101
|
Marsh LM, Jandl K, Grünig G, Foris V, Bashir M, Ghanim B, Klepetko W, Olschewski H, Olschewski A, Kwapiszewska G. The inflammatory cell landscape in the lungs of patients with idiopathic pulmonary arterial hypertension. Eur Respir J 2018; 51:51/1/1701214. [PMID: 29371380 PMCID: PMC6383570 DOI: 10.1183/13993003.01214-2017] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 10/15/2017] [Indexed: 12/20/2022]
Abstract
Increasing evidence points towards an inflammatory component underlying pulmonary hypertension. However, the conclusive characterisation of multiple inflammatory cell populations in the lung is challenging due to the complexity of marker specificity and tissue inaccessibility. We used an unbiased computational flow cytometry approach to delineate the inflammatory landscape of idiopathic pulmonary arterial hypertension (IPAH) and healthy donor lungs. Donor and IPAH samples were discriminated clearly using principal component analysis to reduce the multidimensional data obtained from single-cell flow cytometry analysis. In IPAH lungs, the predominant CD45+ cell type switched from neutrophils to CD3+ T-cells, with increases in CD4+, CD8+ and γδT-cell subsets. Additionally, diversely activated classical myeloid-derived dendritic cells (CD14−HLA-DR+CD11c+CD1a+/−) and nonclassical plasmacytoid dendritic cells (pDCs; CD14−CD11c−CD123+HLA-DR+), together with mast cells and basophils, were more abundant in IPAH samples. We describe, for the first time, the presence and regulation of two cell types in IPAH, γδT-cells and pDCs, which link innate and adaptive immunity. With our high-throughput flow cytometry with multidimensional dataset analysis, we have revealed the interactive interplay between multiple inflammatory cells is a crucial part of their integrative network. The identification of γδT-cells and pDCs in this disease potentially provides a missing link between IPAH, autoimmunity and inflammation. Computational flow cytometry details the complex inflammatory cell landscape in patients with pulmonary hypertensionhttp://ow.ly/rjFZ30g1tew
Collapse
Affiliation(s)
- Leigh M Marsh
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
| | - Katharina Jandl
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
| | - Gabriele Grünig
- Dept of Environmental Medicine and Medicine, NYU School of Medicine, New York, NY, USA
| | - Vasile Foris
- Division of Pulmonology, Dept of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Mina Bashir
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
| | - Bahil Ghanim
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria.,Division of Thoracic Surgery, Dept of Surgery, Medical University of Vienna, Vienna, Austria
| | - Walter Klepetko
- Division of Thoracic Surgery, Dept of Surgery, Medical University of Vienna, Vienna, Austria
| | - Horst Olschewski
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria.,Division of Pulmonology, Dept of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Andrea Olschewski
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria.,Institute of Physiology, Medical University of Graz, Graz, Austria
| | - Grazyna Kwapiszewska
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria.,Institute of Physiology, Medical University of Graz, Graz, Austria
| |
Collapse
|
102
|
Gibbings SL, Jakubzick CV. A Consistent Method to Identify and Isolate Mononuclear Phagocytes from Human Lung and Lymph Nodes. Methods Mol Biol 2018; 1799:381-395. [PMID: 29956166 DOI: 10.1007/978-1-4939-7896-0_28] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Mononuclear phagocytes (MP) consist of macrophages, dendritic cells (DCs), and monocytes. In all organs, including the lung, there are multiple subtypes within these categories. The existence of all these cell types suggest that there is a clear division of labor and delicate balance between the MPs under steady state and inflammatory conditions. Although great strides have been made to understand MPs in the mouse lung, and human blood, little is known about the MPs that exist in the human lung and lung-draining lymph nodes (LNs), and even less is known about their functional roles, studies of which will require a large number of sorted cells. We have comprehensively examined cell surface markers previously used in a variety of organs to identify human pulmonary MPs. In the lung, we consistently identify five extravascular pulmonary MPs and three LN MPs. These MPs were present in over 100 lungs regardless of age or gender. Notably, the human blood CD141+ DCs, as described in the literature, were not observed in non-diseased lungs or their draining LNs. In the lung and draining LNs, expression of CD141 was only observed on HLADR+ CD11c+ CD14+ extravascular monocytes (often confused in the LN as resident DCs based on the level of HLADR expression and mouse LN data). In the human lung and LNs there are at least two DC subtypes expressing HLADR, DEC205 and CD1c, along with circulating monocytes that behave as either antigen-presenting cells or macrophages. Furthermore, we demonstrate how to distinguish between alveolar macrophages and interstitial macrophage subtypes. It still remains unclear how the human pulmonary MPs identified here align with mouse MPs. Clearly, we are now past the stage of cell surface marker characterization, and future studies will need to move toward understanding what these cell types are and how they function. Our hope is that the strategy described here can help the pulmonary community take this next step.
Collapse
Affiliation(s)
| | - Claudia V Jakubzick
- Department of Pediatrics, National Jewish Health, Denver, CO, USA. .,Department of Microbiology and Immunology, University of Colorado, Denver, CO, USA.
| |
Collapse
|
103
|
Abstract
Multiparameter flow cytometry of human lungs allows for characterization, isolation, and examination of human pulmonary immune cell composition, phenotype, and function. Here we describe an approach to process lung tissues and then utilize a base antibody panel to define all of the major immune cell types in a single staining condition. This base antibody panel can also be used to identify major immune cell types in human blood and bronchoalveolar lavage (BAL) fluid.
Collapse
Affiliation(s)
- Yen-Rei A Yu
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Duke University School of Medicine, Durham, NC, USA.
| | - Robert M Tighe
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Duke University School of Medicine, Durham, NC, USA
| |
Collapse
|
104
|
Jubrail J, Kurian N, Niedergang F. Macrophage phagocytosis cracking the defect code in COPD. Biomed J 2017; 40:305-312. [PMID: 29433833 PMCID: PMC6138611 DOI: 10.1016/j.bj.2017.09.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 09/25/2017] [Accepted: 09/26/2017] [Indexed: 02/08/2023] Open
Abstract
In the normal non-diseased lung, various macrophage populations maintain homeostasis and sterility by ingesting and clearing inhaled particulates, pathogens and apoptotic cells from the local environment. This process of phagocytosis leads to the degradation of the internalized material, coordinated induction of gene expression, antigen presentation and cytokine production, implicating phagocytosis as a central regulator of innate immunity. Phagocytosis is extremely efficient and any perturbation of this function is deleterious. In inflammatory lung diseases such as chronic obstructive pulmonary disease (COPD), despite their increased numbers, macrophages demonstrate significantly reduced phagocytic capacity of bacteria and apoptotic cells. This defect could play a role in dysbiosis of the lung microbiome contributing to disease pathophysiology. In this review, we will discuss lung macrophages, describe phagocytosis and its related downstream processes and the reported phagocytosis defects in COPD. Finally, we will briefly examine current strategies that focus on restoring the phagocytic capabilities of lung macrophages that may have utility in COPD.
Collapse
Affiliation(s)
- Jamil Jubrail
- INSERM, U1016, Institut Cochin, Paris, France; CNRS, UMR 8104, Paris, France; Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Nisha Kurian
- AstraZeneca, Precision Medicine & Genomics, RIA Companion Diagnostics Unit, Sweden
| | - Florence Niedergang
- INSERM, U1016, Institut Cochin, Paris, France; CNRS, UMR 8104, Paris, France; Université Paris Descartes, Sorbonne Paris Cité, Paris, France.
| |
Collapse
|
105
|
Liu MC, Xiao HQ, Breslin LM, Bochner BS, Schroeder JT. Enhanced antigen presenting and T cell functions during late-phase allergic responses in the lung. Clin Exp Allergy 2017; 48:334-342. [PMID: 29105205 DOI: 10.1111/cea.13054] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 07/21/2017] [Accepted: 07/24/2017] [Indexed: 01/05/2023]
Abstract
BACKGROUND Allergic inflammation is a common feature of asthma and may contribute to both development and perpetuation of disease. The interaction of antigen-presenting cells (APC) with sensitized helper T lymphocytes (TC) producing Th2 cytokines may determine the inflammatory response. Recruitment of APC and TC to the lung during allergic responses has been demonstrated, but functional studies in humans have been limited. OBJECTIVE This study examined the function of APC and TC accumulating at sites of inflammation after segmental allergen challenge (SAC). METHODS Fifteen allergic patients underwent SAC, and cells from bronchoalveolar lavage (BAL) were collected after 24 hours. APC and TC from the blood and BAL were purified based on expression of the monocyte marker, CD14; the plasmacytoid dendritic cell (pDC) marker, BDCA4, identifying neuropilin-1 (NRP1); and the helper T cell marker, CD4. Functional activity was assessed using allergen-induced T cell proliferation. Flow cytometry identified cells expressing CD14 and NRP1. RESULTS SAC resulted in a 12-fold increase in mononuclear cells having the morphologic appearance of blood monocytes. Most of these cells co-expressed CD14 and NRP1. After saline challenge, BAL mononuclear cells demonstrated little APC function. Following SAC, BAL mononuclear cells showed function equal to pDC from blood and greater than blood monocytes. Purified NRP1+ cells from BAL had even greater function than pDC cells from blood (P = .008). Using consistent sources of APC, enhanced proliferation of TC from lung compared to blood was also demonstrated (P = .002). CONCLUSIONS The marked increase in APC function for allergen-specific TC proliferation during allergic inflammation is largely due to the recruitment of monocytes and dendritic cells. There is also an enhanced response in the lung TC population, consistent with recruitment of allergen-specific T cells. Interactions between recruited APC and TC may occur as an early event promoting allergic airway inflammation.
Collapse
Affiliation(s)
- M C Liu
- School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - H Q Xiao
- School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - L M Breslin
- School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - B S Bochner
- Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - J T Schroeder
- School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
106
|
Obregon C, Kumar R, Pascual MA, Vassalli G, Golshayan D. Update on Dendritic Cell-Induced Immunological and Clinical Tolerance. Front Immunol 2017; 8:1514. [PMID: 29250057 PMCID: PMC5715373 DOI: 10.3389/fimmu.2017.01514] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 10/26/2017] [Indexed: 12/18/2022] Open
Abstract
Dendritic cells (DCs) as highly efficient antigen-presenting cells are at the interface of innate and adaptive immunity. As such, they are key mediators of immunity and antigen-specific immune tolerance. Due to their functional specialization, research efforts have focused on the characterization of DCs subsets involved in the initiation of immunogenic responses and in the maintenance of tissue homeostasis. Tolerogenic DCs (tolDCs)-based therapies have been designed as promising strategies to prevent and control autoimmune diseases as well as allograft rejection after solid organ transplantation (SOT). Despite successful experimental studies and ongoing phase I/II clinical trials using autologous tolDCs in patients with type 1 diabetes, rheumatoid arthritis, multiple sclerosis, and in SOT recipients, additional basic research will be required to determine the optimal DC subset(s) and conditioning regimens for tolDCs-based treatments in vivo. In this review, we discuss the characteristics of human DCs and recent advances in their classification, as well as the role of DCs in immune regulation and their susceptibility to in vitro or in vivo manipulation for the development of tolerogenic therapies, with a focus on the potential of tolDCs for the treatment of autoimmune diseases and the prevention of allograft rejection after SOT.
