101
|
Hernández A, Viñals M, Isidoro T, Vilás F. Potential Role of Oxygen-Ozone Therapy in Treatment of COVID-19 Pneumonia. AMERICAN JOURNAL OF CASE REPORTS 2020; 21:e925849. [PMID: 32804917 PMCID: PMC7476746 DOI: 10.12659/ajcr.925849] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND Pneumonia caused by coronavirus originated in Wuhan, China in late 2019 and has spread around the world, becoming a pandemic. Many patients deteriorate rapidly and require intubation and mechanical ventilation, which is causing the collapse of healthcare systems in many countries. Coronavirus infection is associated with extensive lung inflammation and microvascular thrombosis, which can result in hypoxia. It can also cause severe and lasting harm in other organs, including the heart and kidneys. At present, there is no proven and efficacious treatment for this new disease. Consequently, there is a growing tendency to use novel methods. Ozone therapy consists of administration of a mixture of oxygen and ozone (a molecule consisting of 3 oxygen atoms). The potential benefits of this therapy include reduced tissue hypoxia, decreased hypercoagulability, renal and heart protection, modulated immune function, improved phagocytic function, and impaired viral replication. CASE REPORT We report rapidly improved hypoxia with associated decreases in inflammatory markers and D-dimer immediately after 1-4 sessions of oxygen-ozone (O₂-O₃) therapy in 3 patients with COVID-19 pneumonia who presented with respiratory failure. Invasive mechanical ventilation was not required in these 3 patients. All patients were discharged home on days 3-4 after O₂-O₃ therapy. CONCLUSIONS O₂-O₃ therapy appears to be an effective therapy for COVID-19 patients with severe respiratory failure. Large controlled clinical trials are required to study the efficacy and safety of using O₂-O₃ therapy compared with the standard supportive case in patients with COVID-19 in terms of the need for invasive ventilation and length of hospital and intensive care unit stays.
Collapse
Affiliation(s)
- Alberto Hernández
- Department of Anesthesiology, Policlinica Ibiza Hospital, Ibiza, Spain
| | - Montserrat Viñals
- Department of Internal Medicine, Policlinica Ibiza Hospital, Ibiza, Spain
| | - Tomas Isidoro
- Department of Surgery, Policlinica Ibiza Hospital, Ibiza, Spain
| | - Francisco Vilás
- Department of Surgery, Policlinica Ibiza Hospital, Ibiza, Spain
| |
Collapse
|
102
|
de Lima FS. Recent advances and future directions for uterine diseases diagnosis, pathogenesis, and management in dairy cows. Anim Reprod 2020; 17:e20200063. [PMID: 33029222 PMCID: PMC7534574 DOI: 10.1590/1984-3143-ar2020-0063] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Researchers, veterinarians, and farmers' pursuit of a consistent diagnosis, treatment, and prevention of uterine diseases remains challenging. The diagnosis and treatment of metritis is inconsistent, a concerning situation when considered the global threat of antimicrobial resistance dissemination. Endometritis is an insidious disease absent on routine health programs in many dairy farms and from pharmaceutical therapeutics arsenal in places like the US market. Conversely, a multitude of studies advanced the understanding of how uterine diseases compromise oocyte, follicle, and embryo development, and the uterine environment having long-lasting effects on fertility. The field of uterine disease microbiome also experienced tremendous progress and created opportunities for the development of novel preventives to improve the management of uterine diseases. Activity monitors, biomarkers, genomic selection, and machine learning predictive models are other innovative developments that have been explored in recent years to help mitigate the negative impacts of uterine diseases. Albeit novel tools such as vaccines for metritis, immune modulators, probiotics, genomic selection, and selective antimicrobial therapy are promising, further research is warranted to implement these technologies in a systematic and cost-effective manner.
