident alveolar macrophages efficiently clear these microparticles through MerTK-mediated phagocytosis.
Collapse
Affiliation(s)
- Michael P Mohning
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, National Jewish Health , Denver, Colorado.,Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Colorado-Anschutz Medical Campus , Aurora, Colorado
| | - Stacey M Thomas
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, National Jewish Health , Denver, Colorado
| | - Lea Barthel
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, National Jewish Health , Denver, Colorado
| | - Kara J Mould
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Colorado-Anschutz Medical Campus , Aurora, Colorado
| | - Alexandria L McCubbrey
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, National Jewish Health , Denver, Colorado.,Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Colorado-Anschutz Medical Campus , Aurora, Colorado
| | | | - Donna L Bratton
- Department of Pediatrics, National Jewish Health , Denver, Colorado
| | - Peter M Henson
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Colorado-Anschutz Medical Campus , Aurora, Colorado.,Department of Pediatrics, National Jewish Health , Denver, Colorado
| | - William J Janssen
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, National Jewish Health , Denver, Colorado.,Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Colorado-Anschutz Medical Campus , Aurora, Colorado
| |
Collapse
|
147
|
Mould KJ, Barthel L, Mohning MP, Thomas SM, McCubbrey AL, Danhorn T, Leach SM, Fingerlin TE, O'Connor BP, Reisz JA, D'Alessandro A, Bratton DL, Jakubzick CV, Janssen WJ. Cell Origin Dictates Programming of Resident versus Recruited Macrophages during Acute Lung Injury. Am J Respir Cell Mol Biol 2017; 57:294-306. [PMID: 28421818 DOI: 10.1165/rcmb.2017-0061oc] [Citation(s) in RCA: 153] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Two populations of alveolar macrophages (AMs) coexist in the inflamed lung: resident AMs that arise during embryogenesis, and recruited AMs that originate postnatally from circulating monocytes. The objective of this study was to determine whether origin or environment dictates the transcriptional, metabolic, and functional programming of these two ontologically distinct populations over the time course of acute inflammation. RNA sequencing demonstrated marked transcriptional differences between resident and recruited AMs affecting three main areas: proliferation, inflammatory signaling, and metabolism. Functional assays and metabolomic studies confirmed these differences and demonstrated that resident AMs proliferate locally and are governed by increased tricarboxylic acid cycle and amino acid metabolism. Conversely, recruited AMs produce inflammatory cytokines in association with increased glycolytic and arginine metabolism. Collectively, the data show that even though they coexist in the same environment, inflammatory macrophage subsets have distinct immunometabolic programs and perform specialized functions during inflammation that are associated with their cellular origin.
Collapse
Affiliation(s)
- Kara J Mould
- 1 Division of Pulmonary Diseases and Critical Care Medicine, and
| | - Lea Barthel
- 2 Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine
| | - Michael P Mohning
- 1 Division of Pulmonary Diseases and Critical Care Medicine, and.,2 Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine
| | - Stacey M Thomas
- 2 Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine
| | - Alexandra L McCubbrey
- 1 Division of Pulmonary Diseases and Critical Care Medicine, and.,2 Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine
| | - Thomas Danhorn
- 3 Center for Genes, Environment, and Health.,4 Department of Biomedical Research, and
| | - Sonia M Leach
- 3 Center for Genes, Environment, and Health.,4 Department of Biomedical Research, and
| | - Tasha E Fingerlin
- 3 Center for Genes, Environment, and Health.,4 Department of Biomedical Research, and
| | - Brian P O'Connor
- 3 Center for Genes, Environment, and Health.,4 Department of Biomedical Research, and.,5 Department of Pediatrics, National Jewish Health, Denver, Colorado; and
| | - Julie A Reisz
- 6 Department of Biochemistry and Molecular Genetics, University of Colorado-Anschutz Medical Campus, Aurora, Colorado
| | - Angelo D'Alessandro
- 6 Department of Biochemistry and Molecular Genetics, University of Colorado-Anschutz Medical Campus, Aurora, Colorado
| | - Donna L Bratton
- 5 Department of Pediatrics, National Jewish Health, Denver, Colorado; and
| | | | - William J Janssen
- 1 Division of Pulmonary Diseases and Critical Care Medicine, and.,2 Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine
| |
Collapse
|
148
|
Characterisation of lung macrophage subpopulations in COPD patients and controls. Sci Rep 2017; 7:7143. [PMID: 28769058 PMCID: PMC5540919 DOI: 10.1038/s41598-017-07101-2] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 06/22/2017] [Indexed: 01/08/2023] Open
Abstract
Lung macrophage subpopulations have been identified based on size. We investigated characteristics of small and large macrophages in the alveolar spaces and lung interstitium of COPD patients and controls. Alveolar and interstitial cells were isolated from lung resection tissue from 88 patients. Macrophage subpopulation cell-surface expression of immunological markers and phagocytic ability were assessed by flow cytometry. Inflammatory related gene expression was measured. Alveolar and interstitial macrophages had subpopulations of small and large macrophages based on size and granularity. Alveolar macrophages had similar numbers of small and large cells; interstitial macrophages were mainly small. Small macrophages expressed significantly higher cell surface HLA-DR, CD14, CD38 and CD36 and lower CD206 compared to large macrophages. Large alveolar macrophages showed lower marker expression in COPD current compared to ex-smokers. Small interstitial macrophages had the highest pro-inflammatory gene expression levels, while large alveolar macrophages had the lowest. Small alveolar macrophages had the highest phagocytic ability. Small alveolar macrophage CD206 expression was lower in COPD patients compared to smokers. COPD lung macrophages include distinct subpopulations; Small interstitial and small alveolar macrophages with more pro-inflammatory and phagocytic function respectively, and large alveolar macrophages with low pro-inflammatory and phagocytic ability.
