101
|
Ni S, Zhang H, Dai H, Xiao H. Starch-Based Flexible Coating for Food Packaging Paper with Exceptional Hydrophobicity and Antimicrobial Activity. Polymers (Basel) 2018; 10:E1260. [PMID: 30961185 PMCID: PMC6401770 DOI: 10.3390/polym10111260] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 11/10/2018] [Accepted: 11/10/2018] [Indexed: 12/15/2022] Open
Abstract
Herein, we fabricated a starch-based flexible coating for food packaging papers with excellent hydrophobicity and antimicrobial properties. FTIR (Fourier transform infrared) and XRD (X-ray diffraction) spectra revealed the homogeneous dispersion of the ZnO nanoparticles (NPs) in the composite film within 5% ZnO NP dosage. SEM (scanning electron microscope) and AFM (atomic force microscope) micrographs confirmed the increased roughness on the composite film with the increased dosages of ZnO NPs. Hydrophobic characteristics showed that dramatic enhancement was obtained in the values and stabilities of DCAs (dynamic contact angles) in the resultant film and coated paper. TG (thermogravimetry) results demonstrated the increased thermal stabilities of the composite films. Significantly, a decreased water vapor transmission rate was observed in the coated paper. When 20% guanidine-based starch and 2% CMC (carboxy methyl cellulose) was added, a flexible coating with excellent antimicrobial activity towards Escherichia coli can be obtained. Furthermore, the migration of ZnO NPs into the food simulants was well below the overall migration legislative limit. The resultant starch-based flexible composite film and coated paper established an effective approach to develop a green-based material for food packaging applications.
Collapse
Affiliation(s)
- Shuzhen Ni
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China.
- Department of Chemical Engineering, University of New Brunswick, Fredericton, NB E3B 5A3, Canada, .
| | - Hui Zhang
- Department of Chemical Engineering, University of New Brunswick, Fredericton, NB E3B 5A3, Canada, .
- College of Materials Engineering, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Hongqi Dai
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China.
| | - Huining Xiao
- Department of Chemical Engineering, University of New Brunswick, Fredericton, NB E3B 5A3, Canada, .
| |
Collapse
|
102
|
Ansar S, Abudawood M, Alaraj ASA, Hamed SS. Hesperidin alleviates zinc oxide nanoparticle induced hepatotoxicity and oxidative stress. BMC Pharmacol Toxicol 2018; 19:65. [PMID: 30340509 PMCID: PMC6195725 DOI: 10.1186/s40360-018-0256-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 10/03/2018] [Indexed: 01/23/2023] Open
Abstract
Background Nanoparticles are widely utilized in many products such as cosmetics and sunscreens. The present study was undertaken to evaluate the effect of hesperidin (HSP) on nano zinc oxide particles (nZnO) induced oxidative stress in rat livers. Methods Rats were randomly divided into 4 groups of 6 rats each and exposed to single administration of nZnO intraperitoneally (600 mg/kg bwt) and HSP (100 mg/kg bwt) by gavage. Group I served as the control; group II was given nZnO only; groups III received HSP only and group IV received nZnO 1 h after pretreatment with HSP for 7 days. Results Compared to the controls, nZnO administration enhanced alanine aminotransferase (AST) and aspartate aminotransferase (ALT) levels (p < 0.05) with reduction in the levels of glutathione (GSH), catalase (CAT), glutathione peroxidase (GPx), superoxide dismutase (SOD) and increase in levels of malondialdehyde (MDA) while HSP attenuated nZnO-induced hepatotoxicity for above mentioned parameters. Conclusions The induced toxicity in the liver was corrected by pretreatment with HSP. The findings of this study suggest that HSP pretreatment can potentially be used to prevent nZnO-induced biochemical alterations toxicity. Further, protection by HSP on biochemical results was confirmed by histopathological changes. The present study suggests that HSP can protect against nZnO-induced oxidative damage in the rat livers.
Collapse
Affiliation(s)
- Sabah Ansar
- Clinical Laboratory Sciences, Applied Medical Science, King Saud University, Riyadh, Saudi Arabia.
| | - Manal Abudawood
- Clinical Laboratory Sciences, Applied Medical Science, King Saud University, Riyadh, Saudi Arabia
| | - Amal S A Alaraj
- Clinical Laboratory Sciences, Applied Medical Science, King Saud University, Riyadh, Saudi Arabia
| | - Sherifa S Hamed
- Zoology Department, College of Science, King Saud University, Riyadh, Saudi Arabia.,Zoology Department, Faculty of Science, University of Alexandria, Moharram Bey, Alexandria, 21511, Egypt
| |
Collapse
|
103
|
Du J, Tang J, Xu S, Ge J, Dong Y, Li H, Jin M. ZnO nanoparticles: recent advances in ecotoxicity and risk assessment. Drug Chem Toxicol 2018; 43:322-333. [DOI: 10.1080/01480545.2018.1508218] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Jia Du
- Institute of Environmental Science and Engineering, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, P.R. China
| | - Junhong Tang
- Institute of Environmental Science and Engineering, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, P.R. China
| | - Shaodan Xu
- Institute of Environmental Science and Engineering, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, P.R. China
| | - Jingyuan Ge
- Institute of Environmental Science and Engineering, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, P.R. China
| | - Yuwei Dong
- Institute of Environmental Science and Engineering, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, P.R. China
| | - Huanxuan Li
- Institute of Environmental Science and Engineering, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, P.R. China
| | - Meiqing Jin
- Institute of Environmental Science and Engineering, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, P.R. China
| |
Collapse
|
104
|
Valentini X, Deneufbourg P, Paci P, Rugira P, Laurent S, Frau A, Stanicki D, Ris L, Nonclercq D. Morphological alterations induced by the exposure to TiO 2 nanoparticles in primary cortical neuron cultures and in the brain of rats. Toxicol Rep 2018; 5:878-889. [PMID: 30175048 PMCID: PMC6118103 DOI: 10.1016/j.toxrep.2018.08.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 08/09/2018] [Accepted: 08/12/2018] [Indexed: 12/17/2022] Open
Abstract
Nowadays, nanoparticles (NPs) of titanium dioxide (TiO2) are abundantly produced. TiO2 NPs are present in various food products, in paints, cosmetics, sunscreens and toothpastes. However, the toxicity of TiO2 NPs on the central nervous system has been poorly investigated until now. The aim of this study was to evaluate the toxicity of TiO2 NPs on the central nervous system in vitro and in vivo. In cell cultures derived from embryonic cortical brain of rats, a significant decrease in neuroblasts was observed after 24 to 96 h of incubation with TiO2 NPs (5 to 20 μg/ml). This phenomenon resulted from an inhibition of neuroblast proliferation and a concomitant increase in apoptosis. In the same time, a gliosis, characterized by an increase in proliferation of astrocytes and the hypertrophy of microglial cells, occurred. The phagocytosis of TiO2 NPs by microgliocytes was also observed. In vivo, after intraperitoneal injection, the TiO2 NPs reached the brain through the blood brain barrier and the nanoparticles promoted various histological injuries such as cellular lysis, neuronal apoptosis, and inflammation. A reduction of astrocyte population was observed in some brain area such as plexiform zone, cerebellum and subependymal area. An oxidative stress was also detected by immunohistochemistry in neurons of hippocampus, cerebellum and in subependymal area. In conclusion, our study demonstrated clearly the toxic impact of TiO2 NPs on rat brain and neuronal cells and pointed about not yet referenced toxicity impacts of TiO2 such as the reduction of neuroblast proliferation both in vitro and in vivo.
Collapse
Key Words
- 4-HNE, 4-hydroxynonenal
- ATP, adenosine triphosphate
- BBB, blood-brain barrier
- Brain
- BrdU, 5-Bromo-2′-deoxyuridine
- CNS, central nervous system
- Cell culture
- DLS, dynamic light scattering
- FBS, fetal bovine serum
- GFAP, glial fibrillary acidic protein
- HBSS, Hank's balanced salt solution
- IL-10, interleukin-10
- IL-1β, interleukin-1β
- IP, intraperitoneal
- MAP2, microtubule-associated protein 2
- MDA, malondialdehyde
- NMDA, N-methyl-D-aspartate
- NO, nitric oxide
- NOS, nitric oxide synthase
- NPs, nanoparticles
- Nanoparticles
- Oxidative stress
- Proliferation
- ROS, reactive oxygen species
- SEM, standard error of the mean
- TNF-α, tumor necrosis factor-α
Collapse
Affiliation(s)
- Xavier Valentini
- Laboratory of Histology, University of Mons, Institute for Health Sciences and Technology, Faculty of Medicine and Pharmacy, 23, Place du Parc, B-7000 Mons, Belgium
| | - Pauline Deneufbourg
- Laboratory of Neurosciences, University of Mons, Institute for Health Sciences and Technology, Faculty of Medicine and Pharmacy, 23, Place du Parc, B-7000 Mons, Belgium
| | - Paula Paci
- Laboratory of Neurosciences, University of Mons, Institute for Health Sciences and Technology, Faculty of Medicine and Pharmacy, 23, Place du Parc, B-7000 Mons, Belgium
| | - Pascaline Rugira
- Laboratory of Histology, University of Mons, Institute for Health Sciences and Technology, Faculty of Medicine and Pharmacy, 23, Place du Parc, B-7000 Mons, Belgium
| | - Sophie Laurent
- Laboratory of General, Organic and Biomedical Chemistry, NMR and Molecular Imaging Laboratory, University of Mons, Institute for Health Sciences and Technology, Institute of Biosciences, Faculty of Medicine and Pharmacy, 23, Place du Parc, B-7000 Mons, Belgium
- Center for Microscopy and Molecular Imaging (CMMI), B-6041 Gosselies, Belgium
| | - Annica Frau
- Laboratory of Histology, University of Mons, Institute for Health Sciences and Technology, Faculty of Medicine and Pharmacy, 23, Place du Parc, B-7000 Mons, Belgium
| | - Dimitri Stanicki
- Laboratory of General, Organic and Biomedical Chemistry, NMR and Molecular Imaging Laboratory, University of Mons, Institute for Health Sciences and Technology, Institute of Biosciences, Faculty of Medicine and Pharmacy, 23, Place du Parc, B-7000 Mons, Belgium
| | - Laurence Ris
- Laboratory of Neurosciences, University of Mons, Institute for Health Sciences and Technology, Faculty of Medicine and Pharmacy, 23, Place du Parc, B-7000 Mons, Belgium
| | - Denis Nonclercq
- Laboratory of Histology, University of Mons, Institute for Health Sciences and Technology, Faculty of Medicine and Pharmacy, 23, Place du Parc, B-7000 Mons, Belgium
- Corresponding author at: 6, Avenue du Champ de Mars, Mons, 7000, Belgium.
| |
Collapse
|
105
|
Seo Y, Hwang J, Lee E, Kim YJ, Lee K, Park C, Choi Y, Jeon H, Choi J. Engineering copper nanoparticles synthesized on the surface of carbon nanotubes for anti-microbial and anti-biofilm applications. NANOSCALE 2018; 10:15529-15544. [PMID: 29985503 DOI: 10.1039/c8nr02768d] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Biofilms adhere to surfaces to produce extracellular polymeric substances (EPSs). EPSs grow and protect themselves from external stresses. Their formation causes a foul odor and may lead to chronic infectious diseases in animals and people. Biofilms also inhibit the contact between bacteria and antibiotics, thereby reducing their antibacterial activity. Thus, we describe novel nanostructures, a fusion of copper and multi-walled carbon nanotubes (MWCNTs), which increase antimicrobial activity against biofilms without being toxic to human cells. Simulations based on the stochastic response were performed to predict the efficiency of synthesizing nanostructures. The synthesized Cu/MWCNTs inhibit the growth of Methylobacterium spp., which forms biofilms; antimicrobial testing and cytotoxicity assessments showed that the Cu/MWCNTs were not cytotoxic to human cells. The Cu/MWCNTs come in direct contact with the bacterial cell surface, damage the cell wall, and cause secondary oxidation of reactive oxygen species. Furthermore, the Cu/MWCNTs release copper ions, which inhibit the quorum sensing in Methylobacterium spp., thereby inhibiting the expression of the genes that form biofilms. Additionally, we confirmed excellent electrical and thermal conductivity of Cu/MWCNTs as well as biofilm removal efficiency in the microfluidic channel.