Collapse
Affiliation(s)
- Carolina Obregon
- Department of Medicine, Transplantation Centre and Transplantation Immunopathology Laboratory, Service of Immunology, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland
| | - Rajesh Kumar
- Department of Medicine, Transplantation Centre and Transplantation Immunopathology Laboratory, Service of Immunology, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland
| | - Manuel Antonio Pascual
- Department of Medicine, Transplantation Centre and Transplantation Immunopathology Laboratory, Service of Immunology, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland.,Department of Surgery, Transplantation Centre, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland
| | - Giuseppe Vassalli
- Département coeur-vaisseaux, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland.,Fondazione Cardiocentro Ticino, Swiss Institute of Regenerative Medicine (SIRM), Lugano, Switzerland
| | - Déla Golshayan
- Department of Medicine, Transplantation Centre and Transplantation Immunopathology Laboratory, Service of Immunology, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland.,Department of Surgery, Transplantation Centre, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
107
|
Liu H, Jakubzick C, Osterburg AR, Nelson RL, Gupta N, McCormack FX, Borchers MT. Dendritic Cell Trafficking and Function in Rare Lung Diseases. Am J Respir Cell Mol Biol 2017; 57:393-402. [PMID: 28586276 PMCID: PMC5650088 DOI: 10.1165/rcmb.2017-0051ps] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 06/06/2017] [Indexed: 12/14/2022] Open
Abstract
Dendritic cells (DCs) are highly specialized immune cells that capture antigens and then migrate to lymphoid tissue and present antigen to T cells. This critical function of DCs is well defined, and recent studies further demonstrate that DCs are also key regulators of several innate immune responses. Studies focused on the roles of DCs in the pathogenesis of common lung diseases, such as asthma, infection, and cancer, have traditionally driven our mechanistic understanding of pulmonary DC biology. The emerging development of novel DC reagents, techniques, and genetically modified animal models has provided abundant data revealing distinct populations of DCs in the lung, and allow us to examine mechanisms of DC development, migration, and function in pulmonary disease with unprecedented detail. This enhanced understanding of DCs permits the examination of the potential role of DCs in diseases with known or suspected immunological underpinnings. Recent advances in the study of rare lung diseases, including pulmonary Langerhans cell histiocytosis, sarcoidosis, hypersensitivity pneumonitis, and pulmonary fibrosis, reveal expanding potential pathogenic roles for DCs. Here, we provide a review of DC development, trafficking, and effector functions in the lung, and discuss how alterations in these DC pathways contribute to the pathogenesis of rare lung diseases.
Collapse
Affiliation(s)
- Huan Liu
- Department of Internal Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, University of Cincinnati, Cincinnati, Ohio
| | - Claudia Jakubzick
- Department of Immunology and Microbiology, National Jewish Health and University of Colorado, Denver, Colorado; and
| | - Andrew R. Osterburg
- Department of Internal Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, University of Cincinnati, Cincinnati, Ohio
| | - Rebecca L. Nelson
- Department of Internal Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, University of Cincinnati, Cincinnati, Ohio
| | - Nishant Gupta
- Department of Internal Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, University of Cincinnati, Cincinnati, Ohio
- Cincinnati Veteran’s Affairs Medical Center, Cincinnati, Ohio
| | - Francis X. McCormack
- Department of Internal Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, University of Cincinnati, Cincinnati, Ohio
- Cincinnati Veteran’s Affairs Medical Center, Cincinnati, Ohio
| | - Michael T. Borchers
- Department of Internal Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, University of Cincinnati, Cincinnati, Ohio
- Cincinnati Veteran’s Affairs Medical Center, Cincinnati, Ohio
| |
Collapse
|
108
|
Grabiec AM, Denny N, Doherty JA, Happonen KE, Hankinson J, Connolly E, Fife ME, Fujimori T, Fujino N, Goenka A, Holden S, Tavernier G, Shah R, Cook PC, MacDonald AS, Niven RM, Dahlbäck B, Fowler SJ, Simpson A, Hussell T. Diminished airway macrophage expression of the Axl receptor tyrosine kinase is associated with defective efferocytosis in asthma. J Allergy Clin Immunol 2017; 140:1144-1146.e4. [PMID: 28412392 DOI: 10.1016/j.jaci.2017.03.024] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 02/14/2017] [Accepted: 03/15/2017] [Indexed: 12/14/2022]
Affiliation(s)
- Aleksander M Grabiec
- Manchester Collaborative Centre for Inflammation Research, the University of Manchester, Manchester, United Kingdom; Faculty of Biochemistry, Biophysics and Biotechnology, Department of Microbiology, Jagiellonian University, Kraków, Poland
| | - Nicholas Denny
- Manchester Collaborative Centre for Inflammation Research, the University of Manchester, Manchester, United Kingdom
| | - John A Doherty
- Manchester Collaborative Centre for Inflammation Research, the University of Manchester, Manchester, United Kingdom
| | - Kaisa E Happonen
- Department of Translational Medicine, Division of Clinical Chemistry, Lund University, Malmö, Sweden
| | - Jenny Hankinson
- Division of Infection, Immunity and Respiratory Medicine, Manchester Academic Health Sciences Centre, University of Manchester, Manchester, United Kingdom
| | - Emma Connolly
- Manchester Collaborative Centre for Inflammation Research, the University of Manchester, Manchester, United Kingdom
| | - Mark E Fife
- Manchester Collaborative Centre for Inflammation Research, the University of Manchester, Manchester, United Kingdom
| | - Toshifumi Fujimori
- Manchester Collaborative Centre for Inflammation Research, the University of Manchester, Manchester, United Kingdom
| | - Naoya Fujino
- Manchester Collaborative Centre for Inflammation Research, the University of Manchester, Manchester, United Kingdom
| | - Anu Goenka
- Manchester Collaborative Centre for Inflammation Research, the University of Manchester, Manchester, United Kingdom
| | - Susan Holden
- Division of Infection, Immunity and Respiratory Medicine, Manchester Academic Health Sciences Centre, University of Manchester, Manchester, United Kingdom
| | - Gaël Tavernier
- Division of Infection, Immunity and Respiratory Medicine, Manchester Academic Health Sciences Centre, University of Manchester, Manchester, United Kingdom
| | - Rajesh Shah
- Department of Thoracic Surgery, University Hospital of South Manchester, Manchester, United Kingdom
| | - Peter C Cook
- Manchester Collaborative Centre for Inflammation Research, the University of Manchester, Manchester, United Kingdom
| | - Andrew S MacDonald
- Manchester Collaborative Centre for Inflammation Research, the University of Manchester, Manchester, United Kingdom
| | - Robert M Niven
- Division of Infection, Immunity and Respiratory Medicine, Manchester Academic Health Sciences Centre, University of Manchester, Manchester, United Kingdom
| | - Björn Dahlbäck
- Department of Translational Medicine, Division of Clinical Chemistry, Lund University, Malmö, Sweden
| | - Stephen J Fowler
- Division of Infection, Immunity and Respiratory Medicine, Manchester Academic Health Sciences Centre, University of Manchester, Manchester, United Kingdom
| | - Angela Simpson
- Division of Infection, Immunity and Respiratory Medicine, Manchester Academic Health Sciences Centre, University of Manchester, Manchester, United Kingdom
| | - Tracy Hussell
- Manchester Collaborative Centre for Inflammation Research, the University of Manchester, Manchester, United Kingdom.
| |
Collapse
|
109
|
Granot T, Senda T, Carpenter DJ, Matsuoka N, Weiner J, Gordon CL, Miron M, Kumar BV, Griesemer A, Ho SH, Lerner H, Thome JJC, Connors T, Reizis B, Farber DL. Dendritic Cells Display Subset and Tissue-Specific Maturation Dynamics over Human Life. Immunity 2017; 46:504-515. [PMID: 28329707 DOI: 10.1016/j.immuni.2017.02.019] [Citation(s) in RCA: 216] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 12/23/2016] [Accepted: 02/27/2017] [Indexed: 12/24/2022]
Abstract
Maturation and migration to lymph nodes (LNs) constitutes a central paradigm in conventional dendritic cell (cDC) biology but remains poorly defined in humans. Using our organ donor tissue resource, we analyzed cDC subset distribution, maturation, and migration in mucosal tissues (lungs, intestines), associated lymph nodes (LNs), and other lymphoid sites from 78 individuals ranging from less than 1 year to 93 years of age. The distribution of cDC1 (CD141hiCD13hi) and cDC2 (Sirp-α+CD1c+) subsets was a function of tissue site and was conserved between donors. We identified cDC2 as the major mature (HLA-DRhi) subset in LNs with the highest frequency in lung-draining LNs. Mature cDC2 in mucosal-draining LNs expressed tissue-specific markers derived from the paired mucosal site, reflecting their tissue-migratory origin. These distribution and maturation patterns were largely maintained throughout life, with site-specific variations. Our findings provide evidence for localized DC tissue surveillance and reveal a lifelong division of labor between DC subsets, with cDC2 functioning as guardians of the mucosa.