Collapse
Affiliation(s)
- Fabio Soares de Lima
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, CA, USA
| |
Collapse
|
103
|
Ma L, Wen S, Yuan J, Zhang D, Lu YL, Zhang Y, Li Y, Cao S. Detection of chlorite, chlorate and perchlorate in ozonated saline. Exp Ther Med 2020; 20:2569-2576. [PMID: 32765750 PMCID: PMC7401830 DOI: 10.3892/etm.2020.9005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 12/19/2019] [Indexed: 12/25/2022] Open
Abstract
Medical ozone is used to treat various diseases, including numerous pathologies associated with chronic pain. Chronic pain may be treated by systemic administration of ozone, with ozonated autohemotherapy (OAH) being the commonly used method. In the clinic, intravenous infusion of ozonized saline has been used to treat various diseases. Compared with OAH, ozonized saline infusion is less technically demanding and causes minimal damage to veins. However, it has been indicated that ozone may oxidize saline and generate toxic substances, and therefore, the safety of ozone treatment has been questioned. In the present study, the potential chemical compounds produced from ozone and saline, including chlorite, chlorate and perchlorate, were examined at various time-points with ion chromatography-mass spectrometry (IC-MS). A control group (pure oxygen group) and an ozone group were included in the present study. Two subgroups were included within each group: A saline bottle (made from polypropylene) subgroup and an ozone-resistant blood transfusion bag [made from medical polyvinyl chloride, di(2-ethyl) hexyl phthalate plasticized] subgroup. For the ozone group, 100 ml saline and 100 ml medical ozone at various concentrations (20, 40 or 60 µg/ml in pure oxygen) were injected into the saline bottle or blood bag, and for the control group, 100 ml of pure oxygen was injected into the saline bottle or blood bag. The presence and the content of chlorite, chlorate and perchlorate were determined at different time-points (3, 6 and 15 days after mixing) by IC-MS. Chlorate was detected in the ozone groups at three time-points and its content increased as the ozone concentration and the reaction time increased. Under the same conditions (the same ozone concentration and the same incubation time), the chlorate content (0.90±0.14-7.69±0.48 µg/l) in the blood bag subgroup was significantly lower than that in the saline bottle subgroup (45.23±6.14-207.6±15.63 µg/l). However, chlorite and perchlorate were not detected at any time-point in the two groups. In addition, in the control group (pure oxygen group), chlorite, chlorate and perchlorate were not detected at any time-point. These results indicate that ozone reacts with saline to produce chlorate. Ozone may also react with the polypropylene saline bottle to increase the chlorate content in the bottled solution. Due to a lack of toxicology studies of chlorate in blood, it remains elusive whether ozonated saline and chlorate at the range of 0.90±0.14-7.69±0.48 µg/l has any toxic effects. The potential toxicity of chlorate should be considered when ozonated saline is used for clinical infusions.
