101
|
Stivala S, Gobbato S, Infanti L, Reiner MF, Bonetti N, Meyer SC, Camici GG, Lüscher TF, Buser A, Beer JH. Amotosalen/ultraviolet A pathogen inactivation technology reduces platelet activatability, induces apoptosis and accelerates clearance. Haematologica 2017; 102:1650-1660. [PMID: 28729303 PMCID: PMC5622849 DOI: 10.3324/haematol.2017.164137] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 07/13/2017] [Indexed: 01/03/2023] Open
Abstract
Amotosalen and ultraviolet A (UVA) photochemical-based pathogen reduction using the Intercept™ Blood System (IBS) is an effective and established technology for platelet and plasma components, which is adopted in more than 40 countries worldwide. Several reports point towards a reduced platelet function after Amotosalen/UVA exposure. The study herein was undertaken to identify the mechanisms responsible for the early impairment of platelet function by the IBS. Twenty-five platelet apheresis units were collected from healthy volunteers following standard procedures and split into 2 components, 1 untreated and the other treated with Amotosalen/UVA. Platelet impedance aggregation in response to collagen and thrombin was reduced by 80% and 60%, respectively, in IBS-treated units at day 1 of storage. Glycoprotein Ib (GpIb) levels were significantly lower in IBS samples and soluble glycocalicin correspondingly augmented; furthermore, GpIbα was significantly more desialylated as shown by Erythrina Cristagalli Lectin (ECL) binding. The pro-apoptotic Bak protein was significantly increased, as well as the MAPK p38 phosphorylation and caspase-3 cleavage. Stored IBS-treated platelets injected into immune-deficient nonobese diabetic/severe combined immunodeficiency (NOD/SCID) mice showed a faster clearance. We conclude that the IBS induces platelet p38 activation, GpIb shedding and platelet apoptosis through a caspase-dependent mechanism, thus reducing platelet function and survival. These mechanisms are of relevance in transfusion medicine, where the IBS increases patient safety at the expense of platelet function and survival.
Collapse
Affiliation(s)
- Simona Stivala
- Laboratory for Platelet Research, Center for Molecular Cardiology, University of Zurich, Switzerland.,Department of Internal Medicine, Cantonal Hospital Baden, Switzerland
| | - Sara Gobbato
- Laboratory for Platelet Research, Center for Molecular Cardiology, University of Zurich, Switzerland.,Department of Internal Medicine, Cantonal Hospital Baden, Switzerland
| | - Laura Infanti
- Regional Blood Transfusion Service of the Swiss Red Cross, Basel, Switzerland
| | - Martin F Reiner
- Laboratory for Platelet Research, Center for Molecular Cardiology, University of Zurich, Switzerland.,Department of Internal Medicine, Cantonal Hospital Baden, Switzerland
| | - Nicole Bonetti
- Laboratory for Platelet Research, Center for Molecular Cardiology, University of Zurich, Switzerland.,Department of Internal Medicine, Cantonal Hospital Baden, Switzerland
| | - Sara C Meyer
- Division of Hematology and Department of Biomedicine, University Hospital Basel, Switzerland
| | | | - Thomas F Lüscher
- Department of Cardiology, University Heart Center, University Hospital Zurich, Switzerland
| | - Andreas Buser
- Regional Blood Transfusion Service of the Swiss Red Cross, Basel, Switzerland
| | - Jürg H Beer
- Laboratory for Platelet Research, Center for Molecular Cardiology, University of Zurich, Switzerland .,Department of Internal Medicine, Cantonal Hospital Baden, Switzerland
| |
Collapse
|
102
|
Sialylation on O-glycans protects platelets from clearance by liver Kupffer cells. Proc Natl Acad Sci U S A 2017; 114:8360-8365. [PMID: 28716912 DOI: 10.1073/pnas.1707662114] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Most platelet membrane proteins are modified by mucin-type core 1-derived glycans (O-glycans). However, the biological importance of O-glycans in platelet clearance is unclear. Here, we generated mice with a hematopoietic cell-specific loss of O-glycans (HC C1galt1-/- ). These mice lack O-glycans on platelets and exhibit reduced peripheral platelet numbers. Platelets from HC C1galt1-/- mice show reduced levels of α-2,3-linked sialic acids and increased accumulation in the liver relative to wild-type platelets. The preferential accumulation of HC C1galt1-/- platelets in the liver was reduced in mice lacking the hepatic asialoglycoprotein receptor [Ashwell-Morell receptor (AMR)]. However, we found that Kupffer cells are the primary cells phagocytosing HC C1galt1-/- platelets in the liver. Our results demonstrate that hepatic AMR promotes preferential adherence to and phagocytosis of desialylated and/or HC C1galt1-/- platelets by the Kupffer cell through its C-type lectin receptor CLEC4F. These findings provide insights into an essential role for core 1 O-glycosylation of platelets in their clearance in the liver.
Collapse
|
103
|
Lambert MP, Gernsheimer TB. Clinical updates in adult immune thrombocytopenia. Blood 2017; 129:2829-2835. [PMID: 28416506 PMCID: PMC5813736 DOI: 10.1182/blood-2017-03-754119] [Citation(s) in RCA: 274] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 04/10/2017] [Indexed: 12/25/2022] Open
Abstract
Immune thrombocytopenia (ITP) occurs in 2 to 4/100 000 adults and results in variable bleeding symptoms and thrombocytopenia. In the last decade, changes in our understanding of the pathophysiology of the disorder have led to the publication of new guidelines for the diagnosis and management of ITP and standards for terminology. Current evidence supports alternatives to splenectomy for second-line management of patients with persistently low platelet counts and bleeding. Long-term follow-up data suggest both efficacy and safety, in particular, for the thrombopoietin receptor agonists and the occurrence of late remissions. Follow-up of patients who have undergone splenectomy for ITP reveals significant potential risks that should be discussed with patients and may influence clinician and patient choice of second-line therapy. Novel therapeutics are in development to address ongoing treatment gaps.
Collapse
MESH Headings
- Adult
- Female
- Hemorrhage/blood
- Hemorrhage/diagnosis
- Hemorrhage/physiopathology
- Hemorrhage/therapy
- Humans
- Male
- Platelet Count
- Practice Guidelines as Topic
- Purpura, Thrombocytopenic, Idiopathic/blood
- Purpura, Thrombocytopenic, Idiopathic/diagnosis
- Purpura, Thrombocytopenic, Idiopathic/physiopathology
- Purpura, Thrombocytopenic, Idiopathic/therapy
- Receptors, Thrombopoietin/agonists
- Receptors, Thrombopoietin/metabolism
- Splenectomy
Collapse
Affiliation(s)
- Michele P Lambert
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA; and
| | - Terry B Gernsheimer
- Division of Hematology, University of Washington School of Medicine, Seattle, WA
| |
Collapse
|
104
|
Li MF, Li XL, Fan KL, Yu YY, Gong J, Geng SY, Liang YF, Huang L, Qiu JH, Tian XH, Wang WT, Zhang XL, Yu QX, Zhang YF, Lin P, Wang LN, Li X, Hou M, Liu LY, Peng J. Platelet desialylation is a novel mechanism and a therapeutic target in thrombocytopenia during sepsis: an open-label, multicenter, randomized controlled trial. J Hematol Oncol 2017; 10:104. [PMID: 28494777 PMCID: PMC5426054 DOI: 10.1186/s13045-017-0476-1] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 05/02/2017] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Studies in murine models suggested that platelet desialylation was an important mechanism of thrombocytopenia during sepsis. METHODS First, we performed a prospective, multicenter, observational study that enrolled septic patients with or without thrombocytopenia to determine the association between platelet desialylation and thrombocytopenia in patients with sepsis, severe sepsis, and septic shock. Gender- and age-matched healthy adults were selected as normal controls in analysis of the platelet desialylation levels (study I). Next, we conducted an open-label randomized controlled trial (RCT) in which the patients who had severe sepsis with thrombocytopenia (platelet counts ≤50 × 109/L) were randomly assigned to receive antimicrobial therapy alone (control group) or antimicrobial therapy plus oseltamivir (oseltamivir group) in a 1:1 ratio (study II). The primary outcomes were platelet desialylation level at study entry, overall platelet response rate within 14 days post-randomization, and all-cause mortality within 28 days post-randomization. Secondary outcomes included platelet recovery time, the occurrence of bleeding events, and the amount of platelets transfused within 14 days post-randomization. RESULTS The platelet desialylation levels increased significantly in the 127 septic patients with thrombocytopenia compared to the 134 patients without thrombocytopenia. A platelet response was achieved in 45 of the 54 patients in the oseltamivir group (83.3%) compared with 34 of the 52 patients in the control group (65.4%; P = 0.045). The median platelet recovery time was 5 days (interquartile range 4-6) in the oseltamivir group compared with 7 days (interquartile range 5-10) in the control group (P = 0.003). The amount of platelets transfused decreased significantly in the oseltamivir group compared to the control group (P = 0.044). There was no difference in the overall 28-day mortality regardless of whether oseltamivir was used. The Sequential Organ Failure Assessment score and platelet recovery time were independent indicators of oseltamivir therapy. The main reason for all of the mortalities was multiple-organ failure. CONCLUSIONS Thrombocytopenia was associated with increased platelet desialylation in septic patients. The addition of oseltamivir could significantly increase the platelet response rate, shorten platelet recovery time, and reduce platelet transfusion. TRIAL REGISTRATION Chinese Clinical Trial Registry, ChiCTR-IPR-16008542 .
Collapse
Affiliation(s)
- Mei-Feng Li
- Department of Hematology, Qilu Hospital, Shandong University, Jinan, 250012, China.,Intensive Care Unit, and Clinical Laboratory, Yantai Yuhuangding Hospital Affiliated to Qingdao University, Yantai, 264000, Shandong, China
| | - Xiao-Li Li
- Intensive Care Unit, and Clinical Laboratory, Yantai Yuhuangding Hospital Affiliated to Qingdao University, Yantai, 264000, Shandong, China
| | - Kai-Liang Fan
- Department of Hematology, Qilu Hospital, Shandong University, Jinan, 250012, China.,Department of Emergency, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Ying-Yi Yu
- Department of Hematology, Qilu Hospital, Shandong University, Jinan, 250012, China
| | - Jing Gong
- Division of Preventive Medicine, Center for Disease Control and Prevention of Yantai Development Zone, Yantai, China
| | - Shu-Ying Geng
- Department of Internal Medicine, Infectious Disease Hospital of Yantai, Yantai, China
| | - Ya-Feng Liang
- Intensive Care Unit, and Clinical Laboratory, Yantai Yuhuangding Hospital Affiliated to Qingdao University, Yantai, 264000, Shandong, China
| | - Ling Huang
- Intensive Care Unit, Yantaishan Hospital of Yantai, Yantai, China
| | - Ji-Hua Qiu
- Department of Hematology, Qilu Hospital, Shandong University, Jinan, 250012, China
| | - Xing-Han Tian
- Intensive Care Unit, and Clinical Laboratory, Yantai Yuhuangding Hospital Affiliated to Qingdao University, Yantai, 264000, Shandong, China
| | - Wen-Ting Wang
- Intensive Care Unit, and Clinical Laboratory, Yantai Yuhuangding Hospital Affiliated to Qingdao University, Yantai, 264000, Shandong, China
| | - Xiao-Lu Zhang
- Intensive Care Unit, and Clinical Laboratory, Yantai Yuhuangding Hospital Affiliated to Qingdao University, Yantai, 264000, Shandong, China
| | - Qing-Xia Yu
- Intensive Care Unit, and Clinical Laboratory, Yantai Yuhuangding Hospital Affiliated to Qingdao University, Yantai, 264000, Shandong, China
| | - Yuan-Feng Zhang
- Intensive Care Unit, and Clinical Laboratory, Yantai Yuhuangding Hospital Affiliated to Qingdao University, Yantai, 264000, Shandong, China
| | - Peng Lin
- Intensive Care Unit, and Clinical Laboratory, Yantai Yuhuangding Hospital Affiliated to Qingdao University, Yantai, 264000, Shandong, China
| | - Li-Na Wang
- Department of Internal Medicine, Infectious Disease Hospital of Yantai, Yantai, China
| | - Xin Li
- Department of Hematology, Qilu Hospital, Shandong University, Jinan, 250012, China
| | - Ming Hou
- Department of Hematology, Qilu Hospital, Shandong University, Jinan, 250012, China.,Shandong Provincial Key Laboratory of Immunohematology, Qilu Hospital, Shandong University, Jinan, China
| | - Lu-Yi Liu
- Intensive Care Unit, and Clinical Laboratory, Yantai Yuhuangding Hospital Affiliated to Qingdao University, Yantai, 264000, Shandong, China.
| | - Jun Peng
- Department of Hematology, Qilu Hospital, Shandong University, Jinan, 250012, China.
| |
Collapse
|
105
|
Platelet clearance by the hepatic Ashwell-Morrell receptor: mechanisms and biological significance. Thromb Res 2017; 141 Suppl 2:S68-72. [PMID: 27207430 DOI: 10.1016/s0049-3848(16)30370-x] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The daily production of billions of platelets must be regulated to avoid spontaneous bleeding or arterial occlusion and organ damage. Complex mechanisms control platelet production and clearance in physiological and pathological conditions. This review will focus on the mechanisms of platelet senescence with specific emphasis on the role of post-translational modifications in platelet life-span and thrombopoietin production downstream of the hepatic Ashwell-Morrell receptor.