Collapse
Affiliation(s)
- Tomer Granot
- Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY 10032, USA; Department of Medicine, Columbia University Medical Center, New York, NY 10032, USA
| | - Takashi Senda
- Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY 10032, USA; Department of Surgery, Columbia University Medical Center, New York, NY 10032, USA
| | - Dustin J Carpenter
- Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY 10032, USA; Department of Surgery, Columbia University Medical Center, New York, NY 10032, USA
| | - Nobuhide Matsuoka
- Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY 10032, USA; Department of Surgery, Columbia University Medical Center, New York, NY 10032, USA
| | - Joshua Weiner
- Department of Surgery, Columbia University Medical Center, New York, NY 10032, USA
| | - Claire L Gordon
- Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY 10032, USA; Department of Medicine, Columbia University Medical Center, New York, NY 10032, USA
| | - Michelle Miron
- Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY 10032, USA; Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY 10032, USA
| | - Brahma V Kumar
- Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY 10032, USA
| | - Adam Griesemer
- Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY 10032, USA; Department of Surgery, Columbia University Medical Center, New York, NY 10032, USA
| | - Siu-Hong Ho
- Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY 10032, USA; Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY 10032, USA
| | | | - Joseph J C Thome
- Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY 10032, USA; Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY 10032, USA
| | - Thomas Connors
- Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY 10032, USA; Division of Critical Care, Department of Pediatrics, Columbia University Medical Center, New York, NY 10032, USA
| | - Boris Reizis
- Department of Pathology, NYU Langone Medical Center, New York, NY 10016, USA
| | - Donna L Farber
- Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY 10032, USA; Department of Surgery, Columbia University Medical Center, New York, NY 10032, USA; Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY 10032, USA.
| |
Collapse
|
110
|
Pandemic 2009 H1N1 Influenza Venus reporter virus reveals broad diversity of MHC class II-positive antigen-bearing cells following infection in vivo. Sci Rep 2017; 7:10857. [PMID: 28883436 PMCID: PMC5589842 DOI: 10.1038/s41598-017-11313-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 08/22/2017] [Indexed: 12/17/2022] Open
Abstract
Although it is well established that Influenza A virus infection is initiated in the respiratory tract, the sequence of events and the cell types that become infected or access viral antigens remains incompletely understood. In this report, we used a novel Influenza A/California/04/09 (H1N1) reporter virus that stably expresses the Venus fluorescent protein to identify antigen-bearing cells over time in a mouse model of infection using flow cytometry. These studies revealed that many hematopoietic cells, including subsets of monocytes, macrophages, dendritic cells, neutrophils and eosinophils acquire influenza antigen in the lungs early post-infection. Surface staining of the viral HA revealed that most cell populations become infected, most prominently CD45neg cells, alveolar macrophages and neutrophils. Finally, differences in infection status, cell lineage and MHC class II expression by antigen-bearing cells correlated with differences in their ability to re-stimulate influenza-specific CD4 T cells ex vivo. Collectively, these studies have revealed the cellular heterogeneity and complexity of antigen-bearing cells within the lung and their potential as targets of antigen recognition by CD4 T cells.
Collapse
|
111
|
Yang J, Zuo WL, Fukui T, Chao I, Gomi K, Lee B, Staudt MR, Kaner RJ, Strulovici-Barel Y, Salit J, Crystal RG, Shaykhiev R. Smoking-Dependent Distal-to-Proximal Repatterning of the Adult Human Small Airway Epithelium. Am J Respir Crit Care Med 2017; 196:340-352. [PMID: 28345955 DOI: 10.1164/rccm.201608-1672oc] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
RATIONALE Small airways are the primary site of pathologic changes in chronic obstructive pulmonary disease (COPD), the major smoking-induced lung disorder. OBJECTIVES On the basis of the concept of proximal-distal patterning that determines regional specialization of the airway epithelium during lung development, we hypothesized that a similar program operates in the adult human lung being altered by smoking, leading to decreased regional identity of the small airway epithelium (SAE). METHODS The proximal and distal airway signatures were identified by comparing the transcriptomes of large and small airway epithelium samples obtained by bronchoscopy from healthy nonsmokers. The expression of these signatures was evaluated in the SAE of healthy smokers and smokers with COPD compared with that of healthy nonsmokers. The capacity of airway basal stem cells (BCs) to maintain region-associated phenotypes was evaluated using the air-liquid interface model. MEASUREMENTS AND MAIN RESULTS The distal and proximal airway signatures, containing 134 and 233 genes, respectively, were identified. These signatures included known developmental regulators of airway patterning, as well as novel regulators such as epidermal growth factor receptor, which was associated with the proximal airway phenotype. In the SAE of smokers with COPD, there was a dramatic smoking-dependent loss of the regional transcriptome identity with concomitant proximalization. This repatterning phenotype was reproduced by stimulating SAE BCs with epidermal growth factor, which was up-regulated in the SAE of smokers, during differentiation of SAE BCs in vitro. CONCLUSIONS Smoking-induced global distal-to-proximal reprogramming of the SAE represents a novel pathologic feature of COPD and is mediated by exaggerated epidermal growth factor/epidermal growth factor receptor signaling in SAE BCs.
Collapse
Affiliation(s)
- Jing Yang
- 1 Department of Genetic Medicine and.,2 Department of Respiratory Medicine, West China Hospital, Sichuan University, Sichuan, China
| | | | | | | | - Kazunori Gomi
- 3 Department of Medicine, Weill Cornell Medical College, New York, New York; and
| | - Busub Lee
- 3 Department of Medicine, Weill Cornell Medical College, New York, New York; and
| | | | - Robert J Kaner
- 1 Department of Genetic Medicine and.,3 Department of Medicine, Weill Cornell Medical College, New York, New York; and
| | | | | | - Ronald G Crystal
- 1 Department of Genetic Medicine and.,3 Department of Medicine, Weill Cornell Medical College, New York, New York; and
| | | |
Collapse
|
112
|
Characterisation of lung macrophage subpopulations in COPD patients and controls. Sci Rep 2017; 7:7143. [PMID: 28769058 PMCID: PMC5540919 DOI: 10.1038/s41598-017-07101-2] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 06/22/2017] [Indexed: 01/08/2023] Open
Abstract
Lung macrophage subpopulations have been identified based on size. We investigated characteristics of small and large macrophages in the alveolar spaces and lung interstitium of COPD patients and controls. Alveolar and interstitial cells were isolated from lung resection tissue from 88 patients. Macrophage subpopulation cell-surface expression of immunological markers and phagocytic ability were assessed by flow cytometry. Inflammatory related gene expression was measured. Alveolar and interstitial macrophages had subpopulations of small and large macrophages based on size and granularity. Alveolar macrophages had similar numbers of small and large cells; interstitial macrophages were mainly small. Small macrophages expressed significantly higher cell surface HLA-DR, CD14, CD38 and CD36 and lower CD206 compared to large macrophages. Large alveolar macrophages showed lower marker expression in COPD current compared to ex-smokers. Small interstitial macrophages had the highest pro-inflammatory gene expression levels, while large alveolar macrophages had the lowest. Small alveolar macrophages had the highest phagocytic ability. Small alveolar macrophage CD206 expression was lower in COPD patients compared to smokers. COPD lung macrophages include distinct subpopulations; Small interstitial and small alveolar macrophages with more pro-inflammatory and phagocytic function respectively, and large alveolar macrophages with low pro-inflammatory and phagocytic ability.
Collapse
|
113
|
Gibbings SL, Thomas SM, Atif SM, McCubbrey AL, Desch AN, Danhorn T, Leach SM, Bratton DL, Henson PM, Janssen WJ, Jakubzick CV. Three Unique Interstitial Macrophages in the Murine Lung at Steady State. Am J Respir Cell Mol Biol 2017; 57:66-76. [PMID: 28257233 DOI: 10.1165/rcmb.2016-0361oc] [Citation(s) in RCA: 372] [Impact Index Per Article: 46.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The current paradigm in macrophage biology is that some tissues mainly contain macrophages from embryonic origin, such as microglia in the brain, whereas other tissues contain postnatal-derived macrophages, such as the gut. However, in the lung and in other organs, such as the skin, there are both embryonic and postnatal-derived macrophages. In this study, we demonstrate in the steady-state lung that the mononuclear phagocyte system is comprised of three newly identified interstitial macrophages (IMs), alveolar macrophages, dendritic cells, and few extravascular monocytes. We focused on similarities and differences between the three IM subtypes, specifically, their phenotype, location, transcriptional signature, phagocytic capacity, turnover, and lack of survival dependency on fractalkine receptor, CX3CR1. Pulmonary IMs were located in the bronchial interstitium but not the alveolar interstitium. At the transcriptional level, all three IMs displayed a macrophage signature and phenotype. All IMs expressed MER proto-oncogene, tyrosine kinase, CD64, CD11b, and CX3CR1, and were further distinguished by differences in cell surface protein expression of CD206, Lyve-1, CD11c, CCR2, and MHC class II, along with the absence of Ly6C, Ly6G, and Siglec F. Most intriguingly, in addition to the lung, similar phenotypic populations of IMs were observed in other nonlymphoid organs, perhaps highlighting conserved functions throughout the body. These findings promote future research to track four distinct pulmonary macrophages and decipher the division of labor that exists between them.
Collapse
Affiliation(s)
- Sophie L Gibbings
- 1 Department of Pediatrics, National Jewish Health, Denver, Colorado
| | - Stacey M Thomas
- 1 Department of Pediatrics, National Jewish Health, Denver, Colorado
| | - Shaikh M Atif
- 1 Department of Pediatrics, National Jewish Health, Denver, Colorado
| | | | - A Nicole Desch
- 3 Integrated Department of Immunology, National Jewish Health and University of Colorado Denver Anschutz Campus, Denver, Colorado
| | - Thomas Danhorn
- 4 Integrated Center for Genes, Environment and Health, National Jewish Health, Denver, Colorado; and
| | - Sonia M Leach
- 4 Integrated Center for Genes, Environment and Health, National Jewish Health, Denver, Colorado; and
| | - Donna L Bratton
- 3 Integrated Department of Immunology, National Jewish Health and University of Colorado Denver Anschutz Campus, Denver, Colorado
| | - Peter M Henson
- 1 Department of Pediatrics, National Jewish Health, Denver, Colorado.,3 Integrated Department of Immunology, National Jewish Health and University of Colorado Denver Anschutz Campus, Denver, Colorado
| | - William J Janssen
- 2 Department of Medicine, National Jewish Health, Denver, Colorado.,5 Division of Pulmonary Sciences and Critical Care, University of Colorado Denver, Denver, Colorado
| | - Claudia V Jakubzick
- 1 Department of Pediatrics, National Jewish Health, Denver, Colorado.,3 Integrated Department of Immunology, National Jewish Health and University of Colorado Denver Anschutz Campus, Denver, Colorado
| |
Collapse
|
114
|
Misharin AV, Morales-Nebreda L, Reyfman PA, Cuda CM, Walter JM, McQuattie-Pimentel AC, Chen CI, Anekalla KR, Joshi N, Williams KJN, Abdala-Valencia H, Yacoub TJ, Chi M, Chiu S, Gonzalez-Gonzalez FJ, Gates K, Lam AP, Nicholson TT, Homan PJ, Soberanes S, Dominguez S, Morgan VK, Saber R, Shaffer A, Hinchcliff M, Marshall SA, Bharat A, Berdnikovs S, Bhorade SM, Bartom ET, Morimoto RI, Balch WE, Sznajder JI, Chandel NS, Mutlu GM, Jain M, Gottardi CJ, Singer BD, Ridge KM, Bagheri N, Shilatifard A, Budinger GRS, Perlman H. Monocyte-derived alveolar macrophages drive lung fibrosis and persist in the lung over the life span. J Exp Med 2017; 214:2387-2404. [PMID: 28694385 PMCID: PMC5551573 DOI: 10.1084/jem.20162152] [Citation(s) in RCA: 793] [Impact Index Per Article: 99.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 04/02/2017] [Accepted: 05/25/2017] [Indexed: 01/06/2023] Open
Abstract
Misharin et al. elucidate the fate and function of monocyte-derived alveolar macrophages during the course of pulmonary fibrosis. These cells persisted throughout the life span, were enriched for the expression of profibrotic genes, and their genetic ablation ameliorated development of pulmonary fibrosis. Little is known about the relative importance of monocyte and tissue-resident macrophages in the development of lung fibrosis. We show that specific genetic deletion of monocyte-derived alveolar macrophages after their recruitment to the lung ameliorated lung fibrosis, whereas tissue-resident alveolar macrophages did not contribute to fibrosis. Using transcriptomic profiling of flow-sorted cells, we found that monocyte to alveolar macrophage differentiation unfolds continuously over the course of fibrosis and its resolution. During the fibrotic phase, monocyte-derived alveolar macrophages differ significantly from tissue-resident alveolar macrophages in their expression of profibrotic genes. A population of monocyte-derived alveolar macrophages persisted in the lung for one year after the resolution of fibrosis, where they became increasingly similar to tissue-resident alveolar macrophages. Human homologues of profibrotic genes expressed by mouse monocyte-derived alveolar macrophages during fibrosis were up-regulated in human alveolar macrophages from fibrotic compared with normal lungs. Our findings suggest that selectively targeting alveolar macrophage differentiation within the lung may ameliorate fibrosis without the adverse consequences associated with global monocyte or tissue-resident alveolar macrophage depletion.
