101
|
Seys LJM, Verhamme FM, Schinwald A, Hammad H, Cunoosamy DM, Bantsimba-Malanda C, Sabirsh A, McCall E, Flavell L, Herbst R, Provoost S, Lambrecht BN, Joos GF, Brusselle GG, Bracke KR. Role of B Cell-Activating Factor in Chronic Obstructive Pulmonary Disease. Am J Respir Crit Care Med 2015; 192:706-18. [PMID: 26266827 DOI: 10.1164/rccm.201501-0103oc] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
RATIONALE B cell-activating factor (BAFF) plays a major role in activation of B cells and in adaptive humoral immune responses. In chronic obstructive pulmonary disease (COPD), lymphoid follicles have been associated with disease severity, and overexpression of BAFF has been demonstrated within lymphoid follicles of patients with severe COPD. OBJECTIVES To investigate expression and localization of BAFF in the lungs of patients with COPD and to study the role of BAFF in COPD by antagonizing BAFF in a mouse model of chronic cigarette smoke (CS) exposure. METHODS We quantified and localized BAFF expression in lungs of never-smokers, smokers without COPD, and patients with COPD and in lungs of air- or CS-exposed mice by reverse-transcriptase polymerase chain reaction, ELISA, immunohistochemistry, and confocal imaging. Next, to investigate the role of BAFF in COPD, we antagonized BAFF by prophylactic or therapeutic administration of a soluble fusion protein of the BAFF-receptor, BAFFR-Fc, in mice exposed to air or CS for 24 weeks and evaluated several hallmarks of COPD and polarization of lung macrophages. MEASUREMENTS AND MAIN RESULTS BAFF expression was significantly increased in lungs of patients with COPD and CS-exposed mice. BAFF staining in lymphoid follicles was observed around B cells, CD4(+) cells, dendritic cells, follicular dendritic cells, and fibroblastic reticular cells. Prophylactic and therapeutic administration of BAFFR-Fc in mice reduced pulmonary B-cell numbers and prevented CS-induced formation of lymphoid follicles and increases in immunoglobulin levels. Interestingly, prophylactic BAFFR-Fc administration significantly attenuated pulmonary inflammation and destruction of alveolar walls. Moreover, antagonizing BAFF altered the phenotype of alveolar and interstitial macrophages. CONCLUSIONS BAFF is significantly increased in lungs of patients with COPD and is present around both immune and stromal cells within lymphoid follicles. Antagonizing BAFF in CS-exposed mice attenuates pulmonary inflammation and alveolar destruction.
Collapse
Affiliation(s)
- Leen J M Seys
- 1 Laboratory for Translational Research in Obstructive Pulmonary Diseases, Department of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium
| | - Fien M Verhamme
- 1 Laboratory for Translational Research in Obstructive Pulmonary Diseases, Department of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium
| | - Anja Schinwald
- 2 AstraZeneca Respiratory, Inflammation and Autoimmune iMed, Molndal, Sweden
| | - Hamida Hammad
- 3 Laboratory of Immunoregulation and Mucosal Immunity, Department for Molecular Biomedical Research, VIB, Ghent, Belgium.,4 Department of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium
| | | | | | - Alan Sabirsh
- 6 AstraZeneca Cardiovascular and Metabolic Disease iMed, Molndal, Sweden; and
| | - Eileen McCall
- 6 AstraZeneca Cardiovascular and Metabolic Disease iMed, Molndal, Sweden; and
| | - Liz Flavell
- 7 AstraZeneca Discovery Sciences iMed, Alderley Park, United Kingdom
| | - Ronald Herbst
- 5 Department of Research, MedImmune, LLC, Gaithersburg, Maryland
| | - Sharen Provoost
- 1 Laboratory for Translational Research in Obstructive Pulmonary Diseases, Department of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium
| | - Bart N Lambrecht
- 3 Laboratory of Immunoregulation and Mucosal Immunity, Department for Molecular Biomedical Research, VIB, Ghent, Belgium.,4 Department of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium
| | - Guy F Joos
- 1 Laboratory for Translational Research in Obstructive Pulmonary Diseases, Department of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium
| | - Guy G Brusselle
- 1 Laboratory for Translational Research in Obstructive Pulmonary Diseases, Department of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium
| | - Ken R Bracke
- 1 Laboratory for Translational Research in Obstructive Pulmonary Diseases, Department of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium
| |
Collapse
|
102
|
Lee JW, Shin NR, Park JW, Park SY, Kwon OK, Lee HS, Hee Kim J, Lee HJ, Lee J, Zhang ZY, Oh SR, Ahn KS. Callicarpa japonica Thunb. attenuates cigarette smoke-induced neutrophil inflammation and mucus secretion. JOURNAL OF ETHNOPHARMACOLOGY 2015; 175:1-8. [PMID: 26342519 DOI: 10.1016/j.jep.2015.08.056] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Revised: 07/23/2015] [Accepted: 08/30/2015] [Indexed: 06/05/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Callicarpa japonica Thunb. (CJT) is traditionally used as an herbal remedy for the treatment of inflammatory diseases in Korea, China, and Japan. In this study, we evaluated the effects of C. japonica Thunb. (CJT) on the development of COPD using a Cigarette smoke (CS)-induced murine model and cigarette smoke condensate (CSC)-stimulated H292 cells, human pulmonary mucoepidermoid cell line. MATERIAL AND METHODS C. japonica Thunb. was isolated from the leaves and stem of C. japonica. The methanol extract profile was obtained by UPLC Q-TOF-MS analysis. In in vivo experiment, the mice received 1h of cigarette smoke for 10 days. C. japonica Thunb. was administered to mice by oral gavage 1h before cigarette smoke exposure for 10 days. In in vitro experiment, we evaluated the effect of C. japonica Thunb. on the expression of MUC5AC and proinflammatory cytokines in H292 cells stimulated with CSC. RESULTS CJT treatment effectively suppressed the infiltration of neutrophils, and decreased the production of ROS and the activity of neutrophil elastase in the bronchoalveolar lavage fluid (BALF) induced by CS. CJT also significantly attenuated production of proinflammatory cytokines such as IL-6 and TNF-α in the BALF, and reduced the infiltration of inflammatory cells and the production of mucus in lung tissue induced by CS. In in vitro experiments, CJT decreased the expression of MUC5AC and proinflammatory cytokines in CSC-stimulated H292 cells. Furthermore, CJT attenuated the phosphorylation of ERK induced by CSC in H292 cells. Taken together, CJT effectively reduced the neutrophil airway inflammation and mucus secretion induced by CS in murine model, and inhibited the expression of MUC5AC in CSC-stimulated H292 human lung cell line. These findings suggest that CJT has a therapeutic potential for the treatment of COPD.
Collapse
Affiliation(s)
- Jae-Won Lee
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, 30 Yeongudanji-ro, Ochang-eup, Cheongwon-gu, Chungju-si, Chungbuk 363-883, Republic of Korea
| | - Na-Rae Shin
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, 30 Yeongudanji-ro, Ochang-eup, Cheongwon-gu, Chungju-si, Chungbuk 363-883, Republic of Korea
| | - Ji-Won Park
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, 30 Yeongudanji-ro, Ochang-eup, Cheongwon-gu, Chungju-si, Chungbuk 363-883, Republic of Korea; Department of Life Sciences and Biotechnology, Korea University, 5-1 Anam-dong, Sungbuk-gu, Seoul 136-701, Republic of Korea
| | - So-Yeon Park
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, 30 Yeongudanji-ro, Ochang-eup, Cheongwon-gu, Chungju-si, Chungbuk 363-883, Republic of Korea
| | - Ok-Kyoung Kwon
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, 30 Yeongudanji-ro, Ochang-eup, Cheongwon-gu, Chungju-si, Chungbuk 363-883, Republic of Korea
| | - Han-Sol Lee
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, 30 Yeongudanji-ro, Ochang-eup, Cheongwon-gu, Chungju-si, Chungbuk 363-883, Republic of Korea
| | - Jung Hee Kim
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, 30 Yeongudanji-ro, Ochang-eup, Cheongwon-gu, Chungju-si, Chungbuk 363-883, Republic of Korea
| | - Hee Jae Lee
- Department of Pharmacology, College of Medicine, Kangwon National University, Chuncheon, Kangwon 200-701, Republic of Korea
| | - Joongku Lee
- International Biological Material Research Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon 305-806, Republic of Korea
| | - Zhi-yun Zhang
- State Key Labtoratory of Systematic and Evolutionary Botany (LSEB) Institute of Botany, The Chinese Academy of Sciences, 20 Nanxincun, Xiangshan, Beijing 100093, PR China
| | - Sei-Ryang Oh
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, 30 Yeongudanji-ro, Ochang-eup, Cheongwon-gu, Chungju-si, Chungbuk 363-883, Republic of Korea
| | - Kyung-Seop Ahn
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, 30 Yeongudanji-ro, Ochang-eup, Cheongwon-gu, Chungju-si, Chungbuk 363-883, Republic of Korea; Department of Life Sciences and Biotechnology, Korea University, 5-1 Anam-dong, Sungbuk-gu, Seoul 136-701, Republic of Korea; Department of Pharmacology, College of Medicine, Kangwon National University, Chuncheon, Kangwon 200-701, Republic of Korea; International Biological Material Research Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon 305-806, Republic of Korea; State Key Labtoratory of Systematic and Evolutionary Botany (LSEB) Institute of Botany, The Chinese Academy of Sciences, 20 Nanxincun, Xiangshan, Beijing 100093, PR China.
| |
Collapse
|
103
|
Ma J, Xu H, Wu J, Qu C, Sun F, Xu S. Linalool inhibits cigarette smoke-induced lung inflammation by inhibiting NF-κB activation. Int Immunopharmacol 2015; 29:708-713. [PMID: 26432179 DOI: 10.1016/j.intimp.2015.09.005] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Revised: 09/07/2015] [Accepted: 09/09/2015] [Indexed: 10/23/2022]
Abstract
Linalool, a natural compound that exists in the essential oils of several aromatic plants species, has been reported to have anti-inflammatory effects. However, the effects of linalool on cigarette smoke (CS)-induced acute lung inflammation have not been reported. In the present study, we investigated the protective effects of linalool on CS-induced acute lung inflammation in mice. Linalool was given i.p. to mice 2h before CS exposure daily for five consecutive days. The numbers of macrophages and neutrophils in bronchoalveolar lavage fluid (BALF) were measured. The production of TNF-α, IL-6, IL-1β, IL-8 and MCP-1 were detected by ELISA. The expression of NF-κB was detected by Western blotting. Our results showed that treatment of linalool significantly attenuated CS-induced lung inflammation, coupled with inhibited the infiltration of inflammatory cells and TNF-α, IL-6, IL-1β, IL-8 and MCP-1 production. Meanwhile, treatment of linalool inhibited CS-induced lung MPO activity and pathological changes. Furthermore, linalool suppressed CS-induced NF-κB activation in a dose-dependent manner. In conclusion, our results demonstrated that linalool protected against CS-induced lung inflammation through inhibiting CS-induced NF-κB activation.
Collapse
Affiliation(s)
- Jianqun Ma
- Department of Thoracic surgery, Harbin Medical University Cancer Hospital, Harbin, Hei Longjiang Province 150086, PR China
| | - Hai Xu
- Department of Thoracic surgery, Harbin Medical University Cancer Hospital, Harbin, Hei Longjiang Province 150086, PR China; Laboratory of Medical Genetics of Harbin Medical University, Harbin, Hei Longjiang Province 150081, PR China
| | - Jun Wu
- Department of Thoracic surgery, Harbin Medical University Cancer Hospital, Harbin, Hei Longjiang Province 150086, PR China
| | - Changfa Qu
- Department of Thoracic surgery, Harbin Medical University Cancer Hospital, Harbin, Hei Longjiang Province 150086, PR China
| | - Fenglin Sun
- Department of Thoracic surgery, Harbin Medical University Cancer Hospital, Harbin, Hei Longjiang Province 150086, PR China
| | - Shidong Xu
- Department of Thoracic surgery, Harbin Medical University Cancer Hospital, Harbin, Hei Longjiang Province 150086, PR China.
| |
Collapse
|
104
|
Allais L, Kumar S, Debusschere K, Verschuere S, Maes T, De Smet R, Conickx G, De Vos M, Laukens D, Joos GF, Brusselle GG, Elewaut D, Cuvelier CA, Bracke KR. The Effect of Cigarette Smoke Exposure on the Development of Inflammation in Lungs, Gut and Joints of TNFΔARE Mice. PLoS One 2015; 10:e0141570. [PMID: 26523550 PMCID: PMC4629889 DOI: 10.1371/journal.pone.0141570] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 10/10/2015] [Indexed: 12/13/2022] Open
Abstract
The inflammatory cytokine TNF-α is a central mediator in many immune-mediated diseases, such as Crohn’s disease (CD), spondyloarthritis (SpA) and chronic obstructive pulmonary disease (COPD). Epidemiologic studies have shown that cigarette smoking (CS) is a prominent common risk factor in these TNF-dependent diseases. We exposed TNFΔARE mice; in which a systemic TNF-α overexpression leads to the development of inflammation; to 2 or 4 weeks of air or CS. We investigated the effect of deregulated TNF expression on CS-induced pulmonary inflammation and the effect of CS exposure on the initiation and progression of gut and joint inflammation. Upon 2 weeks of CS exposure, inflammation in lungs of TNFΔARE mice was significantly aggravated. However, upon 4 weeks of CS-exposure, this aggravation was no longer observed. TNFΔARE mice have no increases in CD4+ and CD8+ T cells and a diminished neutrophil response in the lungs after 4 weeks of CS exposure. In the gut and joints of TNFΔARE mice, 2 or 4 weeks of CS exposure did not modulate the development of inflammation. In conclusion, CS exposure does not modulate gut and joint inflammation in TNFΔARE mice. The lung responses towards CS in TNFΔARE mice however depend on the duration of CS exposure.