Collapse
|
106
|
Preparation of carboxymethyl chitosan nanofibers through electrospinning the ball-milled nanopowders with poly (lactic acid) and the blood compatibility of the electrospun NCMC/PLA mats. JOURNAL OF POLYMER RESEARCH 2017. [DOI: 10.1007/s10965-017-1224-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
107
|
Akhmedov A, Camici GG, Reiner MF, Bonetti NR, Costantino S, Holy EW, Spescha RD, Stivala S, Schaub Clerigué A, Speer T, Breitenstein A, Manz J, Lohmann C, Paneni F, Beer JH, Lüscher TF. Endothelial LOX-1 activation differentially regulates arterial thrombus formation depending on oxLDL levels: role of the Oct-1/SIRT1 and ERK1/2 pathways. Cardiovasc Res 2017; 113:498-507. [DOI: 10.1093/cvr/cvx015] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 01/25/2017] [Indexed: 02/06/2023] Open
|
108
|
Srivastava S, Katorcha E, Daus ML, Lasch P, Beekes M, Baskakov IV. Sialylation Controls Prion Fate in Vivo. J Biol Chem 2017; 292:2359-2368. [PMID: 27998976 PMCID: PMC5313106 DOI: 10.1074/jbc.m116.768010] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 12/07/2016] [Indexed: 11/06/2022] Open
Abstract
Prions or PrPSc are proteinaceous infectious agents that consist of misfolded, self-replicating states of a sialoglycoprotein called the prion protein or PrPC The current work tests a new hypothesis that sialylation determines the fate of prions in an organism. To begin, we produced control PrPSc from PrPC using protein misfolding cyclic amplification with beads (PMCAb), and also generated PrPSc with reduced sialylation levels using the same method but with partially desialylated PrPC as a substrate (dsPMCAb). Syrian hamsters were inoculated intraperitoneally with brain-derived PrPSc or PrPSc produced in PMCAb or dsPMCAb and then monitored for disease. Animals inoculated with brain- or PMCAb-derived PrPSc developed prion disease, whereas administration of dsPMCAb-derived PrPSc with reduced sialylation did not cause prion disease. Animals inoculated with dsPMCAb-derived material were not subclinical carriers of scrapie, as no PrPSc was detected in brains or spleen of these animals by either Western blotting or after amplification by serial PMCAb. In subsequent experiments, trafficking of brain-, PMCAb-, and dsPMCAb-derived PrPSc to secondary lymphoid organs was monitored in wild type mice. PrPSc sialylation was found to be critical for effective trafficking of PrPSc to secondary lymphoid organs. By 6 hours after inoculation, brain- and PMCAb-derived PrPSc were found in spleen and lymph nodes, whereas dsPMCAb-derived PrPSc was found predominantly in liver. This study demonstrates that the outcome of prion transmission to a wild type host is determined by the sialylation status of the inoculated PrPSc Furthermore, this work suggests that the sialylation status of PrPSc plays an important role in prion lymphotropism.
Collapse
Affiliation(s)
- Saurabh Srivastava
- From the Center for Biomedical Engineering and Technology and
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland 21201 and
| | - Elizaveta Katorcha
- From the Center for Biomedical Engineering and Technology and
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland 21201 and
| | - Martin L Daus
- the Centre for Biological Threats and Special Pathogens, Robert Koch-Institute, 13353 Berlin, Germany
| | - Peter Lasch
- the Centre for Biological Threats and Special Pathogens, Robert Koch-Institute, 13353 Berlin, Germany
| | - Michael Beekes
- the Centre for Biological Threats and Special Pathogens, Robert Koch-Institute, 13353 Berlin, Germany
| | - Ilia V Baskakov
- From the Center for Biomedical Engineering and Technology and
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland 21201 and
| |
Collapse
|
109
|
Abstract
Proteolytic shedding of the extracellular ectodomain of platelet receptors provides a key mechanism for irreversible loss of ligand-binding capacity, and for regulating platelet function in health and disease. Platelets derived from megakaryocytes are small anucleate cells in peripheral blood, with the ability to rapidly adhere, become activated, and secrete an array of procoagulant and proinflammatory factors at sites of vascular injury or disease, and to form a platelet aggregate (thrombus) which is not only critical in normal hemostasis and wound healing, but in atherothrombotic diseases including myocardial infarction and ischemic stroke. Basic mechanisms of receptor shedding on platelets have important distinctions from how receptors on other cell types might be shed, in that shedding is rapidly initiated (within seconds to minutes) and occurs under altered shear conditions encountered in flowing blood or experimentally ex vivo. This review will consider the key components of platelet receptor shedding, that is, the receptor with relevant cleavage site, the (metallo)proteinase or sheddase and how its activity is regulated, and the range of known regulatory factors that control platelet receptor shedding including receptor-associated molecules such as calmodulin, factors controlling sheddase surface expression and activity, and other elements such as shear stress, plasma membrane properties, cellular activation status or age. Understanding these basic mechanisms of platelet receptor shedding is significant in terms of utilizing receptor surface expression or soluble proteolytic fragments as platelet-specific biomarkers and/or ultimately therapeutic targeting of these mechanisms to control platelet reactivity and function.
Collapse
Affiliation(s)
- Robert K Andrews
- a Australian Centre for Blood Diseases , Monash University , Melbourne , Australia 3004.,b Department of Cancer Biology and Therapeutics, the John Curtin School of Medical Research , Australian National University , Canberra , Australia 2600
| | - Elizabeth E Gardiner
- a Australian Centre for Blood Diseases , Monash University , Melbourne , Australia 3004.,b Department of Cancer Biology and Therapeutics, the John Curtin School of Medical Research , Australian National University , Canberra , Australia 2600
| |
Collapse
|
110
|
Platelet clearance via shear-induced unfolding of a membrane mechanoreceptor. Nat Commun 2016; 7:12863. [PMID: 27670775 PMCID: PMC5052631 DOI: 10.1038/ncomms12863] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 08/10/2016] [Indexed: 12/26/2022] Open
Abstract
Mechanisms by which blood cells sense shear stress are poorly characterized. In platelets, glycoprotein (GP)Ib–IX receptor complex has been long suggested to be a shear sensor and receptor. Recently, a relatively unstable and mechanosensitive domain in the GPIbα subunit of GPIb–IX was identified. Here we show that binding of its ligand, von Willebrand factor, under physiological shear stress induces unfolding of this mechanosensory domain (MSD) on the platelet surface. The unfolded MSD, particularly the juxtamembrane ‘Trigger' sequence therein, leads to intracellular signalling and rapid platelet clearance. These results illustrate the initial molecular event underlying platelet shear sensing and provide a mechanism linking GPIb–IX to platelet clearance. Our results have implications on the mechanism of platelet activation, and on the pathophysiology of von Willebrand disease and related thrombocytopenic disorders. The mechanosensation via receptor unfolding may be applicable for many other cell adhesion receptors. The platelets detect and respond to shear stress generated by blood flow. Here the authors show that the binding of the soluble von Willebrand factor to its receptor GPIba under physiological shear stress induces receptor's domain unfolding on the platelet and signalling into the platelet, leading to platelets clearance.
Collapse
|
111
|
Modjeski KL, Ture SK, Field DJ, Cameron SJ, Morrell CN. Glutamate Receptor Interacting Protein 1 Mediates Platelet Adhesion and Thrombus Formation. PLoS One 2016; 11:e0160638. [PMID: 27631377 PMCID: PMC5025166 DOI: 10.1371/journal.pone.0160638] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 07/23/2016] [Indexed: 01/08/2023] Open
Abstract
Thrombosis-associated pathologies, such as myocardial infarction and stroke, are major causes of morbidity and mortality worldwide. Because platelets are necessary for hemostasis and thrombosis, platelet directed therapies must balance inhibiting platelet function with bleeding risk. Glutamate receptor interacting protein 1 (GRIP1) is a large scaffolding protein that localizes and organizes interacting proteins in other cells, such as neurons. We have investigated the role of GRIP1 in platelet function to determine its role as a molecular scaffold in thrombus formation. Platelet-specific GRIP1-/- mice were used to determine the role of GRIP1 in platelets. GRIP1-/- mice had normal platelet counts, but a prolonged bleeding time and delayed thrombus formation in a FeCl3-induced vessel injury model. In vitro stimulation of WT and GRIP1-/- platelets with multiple agonists showed no difference in platelet activation. However, in vivo platelet rolling velocity after endothelial stimulation was significantly greater in GRIP1-/- platelets compared to WT platelets, indicating a potential platelet adhesion defect. Mass spectrometry analysis of GRIP1 platelet immunoprecipitation revealed enrichment of GRIP1 binding to GPIb-IX complex proteins. Western blots confirmed the mass spectrometry findings that GRIP1 interacts with GPIbα, GPIbβ, and 14-3-3. Additionally, in resting GRIP1-/- platelets, GPIbα and 14-3-3 have increased interaction compared to WT platelets. GRIP1 interactions with the GPIb-IX binding complex are necessary for normal platelet adhesion to a stimulated endothelium.
Collapse
Affiliation(s)
- Kristina L. Modjeski
- Aab Cardiovascular Research Institute, University of Rochester Medical Center, Rochester, NY, United States of America
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY, United States of America
| | - Sara K. Ture
- Aab Cardiovascular Research Institute, University of Rochester Medical Center, Rochester, NY, United States of America
| | - David J. Field
- Aab Cardiovascular Research Institute, University of Rochester Medical Center, Rochester, NY, United States of America
| | - Scott J. Cameron
- Aab Cardiovascular Research Institute, University of Rochester Medical Center, Rochester, NY, United States of America
| | - Craig N. Morrell
- Aab Cardiovascular Research Institute, University of Rochester Medical Center, Rochester, NY, United States of America
- * E-mail:
| |
Collapse
|
112
|
Katorcha E, Daus ML, Gonzalez-Montalban N, Makarava N, Lasch P, Beekes M, Baskakov IV. Reversible off and on switching of prion infectivity via removing and reinstalling prion sialylation. Sci Rep 2016; 6:33119. [PMID: 27609323 PMCID: PMC5017131 DOI: 10.1038/srep33119] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 08/19/2016] [Indexed: 01/14/2023] Open
Abstract
The innate immune system provides the first line of defense against pathogens. To recognize pathogens, this system detects a number of molecular features that discriminate pathogens from host cells, including terminal sialylation of cell surface glycans. Mammalian cell surfaces, but generally not microbial cell surfaces, have sialylated glycans. Prions or PrPSc are proteinaceous pathogens that lack coding nucleic acids but do possess sialylated glycans. We proposed that sialylation of PrPSc is essential for evading innate immunity and infecting a host. In this study, the sialylation status of PrPSc was reduced by replicating PrPSc in serial Protein Misfolding Cyclic Amplification using sialidase-treated PrPC substrate and then restored to original levels by replication using non-treated substrate. Upon intracerebral administration, all animals that received PrPSc with original or restored sialylation levels were infected, whereas none of the animals that received PrPSc with reduced sialylation were infected. Moreover, brains and spleens of animals from the latter group were completely cleared of prions. The current work established that the ability of prions to infect the host via intracerebral administration depends on PrPSc sialylation status. Remarkably, PrPSc infectivity could be switched off and on in a reversible manner by first removing and then restoring PrPSc sialylation.
Collapse
Affiliation(s)
- Elizaveta Katorcha
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, Maryland, 21201 United States of America.,Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland, 21201 United States of America
| | - Martin L Daus
- Centre for Biological Threats and Special Pathogens, Robert Koch-Institute, 13353 Berlin, Germany
| | - Nuria Gonzalez-Montalban
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, Maryland, 21201 United States of America.,Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland, 21201 United States of America
| | - Natallia Makarava
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, Maryland, 21201 United States of America.,Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland, 21201 United States of America
| | - Peter Lasch
- Centre for Biological Threats and Special Pathogens, Robert Koch-Institute, 13353 Berlin, Germany
| | - Michael Beekes
- Centre for Biological Threats and Special Pathogens, Robert Koch-Institute, 13353 Berlin, Germany
| | - Ilia V Baskakov
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, Maryland, 21201 United States of America.,Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland, 21201 United States of America
| |
Collapse
|
113
|
Baskakov IV, Katorcha E. Multifaceted Role of Sialylation in Prion Diseases. Front Neurosci 2016; 10:358. [PMID: 27551257 PMCID: PMC4976111 DOI: 10.3389/fnins.2016.00358] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 07/18/2016] [Indexed: 11/13/2022] Open
Abstract
Mammalian prion or PrP(Sc) is a proteinaceous infectious agent that consists of a misfolded, self-replicating state of a sialoglycoprotein called the prion protein, or PrP(C). Sialylation of the prion protein N-linked glycans was discovered more than 30 years ago, yet the role of sialylation in prion pathogenesis remains poorly understood. Recent years have witnessed extraordinary growth in interest in sialylation and established a critical role for sialic acids in host invasion and host-pathogen interactions. This review article summarizes current knowledge on the role of sialylation of the prion protein in prion diseases. First, we discuss the correlation between sialylation of PrP(Sc) glycans and prion infectivity and describe the factors that control sialylation of PrP(Sc). Second, we explain how glycan sialylation contributes to the prion replication barrier, defines strain-specific glycoform ratios, and imposes constraints for PrP(Sc) structure. Third, several topics, including a possible role for sialylation in animal-to-human prion transmission, prion lymphotropism, toxicity, strain interference, and normal function of PrP(C), are critically reviewed. Finally, a metabolic hypothesis on the role of sialylation in the etiology of sporadic prion diseases is proposed.
Collapse
Affiliation(s)
- Ilia V. Baskakov
- Department of Anatomy and Neurobiology, Center for Biomedical Engineering and Technology, University of Maryland School of MedicineBaltimore, MD, USA
| | | |
Collapse
|
114
|
Au AE, Josefsson EC. Regulation of platelet membrane protein shedding in health and disease. Platelets 2016; 28:342-353. [PMID: 27494300 DOI: 10.1080/09537104.2016.1203401] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Extracellular proteolysis of platelet plasma membrane proteins is an event that ensues platelet activation. Shedding of surface receptors such as glycoprotein (GP) Ibα, GPV and GPVI as well as externalized proteins P-selectin and CD40L releases soluble ectodomain fragments that are subsequently detectable in plasma. This results in the irreversible functional downregulation of platelet receptor-mediated adhesive interactions and the generation of biologically active fragments. In this review, we describe molecular insights into the regulation of platelet receptor and ligand shedding in health and disease. The scope of this review is specially focused on GPIbα, GPV, GPVI, P-selectin and CD40L where we: (1) describe the basic physiological regulation of expression and shedding of these proteins in hemostasis illustrate alterations in receptor expression during (2) apoptosis and (3) ex vivo storage relevant for blood banking purposes; (4) discuss considerations to be made when analyzing and interpreting shedding of platelet membrane proteins and finally; (5) collate clinical evidence that quantify these platelet proteins during disease.