Collapse
Affiliation(s)
- Alexander V Misharin
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Luisa Morales-Nebreda
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Paul A Reyfman
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Carla M Cuda
- Division of Rheumatology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - James M Walter
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Alexandra C McQuattie-Pimentel
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Ching-I Chen
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Kishore R Anekalla
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Nikita Joshi
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Kinola J N Williams
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Hiam Abdala-Valencia
- Division of Rheumatology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Tyrone J Yacoub
- Department of Chemical and Biological Engineering, McCormick School of Engineering, Northwestern University, Evanston, IL
| | - Monica Chi
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Stephen Chiu
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL.,Division of Thoracic Surgery, Department of Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Francisco J Gonzalez-Gonzalez
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Khalilah Gates
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Anna P Lam
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Trevor T Nicholson
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Philip J Homan
- Division of Rheumatology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Saul Soberanes
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Salina Dominguez
- Division of Rheumatology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Vince K Morgan
- Division of Rheumatology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Rana Saber
- Division of Rheumatology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Alexander Shaffer
- Division of Rheumatology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Monique Hinchcliff
- Division of Rheumatology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Stacy A Marshall
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Ankit Bharat
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL.,Division of Thoracic Surgery, Department of Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Sergejs Berdnikovs
- Division of Allergy and Immunology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Sangeeta M Bhorade
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Elizabeth T Bartom
- Division of Thoracic Surgery, Department of Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Richard I Morimoto
- Department of Molecular Biosciences, Rice Institute for Biomedical Research, Northwestern University, Evanston, IL
| | - William E Balch
- Department of Molecular Medicine, The Scripps Research Institutes, La Jolla, CA
| | - Jacob I Sznajder
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Navdeep S Chandel
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Gökhan M Mutlu
- Section of Pulmonary and Critical Care Medicine, University of Chicago, Chicago, IL
| | - Manu Jain
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Cara J Gottardi
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Benjamin D Singer
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Karen M Ridge
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Neda Bagheri
- Division of Rheumatology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Ali Shilatifard
- Division of Thoracic Surgery, Department of Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - G R Scott Budinger
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Harris Perlman
- Department of Chemical and Biological Engineering, McCormick School of Engineering, Northwestern University, Evanston, IL
| |
Collapse
|
115
|
Silver RF, Myers AJ, Jarvela J, Flynn J, Rutledge T, Bonfield T, Lin PL. Diversity of Human and Macaque Airway Immune Cells at Baseline and during Tuberculosis Infection. Am J Respir Cell Mol Biol 2017; 55:899-908. [PMID: 27509488 DOI: 10.1165/rcmb.2016-0122oc] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Immune cells of the distal airways serve as "first responders" of host immunity to the airborne pathogen Mycobacterium tuberculosis (Mtb). Mtb infection of cynomolgus macaques recapitulates the range of human outcomes from clinically silent latent tuberculosis infection (LTBI) to active tuberculosis of various degrees of severity. To further advance the application of this model to human studies, we compared profiles of bronchoalveolar lavage (BAL) cells of humans and cynomolgus macaques before and after Mtb infection. A simple gating strategy effectively defined BAL T-cell and phagocyte populations in both species. BAL from Mtb-naive humans and macaques showed similar differential cell counts. BAL T cells of macaques were composed of fewer CD4+cells but more CD8+ and CD4+CD8+ double-positive cells than were BAL T cells of humans. The most common mononuclear phagocyte population in BAL of both species displayed coexpression of HLA-DR, CD206, CD11b, and CD11c; however, multiple phagocyte subsets displaying only some of these markers were observed as well. Macaques with LTBI displayed a marked BAL lymphocytosis that was not observed in humans with LTBI. In macaques, the prevalence of specific mononuclear phagocyte subsets in baseline BAL correlated with ultimate outcomes of Mtb infection (i.e., LTBI versus active disease). Overall, these findings demonstrate the comparability of studies of pulmonary immunity to Mtb in humans and macaques. They also indicate a previously undescribed complexity of airway mononuclear phagocyte populations that suggests further lines of investigation relevant to understanding the mechanisms of both protection from and susceptibility to the development of active tuberculosis within the lung.
Collapse
Affiliation(s)
- Richard F Silver
- 1 Division of Pulmonary, Critical Care and Sleep Medicine.,2 The Louis Stokes Cleveland Department of Veterans' Affairs Medical Center.,3 University Hospitals Case Medical Center, and
| | - Amy J Myers
- 4 Departments of Microbiology and Molecular Genetics and
| | | | - JoAnne Flynn
- 4 Departments of Microbiology and Molecular Genetics and
| | - Tara Rutledge
- 5 Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Tracey Bonfield
- 6 Pediatric Pulmonology, Allergy and Immunology, Case Western Reserve University School of Medicine, Cleveland, Ohio; and
| | - Philana Ling Lin
- 5 Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| |
Collapse
|
116
|
Scholz S, Baharom F, Rankin G, Maleki KT, Gupta S, Vangeti S, Pourazar J, Discacciati A, Höijer J, Bottai M, Björkström NK, Rasmuson J, Evander M, Blomberg A, Ljunggren HG, Klingström J, Ahlm C, Smed-Sörensen A. Human hantavirus infection elicits pronounced redistribution of mononuclear phagocytes in peripheral blood and airways. PLoS Pathog 2017. [PMID: 28640917 PMCID: PMC5498053 DOI: 10.1371/journal.ppat.1006462] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Hantaviruses infect humans via inhalation of virus-contaminated rodent excreta. Infection can cause severe disease with up to 40% mortality depending on the viral strain. The virus primarily targets the vascular endothelium without direct cytopathic effects. Instead, exaggerated immune responses may inadvertently contribute to disease development. Mononuclear phagocytes (MNPs), including monocytes and dendritic cells (DCs), orchestrate the adaptive immune responses. Since hantaviruses are transmitted via inhalation, studying immunological events in the airways is of importance to understand the processes leading to immunopathogenesis. Here, we studied 17 patients infected with Puumala virus that causes a mild form of hemorrhagic fever with renal syndrome (HFRS). Bronchial biopsies as well as longitudinal blood draws were obtained from the patients. During the acute stage of disease, a significant influx of MNPs expressing HLA-DR, CD11c or CD123 was detected in the patients’ bronchial tissue. In parallel, absolute numbers of MNPs were dramatically reduced in peripheral blood, coinciding with viremia. Expression of CCR7 on the remaining MNPs in blood suggested migration to peripheral and/or lymphoid tissues. Numbers of MNPs in blood subsequently normalized during the convalescent phase of the disease when viral RNA was no longer detectable in plasma. Finally, we exposed blood MNPs in vitro to Puumala virus, and demonstrated an induction of CCR7 expression on MNPs. In conclusion, the present study shows a marked redistribution of blood MNPs to the airways during acute hantavirus disease, a process that may underlie the local immune activation and contribute to immunopathogenesis in hantavirus-infected patients. Inhalation of hantavirus-infected rodent droppings can cause a wide range of disease ranging from mild symptoms to deaths in humans. Central to hantavirus disease is vascular leakage that can manifest in different organs, including the lungs. Although the virus can infect endothelial cells lining the blood vessels, it does not cause cell death. Instead, activation of the immune system in response to viral infection has been implicated in causing vascular leakage. In this study, we investigated how monocytes and dendritic cells (DCs) are involved in hantavirus disease, given their capacity to activate other immune cells. We obtained unique clinical material from 17 Puumala virus-infected patients including mucosal biopsies from the airways as well as multiple blood draws over the course of disease. In the airways of these patients, we observed an infiltration of monocytes and DCs. In parallel, there was a dramatic depletion in peripheral blood—more than ten-fold—of monocytes and DCs that was sustained throughout the first two weeks of disease. Taken together, this study provides novel insights into immune mediated processes underlying human hantavirus pathogenesis.