Collapse
Affiliation(s)
- Lulin Ma
- Department of Pain Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| | - Song Wen
- Department of Pain Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| | - Jie Yuan
- Department of Pain Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China.,Guizhou Key Laboratory of Anesthesia and Organ Protection, Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| | - Dexin Zhang
- Department of Pain Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| | - Yan-Liu Lu
- Key Laboratory of Basic Pharmacology of the Ministry of Education and Joint International Research Laboratory of Ethnomedicine of The Ministry of Education, Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| | - You Zhang
- Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Ying Li
- Department of Pain Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| | - Song Cao
- Department of Pain Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China.,Guizhou Key Laboratory of Anesthesia and Organ Protection, Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| |
Collapse
|
104
|
Oxygen-ozone (O 2-O 3) immunoceutical therapy for patients with COVID-19. Preliminary evidence reported. Int Immunopharmacol 2020; 88:106879. [PMID: 32795898 PMCID: PMC7414302 DOI: 10.1016/j.intimp.2020.106879] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 08/04/2020] [Accepted: 08/04/2020] [Indexed: 12/18/2022]
Abstract
Objective This study evaluated the potential efficacy of a novel approach to treat COVID-19 patients, using an oxygen-ozone (O2-O3) mixture, via a process called Oxygen-Ozone- Immunoceutical Therapy. The methodology met the criteria of a novel, promising approach to treat successfully elderly COVID-19 patients, particularly when hospitalized in intensive care units (ICUs) Experimental design: We investigated the therapeutic effect of 4 cycles of O2-O3 in 50 hospitalized COVID-19 subjects suffering from acute respiratory disease syndrome (ARDS), aged more than 60 years, all males and undergoing non invasive mechanical ventilation in ICUs. Results Following O2-O3 treatment a significant improvement in inflammation and oxygenation indexes occurred rapidly and within the first 9 days after the treatment, despite the expected 14–20 days. A significant reduction of inflammatory and thromboembolic markers (CRP, IL-6, D-dimer) was observed. Furthermore, amelioration in the major respiratory indexes, such as respiratory and gas exchange markers (SatO2%, PaO2/FiO2 ratio), was reported. Conclusion Our results show that O2-O3 treatment would be a promising therapy for COVID-19 patients. It leads patients to a fast recovery from ARDS via the improvement of major respiratory indexes and blood gas parameters, following a relatively short time of dispensed forced ventilation (about one to two weeks). This study may encourage the scientific community to further investigate and evaluate the proposed method for the treatment of COVID-19 patients.
Collapse
|
105
|
Barbosa LT, Rodrigues CFDS, Andrade RRD, Barbosa FT. The effectiveness of percutaneous injections of ozonotherapy in low back pain. REVISTA DA ASSOCIACAO MEDICA BRASILEIRA (1992) 2020; 66:1146-1151. [PMID: 32935812 DOI: 10.1590/1806-9282.66.8.1146] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Accepted: 04/21/2020] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Lumbar pain is one of the main reasons for medical consultation, causing the disruption of daily routines due to its disabling nature, thus resulting in social and personal damage. Among the complementary treatments, ozonotherapy offers analgesia to most patients, with reports of complications. However, great questions about its clinical effectiveness have not been answered yet, and there have been reports of serious complications. OBJECTIVE To describe the use of ozonotherapy in the treatment of lumbar pain, focusing on its favorable and unfavorable effects, and its analog profile. METHODS A cross-sectional bibliographic research was performed with scientific articles obtained from the Pubmed, LILACS and Scopus database, using the following descriptors: "Ozone", "Therapy", "Lumbar pain", "complication", "Disk herniation", "Guideline", "Protocol", "Standards", "Criteria". RESULTS The researched literature corroborates that, in clinical practice, there is safety in the use of oxygen-ozone therapy through percutaneous injections for the treatment of lumbar pain, especially when compared to surgeries and use of medicines, provided that strict criteria are followed. CONCLUSION The procedure is effective and has a favorable analgesic profile. However, it is necessary to produce a medical guideline that will help in its strict and systematic control.
Collapse
|
106
|
Targeting Oxidative Stress for Disease Prevention and Therapy: Where Do We Stand, and Where Do We Go from Here. Molecules 2020; 25:molecules25112653. [PMID: 32517368 PMCID: PMC7321135 DOI: 10.3390/molecules25112653] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 06/04/2020] [Accepted: 06/05/2020] [Indexed: 12/14/2022] Open
Abstract
Oxidative stress (OxS) is one of the main processes related to aging and a common denominator of many different chronic/degenerative diseases (e.g., cardiovascular and neurodegenerative conditions and cancer). Thus, its potential modulation by supplementation/pharmacological therapy caused a lot of interest. However, these expectations have been mitigated by the obtainment of controversial results (beneficial, null, or adverse effects) following antioxidant interventions. Here, we discuss the current understanding of OxS assessment in health and disease, challenges and the potential of its evaluation in clinical practice, and available and future development for supplementation and pharmacologic strategies targeting OxS.