Collapse
Affiliation(s)
- Amanda E Au
- a The Walter and Eliza Hall Institute of Medical Research, Cancer & Haematology Division , 1G Royal Parade, Melbourne , Australia.,b Department of Medical Biology , The University of Melbourne , Melbourne , Australia
| | - Emma C Josefsson
- a The Walter and Eliza Hall Institute of Medical Research, Cancer & Haematology Division , 1G Royal Parade, Melbourne , Australia.,b Department of Medical Biology , The University of Melbourne , Melbourne , Australia
| |
Collapse
|
115
|
Abstract
Whilst significant effort has been focused on development of tools and approaches to clinically modulate activation processes that consume platelets, the platelet receptors that initiate activation processes remain untargeted. The modulation of receptor levels is also linked to underlying platelet aging processes which influence normal platelet lifespan and also the functionality and survival of stored platelets that are used in transfusion. In this review, we will focus on platelet adhesion receptors initiating thrombus formation, and discuss how regulation of levels of these receptors impact platelet function and platelet survival.
Collapse
Affiliation(s)
- Robert K Andrews
- a Australian Centre for Blood Diseases , Monash University , Melbourne , Australia
| | - Elizabeth E Gardiner
- b Department of Cancer Biology and Therapeutics, John Curtin School of Medical Research , Australian National University , Canberra , Australia
| |
Collapse
|
116
|
Wood B, Padula MP, Marks DC, Johnson L. Refrigerated storage of platelets initiates changes in platelet surface marker expression and localization of intracellular proteins. Transfusion 2016; 56:2548-2559. [PMID: 27460096 DOI: 10.1111/trf.13723] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 05/18/2016] [Accepted: 06/01/2016] [Indexed: 12/30/2022]
Abstract
BACKGROUND Platelets (PLTs) are currently stored at room temperature (22°C), which limits their shelf life, primarily due to the risk of bacterial growth. Alternatives to room temperature storage include PLT refrigeration (2-6°C), which inhibits bacterial growth, thus potentially allowing an extension of shelf life. Additionally, refrigerated PLTs appear more hemostatically active than conventional PLTs, which may be beneficial in certain clinical situations. However, the mechanisms responsible for this hemostatic function are not well characterized. The aim of this study was to assess the protein profile of refrigerated PLTs in an effort to understand these functional consequences. STUDY DESIGN AND METHODS Buffy coat PLTs were pooled, split, and stored either at room temperature (20-24°C) or under refrigerated (2-6°C) conditions (n = 8 in each group). PLTs were assessed for changes in external receptor expression and actin filamentation using flow cytometry. Intracellular proteomic changes were assessed using two-dimensional gel electrophoresis and Western blotting. RESULTS PLT refrigeration significantly reduced the abundance of glycoproteins (GPIb, GPIX, GPIIb, and GPIV) on the external membrane. However, refrigeration resulted in the increased expression of high-affinity integrins (αIIbβ3 and β1) and activation and apoptosis markers (CD62P, CD63, and phosphatidylserine). PLT refrigeration substantially altered the abundance and localization of several cytoskeletal proteins and resulted in an increase in actin filamentation, as measured by phalloidin staining. CONCLUSION Refrigerated storage of PLTs induces significant changes in the expression and localization of both surface-expressed and intracellular proteins. Understanding these proteomic changes may help to identify the mechanisms resulting in the refrigeration-associated alterations in PLT function and clearance.
Collapse
Affiliation(s)
- Ben Wood
- Research & Development, Australian Red Cross Blood Service, Alexandria, NSW, Australia.,Proteomics Core Facility, University of Technology Sydney, Sydney, NSW, Australia
| | - Matthew P Padula
- Proteomics Core Facility, University of Technology Sydney, Sydney, NSW, Australia
| | - Denese C Marks
- Research & Development, Australian Red Cross Blood Service, Alexandria, NSW, Australia
| | - Lacey Johnson
- Research & Development, Australian Red Cross Blood Service, Alexandria, NSW, Australia.
| |
Collapse
|
117
|
Chen W, Liang X, Syed AK, Jessup P, Church WR, Ware J, Josephson CD, Li R. Inhibiting GPIbα Shedding Preserves Post-Transfusion Recovery and Hemostatic Function of Platelets After Prolonged Storage. Arterioscler Thromb Vasc Biol 2016; 36:1821-8. [PMID: 27417583 DOI: 10.1161/atvbaha.116.307639] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 06/23/2016] [Indexed: 11/16/2022]
Abstract
OBJECTIVE The platelet storage lesion accelerates platelet clearance after transfusion, but the underlying molecular mechanism remains elusive. Although inhibiting sheddase activity hampers clearance of platelets with storage lesion, the target platelet protein responsible for ectodomain shedding-induced clearance is not definitively identified. Monoclonal antibody 5G6 was developed recently to bind specifically human platelet receptor glycoprotein (GP)Ibα and inhibit its shedding but not shedding of other receptors. Here, the role of GPIbα shedding in platelet clearance after transfusion was addressed. APPROACH AND RESULTS Both human leukoreduced apheresis-derived platelets and transgenic mouse platelets expressing human GPIbα were stored at room temperature in the presence and absence of 5G6 Fab fragment. At various time points, aliquots of stored platelets were analyzed and compared. 5G6 Fab inhibited GPIbα shedding in both platelets during storage and preserved higher level of GPIbα on the platelet surface. Compared with age-matched control platelets, 5G6 Fab-stored platelets exhibited similar levels of platelet activation, degranulation, and agonist-induced aggregation. 5G6 Fab-stored human GPIbα platelets exhibited significantly higher post-transfusion recovery and in vivo hemostatic function in recipient mice than control platelets. Consistently, 5G6 Fab-stored, 8-day-old human platelets produced similar improvement in post-transfusion recovery in immunodeficient mice and in ex vivo thrombus formation over collagen under shear flow. CONCLUSIONS Specific inhibition of GPIbα shedding in the stored platelets improves post-transfusion platelet recovery and hemostatic function, providing clear evidence for GPIbα shedding as a cause of platelet clearance. These results suggest that specific inhibition of GPIbα shedding may be used to optimize platelet storage conditions.
Collapse
Affiliation(s)
- Wenchun Chen
- From the Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Department of Pediatrics (W.C., X.L., A.K.S., C.D.J., R.L.) and Department of Pathology (P.J., C.D.J.), Emory University School of Medicine, GA; Green Mountain Antibodies, Burlington, VT (W.R.C.); and Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, Little Rock, AR (J.W.)
| | - Xin Liang
- From the Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Department of Pediatrics (W.C., X.L., A.K.S., C.D.J., R.L.) and Department of Pathology (P.J., C.D.J.), Emory University School of Medicine, GA; Green Mountain Antibodies, Burlington, VT (W.R.C.); and Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, Little Rock, AR (J.W.)
| | - Anum K Syed
- From the Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Department of Pediatrics (W.C., X.L., A.K.S., C.D.J., R.L.) and Department of Pathology (P.J., C.D.J.), Emory University School of Medicine, GA; Green Mountain Antibodies, Burlington, VT (W.R.C.); and Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, Little Rock, AR (J.W.)
| | - Paula Jessup
- From the Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Department of Pediatrics (W.C., X.L., A.K.S., C.D.J., R.L.) and Department of Pathology (P.J., C.D.J.), Emory University School of Medicine, GA; Green Mountain Antibodies, Burlington, VT (W.R.C.); and Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, Little Rock, AR (J.W.)
| | - William R Church
- From the Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Department of Pediatrics (W.C., X.L., A.K.S., C.D.J., R.L.) and Department of Pathology (P.J., C.D.J.), Emory University School of Medicine, GA; Green Mountain Antibodies, Burlington, VT (W.R.C.); and Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, Little Rock, AR (J.W.)
| | - Jerry Ware
- From the Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Department of Pediatrics (W.C., X.L., A.K.S., C.D.J., R.L.) and Department of Pathology (P.J., C.D.J.), Emory University School of Medicine, GA; Green Mountain Antibodies, Burlington, VT (W.R.C.); and Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, Little Rock, AR (J.W.)
| | - Cassandra D Josephson
- From the Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Department of Pediatrics (W.C., X.L., A.K.S., C.D.J., R.L.) and Department of Pathology (P.J., C.D.J.), Emory University School of Medicine, GA; Green Mountain Antibodies, Burlington, VT (W.R.C.); and Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, Little Rock, AR (J.W.)
| | - Renhao Li
- From the Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Department of Pediatrics (W.C., X.L., A.K.S., C.D.J., R.L.) and Department of Pathology (P.J., C.D.J.), Emory University School of Medicine, GA; Green Mountain Antibodies, Burlington, VT (W.R.C.); and Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, Little Rock, AR (J.W.).
| |
Collapse
|
118
|
Qiu J, Liu X, Li X, Zhang X, Han P, Zhou H, Shao L, Hou Y, Min Y, Kong Z, Wang Y, Wei Y, Liu X, Ni H, Peng J, Hou M. CD8(+) T cells induce platelet clearance in the liver via platelet desialylation in immune thrombocytopenia. Sci Rep 2016; 6:27445. [PMID: 27321376 PMCID: PMC4913243 DOI: 10.1038/srep27445] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 05/18/2016] [Indexed: 11/09/2022] Open
Abstract
In addition to antiplatelet autoantibodies, CD8+ cytotoxic T lymphocytes (CTLs) play an important role in the increased platelet destruction in immune thrombocytopenia (ITP). Recent studies have highlighted that platelet desialylation leads to platelet clearance via hepatocyte asialoglycoprotein receptors (ASGPRs). Whether CD8+ T cells induce platelet desialylation in ITP remains unclear. Here, we investigated the cytotoxicity of CD8+ T cells towards platelets and platelet desialylation in ITP. We found that the desialylation of fresh platelets was significantly higher in ITP patients with positive cytotoxicity of CD8+ T cells than those without cytotoxicity and controls. In vitro, CD8+ T cells from ITP patients with positive cytotoxicity induced significant platelet desialylation, neuraminidase-1 expression on the platelet surface, and platelet phagocytosis by hepatocytes. To study platelet survival and clearance in vivo, CD61 knockout mice were immunized and their CD8+ splenocytes were used. Platelets co-cultured with these CD8+ splenocytes demonstrated decreased survival in the circulation and increased phagocytosis in the liver. Both neuraminidase inhibitor and ASGPRs competitor significantly improved platelet survival and abrogated platelet clearance caused by CD8+ splenocytes. These findings suggest that CD8+ T cells induce platelet desialylation and platelet clearance in the liver in ITP, which may be a novel mechanism of ITP.
Collapse
Affiliation(s)
- Jihua Qiu
- Department of Hematology, Qilu Hospital, Shandong University, Jinan, China
| | - Xuena Liu
- Department of Hematology, Qilu Hospital, Shandong University, Jinan, China
| | - Xiaoqing Li
- School of Medicine, Zhejiang University, Hangzhou, China
| | - Xu Zhang
- Department of Hematology, Qilu Hospital, Shandong University, Jinan, China
| | - Panpan Han
- Department of Hematology, Qilu Hospital, Shandong University, Jinan, China
| | - Hai Zhou
- Department of Hematology, Qilu Hospital, Shandong University, Jinan, China
| | - Linlin Shao
- Department of Hematology, Qilu Hospital, Shandong University, Jinan, China
| | - Yu Hou
- Department of Hematology, Qilu Hospital, Shandong University, Jinan, China
| | - Yanan Min
- Department of Hematology, Qilu Hospital, Shandong University, Jinan, China
| | - Zhangyuan Kong
- Department of Hematology, Qilu Hospital, Shandong University, Jinan, China
| | - Yawen Wang
- Department of Hematology, Qilu Hospital, Shandong University, Jinan, China
| | - Yu Wei
- Department of Hematology, Qilu Hospital, Shandong University, Jinan, China
| | - Xinguang Liu
- Department of Hematology, Qilu Hospital, Shandong University, Jinan, China
| | - Heyu Ni
- Canadian Blood Services and the Department of Laboratory Medicine and Pathobiology, Keenan Research Centre in the Li Ka Shing Knowledge Institute of St. Michael's Hospital, University of Toronto, Toronto, Canada
| | - Jun Peng
- Department of Hematology, Qilu Hospital, Shandong University, Jinan, China.,Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital, Shandong University, Jinan, China
| | - Ming Hou
- Department of Hematology, Qilu Hospital, Shandong University, Jinan, China.,Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital, Shandong University, Jinan, China.,Shandong Provincial Key Laboratory of Immunohematology, Qilu Hospital, Shandong University, Jinan, China
| |
Collapse
|
119
|
Rijkers M, van der Meer PF, Bontekoe IJ, Daal BB, de Korte D, Leebeek FWG, Voorberg J, Jansen AJG. Evaluation of the role of the GPIb-IX-V receptor complex in development of the platelet storage lesion. Vox Sang 2016; 111:247-256. [PMID: 27184018 DOI: 10.1111/vox.12416] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 04/01/2016] [Accepted: 04/19/2016] [Indexed: 01/08/2023]
Abstract
BACKGROUND AND OBJECTIVES In mice, loss of sialic acid resulting in shedding of glycoprotein (GP) Ibα and GPV has been linked to platelet survival. The aim of this study was to determine whether loss of sialic acid and the GPIb-IX-V complex contributes to development of the platelet storage lesion (PSL) in human platelet concentrates (PCs). MATERIALS AND METHODS PCs (stored in plasma (with or without Mirasol treatment); PAS-C or PAS-E) were stored at room temperature. Flow cytometry was used to monitor membrane expression of the GPIb-IX-V complex, CD62P, surface glycans and PS exposure. The functionality of stored platelets was determined employing aggregometry and ristocetin-induced VWF binding. RESULTS Storage time of PCs in blood banks is limited to 7 days. During this time period, a minor but gradually increasing subpopulation of GPIbα-negative platelets was observed. Also, ristocetin-induced VWF binding was impaired in a small population of platelets. Mean surface expression of GPIbα and GPV remained stable until day 9, whereas CD62P expression increased; also a rapid decrease in ADP-induced aggregation was observed for PAS-C, PAS-E and Mirasol-treated PCs. Upon prolonged storage (>9 days), a slow decline in surface expression of GPIbα and GPV was observed; no major changes were observed in surface sialylation with the exception of Mirasol-treated platelets. CONCLUSION In a small population of stored platelets, changes in GPIbα occur from day 2 onwards. Loss of sialic acid and subsequent shedding of GPIbα and GPV is not an early event during the development of the PSL.