Collapse
Affiliation(s)
- Saskia Scholz
- Immunology and Allergy Unit, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Faezzah Baharom
- Immunology and Allergy Unit, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Gregory Rankin
- Department of Public Health and Clinical Medicine, Division of Medicine, Umeå University, Umeå, Sweden
| | - Kimia T. Maleki
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Shawon Gupta
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Sindhu Vangeti
- Immunology and Allergy Unit, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Jamshid Pourazar
- Department of Public Health and Clinical Medicine, Division of Medicine, Umeå University, Umeå, Sweden
| | - Andrea Discacciati
- Unit of Biostatistics, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Jonas Höijer
- Unit of Biostatistics, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Matteo Bottai
- Unit of Biostatistics, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Niklas K. Björkström
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Johan Rasmuson
- Department of Clinical Microbiology, Infectious Diseases, Umeå University, Umeå, Sweden
| | - Magnus Evander
- Department of Clinical Microbiology, Virology, Umeå University, Umeå, Sweden
| | - Anders Blomberg
- Department of Public Health and Clinical Medicine, Division of Medicine, Umeå University, Umeå, Sweden
| | - Hans-Gustaf Ljunggren
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Jonas Klingström
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Clas Ahlm
- Department of Clinical Microbiology, Infectious Diseases, Umeå University, Umeå, Sweden
| | - Anna Smed-Sörensen
- Immunology and Allergy Unit, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
- * E-mail:
| |
Collapse
|
117
|
Agrawal A. Dendritic Cell-Airway Epithelial Cell Cross-Talk Changes with Age and Contributes to Chronic Lung Inflammatory Diseases in the Elderly. Int J Mol Sci 2017; 18:ijms18061206. [PMID: 28587289 PMCID: PMC5486029 DOI: 10.3390/ijms18061206] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 05/15/2017] [Accepted: 06/01/2017] [Indexed: 02/07/2023] Open
Abstract
Age-associated dysregulated immune and inflammatory responses are one of the major factors responsible for the prevalence of chronic respiratory diseases in the older population. Pulmonary dendritic cells (DCs) are present below the airway epithelial cells (AECs) and are critical in initiating effective immune responses to harmful pathogens while maintaining tolerance against harmless antigens. The interaction between DCs and AECs plays a crucial role in lung immunity at homeostasis and during infections. The functions of both DCs and AECs are impacted with age. The present report reviews how the potential crosstalk between pulmonary DCs and AECs is dysregulated in the elderly impairing the capacity to maintain tolerance at the respiratory surfaces, which results in severe and chronic respiratory inflammatory diseases. We also discuss how such DC-AECs crosstalk will provide insight into the mechanisms underlying the increased susceptibility of the elderly to pulmonary inflammatory diseases.
Collapse
Affiliation(s)
- Anshu Agrawal
- Division of Basic and Clinical Immunology, Department of Medicine, University of California Irvine, Irvine, CA 92697, USA.
| |
Collapse
|
118
|
COPD monocytes demonstrate impaired migratory ability. Respir Res 2017; 18:90. [PMID: 28494757 PMCID: PMC5425971 DOI: 10.1186/s12931-017-0569-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 05/01/2017] [Indexed: 12/20/2022] Open
Abstract
Background Increased lung macrophage numbers in COPD may arise from upregulation of blood monocyte recruitment into the lungs. CCR5 is a monocyte chemokine receptor regulated by interleukin-6 (IL-6); the concentration of CCR5 ligands are known to be elevated in COPD lungs. The objective of this study was to investigate mechanisms of monocyte recruitment to the lung in COPD, including the role of CCR5 signalling. Methods Ninety one COPD patients, 29 smokers (S) and 37 non-smokers (NS) underwent sputum induction, plasma sampling (to measure IL-6 and soluble IL-6 receptor [sIL-6R] by immunoassay), monocyte characterization (by flow cytometry) and monocyte isolation for cell migration and quantitative polymerase chain reaction studies. Lung tissue was used for immunohistochemistry. Results Plasma IL-6 and sIL-6R levels were increased in COPD. Greater proportions of COPD CD14++CD16+ monocytes expressed CCR5 compared to controls. Monocyte stimulation with IL-6 and sIL-6R increased CCR5 gene expression. COPD monocytes demonstrated impaired migration towards sputum supernatant compared to NS (% migration, 4.4 vs 11.5, respectively; p < 0.05). Pulmonary microvessels showed reduced monocyte recruitment (% marginated cells) in COPD compared to NS, (9.3% vs 83.1%, respectively). The proportion of replicating Ki67+ alveolar macrophages was reduced in COPD compared to NS. All alveolar macrophages from COPD and S expressed the anti-apoptosis marker BCL2; this protein was not present in non-smokers or COPD ex-smokers. Conclusion COPD monocytes show decreased migratory ability despite increased CCR5 expression. Increased COPD lung macrophage numbers may be due to delayed apoptosis. Electronic supplementary material The online version of this article (doi:10.1186/s12931-017-0569-y) contains supplementary material, which is available to authorized users.
Collapse
|
119
|
Lavin Y, Kobayashi S, Leader A, Amir EAD, Elefant N, Bigenwald C, Remark R, Sweeney R, Becker CD, Levine JH, Meinhof K, Chow A, Kim-Shulze S, Wolf A, Medaglia C, Li H, Rytlewski JA, Emerson RO, Solovyov A, Greenbaum BD, Sanders C, Vignali M, Beasley MB, Flores R, Gnjatic S, Pe'er D, Rahman A, Amit I, Merad M. Innate Immune Landscape in Early Lung Adenocarcinoma by Paired Single-Cell Analyses. Cell 2017; 169:750-765.e17. [PMID: 28475900 PMCID: PMC5737939 DOI: 10.1016/j.cell.2017.04.014] [Citation(s) in RCA: 900] [Impact Index Per Article: 112.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 02/26/2017] [Accepted: 04/11/2017] [Indexed: 12/15/2022]
Abstract
To guide the design of immunotherapy strategies for patients with early stage lung tumors, we developed a multiscale immune profiling strategy to map the immune landscape of early lung adenocarcinoma lesions to search for tumor-driven immune changes. Utilizing a barcoding method that allows a simultaneous single-cell analysis of the tumor, non-involved lung, and blood cells, we provide a detailed immune cell atlas of early lung tumors. We show that stage I lung adenocarcinoma lesions already harbor significantly altered T cell and NK cell compartments. Moreover, we identified changes in tumor-infiltrating myeloid cell (TIM) subsets that likely compromise anti-tumor T cell immunity. Paired single-cell analyses thus offer valuable knowledge of tumor-driven immune changes, providing a powerful tool for the rational design of immune therapies. VIDEO ABSTRACT.
Collapse
Affiliation(s)
- Yonit Lavin
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; The Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Soma Kobayashi
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; The Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Andrew Leader
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; The Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - El-Ad David Amir
- The Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Naama Elefant
- Department of Immunology, Weizmann Institute, Rehovot 76100, Israel
| | - Camille Bigenwald
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; The Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Romain Remark
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; The Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Robert Sweeney
- Department of Thoracic Surgery, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Christian D Becker
- Division of Pulmonology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jacob H Levine
- Computational and Systems Biology Program, Sloan Kettering Institute, New York, NY 10065, USA
| | - Klaus Meinhof
- Division of Pulmonology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Andrew Chow
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; The Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Seunghee Kim-Shulze
- The Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Andrea Wolf
- Department of Thoracic Surgery, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Chiara Medaglia
- Department of Immunology, Weizmann Institute, Rehovot 76100, Israel
| | - Hanjie Li
- Department of Immunology, Weizmann Institute, Rehovot 76100, Israel
| | | | | | - Alexander Solovyov
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Division of Hematology/Oncology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Benjamin D Greenbaum
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Division of Hematology/Oncology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | | | | | - Mary Beth Beasley
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Raja Flores
- Department of Thoracic Surgery, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Sacha Gnjatic
- The Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Division of Hematology/Oncology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Dana Pe'er
- Computational and Systems Biology Program, Sloan Kettering Institute, New York, NY 10065, USA
| | - Adeeb Rahman
- The Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Ido Amit
- Department of Immunology, Weizmann Institute, Rehovot 76100, Israel
| | - Miriam Merad
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; The Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
120
|
Baharom F, Rankin G, Blomberg A, Smed-Sörensen A. Human Lung Mononuclear Phagocytes in Health and Disease. Front Immunol 2017; 8:499. [PMID: 28507549 PMCID: PMC5410584 DOI: 10.3389/fimmu.2017.00499] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 04/11/2017] [Indexed: 12/17/2022] Open
Abstract
The lungs are vulnerable to attack by respiratory insults such as toxins, allergens, and pathogens, given their continuous exposure to the air we breathe. Our immune system has evolved to provide protection against an array of potential threats without causing collateral damage to the lung tissue. In order to swiftly detect invading pathogens, monocytes, macrophages, and dendritic cells (DCs)-together termed mononuclear phagocytes (MNPs)-line the respiratory tract with the key task of surveying the lung microenvironment in order to discriminate between harmless and harmful antigens and initiate immune responses when necessary. Each cell type excels at specific tasks: monocytes produce large amounts of cytokines, macrophages are highly phagocytic, whereas DCs excel at activating naïve T cells. Extensive studies in murine models have established a division of labor between the different populations of MNPs at steady state and during infection or inflammation. However, a translation of important findings in mice is only beginning to be explored in humans, given the challenge of working with rare cells in inaccessible human tissues. Important progress has been made in recent years on the phenotype and function of human lung MNPs. In addition to a substantial population of alveolar macrophages, three subsets of DCs have been identified in the human airways at steady state. More recently, monocyte-derived cells have also been described in healthy human lungs. Depending on the source of samples, such as lung tissue resections or bronchoalveolar lavage, the specific subsets of MNPs recovered may differ. This review provides an update on existing studies investigating human respiratory MNP populations during health and disease. Often, inflammatory MNPs are found to accumulate in the lungs of patients with pulmonary conditions. In respiratory infections or inflammatory diseases, this may contribute to disease severity, but in cancer patients this may improve clinical outcomes. By expanding on this knowledge, specific lung MNPs may be targeted or modulated in order to attain favorable responses that can improve preventive or treatment strategies against respiratory infections, lung cancer, or lung inflammatory diseases.