Collapse
|
107
|
Bral M, Shapiro AMJ. Normothermic Preservation of Liver – What Does the Future Hold? ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1288:13-31. [DOI: 10.1007/5584_2020_517] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
108
|
Costanzo M, Romeo A, Cisterna B, Calderan L, Bernardi P, Covi V, Tabaracci G, Malatesta M. Ozone at low concentrations does not affect motility and proliferation of cancer cells in vitro. Eur J Histochem 2020; 64. [PMID: 32241095 PMCID: PMC7137928 DOI: 10.4081/ejh.2020.3119] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Accepted: 03/19/2020] [Indexed: 02/08/2023] Open
Abstract
Exposure to low ozone concentrations is used in medicine as an adjuvant/complementary treatment for a variety of diseases. The therapeutic potential of low ozone concentrations relies on their capability to increase the nuclear translocation of the Nuclear factor erythroid 2-related factor 2 (Nrf2), thus inducing the transcription of Antioxidant Response Elements (ARE)-driven genes and, through a cascade of events, a general cytoprotective response. However, based on the controversial role of Nrf2 in cancer initiation, progression and resistance to therapies, possible negative effects of ozone therapy may be hypothesised in oncological patients. With the aim to elucidate the possible changes in morphology, migration capability and proliferation of cancer cells following mild ozone exposure, we performed wound healing experiments in vitro on HeLa cells treated with low ozone concentrations currently used in the clinical practice. By combining a multimodal microscopy approach (light and fluorescence microscopy, scanning electron microscopy, atomic force microscopy) with morphometric analyses, we demonstrated that, under our experimental conditions, exposure to low ozone concentrations does not alter cytomorphology, motility and proliferation features, thus supporting the notion that ozone therapy should not positively affect tumour cell growth and metastasis.
Collapse
Affiliation(s)
- Manuela Costanzo
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona.
| | | | | | | | | | | | | | | |
Collapse
|
109
|
Sciorsci RL, Lillo E, Occhiogrosso L, Rizzo A. Ozone therapy in veterinary medicine: A review. Res Vet Sci 2020; 130:240-246. [PMID: 32234614 DOI: 10.1016/j.rvsc.2020.03.026] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 03/18/2020] [Accepted: 03/25/2020] [Indexed: 10/24/2022]
Abstract
Ozone (O3) is a triatomic form of oxygen. As O3 rapidly dissociates into water and releases a reactive form of oxygen that may oxidize cells, the gas mixture of O3/O2 is used in medicine. ATP is widely available for cellular activity. O3 can be administered via the systemic and local routes. Although O3 is known as one of the most powerful oxidants, it also promotes antioxidant enzymes. Additionally, it stimulates some of the cells of the immune system and inactivates pathogens, including bacteria, fungi, yeasts, protozoa, and viruses. Owing to these activities, O3 is used to improve several diseases, both in human and in veterinary medicine. Considering the wide scope of O3 application, the aim of this review was to reiterate the mechanisms of action of O3 and its utilization in different mammalian species (bovine, ovine-caprine, equine, canine, porcine).
Collapse
Affiliation(s)
- R L Sciorsci
- Department of Veterinary Medicine, University of Bari Aldo Moro, S.P. per Casamassima km. 3, 70010 Valenzano, BA, Italy.