Collapse
Affiliation(s)
- M Rijkers
- Department of Plasma Proteins, Sanquin-AMC Landsteiner Laboratory, Amsterdam, The Netherlands
| | - P F van der Meer
- Department of Product and Process Development, Sanquin Blood Bank, Amsterdam, The Netherlands
| | - I J Bontekoe
- Department of Product and Process Development, Sanquin Blood Bank, Amsterdam, The Netherlands
| | - B B Daal
- Department of Product and Process Development, Sanquin Blood Bank, Amsterdam, The Netherlands
| | - D de Korte
- Department of Product and Process Development, Sanquin Blood Bank, Amsterdam, The Netherlands.,Department of Blood Cell Research, Sanquin-AMC Landsteiner Laboratory, Amsterdam, The Netherlands
| | - F W G Leebeek
- Department of Hematology, Erasmus University Medical Centre, Rotterdam, The Netherlands
| | - J Voorberg
- Department of Plasma Proteins, Sanquin-AMC Landsteiner Laboratory, Amsterdam, The Netherlands.
| | - A J G Jansen
- Department of Plasma Proteins, Sanquin-AMC Landsteiner Laboratory, Amsterdam, The Netherlands.,Department of Hematology, Erasmus University Medical Centre, Rotterdam, The Netherlands
| |
Collapse
|
120
|
Abstract
Platelet numbers are intricately regulated to avoid spontaneous bleeding or arterial occlusion and organ damage. The growth factor thrombopoietin (TPO) drives platelet biogenesis by inducing megakaryocyte production. A recent study in mice identified a feedback mechanism by which clearance of aged, desialylated platelets stimulates TPO synthesis by hepatocytes. This new finding generated renewed interest in platelet clearance mechanisms. Here, different established and emerging mechanisms of platelet senescence and clearance will be reviewed with specific emphasis on the role of posttranslational modifications.
Collapse
Affiliation(s)
- Renhao Li
- a Aflac Cancer and Blood Disorders Center, Department of Pediatrics , Emory University School of Medicine , Atlanta , GA , USA
| | - Karin M Hoffmeister
- b Division of Hematology, Department of Medicine , Brigham and Women's Hospital and Harvard Medical School , Boston , MA , USA
| | - Hervé Falet
- b Division of Hematology, Department of Medicine , Brigham and Women's Hospital and Harvard Medical School , Boston , MA , USA
| |
Collapse
|
121
|
Abstract
A goal of platelet storage is to maintain the quality of platelets from the point of donation to the point of transfusion - to suspend the aging process. This effort is judged by clinical and laboratory measures with varying degrees of success. Recent work gives encouragement that platelets can be maintained ex vivo beyond the current 5 -7 day shelf life whilst maintaining their quality, as measured by posttransfusion recovery and survival. However, additional measures are needed to validate the development of technologies that may further reduce the aging of stored platelets, or enhance their hemostatic properties.
Collapse
Affiliation(s)
- Peter A Smethurst
- a Components Development Laboratory, NHS Blood and Transplant, Cambridge, UK, and Department of Haematology , University of Cambridge , Cambridge , UK
| |
Collapse
|
122
|
Abstract
PURPOSE OF REVIEW The human body produces and removes 10 platelets daily to maintain a normal steady-state platelet count. Platelet production must be tightly regulated to avoid spontaneous bleeding or arterial occlusion and organ damage. Multifaceted and complex mechanisms control platelet removal and production in physiological and pathological conditions. This review will focus on different mechanisms of platelet clearance, with focus on the biological significance of platelet glycans. RECENT FINDINGS The Ashwell-Morrell receptor (AMR) recognizes senescent, desialylated platelets under steady state conditions. Desialylated platelets and the AMR are the physiological ligand-receptor pair regulating hepatic thrombopoietin (TPO) mRNA production, resolving the longstanding mystery of steady state TPO regulation. The AMR-mediated removal of desialylated platelets regulates TPO synthesis in the liver by recruiting JAK2 and STAT3 to increase thrombopoiesis. SUMMARY Inhibition of TPO production downstream of the hepatic AMR-JAK2 signaling cascade could additionally contribute to the thrombocytopenia associated with JAK1/2 treatment, which is clinically used in myeloproliferative neoplasms.
Collapse
|
123
|
Abstract
The lifespan of platelets in circulation is brief, close to 10 days in humans and 5 days in mice. Bone marrow residing megakaryocytes produce around 100 billion platelets per day. In a healthy individual, the majority of platelets are not consumed by hemostatic processes, but rather their lifespan is controlled by programmed cell death, a canonical intrinsic apoptosis program. In the last decade, insights from genetically manipulated mouse models and pharmacological developments have helped to define the components of the intrinsic, or mitochondrial, apoptosis pathway that controls platelet lifespan. This review focuses on the molecular regulation of apoptosis in platelet survival, reviews thrombocytopenic conditions linked to enhanced platelet death, examines implications of chemotherapy-induced thrombocytopenia through apoptosis-inducing drugs in cancer therapy as well as discusses ex vivo aging of platelets.
Collapse
Affiliation(s)
- Marion Lebois
- a The Walter and Eliza Hall Institute of Medical Research , Melbourne , Australia
| | - Emma C Josefsson
- a The Walter and Eliza Hall Institute of Medical Research , Melbourne , Australia.,b Department of Medical Biology , The University of Melbourne , Melbourne , Australia
| |
Collapse
|
124
|
Getz TM, Montgomery RK, Bynum JA, Aden JK, Pidcoke HF, Cap AP. Storage of platelets at 4°C in platelet additive solutions prevents aggregate formation and preserves platelet functional responses. Transfusion 2016; 56:1320-8. [DOI: 10.1111/trf.13511] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 12/02/2015] [Accepted: 12/28/2015] [Indexed: 02/03/2023]
Affiliation(s)
- Todd M. Getz
- US Army Institute of Surgical Research; Fort Sam Houston, San Antonio Texas
| | | | - James A. Bynum
- US Army Institute of Surgical Research; Fort Sam Houston, San Antonio Texas
| | - James K. Aden
- US Army Institute of Surgical Research; Fort Sam Houston, San Antonio Texas
| | - Heather F. Pidcoke
- US Army Institute of Surgical Research; Fort Sam Houston, San Antonio Texas
| | - Andrew P. Cap
- US Army Institute of Surgical Research; Fort Sam Houston, San Antonio Texas
| |
Collapse
|
125
|
Understanding platelet generation from megakaryocytes: implications for in vitro-derived platelets. Blood 2016; 127:1227-33. [PMID: 26787738 DOI: 10.1182/blood-2015-08-607929] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 09/30/2015] [Indexed: 12/12/2022] Open
Abstract
Platelets are anucleate cytoplasmic discs derived from megakaryocytes that circulate in the blood and have major roles in hemostasis, thrombosis, inflammation, and vascular biology. Platelet transfusions are required to prevent the potentially life-threatening complications of severe thrombocytopenia seen in a variety of medical settings including cancer therapy, trauma, and sepsis. Platelets used in the clinic are currently donor-derived which is associated with concerns over sufficient availability, quality, and complications due to immunologic and/or infectious issues. To overcome our dependence on donor-derived platelets for transfusion, efforts have been made to generate in vitro-based platelets. Work in this area has advanced our understanding of the complex processes that megakaryocytes must undergo to generate platelets both in vivo and in vitro. This knowledge has also defined the challenges that must be overcome to bring in vitro-based platelet manufacturing to a clinical reality. This review will focus on our understanding of committed megakaryocytes and platelet release in vivo and in vitro, and how this knowledge can guide the development of in vitro-derived platelets for clinical application.
Collapse
|
126
|
Handigund M, Bae TW, Lee J, Cho YG. Evaluation of in vitro storage characteristics of cold stored platelet concentrates with N acetylcysteine (NAC). Transfus Apher Sci 2016; 54:127-38. [PMID: 26847865 DOI: 10.1016/j.transci.2016.01.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2015] [Revised: 12/30/2015] [Accepted: 01/06/2016] [Indexed: 10/22/2022]
Abstract
Platelets play a vital role in hemostasis and thrombosis, and their demand and usage has multiplied many folds over the years. However, due to the short life span and storage constraints on platelets, it is allowed to store them for up to 7 days at room temperature (RT); thus, there is a need for an alternative storage strategy for extension of shelf life. Current investigation involves the addition of 50 mM N acetylcysteine (NAC) in refrigerated concentrates. Investigation results revealed that addition of NAC to refrigerated concentrates prevented platelet activation and reduced the sialidase activity upon rewarming as well as on prolonged storage. Refrigerated concentrates with 50 mM NAC expressed a 23.91 ± 6.23% of CD62P (P-Selectin) and 22.33 ± 3.42% of phosphotidylserine (PS), whereas RT-stored platelets showed a 46.87 ± 5.23% of CD62P and 25.9 ± 6.48% of phosphotidylserine (PS) after 5 days of storage. Further, key metabolic parameters such as glucose and lactate accumulation indicated reduced metabolic activity. Taken together, investigation and observations indicate that addition of NAC potentially protects refrigerated concentrates by preventing platelet activation, stabilizing sialidase activity, and further reducing the metabolic activity. Hence, we believe that NAC can be a good candidate for an additive solution to retain platelet characteristics during cold storage and may pave the way for extension of storage shelf life.
Collapse
Affiliation(s)
- Mallikarjun Handigund
- Department of Laboratory Medicine, Chonbuk National University Medical School and Hospital, Jeonju 561180, Republic of Korea
| | - Tae Won Bae
- Department of Laboratory Medicine, Chonbuk National University Medical School and Hospital, Jeonju 561180, Republic of Korea
| | - Jaehyeon Lee
- Department of Laboratory Medicine, Chonbuk National University Medical School and Hospital, Jeonju 561180, Republic of Korea; Research Institute of Clinical Medicine of Chonbuk National University-Biomedical Research Institute of Chonbuk National University Hospital, Jeonju 561180, Republic of Korea
| | - Yong Gon Cho
- Department of Laboratory Medicine, Chonbuk National University Medical School and Hospital, Jeonju 561180, Republic of Korea; Research Institute of Clinical Medicine of Chonbuk National University-Biomedical Research Institute of Chonbuk National University Hospital, Jeonju 561180, Republic of Korea; Chonbuk National University Hospital branch of National Culture Collection for Pathology, Jeonju 561180, Republic of Korea.
| |
Collapse
|
127
|
Srivastava S, Makarava N, Katorcha E, Savtchenko R, Brossmer R, Baskakov IV. Post-conversion sialylation of prions in lymphoid tissues. Proc Natl Acad Sci U S A 2015; 112:E6654-62. [PMID: 26627256 PMCID: PMC4672809 DOI: 10.1073/pnas.1517993112] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Sialylated glycans on the surface of mammalian cells act as part of a "self-associated molecular pattern," helping the immune system to recognize "self" from "altered self" or "nonself." To escape the host immune system, some bacterial pathogens have evolved biosynthetic pathways for host-like sialic acids, whereas others recruited host sialic acids for decorating their surfaces. Prions lack nucleic acids and are not conventional pathogens. Nevertheless, prions might use a similar strategy for invading and colonizing the lymphoreticular system. Here we show that the sialylation status of the infectious, disease-associated state of the prion protein (PrP(Sc)) changes with colonization of secondary lymphoid organs (SLOs). As a result, spleen-derived PrP(Sc) is more sialylated than brain-derived PrP(Sc). Enhanced sialylation of PrP(Sc) is recapitulated in vitro by incubating brain-derived PrP(Sc) with primary splenocytes or cultured macrophage RAW 264.7 cells. General inhibitors of sialyltranserases (STs), the enzymes that transfer sialic acid residues onto terminal positions of glycans, suppressed extrasialylation of PrP(Sc). A fluorescently labeled precursor of sialic acid revealed ST activity associated with RAW macrophages. This study illustrates that, upon colonization of SLOs, the sialylation status of prions changes by host STs. We propose that this mechanism is responsible for camouflaging prions in SLOs and has broad implications.