Collapse
|
149
|
Gibbings SL, Thomas SM, Atif SM, McCubbrey AL, Desch AN, Danhorn T, Leach SM, Bratton DL, Henson PM, Janssen WJ, Jakubzick CV. Three Unique Interstitial Macrophages in the Murine Lung at Steady State. Am J Respir Cell Mol Biol 2017; 57:66-76. [PMID: 28257233 DOI: 10.1165/rcmb.2016-0361oc] [Citation(s) in RCA: 372] [Impact Index Per Article: 46.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The current paradigm in macrophage biology is that some tissues mainly contain macrophages from embryonic origin, such as microglia in the brain, whereas other tissues contain postnatal-derived macrophages, such as the gut. However, in the lung and in other organs, such as the skin, there are both embryonic and postnatal-derived macrophages. In this study, we demonstrate in the steady-state lung that the mononuclear phagocyte system is comprised of three newly identified interstitial macrophages (IMs), alveolar macrophages, dendritic cells, and few extravascular monocytes. We focused on similarities and differences between the three IM subtypes, specifically, their phenotype, location, transcriptional signature, phagocytic capacity, turnover, and lack of survival dependency on fractalkine receptor, CX3CR1. Pulmonary IMs were located in the bronchial interstitium but not the alveolar interstitium. At the transcriptional level, all three IMs displayed a macrophage signature and phenotype. All IMs expressed MER proto-oncogene, tyrosine kinase, CD64, CD11b, and CX3CR1, and were further distinguished by differences in cell surface protein expression of CD206, Lyve-1, CD11c, CCR2, and MHC class II, along with the absence of Ly6C, Ly6G, and Siglec F. Most intriguingly, in addition to the lung, similar phenotypic populations of IMs were observed in other nonlymphoid organs, perhaps highlighting conserved functions throughout the body. These findings promote future research to track four distinct pulmonary macrophages and decipher the division of labor that exists between them.
Collapse
Affiliation(s)
- Sophie L Gibbings
- 1 Department of Pediatrics, National Jewish Health, Denver, Colorado
| | - Stacey M Thomas
- 1 Department of Pediatrics, National Jewish Health, Denver, Colorado
| | - Shaikh M Atif
- 1 Department of Pediatrics, National Jewish Health, Denver, Colorado
| | | | - A Nicole Desch
- 3 Integrated Department of Immunology, National Jewish Health and University of Colorado Denver Anschutz Campus, Denver, Colorado
| | - Thomas Danhorn
- 4 Integrated Center for Genes, Environment and Health, National Jewish Health, Denver, Colorado; and
| | - Sonia M Leach
- 4 Integrated Center for Genes, Environment and Health, National Jewish Health, Denver, Colorado; and
| | - Donna L Bratton
- 3 Integrated Department of Immunology, National Jewish Health and University of Colorado Denver Anschutz Campus, Denver, Colorado
| | - Peter M Henson
- 1 Department of Pediatrics, National Jewish Health, Denver, Colorado.,3 Integrated Department of Immunology, National Jewish Health and University of Colorado Denver Anschutz Campus, Denver, Colorado
| | - William J Janssen
- 2 Department of Medicine, National Jewish Health, Denver, Colorado.,5 Division of Pulmonary Sciences and Critical Care, University of Colorado Denver, Denver, Colorado
| | - Claudia V Jakubzick
- 1 Department of Pediatrics, National Jewish Health, Denver, Colorado.,3 Integrated Department of Immunology, National Jewish Health and University of Colorado Denver Anschutz Campus, Denver, Colorado
| |
Collapse
|
150
|
Abstract
Given the dual and intrinsically contradictory roles of myeloid cells in both protective and yet also damaging effects of inflammatory and immunological processes, we suggest that it is important to consider the mechanisms and circumstances by which these cells are removed, either in the normal unchallenged state or during inflammation or disease. In this essay we address these subjects from a conceptual perspective, focusing as examples on four main myeloid cell types (neutrophils, monocytes, macrophages, and myeloid dendritic cells) and their clearance from the circulation or from naive and inflamed tissues. While the primary clearance process appears to involve endocytic uptake into macrophages, various tissue cell types can also recognize and remove dying cells, though their overall quantitative contribution is unclear. In fact, surprisingly, given the wealth of study in this area over the last 30 years, our conclusion is that we are still challenged with a substantial lack of mechanistic and regulatory understanding of when, how, and by what mechanisms migratory myeloid cells come to die and are recognized as needing to be removed, and indeed the precise processes of uptake of either the intact or fragmented cells. This reflects the extreme complexity and inherent redundancy of the clearance processes and argues for substantial investigative effort in this arena. In addition, it leads us to a sense that approaches to significant therapeutic modulation of selective myeloid clearance are still a long way off.
Collapse
|