Collapse
Affiliation(s)
- Youngmin Seo
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul 02792, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
106
|
Abstract
Application of nanomaterials in nearly every single branch of industry results in their accumulation in both abiotic environment and tissues of living organisms. Despite the common use of nanomaterials, we are not able to precisely define their toxicity towards humans and surrounding biota. Although we were able to determine final effects of chronic exposure to nanoparticles which consist of many pathologies such as respiratory diseases, allergies, diseases of cardiovascular system, disorders in embryonic life differentiation and growth disorders, toxic effects on the immune system and cancers. The most predominantly investigated feature of most nanoparticles is their ability to induce oxidative stress on cellular level. Imbalance in redox state of cells can lead to various malfunctions in their internal metabolism, which in turn can lead to mentioned pathologies on the organismal level if the exposure is persistent and spread wide enough. Imbalance in redox state translate into production of reactive oxygen species in amounts impossible to be scavenged in given time. Many reactive oxygen species play crucial role in physiological processes in properly functioning cells. It was proven on numerous occasions that abundance of ROS, aside from oxidative damage, can lead to more subtle adverse effects tied to disturbances in intra- and intercellular signaling pathways. In this chapter we would like to address the nanoparticle-induced redox imbalance in cells and its effects.
Collapse
|
107
|
Cunha FA, Cunha MDCSO, da Frota SM, Mallmann EJJ, Freire TM, Costa LS, Paula AJ, Menezes EA, Fechine PBA. Biogenic synthesis of multifunctional silver nanoparticles from Rhodotorula glutinis and Rhodotorula mucilaginosa: antifungal, catalytic and cytotoxicity activities. World J Microbiol Biotechnol 2018; 34:127. [PMID: 30084085 DOI: 10.1007/s11274-018-2514-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 08/01/2018] [Indexed: 01/14/2023]
Abstract
Silver nanoparticles (AgNPs) have several technological applications and may be synthetized by chemical, physical and biological methods. Biosynthesis using fungi has a wide enzymatic range and it is easy to handle. However, there are few reports of yeasts with biosynthetic ability to produce stable AgNPs. The purpose of this study was to isolate and identify soil yeasts (Rhodotorula glutinis and Rhodotorula mucilaginosa). After this step, the yeasts were used to obtain AgNPs with catalytic and antifungal activity evaluation. Silver Nanoparticles were characterized by UV-Vis, DLS, FTIR, XRD, EDX, SEM, TEM and AFM. The AgNPs produced by R. glutinis and R. mucilaginosa have 15.45 ± 7.94 nm and 13.70 ± 8.21 nm (average ± SD), respectively, when analyzed by TEM. AgNPs showed high catalytic capacity in the degradation of 4-nitrophenol and methylene blue. In addition, AgNPs showed high antifungal activity against Candida parapsilosis and increase the activity of fluconazole (42.2% for R. glutinis and 29.7% for R. mucilaginosa), while the cytotoxicity of AgNPs was only observed at high concentrations. Finally, two yeasts with the ability to produce AgNPs were described and these particles showed multifunctionality and can represent a technological alternative in many different areas with potential applications.
Collapse
Affiliation(s)
- Francisco A Cunha
- Grupo de Química de Materiais Avançados (GQMat)- Departamento de Química Analítica e Físico-Química, Universidade Federal do Ceará - UFC, Campus do Pici, CP 12100, CEP 60451-970, Fortaleza, CE, Brazil.,Laboratório de Microbiologia de Leveduras - Departamento de Análises Clínicas, Universidade Federal do Ceará - UFC, Fortaleza, Brazil
| | - Maria da C S O Cunha
- Laboratório de Microbiologia de Leveduras - Departamento de Análises Clínicas, Universidade Federal do Ceará - UFC, Fortaleza, Brazil
| | - Sabrina M da Frota
- Laboratório de Microbiologia de Leveduras - Departamento de Análises Clínicas, Universidade Federal do Ceará - UFC, Fortaleza, Brazil
| | - Eduardo J J Mallmann
- Grupo de Química de Materiais Avançados (GQMat)- Departamento de Química Analítica e Físico-Química, Universidade Federal do Ceará - UFC, Campus do Pici, CP 12100, CEP 60451-970, Fortaleza, CE, Brazil
| | - Tiago M Freire
- Grupo de Química de Materiais Avançados (GQMat)- Departamento de Química Analítica e Físico-Química, Universidade Federal do Ceará - UFC, Campus do Pici, CP 12100, CEP 60451-970, Fortaleza, CE, Brazil
| | - Luelc S Costa
- Laboratório Nacional de Nanotecnologia (LNNano), Centro Nacional de Pesquisa Em Energia e Materiais (CNPEM), CEP 13083-970, Campinas, São Paulo, Brazil
| | - Amauri J Paula
- Solid-Biological Interface Group (SolBIN), Departamento de Física, Universidade Federal do Ceará, P.O. Box 6030, Fortaleza, CE, 60455-900, Brazil
| | - Everardo A Menezes
- Laboratório de Microbiologia de Leveduras - Departamento de Análises Clínicas, Universidade Federal do Ceará - UFC, Fortaleza, Brazil
| | - Pierre B A Fechine
- Grupo de Química de Materiais Avançados (GQMat)- Departamento de Química Analítica e Físico-Química, Universidade Federal do Ceará - UFC, Campus do Pici, CP 12100, CEP 60451-970, Fortaleza, CE, Brazil.
| |
Collapse
|
108
|
Altunbek M, Keleştemur S, Baran G, Çulha M. Role of modification route for zinc oxide nanoparticles on protein structure and their effects on glioblastoma cells. Int J Biol Macromol 2018; 118:271-278. [PMID: 29908275 DOI: 10.1016/j.ijbiomac.2018.06.059] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 05/30/2018] [Accepted: 06/12/2018] [Indexed: 10/14/2022]
Abstract
Zinc oxide nanoparticles (ZnO) are presented as potential cancer therapeutic agent based on their surface properties. In this study, the most abundant blood proteins, albumin, fibrinogen and apo-transferrin, were covalently bound (c-ZnO NPs) and nonspecifically adsorbed (n-ZnO NPs) onto ZnO NPs to evaluate the role of modification route on protein structure and their effects on glioblastoma cells. The success of modification and structures of proteins on ZnO NPs were characterized with FT-IR. It was found that non-covalent interaction significantly damaged the secondary structure of proteins compared to those covalently attached to the ZnO nanoparticle. The effects of modified ZnO NPs were investigated by evaluating viability, cycle, and death mechanisms of glioblastoma (U373) cells. n-ZnO NPs were found more toxic compared to the pristine and c-ZnO NPs. However, c-ZnO NPs with albumin and apo-transferrin both perturbed the cell cycle function, and decreased the necrotic cell death rate of U373 cells below toxic concentration, suggesting their potential curative effect on glioblastoma cells.
Collapse
Affiliation(s)
- Mine Altunbek
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Ataşehir, Istanbul 34755, Turkey
| | - Seda Keleştemur
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Ataşehir, Istanbul 34755, Turkey
| | - Gülin Baran
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Ataşehir, Istanbul 34755, Turkey
| | - Mustafa Çulha
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Ataşehir, Istanbul 34755, Turkey.
| |
Collapse
|
109
|
Rad MM, Najafzadeh N, Tata N, Jafari A. Ag – ZnO Nanocomposites Cause Cytotoxicity and Induce Cell Cycle Arrest in Human Gastric and Melanoma Cancer Cells. Pharm Chem J 2018; 52:112-116. [DOI: 10.1007/s11094-018-1774-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Indexed: 12/17/2022]
|
110
|
Wang X, Gong J, Rong R, Gui Z, Hu T, Xu X. Halloysite Nanotubes-Induced Al Accumulation and Fibrotic Response in Lung of Mice after 30-Day Repeated Oral Administration. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:2925-2933. [PMID: 29470912 DOI: 10.1021/acs.jafc.7b04615] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Natural halloysite (Al2Si2O5(OH)4· nH2O) nanotubes (HNT) are clay materials with hollow tubular structure and are widely applied in many fields. Many in vitro studies indicate that HNTs exhibit a high level of biocompatibility; however, the in vivo toxicity of HNTs remains unclear. In this study, the biodistribution and pulmonary toxicity of the purified HNTs in mice were investigated after intragastric administration for 30 days. HNTs have high stability in biological conditions. Oral administration of HNTs caused significant Al accumulation predominantly in the lung with relative slight effects on Si biodistribution. Oral administration of HNTs stimulated the growth of the mice at low dose (5 mg/kg BW) with no pulmonary toxicity but inhibited the mouse growth and resulted in oxidative stress and inflammation in lung at high dose (50 mg/kg BW). In addition, oral HNTs at high dose could be absorbed from the gastrointestinal tract and deposited in lung and could also induce pulmonary fibrosis.
Collapse
Affiliation(s)
- Xue Wang
- Department of Chemistry , University of Science and Technology of China , Hefei , 230026 , P. R. China
| | - Jiachun Gong
- Department of Chemistry , University of Science and Technology of China , Hefei , 230026 , P. R. China
| | - Rui Rong
- Department of Chemistry , University of Science and Technology of China , Hefei , 230026 , P. R. China
| | - Zongxiang Gui
- Department of Chemistry , University of Science and Technology of China , Hefei , 230026 , P. R. China
| | - Tingting Hu
- Department of Chemistry , University of Science and Technology of China , Hefei , 230026 , P. R. China
| | - Xiaolong Xu
- Department of Chemistry , University of Science and Technology of China , Hefei , 230026 , P. R. China
| |
Collapse
|
111
|
Khoobbakht Z, Mohammadi M, Mehr MRA, Mohammadghasemi F, Sohani MM. Comparative effects of zinc oxide, zinc oxide nanoparticle and zinc-methionine on hatchability and reproductive variables in male Japanese quail. Anim Reprod Sci 2018. [PMID: 29525207 DOI: 10.1016/j.anireprosci.2018.02.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The objective was to examine the effect of different dietary zinc sources on reproduction of male Japanese quail. A total of 512 quail chicks (day-old) were divided into four groups with four replications for a period of 42 days. After this period, excess chicks were removed to attain the ratio of one male to three females and 16 quail in each subgroup. At 52 to 60 d of age, the eggs were collected and incubated. The basal diet (control) contained no zinc and the other three experimental diets were supplemented with 25 and 50 mg/kg zinc from zinc oxide (ZnO), zinc oxide nanoparticles (ZnONP) and zinc-methionine (Zn-Met) for 1 to 35 and 36 to 60 days, respectively. On day 42, two males from each replicate were euthanized. Males from the ZnO and Zn-Met treatments had an increase (P < 0.05) in seminiferous tubule diameters (STD) and germinal epithelium thickness (GET) compared with the control and ZnONP treatments. Cloacal gland index (CGI) was greatest (P < 0.05) for the Zn-Met compared with the other groups. Testosterone concentration was greater (P < 0.05) in the ZnO and Zn-Met compared with the other groups. Addition of Zn-Met to the diet enhanced (P < 0.05) fertility, hatchability and hatched chick weight compared with the other groups. Early and late embryonic death was greater (P < 0.05) in the control and ZnONP groups, respectively, compared with the other groups. This study indicated that supplementing diets with the Zn-Met source improves male Japanese quail reproductive performance and hatchability traits while zinc oxide nanoparticles have detrimental effects on male Japanese quail reproduction and reduces hatchability.