Collapse
Affiliation(s)
- Liesbeth Allais
- Department of Medical and Forensic Pathology, Ghent University, Ghent, Belgium
- * E-mail: ;
| | - Smitha Kumar
- Laboratory for Translational Research in Obstructive Pulmonary diseases, Department of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium
| | - Karlijn Debusschere
- Laboratory for Molecular Immunology and Inflammation, Department of Rheumatology, Ghent University, Ghent, Belgium
- VIB Inflammation Research Center, Ghent University, Ghent, Belgium
| | | | - Tania Maes
- Laboratory for Translational Research in Obstructive Pulmonary diseases, Department of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium
| | - Rebecca De Smet
- Department of Medical and Forensic Pathology, Ghent University, Ghent, Belgium
| | - Griet Conickx
- Laboratory for Translational Research in Obstructive Pulmonary diseases, Department of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium
| | - Martine De Vos
- Department of Gastroenterology, Ghent University, Ghent, Belgium
| | - Debby Laukens
- Department of Gastroenterology, Ghent University, Ghent, Belgium
| | - Guy F. Joos
- Laboratory for Translational Research in Obstructive Pulmonary diseases, Department of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium
| | - Guy G. Brusselle
- Laboratory for Translational Research in Obstructive Pulmonary diseases, Department of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium
| | - Dirk Elewaut
- Laboratory for Molecular Immunology and Inflammation, Department of Rheumatology, Ghent University, Ghent, Belgium
- VIB Inflammation Research Center, Ghent University, Ghent, Belgium
| | - Claude A. Cuvelier
- Department of Medical and Forensic Pathology, Ghent University, Ghent, Belgium
| | - Ken R. Bracke
- Laboratory for Translational Research in Obstructive Pulmonary diseases, Department of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium
- * E-mail: ;
| |
Collapse
|
105
|
Bhat TA, Panzica L, Kalathil SG, Thanavala Y. Immune Dysfunction in Patients with Chronic Obstructive Pulmonary Disease. Ann Am Thorac Soc 2015; 12 Suppl 2:S169-75. [PMID: 26595735 PMCID: PMC4722840 DOI: 10.1513/annalsats.201503-126aw] [Citation(s) in RCA: 130] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 05/27/2015] [Indexed: 01/09/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a complex chronic disease. Chronic inflammation is the hallmark of COPD, involving the interplay of a wide variety of cells in the lung microenvironment. Cigarette smoke (CS) induces chronic lung inflammation and is considered a key etiological factor in the development and pathogenesis of COPD. Structural and inflammatory cells in the lung respond to CS exposure by releasing proinflammatory mediators that recruit additional inflammatory immune cells, which collectively contribute to the establishment of a chronic inflammatory microenvironment. Chronic inflammation contributes to lung damage, compromises innate and adaptive immune responses, and facilitates the recurrent episodes of respiratory infection that punctuate and further contribute to the pathological manifestations of the stable disease. A number of studies support the conclusion that immune dysfunction leads to exacerbations and disease severity in COPD. Our group has clearly demonstrated that CS exacerbates lung inflammation and compromises immunity to respiratory pathogens in a mouse model of COPD. We have also investigated the phenotype of immune cells in patients with COPD compared with healthy control subjects and found extensive immune dysfunction due to the presence and functional activity of T regulatory cells, CD4(+)PD-1(+) exhausted effector T cells and myeloid-derived suppressor cells. Manipulation of these immunosuppressive networks in COPD could provide a rational strategy to restore functional immune responses, reduce exacerbations, and improve lung function. In this review, we discuss the role of immune dysfunction in COPD that may contribute to recurrent respiratory infections and disease severity.
Collapse
Affiliation(s)
- Tariq A Bhat
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, New York
| | - Louis Panzica
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, New York
| | | | - Yasmin Thanavala
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, New York
| |
Collapse
|
106
|
Margaritopoulos GA, Vasarmidi E, Jacob J, Wells AU, Antoniou KM. Smoking and interstitial lung diseases. Eur Respir Rev 2015; 24:428-35. [PMID: 26324804 PMCID: PMC9487692 DOI: 10.1183/16000617.0050-2015] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
For many years has been well known that smoking could cause lung damage. Chronic obstructive pulmonary disease and lung cancer have been the two most common smoking-related lung diseases. In the recent years, attention has also focused on the role of smoking in the development of interstitial lung diseases (ILDs). Indeed, there are three diseases, namely respiratory bronchiolitis-associated ILD, desquamative interstitial pneumonia and pulmonary Langerhans cell histiocytosis, that are currently considered aetiologically linked to smoking and a few others which are more likely to develop in smokers. Here, we aim to focus on the most recent findings regarding the role of smoking in the pathogenesis and clinical behaviour of ILDs. Smoking is implicated in the pathogenesis and clinical behaviour of interstitial lung diseasehttp://ow.ly/PYLcT
Collapse
|
107
|
Allais L, Kerckhof FM, Verschuere S, Bracke KR, De Smet R, Laukens D, Van den Abbeele P, De Vos M, Boon N, Brusselle GG, Cuvelier CA, Van de Wiele T. Chronic cigarette smoke exposure induces microbial and inflammatory shifts and mucin changes in the murine gut. Environ Microbiol 2015; 18:1352-63. [PMID: 26033517 DOI: 10.1111/1462-2920.12934] [Citation(s) in RCA: 139] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 05/28/2015] [Indexed: 12/21/2022]
Abstract
Inflammatory bowel diseases (IBD) are complex multifactorial diseases characterized by an inappropriate host response to an altered commensal microbiome and dysfunctional mucus barrier. Cigarette smoking is the best known environmental risk factor in IBD. Here, we studied the influence of chronic smoke exposure on the gut microbiome, mucus layer composition and immune factors in conventional mice. We compared smoke-exposed with air-exposed mice (n = 12) after a smoke exposure of 24 weeks. Both Illumina sequencing (n = 6) and denaturing gradient gel electrophoresis (n = 12) showed that bacterial activity and community structure were significantly altered in the colon due to smoke exposure. Interestingly, an increase of Lachnospiraceae sp. activity in the colon was observed. Also, the mRNA expression of Muc2 and Muc3 increased in the ileum, whereas Muc4 increased in the distal colon of smoke-exposed mice (n = 6). Furthermore, we observed increased Cxcl2 and decreased Ifn-γ in the ileum, and increased Il-6 and decreased Tgf-β in the proximal colon. Tight junction gene expression remained unchanged. We infer that the modulating role of chronic smoke exposure as a latently present risk factor in the gut may be driven by the altered epithelial mucus profiles and changes in microbiome composition and immune factors.
Collapse
Affiliation(s)
- Liesbeth Allais
- Department of Medical and Forensic Pathology, Ghent University, Ghent, Belgium
| | - Frederiek-Maarten Kerckhof
- Laboratory of Microbial Ecology and Technology (LabMET), Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | | | - Ken R Bracke
- Laboratory for Translational Research in Obstructive Pulmonary Diseases, Department of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium
| | - Rebecca De Smet
- Department of Medical and Forensic Pathology, Ghent University, Ghent, Belgium
| | - Debby Laukens
- Department of Gastroenterology, Ghent University, Ghent, Belgium
| | - Pieter Van den Abbeele
- Laboratory of Microbial Ecology and Technology (LabMET), Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Martine De Vos
- Department of Gastroenterology, Ghent University, Ghent, Belgium
| | - Nico Boon
- Laboratory of Microbial Ecology and Technology (LabMET), Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Guy G Brusselle
- Laboratory for Translational Research in Obstructive Pulmonary Diseases, Department of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium
| | - Claude A Cuvelier
- Department of Medical and Forensic Pathology, Ghent University, Ghent, Belgium
| | - Tom Van de Wiele
- Laboratory of Microbial Ecology and Technology (LabMET), Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| |
Collapse
|
108
|
Lee SE, Yang H, Son GW, Park HR, Jin YH, Park CS, Park YS. Crotonaldehyde-exposed macrophages induce heme oxygenase-1 expression as an adaptive mechanism. Mol Cell Toxicol 2015. [DOI: 10.1007/s13273-015-0015-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
109
|
Krüger K, Dischereit G, Seimetz M, Wilhelm J, Weissmann N, Mooren FC. Time course of cigarette smoke-induced changes of systemic inflammation and muscle structure. Am J Physiol Lung Cell Mol Physiol 2015; 309:L119-28. [PMID: 26001775 DOI: 10.1152/ajplung.00074.2015] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 05/14/2015] [Indexed: 11/22/2022] Open
Abstract
It has become more evident that long-term cigarette smoking (LTCS) has an important extrapulmonary toxicity. The aim of the study was to investigate the time-dependent effects of cigarette smoke exposure on exercise capacity, markers of systemic inflammation, and skeletal muscle structure. c57bl/6j-mice were either exposed to mainstream cigarette smoke for 6 h/day, 5 days/wk [smoke-exposed (SE) group] or assigned to the control, unexposed group (Con group). SE group mice were exposed for 8, 16, 24, and 32 wk to smoke and unexposed Con mice were used as age-matched controls. Exercise capacity was investigated by spiroergometry. Systemic inflammatory status was analyzed by flow cytometry and multiplexed fluorescent immunoassay. For analysis of muscle tissue, histological techniques and microarray analysis were used. Mice of the SE group exhibited a lower increase of body mass and a decrease of V̇o2 max (P < 0.05). An increase of lymphocyte CD62, ICAM, and VCAM expression was found in SE mice (P < 0.05). A biphasic trend of protein up- and downregulation was observed in markers of systemic inflammation, tissue deterioration, and allergic reactions such as C-reactive protein (CRP), eotaxin, haptoglobin, macrophage colony-stimulating factor-1 (M-CSF-1), and macrophage inflammatory protein-1γ (MIP-1γ). Thereby, the expression of several chemotactic proteins in plasma correlated with their expression in muscle. A time-dependent decrease of muscle mass, oxidative type-I fibers, and muscle cross-sectional area was found (P < 0.05). Microarray analysis revealed a SE-induced upregulation of several pathways of metabolic processes and tissue degradation. Taken together it was found that the loss of exercise capacity and systemic inflammation are early events of SE, which might induce muscular atrophy and loss of oxidative muscle capacity.
Collapse
Affiliation(s)
- K Krüger
- Department of Sports Medicine, Justus Liebig-University Giessen, Giessen, Germany; and
| | - G Dischereit
- Department of Sports Medicine, Justus Liebig-University Giessen, Giessen, Germany; and
| | - M Seimetz
- Excellence Cluster Cardio-Pulmonary System, Universities of Giessen and Marburg Lung Center, Member of the German Center for Lung Research, Giessen, Germany
| | - J Wilhelm
- Excellence Cluster Cardio-Pulmonary System, Universities of Giessen and Marburg Lung Center, Member of the German Center for Lung Research, Giessen, Germany
| | - N Weissmann
- Excellence Cluster Cardio-Pulmonary System, Universities of Giessen and Marburg Lung Center, Member of the German Center for Lung Research, Giessen, Germany
| | - F C Mooren
- Department of Sports Medicine, Justus Liebig-University Giessen, Giessen, Germany; and
| |
Collapse
|
110
|
Kurotani R, Shima R, Miyano Y, Sakahara S, Matsumoto Y, Shibata Y, Abe H, Kimura S. SCGB3A2 Inhibits Acrolein-Induced Apoptosis through Decreased p53 Phosphorylation. Acta Histochem Cytochem 2015; 48:61-8. [PMID: 26019375 PMCID: PMC4427566 DOI: 10.1267/ahc.14065] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 03/21/2015] [Indexed: 12/02/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD), a major global health problem with increasing morbidity and mortality rates, is anticipated to become the third leading cause of death worldwide by 2020. COPD arises from exposure to cigarette smoke. Acrolein, which is contained in cigarette smoke, is the most important risk factor for COPD. It causes lung injury through altering apoptosis and causes inflammation by augmenting p53 phosphorylation and producing reactive oxygen species (ROS). Secretoglobin (SCGB) 3A2, a secretory protein predominantly present in the epithelial cells of the lungs and trachea, is a cytokine-like small molecule having anti-inflammatory, antifibrotic, and growth factor activities. In this study, the effect of SCGB3A2 on acrolein-related apoptosis was investigated using the mouse fibroblast cell line MLg as the first step in determining the possible therapeutic value of SCGB3A2 in COPD. Acrolein increased the production of ROS and phosphorylation of p53 and induced apoptosis in MLg cells. While the extent of ROS production induced by acrolein was not affected by SCGB3A2, p53 phosphorylation was significantly decreased by SCGB3A2. These results demonstrate that SCGB3A2 inhibited acrolein-induced apoptosis through decreased p53 phosphorylation, not altered ROS levels.