Collapse
Affiliation(s)
- Faezzah Baharom
- Immunology and Allergy Unit, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Gregory Rankin
- Department of Public Health and Clinical Medicine, Division of Medicine, Umeå University, Umeå, Sweden
| | - Anders Blomberg
- Department of Public Health and Clinical Medicine, Division of Medicine, Umeå University, Umeå, Sweden
| | - Anna Smed-Sörensen
- Immunology and Allergy Unit, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital Solna, Stockholm, Sweden
| |
Collapse
|
121
|
Gazdhar A, Blank F, Cesson V, Lovis A, Aubert JD, Lazor R, Spertini F, Wilson A, Hostettler K, Nicod LP, Obregon C. Human Bronchial Epithelial Cells Induce CD141/CD123/DC-SIGN/ FLT3 Monocytes That Promote Allogeneic Th17 Differentiation. Front Immunol 2017; 8:447. [PMID: 28487694 PMCID: PMC5403901 DOI: 10.3389/fimmu.2017.00447] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 03/31/2017] [Indexed: 12/28/2022] Open
Abstract
Little is known about monocyte differentiation in the lung mucosal environment and about how the epithelium shapes monocyte function. We studied the role of the soluble component of bronchial epithelial cells (BECs) obtained under basal culture conditions in innate and adaptive monocyte responses. Monocytes cultured in bronchial epithelial cell-conditioned media (BEC-CM) specifically upregulate CD141, CD123, and DC-SIGN surface levels and FLT3 expression, as well as the release of IL-1β, IL-6, and IL-10. BEC-conditioned monocytes stimulate naive T cells to produce IL-17 through IL-1β mechanism and also trigger IL-10 production by memory T cells. Furthermore, monocytes cultured in an inflammatory environment induced by the cytokines IL-6, IL-8, IL-1β, IL-15, TNF-α, and GM-CSF also upregulate CD123 and DC-SIGN expression. However, only inflammatory cytokines in the epithelial environment boost the expression of CD141. Interestingly, we identified a CD141/CD123/DC-SIGN triple positive population in the bronchoalveolar lavage fluid (BALF) from patients with different inflammatory conditions, demonstrating that this monocyte population exists in vivo. The frequency of this monocyte population was significantly increased in patients with sarcoidosis, suggesting a role in inflammatory mechanisms. Overall, these data highlight the specific role that the epithelium plays in shaping monocyte responses. Therefore, the unraveling of these mechanisms contributes to the understanding of the function that the epithelium may play in vivo.
Collapse
Affiliation(s)
- Amiq Gazdhar
- Department of Pulmonary Medicine, University Hospital Bern, Bern, Switzerland.,Department of Clinical Research, University of Bern, Bern, Switzerland
| | - Fabian Blank
- Department of Pulmonary Medicine, University Hospital Bern, Bern, Switzerland.,Department of Clinical Research, University of Bern, Bern, Switzerland
| | - Valerie Cesson
- Pneumology Division, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Alban Lovis
- Pneumology Division, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - John David Aubert
- Pneumology Division, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Romain Lazor
- Pneumology Division, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Francois Spertini
- Immunology and Allergy Division, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Anne Wilson
- Department of Fundamental Oncology, University of Lausanne, Epalinges, Switzerland
| | - Katrin Hostettler
- Clinics of Respiratory Medicine, Department of Biomedicine, University Hospital of Basel, Basel, Switzerland
| | - Laurent P Nicod
- Pneumology Division, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Carolina Obregon
- Pneumology Division, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| |
Collapse
|
122
|
|
123
|
Tatham KC, O'Dea KP, Romano R, Donaldson HE, Wakabayashi K, Patel BV, Thakuria L, Simon AR, Sarathchandra P, Marczin N, Takata M. Intravascular donor monocytes play a central role in lung transplant ischaemia-reperfusion injury. Thorax 2017; 73:350-360. [PMID: 28389600 PMCID: PMC5870457 DOI: 10.1136/thoraxjnl-2016-208977] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2016] [Revised: 02/28/2017] [Accepted: 03/10/2017] [Indexed: 12/22/2022]
Abstract
Rationale Primary graft dysfunction in lung transplant recipients derives from the initial, largely leukocyte-dependent, ischaemia-reperfusion injury. Intravascular lung-marginated monocytes have been shown to play key roles in experimental acute lung injury, but their contribution to lung ischaemia-reperfusion injury post transplantation is unknown. Objective To define the role of donor intravascular monocytes in lung transplant-related acute lung injury and primary graft dysfunction. Methods Isolated perfused C57BL/6 murine lungs were subjected to warm ischaemia (2 hours) and reperfusion (2 hours) under normoxic conditions. Monocyte retention, activation phenotype and the effects of their depletion by intravenous clodronate-liposome treatment on lung inflammation and injury were determined. In human donor lung transplant samples, the presence and activation phenotype of monocytic cells (low side scatter, 27E10+, CD14+, HLA-DR+, CCR2+) were evaluated by flow cytometry and compared with post-implantation lung function. Results In mouse lungs following ischaemia-reperfusion, substantial numbers of lung-marginated monocytes remained within the pulmonary microvasculature, with reduced L-selectin and increased CD86 expression indicating their activation. Monocyte depletion resulted in reductions in lung wet:dry ratios, bronchoalveolar lavage fluid protein, and perfusate levels of RAGE, MIP-2 and KC, while monocyte repletion resulted in a partial restoration of the injury. In human lungs, correlations were observed between pre-implantation donor monocyte numbers/their CD86 and TREM-1 expression and post-implantation lung dysfunction at 48 and 72 hours. Conclusions These results indicate that lung-marginated intravascular monocytes are retained as a ‘passenger’ leukocyte population during lung transplantation, and play a key role in the development of transplant-associated ischaemia-reperfusion injury.
Collapse
Affiliation(s)
- Kate Colette Tatham
- Section of Anaesthetics, Pain Medicine and Intensive Care, Faculty of Medicine, Imperial College London, Chelsea and Westminster Hospital, London, UK
| | - Kieran Patrick O'Dea
- Section of Anaesthetics, Pain Medicine and Intensive Care, Faculty of Medicine, Imperial College London, Chelsea and Westminster Hospital, London, UK
| | - Rosalba Romano
- Section of Anaesthetics, Pain Medicine and Intensive Care, Faculty of Medicine, Imperial College London, Chelsea and Westminster Hospital, London, UK.,Departments of Anaesthesia and Cardiothoracic Transplantation, Harefield Hospital, Royal Brompton and Harefield NHS Foundation Trust, Harefield, Middlesex, UK
| | - Hannah Elizabeth Donaldson
- Section of Anaesthetics, Pain Medicine and Intensive Care, Faculty of Medicine, Imperial College London, Chelsea and Westminster Hospital, London, UK
| | - Kenji Wakabayashi
- Section of Anaesthetics, Pain Medicine and Intensive Care, Faculty of Medicine, Imperial College London, Chelsea and Westminster Hospital, London, UK
| | - Brijesh Vipin Patel
- Section of Anaesthetics, Pain Medicine and Intensive Care, Faculty of Medicine, Imperial College London, Chelsea and Westminster Hospital, London, UK
| | - Louit Thakuria
- Departments of Anaesthesia and Cardiothoracic Transplantation, Harefield Hospital, Royal Brompton and Harefield NHS Foundation Trust, Harefield, Middlesex, UK
| | - Andre Rudiger Simon
- Departments of Anaesthesia and Cardiothoracic Transplantation, Harefield Hospital, Royal Brompton and Harefield NHS Foundation Trust, Harefield, Middlesex, UK
| | - Padmini Sarathchandra
- Faculty of Medicine, National Heart & Lung Institute, Imperial College, Heart Science Centre, Harefield Hospital, Harefield, Middlesex, UK
| | | | - Nandor Marczin
- Section of Anaesthetics, Pain Medicine and Intensive Care, Faculty of Medicine, Imperial College London, Chelsea and Westminster Hospital, London, UK.,Departments of Anaesthesia and Cardiothoracic Transplantation, Harefield Hospital, Royal Brompton and Harefield NHS Foundation Trust, Harefield, Middlesex, UK
| | - Masao Takata
- Section of Anaesthetics, Pain Medicine and Intensive Care, Faculty of Medicine, Imperial College London, Chelsea and Westminster Hospital, London, UK
| |
Collapse
|
124
|
Bazzan E, Turato G, Tinè M, Radu CM, Balestro E, Rigobello C, Biondini D, Schiavon M, Lunardi F, Baraldo S, Rea F, Simioni P, Calabrese F, Saetta M, Cosio MG. Dual polarization of human alveolar macrophages progressively increases with smoking and COPD severity. Respir Res 2017; 18:40. [PMID: 28231829 PMCID: PMC5324331 DOI: 10.1186/s12931-017-0522-0] [Citation(s) in RCA: 113] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 02/14/2017] [Indexed: 12/17/2022] Open
Abstract
Background It is known that tissue macrophages derive not only from blood monocytes but also from yolk sac or fetal liver, and the tissue of residence guides their function. When isolated, they lose tissue specific signatures, hence studies of human macrophages should be ideally done directly in the tissue. The aim of this study was to investigate directly in human lung tissue the polarization of alveolar macrophage (AM), classic (M1) or alternative (M2), in health and disease, using COPD as a model. Methods Surgical lungs from 53 subjects were studied: 36 smokers whose FEV1 varied from normal to severe COPD, 11 non-smokers and 6 normal donors. iNOS and CD206 immunohistochemistry was used to quantify the percentage of AM polarized as M1 or M2 in lung sections. Results and Discussion The percentage of M1 and M2 increased progressively with smoking and COPD severity, from 26% to 84% for M1 and from 7% to 78% for M2. In donors 74% of AM were negative for M1 and 93% for M2. Confocal microscopy showed co-localization of M1 and M2 in the same AM in severe COPD. Conclusion In normal lungs alveolar macrophages were mostly non-polarized. With smoking and COPD severity, M1 and M2 polarization increased significantly and so did the co-expression of M1 and M2 in the same alveolar macrophage. Electronic supplementary material The online version of this article (doi:10.1186/s12931-017-0522-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Erica Bazzan
- Department of Cardiac, Thoracic, and Vascular Sciences, University of Padova, Padova, Italy
| | - Graziella Turato
- Department of Cardiac, Thoracic, and Vascular Sciences, University of Padova, Padova, Italy
| | - Mariaenrica Tinè
- Department of Cardiac, Thoracic, and Vascular Sciences, University of Padova, Padova, Italy
| | - Claudia M Radu
- Department of Medicine, University of Padova, Padova, Italy
| | - Elisabetta Balestro
- Department of Cardiac, Thoracic, and Vascular Sciences, University of Padova, Padova, Italy
| | - Chiara Rigobello
- Department of Cardiac, Thoracic, and Vascular Sciences, University of Padova, Padova, Italy
| | - Davide Biondini
- Department of Cardiac, Thoracic, and Vascular Sciences, University of Padova, Padova, Italy
| | - Marco Schiavon
- Department of Cardiac, Thoracic, and Vascular Sciences, University of Padova, Padova, Italy
| | - Francesca Lunardi
- Department of Cardiac, Thoracic, and Vascular Sciences, University of Padova, Padova, Italy
| | - Simonetta Baraldo
- Department of Cardiac, Thoracic, and Vascular Sciences, University of Padova, Padova, Italy
| | - Federico Rea
- Department of Cardiac, Thoracic, and Vascular Sciences, University of Padova, Padova, Italy
| | - Paolo Simioni
- Department of Medicine, University of Padova, Padova, Italy
| | - Fiorella Calabrese
- Department of Cardiac, Thoracic, and Vascular Sciences, University of Padova, Padova, Italy
| | - Marina Saetta
- Department of Cardiac, Thoracic, and Vascular Sciences, University of Padova, Padova, Italy.