Collapse
Affiliation(s)
- Zeinab Khoobbakht
- Animal Science Department, Faculty of Agricultural Sciences, University of Guilan, Rasht, Iran
| | - Mehrdad Mohammadi
- Animal Science Department, Faculty of Agricultural Sciences, University of Guilan, Rasht, Iran.
| | | | | | | |
Collapse
|
112
|
Li YS, Ootsuyama Y, Kawasaki Y, Morimoto Y, Higashi T, Kawai K. Oxidative DNA damage in the rat lung induced by intratracheal instillation and inhalation of nanoparticles. J Clin Biochem Nutr 2018; 62:238-241. [PMID: 29892162 PMCID: PMC5990410 DOI: 10.3164/jcbn.17-70] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 10/09/2017] [Indexed: 11/22/2022] Open
Abstract
Nanoparticles are widely used as useful industrial materials. Therefore, their possible adverse health effects must be appraised. We assessed and compared the oxidative DNA damage caused by four different nanoparticles (TiO2, NiO, ZnO and CeO2). The effects of the administration methods, intratracheal instillation and inhalation, were also evaluated. Rats were subjected to intratracheal instillations or 4 weeks of inhalation exposure to the nanoparticles, and the 8-hydroxydeoxyguanosine (8-OHdG) levels in the lung were analyzed by an HPLC-EC detector method. The 8-OHdG levels were increased in a dose-dependent manner with the inhalation of NiO. ZnO also increased the 8-OHdG levels with inhalation. In comparison with the control, the 8-OHdG levels were significantly and persistently higher with the CeO2 nanoparticle administration, by both intratracheal instillation and inhalation. In contrast, there were no significant differences in the 8-OHdG levels between the control and TiO2 nanoparticle-treated groups, with either intratracheal instillation or inhalation during the observation period. These results indicated that NiO, ZnO and CeO2 nanoparticles generate significant amounts of free radicals, and oxidative stress may be responsible for the lung injury caused by these nanoparticles. In addition, both intratracheal instillation and inhalation exposure induced similar tendencies of oxidative DNA damage with these nanoparticles.
Collapse
Affiliation(s)
- Yun-Shan Li
- Department of Environmental Oncology, Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu 807-8555, Japan
| | - Yuko Ootsuyama
- Department of Environmental Oncology, Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu 807-8555, Japan
| | - Yuya Kawasaki
- Department of Environmental Oncology, Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu 807-8555, Japan
| | - Yasuo Morimoto
- Department of Occupational Pneumology, Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu 807-8555, Japan
| | - Toshiaki Higashi
- President, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu 807-8555, Japan
| | - Kazuaki Kawai
- Department of Environmental Oncology, Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu 807-8555, Japan
| |
Collapse
|
113
|
Zhang W, Zhao Y, Li F, Li L, Feng Y, Min L, Ma D, Yu S, Liu J, Zhang H, Shi T, Li F, Shen W. Zinc Oxide Nanoparticle Caused Plasma Metabolomic Perturbations Correlate with Hepatic Steatosis. Front Pharmacol 2018; 9:57. [PMID: 29472859 PMCID: PMC5810292 DOI: 10.3389/fphar.2018.00057] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 01/16/2018] [Indexed: 12/11/2022] Open
Abstract
Zinc oxide nanoparticles (ZnO NPs), known for their chemical stability and strong adsorption, are used in everyday items such as cosmetics, sunscreens, and prophylactic drugs. However, they have also been found to adversely affect organisms; previously we found that ZnO NPs disrupt pubertal ovarian development, inhibit embryonic development by upsetting γ-H2AX and NF-κB pathways, and even disturb skin stem cells. Non-targeted metabolomic analysis of biological organisms has been suggested as an unbiased tool for the investigation of perturbations in response to NPs and their underlying mechanisms. Although metabolomics has been used in nanotoxicological studies, very few reports have used it to investigate the effects of ZnO NPs exposure. In the current investigation, through a metabolomics-based approach, we discovered that ZnO NPs caused changes in plasma metabolites involved in anti-oxidative mechanisms, energy metabolism, and lipid metabolism in hen livers. These results are in line with earlier findings that ZnO NPs perturb the tricarboxylic acid cycle and in turn result in the use of alternative energy sources. We also found that ZnO NPs disturbed lipid metabolism in the liver and consequently impacted blood lipid balance. Changes in plasma metabolomes were correlated with hepatic steatosis.
Collapse
Affiliation(s)
- Weidong Zhang
- College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Yong Zhao
- College of Life Sciences, Qingdao Agricultural University, Qingdao, China
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Fuli Li
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
| | - Lan Li
- College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Yanni Feng
- College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Lingjiang Min
- College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Dongxue Ma
- College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Shuai Yu
- College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Jing Liu
- Core Laboratories of Qingdao Agricultural University, Qingdao, China
| | - Hongfu Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Tianhong Shi
- Institute of Poultry Science, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Fuwei Li
- Institute of Poultry Science, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Wei Shen
- College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
114
|
Toxicogenomics: A New Paradigm for Nanotoxicity Evaluation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1048:143-161. [PMID: 29453537 DOI: 10.1007/978-3-319-72041-8_9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The wider applications of nanoparticles (NPs) has evoked a world-wide concern due to their possible risk of toxicity in humans and other organisms. Aggregation and accumulation of NPs into cell leads to their interaction with biological macromolecules including proteins, nucleic acids and cellular organelles, which eventually induce toxicological effects. Application of toxicogenomics to investigate molecular pathway-based toxicological consequences has opened new vistas in nanotoxicology research. Indeed, genomic approaches appeared as a new paradigm in terms of providing information at molecular levels and have been proven to be as a powerful tool for identification and quantification of global shifts in gene expression. Toxicological responses of NPs have been discussed in this chapter with the aim to provide a clear understanding of the molecular mechanism of NPs induced toxicity both in in vivo and in vitro test models.
Collapse
|
115
|
Talkar S, Dhoble S, Majumdar A, Patravale V. Transmucosal Nanoparticles: Toxicological Overview. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1048:37-57. [PMID: 29453531 DOI: 10.1007/978-3-319-72041-8_3] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Nanoparticles have specific physicochemical properties different to bulk materials of the same composition and such properties make them very attractive for commercial and medical applications. Mucoadhesive nanoparticulate dosage forms are designed to enable prolonged retention of these nanoparticles at the site of application, providing a controlled drug release for improved therapeutic outcome. Moreover, drug delivery across the mucosa bypasses the first-pass hepatic metabolism and avoids the degradation by gastrointestinal enzymes. However, like most new technologies, there is a rising debate concerning the possible transmucosal side effects resulting from the use of particles at the nano level. In fact, these nanoparticles on entering the body, deposit in several organs and may cause adverse biological reactions by modifying the physiochemical properties of living matter. Several investigators have found nanoparticles responsible for toxicity in different organs. In addition, the toxicity of nanoparticles also depends on whether they are persistent or cleared from the different organs of entry and whether the host can raise an effective response to sequester or dispose of the particles. In contrast to many efforts aimed at exploiting desirable properties of nanoparticles for medicine, there are limited attempts to evaluate potentially undesirable effects of these particles when administered intentionally for medical purposes. This chapter focuses on the overview of the mucosal systems, fate of nanoparticles, mechanism of nanoparticle's toxicity and the various toxicity issues associated with nanoparticles through mucosal routes.
Collapse
Affiliation(s)
- Swapnil Talkar
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai, India
| | - Sagar Dhoble
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai, India
| | - Anuradha Majumdar
- Department of Pharmacology and Toxicology, Bombay College of Pharmacy, Mumbai, India
| | - Vandana Patravale
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai, India.
| |
Collapse
|
116
|
|
117
|
Ahamed M, Khan MAM, Akhtar MJ, Alhadlaq HA, Alshamsan A. Ag-doping regulates the cytotoxicity of TiO 2 nanoparticles via oxidative stress in human cancer cells. Sci Rep 2017; 7:17662. [PMID: 29247182 PMCID: PMC5732217 DOI: 10.1038/s41598-017-17559-9] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 11/28/2017] [Indexed: 01/01/2023] Open
Abstract
We investigated the anticancer potential of Ag-doped (0.5-5%) anatase TiO2 NPs. Characterization study showed that dopant Ag was well-distributed on the surface of host TiO2 NPs. Size (15 nm to 9 nm) and band gap energy (3.32 eV to 3.15 eV) of TiO2 NPs were decreases with increasing the concentration of Ag dopant. Biological studies demonstrated that Ag-doped TiO2 NP-induced cytotoxicity and apoptosis in human liver cancer (HepG2) cells. The toxic intensity of TiO2 NPs was increases with increasing the amount of Ag-doping. The Ag-doped TiO2 NPs further found to provoke reactive oxygen species (ROS) generation and antioxidants depletion. Toxicity induced by Ag-doped TiO2 NPs in HepG2 cells was efficiently abrogated by antioxidant N-acetyl-cysteine (ROS scavenger). We also found that Ag-doped TiO2 NPs induced cytotoxicity and oxidative stress in human lung (A549) and breast (MCF-7) cancer cells. Interestingly, Ag-doped TiO2 NPs did not cause much toxicity to normal cells such as primary rat hepatocytes and human lung fibroblasts. Overall, we found that Ag-doped TiO2 NPs have potential to selectively kill cancer cells while sparing normal cells. This study warranted further research on anticancer potential of Ag-doped TiO2 NPs in various types of cancer cells and in vivo models.
Collapse
Affiliation(s)
- Maqusood Ahamed
- King Abdullah Institute for Nanotechnology, King Saud University, Riyadh, Saudi Arabia.
| | - M A Majeed Khan
- King Abdullah Institute for Nanotechnology, King Saud University, Riyadh, Saudi Arabia
| | - Mohd Javed Akhtar
- King Abdullah Institute for Nanotechnology, King Saud University, Riyadh, Saudi Arabia
| | - Hisham A Alhadlaq
- King Abdullah Institute for Nanotechnology, King Saud University, Riyadh, Saudi Arabia
- Department of Physics and Astronomy, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Aws Alshamsan
- King Abdullah Institute for Nanotechnology, King Saud University, Riyadh, Saudi Arabia
- Nanomedicine Research Unit, Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
118
|
Król A, Pomastowski P, Rafińska K, Railean-Plugaru V, Buszewski B. Zinc oxide nanoparticles: Synthesis, antiseptic activity and toxicity mechanism. Adv Colloid Interface Sci 2017; 249:37-52. [PMID: 28923702 DOI: 10.1016/j.cis.2017.07.033] [Citation(s) in RCA: 295] [Impact Index Per Article: 36.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 07/24/2017] [Accepted: 07/29/2017] [Indexed: 02/02/2023]
Abstract
Zinc oxide (ZnO), as a material with attractive properties, has attracted great interest worldwide, particularly owing to the implementation of the synthesis of nano-sized particles. High luminescent efficiency, a wide band gap (3.36eV), and a large exciton binding energy (60meV) has triggered intense research on the production of nanoparticles using different synthesis methods and on their future applications. ZnO nanomaterials can be used in industry as nano-optical and nano-electrical devices, in food packaging and in medicine as antimicrobial and antitumor agents. The increasing focus on nano zinc oxide resulted in the invention and development of methods of nanoparticles synthesis. Recently, various approaches including physical, chemical and biological ("green chemistry") have been used to prepare ZnO nanocomposites with different morphologies. The obtained nanoparticles can be characterized with a broad range of analytical methods including dynamic light scattering (DLS), electron microscopy (TEM, SEM), UV-VIS spectroscopy, X-ray diffraction (XRD) or inductively coupled plasma with mass spectrometry (ICP-MS). With these it is possible to obtain information concerning the size, shape and optical properties of nanoparticles. ZnO NPs exhibit attractive antimicrobial properties against bacteria (Gram-positive and Gram-negative) and fungi. Zinc oxide nanocomposites show also selective toxicity toward normal and cancerous cells, which is explained by reactive oxygen formation (ROS). Yet despite the potentially interesting antitumor activity of ZnO nanoparticles, it has been proven that they can be also cytotoxic and genotoxic for multiple types of human cells (i.e. neuronal or epithelial cells). This paper reviews the methods of synthesizing zinc oxide nanocomposites as well as their characteristics, antimicrobial activity and cytotoxicity against normal and tumor cells.