| | - E Lillo
- Department of Veterinary Medicine, University of Bari Aldo Moro, S.P. per Casamassima km. 3, 70010 Valenzano, BA, Italy
| | - L Occhiogrosso
- Department of Veterinary Medicine, University of Bari Aldo Moro, S.P. per Casamassima km. 3, 70010 Valenzano, BA, Italy
| | - A Rizzo
- Department of Veterinary Medicine, University of Bari Aldo Moro, S.P. per Casamassima km. 3, 70010 Valenzano, BA, Italy
| |
Collapse
|
110
|
Gao L, Dou J, Zhang B, Zeng J, Cheng Q, Lei L, Tan L, Zeng Q, Ding S, Guo A, Cheng H, Yang C, Luo Z, Lu J. Ozone therapy promotes the differentiation of basal keratinocytes via increasing Tp63-mediated transcription of KRT10 to improve psoriasis. J Cell Mol Med 2020; 24:4819-4829. [PMID: 32168425 PMCID: PMC7176851 DOI: 10.1111/jcmm.15160] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 02/20/2020] [Accepted: 02/25/2020] [Indexed: 12/16/2022] Open
Abstract
Psoriasis is a chronic immune‐mediated inflammatory dermatosis. Recently, ozone therapy has been applicated to psoriasis treatment; however, the mechanism by which ozone therapy improves psoriasis remains unclear. The excessive proliferation and the differentiation of basal keratinocytes have been considered critical issues during pathological psoriasis process, in which keratin 6 (KRT6) and KRT10 might be involved. In the present study, KRT6, IL‐17 and IL‐22 protein within psoriasis lesions was decreased, while KRT10 and Tp63 protein in psoriasis lesions was increased by ozone treatment in both patient and IMQ mice psoriatic tissues. In the meantime, ozone treatment down‐regulated KRT6 mRNA and protein expression while up‐regulated KRT10 mRNA and protein expression within IL‐22 treated primary KCs; the cell viability of KCs was suppressed by ozone treatment. Moreover, Tp63 bound to KRT10 promoter region to activate its transcription in basal keratinocytes; the promotive effects of ozone on Tp63 and KRT10 were significantly reversed by Tp63 silence. Both TP63 and KRT10 mRNA expression were significantly increased by ozone treatment in psoriasis lesions; there was a positive correlation between Tp63 and KRT10 expression within tissue samples, suggesting that ozone induces the expression of Tp63 to enhance the expression of KRT10 and the differentiation of keratinocytes, therefore improving the psoriasis. In conclusion, the application of ozonated oil could be an efficient and safe treatment for psoriasis; ozone promotes the differentiation of keratinocytes via increasing Tp63‐mediated transcription of KRT10, therefore improving psoriasis.
Collapse
Affiliation(s)
- Lihua Gao
- Department of Physiology, College of Basic Medicine, Central South University, Changsha, China.,Department of Dermatology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Jianhua Dou
- Department of Dermatology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Bo Zhang
- Department of Stomatology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Jinrong Zeng
- Department of Dermatology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Qingmei Cheng
- Department of Physiology, College of Basic Medicine, Central South University, Changsha, China
| | - Li Lei
- Department of Dermatology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Lina Tan
- Department of Dermatology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Qinghai Zeng
- Department of Dermatology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Shu Ding
- Department of Dermatology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Aiyuan Guo
- Department of Dermatology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Haipeng Cheng
- Department of Physiology, College of Basic Medicine, Central South University, Changsha, China
| | - Caifeng Yang
- Department of Dermatology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Ziqiang Luo
- Department of Physiology, College of Basic Medicine, Central South University, Changsha, China
| | - Jianyun Lu
- Department of Dermatology, The Third Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
111
|
Jaramillo F, Vendruscolo C, Fülber J, Seidel S, Barbosa A, Baccarin R. Effects of transrectal medicinal ozone in horses - clinical and laboratory aspects. ARQ BRAS MED VET ZOO 2020. [DOI: 10.1590/1678-4162-11155] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
ABSTRACT Ozone (O3) therapy has been used for medical procedures for centuries; however, there are no extensive studies on its utilization in horses. This study aimed to evaluate the application of transrectal O3 on horses by physical and laboratorial evaluation, and production of reactive oxygen species (ROS). Sixteen healthy horses were separated in two groups: a control group (CG) and a group treated with O3 (TG). The TG animals received 1L of an oxygen and O3 mixture transrectally. The initial dose was 10µg/ml for the first two applications, 15μg/ml for the following two applications, and 20μg/ml for the next six applications. The CG animals received 1L of oxygen transrectally. In TG animals no variations in the physical examination were detected; furthermore, TG animals did not exhibit changes in biochemical evaluation results, fibrinogen concentrations, or ROS production. TG animals had increased red blood cell counts, hemoglobin concentrations, and packet cell volume values in comparison to the baseline and CG values. We could infer that O3 affected the red blood cell counts and improved rhetological properties of the blood. The transrectal application of O3 in horses is safe and can indirectly improve the oxygenation and metabolism of tissues.