Collapse
Affiliation(s)
- Saurabh Srivastava
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD 21201; Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Natallia Makarava
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD 21201; Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Elizaveta Katorcha
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD 21201; Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Regina Savtchenko
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD 21201; Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Reinhard Brossmer
- Biochemistry Center, University of Heidelberg, 69120 Heidelberg, Germany
| | - Ilia V Baskakov
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD 21201; Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD 21201;
| |
Collapse
|
128
|
Hou Y, Carrim N, Wang Y, Gallant RC, Marshall A, Ni H. Platelets in hemostasis and thrombosis: Novel mechanisms of fibrinogen-independent platelet aggregation and fibronectin-mediated protein wave of hemostasis. J Biomed Res 2015; 29:437. [PMID: 26541706 PMCID: PMC4662204 DOI: 10.7555/jbr.29.20150121] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 10/12/2015] [Indexed: 12/31/2022] Open
Abstract
Platelets are small anucleate cells generated from megakaryocytes in the bone marrow. Although platelet generation, maturation, and clearance are still not fully understood, significant progress has been made in the last 1-2 decades. In blood circulation, platelets can quickly adhere and aggregate at sites of vascular injury, forming the platelet plug (i.e. the first wave of hemostasis). Activated platelets can also provide negatively charged phosphatidylserinerich membrane surface that enhances cell-based thrombin generation, which facilitates blood coagulation (i.e. the second wave of hemostasis). Platelets therefore play central roles in hemostasis. However, the same process of hemostasis may also cause thrombosis and vessel occlusion, which are the most common mechanisms leading to heart attack and stroke following ruptured atherosclerotic lesions. In this review, we will introduce the classical mechanisms and newly discovered pathways of platelets in hemostasis and thrombosis, including fibrinogen-independent platelet aggregation and thrombosis, and the plasma fibronectin-mediated "protein wave" of hemostasis that precedes the classical first wave of hemostasis. Furthermore, we briefly discuss the roles of platelets in inflammation and atherosclerosis and the potential strategies to control atherothrombosis.
Collapse
Affiliation(s)
- Yan Hou
- Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital and Toronto Platelet Immunobiology Group, Toronto, M5B 1W8, Ontario, Canada
- Jilin Provincial Center for Disease Control and Prevention, Changchun, Jilin, 130062 China
| | - Naadiya Carrim
- Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital and Toronto Platelet Immunobiology Group, Toronto, M5B 1W8, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario M5S 1A1, Canada
- Canadian Blood Services, Toronto, Ontario M5B 1W8, Canada
| | - Yiming Wang
- Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital and Toronto Platelet Immunobiology Group, Toronto, M5B 1W8, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario M5S 1A1, Canada
- Canadian Blood Services, Toronto, Ontario M5B 1W8, Canada
| | - Reid C Gallant
- Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital and Toronto Platelet Immunobiology Group, Toronto, M5B 1W8, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario M5S 1A1, Canada
| | - Alexandra Marshall
- Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital and Toronto Platelet Immunobiology Group, Toronto, M5B 1W8, Ontario, Canada
| | - Heyu Ni
- Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital and Toronto Platelet Immunobiology Group, Toronto, M5B 1W8, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario M5S 1A1, Canada
- Department of Medicine and Department of Physiology, University of Toronto, Toronto, Ontario M5S 1A1, Canada.
| |
Collapse
|
129
|
Zhang XH, Wang QM, Zhang JM, Feng FE, Wang FR, Chen H, Zhang YY, Chen YH, Han W, Xu LP, Liu KY, Huang XJ. Desialylation is associated with apoptosis and phagocytosis of platelets in patients with prolonged isolated thrombocytopenia after allo-HSCT. J Hematol Oncol 2015; 8:116. [PMID: 26497387 PMCID: PMC4619537 DOI: 10.1186/s13045-015-0216-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 10/13/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Prolonged isolated thrombocytopenia (PT) is a frequent complication in patients who undergo allogeneic hematopoietic stem cell transplantation (allo-HSCT), and it is associated with an adverse prognosis. In this study, we hypothesized that desialylation on platelet surfaces was associated with PT after allo-HSCT. The mechanisms participating in this process may include NEU1 translocation, platelet apoptosis, and phagocytosis by macrophages. METHODS PT was defined as a peripheral platelet count less than 100 × 10(9)/L without sustained anemia or leukopenia for more than 3 months after allo-HSCT. 34 patients were identified consecutively from a cohort of 255 patients who underwent allo-HSCT for hematologic malignancies between May and October 2014 at Peking University Institute of Hematology. Desialylation, enzyme expression, and phagocytosis were detected using flow cytometry, immunofluorescence, RT-PCR, Western blot, and so on. RESULTS Platelets from the PT patients had significantly fewer sialic acids (P = .001) and increased β-galactose exposure indicative of desialylation on the surface (P = .042), and serum from the PT patients showed a higher sialic acid concentration (8.400 ± 0.2209 μmol/L, P < .001). The sialidase NEU1 was over-expressed from mRNA to protein levels, and its catalytic activity was increased in platelets from the PT patients. Desialylation of GPIbα in the PT patients was correlated with changes in 14-3-3ζ distribution, which, relative to Bad activation, modulated the expression of Bcl-2 family proteins, depolarized the inner membrane of the mitochondria, and initiated the intrinsic mitochondria-dependent pathway of apoptosis. Macrophages derived from the THP-1 cell line preferred to phagocytize desialylated platelets from the PT patients in vitro. We also revealed that oseltamivir (400 μmol/L) could inhibit 50 % of the sialidase activity on platelets and could protect 20 % of platelets from phagocytosis in vitro. CONCLUSIONS Desialylation of platelets was associated with platelet apoptosis and phagocytosis, whereas oseltamivir could reduce platelet destruction in the periphery, indicating a potential novel treatment for PT after allo-HSCT.
Collapse
Affiliation(s)
- Xiao-Hui Zhang
- Peking University People's Hospital, Peking University Institute of Hematology, No. 11 Xizhimen South Street, Xicheng District, Beijing, 100044, People's Republic of China.
| | - Qian-Ming Wang
- Peking University People's Hospital, Peking University Institute of Hematology, No. 11 Xizhimen South Street, Xicheng District, Beijing, 100044, People's Republic of China
| | - Jia-Min Zhang
- Peking University People's Hospital, Peking University Institute of Hematology, No. 11 Xizhimen South Street, Xicheng District, Beijing, 100044, People's Republic of China
| | - Fei-Er Feng
- Peking University People's Hospital, Peking University Institute of Hematology, No. 11 Xizhimen South Street, Xicheng District, Beijing, 100044, People's Republic of China
| | - Feng-Rong Wang
- Peking University People's Hospital, Peking University Institute of Hematology, No. 11 Xizhimen South Street, Xicheng District, Beijing, 100044, People's Republic of China
| | - Huan Chen
- Peking University People's Hospital, Peking University Institute of Hematology, No. 11 Xizhimen South Street, Xicheng District, Beijing, 100044, People's Republic of China
| | - Yuan-Yuan Zhang
- Peking University People's Hospital, Peking University Institute of Hematology, No. 11 Xizhimen South Street, Xicheng District, Beijing, 100044, People's Republic of China
| | - Yu-Hong Chen
- Peking University People's Hospital, Peking University Institute of Hematology, No. 11 Xizhimen South Street, Xicheng District, Beijing, 100044, People's Republic of China
| | - Wei Han
- Peking University People's Hospital, Peking University Institute of Hematology, No. 11 Xizhimen South Street, Xicheng District, Beijing, 100044, People's Republic of China
| | - Lan-Ping Xu
- Peking University People's Hospital, Peking University Institute of Hematology, No. 11 Xizhimen South Street, Xicheng District, Beijing, 100044, People's Republic of China
| | - Kai-Yan Liu
- Peking University People's Hospital, Peking University Institute of Hematology, No. 11 Xizhimen South Street, Xicheng District, Beijing, 100044, People's Republic of China
| | - Xiao-Jun Huang
- Peking University People's Hospital, Peking University Institute of Hematology, No. 11 Xizhimen South Street, Xicheng District, Beijing, 100044, People's Republic of China.
| |
Collapse
|
130
|
Abstract
PURPOSE OF REVIEW Platelets are a frequently requested blood product today and are often in limited supply because of a shelf life of 5-7 days, depending on the country. Room temperature storage is associated with an increased risk of transfusion-transmitted infection. Plasma used for platelet storage is unavailable for other uses, and allogeneic plasma carries with it risks for adverse transfusion reactions. This review looks at recent activities evaluating alternative conditions for the storage of platelets. RECENT FINDINGS New-generation platelet additive solutions are being evaluated and applied as a strategy to reduce the volume of allogeneic plasma transfused and to support storage following pathogen reduction treatments. There is a renewed interest in refrigerator temperature and frozen storage of platelets to improve availability, to reduce septic transfusion risk, and to enhance hemostatic efficacy in the bleeding patient. SUMMARY Use of platelet additive solutions has been shown to reduce the incidence of allergic and nonhemolytic febrile transfusion reactions in two large studies. Results of ongoing research and new clinical trials in cold storage methods will be forthcoming and may present solutions for platelet availability problems and new choices for therapeutic transfusion of the bleeding patient.
Collapse
|
131
|
Regulating billions of blood platelets: glycans and beyond. Blood 2015; 126:1877-84. [PMID: 26330242 DOI: 10.1182/blood-2015-01-569129] [Citation(s) in RCA: 105] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 08/25/2015] [Indexed: 01/01/2023] Open
Abstract
The human body produces and removes 10(11) platelets daily to maintain a normal steady state platelet count. Platelet production must be regulated to avoid spontaneous bleeding or arterial occlusion and organ damage. Multifaceted and complex mechanisms control platelet production and removal in physiological and pathological conditions. This review will focus on different mechanisms of platelet senescence and clearance with specific emphasis on the role of posttranslational modifications. It will also briefly address platelet transfusion and the role of glycans in the clearance of stored platelets.
Collapse
|
132
|
Li J, van der Wal DE, Zhu G, Xu M, Yougbare I, Ma L, Vadasz B, Carrim N, Grozovsky R, Ruan M, Zhu L, Zeng Q, Tao L, Zhai ZM, Peng J, Hou M, Leytin V, Freedman J, Hoffmeister KM, Ni H. Desialylation is a mechanism of Fc-independent platelet clearance and a therapeutic target in immune thrombocytopenia. Nat Commun 2015; 6:7737. [PMID: 26185093 PMCID: PMC4518313 DOI: 10.1038/ncomms8737] [Citation(s) in RCA: 275] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Accepted: 06/05/2015] [Indexed: 12/21/2022] Open
Abstract
Immune thrombocytopenia (ITP) is a common bleeding disorder caused primarily by autoantibodies against platelet GPIIbIIIa and/or the GPIb complex. Current theory suggests that antibody-mediated platelet destruction occurs in the spleen, via macrophages through Fc-FcγR interactions. However, we and others have demonstrated that anti-GPIbα (but not GPIIbIIIa)-mediated ITP is often refractory to therapies targeting FcγR pathways. Here, we generate mouse anti-mouse monoclonal antibodies (mAbs) that recognize GPIbα and GPIIbIIIa of different species. Utilizing these unique mAbs and human ITP plasma, we find that anti-GPIbα, but not anti-GPIIbIIIa antibodies, induces Fc-independent platelet activation, sialidase neuraminidase-1 translocation and desialylation. This leads to platelet clearance in the liver via hepatocyte Ashwell-Morell receptors, which is fundamentally different from the classical Fc-FcγR-dependent macrophage phagocytosis. Importantly, sialidase inhibitors ameliorate anti-GPIbα-mediated thrombocytopenia in mice. These findings shed light on Fc-independent cytopenias, designating desialylation as a potential diagnostic biomarker and therapeutic target in the treatment of refractory ITP.
Collapse
Affiliation(s)
- June Li
- 1] Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada M5S 1A8 [2] Toronto Platelet Immunobiology Group, Toronto, Ontario, Canada M5B 1W8 [3] Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science of St. Michael's Hospital, Toronto, Ontario, Canada M5B 1W8
| | - Dianne E van der Wal
- 1] Toronto Platelet Immunobiology Group, Toronto, Ontario, Canada M5B 1W8 [2] Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science of St. Michael's Hospital, Toronto, Ontario, Canada M5B 1W8 [3] Canadian Blood Services, Ottawa, Ontario, Canada K1G 4J5
| | - Guangheng Zhu
- 1] Toronto Platelet Immunobiology Group, Toronto, Ontario, Canada M5B 1W8 [2] Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science of St. Michael's Hospital, Toronto, Ontario, Canada M5B 1W8
| | - Miao Xu
- 1] Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada M5S 1A8 [2] Toronto Platelet Immunobiology Group, Toronto, Ontario, Canada M5B 1W8 [3] Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science of St. Michael's Hospital, Toronto, Ontario, Canada M5B 1W8
| | - Issaka Yougbare
- 1] Toronto Platelet Immunobiology Group, Toronto, Ontario, Canada M5B 1W8 [2] Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science of St. Michael's Hospital, Toronto, Ontario, Canada M5B 1W8 [3] Canadian Blood Services, Ottawa, Ontario, Canada K1G 4J5
| | - Li Ma
- 1] Toronto Platelet Immunobiology Group, Toronto, Ontario, Canada M5B 1W8 [2] Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science of St. Michael's Hospital, Toronto, Ontario, Canada M5B 1W8 [3] Canadian Blood Services, Ottawa, Ontario, Canada K1G 4J5
| | - Brian Vadasz
- 1] Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada M5S 1A8 [2] Toronto Platelet Immunobiology Group, Toronto, Ontario, Canada M5B 1W8 [3] Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science of St. Michael's Hospital, Toronto, Ontario, Canada M5B 1W8
| | - Naadiya Carrim
- 1] Toronto Platelet Immunobiology Group, Toronto, Ontario, Canada M5B 1W8 [2] Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science of St. Michael's Hospital, Toronto, Ontario, Canada M5B 1W8
| | - Renata Grozovsky
- Translational Medicine Division, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Min Ruan
- Department of Hematology, Anhui Medical University, Hefei 230032, China
| | - Lingyan Zhu
- Department of Hematology, Anhui Medical University, Hefei 230032, China
| | - Qingshu Zeng
- Department of Hematology, Anhui Medical University, Hefei 230032, China
| | - Lili Tao
- Department of Hematology, Anhui Medical University, Hefei 230032, China
| | - Zhi-min Zhai
- Department of Hematology, Anhui Medical University, Hefei 230032, China
| | - Jun Peng
- Department of Hematology, Qilu Hospital, Shandong University, Jinan 250012, China
| | - Ming Hou
- Department of Hematology, Qilu Hospital, Shandong University, Jinan 250012, China
| | - Valery Leytin
- 1] Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada M5S 1A8 [2] Toronto Platelet Immunobiology Group, Toronto, Ontario, Canada M5B 1W8 [3] Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science of St. Michael's Hospital, Toronto, Ontario, Canada M5B 1W8
| | - John Freedman
- 1] Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada M5S 1A8 [2] Toronto Platelet Immunobiology Group, Toronto, Ontario, Canada M5B 1W8 [3] Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science of St. Michael's Hospital, Toronto, Ontario, Canada M5B 1W8 [4] Department of Medicine, University of Toronto, Ontario, Canada M5S 1A8
| | - Karin M Hoffmeister
- Translational Medicine Division, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Heyu Ni
- 1] Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada M5S 1A8 [2] Toronto Platelet Immunobiology Group, Toronto, Ontario, Canada M5B 1W8 [3] Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science of St. Michael's Hospital, Toronto, Ontario, Canada M5B 1W8 [4] Canadian Blood Services, Ottawa, Ontario, Canada K1G 4J5 [5] Department of Medicine, University of Toronto, Ontario, Canada M5S 1A8 [6] Department of Physiology, University of Toronto, Ontario, Canada M5S 1A8
| |
Collapse
|
133
|
Sumida M, Hane M, Yabe U, Shimoda Y, Pearce OMT, Kiso M, Miyagi T, Sawada M, Varki A, Kitajima K, Sato C. Rapid Trimming of Cell Surface Polysialic Acid (PolySia) by Exovesicular Sialidase Triggers Release of Preexisting Surface Neurotrophin. J Biol Chem 2015; 290:13202-14. [PMID: 25750127 PMCID: PMC4505574 DOI: 10.1074/jbc.m115.638759] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Revised: 02/23/2015] [Indexed: 01/08/2023] Open
Abstract
As acidic glycocalyx on primary mouse microglial cells and a mouse microglial cell line Ra2, expression of polysialic acid (polySia/PSA), a polymer of the sialic acid Neu5Ac (N-acetylneuraminic acid), was demonstrated. PolySia is known to modulate cell adhesion, migration, and localization of neurotrophins mainly on neural cells. PolySia on Ra2 cells disappeared very rapidly after an inflammatory stimulus. Results of knockdown and inhibitor studies indicated that rapid surface clearance of polySia was achieved by secretion of endogenous sialidase Neu1 as an exovesicular component. Neu1-mediated polySia turnover was accompanied by the release of brain-derived neurotrophic factor normally retained by polySia molecules. Introduction of a single oxygen atom change into polySia by exogenous feeding of the non-neural sialic acid Neu5Gc (N-glycolylneuraminic acid) caused resistance to Neu1-induced polySia turnover and also inhibited the associated release of brain-derived neurotrophic factor. These results indicate the importance of rapid turnover of the polySia glycocalyx by exovesicular sialidases in neurotrophin regulation.