Collapse
|
119
|
Munk M, Brandão HM, Yéprémian C, Couté A, Ladeira LO, Raposo NRB, Brayner R. Effect of Multi-walled Carbon Nanotubes on Metabolism and Morphology of Filamentous Green Microalgae. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2017; 73:649-658. [PMID: 28687867 DOI: 10.1007/s00244-017-0429-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 06/27/2017] [Indexed: 06/07/2023]
Abstract
Multi-walled carbon nanotubes (MWCNTs) have potential applications in the industrial, agricultural, pharmaceutical, medical, and environmental remediation fields. However, many uncertainties exist regarding the environmental implications of engineered nanomaterials. This study examined the effect of the MWCNTs on metabolic status and morphology of filamentous green microalgae Klebsormidium flaccidum. Appropriate concentrations of MWCNT (1, 50, and 100 μg mL-1) were added to a microalgal culture in the exponential growth phase and incubated for 24, 48, 72, and 96 h. Exposure to MWCNT led to reductions in algal growth after 48 h and decreased on cell viability for all experimental endpoints except for 1 µg mL-1 at 24 h and 100 µg mL-1 after 72 h. At 100 µg mL-1, MWCNTs induced reactive oxygen species (ROS) production and had an effect on intracellular adenosine triphosphate (ATP) content depending on concentration and time. No photosynthetic activity variation was observed. Observations by scanning transmission electron microscopy showed cell damage. In conclusion, we have demonstrated that exposure to MWCNTs affects cell metabolism and microalgal cell morphology. To our best knowledge, this is the first case in which MWCNTs exhibit adverse effects on filamentous green microalgae K. flaccidum. These results contribute to elucidate the mechanism of MWCNT nanotoxicity in the bioindicator organism of terrestrial and freshwater habitats.
Collapse
Affiliation(s)
- Michele Munk
- Department of Biology, Federal University of Juiz de Fora, José Lourenço Kelmer, Campus Universitário, Juiz De Fora, 36036-900, Brazil.
| | - Humberto M Brandão
- Laboratory of Nanotechnology, Brazilian Agricultural Research Corporation (EMBRAPA), Juiz De Fora, 36038-330, Brazil
| | - Claude Yéprémian
- National Museum of Natural History, Communication Molecules and Adaptation of Microorganisms, UMR 7245, Paris, France
| | - Alain Couté
- National Museum of Natural History, Communication Molecules and Adaptation of Microorganisms, UMR 7245, Paris, France
| | - Luiz O Ladeira
- Department of Physics, Federal University of Minas Gerais, Belo Horizonte, 31270-901, Brazil
| | - Nádia R B Raposo
- Nucleus of Analytical Identification and Quantification (NIQUA), Federal University of Juiz de Fora, Juiz De Fora, 36036-900, Brazil
| | - Roberta Brayner
- University of Paris Diderot, Interfaces, Traitements, Organisation et Dynamique des Systèmes (ITODYS), UMR 7086, Paris, France
| |
Collapse
|
120
|
Mikolajczyk A, Sizochenko N, Mulkiewicz E, Malankowska A, Nischk M, Jurczak P, Hirano S, Nowaczyk G, Zaleska-Medynska A, Leszczynski J, Gajewicz A, Puzyn T. Evaluating the toxicity of TiO 2-based nanoparticles to Chinese hamster ovary cells and Escherichia coli: a complementary experimental and computational approach. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2017; 8:2171-2180. [PMID: 29114443 PMCID: PMC5669235 DOI: 10.3762/bjnano.8.216] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 09/18/2017] [Indexed: 05/25/2023]
Abstract
Titania-supported palladium, gold and bimetallic nanoparticles (second-generation nanoparticles) demonstrate promising photocatalytic properties. However, due to unusual reactivity, second-generation nanoparticles can be hazardous for living organisms. Considering the ever-growing number of new types of nanoparticles that can potentially contaminate the environment, a determination of their toxicity is extremely important. The main aim of presented study was to investigate the cytotoxic effect of surface modified TiO2-based nanoparticles, to model their quantitative nanostructure-toxicity relationships and to reveal the toxicity mechanism. In this context, toxicity tests for surface-modified TiO2-based nanoparticles were performed in vitro, using Gram-negative bacteria Escherichia coli and Chinese hamster ovary (CHO-K1) cells. The obtained cytotoxicity data were analyzed by means of computational methods (quantitative structure-activity relationships, QSAR approach). Based on a combined experimental and computational approach, predictive models were developed, and relationships between cytotoxicity, size, and specific surface area (Brunauer-Emmett-Teller surface, BET) of nanoparticles were discussed.
Collapse
Affiliation(s)
- Alicja Mikolajczyk
- Laboratory of Environmental Chemometrics, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland
| | - Natalia Sizochenko
- Laboratory of Environmental Chemometrics, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland
- Interdisciplinary Center for Nanotoxicity, Jackson State University, 39217, Jackson, MS, USA
| | - Ewa Mulkiewicz
- Department of Environmental Analytics, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland
| | - Anna Malankowska
- Department of Environmental Technology, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland
| | - Michal Nischk
- Department of Environmental Technology, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland
| | - Przemyslaw Jurczak
- Department of Biomedical Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland
| | - Seishiro Hirano
- Center for Environmental Risk Research, National Institute for Environmental Studies, Tsukuba, 16-2 Onogawa, Ibaraki 305-8506, Japan
| | - Grzegorz Nowaczyk
- NanoBioMedical Centre, Adam Mickiewicz University, Umultowska 85, 61-614 Poznan, Poland
| | - Adriana Zaleska-Medynska
- Department of Environmental Technology, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland
| | - Jerzy Leszczynski
- Interdisciplinary Center for Nanotoxicity, Jackson State University, 39217, Jackson, MS, USA
| | - Agnieszka Gajewicz
- Laboratory of Environmental Chemometrics, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland
| | - Tomasz Puzyn
- Laboratory of Environmental Chemometrics, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland
| |
Collapse
|
121
|
Chakraborty A, Boer JC, Selomulya C, Plebanski M. Amino Acid Functionalized Inorganic Nanoparticles as Cutting-Edge Therapeutic and Diagnostic Agents. Bioconjug Chem 2017; 29:657-671. [DOI: 10.1021/acs.bioconjchem.7b00455] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Amlan Chakraborty
- Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, Victoria 3004, Australia
| | - Jennifer C. Boer
- Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, Victoria 3004, Australia
| | | | - Magdalena Plebanski
- Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, Victoria 3004, Australia
| |
Collapse
|
122
|
Branica G, Mladinić M, Omanović D, Želježić D. An alternative approach to studying the effects of ZnO nanoparticles in cultured human lymphocytes: combining electrochemistry and genotoxicity tests. Arh Hig Rada Toksikol 2017; 67:277-288. [PMID: 28033099 DOI: 10.1515/aiht-2016-67-2910] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 12/01/2016] [Indexed: 11/15/2022] Open
Abstract
Nanoparticle use has increased radically raising concern about possible adverse effects in humans. Zinc oxide nanoparticles (ZnO NPs) are among the most common nanomaterials in consumer and medical products. Several studies indicate problems with their safe use. The aim of our study was to see at which levels ZnO NPs start to produce adverse cytogenetic effects in human lymphocytes as an early attempt toward establishing safety limits for ZnO NP exposure in humans. We assessed the genotoxic effects of low ZnO NP concentrations (1.0, 2.5, 5, and 7.5 μg mL-1) in lymphocyte cultures over 14 days of exposure. We also tested whether low and high-density lymphocytes differed in their ability to accumulate ZnO NPs in these experimental conditions. Primary DNA damage (measured with the alkaline comet assay) increased with nanoparticle concentration in unseparated and high density lymphocytes. The same happened with the fragmentation of TP53 (measured with the comet-FISH). Nanoparticle accumulation was significant only with the two highest concentrations, regardless of lymphocyte density. High-density lymphocytes had significantly more intracellular Zn2+ than light-density ones. Our results suggest that exposure to ZnO NPs in concentrations above 5 μg mL-1 increases cytogenetic damage and intracellular Zn2+ levels in lymphocytes.
Collapse
|
123
|
Raguvaran R, Manuja A, Manuja BK, Riyesh T, Singh S, Kesavan M, Dimri U. Sodium alginate and gum acacia hydrogels of zinc oxide nanoparticles reduce hemolytic and oxidative stress inflicted by zinc oxide nanoparticles on mammalian cells. Int J Biol Macromol 2017; 101:967-972. [DOI: 10.1016/j.ijbiomac.2017.03.180] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 02/27/2017] [Accepted: 03/29/2017] [Indexed: 01/13/2023]
|
124
|
McClements DJ, Xiao H, Demokritou P. Physicochemical and colloidal aspects of food matrix effects on gastrointestinal fate of ingested inorganic nanoparticles. Adv Colloid Interface Sci 2017; 246:165-180. [PMID: 28552424 DOI: 10.1016/j.cis.2017.05.010] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 05/08/2017] [Accepted: 05/08/2017] [Indexed: 12/17/2022]
Abstract
Inorganic nanoparticles, such as titanium dioxide, silicon dioxide, iron oxide, zinc oxide, or silver nanoparticles, are added to some food products and food packaging materials to obtain specific functional attributes, such as lightening, powder flow, nutrition, or antimicrobial properties. These engineered nanomaterials (ENMs) all have dimensions below 100nm, but may still vary considerably in composition, morphology, charge, surface properties and aggregation state, which effects their gastrointestinal fate and potential toxicity. In addition to their intrinsic physicochemical and morphological properties, the extrinsic properties of the media they are suspended in also affects their biotransformation, gastrointestinal fate and bioactivity. For instance, inorganic nanoparticles are usually consumed as part of a food or meal that contains numerous other components, such as lipids, proteins, carbohydrates, surfactants, minerals, and water, which may alter their gastrointestinal fate. This review article provides an overview of the potential effects of food components on the behavior of ENMs in the gastrointestinal tract (GIT), and highlights some important physicochemical and colloidal mechanisms by which the food matrix may alter the properties of inorganic nanoparticles. This information is essential for developing appropriate test methods to establish the potential toxicity and biokinetics of inorganic nanoparticles in foods.
Collapse
|
125
|
Iavicoli I, Farina M, Fontana L, Lucchetti D, Leso V, Fanali C, Cufino V, Boninsegna A, Leopold K, Schindl R, Brucker D, Sgambato A. In vitro evaluation of the potential toxic effects of palladium nanoparticles on fibroblasts and lung epithelial cells. Toxicol In Vitro 2017; 42:191-199. [DOI: 10.1016/j.tiv.2017.04.024] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 04/24/2017] [Accepted: 04/25/2017] [Indexed: 12/14/2022]
|
126
|
Soni D, Gandhi D, Tarale P, Bafana A, Pandey RA, Sivanesan S. Oxidative Stress and Genotoxicity of Zinc Oxide Nanoparticles to Pseudomonas Species, Human Promyelocytic Leukemic (HL-60), and Blood Cells. Biol Trace Elem Res 2017; 178:218-227. [PMID: 28058665 DOI: 10.1007/s12011-016-0921-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 12/25/2016] [Indexed: 10/20/2022]
Abstract
In the present study, toxicity of commercial zinc oxide nanoparticles (ZnO NPs) was studied on the bacterium Pseudomonas sp., human promyelocytic leukemia (HL-60) cells, and peripheral blood mononuclear cells (PBMC). The toxicity was assessed by measuring growth, cell viability, and protein expression in bacterial cell. The bacterial growth and viability decreased with increasing concentrations of ZnO NP. Three major proteins, ribosomal protein L1 and L9 along with alkyl hydroperoxides reductase, were upregulated by 1.5-, 1.7-, and 2.0-fold, respectively, after ZnO NP exposure. The results indicated oxidative stress as the leading cause of toxic effect in bacteria. In HL-60 cells, cytotoxic and genotoxic effects along with antioxidant enzyme activity and reactive oxygen species (ROS) generation were studied upon ZnO NP treatment. ZnO NP exhibited dose-dependent increase in cell death after 24-h exposure. The DNA-damaging potential of ZnO NP in HL-60 cells was maximum at 0.05 mg/L concentration. Comet assay showed 70-80% increase in tail DNA at 0.025 to 0.05 mg/L ZnO NP concentration. A significant increase of 1.6-, 1.4-, and 2.0-fold in ROS level was observed after 12 h. Genotoxic potential of ZnO NPs was also demonstrated in PBMC through DNA fragmentation. Thus, ZnO NP, besides being an essential element having antibacterial activity, also showed toxicity towards human cells (HL-60 and PBMC).