Collapse
Affiliation(s)
- Reiko Kurotani
- Biochemical Engineering, Graduate School of Science and Engineering, Yamagata University
| | - Reika Shima
- Biochemical Engineering, Graduate School of Science and Engineering, Yamagata University
| | - Yuki Miyano
- Biochemical Engineering, Graduate School of Science and Engineering, Yamagata University
| | - Satoshi Sakahara
- Biochemical Engineering, Graduate School of Science and Engineering, Yamagata University
| | - Yoshie Matsumoto
- Biochemical Engineering, Graduate School of Science and Engineering, Yamagata University
| | - Yoko Shibata
- Department of Cardiology, Pulmonology, and Nephrology, Yamagata University School of Medicine
| | - Hiroyuki Abe
- Biochemical Engineering, Graduate School of Science and Engineering, Yamagata University
| | - Shioko Kimura
- Laboratory of Metabolism, National Cancer Institute, National Institutes of Health
| |
Collapse
|
111
|
Sasaki M, Chubachi S, Kameyama N, Sato M, Haraguchi M, Miyazaki M, Takahashi S, Betsuyaku T. Evaluation of cigarette smoke-induced emphysema in mice using quantitative micro-computed tomography. Am J Physiol Lung Cell Mol Physiol 2015; 308:L1039-45. [PMID: 25820526 DOI: 10.1152/ajplung.00366.2014] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 03/25/2015] [Indexed: 11/22/2022] Open
Abstract
Chronic cigarette smoke (CS) exposure provokes variable changes in the lungs, and emphysema is an important feature of chronic obstructive pulmonary disease. The usefulness of micro-computed tomography (CT) to assess emphysema in different mouse models has been investigated, but few studies evaluated the dynamic structural changes in a CS-induced emphysema mouse model. A novel micro-CT technique with respiratory and cardiac gating has resulted in high-quality images that enable processing for further quantitative and qualitative analyses. Adult female C57BL/6J mice were repeatedly exposed to mainstream CS, and micro-CT scans were performed at 0, 4, 12, and 20 wk. Emphysema was also histologically quantified at each time point. Air-exposed mice and mice treated with intratracheal elastase served as controls and comparisons, respectively. End-expiratory lung volume, corresponding to functional residual volume, was defined as the calculated volume at the phase of end-expiration, and it evaluated air trapping. The end-expiratory lung volumes of CS-exposed mice were significantly larger than those of air controls at 12 and 20 wk, which was in line with alveolar enlargement and destruction by histological quantification. However, CS exposure neither increased low attenuation volume nor decreased the average lung CT value at any time point, unlike the elastase-instilled emphysema model. CS-exposed mice had rather higher average lung CT values at 4 and 12 wk. This is the first study characterizing a CS-induced emphysema model on micro-CT over time in mice. Moreover, these findings extend our understanding of the distinct pathophysiology of CS-induced emphysema in mice.
Collapse
Affiliation(s)
- Mamoru Sasaki
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Shotaro Chubachi
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Naofumi Kameyama
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Minako Sato
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Mizuha Haraguchi
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Masaki Miyazaki
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Saeko Takahashi
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Tomoko Betsuyaku
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
112
|
The receptor for advanced glycation end products (RAGE) contributes to the progression of emphysema in mice. PLoS One 2015; 10:e0118979. [PMID: 25781626 PMCID: PMC4364508 DOI: 10.1371/journal.pone.0118979] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Accepted: 01/27/2015] [Indexed: 01/11/2023] Open
Abstract
Several recent clinical studies have implied a role for the receptor for advanced glycation end products (RAGE) and its variants in chronic obstructive pulmonary disease (COPD). In this study we have defined a role for RAGE in the pathogenesis of emphysema in mice. RAGE deficient mice (RAGE-/-) exposed to chronic cigarette smoke were significantly protected from smoke induced emphysema as determined by airspace enlargement and had no significant reduction in lung tissue elastance when compared to their air exposed controls contrary to their wild type littermates. The progression of emphysema has been largely attributed to an increased inflammatory cell-mediated elastolysis. Acute cigarette smoke exposure in RAGE-/- mice revealed an impaired early recruitment of neutrophils, approximately a 6-fold decrease compared to wild type mice. Hence, impaired neutrophil recruitment with continued cigarette smoke exposure reduces elastolysis and consequent emphysema.
Collapse
|
113
|
Zhou H, Hua W, Jin Y, Zhang C, Che L, Xia L, Zhou J, Chen Z, Li W, Shen H. Tc17 cells are associated with cigarette smoke-induced lung inflammation and emphysema. Respirology 2015; 20:426-33. [PMID: 25677967 DOI: 10.1111/resp.12486] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 09/14/2014] [Accepted: 11/23/2014] [Indexed: 12/21/2022]
Affiliation(s)
- Hongbin Zhou
- Department of Respiratory and Critical Care Medicine; Second Hospital of Zhejiang University School of Medicine; Hangzhou Zhejiang China
| | - Wen Hua
- Department of Respiratory and Critical Care Medicine; Second Hospital of Zhejiang University School of Medicine; Hangzhou Zhejiang China
| | - Yan Jin
- Department of Respiratory and Critical Care Medicine; Second Hospital of Zhejiang University School of Medicine; Hangzhou Zhejiang China
| | - Chao Zhang
- Department of Respiratory and Critical Care Medicine; Second Hospital of Zhejiang University School of Medicine; Hangzhou Zhejiang China
| | - Luanqing Che
- Department of Respiratory and Critical Care Medicine; Second Hospital of Zhejiang University School of Medicine; Hangzhou Zhejiang China
| | - Lixia Xia
- Department of Respiratory and Critical Care Medicine; Second Hospital of Zhejiang University School of Medicine; Hangzhou Zhejiang China
| | - Jiesen Zhou
- Department of Respiratory and Critical Care Medicine; Second Hospital of Zhejiang University School of Medicine; Hangzhou Zhejiang China
| | - Zhihua Chen
- Department of Respiratory and Critical Care Medicine; Second Hospital of Zhejiang University School of Medicine; Hangzhou Zhejiang China
| | - Wen Li
- Department of Respiratory and Critical Care Medicine; Second Hospital of Zhejiang University School of Medicine; Hangzhou Zhejiang China
| | - Huahao Shen
- Department of Respiratory and Critical Care Medicine; Second Hospital of Zhejiang University School of Medicine; Hangzhou Zhejiang China
- State Key Lab of Respiratory Disease; Guangzhou China
| |
Collapse
|
114
|
Yan H, Zhao L, Wu X, Liu H, Wu C, Li Y, Zheng W, Jiang H. Inflammation and pathological damage to the lungs of mice are only partially reversed following smoking cessation on subacute exposure to cigarette smoke. Mol Med Rep 2015; 11:4246-54. [PMID: 25672547 PMCID: PMC4394953 DOI: 10.3892/mmr.2015.3337] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Accepted: 01/21/2015] [Indexed: 02/07/2023] Open
Abstract
The present study aimed to observe the level of inflammation and the number of lesions in the airways and parenchyma of mouse lungs subsequent to smoking cessation following 4 weeks exposure to cigarette smoke. Enlargement of the regional airspaces, deposition of peribronchial collagen fibers and macrophage infiltration were assessed. In addition, the expression levels of matrix metalloproteinase (MMP)‑12 and transforming growth factor (TGF)‑β1 were detected in the airways and lung parenchyma of C57BL/6 J mice. Mice, which were exposed to filtered air for 4 weeks or cigarette smoke for 8 weeks were used as control groups. A 4 week duration of smoke exposure induced the expansion of alveolar spaces ~100 µm from the terminal bronchioles, but without increased deposition of collagen around the small airways, which was not reversed following smoking cessation. Pulmonary infiltration of macrophages and the protein expression levels of MMP‑12 and TGF‑β1 increased in the airways following 4 weeks smoke exposure, however, there was no further increase at 8 weeks, and the expression levels of TGF‑β1 in the lung parenchyma decreased. At 4 weeks post‑smoking cessation, the expression levels of TGF‑β1 in the airways and lung parenchyma returned to normal; whereas, 1 week after smoking cessation, the expression levels of MMP‑12 were higher compared with the normal control group. Subacute exposure to cigarette smoke induced an inflammatory response and regional damage to the lung parenchyma, prior to deposition of collagen around the airways. Following smoking cessation, the pulmonary inflammatory reaction was partially reversed, however, macrophage infiltration and the expression levels of MMP‑12 remained significantly higher compared with the control mice. These results suggested that regulation of the expression of MMP‑12 and TGF‑β1, particularly in the distribution in the airways and lung parenchyma, may be a strategy for the early treatment of chronic obstructive pulmonary disease.
Collapse
Affiliation(s)
- Hengyi Yan
- Department of First Respiratory Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Li Zhao
- Department of First Respiratory Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Xiaojie Wu
- Department of First Respiratory Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Hongbo Liu
- Department of First Respiratory Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Cen Wu
- Department of First Respiratory Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Yu Li
- Department of First Respiratory Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Wei Zheng
- Department of First Respiratory Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Hongfang Jiang
- Department of First Respiratory Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| |
Collapse
|
115
|
Lei L, Zhong XN, He ZY, Zhao C, Sun XJ. IL-21 induction of CD4+ T cell differentiation into Th17 cells contributes to bleomycin-induced fibrosis in mice. Cell Biol Int 2015; 39:388-99. [PMID: 25492803 DOI: 10.1002/cbin.10410] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2014] [Accepted: 10/07/2014] [Indexed: 01/09/2023]
Abstract
Systemic sclerosis (SSc) is a connective tissue disease characterized by fibrosis of the skin and internal organs. Th17 cells and interleukin-17 (also called IL-17A) have been found to be increased in peripheral blood and skin in patients with SSc. IL-21 is a potent inducer of Th17 differentiation that is produced by activated T cells, and whose relationship with Th17 cells in SSc is unclear. Here, using a bleomycin (BLM)-induced mouse model of skin fibrosis, we detected the frequency of CD4+/IL-17+ (Th17) cells, CD4+/IL-21+ T cells and IL-21+ Th17 cells in peripheral blood, skin and lungs, as well as the serum content of IL-17A and IL-21. In addition, we assessed the differentiation of CD4+ T cells cultured from these mice into Th17 cells in response to treatment with IL-21. Compared with the control mice, Th17 cell counts and IL-17A levels were significantly increased and correlated with inflammatory and fibrotic indices in the skin and lungs of the BLM-induced fibrosis mice. Moreover, serum levels of CD4+/IL-21+ T cells, IL-21+ Th17 cells, and IL-21 were significantly increased in these mice, and correlated positively with serum levels of Th17 cells. In vitro experiments showed that IL-21 treated CD4+ T cells derived from BLM-induced mice differentiated into Th17 cells. Our results indicate that Th17 cells and IL-17A contributes to inflammatory and fibrotic processes in the skin and lungs in a BLM-induced mouse model of SSc. Moreover, the expansion of the Th17 cell population may be subsequent to IL-21 promotion of the differentiation of CD4+ T cells in these mice.
Collapse
Affiliation(s)
- Ling Lei
- Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | | | | | | | | |
Collapse
|
116
|
Lei L, He ZY, Zhao C, Sun XJ, Zhong XN. Elevated frequencies of CD4+IL-21+T, CD4+IL-21R+T and IL-21+Th17 cells, and increased levels of IL-21 in bleomycin-induced mice may be associated with dermal and pulmonary inflammation and fibrosis. Int J Rheum Dis 2014; 19:392-404. [PMID: 25545680 DOI: 10.1111/1756-185x.12522] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Ling Lei
- Department of Rheumatology and Clinical Immunology; The First Affiliated Hospital of Guangxi Medical University; Nanning Guangxi China
| | - Zhi-Yi He
- Department of Respiratory Medicine; The First Affiliated Hospital of Guangxi Medical University; Nanning Guangxi China
| | - Cheng Zhao
- Department of Rheumatology and Clinical Immunology; The First Affiliated Hospital of Guangxi Medical University; Nanning Guangxi China
| | - Xue-Jiao Sun
- Department of Respiratory Medicine; The First Affiliated Hospital of Guangxi Medical University; Nanning Guangxi China
| | - Xiao-Ning Zhong
- Department of Respiratory Medicine; The First Affiliated Hospital of Guangxi Medical University; Nanning Guangxi China
| |
Collapse
|
117
|
Polverino F, Doyle-Eisele M, McDonald J, Wilder JA, Royer C, Laucho-Contreras M, Kelly EM, Divo M, Pinto-Plata V, Mauderly J, Celli BR, Tesfaigzi Y, Owen CA. A novel nonhuman primate model of cigarette smoke-induced airway disease. THE AMERICAN JOURNAL OF PATHOLOGY 2014; 185:741-55. [PMID: 25542772 DOI: 10.1016/j.ajpath.2014.11.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Revised: 10/08/2014] [Accepted: 11/04/2014] [Indexed: 12/20/2022]
Abstract
Small animal models of chronic obstructive pulmonary disease (COPD) have several limitations for identifying new therapeutic targets and biomarkers for human COPD. These include a pulmonary anatomy that differs from humans, the limited airway pathologies and lymphoid aggregates that develop in smoke-exposed mice, and the challenges associated with serial biological sampling. Thus, we assessed the utility of cigarette smoke (CS)-exposed cynomolgus macaque as a nonhuman primate (NHP) large animal model of COPD. Twenty-eight NHPs were exposed to air or CS 5 days per week for up to 12 weeks. Bronchoalveolar lavage and pulmonary function tests were performed at intervals. After 12 weeks, we measured airway pathologies, pulmonary inflammation, and airspace enlargement. CS-exposed NHPs developed robust mucus metaplasia, submucosal gland hypertrophy and hyperplasia, airway inflammation, peribronchial fibrosis, and increases in bronchial lymphoid aggregates. Although CS-exposed NHPs did not develop emphysema over the study time, they exhibited pathologies that precede emphysema development, including increases in the following: i) matrix metalloproteinase-9 and proinflammatory mediator levels in bronchoalveolar lavage fluid, ii) lung parenchymal leukocyte counts and lymphoid aggregates, iii) lung oxidative stress levels, and iv) alveolar septal cell apoptosis. CS-exposed NHPs can be used as a model of airway disease occurring in COPD patients. Unlike rodents, NHPs can safely undergo longitudinal sampling, which could be useful for assessing novel biomarkers or therapeutics for COPD.