Collapse
Affiliation(s)
- Mizuki Sumida
- From the Bioscience and Biotechnology Center and School of Bioagricultural Sciences, Nagoya University, Nagoya, 464-8601, Japan
| | - Masaya Hane
- From the Bioscience and Biotechnology Center and School of Bioagricultural Sciences, Nagoya University, Nagoya, 464-8601, Japan
| | - Uichiro Yabe
- From the Bioscience and Biotechnology Center and School of Bioagricultural Sciences, Nagoya University, Nagoya, 464-8601, Japan
| | - Yasushi Shimoda
- Department of Bioengineering, Nagaoka University of Technology, 1603-1 Kamitomiokamachi, Nagaoka 940-2188 Japan
| | - Oliver M T Pearce
- Glycobiology Research and Training Center, Departments of Medicine and Cellular and Molecular Medicine, University of California, San Diego, La Jolla, California 92093-0687
| | - Makoto Kiso
- Department of Applied Bioorganic Chemistry, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Taeko Miyagi
- Institute of Molecular Biomembrane and Glycobiology, Tohoku Pharmaceutical University, 981-8558, Sendai, Japan, and
| | - Makoto Sawada
- Department of Brain Functions, Research Institute of Environmental Medicine, Nagoya University, Nagoya 464-8601, Japan
| | - Ajit Varki
- Glycobiology Research and Training Center, Departments of Medicine and Cellular and Molecular Medicine, University of California, San Diego, La Jolla, California 92093-0687
| | - Ken Kitajima
- From the Bioscience and Biotechnology Center and School of Bioagricultural Sciences, Nagoya University, Nagoya, 464-8601, Japan,
| | - Chihiro Sato
- From the Bioscience and Biotechnology Center and School of Bioagricultural Sciences, Nagoya University, Nagoya, 464-8601, Japan,
| |
Collapse
|
134
|
Grozovsky R, Giannini S, Falet H, Hoffmeister K. Molecular mechanisms regulating platelet clearance and thrombopoietin production. ACTA ACUST UNITED AC 2015. [DOI: 10.1111/voxs.12144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- R. Grozovsky
- Division of Hematology; Department of Medicine; Brigham and Women's Hospital and Harvard Medical School; Boston MA USA
| | - S. Giannini
- Division of Hematology; Department of Medicine; Brigham and Women's Hospital and Harvard Medical School; Boston MA USA
| | - H. Falet
- Division of Hematology; Department of Medicine; Brigham and Women's Hospital and Harvard Medical School; Boston MA USA
| | - K.M. Hoffmeister
- Division of Hematology; Department of Medicine; Brigham and Women's Hospital and Harvard Medical School; Boston MA USA
| |
Collapse
|
135
|
Chen Y, Ge J, Ruan M, Zhu L, Xie Y, Xia R, Ni H, Zeng Q. [Study on the relationship of platelet specific-autoantibodies with therapeutic outcomes by dexamethasone in immune thrombocytopenia purpura]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2015; 36:202-5. [PMID: 25854462 PMCID: PMC7342518 DOI: 10.3760/cma.j.issn.0253-2727.2015.03.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Indexed: 11/10/2022]
Abstract
OBJECTIVE To investigate the different outcomes by dexamethasone in adults immune thrombocytopenia purpura (ITP) with different types of platelet specific-autoantibodies. METHODS A total of 185 ITP were enrolled, 61 males and 124 females, with a median age of 42 (18-83) years, including 117 newly diagnosed, 35 persistent, and 33 chronic cases. All the patients received the dexamethasone at an initial dose of 40 mg per day for 4 days and a low dose of 5-10 mg for 3-4 weeks. The platelet specific-autoantibodies were identified by the modified monoclonal antibody-specific immobilization of platelet antigen (MAIPA) assay. RESULTS Among the IgG positive patients, the response rates in anti-GPIIb/IIIa antibody, anti-GPIbα antibody, both antibody positive, and both antibody negative were 87.5%, 50.0%, 68.0%, and 72.3% (χ²=11.489, P<0.05), respectively. Among the IgM positive patients, the response rates in the four groups were 82.1%, 71.4%, 61.9%, and 68.9% (χ²=2.719, P=0.437), respectively. Among the GPIbα antibody positive patients, the response rates in IgG alone, IgM alone, both positive, and both negative were 52.4%, 59.1%, 76.1%, and 77.9% (χ²=10.811, P<0.05), respectively. Among the GPIIb/IIIa antibody positive patients, the response rates in the four groups were 73.3%, 71.0%, 78.6%, and 66.3% (χ²=1.374, P=0.719), respectively. CONCLUSION ITP patients with GPIbα-IgG antibody have worse response to dexamethasone treatment.
Collapse
Affiliation(s)
- Yang Chen
- Department of Hematology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Jian Ge
- Department of Hematology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Min Ruan
- Department of Hematology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Lingyan Zhu
- Department of Hematology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Yanyan Xie
- Department of Hematology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Ruixiang Xia
- Department of Hematology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Heyu Ni
- Department of Hematology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Qingshu Zeng
- Department of Hematology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| |
Collapse
|
136
|
Grozovsky R, Begonja AJ, Liu K, Visner G, Hartwig JH, Falet H, Hoffmeister KM. The Ashwell-Morell receptor regulates hepatic thrombopoietin production via JAK2-STAT3 signaling. Nat Med 2015; 21:47-54. [PMID: 25485912 PMCID: PMC4303234 DOI: 10.1038/nm.3770] [Citation(s) in RCA: 222] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Accepted: 11/07/2014] [Indexed: 02/07/2023]
Abstract
The hepatic Ashwell-Morell receptor (AMR) can bind and remove desialylated platelets. Here we demonstrate that platelets become desialylated as they circulate and age in blood. Binding of desialylated platelets to the AMR induces hepatic expression of thrombopoietin (TPO) mRNA and protein, thereby regulating platelet production. Endocytic AMR controls TPO expression through Janus kinase 2 (JAK2) and the acute phase response signal transducer and activator of transcription 3 (STAT3) in vivo and in vitro. Recognition of this newly identified physiological feedback mechanism illuminates the pathophysiology of platelet diseases, such as essential thrombocythemia and immune thrombocytopenia, and contributes to an understanding of the mechanisms of thrombocytopenia observed with JAK1/2 inhibition.
Collapse
Affiliation(s)
- Renata Grozovsky
- Division of Hematology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Antonija Jurak Begonja
- Division of Hematology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Kaifeng Liu
- Division of Pulmonary and Respiratory Diseases, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Gary Visner
- Division of Pulmonary and Respiratory Diseases, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - John H Hartwig
- Division of Hematology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Hervé Falet
- Division of Hematology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Karin M Hoffmeister
- Division of Hematology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
137
|
Berndt MC, Metharom P, Andrews RK. Primary haemostasis: newer insights. Haemophilia 2014; 20 Suppl 4:15-22. [PMID: 24762270 DOI: 10.1111/hae.12427] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/06/2014] [Indexed: 12/18/2022]
Abstract
At the same time as biophysical and omics approaches are drilling deeper into the molecular details of platelets and other blood cells, as well as their receptors and mechanisms of regulation, there is also an increasing awareness of the functional overlap between human vascular systems. Together, these studies are redefining the intricate networks linking haemostasis and thrombosis with inflammation, infectious disease, cancer/metastasis and other vascular pathophysiology. The focus of this state-of-the-art review is some of the newer advances relevant to primary haemostasis. Of particular interest, platelet-specific primary adhesion-signalling receptors and associated activation pathways control platelet function in flowing blood and provide molecular links to other systems. Platelet glycoprotein (GP)Ibα of the GPIb-IX-V complex and GPVI not only initiate platelet aggregation and thrombus formation by primary interactions with von Willebrand factor and collagen, respectively, but are also involved in coagulation, leucocyte engagement, bacterial or viral interactions, and are relevant as potential risk markers in a range of human diseases. Understanding these systems in unprecedented detail promises significant advances in evaluation of individual risk, in new diagnostic or therapeutic possibilities and in monitoring the response to drugs or other treatment.
Collapse
Affiliation(s)
- M C Berndt
- Faculty of Health Sciences, Curtin University, Perth, Western Australia, Australia
| | | | | |
Collapse
|
138
|
Wagner SJ, Skripchenko A, Seetharaman S, Kurtz J. Amelioration of lesions associated with 24-hour suboptimal platelet storage at 16 °C by a p38MAPK inhibitor, VX-702. Vox Sang 2014; 108:226-32. [PMID: 25471280 DOI: 10.1111/vox.12221] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Revised: 09/29/2014] [Accepted: 10/16/2014] [Indexed: 11/27/2022]
Abstract
BACKGROUND AND OBJECTIVES Previous studies with p38MAPK inhibitors at room temperature demonstrated that they improve a large number of platelet storage parameters, but cannot substantially inhibit p38MAPK activation nor protect against widespread decrements in platelet quality parameters during 4 °C storage. In this study, platelet quality parameters and inhibition of p38MAPK by VX-702 were studied after incubation of platelets at 16 °C without agitation, suboptimal storage conditions which produce moderate platelet decrements. MATERIALS AND METHODS Trima apheresis units were collected and aliquoted into three 60-ml CLX storage bags: (i) a control aliquot which was held at 20-24 °C with constant agitation; (ii) a test aliquot which was held at 20-24 °C with agitation until Day 2, when it was reincubated at 16 ± 1 °C for 24 ± 0·5 h without agitation and then returned 20-24 °C with agitation; (iii) a test aliquot containing 1 μm VX-702 stored in an identical fashion as aliquot 2. Aliquots were tested for an array of platelet storage parameters and p38MAPK activation on Days 1, 4 and 7. RESULTS Many platelet storage parameters and p38MAPK activation were adversely affected by 24-h incubation at 16 °C without agitation. With the exception of ESC, addition of VX-702 prevented p38MAPK activation and the decrements in most observed parameters. CONCLUSION Unlike 4 °C storage, VX-702 prevents activation of p38MAPK and decrements in many platelet storage parameters after exposure to 16 °C without agitation for 24 h.
Collapse
Affiliation(s)
- S J Wagner
- Blood Components Department, American Red Cross Holland Laboratory, Rockville, MD, USA
| | | | | | | |
Collapse
|
139
|
Kawecki C, Hézard N, Bocquet O, Poitevin G, Rabenoelina F, Kauskot A, Duca L, Blaise S, Romier B, Martiny L, Nguyen P, Debelle L, Maurice P. Elastin-derived peptides are new regulators of thrombosis. Arterioscler Thromb Vasc Biol 2014; 34:2570-8. [PMID: 25341794 DOI: 10.1161/atvbaha.114.304432] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Elastin is the major structural extracellular matrix component of the arterial wall that provides the elastic recoil properties and resilience essential for proper vascular function. Elastin-derived peptides (EDP) originating from elastin fragmentation during vascular remodeling have been shown to play an important role in cell physiology and development of cardiovascular diseases. However, their involvement in thrombosis has been unexplored to date. In this study, we investigated the effects of EDP on (1) platelet aggregation and related signaling and (2) thrombus formation. We also characterized the mechanism by which EDP regulate thrombosis. APPROACH AND RESULTS We show that EDP, derived from organo-alkaline hydrolysate of bovine insoluble elastin (kappa-elastin), decrease human platelet aggregation in whole blood induced by weak and strong agonists, such as ADP, epinephrine, arachidonic acid, collagen, TRAP, and U46619. In a mouse whole blood perfusion assay over a collagen matrix, kappa-elastin and VGVAPG, the canonical peptide recognizing the elastin receptor complex, significantly decrease thrombus formation under arterial shear conditions. We confirmed these results in vivo by demonstrating that both kappa-elastin and VGVAPG significantly prolonged the time for complete arteriole occlusion in a mouse model of thrombosis and increased tail bleeding times. Finally, we demonstrate that the regulatory role of EDP on thrombosis relies on platelets that express a functional elastin receptor complex and on the ability of EDP to disrupt plasma von Willebrand factor interaction with collagen. CONCLUSIONS These results highlight the complex nature of the mechanisms governing thrombus formation and reveal an unsuspected regulatory role for circulating EDP in thrombosis.