Collapse
Affiliation(s)
- Deepika Soni
- Environmental Biotechnology Division, CSIR-National Environmental Engineering Research Institute (NEERI), Nagpur, 440020, India
| | - Deepa Gandhi
- Environmental Health Division, CSIR-National Environmental Engineering Research Institute (NEERI), Nagpur, 440020, India
| | - Prashant Tarale
- Environmental Health Division, CSIR-National Environmental Engineering Research Institute (NEERI), Nagpur, 440020, India
| | - Amit Bafana
- Environmental Health Division, CSIR-National Environmental Engineering Research Institute (NEERI), Nagpur, 440020, India
| | - R A Pandey
- Environmental Biotechnology Division, CSIR-National Environmental Engineering Research Institute (NEERI), Nagpur, 440020, India
| | - Saravanadevi Sivanesan
- Environmental Health Division, CSIR-National Environmental Engineering Research Institute (NEERI), Nagpur, 440020, India.
| |
Collapse
|
127
|
Morgan A, Galal MK, Ogaly HA, Ibrahim MA, Abd-Elsalam RM, Noshy P. Tiron ameliorates oxidative stress and inflammation in titanium dioxide nanoparticles induced nephrotoxicity of male rats. Biomed Pharmacother 2017; 93:779-787. [PMID: 28709131 DOI: 10.1016/j.biopha.2017.07.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 06/17/2017] [Accepted: 07/03/2017] [Indexed: 12/11/2022] Open
Abstract
Although the widespread use of titanium dioxide nanoparticles (TiO2 NPs), few studies were conducted on its hazard influence on human health. Tiron a synthetic vitamin E analog was proven to be a mitochondrial targeting antioxidant. The current investigation was performed to assess the efficacy of tiron against TiO2 NPs induced nephrotoxicity. Eighty adult male rats divided into four different groups were used: group I was the control, group II received TiO2 NPs (100mg\Kg BW), group III received TiO2 NPs plus tiron (470mg\kg BW), and group IV received tiron alone. Urea, creatinine and total protein concentrations were measured in serum to assess the renal function. Antioxidant status was estimated by determining the activities of glutathione peroxidase, superoxide dismutase, malondialdehyde (MDA) level and glutathione concentration in renal tissue. As well as Renal fibrosis was evaluated though measuring of transforming growth factor-β1 (TGFβ1) and matrix metalloproteinase 9 (MMP9) expression levels and histopathological examination. TiO2 NPs treated rats showed marked elevation of renal indices, depletion of renal antioxidant enzymes with marked increase in MDA concentration as well as significant up-regulation in fibrotic biomarkers TGFβ1 and MMP9. Oral administration of tiron to TiO2 NPs treated rats significantly attenuate the renal dysfunction through decreasing of renal indices, increasing of antioxidant enzymes activities, down-regulate the expression of fibrotic genes and improving the histopathological picture for renal tissue. In conclusion, tiron was proved to attenuate the nephrotoxicity induced by TiO2 NPs through its radical scavenging and metal chelating potency.
Collapse
Affiliation(s)
- Ashraf Morgan
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt.
| | - Mona K Galal
- Department of Biochemistry and Chemistry of Nutrition, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt.
| | - Hanan A Ogaly
- Department of Biochemistry and Chemistry of Nutrition, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt.
| | - Marwa A Ibrahim
- Department of Biochemistry and Chemistry of Nutrition, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt.
| | - Reham M Abd-Elsalam
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt.
| | - Peter Noshy
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt.
| |
Collapse
|
128
|
Lingabathula H, Yellu N. Assessment of oxidative stress induced by gold nanorods following intra-tracheal instillation in rats. Drug Chem Toxicol 2017; 41:141-146. [DOI: 10.1080/01480545.2017.1321012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Harikiran Lingabathula
- Department of Pharmacology and Toxicology, University College of Pharmaceutical Sciences, Kakatiya University, Warangal, India
| | - Narsimhareddy Yellu
- Department of Pharmacology and Toxicology, University College of Pharmaceutical Sciences, Kakatiya University, Warangal, India
| |
Collapse
|
129
|
Lingabathula H, Yellu N. Evaluation of oxidative stress induction in rats following exposure to silver nanorods. Toxicol Mech Methods 2017; 27:272-278. [PMID: 28030981 DOI: 10.1080/15376516.2016.1274351] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The study investigated the oxidative stress induction by the 10 and 25 nm silver nanorods (SNRs) following intra-tracheal instillation in rats after 1 day, 1 week, 1 month and 3 months post instillation periods at 1 and 5 mg/kg b.w. doses. The blood was withdrawn by retro orbital plexus method after exposure periods and different oxidative stress markers were estimated. The results showed that the both sizes of SNRs induced increased levels of malondialdehyde (MDA) and depleted glutathione (GSH) levels after 1 day and 1 week post exposure periods. The 10 and 25 nm SNRs at both doses displayed that significantly reduced levels of superoxide dismutase (SOD) and catalase following 1 day and 1 week post exposure periods. Also, the results have shown that decrease in total antioxidant capacity (TAC) of both sizes of SNRs significantly following 1 day and 1 week post exposure periods, indicating the oxidative stress induction by SNRs. In spite, there were no significant changes in oxidative stress markers following 1 month and 3 months post exposure periods may be due to recovery. The increased levels of MDA and decreased levels of GSH, SOD, catalase and TAC activity are strongly associated to ROS production and lipid peroxidation, suggesting the induction of oxidative stress in rats. The 10 nm SNRs at 5 mg/kg b.w. dose exposures in rats have shown greater changes in all oxidative stress parameters, indicating the greater induction of oxidative stress when compared with the 25 nm SNRs, representing the size-dose-dependent induction of oxidative stress of SNRs.
Collapse
Affiliation(s)
- Harikiran Lingabathula
- a Department of Pharmacology and Toxicology , University College of Pharmaceutical Sciences, Kakatiya University , Warangal , Telangana , India
| | - Narsimhareddy Yellu
- a Department of Pharmacology and Toxicology , University College of Pharmaceutical Sciences, Kakatiya University , Warangal , Telangana , India
| |
Collapse
|
130
|
Kaviyarasu K, Geetha N, Kanimozhi K, Maria Magdalane C, Sivaranjani S, Ayeshamariam A, Kennedy J, Maaza M. In vitro cytotoxicity effect and antibacterial performance of human lung epithelial cells A549 activity of Zinc oxide doped TiO 2 nanocrystals: Investigation of bio-medical application by chemical method. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 74:325-333. [DOI: 10.1016/j.msec.2016.12.024] [Citation(s) in RCA: 175] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 11/11/2016] [Accepted: 12/05/2016] [Indexed: 12/15/2022]
|
131
|
Shang E, Niu J, Li Y, Zhou Y, Crittenden JC. Comparative toxicity of Cd, Mo, and W sulphide nanomaterials toward E. coli under UV irradiation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 224:606-614. [PMID: 28258860 DOI: 10.1016/j.envpol.2017.02.044] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2016] [Revised: 01/20/2017] [Accepted: 02/12/2017] [Indexed: 05/07/2023]
Abstract
In this study, the phototoxicity of cadmium sulfide (CdS), molybdenum disulfide (MoS2), and tungsten disulfide (WS2) nanoparticles (NPs) toward Escherichia coli (E. coli) under UV irradiation (365 nm) was investigated. At the same mass concentration of NPs, the toxicity of three NPs decreased in the order of CdS > MoS2 > WS2. For example, the death rates of E. coli exposed to 50 mg/L CdS, MoS2, and WS2 were 96.7%, 38.5%, and 31.2%, respectively. Transmission electron microscope and laser scanning confocal microscope images of E. coli exposed to three NPs showed the damage of cell walls and release of intracellular components. The CdS-treated cell wall was more extensively damaged than those of MoS2-treated and WS2-treated bacteria. WS2 and MoS2 generated superoxide radical (O2-), singlet oxygen (1O2), and hydroxyl radical under UV irradiation, CdS produced only O2- and 1O2. CdS and WS2 released ions under UV irradiation, while MoS2 did not. Reactive oxygen species (ROS) generation and toxic ion release jointly resulted in the antibacterial activities of CdS and WS2. ROS generation was the dominant toxic mechanism of MoS2 toward the bacteria. This study highlighted the importance of considering the hazardous effect of sulfide NPs after their release into natural waters under light irradiation condition.
Collapse
Affiliation(s)
- Enxiang Shang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, PR China
| | - Junfeng Niu
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan, 523808, PR China
| | - Yang Li
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, PR China.
| | - Yijing Zhou
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, PR China
| | - John Charles Crittenden
- School of Civil and Environmental Engineering and the Brook Byers Institutue for Sustainable Systems, Georgia Institute of Technology, Atlanta, 30332, Georgia
| |
Collapse
|
132
|
El-Shenawy NS, Al-Harbi MS, Al Hamayani FFE. Hormonal and organ-specific dysfunction induced by the interaction between titanium dioxide nanoparticles and salicylic acid in male mice. J Basic Clin Physiol Pharmacol 2017; 27:425-35. [PMID: 27054601 DOI: 10.1515/jbcpp-2015-0124] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 01/30/2016] [Indexed: 12/30/2022]
Abstract
BACKGROUND Nanomaterials coating gained much concern in orthopedic implants and cosmetics. Drug combination may be a promising strategy for treating multi-factorial diseases. Titanium dioxide (TDN) nanoparticles are being widely used in many industries as well as in medicine and pharmacology. Therefore, increased human and environmental exposure can be expected, which has put TDN under toxicological scrutiny, and it is necessary to address the potential health and safety implications of nanomaterials used in nanomedicine. The toxicity of titanium oxide nanoparticles (TDN) and salicylic acid (SA) separately or in combination was studied for 21 days. METHODS The liver and kidney biomarker were determined, and hormones and oxidative stress levels were detected in mice. RESULTS The intraperitoneal (i.p.) injection of TDN and SA in combination had a potential toxicological effect on major organs and hormonal homeostasis of mice. TDN and SA could antagonistically interact to affect the liver and kidney functions. No synergistic damage was observed in the liver function of mice that were treated with both TDN and SA as compared to the SA group. TDN acted as a synergistic agent to SA in the case of total cholesterol and total proteins levels. SA acted as antagonistic to the effect of TDN when injected together in mice because the effect on kidney functions is less than that predicted on the basis of the additive. The effect of co-administration of SA and TDN on the following hormones; triiodothyronine, thyroxine, estradiol II and insulin various among additive, potentiation, antagonistic and no effect, respectively as compared to TDN group. The interaction of TDN and SA was also found to induce oxidative stress as indicated by the increase in lipid peroxidation (LPO) levels. The decrease in the level of the reduced glutathione in the co-treated group indicated that there were no synergistic damages. SA and TDN co-administration could induce a potential increase in LPO levels in liver, kidney, and spleen but not in heart tissue. These results have not suggested that TDN and SA have a synergistic sub-chronic toxicity in mice after i.p. administration. SA may decrease the toxicity of TDN to some degree that could be related to the potentiation chemical reaction between SA and TDN. CONCLUSIONS Our results suggested that the damage observed in mice treated with TDN and SA is organ-specific and associated with hormonal homeostasis and oxidative damage.