Collapse
Affiliation(s)
- Francesca Polverino
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts; The Lovelace Respiratory Research Institute, Albuquerque, New Mexico; Pulmonary Department, University of Parma, Parma, Italy
| | | | - Jacob McDonald
- The Lovelace Respiratory Research Institute, Albuquerque, New Mexico
| | - Julie A Wilder
- The Lovelace Respiratory Research Institute, Albuquerque, New Mexico
| | - Christopher Royer
- The Lovelace Respiratory Research Institute, Albuquerque, New Mexico
| | - Maria Laucho-Contreras
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts; The Lovelace Respiratory Research Institute, Albuquerque, New Mexico
| | - Emer M Kelly
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Miguel Divo
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts; The Lovelace Respiratory Research Institute, Albuquerque, New Mexico
| | - Victor Pinto-Plata
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts; The Lovelace Respiratory Research Institute, Albuquerque, New Mexico
| | - Joe Mauderly
- The Lovelace Respiratory Research Institute, Albuquerque, New Mexico
| | - Bartolome R Celli
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts; The Lovelace Respiratory Research Institute, Albuquerque, New Mexico
| | | | - Caroline A Owen
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts; The Lovelace Respiratory Research Institute, Albuquerque, New Mexico.
| |
Collapse
|
118
|
Lee H, Jung KH, Park S, Kil YS, Chung EY, Jang YP, Seo EK, Bae H. Inhibitory effects of Stemona tuberosa on lung inflammation in a subacute cigarette smoke-induced mouse model. Altern Ther Health Med 2014; 14:513. [PMID: 25528348 PMCID: PMC4364599 DOI: 10.1186/1472-6882-14-513] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Accepted: 12/16/2014] [Indexed: 12/18/2022]
Abstract
BACKGROUND Stemona tuberosa has long been used in Korean and Chinese medicine to ameliorate various lung diseases such as pneumonia and bronchitis. However, it has not yet been proven that Stemona tuberosa has positive effects on lung inflammation. METHODS Stemona tuberosa extract (ST) was orally administered to C57BL/6 mice 2 hr before exposure to CS for 2 weeks. Twenty-four hours after the last CS exposure, mice were sacrificed to investigate the changes in the expression of cytokines such as tumor necrosis factor-alpha (TNF-α) and interleukin-6 (IL-6), chemokines such as keratinocyte-derived chemokine (KC) and inflammatory cells such as macrophages, neutrophils, and lymphocytes from bronchoalveolar lavage fluid (BALF). Furthermore, we compared the effect of ST on lung tissue morphology between the fresh air, CS exposure, and ST treatment groups. RESULTS ST significantly decreased the numbers of total cells, macrophages, neutrophils, and lymphocytes in the BALF of mice that were exposed to CS. Additionally, ST reduced the levels of cytokines (TNF-α, IL-6) and the tested chemokine (KC) in BALF, as measured by enzyme-linked immunosorbent assay (ELISA). We also estimated the mean alveolar airspace (MAA) via morphometric analysis of lung tissues stained with hematoxylin and eosin (H&E). We found that ST inhibited the alveolar airspace enlargement induced by CS exposure. Furthermore, we observed that the lung tissues of mice treated with ST showed ameliorated epithelial hyperplasia of the bronchioles compared with those of mice exposed only to CS. CONCLUSIONS These results indicate that Stemona tuberosa has significant effects on lung inflammation in a subacute CS-induced mouse model. According to these outcomes, Stemona tuberosa may represent a novel therapeutic herb for the treatment of lung diseases including COPD.
Collapse
|
119
|
Zuo L, Li Y, Wang H, Wu R, Zhu W, Zhang W, Cao L, Gu L, Gong J, Li N, Li J. Cigarette smoking is associated with intestinal barrier dysfunction in the small intestine but not in the large intestine of mice. J Crohns Colitis 2014; 8:1710-22. [PMID: 25205553 DOI: 10.1016/j.crohns.2014.08.008] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2014] [Revised: 07/23/2014] [Accepted: 08/15/2014] [Indexed: 02/07/2023]
Abstract
AIMS To observe the effect of cigarette smoke (CS) on the small bowel and colon in mice and to attempt to explain the potential mechanisms that account for these effects. METHODS Male BALB/c mice age 6-8 weeks were randomly divided into a CS group and a control group (n=10 per group). CS mice were exposed to CS (five cigarettes each time, four times a day for 5 days a week using Hamburg II smoking machine and CS was diluted with air at a ratio of 1:6) for 10 weeks, and control mice were exposed to room air. After 10 weeks, mice were sacrificed for analysis (colon and small bowel). RESULTS CS exposure impaired the intestinal barrier of the small bowel, based on evidence that CS mice exhibited increased intestinal permeability, bacterial translocation, intestinal villi atrophy, damaged tight junctions and abnormal tight junction proteins. These changes were partly mediated through the activated NF-κB (p65) signalling pathway. However, no obvious changes associated with the intestinal barrier were identified in the small bowel of control mice or the colons of control or CS mice. CONCLUSIONS CS is associated with intestinal barrier dysfunction in the small intestine but not in the large intestine of mice.
Collapse
Affiliation(s)
- Lugen Zuo
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Yi Li
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Honggang Wang
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Rong Wu
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Weiming Zhu
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China.
| | - Wei Zhang
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Lei Cao
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Lili Gu
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Jianfeng Gong
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Ning Li
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Jieshou Li
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| |
Collapse
|
120
|
John-Schuster G, Hager K, Conlon TM, Irmler M, Beckers J, Eickelberg O, Yildirim AÖ. Cigarette smoke-induced iBALT mediates macrophage activation in a B cell-dependent manner in COPD. Am J Physiol Lung Cell Mol Physiol 2014; 307:L692-706. [DOI: 10.1152/ajplung.00092.2014] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is characterized by a progressive decline in lung function, caused by exposure to exogenous particles, mainly cigarette smoke (CS). COPD is initiated and perpetuated by an abnormal CS-induced inflammatory response of the lungs, involving both innate and adaptive immunity. Specifically, B cells organized in iBALT structures and macrophages accumulate in the lungs and contribute to CS-induced emphysema, but the mechanisms thereof remain unclear. Here, we demonstrate that B cell-deficient mice are significantly protected against CS-induced emphysema. Chronic CS exposure led to an increased size and number of iBALT structures, and increased lung compliance and mean linear chord length in wild-type (WT) but not in B cell-deficient mice. The increased accumulation of lung resident macrophages around iBALT and in emphysematous alveolar areas in CS-exposed WT mice coincided with upregulated MMP12 expression. In vitro coculture experiments using B cells and macrophages demonstrated that B cell-derived IL-10 drives macrophage activation and MMP12 upregulation, which could be inhibited by an anti-IL-10 antibody. In summary, B cell function in iBALT formation seems necessary for macrophage activation and tissue destruction in CS-induced emphysema and possibly provides a new target for therapeutic intervention in COPD.
Collapse
Affiliation(s)
- Gerrit John-Schuster
- Comprehensive Pneumology Center, Institute of Lung Biology and Disease, Helmholtz Zentrum München, Member of the German Center for Lung Research, Neuherberg, Germany
| | - Katrin Hager
- Comprehensive Pneumology Center, Institute of Lung Biology and Disease, Helmholtz Zentrum München, Member of the German Center for Lung Research, Neuherberg, Germany
| | - Thomas M. Conlon
- Comprehensive Pneumology Center, Institute of Lung Biology and Disease, Helmholtz Zentrum München, Member of the German Center for Lung Research, Neuherberg, Germany
| | - Martin Irmler
- Institute of Experimental Genetics, Helmholtz Zentrum Muenchen, Neuherberg, Germany
| | - Johannes Beckers
- Institute of Experimental Genetics, Helmholtz Zentrum Muenchen, Neuherberg, Germany
- Experimental Genetics, Technical University Munich, Freising-Weihenstephan, Germany; and
| | - Oliver Eickelberg
- Comprehensive Pneumology Center, Institute of Lung Biology and Disease, Helmholtz Zentrum München, Member of the German Center for Lung Research, Neuherberg, Germany
- Klinikum der Universität München, Munich, Germany
| | - Ali Önder Yildirim
- Comprehensive Pneumology Center, Institute of Lung Biology and Disease, Helmholtz Zentrum München, Member of the German Center for Lung Research, Neuherberg, Germany
| |
Collapse
|
121
|
Eurlings IMJ, Reynaert NL, van den Beucken T, Gosker HR, de Theije CC, Verhamme FM, Bracke KR, Wouters EFM, Dentener MA. Cigarette smoke extract induces a phenotypic shift in epithelial cells; involvement of HIF1α in mesenchymal transition. PLoS One 2014; 9:e107757. [PMID: 25329389 PMCID: PMC4199572 DOI: 10.1371/journal.pone.0107757] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Accepted: 08/11/2014] [Indexed: 12/22/2022] Open
Abstract
In COPD, matrix remodeling contributes to airflow limitation. Recent evidence suggests that next to fibroblasts, the process of epithelial-mesenchymal transition can contribute to matrix remodeling. CSE has been shown to induce EMT in lung epithelial cells, but the signaling mechanisms involved are largely unknown and subject of this study. EMT was assessed in A549 and BEAS2B cells stimulated with CSE by qPCR, Western blotting and immunofluorescence for epithelial and mesenchymal markers, as were collagen production, cell adhesion and barrier integrity as functional endpoints. Involvement of TGF-β and HIF1α signaling pathways were investigated. In addition, mouse models were used to examine the effects of CS on hypoxia signaling and of hypoxia per se on mesenchymal expression. CSE induced EMT characteristics in A549 and BEAS2B cells, evidenced by decreased expression of epithelial markers and a concomitant increase in mesenchymal marker expression after CSE exposure. Furthermore cells that underwent EMT showed increased production of collagen, decreased adhesion and disrupted barrier integrity. The induction of EMT was found to be independent of TGF-β signaling. On the contrary, CS was able to induce hypoxic signaling in A549 and BEAS2B cells as well as in mice lung tissue. Importantly, HIF1α knock-down prevented induction of mesenchymal markers, increased collagen production and decreased adhesion after CSE exposure, data that are in line with the observed induction of mesenchymal marker expression by hypoxia in vitro and in vivo. Together these data provide evidence that both bronchial and alveolar epithelial cells undergo a functional phenotypic shift in response to CSE exposure which can contribute to increased collagen deposition in COPD lungs. Moreover, HIF1α signaling appears to play an important role in this process.