Collapse
Affiliation(s)
- Charlotte Kawecki
- From the URCA, CNRS UMR 7369 (Matrice Extracellulaire et Dynamique Cellulaire, MEDyC), laboratoire SiRMa, UFR Sciences Exactes et Naturelles, Reims, France (C.K., O.B., F.R., L. Ducca, S.B., B.R., L.M., L. Debelle, P.M.); EA3801, Hémostase et remodelage vasculaire post-ischémique (HERVI), UFR de Médecine, Reims, France (N.H., G.P., P.N.); CHU Reims, Hôpital Robert Debré, Laboratoire d'Hématologie, Reims, France (N.H., P.N.); INSERM UMRS 1140, Université Paris Descartes, Sorbonne Paris Cité, France (A.K.); and INSERM U770, Le Kremlin Bicêtre, Université Paris-Sud, Le Kremlin Bicêtre, France (A.K.)
| | - Nathalie Hézard
- From the URCA, CNRS UMR 7369 (Matrice Extracellulaire et Dynamique Cellulaire, MEDyC), laboratoire SiRMa, UFR Sciences Exactes et Naturelles, Reims, France (C.K., O.B., F.R., L. Ducca, S.B., B.R., L.M., L. Debelle, P.M.); EA3801, Hémostase et remodelage vasculaire post-ischémique (HERVI), UFR de Médecine, Reims, France (N.H., G.P., P.N.); CHU Reims, Hôpital Robert Debré, Laboratoire d'Hématologie, Reims, France (N.H., P.N.); INSERM UMRS 1140, Université Paris Descartes, Sorbonne Paris Cité, France (A.K.); and INSERM U770, Le Kremlin Bicêtre, Université Paris-Sud, Le Kremlin Bicêtre, France (A.K.)
| | - Olivier Bocquet
- From the URCA, CNRS UMR 7369 (Matrice Extracellulaire et Dynamique Cellulaire, MEDyC), laboratoire SiRMa, UFR Sciences Exactes et Naturelles, Reims, France (C.K., O.B., F.R., L. Ducca, S.B., B.R., L.M., L. Debelle, P.M.); EA3801, Hémostase et remodelage vasculaire post-ischémique (HERVI), UFR de Médecine, Reims, France (N.H., G.P., P.N.); CHU Reims, Hôpital Robert Debré, Laboratoire d'Hématologie, Reims, France (N.H., P.N.); INSERM UMRS 1140, Université Paris Descartes, Sorbonne Paris Cité, France (A.K.); and INSERM U770, Le Kremlin Bicêtre, Université Paris-Sud, Le Kremlin Bicêtre, France (A.K.)
| | - Gaël Poitevin
- From the URCA, CNRS UMR 7369 (Matrice Extracellulaire et Dynamique Cellulaire, MEDyC), laboratoire SiRMa, UFR Sciences Exactes et Naturelles, Reims, France (C.K., O.B., F.R., L. Ducca, S.B., B.R., L.M., L. Debelle, P.M.); EA3801, Hémostase et remodelage vasculaire post-ischémique (HERVI), UFR de Médecine, Reims, France (N.H., G.P., P.N.); CHU Reims, Hôpital Robert Debré, Laboratoire d'Hématologie, Reims, France (N.H., P.N.); INSERM UMRS 1140, Université Paris Descartes, Sorbonne Paris Cité, France (A.K.); and INSERM U770, Le Kremlin Bicêtre, Université Paris-Sud, Le Kremlin Bicêtre, France (A.K.)
| | - Fanja Rabenoelina
- From the URCA, CNRS UMR 7369 (Matrice Extracellulaire et Dynamique Cellulaire, MEDyC), laboratoire SiRMa, UFR Sciences Exactes et Naturelles, Reims, France (C.K., O.B., F.R., L. Ducca, S.B., B.R., L.M., L. Debelle, P.M.); EA3801, Hémostase et remodelage vasculaire post-ischémique (HERVI), UFR de Médecine, Reims, France (N.H., G.P., P.N.); CHU Reims, Hôpital Robert Debré, Laboratoire d'Hématologie, Reims, France (N.H., P.N.); INSERM UMRS 1140, Université Paris Descartes, Sorbonne Paris Cité, France (A.K.); and INSERM U770, Le Kremlin Bicêtre, Université Paris-Sud, Le Kremlin Bicêtre, France (A.K.)
| | - Alexandre Kauskot
- From the URCA, CNRS UMR 7369 (Matrice Extracellulaire et Dynamique Cellulaire, MEDyC), laboratoire SiRMa, UFR Sciences Exactes et Naturelles, Reims, France (C.K., O.B., F.R., L. Ducca, S.B., B.R., L.M., L. Debelle, P.M.); EA3801, Hémostase et remodelage vasculaire post-ischémique (HERVI), UFR de Médecine, Reims, France (N.H., G.P., P.N.); CHU Reims, Hôpital Robert Debré, Laboratoire d'Hématologie, Reims, France (N.H., P.N.); INSERM UMRS 1140, Université Paris Descartes, Sorbonne Paris Cité, France (A.K.); and INSERM U770, Le Kremlin Bicêtre, Université Paris-Sud, Le Kremlin Bicêtre, France (A.K.)
| | - Laurent Duca
- From the URCA, CNRS UMR 7369 (Matrice Extracellulaire et Dynamique Cellulaire, MEDyC), laboratoire SiRMa, UFR Sciences Exactes et Naturelles, Reims, France (C.K., O.B., F.R., L. Ducca, S.B., B.R., L.M., L. Debelle, P.M.); EA3801, Hémostase et remodelage vasculaire post-ischémique (HERVI), UFR de Médecine, Reims, France (N.H., G.P., P.N.); CHU Reims, Hôpital Robert Debré, Laboratoire d'Hématologie, Reims, France (N.H., P.N.); INSERM UMRS 1140, Université Paris Descartes, Sorbonne Paris Cité, France (A.K.); and INSERM U770, Le Kremlin Bicêtre, Université Paris-Sud, Le Kremlin Bicêtre, France (A.K.)
| | - Sébastien Blaise
- From the URCA, CNRS UMR 7369 (Matrice Extracellulaire et Dynamique Cellulaire, MEDyC), laboratoire SiRMa, UFR Sciences Exactes et Naturelles, Reims, France (C.K., O.B., F.R., L. Ducca, S.B., B.R., L.M., L. Debelle, P.M.); EA3801, Hémostase et remodelage vasculaire post-ischémique (HERVI), UFR de Médecine, Reims, France (N.H., G.P., P.N.); CHU Reims, Hôpital Robert Debré, Laboratoire d'Hématologie, Reims, France (N.H., P.N.); INSERM UMRS 1140, Université Paris Descartes, Sorbonne Paris Cité, France (A.K.); and INSERM U770, Le Kremlin Bicêtre, Université Paris-Sud, Le Kremlin Bicêtre, France (A.K.)
| | - Béatrice Romier
- From the URCA, CNRS UMR 7369 (Matrice Extracellulaire et Dynamique Cellulaire, MEDyC), laboratoire SiRMa, UFR Sciences Exactes et Naturelles, Reims, France (C.K., O.B., F.R., L. Ducca, S.B., B.R., L.M., L. Debelle, P.M.); EA3801, Hémostase et remodelage vasculaire post-ischémique (HERVI), UFR de Médecine, Reims, France (N.H., G.P., P.N.); CHU Reims, Hôpital Robert Debré, Laboratoire d'Hématologie, Reims, France (N.H., P.N.); INSERM UMRS 1140, Université Paris Descartes, Sorbonne Paris Cité, France (A.K.); and INSERM U770, Le Kremlin Bicêtre, Université Paris-Sud, Le Kremlin Bicêtre, France (A.K.)
| | - Laurent Martiny
- From the URCA, CNRS UMR 7369 (Matrice Extracellulaire et Dynamique Cellulaire, MEDyC), laboratoire SiRMa, UFR Sciences Exactes et Naturelles, Reims, France (C.K., O.B., F.R., L. Ducca, S.B., B.R., L.M., L. Debelle, P.M.); EA3801, Hémostase et remodelage vasculaire post-ischémique (HERVI), UFR de Médecine, Reims, France (N.H., G.P., P.N.); CHU Reims, Hôpital Robert Debré, Laboratoire d'Hématologie, Reims, France (N.H., P.N.); INSERM UMRS 1140, Université Paris Descartes, Sorbonne Paris Cité, France (A.K.); and INSERM U770, Le Kremlin Bicêtre, Université Paris-Sud, Le Kremlin Bicêtre, France (A.K.)
| | - Philippe Nguyen
- From the URCA, CNRS UMR 7369 (Matrice Extracellulaire et Dynamique Cellulaire, MEDyC), laboratoire SiRMa, UFR Sciences Exactes et Naturelles, Reims, France (C.K., O.B., F.R., L. Ducca, S.B., B.R., L.M., L. Debelle, P.M.); EA3801, Hémostase et remodelage vasculaire post-ischémique (HERVI), UFR de Médecine, Reims, France (N.H., G.P., P.N.); CHU Reims, Hôpital Robert Debré, Laboratoire d'Hématologie, Reims, France (N.H., P.N.); INSERM UMRS 1140, Université Paris Descartes, Sorbonne Paris Cité, France (A.K.); and INSERM U770, Le Kremlin Bicêtre, Université Paris-Sud, Le Kremlin Bicêtre, France (A.K.)
| | - Laurent Debelle
- From the URCA, CNRS UMR 7369 (Matrice Extracellulaire et Dynamique Cellulaire, MEDyC), laboratoire SiRMa, UFR Sciences Exactes et Naturelles, Reims, France (C.K., O.B., F.R., L. Ducca, S.B., B.R., L.M., L. Debelle, P.M.); EA3801, Hémostase et remodelage vasculaire post-ischémique (HERVI), UFR de Médecine, Reims, France (N.H., G.P., P.N.); CHU Reims, Hôpital Robert Debré, Laboratoire d'Hématologie, Reims, France (N.H., P.N.); INSERM UMRS 1140, Université Paris Descartes, Sorbonne Paris Cité, France (A.K.); and INSERM U770, Le Kremlin Bicêtre, Université Paris-Sud, Le Kremlin Bicêtre, France (A.K.)
| | - Pascal Maurice
- From the URCA, CNRS UMR 7369 (Matrice Extracellulaire et Dynamique Cellulaire, MEDyC), laboratoire SiRMa, UFR Sciences Exactes et Naturelles, Reims, France (C.K., O.B., F.R., L. Ducca, S.B., B.R., L.M., L. Debelle, P.M.); EA3801, Hémostase et remodelage vasculaire post-ischémique (HERVI), UFR de Médecine, Reims, France (N.H., G.P., P.N.); CHU Reims, Hôpital Robert Debré, Laboratoire d'Hématologie, Reims, France (N.H., P.N.); INSERM UMRS 1140, Université Paris Descartes, Sorbonne Paris Cité, France (A.K.); and INSERM U770, Le Kremlin Bicêtre, Université Paris-Sud, Le Kremlin Bicêtre, France (A.K.).
| |
Collapse
|
140
|
Yan R, Chen M, Ma N, Zhao L, Cao L, Zhang Y, Zhang J, Yu Z, Wang Z, Xia L, Ruan C, Dai K. Glycoprotein Ibα clustering induces macrophage-mediated platelet clearance in the liver. Thromb Haemost 2014; 113:107-17. [PMID: 25231551 DOI: 10.1160/th14-03-0217] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Accepted: 08/07/2014] [Indexed: 11/05/2022]
Abstract
Many immune thrombocytopenia (ITP) patients, particularly patients with anti-glycoprotein (GP) Ib-IX autoantibodies, do not respond to the conventional treatments such as splenectomy. However, the underlying mechanism remains unclear. Here we found that anti-GPIbα N-terminus antibody AN51, but not other anti-GPIbα antibodies (AK2, HIP1, VM16d, or WM23), induced GPIbα clustering that led to integrin αIIbβ3-dependent platelet aggregation. After intravenous injection, AN51 dose-dependently induced thrombocytopenia in guinea pigs, and the platelets were mainly removed by macrophages in the liver. N-acetyl-D-glucosamine, previously shown to inhibit integrin αMβ2-mediated phagocytosis of refrigerated platelets, dose-dependently inhibited AN51-induced platelet clearance. Furthermore, AN51 but not VM16d, induced rapid platelet clearance in the liver of cynomolgus macaques. Five of 22 chronic ITP patients had anti-GPIbα autoantibodies, and the autoantibodies from four of the five patients competed with AN51 for binding to platelets. These data indicate that GPIbα clustering induced by anti-GPIbα N-terminus antibody causes integrin αIIbβ3-dependent platelet aggregation, phagocytosis, and rapid platelet clearance in the liver. Our findings reveal a novel Fc-independent mechanism underlying the pathogenesis of ITP, and suggest new therapeutic strategies for ITP patients with anti-GPIbα autoantibodies.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Kesheng Dai
- Kesheng Dai, Jiangsu Institute of Haematology, The First Affiliated Hospital of Soochow University, Collaborative Innovation Center of Haematology, Key Laboratory of Thrombosis and Haemostasis, Ministry of Health, Suzhou, 215006 China, Tel./Fax: + 86 512 67781370, E-mail:
| |
Collapse
|
141
|
Kaiser-Guignard J, Canellini G, Lion N, Abonnenc M, Osselaer JC, Tissot JD. The clinical and biological impact of new pathogen inactivation technologies on platelet concentrates. Blood Rev 2014; 28:235-41. [PMID: 25192602 DOI: 10.1016/j.blre.2014.07.005] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Accepted: 07/14/2014] [Indexed: 01/01/2023]
Abstract
Since 1990, several techniques have been developed to photochemically inactivate pathogens in platelet concentrates, potentially leading to safer transfusion therapy. The three most common methods are amotosalen/UVA (INTERCEPT Blood System), riboflavin/UVA-UVB (MIRASOL PRT), and UVC (Theraflex-UV). We review the biology of pathogen inactivation methods, present their efficacy in reducing pathogens, discuss their impact on the functional aspects of treated platelets, and review clinical studies showing the clinical efficiency of the pathogen inactivation methods and their possible toxicity.