Collapse
|
133
|
Alinovi R, Goldoni M, Pinelli S, Ravanetti F, Galetti M, Pelosi G, De Palma G, Apostoli P, Cacchioli A, Mutti A, Mozzoni P. Titanium dioxide aggregating nanoparticles induce autophagy and under-expression of microRNA 21 and 30a in A549 cell line: A comparative study with cobalt(II, III) oxide nanoparticles. Toxicol In Vitro 2017; 42:76-85. [PMID: 28400205 DOI: 10.1016/j.tiv.2017.04.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 03/14/2017] [Accepted: 04/07/2017] [Indexed: 12/22/2022]
Abstract
The toxicity of TiO2 nanoparticles (NPs) is controversial, while it is widely accepted for Co3O4 NPs. We present a comparative study concerning the uptake of these NPs and their effect on cytoplasmic organelles and autophagy in a human lung carcinoma cell line (A549), including assays on the expression of autophagy-related microRNAs. The NP accumulation caused a fast dose- and time-dependent change of flow cytometry physical parameters particularly after TiO2 NP exposure. The intracellular levels of metals confirmed it, but the Co concentration was ten times higher than that of Ti. Both NPs caused neither necrosis nor apoptosis, but cytotoxicity was mainly evident for Co3O4 NPs in the first 72h. TiO2 NPs caused autophagy, contrarily to Co3O4 NPs. Furthermore, a significant and persistent downregulation of miRNA-21 and miRNA-30a was observed only in TiO2 NPs-treated cultures. The expression of miRNA-155 was similar for both NPs. Oxidative stress was evident only for Co3O4 NPs, while both NPs perturbed endoplasmic reticulum and p-53 expression. In conclusion, the oxidative stress caused by Co3O4 NPs can influence energy homeostasis and hamper the ability to detoxify and to repair the resulting damage, thus preventing the induction of autophagy, while TiO2 NPs elicit autophagy also under sub-toxic conditions.
Collapse
Affiliation(s)
- Rossella Alinovi
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Matteo Goldoni
- Department of Medicine and Surgery, University of Parma, Parma, Italy.
| | - Silvana Pinelli
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Francesca Ravanetti
- Department of Medical Veterinary Sciences, Unit of Normal Veterinary Anatomy, University of Parma, Parma, Italy
| | - Maricla Galetti
- Italian Workers' Compensation Authority (INAIL) Research Center, Parma, Italy
| | - Giorgio Pelosi
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Giuseppe De Palma
- Section of Public Health and Human Sciences, Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia, Brescia, Italy
| | - Pietro Apostoli
- Section of Public Health and Human Sciences, Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia, Brescia, Italy
| | - Antonio Cacchioli
- Department of Medical Veterinary Sciences, Unit of Normal Veterinary Anatomy, University of Parma, Parma, Italy
| | - Antonio Mutti
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Paola Mozzoni
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| |
Collapse
|
134
|
Behavior and Potential Impacts of Metal-Based Engineered Nanoparticles in Aquatic Environments. NANOMATERIALS 2017; 7:nano7010021. [PMID: 28336855 PMCID: PMC5295211 DOI: 10.3390/nano7010021] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 01/07/2017] [Accepted: 01/17/2017] [Indexed: 01/29/2023]
Abstract
The specific properties of metal-based nanoparticles (NPs) have not only led to rapidly increasing applications in various industrial and commercial products, but also caused environmental concerns due to the inevitable release of NPs and their unpredictable biological/ecological impacts. This review discusses the environmental behavior of metal-based NPs with an in-depth analysis of the mechanisms and kinetics. The focus is on knowledge gaps in the interaction of NPs with aquatic organisms, which can influence the fate, transport and toxicity of NPs in the aquatic environment. Aggregation transforms NPs into micrometer-sized clusters in the aqueous environment, whereas dissolution also alters the size distribution and surface reactivity of metal-based NPs. A unique toxicity mechanism of metal-based NPs is related to the generation of reactive oxygen species (ROS) and the subsequent ROS-induced oxidative stress. Furthermore, aggregation, dissolution and ROS generation could influence each other and also be influenced by many factors, including the sizes, shapes and surface charge of NPs, as well as the pH, ionic strength, natural organic matter and experimental conditions. Bioaccumulation of NPs in single organism species, such as aquatic plants, zooplankton, fish and benthos, is summarized and compared. Moreover, the trophic transfer and/or biomagnification of metal-based NPs in an aquatic ecosystem are discussed. In addition, genetic effects could result from direct or indirect interactions between DNA and NPs. Finally, several challenges facing us are put forward in the review.
Collapse
|
135
|
Pondman KM, Paudyal B, Sim RB, Kaur A, Kouser L, Tsolaki AG, Jones LA, Salvador-Morales C, Khan HA, Ten Haken B, Stenbeck G, Kishore U. Pulmonary surfactant protein SP-D opsonises carbon nanotubes and augments their phagocytosis and subsequent pro-inflammatory immune response. NANOSCALE 2017; 9:1097-1109. [PMID: 27991644 DOI: 10.1039/c6nr08807d] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Carbon nanotubes (CNTs) are increasingly being developed for use in biomedical applications, including drug delivery. One of the most promising applications under evaluation is in treating pulmonary diseases such as tuberculosis. Once inhaled or administered, the nanoparticles are likely to be recognised by innate immune molecules in the lungs such as hydrophilic pulmonary surfactant proteins. Here, we set out to examine the interaction between surfactant protein D (SP-D), a key lung pattern recognition molecule and CNTs, and possible downstream effects on the immune response via macrophages. We show here that a recombinant form of human SP-D (rhSP-D) bound to oxidised and carboxymethyl cellulose (CMC) coated CNTs via its C-type lectin domain and enhanced phagocytosis by U937 and THP-1 macrophages/monocytic cell lines, together with an increased pro-inflammatory response, suggesting that sequestration of SP-D by CNTs in the lungs can trigger an unwanted and damaging immune response. We also observed that functionalised CNTs, opsonised with rhSP-D, continued to activate complement via the classical pathway, suggesting that C1q, which is the recognition sub-component of the classical pathway, and SP-D have distinct pattern recognition sites on the CNTs. Consistent with our earlier reports, complement deposition on the rhSP-D opsonised CNTs led to dampening of the pro-inflammatory immune response by THP-1 macrophages, as evident from qPCR, cytokine array and NF-κB nuclear translocation analyses. This study highlights the importance of understanding the interplay between innate immune humoral factors including complement in devising nanoparticle based drug delivery strategies.
Collapse
Affiliation(s)
- Kirsten M Pondman
- Department of Life Sciences, College of Health and Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK. and Neuro Imaging, MIRA Institute, University of Twente, Enschede, The Netherlands
| | - Basudev Paudyal
- Department of Life Sciences, College of Health and Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK. and Faculty of Science, Engineering and Computing, Kingston University Penrhyn Road, Kingston upon Thames, Surrey, KT1 2EE, UK
| | - Robert B Sim
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, OX1 3QT, UK
| | - Anuvinder Kaur
- Department of Life Sciences, College of Health and Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK.
| | - Lubna Kouser
- Department of Life Sciences, College of Health and Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK.
| | - Anthony G Tsolaki
- Department of Life Sciences, College of Health and Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK.
| | - Lucy A Jones
- Faculty of Science, Engineering and Computing, Kingston University Penrhyn Road, Kingston upon Thames, Surrey, KT1 2EE, UK
| | - Carolina Salvador-Morales
- Bioengineering Department and Krasnow Institute for Advanced Study, George Mason University, Fairfax, 22030 Virginia, USA
| | - Haseeb A Khan
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Bennie Ten Haken
- Neuro Imaging, MIRA Institute, University of Twente, Enschede, The Netherlands
| | - Gudrun Stenbeck
- Department of Life Sciences, College of Health and Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK.
| | - Uday Kishore
- Department of Life Sciences, College of Health and Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK.
| |
Collapse
|
136
|
Toxicokinetics of titanium dioxide (TiO2) nanoparticles after inhalation in rats. Toxicol Lett 2017; 265:77-85. [DOI: 10.1016/j.toxlet.2016.11.014] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 10/20/2016] [Accepted: 11/20/2016] [Indexed: 01/13/2023]
|
137
|
Manganelli S, Benfenati E. Nano-QSAR Model for Predicting Cell Viability of Human Embryonic Kidney Cells. Methods Mol Biol 2017; 1601:275-290. [PMID: 28470534 DOI: 10.1007/978-1-4939-6960-9_22] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Traditional Quantitative Structure-Activity Relationships (QSAR) models based on molecular descriptors as translators of chemical information show some drawbacks in predicting toxicity of nanomaterials due to their unique properties and to their nonhomogeneous structure.This chapter provides instructions on how to use CORAL, freely available software for building nano-QSAR models. CORAL makes use of descriptors based on "quasi-SMILES" representing physicochemical features and/or experimental conditions as an alternative to traditional SMILES encoding chemical structure to build up predictive nano-QSAR models for cytotoxicity.
Collapse
Affiliation(s)
- Serena Manganelli
- Department of Environmental Health Sciences, Laboratory of Environmental Chemistry and Toxicology, IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri", Via La Masa 19, Milan, 20156, Italy.
| | - Emilio Benfenati
- Department of Environmental Health Sciences, Laboratory of Environmental Chemistry and Toxicology, IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri", Via La Masa 19, Milan, 20156, Italy
| |
Collapse
|
138
|
Paulini J, Higuti E, Bastos RMC, Gomes SA, Rangel ÉB. Mesenchymal Stem Cells as Therapeutic Candidates for Halting the Progression of Diabetic Nephropathy. Stem Cells Int 2016; 2016:9521629. [PMID: 28058051 PMCID: PMC5187468 DOI: 10.1155/2016/9521629] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 11/08/2016] [Indexed: 12/11/2022] Open
Abstract
Mesenchymal stem cells (MSCs) possess pleiotropic properties that include immunomodulation, inhibition of apoptosis, fibrosis and oxidative stress, secretion of trophic factors, and enhancement of angiogenesis. These properties provide a broad spectrum for their potential in a wide range of injuries and diseases, including diabetic nephropathy (DN). MSCs are characterized by adherence to plastic, expression of the surface molecules CD73, CD90, and CD105 in the absence of CD34, CD45, HLA-DR, and CD14 or CD11b and CD79a or CD19 surface molecules, and multidifferentiation capacity in vitro. MSCs can be derived from many tissue sources, consistent with their broad, possibly ubiquitous distribution. This article reviews the existing literature and knowledge of MSC therapy in DN, as well as the most appropriate rodent models to verify the therapeutic potential of MSCs in DN setting. Some preclinical relevant studies are highlighted and new perspectives of combined therapies for decreasing DN progression are discussed. Hence, improved comprehension and interpretation of experimental data will accelerate the progress towards clinical trials that should assess the feasibility and safety of this therapeutic approach in humans. Therefore, MSC-based therapies may bring substantial benefit for patients suffering from DN.