Collapse
Affiliation(s)
- Irene M. J. Eurlings
- Department of Respiratory Medicine, NUTRIM School for Nutrition, Toxicology and Metabolism, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Niki L. Reynaert
- Department of Respiratory Medicine, NUTRIM School for Nutrition, Toxicology and Metabolism, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Twan van den Beucken
- Department of Radiation Oncology, GROW School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Harry R. Gosker
- Department of Respiratory Medicine, NUTRIM School for Nutrition, Toxicology and Metabolism, Maastricht University Medical Center, Maastricht, the Netherlands
| | - C. C. de Theije
- Department of Respiratory Medicine, NUTRIM School for Nutrition, Toxicology and Metabolism, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Fien M. Verhamme
- Laboratory for Translational Research in Obstructive Pulmonary Diseases, Department of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium
| | - Ken R. Bracke
- Laboratory for Translational Research in Obstructive Pulmonary Diseases, Department of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium
| | - Emiel F. M. Wouters
- Department of Respiratory Medicine, NUTRIM School for Nutrition, Toxicology and Metabolism, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Mieke A. Dentener
- Department of Respiratory Medicine, NUTRIM School for Nutrition, Toxicology and Metabolism, Maastricht University Medical Center, Maastricht, the Netherlands
| |
Collapse
|
122
|
Lee H, Yu SR, Lim D, Lee H, Jin EY, Jang YP, Kim J. Galla Chinensis Attenuates Cigarette Smoke-associated Lung Injury by Inhibiting Recruitment of Inflammatory Cells into the Lung. Basic Clin Pharmacol Toxicol 2014; 116:222-8. [DOI: 10.1111/bcpt.12308] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Accepted: 08/05/2014] [Indexed: 11/28/2022]
Affiliation(s)
- Hyojung Lee
- Department of Oriental Physiology; College of Pharmacy; Kyung Hee University; Seoul Korea
| | - Seung-Ryeol Yu
- Department of Oriental Physiology; College of Pharmacy; Kyung Hee University; Seoul Korea
| | - Dahae Lim
- Department of Oriental Physiology; College of Pharmacy; Kyung Hee University; Seoul Korea
| | - Hyejung Lee
- Acupuncture and Meridian Science Research Center; KyungHee University; Seoul Korea
| | - Eun-Young Jin
- Department of Life and Nanopharmaceutical Sciences; College of Pharmacy; Kyung Hee University; Seoul Korea
| | - Young-Pyo Jang
- Department of Life and Nanopharmaceutical Sciences; College of Pharmacy; Kyung Hee University; Seoul Korea
| | - Jinju Kim
- Department of Oriental Physiology; College of Pharmacy; Kyung Hee University; Seoul Korea
| |
Collapse
|
123
|
Li X, Zhang Y, Yeung SC, Liang Y, Liang X, Ding Y, Ip MSM, Tse HF, Mak JCW, Lian Q. Mitochondrial transfer of induced pluripotent stem cell-derived mesenchymal stem cells to airway epithelial cells attenuates cigarette smoke-induced damage. Am J Respir Cell Mol Biol 2014; 51:455-65. [PMID: 24738760 DOI: 10.1165/rcmb.2013-0529oc] [Citation(s) in RCA: 220] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Transplantation of mesenchymal stem cells (MSCs) holds great promise in the repair of cigarette smoke (CS)-induced lung damage in chronic obstructive pulmonary disease (COPD). Because CS leads to mitochondrial dysfunction, we aimed to investigate the potential benefit of mitochondrial transfer from human-induced pluripotent stem cell-derived MSCs (iPSC-MSCs) to CS-exposed airway epithelial cells in vitro and in vivo. Rats were exposed to 4% CS for 1 hour daily for 56 days. At Days 29 and, human iPSC-MSCs or adult bone marrow-derived MSCs (BM-MSCs) were administered intravenously to CS-exposed rats. CS-exposed rats exhibited severe alveolar destruction with a higher mean linear intercept (Lm) than sham air-exposed rats (P < 0.001) that was attenuated in the presence of iPSC-MSCs or BM-MSCs (P < 0.01). The attenuation of Lm value and the severity of fibrosis was greater in the iPSC-MSC-treated group than in the BM-MSC-treated group (P < 0.05). This might have contributed to the novel observation of mitochondrial transfer from MSCs to rat airway epithelial cells in lung sections exposed to CS. In vitro studies further revealed that transfer of mitochondria from iPSC-MSCs to bronchial epithelial cells (BEAS-2B) was more effective than from BM-MSCs, with preservation of adenosine triphosphate contents. This distinct mitochondrial transfer occurred via the formation of tunneling nanotubes. Inhibition of tunneling nanotube formation blocked mitochondrial transfer. Our findings indicate a higher mitochondrial transfer capacity of iPSC-MSCs than BM-MSCs to rescue CS-induced mitochondrial damage. iPSC-MSCs may thus hold promise for the development of cell therapy in COPD.
Collapse
|
124
|
Eurlings IMJ, Dentener MA, Mercken EM, de Cabo R, Bracke KR, Vernooy JHJ, Wouters EFM, Reynaert NL. A comparative study of matrix remodeling in chronic models for COPD; mechanistic insights into the role of TNF-α. Am J Physiol Lung Cell Mol Physiol 2014; 307:L557-65. [PMID: 25106431 DOI: 10.1152/ajplung.00116.2014] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Remodeling in chronic obstructive pulmonary disease (COPD) has at least two dimensions: small airway wall thickening and destruction of alveolar walls. Recently we showed comparable alterations of the extracellular matrix (ECM) compounds collagen, hyaluoran, and elastin in alveolar and small airway walls of COPD patients. The aim of this study was to characterize and assess similarities in alveolar and small airway wall matrix remodeling in chronic COPD models. From this comparative characterization of matrix remodeling we derived and elaborated underlying mechanisms to the matrix changes reported in COPD. Lung tissue sections of chronic models for COPD, either induced by exposure to cigarette smoke, chronic intratracheal lipopolysaccharide instillation, or local tumor necrosis factor (TNF) expression [surfactant protein C (SPC)-TNFα mice], were stained for elastin, collagen, and hyaluronan. Furthermore TNF-α matrix metalloproteinase (MMP)-2, -9, and -12 mRNA expression was analyzed using qPCR and localized using immunohistochemistry. Both collagen and hyaluronan were increased in alveolar and small airway walls of all three models. Interestingly, elastin contents were differentially affected, with a decrease in both alveolar and airway walls in SPC-TNFα mice. Furthermore TNF-α and MMP-2 and -9 mRNA and protein levels were found to be increased in alveolar walls and around airway walls only in SPC-TNFα mice. We show that only SPC-TNFα mice show changes in elastin remodeling that are comparable to what has been observed in COPD patients. This reveals that the SPC-TNFα model is a suitable model to study processes underlying matrix remodeling and in particular elastin breakdown as seen in COPD. Furthermore we indicate a possible role for MMP-2 and MMP-9 in the breakdown of elastin in airways and alveoli of SPC-TNFα mice.
Collapse
Affiliation(s)
- Irene M J Eurlings
- Department of Respiratory Medicine, NUTRIM School for Nutrition, Toxicology and Metabolism, Maastricht University Medical Center, Maastricht, The Netherlands;
| | - Mieke A Dentener
- Department of Respiratory Medicine, NUTRIM School for Nutrition, Toxicology and Metabolism, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Evi M Mercken
- Experimental Gerontology Section, Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, Maryland; and
| | - Rafael de Cabo
- Experimental Gerontology Section, Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, Maryland; and
| | - Ken R Bracke
- Laboratory for Translational Research in Obstructive Pulmonary Diseases, Department of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium
| | - Juanita H J Vernooy
- Department of Respiratory Medicine, NUTRIM School for Nutrition, Toxicology and Metabolism, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Emiel F M Wouters
- Department of Respiratory Medicine, NUTRIM School for Nutrition, Toxicology and Metabolism, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Niki L Reynaert
- Department of Respiratory Medicine, NUTRIM School for Nutrition, Toxicology and Metabolism, Maastricht University Medical Center, Maastricht, The Netherlands
| |
Collapse
|
125
|
Unopposed Cathepsin G, Neutrophil Elastase, and Proteinase 3 Cause Severe Lung Damage and Emphysema. THE AMERICAN JOURNAL OF PATHOLOGY 2014; 184:2197-210. [DOI: 10.1016/j.ajpath.2014.04.015] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Revised: 04/02/2014] [Accepted: 04/21/2014] [Indexed: 12/20/2022]
|
126
|
Itoh M, Tsuji T, Nakamura H, Yamaguchi K, Fuchikami JI, Takahashi M, Morozumi Y, Aoshiba K. Systemic effects of acute cigarette smoke exposure in mice. Inhal Toxicol 2014; 26:464-473. [PMID: 24932561 DOI: 10.3109/08958378.2014.917346] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
CONTEXT Cigarette smoke (CS) causes both pulmonary and extrapulmonary disorders. OBJECTIVE To determine the pulmonary and extrapulmonary effects of acute CS exposure in regard to inflammation, oxidative stress and DNA damage. MATERIALS AND METHODS Mice were exposed to CS for 10 days and then their lungs, heart, liver, pancreas, kidneys, gastrocnemius muscle and subcutaneous (inguinal and flank) and visceral (retroperitoneum and periuterus) adipose tissues were excised. Bronchoalveolar lavage fluid samples were obtained for differential cell analysis. Inflammatory cell infiltration of the tissues was assessed by immunohistochemistry for Mac-3(+) cells, F4/80(+) cells and CD45(+) cells. Oxidative stress was determined by immunohistochemistry for thymidine glycol (a marker of DNA peroxidation) and 4-hydroxy hexenal (a marker of lipid peroxidation), by enzyme-linked immunosorbent assay for protein carbonyls (a marker of protein peroxidation) and by measurements of enzyme activities of glutathione peroxidase, superoxide dismutase and catalase. DNA double-strand breaks were assessed by immunohistochemistry for γH2AX. RESULTS CS exposure-induced inflammatory cell infiltration, oxidative stress and DNA damage in the lung. Neither inflammatory cell infiltration nor DNA damage was observed in any extrapulmonary organs. However, oxidative stress was increased in the heart and inguinal adipose tissue. DISCUSSIONS Induction of inflammatory cell infiltration and DNA damage by acute CS exposure was confined to the lung. However, an increased oxidative burden occurred in the heart and some adipose tissue, as well as in the lung. CONCLUSIONS Although extrapulmonary effects of CS are relatively modest compared with the pulmonary effects, some extrapulmonary organs are vulnerable to CS-induced oxidative stress.
Collapse
Affiliation(s)
- Masayuki Itoh
- Department of Respiratory Medicine, Tokyo Medical University Ibaraki Medical Center , Ibaraki , Japan
| | | | | | | | | | | | | | | |
Collapse
|
127
|
Investigation of 5-HT4 receptors in bronchial hyperresponsiveness in cigarette smoke-exposed mice. Pulm Pharmacol Ther 2014; 28:60-67. [DOI: 10.1016/j.pupt.2013.10.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Revised: 10/16/2013] [Accepted: 10/19/2013] [Indexed: 11/21/2022]
|
128
|
Kolahian S, Shahbazfar AA, Tayefi-Nasrabadi H, Keyhanmanesh R, Ansarin K, Ghasemi H, Rashidi AH, Gosens R, Hanifeh M. Tiotropium effects on airway inflammatory events in the cat as an animal model for acute cigarette smoke-induced lung inflammation. Exp Lung Res 2014; 40:272-87. [DOI: 10.3109/01902148.2014.905657] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
129
|
Paige M, Wang K, Burdick M, Park S, Cha J, Jeffery E, Sherman N, Shim YM. Role of leukotriene A4 hydrolase aminopeptidase in the pathogenesis of emphysema. THE JOURNAL OF IMMUNOLOGY 2014; 192:5059-68. [PMID: 24771855 DOI: 10.4049/jimmunol.1400452] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The leukotriene A4 hydrolase (LTA4H) is a bifunctional enzyme with epoxy hydrolase and aminopeptidase activities. We hypothesize that the LTA4H aminopeptidase activity alleviates neutrophilic inflammation, which contributes to cigarette smoke (CS)-induced emphysema by clearing proline-glycine-proline (PGP), a triamino acid chemokine known to induce chemotaxis of neutrophils. To investigate the biological contributions made by the LTA4H aminopeptidase activity in CS-induced emphysema, we exposed wild-type mice to CS over 5 mo while treating them with a vehicle or a pharmaceutical agent (4MDM) that selectively augments the LTA4H aminopeptidase without affecting the bioproduction of leukotriene B4. Emphysematous phenotypes were assessed by premortem lung physiology with a small animal ventilator and by postmortem histologic morphometry. CS exposure acidified the airspaces and induced localization of the LTA4H protein into the nuclei of the epithelial cells. This resulted in accumulation of PGP in the airspaces by suppressing the LTA4H aminopeptidase activity. When the LTA4H aminopeptidase activity was selectively augmented by 4MDM, the levels of PGP in the bronchoalveolar lavage fluid and infiltration of neutrophils into the lungs were significantly reduced without affecting the levels of leukotriene B4. This protected murine lungs from CS-induced emphysematous alveolar remodeling. In conclusion, CS exposure promotes the development of CS-induced emphysema by suppressing the enzymatic activities of the LTA4H aminopeptidase in lung tissues and accumulating PGP and neutrophils in the airspaces. However, restoring the leukotriene A4 aminopeptidase activity with a pharmaceutical agent protected murine lungs from developing CS-induced emphysema.
Collapse
Affiliation(s)
- Mikell Paige
- Department of Chemistry and Biochemistry, George Mason University, Manassas, VA 22030
| | - Kan Wang
- Center for Drug Discovery, Georgetown University Medical Center, Washington, DC 20057
| | - Marie Burdick
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Virginia, Charlottesville, VA 22908; and
| | - Sunhye Park
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Virginia, Charlottesville, VA 22908; and
| | - Josiah Cha
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Virginia, Charlottesville, VA 22908; and
| | - Erin Jeffery
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA 22908
| | - Nicholas Sherman
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA 22908
| | - Y Michael Shim
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Virginia, Charlottesville, VA 22908; and
| |
Collapse
|
130
|
Fricker M, Deane A, Hansbro PM. Animal models of chronic obstructive pulmonary disease. Expert Opin Drug Discov 2014; 9:629-45. [PMID: 24754714 DOI: 10.1517/17460441.2014.909805] [Citation(s) in RCA: 110] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
INTRODUCTION Chronic obstructive pulmonary disease (COPD) is a leading global cause of mortality and chronic morbidity. Inhalation of cigarette smoke is the principal risk factor for development of this disease. COPD is a progressive disease that is typically characterised by chronic pulmonary inflammation, mucus hypersecretion, airway remodelling and emphysema that collectively reduce lung function. There are currently no therapies that effectively halt or reverse disease progression. It is hoped that the development of animal models that develop the hallmark features of COPD, in a short time frame, will aid in the identifying and testing of new therapeutic approaches. AREAS COVERED The authors review the recent developments in mouse models of chronic cigarette smoke-induced COPD as well as the principal findings. Furthermore, the authors discuss the use of mouse models to understand the pathogenesis and the contribution of infectious exacerbations. They also discuss the investigations of the systemic co-morbidities of COPD (pulmonary hypertension, cachexia and osteoporosis). EXPERT OPINION Recent advances in the field mark a point where animal models recapitulate the pathologies of COPD patients in a short time frame. They also reveal novel insights into the pathogenesis and potential treatment of this debilitating disease.