Collapse
Affiliation(s)
| | - Giorgia Canellini
- Service régional vaudois de transfusion, Route de la Corniche 2, 1066 Epalinges, Switzerland.
| | - Niels Lion
- Service régional vaudois de transfusion, Route de la Corniche 2, 1066 Epalinges, Switzerland.
| | - Mélanie Abonnenc
- Service régional vaudois de transfusion, Route de la Corniche 2, 1066 Epalinges, Switzerland.
| | - Jean-Claude Osselaer
- Service régional vaudois de transfusion, Route de la Corniche 2, 1066 Epalinges, Switzerland.
| | - Jean-Daniel Tissot
- Service régional vaudois de transfusion, Route de la Corniche 2, 1066 Epalinges, Switzerland.
| |
Collapse
|
142
|
Skripchenko A, Thompson-Montgomery D, Awatefe H, Turgeon A, Wagner SJ. Addition of sialidase or p38 MAPK inhibitors does not ameliorate decrements in platelet in vitro storage properties caused by 4 °C storage. Vox Sang 2014; 107:360-7. [PMID: 24976248 DOI: 10.1111/vox.12174] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 05/09/2014] [Accepted: 06/02/2014] [Indexed: 11/28/2022]
Abstract
BACKGROUND AND OBJECTIVES Bacterial proliferation is inhibited in platelets (PLTs) stored at refrigerated temperatures, but also dramatically decreases PLT in vivo survival. Recent studies have demonstrated that cold temperature (CT) stored PLTs secrete sialidases upon re-warming, removing sialic acid from the PLT surface, which may be responsible for clustering of GPIbα and PLT clearance from circulation. In this study, the influence of a sialidase inhibitor or a p38 MAP kinase inhibitor was evaluated in units stored at 4 °C. MATERIALS AND METHODS After collection of a single Trima apheresis unit (n = 12), PLTs were aliquoted into four 60-ml CLX storage bags. One bag was stored at 20-24 °C (RT) with continuous agitation; a second bag was stored at 4 °C without agitation; a third bag was held at 4 °C without agitation with sialidase inhibitor, a fourth bag was incubated at 4 °C with a p38 MAPK inhibitor without agitation. RESULTS Beginning from Day 1, all in vitro PLT parameters were adversely affected by CT compared to those of RT. Similar in vitro storage properties were observed in CT PLT in the presence or absence of sialidase or p38 MAPK inhibitors. P38 MAPK phosphorylation inhibition was not observed at CT. Decrease of sialidase activity was observed for 2 days in PLTs stored in additive solution but not in plasma. CONCLUSION Addition of either sialidase or p38 MAPK inhibitors do not improve any in vitro parameters of PLTs stored at 4 °C in 100% plasma.
Collapse
Affiliation(s)
- A Skripchenko
- American Red Cross Biomedical Services, Holland Laboratory, Rockville, MD, USA
| | | | | | | | | |
Collapse
|
143
|
Platelet receptor expression and shedding: glycoprotein Ib-IX-V and glycoprotein VI. Transfus Med Rev 2014; 28:56-60. [PMID: 24674813 DOI: 10.1016/j.tmrv.2014.03.001] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Revised: 03/04/2014] [Accepted: 03/04/2014] [Indexed: 01/13/2023]
Abstract
Quantity, quality, and lifespan are 3 important factors in the physiology, pathology, and transfusion of human blood platelets. The aim of this review is to discuss the proteolytic regulation of key platelet-specific receptors, glycoprotein(GP)Ib and GPVI, involved in the function of platelets in hemostasis and thrombosis, and nonimmune or immune thrombocytopenia. The scope of the review encompasses the basic science of platelet receptor shedding, practical aspects related to laboratory analysis of platelet receptor expression/shedding, and clinical implications of using the proteolytic fragments as platelet-specific biomarkers in vivo in terms of platelet function and clearance. These topics can be relevant to platelet transfusion regarding both changes in platelet receptor expression occurring ex vivo during platelet storage and/or clinical use of platelets for transfusion. In this regard, quantitative analysis of platelet receptor profiles on blood samples from individuals could ultimately enable stratification of bleeding risk, discrimination between causes of thrombocytopenia due to impaired production vs enhanced clearance, and monitoring of response to treatment prior to change in platelet count.
Collapse
|
144
|
Proteomic analysis of platelet N-glycoproteins in PMM2-CDG patients. Thromb Res 2014; 133:412-7. [DOI: 10.1016/j.thromres.2013.12.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Revised: 11/20/2013] [Accepted: 12/17/2013] [Indexed: 01/15/2023]
|
145
|
Li J, Callum JL, Lin Y, Zhou Y, Zhu G, Ni H. Severe platelet desialylation in a patient with glycoprotein Ib/IX antibody-mediated immune thrombocytopenia and fatal pulmonary hemorrhage. Haematologica 2014; 99:e61-3. [PMID: 24532041 DOI: 10.3324/haematol.2013.102897] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
146
|
Di Michele M, Van Geet C, Freson K. Recent advances in platelet proteomics. Expert Rev Proteomics 2014; 9:451-66. [DOI: 10.1586/epr.12.31] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
147
|
Albohy A, Zhang Y, Smutova V, Pshezhetsky AV, Cairo CW. Identification of Selective Nanomolar Inhibitors of the Human Neuraminidase, NEU4. ACS Med Chem Lett 2013; 4:532-7. [PMID: 24900705 DOI: 10.1021/ml400080t] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Accepted: 04/26/2013] [Indexed: 12/31/2022] Open
Abstract
The human neuraminidase enzymes (hNEU) play important roles in human physiology and pathology. The lack of potent and selective inhibitors toward these enzymes has limited our understanding of their function and the development of therapeutic applications. Here we report the evaluation of a panel of compounds against the four human neuraminidase isoenzymes. Among the compounds tested, we identified the first selective, nanomolar inhibitors of the human neuraminidase 4 enzyme (NEU4). The most potent NEU4 inhibitor (5-acetamido-9-[4-hydroxymethyl[1,2,3]triazol-1-yl]-2,3,5,9-tetradeoxy-d-glycero-d-galacto-2-nonulopyranosonic acid) was found to have an inhibitory constant (K i ) of 30 ± 19 nM and was 500-fold selective for its target over the other hNEU isoenzymes tested in vitro (NEU1, NEU2, and NEU3). This is the first report of any inhibitor of hNEU with nanomolar potency, and this confirms that the 2,3-didehydro-2-deoxy-N-acetylneuraminic acid (DANA) scaffold can be exploited to develop new, potent, and selective inhibitors that target this important family of human enzymes.
Collapse
Affiliation(s)
- Amgad Albohy
- Alberta Glycomics
Center, Department
of Chemistry, University of Alberta, Edmonton
Alberta T6G 2G2, Canada
| | - Yi Zhang
- Alberta Glycomics
Center, Department
of Chemistry, University of Alberta, Edmonton
Alberta T6G 2G2, Canada
| | - Victoria Smutova
- Division of Medical Genetics,
Centre Hospitaliere Universitaire Sainte-Justine, University of Montreal, Montreal, Quebec, Canada, and Department
of Anatomy and Cell Biology, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| | - Alexey V. Pshezhetsky
- Division of Medical Genetics,
Centre Hospitaliere Universitaire Sainte-Justine, University of Montreal, Montreal, Quebec, Canada, and Department
of Anatomy and Cell Biology, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| | - Christopher W. Cairo
- Alberta Glycomics
Center, Department
of Chemistry, University of Alberta, Edmonton
Alberta T6G 2G2, Canada
| |
Collapse
|
148
|
Xu F, Gelderman MP, Farrell J, Vostal JG. Temperature cycling improves in vivo recovery of cold-stored human platelets in a mouse model of transfusion. Transfusion 2013; 53:1178-86. [PMID: 22998069 DOI: 10.1111/j.1537-2995.2012.03896.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Platelet (PLT) storage at room temperature (RT) is limited to 5 days to prevent growth of bacteria, if present, to high levels. Storage in cold temperatures would reduce bacterial proliferation, but cold-exposed PLTs are rapidly cleared from circulation by the hepatic Ashwell-Morell (AM) receptor, which recognizes PLT surface carbohydrates terminated by β-galactose. We cycled storage temperature between 4 and 37°C to preserve PLT function and reduce bacterial growth. STUDY DESIGN AND METHODS Temperature-cycled (TC) human PLTs were stored at 4°C for 12 hours and then incubated at 37°C for 30 minutes before returning back to cold storage. PLTs stored at RT or at 4°C (COLD) or TC for 2, 5, and 7 days were infused into SCID mice and the in vivo recovery was determined at 5, 20, and 60 minutes after transfusion. RESULTS PLTs stored for 2 days in COLD had significantly lower in vivo recoveries than RT PLTs. TC PLTs had improved recoveries over COLD and comparable to RT PLTs. After 5- and 7-day storage, TC PLTs had better recoveries than RT and COLD PLTs. PLT surface β-galactose was increased significantly for both COLD and TC PLTs compared to RT. Blocking of the AM receptor by asialofetuin increased COLD but not TC PLT recovery. CONCLUSION TC cold storage may be an effective method to store PLTs without loss of in vivo recovery. The increased β-galactose exposure in TC PLTs suggests that mechanisms in addition to AM receptors may mediate clearance of cold-stored PLTs.
Collapse
Affiliation(s)
- Fei Xu
- Laboratory of Cellular Hematology, Center for Biologics Evaluation and Research, FDA, Bethesda, Maryland 20852-1448, USA
| | | | | | | |
Collapse
|
149
|
Jagged-1 juxtamembrane region: biochemical characterization and cleavage by ADAM17 (TACE) catalytic domain. Biochem Biophys Res Commun 2013; 432:666-71. [PMID: 23416080 DOI: 10.1016/j.bbrc.2013.02.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Accepted: 02/06/2013] [Indexed: 12/19/2022]
Abstract
Ectodomain shedding of membrane receptors and ligands carried out by ADAMs (A disintegrin and metalloprotease) plays a major role in several signaling pathways, including Notch. The grounds of substrate recognition, however, are poorly understood. We demonstrate that a recombinant protein corresponding to the juxtamembrane region of Jagged-1, one of the Notch ligands, behaves as a structured module and is cleaved by ADAM17 catalytic domain at E1054. A short synthetic peptide is cleaved at the same site but at a much higher rate, implying that the structure of the cleavage site in the native protein is a key determinant for substrate recognition. We also show that an Alagille syndrome-associated mutation near E1054 increases the cleavage rate, which suggests that this mutation may lead to an unbalance in Notch signaling due to a higher level of Jagged-1 shedding.
Collapse
|
150
|
Natala AJ, Balogun EO, Balogun JAB, Inuwa HM, Nok AJ, Shiba T, Harada S, Kita K, Agbede RIS, Esievo KAN. Identification and characterization of sialidase-like activity in the developmental stages of Amblyomma variegatum. JOURNAL OF MEDICAL ENTOMOLOGY 2013; 50:85-93. [PMID: 23427656 DOI: 10.1603/me12152] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Amblyomma variegatum F. are obligate hematophagous ectoparasites of livestock that serve as the vectors of Ehrlichia ruminantium (formerly known as Cowdria ruminantium), the causative agent of heartwater disease. In the light of the fact that they are blood-feeding, their salivary glands play prominent role in their acquisition of nutrients from the bloodmeal. Sialic acids are a major component of glycoprotein in mammalian blood fluid and cells. Sialome of hard ticks is still sparse. Here, for the first time, the possible expression of sialidase in A. variegatum was investigated. Our finding established the presence of type II sialidase-like activity in the three stages (larva, nymph, and adult) of the fed and unfed tick. There was no statistically significant difference in sialidase activity in the various stages of this ectoparasite (P > 0.05). The enzyme was purified by combination of salting out and ion exchange chromatography on DEAE--cellulose and hydroxylapatite columns. Characterization of the enzyme revealed that it is optimally active at 40 degrees C and pH 5.5, and is activated by bivalent cations Zn2+ or Fe2+. The enzyme has a Km of 0.023 mM and Vmax of 0.16 millimol/min with Fetuin as the substrate. To assess the susceptibility of some mammalian cells to the tick sialidase, we prepared erythrocyte ghost cells from different animals, which were incubated with the enzyme. Results revealed that the ruminant cells were better substrates. Our work and findings contribute to the preliminary characterization of the A. variegatum salivary proteome, and may pave way to the development of new acaricides.
Collapse
Affiliation(s)
- Audu J Natala
- Department of Veterinary Parasitology and Entomology, Ahmadu Bello University, Zaria, Nigeria
| | | | | | | | | | | | | | | | | | | |
Collapse
|