Collapse
Affiliation(s)
- Janaina Paulini
- Sociedade Beneficente Albert Einstein, Albert Einstein Hospital, 05652 São Paulo, SP, Brazil
| | - Eliza Higuti
- Sociedade Beneficente Albert Einstein, Albert Einstein Hospital, 05652 São Paulo, SP, Brazil
| | - Rosana M. C. Bastos
- Sociedade Beneficente Albert Einstein, Albert Einstein Hospital, 05652 São Paulo, SP, Brazil
| | - Samirah A. Gomes
- Sociedade Beneficente Albert Einstein, Albert Einstein Hospital, 05652 São Paulo, SP, Brazil
- University of São Paulo, 01246 São Paulo, SP, Brazil
| | - Érika B. Rangel
- Sociedade Beneficente Albert Einstein, Albert Einstein Hospital, 05652 São Paulo, SP, Brazil
- Federal University of São Paulo, 04023 São Paulo, SP, Brazil
| |
Collapse
|
139
|
Vila L, Rubio L, Annangi B, García-Rodríguez A, Marcos R, Hernández A. Frozen dispersions of nanomaterials are a useful operational procedure in nanotoxicology. Nanotoxicology 2016; 11:31-40. [DOI: 10.1080/17435390.2016.1262918] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Laura Vila
- Grup de Mutagènesi, Departament de Genètica i de Microbiologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Laura Rubio
- Grup de Mutagènesi, Departament de Genètica i de Microbiologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Balasubramanyam Annangi
- Grup de Mutagènesi, Departament de Genètica i de Microbiologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Alba García-Rodríguez
- Grup de Mutagènesi, Departament de Genètica i de Microbiologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Ricard Marcos
- Grup de Mutagènesi, Departament de Genètica i de Microbiologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Bellaterra, Spain
- CIBER Epidemiología y Salud Pública, ISCIII, Madrid, Spain
| | - Alba Hernández
- Grup de Mutagènesi, Departament de Genètica i de Microbiologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Bellaterra, Spain
- CIBER Epidemiología y Salud Pública, ISCIII, Madrid, Spain
| |
Collapse
|
140
|
Biola-Clier M, Beal D, Caillat S, Libert S, Armand L, Herlin-Boime N, Sauvaigo S, Douki T, Carriere M. Comparison of the DNA damage response in BEAS-2B and A549 cells exposed to titanium dioxide nanoparticles. Mutagenesis 2016; 32:161-172. [DOI: 10.1093/mutage/gew055] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
|
141
|
Tang HQ, Xu M, Rong Q, Jin RW, Liu QJ, Li YL. The effect of ZnO nanoparticles on liver function in rats. Int J Nanomedicine 2016; 11:4275-85. [PMID: 27621621 PMCID: PMC5012617 DOI: 10.2147/ijn.s109031] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Zinc oxide (ZnO) is widely incorporated as a food additive in animal diets. In order to optimize the beneficial effects of ZnO and minimize any resultant environmental pollution, ZnO nanoparticles are often used for delivery of the zinc. However, the possible toxic effects of ZnO nanoparticles, including effects on cytochrome P450 (CYP450) enzymes, have not been evaluated. In this study, we investigated the effect of ZnO nanoparticles, in doses used in animal feeds, on CYP450 enzymes, liver and intestinal enzymes, liver and kidney histopathology, and hematologic indices in rats. We found that liver and kidney injury occurred when the concentrations of ZnO nanoparticles in feed were 300–600 mg/kg. Also, liver mRNA expression for constitutive androstane receptor was suppressed and mRNA expression for pregnane X receptor was induced when feed containing ZnO nanoparticles was given at a concentration of 600 mg/kg. Although the expression of mRNA for CYP 2C11 and 3A2 enzymes was induced by ZnO nanoparticles, the activities of CYP 2C11 and 3A2 were suppressed. While liver CYP 1A2 mRNA expression was suppressed, CYP 1A2 activity remained unchanged at all ZnO nanoparticle doses. Therefore, it has been concluded that ZnO nanoparticles, in the doses customarily added to animal feed, changed the indices of hematology and blood chemistry, altered the expression and activity of hepatic CYP enzymes, and induced pathological changes in liver and kidney tissues of rats. These findings suggest that greater attention needs to be paid to the toxic effects of ZnO nanoparticles in animal feed, with the possibility that the doses of ZnO should be reduced.
Collapse
Affiliation(s)
- Hua-Qiao Tang
- Department of Pharmacy, Sichuan Agricultural University, Sichuan, Chengdu, People's Republic of China
| | - Min Xu
- Department of Pharmacy, Sichuan Agricultural University, Sichuan, Chengdu, People's Republic of China
| | - Qian Rong
- Department of Pharmacy, Sichuan Agricultural University, Sichuan, Chengdu, People's Republic of China
| | - Ru-Wen Jin
- Department of Pharmacy, Sichuan Agricultural University, Sichuan, Chengdu, People's Republic of China
| | - Qi-Ji Liu
- Department of Pharmacy, Sichuan Agricultural University, Sichuan, Chengdu, People's Republic of China
| | - Ying-Lun Li
- Department of Pharmacy, Sichuan Agricultural University, Sichuan, Chengdu, People's Republic of China
| |
Collapse
|
142
|
Gao F, Ma N, Zhou H, Wang Q, Zhang H, Wang P, Hou H, Wen H, Li L. Zinc oxide nanoparticles-induced epigenetic change and G2/M arrest are associated with apoptosis in human epidermal keratinocytes. Int J Nanomedicine 2016; 11:3859-74. [PMID: 27570453 PMCID: PMC4986971 DOI: 10.2147/ijn.s107021] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
As an engineered nanomaterial, zinc oxide nanoparticles (ZnO NPs) are used frequently in biological applications and can make contact with human skin. Here, we systematically investigated the effects of ZnO NPs on non-tumorigenic human epidermal keratinocytes, which were used as a test model for this in vitro study, at the epigenetic and molecular levels. Our results showed that ZnO NPs induced cell cycle arrest at the G2/M checkpoint before the viability of human epidermal keratinocytes was reduced, which was associated with the chromatin changes at the epigenetic level, including increased methylation of histone H3K9 and decreased acetylation of histone H4K5 accompanied by chromatin condensation at 24 hours. The mRNA expression of the methyltransferase genes G9a and GLP was also increased upon treatment with ZnO NPs, and the acetyltransferase genes GCN5, P300, and CBP were downregulated. Reactive oxygen species were found to be more abundant after treatment with ZnO NPs for 6 hours, and DNA damage was observed at 24 hours. Transmission electron microscopy and flow cytometry confirmed that ZnO NPs were absorbed into the cell when they were added to the medium. Apoptotic human epidermal keratinocytes were detected, and the expression of the proapoptotic genes Bax, Noxa, and Puma increased significantly, while the expression of the antiapoptotic gene Bcl-xl decreased 24 hours after exposure to ZnO NPs. These findings suggest that the ZnO NPs induced cell cycle arrest at G2/M, which was associated with epigenetic changes and accompanied by p53-Bax mitochondrial pathway-mediated apoptosis.
Collapse
Affiliation(s)
- Fei Gao
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, People's Republic of China
| | - Ningjie Ma
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, People's Republic of China
| | - Hong Zhou
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, People's Republic of China
| | - Qing Wang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, People's Republic of China
| | - Hao Zhang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, People's Republic of China
| | - Pu Wang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, People's Republic of China
| | - Haoli Hou
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, People's Republic of China
| | - Huan Wen
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, People's Republic of China
| | - Lijia Li
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, People's Republic of China
| |
Collapse
|
143
|
Pedrosa SS, Pereira P, Correia A, Moreira S, Rocha H, Gama FM. Biocompatibility of a Self-Assembled Crosslinkable Hyaluronic Acid Nanogel. Macromol Biosci 2016; 16:1610-1620. [PMID: 27456215 DOI: 10.1002/mabi.201600221] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2016] [Indexed: 01/18/2023]
Abstract
Hyaluronic acid nanogel (HyA-AT) is a redox sensitive crosslinkable nanogel, obtained through the conjugation of a thiolated hydrophobic molecule to the hyaluronic acid chain. Engineered nanogel was studied for its biocompatibility, including immunocompatibility and hemocompatability. The nanogel did not compromise the metabolic activity or cellular membrane integrity of 3T3, microvascular endothelial cells, and RAW 264.7 cell lines, as determined by the 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide and lactate dehydrogenase release assays. Also, we didn't observe any apoptotic effect on these cell lines through the Annexin V-FITC test. Furthermore, the nanogel cell internalization was analyzed using murine bone marrow derived macrophages, and the in vivo and ex vivo biodistribution of the Cy5.5 labeled nanogel was monitored using a non-invasive near-infrared fluorescence imaging system. The HyA-AT nanogel exhibits fairly a long half-live in the blood stream, thus showing potential for drug delivery applications.
Collapse
Affiliation(s)
- Sílvia Santos Pedrosa
- Institute for Biotechnology and Bioengineering, Centre of Biological Engineering, Campus de Gualtar, University of Minho, Braga, 4710-05, Portugal
| | - Paula Pereira
- Institute for Biotechnology and Bioengineering, Centre of Biological Engineering, Campus de Gualtar, University of Minho, Braga, 4710-05, Portugal
| | - Alexandra Correia
- Institute of Molecular and Cell Biology, Rua Campo Alegre, Porto, 4099-003, Portugal
| | - Susana Moreira
- Centre of Biosciences, Department of Biochemistry, Federal University of Rio Grande do Norte, Av. Salgado Filho 3000 - Campus Universitário, Lagoa Nova, 59072940, Natal, RN, Brasil
| | - Hugo Rocha
- Centre of Biosciences, Department of Biochemistry, Federal University of Rio Grande do Norte, Av. Salgado Filho 3000 - Campus Universitário, Lagoa Nova, 59072940, Natal, RN, Brasil
| | - Francisco Miguel Gama
- Institute for Biotechnology and Bioengineering, Centre of Biological Engineering, Campus de Gualtar, University of Minho, Braga, 4710-05, Portugal
| |
Collapse
|
144
|
Role of Zn doping in oxidative stress mediated cytotoxicity of TiO2 nanoparticles in human breast cancer MCF-7 cells. Sci Rep 2016; 6:30196. [PMID: 27444578 PMCID: PMC4957127 DOI: 10.1038/srep30196] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 06/30/2016] [Indexed: 02/07/2023] Open
Abstract
We investigated the effect of Zn-doping on structural and optical properties as well as cellular response of TiO2 nanoparticles (NPs) in human breast cancer MCF-7 cells. A library of Zn-doped (1-10 at wt%) TiO2 NPs was prepared. Characterization data indicated that dopant Zn was incorporated into the lattice of host TiO2. The average particle size of TiO2 NPs was decreases (38 to 28 nm) while the band gap energy was increases (3.35 eV-3.85 eV) with increasing the amount of Zn-doping. Cellular data demonstrated that Zn-doped TiO2 NPs induced cytotoxicity (cell viability reduction, membrane damage and cell cycle arrest) and oxidative stress (reactive oxygen species generation &glutathione depletion) in MCF-7 cells and toxic intensity was increases with increasing the concentration of Zn-doping. Molecular data revealed that Zn-doped TiO2 NPs induced the down-regulation of super oxide dismutase gene while the up-regulation of heme oxygenase-1 gene in MCF-7 cells. Cytotoxicity induced by Zn-doped TiO2 NPs was efficiently prevented by N-acetyl-cysteine suggesting that oxidative stress might be the primarily cause of toxicity. In conclusion, our data indicated that Zn-doping decreases the particle size and increases the band gap energy as well the oxidative stress-mediated toxicity of TiO2 NPs in MCF-7 cells.
Collapse
|
145
|
Wingett D, Louka P, Anders CB, Zhang J, Punnoose A. A role of ZnO nanoparticle electrostatic properties in cancer cell cytotoxicity. Nanotechnol Sci Appl 2016; 9:29-45. [PMID: 27486313 PMCID: PMC4956064 DOI: 10.2147/nsa.s99747] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
ZnO nanoparticles (NPs) have previously been shown to exhibit selective cytotoxicity against certain types of cancerous cells suggesting their potential use in biomedical applications. In this study, we investigate the effect of surface modification of ZnO NPs on their cytotoxicity to both cancerous and primary T cells. Our results show that polyacrylic acid capping produces negatively charged ZnO NPs that are significantly more toxic compared to uncapped positively charged NPs of identical size and composition. In contrast, the greatest selectivity against cancerous cells relative to normal cells is observed with cationic NPs. In addition, differences in NP cytotoxicity inversely correlate with NP hydrodynamic size, propensity for aggregation, and dissolution profiles. The generation of reactive oxygen species (ROS) was also observed in the toxicity mechanism with anionic NPs generating higher levels of mitochondrial superoxide without appreciably affecting glutathione levels. Additional experiments evaluated the combined effects of charged ZnO NPs and nontoxic cationic or anionic CeO2 NPs. Results show that the CeO2 NPs offer protective effects against cytotoxicity from anionic ZnO NPs via antioxidant properties. Altogether, study data indicate that surface modification of NPs and resulting changes in their surface charge affect the level of intracellular ROS production, which can be ameliorated by the CeO2 ROS scavenger, suggesting that ROS generation is a dominant mechanism of ZnO NP cytotoxicity. These findings demonstrate the importance of surface electrostatic properties for controlling NP toxicity and illustrate an approach for engineering NPs with desired properties for potential use in biological applications.