| | - Manuel G Cosio
- Department of Cardiac, Thoracic, and Vascular Sciences, University of Padova, Padova, Italy.,Respiratory Division, Meakins-Christie Laboratories, McGill University, Montreal, Canada
| |
Collapse
|
125
|
Patel VI, Booth JL, Duggan ES, Cate S, White VL, Hutchings D, Kovats S, Burian DM, Dozmorov M, Metcalf JP. Transcriptional Classification and Functional Characterization of Human Airway Macrophage and Dendritic Cell Subsets. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2017; 198:1183-1201. [PMID: 28031342 PMCID: PMC5262539 DOI: 10.4049/jimmunol.1600777] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 11/28/2016] [Indexed: 12/20/2022]
Abstract
The respiratory system is a complex network of many cell types, including subsets of macrophages and dendritic cells that work together to maintain steady-state respiration. Owing to limitations in acquiring cells from healthy human lung, these subsets remain poorly characterized transcriptionally and phenotypically. We set out to systematically identify these subsets in human airways by developing a schema of isolating large numbers of cells by whole-lung bronchoalveolar lavage. Six subsets of phagocytic APC (HLA-DR+) were consistently observed. Aside from alveolar macrophages, subsets of Langerin+, BDCA1-CD14+, BDCA1+CD14+, BDCA1+CD14-, and BDCA1-CD14- cells were identified. These subsets varied in their ability to internalize Escherichia coli, Staphylococcus aureus, and Bacillus anthracis particles. All subsets were more efficient at internalizing S. aureus and B. anthracis compared with E. coli Alveolar macrophages and CD14+ cells were overall more efficient at particle internalization compared with the four other populations. Subsets were further separated into two groups based on their inherent capacities to upregulate surface CD83, CD86, and CCR7 expression levels. Whole-genome transcriptional profiling revealed a clade of "true dendritic cells" consisting of Langerin+, BDCA1+CD14+, and BDCA1+CD14- cells. The dendritic cell clade was distinct from a macrophage/monocyte clade, as supported by higher mRNA expression levels of several dendritic cell-associated genes, including CD1, FLT3, CX3CR1, and CCR6 Each clade, and each member of both clades, was discerned by specific upregulated genes, which can serve as markers for future studies in healthy and diseased states.
Collapse
Affiliation(s)
- Vineet I Patel
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104
- Pulmonary and Critical Care Division, Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104
| | - J Leland Booth
- Pulmonary and Critical Care Division, Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104
| | - Elizabeth S Duggan
- Pulmonary and Critical Care Division, Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104
| | - Steven Cate
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104
| | - Vicky L White
- Office of Aviation Medicine, Federal Aviation Administration, Oklahoma City, OK 73169
| | | | - Susan Kovats
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104; and
| | - Dennis M Burian
- Office of Aviation Medicine, Federal Aviation Administration, Oklahoma City, OK 73169
| | - Mikhail Dozmorov
- Department of Biostatistics, Virginia Commonwealth University, Richmond, VA 23298
| | - Jordan P Metcalf
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104;
- Pulmonary and Critical Care Division, Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104
| |
Collapse
|
126
|
Abstract
In the healthy lung, macrophages maintain homeostasis by clearing inhaled particles, bacteria, and removing apoptotic cells from the local pulmonary environment. However, in respiratory diseases including chronic obstructive pulmonary disease (COPD), asthma, and cystic fibrosis, macrophages appear to be dysfunctional and may contribute to disease pathogenesis. In COPD, phagocytosis of bacterial species and apoptotic cells by both alveolar macrophages and monocyte-derived macrophages is significantly reduced, leading to colonization of the lung with pathogenic bacteria. COPD macrophages also release high levels of pro-inflammatory cytokines and chemokines, including CXCL8, TGFβ, and CCL2, driving recruitment of other inflammatory cells including neutrophils and monocytes to the lungs and promoting disease progression.In asthma, defective phagocytosis and efferocytosis have also been reported, and macrophages appear to have altered cell surface receptor expression; however, it is as yet unclear how this contributes to disease progression but may be important in driving Th2-mediated inflammation. In cystic fibrosis, macrophages also display defective phagocytosis, and reduced bacterial killing, which may be driven by the pro-inflammatory environment present in the lungs of these patients.The mechanisms behind defective macrophage function in lung diseases are not currently understood, but potential mechanisms include alterations in phagocytic receptor expression levels, oxidative stress, but also the possibility that specific diseases are associated with a specific, altered, macrophage phenotype that displays reduced function. Identification of the mechanisms responsible may present novel therapeutic opportunities for treatment.
Collapse
Affiliation(s)
- Kylie B R Belchamber
- Department of Airway Disease, National Heart and Lung Institute, Imperial College London, London, SW3 6LY, UK
| | - Louise E Donnelly
- Department of Airway Disease, National Heart and Lung Institute, Imperial College London, London, SW3 6LY, UK.
| |
Collapse
|
127
|
Lambrecht BN, Persson EK, Hammad H. Myeloid Cells in Asthma. Microbiol Spectr 2017; 5:10.1128/microbiolspec.mchd-0053-2016. [PMID: 28102118 PMCID: PMC11687443 DOI: 10.1128/microbiolspec.mchd-0053-2016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Indexed: 12/24/2022] Open
Abstract
Asthma is a heterogeneous chronic inflammatory disorder of the airways, and not surprisingly, many myeloid cells play a crucial role in pathogenesis. Antigen-presenting dendritic cells are the first to recognize the allergens, pollutants, and viruses that are implicated in asthma pathogenesis, and subsequently initiate the adaptive immune response by migrating to lymph nodes. Eosinophils are the hallmark of type 2 inflammation, releasing toxic compounds in the airways and contributing to airway remodeling. Mast cells and basophils control both the early- and late-phase allergic response and contribute to alterations in smooth muscle reactivity. Finally, relatively little is known about neutrophils and macrophages in this disease. Although many of these myeloid cells respond well to treatment with inhaled steroids, there is now an increasing armamentarium of targeted biologicals that can specifically eliminate only one myeloid cell population, like eosinophils. It is only with those new tools that we will be able to fully understand the role of myeloid cells in chronic asthma in humans.
Collapse
Affiliation(s)
- Bart N Lambrecht
- VIB Center for Inflammation Research, Ghent University, 9000 Gent, Belgium
- Department of Pulmonary Medicine, Ghent University Hospital, 9000 Gent, Belgium
| | - Emma K Persson
- VIB Center for Inflammation Research, Ghent University, 9000 Gent, Belgium
| | - Hamida Hammad
- VIB Center for Inflammation Research, Ghent University, 9000 Gent, Belgium
- Department of Pulmonary Medicine, Ghent University Hospital, 9000 Gent, Belgium
| |
Collapse
|
128
|
Duan M, Hibbs ML, Chen W. The contributions of lung macrophage and monocyte heterogeneity to influenza pathogenesis. Immunol Cell Biol 2016; 95:225-235. [DOI: 10.1038/icb.2016.97] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 09/15/2016] [Accepted: 09/20/2016] [Indexed: 12/17/2022]
Affiliation(s)
- Mubing Duan
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University Melbourne Victoria Australia
| | - Margaret L Hibbs
- Department of Immunology and Pathology, Monash University, Alfred Medical Research and Education Precinct, 89 Commercial Rd Melbourne Victoria Australia
| | - Weisan Chen
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University Melbourne Victoria Australia
| |
Collapse
|
129
|
Upham JW, Xi Y. Dendritic Cells in Human Lung Disease: Recent Advances. Chest 2016; 151:668-673. [PMID: 27729261 DOI: 10.1016/j.chest.2016.09.030] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 08/18/2016] [Accepted: 09/29/2016] [Indexed: 11/17/2022] Open
Abstract
Dendritic cells (DCs) are potent antigen-presenting cells. Because of their particular ability to initiate and regulate cell mediated and humoral immune responses, there is considerable interest in the role that DCs play in the pathogenesis of various lung diseases, especially those in which there is an excessive immune response to specific antigens (as in asthma) or a deficient immune response (as in lung cancer). A number of DC subpopulations have been defined in the lungs, including myeloid or conventional DCs that initiate T-cell immunity and antibody production and plasmacytoid DCs that have an important role in antiviral immunity and immune tolerance. Although an extensive body of literature has documented the role that DCs play in experimental models of lung disease, this review will highlight recent advances in our understanding of DC function in human disease, including asthma, COPD, antimicrobial immunity, and lung cancer. The future is likely to see new approaches whereby antigens and small molecules are targeted to receptors on particular DC subpopulations in order to modify pulmonary immune responses.
Collapse
Affiliation(s)
- John W Upham
- School of Medicine, The University of Queensland, Translational Research Institute, Woolloongabba, Brisbane, Australia; Department of Respiratory Medicine, Princess Alexandra Hospital, Brisbane, QLD, Australia.
| | - Yang Xi
- School of Medicine, The University of Queensland, Translational Research Institute, Woolloongabba, Brisbane, Australia
| |
Collapse
|
130
|
Janssen WJ, Stefanski AL, Bochner BS, Evans CM. Control of lung defence by mucins and macrophages: ancient defence mechanisms with modern functions. Eur Respir J 2016; 48:1201-1214. [PMID: 27587549 DOI: 10.1183/13993003.00120-2015] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2016] [Accepted: 06/12/2016] [Indexed: 12/14/2022]
Abstract
Owing to the need to balance the requirement for efficient respiration in the face of tremendous levels of exposure to endogenous and environmental challenges, it is crucial for the lungs to maintain a sustainable defence that minimises damage caused by this exposure and the detrimental effects of inflammation to delicate gas exchange surfaces. Accordingly, epithelial and macrophage defences constitute essential first and second lines of protection that prevent the accumulation of potentially harmful agents in the lungs, and under homeostatic conditions do so effectively without inducing inflammation. Though epithelial and macrophage-mediated defences are seemingly distinct, recent data show that they are linked through their shared reliance on airway mucins, in particular the polymeric mucin MUC5B. This review highlights our understanding of novel mechanisms that link mucus and macrophage defences. We discuss the roles of phagocytosis and the effects of factors contained within mucus on phagocytosis, as well as newly identified roles for mucin glycoproteins in the direct regulation of leukocyte functions. The emergence of this nascent field of glycoimmunobiology sets forth a new paradigm for considering how homeostasis is maintained under healthy conditions and how it is restored in disease.