Collapse
Affiliation(s)
- Michael Fricker
- University of Newcastle and Hunter Medical Research Institute, Priority Research Centre for Asthma and Respiratory Disease , New Lambton Heights, New South Wales , Australia
| | | | | |
Collapse
|
131
|
Combined exposure to cigarette smoke and nontypeable Haemophilus influenzae drives development of a COPD phenotype in mice. Respir Res 2014; 15:11. [PMID: 24495712 PMCID: PMC3926338 DOI: 10.1186/1465-9921-15-11] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Accepted: 02/03/2014] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Cigarette smoke (CS) is the major etiologic factor of chronic obstructive pulmonary disease (COPD). CS-exposed mice develop emphysema and mild pulmonary inflammation but no airway obstruction, which is also a prominent feature of COPD. Therefore, CS may interact with other factors, particularly respiratory infections, in the pathogenesis of airway remodeling in COPD. METHODS C57BL/6 mice were exposed to CS for 2 h a day, 5 days a week for 8 weeks. Mice were also exposed to heat-killed non-typeable H. influenzae (HK-NTHi) on days 7 and 21. One day after the last exposure to CS, mice were sacrificed and lung inflammation and mechanics, emphysematous changes, and goblet cell metaplasia were assessed. Mice exposed to CS or HK-NTHi alone or room air served as controls. To determine the susceptibility to viral infections, we also challenged these mice with rhinovirus (RV). RESULTS Unlike mice exposed to CS or HK-NTHi alone, animals exposed to CS/HK-NTHi developed emphysema, lung inflammation and goblet cell metaplasia in both large and small airways. CS/HK-NTHi-exposed mice also expressed increased levels of mucin genes and cytokines compared to mice in other groups. CS/HK-NTHi-exposed mice infected with RV demonstrated increased viral persistence, sustained neutrophilia, and further increments in mucin gene and chemokine expression compared to other groups. CONCLUSIONS These findings indicate that in addition to CS, bacteria may also contribute to development of COPD, particularly changes in airways. Mice exposed to CS/HK-NTHi are also more susceptible to subsequent viral infection than mice exposed to either CS or HK-NTHi alone.
Collapse
|
132
|
Icaritin attenuates cigarette smoke-mediated oxidative stress in human lung epithelial cells via activation of PI3K-AKT and Nrf2 signaling. Food Chem Toxicol 2014; 64:307-13. [DOI: 10.1016/j.fct.2013.12.006] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Revised: 11/26/2013] [Accepted: 12/03/2013] [Indexed: 11/23/2022]
|
133
|
Duan M, Huang Y, Zhong X, Tang H. IL-21 is increased in peripheral blood of emphysema mice and promotes Th1/Tc1 cell generation in vitro. Inflammation 2013; 37:745-55. [PMID: 24357415 DOI: 10.1007/s10753-013-9793-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Interleukin-21 (IL-21) has been reported to be involved in many Th1-associated diseases. However, the alteration and immune regulation of IL-21 in emphysema remains unknown. In this study, we tested the levels of IFN-γ and IL-21 and the frequencies of Th1 and Tc1 in peripheral blood from cigarette smoke (CS)-exposed mice and air-exposed mice and explored the effect of IL-21 on generation of Th1 and Tc1 cells in vitro. It was found that the levels of IFN-γ and IL-21 and the frequencies of Th1, Tc1, CD4(+) IL-21(+), CD4(+) IL-21R(+), and CD8(+) IL-21R(+) T cells were much higher in CS-exposed mice. Moreover, the levels of IL-21 were correlated positively with Th1 cells and with Tc1 cells. Finally, the in vitro experiments showed that IL-21 could promote Th1/Tc1 cell generation in CS-exposed mice. These results indirectly provide evidence that IL-21 produced by CD4(+) T cells could promote Th1/Tc1 response, leading to systemic inflammation in emphysema.
Collapse
Affiliation(s)
- Minchao Duan
- Department of Respiratory Medicine, The First Affiliated Hospital, Guangxi Medical University, 6 Shuangyong Avenue, Nanning, Guangxi, 530021, China
| | | | | | | |
Collapse
|
134
|
The composition of cigarette smoke determines inflammatory cell recruitment to the lung in COPD mouse models. Clin Sci (Lond) 2013; 126:207-21. [PMID: 23875733 PMCID: PMC3906955 DOI: 10.1042/cs20130117] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
COPD (chronic obstructive pulmonary disease) is caused by exposure to toxic gases and particles, most often CS (cigarette smoke), leading to emphysema, chronic bronchitis, mucus production and a subsequent decline in lung function. The disease pathogenesis is related to an abnormal CS-induced inflammatory response of the lungs. Similar to active (mainstream) smoking, second hand (sidestream) smoke exposure severely affects respiratory health. These processes can be studied in vivo in models of CS exposure of mice. We compared the acute inflammatory response of female C57BL/6 mice exposed to two concentrations [250 and 500 mg/m3 TPM (total particulate matter)] of sidestream and mainstream CS for 3 days and interpreted the biological effects based on physico-chemical differences in the gas and particulate phase composition of CS. BAL (bronchoalveolar lavage fluid) was obtained to perform differential cell counts and to measure cytokine release. Lung tissue was used to determine mRNA and protein expression of proinflammatory genes and to assess tissue inflammation. A strong acute inflammatory response characterized by neutrophilic influx, increased cytokine secretion [KC (keratinocyte chemoattractant), TNF-α (tumour necrosis factor α), MIP-2 (macrophage inflammatory protein 2), MIP-1α and MCP-1 (monocyte chemoattractant protein-1)], pro-inflammatory gene expression [KC, MIP-2 and MMP12 (matrix metalloproteinase 12)] and up-regulated GM-CSF (granulocyte macrophage colony-stimulating factor) production was observed in the mainstream model. After sidestream exposure there was a dampened inflammatory reaction consisting only of macrophages and diminished GM-CSF levels, most likely caused by elevated CO concentrations. These results demonstrate that the composition of CS determines the dynamics of inflammatory cell recruitment in COPD mouse models. Different initial inflammatory processes might contribute to COPD pathogenesis in significantly varying ways, thereby determining the outcome of the studies.
Collapse
|
135
|
Luo YL, Li PB, Zhang CC, Zheng YF, Wang S, Nie YC, Zhang KJ, Su WW. Effects of four antitussives on airway neurogenic inflammation in a guinea pig model of chronic cough induced by cigarette smoke exposure. Inflamm Res 2013; 62:1053-61. [PMID: 24085318 DOI: 10.1007/s00011-013-0664-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Accepted: 08/27/2013] [Indexed: 11/25/2022] Open
Abstract
OBJECTIVE The effects of four antitussives, including codeine phosphate (CP), moguisteine, levodropropizine (LVDP) and naringin, on airway neurogenic inflammation and enhanced cough were investigated in guinea pig model of chronic cough. METHODS Guinea pigs were exposed to CS for 8 weeks. At the 7th and 8th week, the animals were treated with vehicle, CP (4.8 mg/kg), moguisteine (24 mg/kg), LVDP (14 mg/kg) and naringin (18.4 mg/kg) respectively. Then the cough and the time-enhanced pause area under the curve (Penh-AUC) during capsaicin challenge were recorded. The substance P (SP) content, NK-1 receptor expression and neutral endopeptidase (NEP) activity in lung were determined. RESULTS Chronic CS exposure induced a bi-phase time course of cough responsiveness to capsaicin. Eight weeks of CS exposure significantly enhanced the airway neurogenic inflammation and cough response in guinea pigs. Two weeks of treatment with CP, moguisteine, LVDP or naringin effectively attenuated the chronic CS-exposure enhanced cough. Only naringin exerted significant effect on inhibiting Penh-AUC, SP content and NK-1 receptor expression, as well as preventing the declining of NEP activity in lung. CONCLUSIONS Chronic CS-exposed guinea pig is suitable for studying chronic pathological cough, in which naringin is effective on inhibiting both airway neurogenic inflammation and enhanced cough.
Collapse
Affiliation(s)
- Yu-long Luo
- Key Laboratory of Gene Engineering of the Ministry of Education, Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, No.135, Xingangxi Street, Guangzhou, 510275, People's Republic of China,
| | | | | | | | | | | | | | | |
Collapse
|
136
|
Glynos C, Dupont LL, Vassilakopoulos T, Papapetropoulos A, Brouckaert P, Giannis A, Joos GF, Bracke KR, Brusselle GG. The role of soluble guanylyl cyclase in chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2013; 188:789-99. [PMID: 23841447 DOI: 10.1164/rccm.201210-1884oc] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
RATIONALE Soluble guanylyl cyclase (sGC), a cyclic guanosine 5'-monophosphate-generating enzyme, regulates smooth muscle tone and exerts antiinflammatory effects in animal models of asthma and acute lung injury. In chronic obstructive pulmonary disease (COPD), primarily caused by cigarette smoke (CS), lung inflammation persists and smooth muscle tone remains elevated, despite ample amounts of nitric oxide that could activate sGC. OBJECTIVES To determine the expression and function of sGC in patients with COPD and in a murine model of COPD. METHODS Expression of sGCα1, α2, and β1 subunits was examined in lungs of never-smokers, smokers without airflow limitation, and patients with COPD; and in C57BL/6 mice after 3 days, 4 weeks, and 24 weeks of CS exposure. The functional role of sGC was investigated in vivo by measuring bronchial responsiveness to serotonin in mice using genetic and pharmacologic approaches. MEASUREMENTS AND MAIN RESULTS Pulmonary expression of sGC, both at mRNA and protein level, was decreased in smokers without airflow limitation and in patients with COPD, and correlated with disease severity (FEV1%). In mice, exposure to CS reduced sGC, cyclic guanosine 5'-monophosphate levels, and protein kinase G activity. sGCα1(-/-) mice exposed to CS exhibited bronchial hyperresponsiveness to serotonin. Activation of sGC by BAY 58-2667 restored the sGC signaling and attenuated bronchial hyperresponsiveness in CS-exposed mice. CONCLUSIONS Down-regulation of sGC because of CS exposure might contribute to airflow limitation in COPD.
Collapse
Affiliation(s)
- Constantinos Glynos
- 1 Laboratory for Translational Research in Obstructive Pulmonary Diseases, Department of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|
137
|
Tanabe N, Hoshino Y, Marumo S, Kiyokawa H, Sato S, Kinose D, Uno K, Muro S, Hirai T, Yodoi J, Mishima M. Thioredoxin-1 protects against neutrophilic inflammation and emphysema progression in a mouse model of chronic obstructive pulmonary disease exacerbation. PLoS One 2013; 8:e79016. [PMID: 24244404 PMCID: PMC3823967 DOI: 10.1371/journal.pone.0079016] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Accepted: 09/16/2013] [Indexed: 02/02/2023] Open
Abstract
Background Exacerbations of chronic obstructive pulmonary disease (COPD) are characterized by acute enhancement of airway neutrophilic inflammation under oxidative stress and can be involved in emphysema progression. However, pharmacotherapy against the neutrophilic inflammation and emphysema progression associated with exacerbation has not been established. Thioredoxin-1 has anti-oxidative and anti-inflammatory properties and it can ameliorate neutrophilic inflammation through anti-chemotactic effects and prevent cigarette smoke (CS)-induced emphysema. We aimed to determine whether thioredoxin-1 can suppress neutrophilic inflammation and emphysema progression in a mouse model of COPD exacerbation and if so, to reveal the underlying mechanisms. Results Mice were exposed to CS and then challenged with polyinosine-polycytidylic acid [poly(I:C)], an agonist for virus-induced innate immunity. Airway neutrophilic inflammation, oxidative stress and lung apoptosis were enhanced in smoke-sensitive C57Bl/6, but not in smoke-resistant NZW mice. Exposure to CS and poly(I:C) challenge accelerated emphysema progression in C57Bl/6 mice. Thioredoxin-1 suppressed neutrophilic inflammation and emphysema progression. Poly(I:C) caused early neutrophilic inflammation through keratinocyte-derived chemokine and granulocyte-macrophage colony-stimulating factor (GM-CSF) release in the lung exposed to CS. Late neutrophilic inflammation was caused by persistent GM-CSF release, which thioredoxin-1 ameliorated. Thioredoxin-1 enhanced pulmonary mRNA expression of MAP kinase phosphatase 1 (MKP-1), and the suppressive effects of thioredoxin-1 on prolonged GM-CSF release and late neutrophilic inflammation disappeared by inhibiting MKP-1. Conclusion Using a mouse model of COPD exacerbation, we demonstrated that thioredoxin-1 ameliorated neutrophilic inflammation by suppressing GM-CSF release, which prevented emphysema progression. Our findings deepen understanding of the mechanisms underlying the regulation of neutrophilic inflammation by thioredoxin-1 and indicate that thioredoxin-1 could have potential as a drug to counteract COPD exacerbation.