Collapse
Affiliation(s)
- Denise Wingett
- Department of Biological Sciences; Biomolecular Sciences PhD Program, Boise State University, Boise, ID; Department of Medicine, Division of Gerontology and Geriatric Medicine, University of Washington, Seattle, WA
| | | | | | - Jianhui Zhang
- Department of Physics, Boise State University, Boise, ID, USA
| | - Alex Punnoose
- Biomolecular Sciences PhD Program, Boise State University, Boise, ID; Department of Physics, Boise State University, Boise, ID, USA
| |
Collapse
|
146
|
Szczeszak A, Ekner-Grzyb A, Runowski M, Szutkowski K, Mrówczyńska L, Kaźmierczak Z, Grzyb T, Dąbrowska K, Giersig M, Lis S. Spectroscopic, structural and in vitro cytotoxicity evaluation of luminescent, lanthanide doped core@shell nanomaterials GdVO4:Eu(3+)5%@SiO2@NH2. J Colloid Interface Sci 2016; 481:245-55. [PMID: 27478979 DOI: 10.1016/j.jcis.2016.07.025] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 07/11/2016] [Accepted: 07/14/2016] [Indexed: 11/19/2022]
Abstract
The luminescent GdVO4:Eu(3+)5%@SiO2@NH2 core@shell nanomaterials were obtained via co-precipitation method, followed by hydrolysis and co-condensation of silane derivatives: tetraethyl orthosilicate and 3-aminopropyltriethoxysilane. Their effect on human erythrocytes sedimentation and on proliferation of human lung microvascular endothelial cells was examined and discussed. The luminescent nanoparticles were synthesized in the presence of polyacrylic acid or glycerin in order to minimalize the agglomeration and excessive growth of nanostructures. Surface coating with amine functionalized silica shell improved their biocompatibility, facilitated further organic conjugation and protected the internal core. Magnetic measurements revealed an enhanced T1-relaxivity for the synthesized GdVO4:Eu(3+)5% nanostructures. Structure, morphology and average grain size of the obtained nanomaterials were determined by X-ray diffraction, transmission electron microscopy and dynamic light scattering analysis. The qualitative elemental composition of the nanomaterials was established using energy-dispersive X-ray spectroscopy. The spectroscopic characteristic of red emitting core@shell nanophosphors was completed by measuring luminescence spectra and decays. The emission spectra revealed characteristic bands of Eu(3+) ions related to the transitions (5)D0-(7)F0,1,2,3,4 and (5)D1-(7)F1. The luminescence lifetimes consisted of two components, associated with the presence of Eu(3+) ions located at the surface of the crystallites and in the bulk.
Collapse
Affiliation(s)
- Agata Szczeszak
- Adam Mickiewicz University, Faculty of Chemistry, Department of Rare Earths, Umultowska 89b, 61-614 Poznań, Poland.
| | - Anna Ekner-Grzyb
- Adam Mickiewicz University, Faculty of Biology, Umultowska 89, 61-614 Poznań, Poland.
| | - Marcin Runowski
- Adam Mickiewicz University, Faculty of Chemistry, Department of Rare Earths, Umultowska 89b, 61-614 Poznań, Poland.
| | - Kosma Szutkowski
- Faculty of Physics, Adam Mickiewicz University, Umultowska 85, 61-614 Poznan, Poland.
| | - Lucyna Mrówczyńska
- Adam Mickiewicz University, Faculty of Biology, Department of Cell Biology, Umultowska 89, 61-614 Poznań, Poland.
| | - Zuzanna Kaźmierczak
- Institute of Immunology and Experimental Therapy Polish Academy of Sciences, Bacteriophage Laboratory, Rudolfa Weigla 12, 53-114 Wrocław, Poland.
| | - Tomasz Grzyb
- Adam Mickiewicz University, Faculty of Chemistry, Department of Rare Earths, Umultowska 89b, 61-614 Poznań, Poland.
| | - Krystyna Dąbrowska
- Institute of Immunology and Experimental Therapy Polish Academy of Sciences, Bacteriophage Laboratory, Rudolfa Weigla 12, 53-114 Wrocław, Poland.
| | - Michael Giersig
- Freie Universität Berlin, Institute of Experimental Physics, Arnimallee 14, 14195 Berlin, Germany.
| | - Stefan Lis
- Adam Mickiewicz University, Faculty of Chemistry, Department of Rare Earths, Umultowska 89b, 61-614 Poznań, Poland.
| |
Collapse
|
147
|
Silva AH, Locatelli C, Filho UP, Gomes BF, de Carvalho Júnior RM, de Gois JS, Borges DL, Creczynski-Pasa TB. Visceral fat increase and signals of inflammation in adipose tissue after administration of titanium dioxide nanoparticles in mice. Toxicol Ind Health 2016; 33:147-158. [PMID: 26655915 DOI: 10.1177/0748233715613224] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Titanium dioxide nanoparticles (TiO2 NP) are present in several daily use products, and the risks associated with their bioaccumulation must be stablished. Thus, an evaluation of several toxicological-related effects was conducted after intraperitoneal injection of TiO2 NPs in mice. Mice were divided into two groups, which received 2 mg kg-1 day-1 of TiO2 NPs or vehicle saline. Assessments of body and organ weight as well as biochemical, hematological, and histopathological analyses were performed in order to evaluate adverse effects. The results showed that treatment resulted in an increased visceral and abdominal fat deposition, as well as a mononuclear inflammatory infiltrates in the abdominal fat tissue. The TiO2 NPs induced significant decrease in the weight gain and splenomegaly. Additionally, TiO2 NP-treated mice showed altered hematological parameters and significant liver injuries, which were characterized by histopathological and biochemical changes. Our results also indicated that TiO2 NPs were absorbed and significantly accumulated in the spleen, liver, and kidney. These results showed the ability of TiO2 NPs to infiltrate different organs and to induce inflammation and liver and spleen damage with visceral fat accumulation. The data obtained are useful for the governmental authorities to legislate and implement regulations concerning the use and the production of this kind of material that might be hazardous to the living beings, as well as to the environment.
Collapse
Affiliation(s)
- Adny H Silva
- 1 Universidade Federal de Santa Catarina, Trindade, Florianópolis, SC, Brasil
| | | | | | - Bruna F Gomes
- 4 Instituto de Química de São Carlos, São Carlos, SP, Brasil
| | | | - Jefferson S de Gois
- 1 Universidade Federal de Santa Catarina, Trindade, Florianópolis, SC, Brasil
| | - Daniel Lg Borges
- 1 Universidade Federal de Santa Catarina, Trindade, Florianópolis, SC, Brasil
| | | |
Collapse
|
148
|
Biocompatibility assessment of fibrous nanomaterials in mammalian embryos. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2016; 12:1151-9. [DOI: 10.1016/j.nano.2016.01.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2015] [Revised: 12/04/2015] [Accepted: 01/15/2016] [Indexed: 11/22/2022]
|
149
|
Dunpall R, Revaprasadu N. An in vitro and in vivo bio-interaction responses and biosafety evaluation of novel Au-ZnTe core-shell nanoparticles. Toxicol Res (Camb) 2016; 5:1078-1089. [PMID: 30090413 PMCID: PMC6062337 DOI: 10.1039/c6tx00054a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 04/23/2016] [Indexed: 12/16/2022] Open
Abstract
Novel gold-zinc telluride (Au-ZnTe) core-shell nanoparticles were synthesized to support surface modifications for enhanced drug delivery in cancer therapeutics. Knowledge of the biosafety and biocompatibility properties of these materials within biological systems is very limited and needs to be evaluated before their potential bio-applications may be demonstrated. We report the in vitro and in vivo bio-interactions of the Au-ZnTe nanoparticles, which were exposed to various human cancer and healthy cells, an in vitro immune simulation using peripheral blood mononuclear cells, followed by the analysis of cytokine expression. Acute in vivo exposure studies using low (50 μg ml-1), intermediate (500 μg ml-1) and high (1500 μg ml-1) concentrations of the Au-ZnTe particles were used to investigate histopathological effects in rats. Normal human mammary epithelial and colon cells in addition to human breast, prostate and colon cancer cells displayed cell viability between 86.4 ± 7.4% and 99.0 ± 3.6% when co-cultured with core-shell nanoparticles for 48 hours. Acute exposure studies using rat models displayed no significant changes in full blood counts, liver and kidney enzyme regulation and histopathology. These findings confirmed that Au-ZnTe core-shell nanoparticles display biosafety and biocompatibility features which can be exploited in future bio-applications.
Collapse
Affiliation(s)
- R Dunpall
- Department of Biochemistry , University of Zululand , Private Bag X1001 , Kwa-Dlangezwa , 3886 , South Africa .
- Department of Chemistry , University of Zululand , Private Bag X1001 , Kwa Dlangezwa , 3886 , South Africa
| | - N Revaprasadu
- Department of Chemistry , University of Zululand , Private Bag X1001 , Kwa Dlangezwa , 3886 , South Africa
| |
Collapse
|
150
|
Xiang P, Liu RY, Sun HJ, Han YH, He RW, Cui XY, Ma LQ. Molecular mechanisms of dust-induced toxicity in human corneal epithelial cells: Water and organic extract of office and house dust. ENVIRONMENT INTERNATIONAL 2016; 92-93:348-356. [PMID: 27131017 DOI: 10.1016/j.envint.2016.04.013] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 04/06/2016] [Accepted: 04/09/2016] [Indexed: 06/05/2023]
Abstract
Human corneal epithelial (HCE) cells are continually exposed to dust in the air, which may cause corneal epithelium damage. Both water and organic soluble contaminants in dust may contribute to cytotoxicity in HCE cells, however, the associated toxicity mechanisms are not fully elucidated. In this study, indoor dust from residential houses and commercial offices in Nanjing, China was collected and the effects of organic and water soluble fraction of dust on primary HCE cells were examined. The concentrations of heavy metals in the dust and dust extracts were determined by ICP-MS and PAHs by GC-MS, with office dust having greater concentrations of heavy metals and PAHs than house dust. Based on LC50, organic extract was more toxic than water extract, and office dust was more toxic than house dust. Accordingly, the organic extracts induced more ROS, malondialdehyde, and 8-Hydroxydeoxyguanosine and higher expression of inflammatory mediators (IL-1β, IL-6, and IL-8), and AhR inducible genes (CYP1A1, and CYP1B1) than water extracts (p<0.05). Extracts of office dust presented greater suppression of superoxide dismutase and catalase activity than those of house dust. In addition, exposure to dust extracts activated NF-κB signal pathway except water extract of house dust. The results suggested that both water and organic soluble fractions of dust caused cytotoxicity, oxidative damage, inflammatory response, and activation of AhR inducible genes, with organic extracts having higher potential to induce adverse effects on primary HCE cells. The results based on primary HCE cells demonstrated the importance of reducing contaminants in indoor dust to reduce their adverse impacts on human eyes.
Collapse
Affiliation(s)
- Ping Xiang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210046, People's Republic of China
| | - Rong-Yan Liu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210046, People's Republic of China
| | - Hong-Jie Sun
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210046, People's Republic of China
| | - Yong-He Han
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210046, People's Republic of China
| | - Rui-Wen He
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210046, People's Republic of China
| | - Xin-Yi Cui
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210046, People's Republic of China
| | - Lena Q Ma
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210046, People's Republic of China; Soil and Water Science Department, University of Florida, Gainesville, FL 32611, United States.
| |
Collapse
|