Collapse
Affiliation(s)
- William J Janssen
- Dept of Medicine, National Jewish Health, Denver, CO, USA Dept of Medicine, University of Colorado School of Medicine, Aurora, CO, USA
| | | | - Bruce S Bochner
- Dept of Medicine, Division of Allergy-Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Christopher M Evans
- Dept of Medicine, University of Colorado School of Medicine, Aurora, CO, USA
| |
Collapse
|
131
|
Staples KJ. Lung macrophages: old hands required rather than new blood? Thorax 2016; 71:973-974. [PMID: 27531530 DOI: 10.1136/thoraxjnl-2016-208992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Karl J Staples
- Department of Clinical and Experimental Sciences, University of Southampton Faculty of Medicine, Sir Henry Wellcome Laboratories, Southampton General Hospital, Southampton, UK Wessex Investigational Sciences Hub, University of Southampton Faculty of Medicine, Southampton General Hospital, Southampton, UK
| |
Collapse
|
132
|
Abstract
Dendritic cells (DCs) lie at the heart of the innate immune system, specialised at recognising danger signals in many forms including foreign material, infection or tissue damage and initiating powerful adaptive immune and inflammatory responses. In barrier sites such as the lung, the instrumental role that DCs play at the interface between the environment and the host places them in a pivotal position in determining the severity of inflammatory disease. The past few years has seen a significant increase in our fundamental understanding of the subsets of DCs involved in pulmonary immunity, as well as the mechanisms by which they are activated and which they may use to coordinate downstream inflammation and pathology. In this review, we will summarise current understanding of the multi-faceted role that DCs play in the induction, maintenance and regulation of lung immunopathology, with an emphasis on allergic pulmonary disease.
Collapse
|
133
|
Larson SR, Atif SM, Gibbings SL, Thomas SM, Prabagar MG, Danhorn T, Leach SM, Henson PM, Jakubzick CV. Ly6C(+) monocyte efferocytosis and cross-presentation of cell-associated antigens. Cell Death Differ 2016; 23:997-1003. [PMID: 26990659 PMCID: PMC4987733 DOI: 10.1038/cdd.2016.24] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 02/08/2016] [Accepted: 02/09/2016] [Indexed: 01/05/2023] Open
Abstract
Recently it was shown that circulating Ly6C(+) monocytes traffic from tissue to the draining lymph nodes (LNs) with minimal alteration in their overall phenotype. Furthermore, in the steady state, Ly6C(+) monocytes are as abundant as classical dendritic cells (DCs) within the draining LNs, and even more abundant during inflammation. However, little is known about the functional roles of constitutively trafficking Ly6C(+) monocytes. In this study we investigated whether Ly6C(+) monocytes can efferocytose (acquire dying cells) and cross-present cell-associated antigen, a functional property particularly attributed to Batf3(+) DCs. We demonstrated that Ly6C(+) monocytes intrinsically efferocytose and cross-present cell-associated antigen to CD8(+) T cells. In addition, efferocytosis was enhanced upon direct activation of the Ly6C(+) monocytes through its corresponding TLRs, TLR4 and TLR7. However, only ligation of TLR7, and not TLR4, enhanced cross-presentation by Ly6C(+) monocytes. Overall, this study outlines two functional roles, among others, that Ly6C(+) monocytes have during an adaptive immune response.
Collapse
Affiliation(s)
- S R Larson
- Department of Pediatrics, National Jewish Health, Denver, CO, USA
- Department of Immunology and Microbiology, CU Anschutz Medical Campus, Aurora, CO, USA
| | - S M Atif
- Department of Pediatrics, National Jewish Health, Denver, CO, USA
| | - S L Gibbings
- Department of Pediatrics, National Jewish Health, Denver, CO, USA
| | - S M Thomas
- Department of Pediatrics, National Jewish Health, Denver, CO, USA
| | - M G Prabagar
- Department of Pediatrics, National Jewish Health, Denver, CO, USA
| | - T Danhorn
- Integrated Center for Genes, Environment and Health, National Jewish Health, Denver, CO, USA
| | - S M Leach
- Integrated Center for Genes, Environment and Health, National Jewish Health, Denver, CO, USA
| | - P M Henson
- Department of Pediatrics, National Jewish Health, Denver, CO, USA
- Department of Immunology and Microbiology, CU Anschutz Medical Campus, Aurora, CO, USA
| | - C V Jakubzick
- Department of Pediatrics, National Jewish Health, Denver, CO, USA
- Department of Immunology and Microbiology, CU Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
134
|
McCubbrey AL, Barthel L, Mould KJ, Mohning MP, Redente EF, Janssen WJ. Selective and inducible targeting of CD11b+ mononuclear phagocytes in the murine lung with hCD68-rtTA transgenic systems. Am J Physiol Lung Cell Mol Physiol 2016; 311:L87-L100. [PMID: 27190063 PMCID: PMC4967193 DOI: 10.1152/ajplung.00141.2016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 05/17/2016] [Indexed: 01/03/2023] Open
Abstract
During homeostasis two distinct macrophage (Mø) populations inhabit the lungs: tissue Mø (often called interstitial Mø) and resident alveolar Mø (resAMø). During acute lung inflammation, monocytes from the circulation migrate to areas of injury where they mature into a third Mø population: recruited Mø. Resident AMø uniquely express low levels of CD11b and high levels of CD11c. In comparison, recruited Mø and tissue Mø express high levels of CD11b and low levels of CD11c. It is likely that these three Mø subpopulations play distinct roles in injury and disease states; however, tools with which to individually target or track these populations are lacking. Here we demonstrate the utility of an hCD68-rtTA transgenic system for specific, robust, and inducible targeting of CD11b(+) recruited Mø and tissue Mø in the murine lung with negligible activation in resAMø. Using hCD68rtTA-GFP reporter mice, we show both during homeostasis and inflammation that administration of doxycycline induces tet-On reporter expression in recruited Mø and tissue Mø but not in resident AMø. We further demonstrate how hCD68-rtTA can be effectively combined with tet-On Cre to target these same recMø and tissue Mø. Accordingly, the hCD68-rtTA system is a powerful new tool that can be used for lineage tracing, fate mapping, and gene deletion in a variety of murine models, thereby enabling sophisticated investigation of the unique role of these CD11b(+) Mø during lung heath and disease.
Collapse
Affiliation(s)
| | - Lea Barthel
- Department of Medicine, National Jewish Health, Denver, Colorado
| | - Kara J Mould
- Department of Medicine, National Jewish Health, Denver, Colorado; Department of Medicine, University of Colorado Denver, Aurora, Colorado; and
| | - Michael P Mohning
- Department of Medicine, National Jewish Health, Denver, Colorado; Department of Medicine, University of Colorado Denver, Aurora, Colorado; and
| | - Elizabeth F Redente
- Department of Pediatrics, National Jewish Health, Denver, Colorado; Department of Research, Denver Veterans Affairs Medical Center, Denver, Colorado
| | - William J Janssen
- Department of Medicine, National Jewish Health, Denver, Colorado; Department of Medicine, University of Colorado Denver, Aurora, Colorado; and
| |
Collapse
|
135
|
Baharom F, Thomas S, Rankin G, Lepzien R, Pourazar J, Behndig AF, Ahlm C, Blomberg A, Smed-Sörensen A. Dendritic Cells and Monocytes with Distinct Inflammatory Responses Reside in Lung Mucosa of Healthy Humans. THE JOURNAL OF IMMUNOLOGY 2016; 196:4498-509. [PMID: 27183618 DOI: 10.4049/jimmunol.1600071] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 04/04/2016] [Indexed: 12/24/2022]
Abstract
Every breath we take contains potentially harmful pathogens or allergens. Dendritic cells (DCs), monocytes, and macrophages are essential in maintaining a delicate balance of initiating immunity without causing collateral damage to the lungs because of an exaggerated inflammatory response. To document the diversity of lung mononuclear phagocytes at steady-state, we performed bronchoscopies on 20 healthy subjects, sampling the proximal and distal airways (bronchial wash and bronchoalveolar lavage, respectively), as well as mucosal tissue (endobronchial biopsies). In addition to a substantial population of alveolar macrophages, we identified subpopulations of monocytes, myeloid DCs (MDCs), and plasmacytoid DCs in the lung mucosa. Intermediate monocytes and MDCs were highly frequent in the airways compared with peripheral blood. Strikingly, the density of mononuclear phagocytes increased upon descending the airways. Monocytes from blood and airways produced 10-fold more proinflammatory cytokines than MDCs upon ex vivo stimulation. However, airway monocytes were less inflammatory than blood monocytes, suggesting a more tolerant nature. The findings of this study establish how to identify human lung mononuclear phagocytes and how they function in normal conditions, so that dysregulations in patients with respiratory diseases can be detected to elucidate their contribution to immunity or pathogenesis.
Collapse
Affiliation(s)
- Faezzah Baharom
- Immunology and Allergy Unit, Department of Medicine, Solna, Karolinska Institutet, 171 76 Stockholm, Sweden
| | - Saskia Thomas
- Immunology and Allergy Unit, Department of Medicine, Solna, Karolinska Institutet, 171 76 Stockholm, Sweden
| | - Gregory Rankin
- Division of Medicine, Department of Public Health and Clinical Medicine, Umeå University, 901 85 Umeå, Sweden; and
| | - Rico Lepzien
- Immunology and Allergy Unit, Department of Medicine, Solna, Karolinska Institutet, 171 76 Stockholm, Sweden
| | - Jamshid Pourazar
- Division of Medicine, Department of Public Health and Clinical Medicine, Umeå University, 901 85 Umeå, Sweden; and
| | - Annelie F Behndig
- Division of Medicine, Department of Public Health and Clinical Medicine, Umeå University, 901 85 Umeå, Sweden; and
| | - Clas Ahlm
- Department of Clinical Microbiology, Infectious Diseases, Umeå University, 901 85 Umeå, Sweden
| | - Anders Blomberg
- Division of Medicine, Department of Public Health and Clinical Medicine, Umeå University, 901 85 Umeå, Sweden; and
| | - Anna Smed-Sörensen
- Immunology and Allergy Unit, Department of Medicine, Solna, Karolinska Institutet, 171 76 Stockholm, Sweden;
| |
Collapse
|
136
|
Singh D, Donnelly LE. Now We Know Who You Are: A Clear Description of Mononuclear Phagocyte Subsets in the Human Lung. Am J Respir Crit Care Med 2016; 193:594-6. [DOI: 10.1164/rccm.201511-2212ed] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|