Collapse
Affiliation(s)
- Naoya Tanabe
- Departments of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yuma Hoshino
- Departments of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- * E-mail:
| | - Satoshi Marumo
- Departments of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hirofumi Kiyokawa
- Departments of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Susumu Sato
- Departments of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Daisuke Kinose
- Departments of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kazuko Uno
- Louis Pasteur Center for Medical Research, Kyoto, Japan
| | - Shigeo Muro
- Departments of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Toyohiro Hirai
- Departments of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Junji Yodoi
- Department of Biological Responses, Institute for Virus Research, Kyoto University, Kyoto, Japan
- Center for Cell Signaling Research and Department of Bioinspired Science, Ewha Womans University, Seoul, Korea
| | - Michiaki Mishima
- Departments of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
138
|
Bracke KR, Verhamme FM, Seys LJM, Bantsimba-Malanda C, Cunoosamy DM, Herbst R, Hammad H, Lambrecht BN, Joos GF, Brusselle GG. Role of CXCL13 in cigarette smoke-induced lymphoid follicle formation and chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2013; 188:343-55. [PMID: 23742729 DOI: 10.1164/rccm.201211-2055oc] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
RATIONALE The B cell-attracting chemokine CXCL13 is an important mediator in the formation of tertiary lymphoid organs (TLOs). Increased numbers of ectopic lymphoid follicles have been observed in lungs of patients with severe chronic obstructive pulmonary disease (COPD). However, the role of these TLOs in the pathogenesis of COPD remains unknown. OBJECTIVES By neutralizing CXCL13 in a mouse model of chronic cigarette smoke (CS) exposure, we aimed at interrogating the link between lymphoid follicles and development of pulmonary inflammation, emphysema, and airway wall remodeling. METHODS We first quantified and localized CXCL13 in lungs of air- or CS-exposed mice and in lungs of never smokers, smokers without airflow obstruction, and patients with COPD by reverse transcriptase-polymerase chain reaction, ELISA, and immunohistochemistry. Next, CXCL13 signaling was blocked by prophylactic or therapeutic administration of anti-CXCL13 antibodies in mice exposed to air or CS for 24 weeks, and several hallmarks of COPD were evaluated. MEASUREMENTS AND MAIN RESULTS Both mRNA and protein levels of CXCL13 were increased in lungs of CS-exposed mice and patients with COPD. Importantly, expression of CXCL13 was observed within B-cell areas of lymphoid follicles. Prophylactic and therapeutic administration of anti-CXCL13 antibodies completely prevented the CS-induced formation of pulmonary lymphoid follicles in mice. Interestingly, absence of TLOs attenuated destruction of alveolar walls and inflammation in bronchoalveolar lavage but did not affect airway wall remodeling. CONCLUSIONS CXCL13 is produced within lymphoid follicles of patients with COPD and is crucial for the formation of TLOs. Neutralization of CXCL13 partially protects mice against CS-induced inflammation in bronchoalveolar lavage and alveolar wall destruction.
Collapse
Affiliation(s)
- Ken R Bracke
- Laboratory for Translational Research in Obstructive Pulmonary Diseases, Department of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
139
|
Campos KKD, Manso RG, Gonçalves EG, Silva ME, de Lima WG, Menezes CAS, Bezerra FS. Temporal analysis of oxidative effects on the pulmonary inflammatory response in mice exposed to cigarette smoke. Cell Immunol 2013; 284:29-36. [PMID: 23921078 DOI: 10.1016/j.cellimm.2013.07.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Revised: 06/17/2013] [Accepted: 07/09/2013] [Indexed: 11/28/2022]
Abstract
The most common factor related to the chronic obstructive pulmonary disease (COPD) development is the chronic smoking habit. Our study describes the temporal kinesis of pulmonary cellular influx through BALF analyses of mice acutely exposed to cigarette smoke (CS), the oxidative damage and antioxidative enzyme activities. Thirty-six mice (C57BL/6, 8weeks old, male) were divided in 6 groups: the control group (CG), exposed to ambient air, and the other 30 mice were exposed to CS. Mice exposed to CS presented, especially after the third day of exposure, different cellular subpopulations in BALF. The oxidative damage was significantly higher in CS exposed groups compared to CG. Our data showed that the evaluated inflammatory cells, observed after three days of CS exposure, indicate that this time point could be relevant to studies focusing on these cellular subpopulation activities and confirm the oxidative stress even in a short term CS exposure.
Collapse
Affiliation(s)
- Keila Karine Duarte Campos
- Laboratory of Metabolic Biochemistry (LBM), Department of Biological Sciences (DECBI), Center of Research in Biological Sciences (NUPEB), Federal University of Ouro Preto, Ouro Preto, MG, Brazil
| | | | | | | | | | | | | |
Collapse
|
140
|
Leberl M, Kratzer A, Taraseviciene-Stewart L. Tobacco smoke induced COPD/emphysema in the animal model-are we all on the same page? Front Physiol 2013; 4:91. [PMID: 23720629 PMCID: PMC3654205 DOI: 10.3389/fphys.2013.00091] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2012] [Accepted: 04/10/2013] [Indexed: 12/18/2022] Open
Abstract
Chronic Obstructive Pulmonary Disease (COPD) is one of the foremost causes of death worldwide. It is primarily caused by tobacco smoke, making it an easily preventable disease, but facilitated by genetic α-1 antitrypsin deficiency. In addition to active smokers, health problems also occur in people involuntarily exposed to second hand smoke (SHS). Currently, the relationship between SHS and COPD is not well established. Knowledge of pathogenic mechanisms is limited, thereby halting the advancement of new treatments for this socially and economically detrimental disease. Here, we attempt to summarize tobacco smoke studies undertaken in animal models, applying both mainstream (direct, nose only) and side stream (indirect, whole body) smoke exposures. This overview of 155 studies compares cellular and molecular mechanisms as well as proteolytic, inflammatory, and vasoreactive responses underlying COPD development. This is a difficult task, as listing of exposure parameters is limited for most experiments. We show that both mainstream and SHS studies largely present similar inflammatory cell populations dominated by macrophages as well as elevated chemokine/cytokine levels, such as TNF-α. Additionally, SHS, like mainstream smoke, has been shown to cause vascular remodeling and neutrophil elastase-mediated proteolytic matrix breakdown with failure to repair. Disease mechanisms and therapeutic interventions appear to coincide in both exposure scenarios. One of the more widely applied interventions, the anti-oxidant therapy, is successful for both mainstream and SHS. The comparison of direct with indirect smoke exposure studies in this review emphasizes that, even though there are many overlapping pathways, it is not conclusive that SHS is using exactly the same mechanisms as direct smoke in COPD pathogenesis, but should be considered a preventable health risk. Some characteristics and therapeutic alternatives uniquely exist in SHS-related COPD.
Collapse
Affiliation(s)
- Maike Leberl
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado School of Medicine Denver, CO, USA
| | | | | |
Collapse
|
141
|
Yang BC, Yang ZH, Pan XJ, Xiao FJ, Liu XY, Zhu MX, Xie JP. Crotonaldehyde-exposed macrophages induce IL-8 release from airway epithelial cells through NF-κB and AP-1 pathways. Toxicol Lett 2013; 219:26-34. [PMID: 23458894 DOI: 10.1016/j.toxlet.2013.02.018] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Revised: 02/18/2013] [Accepted: 02/19/2013] [Indexed: 11/24/2022]
|
142
|
Cigarette smoke (CS) and nicotine delay neutrophil spontaneous death via suppressing production of diphosphoinositol pentakisphosphate. Proc Natl Acad Sci U S A 2013; 110:7726-31. [PMID: 23610437 DOI: 10.1073/pnas.1302906110] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Diphosphoinositol pentakisphosphate (InsP7), a higher inositol phosphate containing energetic pyrophosphate bonds, is beginning to emerge as a key cellular signaling molecule. However, the various physiological and pathological processes that involve InsP7 are not completely understood. Here we report that cigarette smoke (CS) extract and nicotine reduce InsP7 levels in aging neutrophils. This subsequently leads to suppression of Akt deactivation, a causal mediator of neutrophil spontaneous death, and delayed neutrophil death. The effect of CS extract and nicotine on neutrophil death can be suppressed by either directly inhibiting the PtdIns(3,4,5)P3/Akt pathway, or increasing InsP7 levels via overexpression of InsP6K1, an inositol hexakisphosphate (InsP6) kinase responsible for InsP7 production in neutrophils. Delayed neutrophil death contributes to the pathogenesis of CS-induced chronic obstructive pulmonary disease. Therefore, disruption of InsP6K1 augments CS-induced neutrophil accumulation and lung damage. Taken together, these results suggest that CS and nicotine delay neutrophil spontaneous death by suppressing InsP7 production and consequently blocking Akt deactivation in aging neutrophils. Modifying neutrophil death via this pathway provides a strategy and therapeutic target for the treatment of tobacco-induced chronic obstructive pulmonary disease.
Collapse
|
143
|
van der Toorn M, Slebos DJ, de Bruin HG, Gras R, Rezayat D, Jorge L, Sandra K, van Oosterhout AJM. Critical role of aldehydes in cigarette smoke-induced acute airway inflammation. Respir Res 2013; 14:45. [PMID: 23594194 PMCID: PMC3671961 DOI: 10.1186/1465-9921-14-45] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Accepted: 03/07/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Cigarette smoking (CS) is the most important risk factor for COPD, which is associated with neutrophilic airway inflammation. We hypothesize, that highly reactive aldehydes are critical for CS-induced neutrophilic airway inflammation. METHODS BALB/c mice were exposed to CS, water filtered CS (WF-CS) or air for 5 days. Levels of total particulate matter (TPM) and aldehydes in CS and WF-CS were measured. Six hours after the last exposure, inflammatory cells and cytokine levels were measured in lung tissue and bronchoalveolar lavage fluid (BALF). Furthermore, Beas-2b bronchial epithelial cells were exposed to CS extract (CSE) or WF-CS extract (WF-CSE) in the absence or presence of the aldehyde acrolein and IL-8 production was measured after 24 hrs. RESULTS Compared to CS, in WF-CS strongly decreased (CS; 271.1 ± 41.5 μM, WF-CS; 58.5 ± 8.2 μM) levels of aldehydes were present whereas levels of TPM were only slightly reduced (CS; 20.78 ± 0.59 mg, WF-CS; 16.38 ± 0.36 mg). The numbers of mononuclear cells in BALF (p<0.01) and lung tissue (p<0.01) were significantly increased in the CS- and WF-CS-exposed mice compared to air control mice. Interestingly, the numbers of neutrophils (p<0.001) in BALF and neutrophils and eosinophils (p<0.05) in lung tissue were significantly increased in the CS-exposed but not in WF-CS-exposed mice as compared to air control mice. Levels of the neutrophil and eosinophil chemoattractants KC, MCP-1, MIP-1α and IL-5 were all significantly increased in lung tissue from CS-exposed mice compared to both WF-CS-exposed and air control mice. Interestingly, depletion of aldehydes in WF-CS extract significantly reduced IL-8 production in Beas-2b as compared to CSE, which could be restored by the aldehyde acrolein. CONCLUSION Aldehydes present in CS play a critical role in inflammatory cytokine production and neutrophilic- but not mononuclear airway inflammation.
Collapse
Affiliation(s)
- Marco van der Toorn
- Department of Pathology & Medical Biology, Lab. Allergology & Pulmonary Diseases, Hanzeplein 1, Groningen, GZ, 9713, The Netherlands
- GRIAC Research Institute, Groningen, The Netherlands
- Department of Laboratory Medicine, Groningen, The Netherlands
| | - Dirk-Jan Slebos
- Department of Pulmonary Diseases, University Medical Center Groningen, University of Groningen, PO Box 30001, Groningen, RB, 9700, The Netherlands
| | - Harold G de Bruin
- Department of Pathology & Medical Biology, Lab. Allergology & Pulmonary Diseases, Hanzeplein 1, Groningen, GZ, 9713, The Netherlands
- GRIAC Research Institute, Groningen, The Netherlands
| | - Renee Gras
- Department of Pathology & Medical Biology, Lab. Allergology & Pulmonary Diseases, Hanzeplein 1, Groningen, GZ, 9713, The Netherlands
- GRIAC Research Institute, Groningen, The Netherlands
| | - Delaram Rezayat
- Department of Pathology & Medical Biology, Lab. Allergology & Pulmonary Diseases, Hanzeplein 1, Groningen, GZ, 9713, The Netherlands
- GRIAC Research Institute, Groningen, The Netherlands
| | - Lucie Jorge
- Metablys, Research Institute for Chromatography, President Kennedypark 26, Kortrijk, 8500, Belgium
| | - Koen Sandra
- Metablys, Research Institute for Chromatography, President Kennedypark 26, Kortrijk, 8500, Belgium
| | - Antoon JM van Oosterhout
- Department of Pathology & Medical Biology, Lab. Allergology & Pulmonary Diseases, Hanzeplein 1, Groningen, GZ, 9713, The Netherlands
- GRIAC Research Institute, Groningen, The Netherlands
| |
Collapse
|
144
|
Eltom S, Stevenson C, Birrell MA. Cigarette smoke exposure as a model of inflammation associated with COPD. CURRENT PROTOCOLS IN PHARMACOLOGY 2013; Chapter 5:Unit5.64. [PMID: 23456614 DOI: 10.1002/0471141755.ph0564s60] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Chronic obstructive pulmonary disease (COPD) is characterized by progressive airflow limitation resulting from inflammation-driven pathologies in the lungs that are a consequence of smoking over many years. Given that the disease is increasing globally, understanding the mechanism by which cigarette smoke (CS) causes lung inflammation and exploiting that knowledge to develop effective treatments is urgently required. Animal models of CS exposure are commonly used to examine the inflammatory processes that may be involved in the development of COPD. The protocols described in this unit detail the development of preclinical models of CS-driven lung inflammation. These systems can be utilized to investigate the role of various biological pathways in CS-mediated inflammation and to assess the efficacy of new therapeutic strategies for treating COPD.
Collapse
Affiliation(s)
- Suffwan Eltom
- Respiratory Pharmacology, Airway Disease Section, National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London, United Kingdom
| | | | | |
Collapse
|
145
|
Stinn W, Buettner A, Weiler H, Friedrichs B, Luetjen S, van Overveld F, Meurrens K, Janssens K, Gebel S, Stabbert R, Haussmann HJ. Lung inflammatory effects, tumorigenesis, and emphysema development in a long-term inhalation study with cigarette mainstream smoke in mice. Toxicol Sci 2013; 131:596-611. [PMID: 23104432 PMCID: PMC3551427 DOI: 10.1093/toxsci/kfs312] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Accepted: 10/17/2012] [Indexed: 12/14/2022] Open
Abstract
Cigarette smoking is the leading cause of lung cancer and chronic obstructive pulmonary disease, yet there is little mechanistic information available in the literature. To improve this, laboratory models for cigarette mainstream smoke (MS) inhalation-induced chronic disease development are needed. The current study investigated the effects of exposing male A/J mice to MS (6h/day, 5 days/week at 150 and 300 mg total particulate matter per cubic meter) for 2.5, 5, 10, and 18 months in selected combinations with postinhalation periods of 0, 4, 8, and 13 months. Histopathological examination of step-serial sections of the lungs revealed nodular hyperplasia of the alveolar epithelium and bronchioloalveolar adenoma and adenocarcinoma. At 18 months, lung tumors were found to be enhanced concentration dependently (up to threefold beyond sham exposure), irrespective of whether MS inhalation had been performed for the complete study duration or was interrupted after 5 or 10 months and followed by postinhalation periods. Morphometric analysis revealed an increase in the extent of emphysematous changes after 5 months of MS inhalation, which did not significantly change over the following 13 months of study duration, irrespective of whether MS exposure was continued or not. These changes were found to be accompanied by a complex pattern of transient and sustained pulmonary inflammatory changes that may contribute to the observed pathogeneses. Data from this study suggest that the A/J mouse model holds considerable promise as a relevant model for investigating smoking-related emphysema and adenocarcinoma development.
Collapse
Affiliation(s)
- Walter Stinn
- *Philip Morris Research Laboratories GmbH, 51149 Cologne, Germany
| | - Ansgar Buettner
- *Philip Morris Research Laboratories GmbH, 51149 Cologne, Germany
| | - Horst Weiler
- *Philip Morris Research Laboratories GmbH, 51149 Cologne, Germany
| | | | - Sonja Luetjen
- *Philip Morris Research Laboratories GmbH, 51149 Cologne, Germany
| | | | - Kris Meurrens
- †Philip Morris Research Laboratories bvba, 3001 Leuven, Belgium
| | - Kris Janssens
- *Philip Morris Research Laboratories GmbH, 51149 Cologne, Germany
| | - Stephan Gebel
- *Philip Morris Research Laboratories GmbH, 51149 Cologne, Germany
| | - Regina Stabbert
- ‡Philip Morris International R&D, Neuchâtel, Switzerland; and
| | | |
Collapse
|
146
|
Khabour OF, Alzoubi KH, Bani-Ahmad M, Dodin A, Eissenberg T, Shihadeh A. Acute exposure to waterpipe tobacco smoke induces changes in the oxidative and inflammatory markers in mouse lung. Inhal Toxicol 2013; 24:667-75. [PMID: 22906173 DOI: 10.3109/08958378.2012.710918] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
CONTEXT Tobacco smoking represents a global public health threat, claiming approximately 5 million lives a year. Waterpipe tobacco use has become popular particularly among youth in the past decade, buttressed by the perception that the waterpipe "filters" the smoke, rendering it less harmful than cigarette smoke. OBJECTIVE In this study, we examined the acute exposure of waterpipe smoking on lung inflammation and oxidative stress in mice, and compared that to cigarette smoking. MATERIALS AND METHODS Mice were divided into three groups; fresh air control, cigarette and waterpipe. Animals were exposed to fresh air, cigarette, or waterpipe smoke using whole body exposure system one hour daily for 7 days. RESULTS Both cigarette and waterpipe smoke exposure resulted in elevation of total white blood cell count, as well as absolute count of neutrophils, macrophages, and lymphocytes (P < 0.01). Both exposures also elevated proinflammatory markers such as TNF-α and IL-6 in BALF (P < 0.05), and oxidative stress markers including GPx activity in lungs (P < 0.05). Moreover, waterpipe smoke increased catalase activity in the lung (P < 0.05). However, none of the treatments altered IL-10 levels. DISCUSSION AND CONCLUSION Results of cigarette smoking confirmed previous finding. Waterpipe results indicate that, similar to cigarettes, exposure to waterpipe tobacco smoke is harmful to the lungs.
Collapse
Affiliation(s)
- Omar F Khabour
- Department of Medical Laboratory Sciences, Jordan University of Science and Technology, Irbid, Jordan.
| | | | | | | | | | | |
Collapse
|
147
|
Bhoopalan V, Han SG, Shah MM, Thomas DM, Bhalla DK. Tobacco smoke modulates ozone-induced toxicity in rat lungs and central nervous system. Inhal Toxicol 2013; 25:21-8. [PMID: 23293970 DOI: 10.3109/08958378.2012.751143] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Adult Sprague-Dawley (SD) male rats were exposed for a single 3 h period to air, ozone (O₃) or O₃) followed by tobacco smoke (O₃/TS). For pulmonary effects, bronchoalveolar lavage (BAL) cells and fluid were analyzed. Data revealed a significant increase in polymorphonuclear leukocytes (PMN), total protein and albumin concentrations in the O₃ group, reflecting inflammatory and toxic responses. A subsequent exposure to TS attenuated PMN infiltration into the airspaces and their recovery in the BAL. A similar reduction was observed for BAL protein and albumin in the O₃/TS group, but it was not statistically significant. We also observed a significant increase in BAL total antioxidant capacity following O₃ exposure, suggesting development of protective mechanisms for oxidative stress damage from O₃. Exposure to TS attenuated the levels of total antioxidant capacity. Lung tissue protein analysis showed a significant reduction of extracellular superoxide dismutase (EC-SOD) in the O₃ or O₃/TS group and catalase in the O₃/TS group. TS further altered O₃-induced EC-SOD and catalase protein expression, but the reductions were not significant. For effects in the central nervous system (CNS), we measured striatal dopamine levels by HPLC with electrochemical detection. O₃ exposure produced a nonsignificant decrease in the striatal dopamine content. The effect was partially reversed in the O₃/TS group. Overall, the results show that the toxicity of O₃ in the lung is modulated by TS exposure, and the attenuating trend, though nonsignificant in many cases, is contrary to the synergistic toxicity predicted for TS and O₃, suggesting limited cross-tolerance following such exposures.
Collapse
Affiliation(s)
- Vanitha Bhoopalan
- Department of Pharmaceutical Sciences, Wayne State University, Detroit, Michigan, USA
| | | | | | | | | |
Collapse
|
148
|
Duan MC, Huang Y, Zhong XN, Tang HJ. Th17 cell enhances CD8 T-cell cytotoxicity via IL-21 production in emphysema mice. Mediators Inflamm 2012; 2012:898053. [PMID: 23319833 PMCID: PMC3540973 DOI: 10.1155/2012/898053] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Revised: 11/07/2012] [Accepted: 11/16/2012] [Indexed: 11/25/2022] Open
Abstract
Emphysema is a T-cell mediated autoimmune disease caused predominantly by cigarette smoking. Th17 cells and related cytokines may contribute to this disorder. However, the possible implication of Th17 cells in regulating inflammatory response in emphysema remains to be elucidated. In the current study, we tested the protein levels of IL-17 and IL-21 in peripheral blood and lung tissues from cigarette-smoke- (CS-) exposed mice and air-exposed mice, analyzed the frequencies of CD4(+)IL-17(+)(Th17) cells, IL-21(+)Th17 cells, and CD8(+)IL-21R(+) T cells in peripheral blood and lung tissues of mice, and their relationship with emphysematous lesions, and explored the impact of IL-21 on cytotoxic CD8(+) T cells function in vitro. It was found that the frequencies of Th17, IL-21(+)Th17, and CD8(+)IL-21R(+) T cells and the levels of IL-17 and IL-21 of CS-exposed mice were much higher than those of the air-exposed mice and correlated with emphysematous lesions. Additionally, the number of IL-21(+)Th17 cells positively correlated with the number of CD8(+)IL-21R(+) T cells. The in vitro experiments showed that IL-21 significantly augmented the secretion of perforin and granzyme B in CD8(+) T cells from CS-exposed mice. These data indirectly provide evidence that Th17 cells could be involved in the control of the local and system inflammatory response in emphysema by regulating CD8(+) cytotoxic T-cell function.
Collapse
Affiliation(s)
- Min-Chao Duan
- Department of Respiratory Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Ying Huang
- Department of Respiratory Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Xiao-Ning Zhong
- Department of Respiratory Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Hai-Juan Tang
- Department of Respiratory Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China
| |
Collapse
|
149
|
Cuzić S, Bosnar M, Kramarić MD, Ferencić Z, Marković D, Glojnarić I, Eraković Haber V. Claudin-3 and Clara cell 10 kDa protein as early signals of cigarette smoke-induced epithelial injury along alveolar ducts. Toxicol Pathol 2012; 40:1169-87. [PMID: 22659244 DOI: 10.1177/0192623312448937] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Smoking-associated chronic obstructive pulmonary disease is characterized by inflammation, changes affecting small airways, and development of emphysema. Various short- and long-term models have been introduced to investigate these processes. The aim of the present study was to identify markers of early epithelial injury/adaptation in a short-term animal model of cigarette smoke exposure. Initially, male BALB/c mice were exposed to smoke from one to five cigarettes and lung changes were assessed 4 and 24 hr after smoking cessation. Subsequently, animals were exposed to smoke from five cigarettes for 2 consecutive days and lungs investigated daily until the seventh postexposure day. Lung homogenates cytokines were determined, bronchioloalveolar fluid cells were counted, and lung tissue was analyzed by immunohistochemistry. Exposure to smoke from a single cigarette induced slight pulmonary neutrophilia. Smoke from two cigarettes additionally induced de novo expression of tight junction protein, claudin-3, by alveolar duct (AD) epithelial cells. Further increases in smoke exposure induced epithelial changes in airway progenitor regions. During the recovery period, the severity/frequency of epithelial reactions slowly decreased, coinciding with the switch from acute to a chronic inflammatory reaction. Claudin-3 and Clara cell 10 kDa protein were identified as possible markers of early tobacco smoke-induced epithelial injury along ADs.
Collapse
Affiliation(s)
- Snjezana Cuzić
- GlaxoSmithKline Research Centre Zagreb Limited, Zagreb, Croatia.
| | | | | | | | | | | | | |
Collapse
|
150
|
Khanna A, Guo M, Mehra M, Royal W. Inflammation and oxidative stress induced by cigarette smoke in Lewis rat brains. J Neuroimmunol 2012; 254:69-75. [PMID: 23031832 DOI: 10.1016/j.jneuroim.2012.09.006] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2012] [Revised: 09/06/2012] [Accepted: 09/07/2012] [Indexed: 01/24/2023]
Abstract
Exposure to cigarette smoke has been associated with an increased risk of neurological diseases such as stroke, Alzheimer's disease and multiple sclerosis. In these studies, serum and brain sections from Lewis rats or those exposed to cigarette smoke and control rats were examined for evidence of increased inflammation and oxidative stress. Immunocytochemical staining of brain sections from CS-exposed rats showed increased expression of class II MHC and, in ELISA, levels of IFN-gamma and TNF-α were higher than for non-exposed rats. In polymerase chain reaction assays there was increased interferon-gamma, TNF-α, IL-1α, IL-1β, IL-23, IL-6, IL-23, IL-17, IL-10, TGF-β, T-bet and FoxP3 gene expression with CS exposure. There was also markedly elevated MIP-1α/CCL3, less prominent MCP-1/CCL2 and no elevation of SDF-1α gene expression. Analysis of samples from CS-exposed and control rats for anti-oxidant expression showed no significant difference in serum levels of glutathione and, in brain, similar levels of superoxide dismutase and decreased thioredoxin gene expression. In contrast, there was increased brain gene expression for the pro-oxidants iNOS and the NADPH components NOX4, dual oxidase 1 and p22(phox). Nrf2 expression, which is typically triggered as a secondary response to oxidative stress, was also increased in brains from CS-exposed rats with nuclear translocation of this protein from cytoplasm demonstrated in astrocytes in association with increased expression of the aryl hydrocarbon receptor gene, an Nrf2 target. These studies, therefore, demonstrate that CS exposure in these animals can trigger multiple immune and oxidative responses that may have important roles in the pathogenesis of CNS inflammatory neurological diseases.
Collapse
Affiliation(s)
- A Khanna
- Department of Pathology, The University of Maryland School of Medicine, Baltimore, MD, United States
| | | | | | | |
Collapse
|