Collapse
|
112
|
Simonetti V, Quagliariello V, Franzini M, Iaffaioli RV, Maurea N, Valdenassi L. Ozone Exerts Cytoprotective and Anti-Inflammatory Effects in Cardiomyocytes and Skin Fibroblasts after Incubation with Doxorubicin. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2019; 2019:2169103. [PMID: 31827546 PMCID: PMC6885772 DOI: 10.1155/2019/2169103] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 10/25/2019] [Indexed: 12/31/2022]
Abstract
INTRODUCTION Skin reactions and cardiotoxicity are one of the most common side effects of doxorubicin in cancer patients. The main mechanisms based on the etiopathogenesis of these reactions are mediated by the overproduction of proinflammatory cytokines, metalloproteases, and the disruption of mitochondrial homeostasis. Ozone therapy demonstrated anti-inflammatory effects in several preclinical and clinical studies. The aim of this research is based on the evaluation of cardioprotective and dermatoprotective effects of ozone during incubation with doxorubicin, giving preliminary evidences for further studies in the field of cardio-oncology. METHODS Human skin fibroblast cells and human fetal cardiomyocytes were exposed to doxorubicin at subclinical concentration (100 nM) alone or combined with ozone concentrated from 10 up to 50 μg/mL. Cell viability and multiple anti-inflammatory studies were performed in both cell lines, with particular attention on the quantification of interleukins, leukotriene B4, NF-κB, and Nrf2 expressions during treatments. RESULTS Ozone decreased significantly the cytotoxicity of doxorubicin in skin fibroblasts and cardiomyocytes after 24 h of incubation. The best cytoprotective effect of ozone was reached to 30 μg/mL with a plateau phase at higher concentration. Ozone also demonstrated anti-inflammatory effects decreasing significantly the interleukins and proinflammatory mediators in both cells. CONCLUSION Ozone exerts cardioprotective and dermatoprotective effects during incubation with doxorubicin, and the involved mechanisms are mediated by its anti-inflammatory effects. The overall picture described herein is a pilot study for preclinical studies in oncology.
Collapse
Affiliation(s)
- V. Simonetti
- “Kaos” ONLUS Foundation, Turin, Italy
- Oxygen-Ozone Therapy Scientific Society (SIOOT), Gorle, Italy
| | - V. Quagliariello
- Division of Cardiology, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, Napoli, Italy
| | - M. Franzini
- Oxygen-Ozone Therapy Scientific Society (SIOOT), Gorle, Italy
- University of Pavia, Pavia, Italy
| | - R. V. Iaffaioli
- ASMO (Association of Multidisciplinary Study in Oncology) and Mediterranean Diet, Piazza Nicola Amore, Napoli, Italy
| | - N. Maurea
- Division of Cardiology, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, Napoli, Italy
| | - L. Valdenassi
- Oxygen-Ozone Therapy Scientific Society (SIOOT), Gorle, Italy
- University of Pavia, Pavia, Italy
| |
Collapse
|
113
|
Martin Márquez López D, A. Fregoso-Aguilar T, A. Mendoza-Pérez J, O. Flores-Valle S. Effect of the Ozonization Degree of Emu Oil over Healing: An Emerging Oxidation Treatment. Antioxidants (Basel) 2019. [DOI: 10.5772/intechopen.83383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
114
|
The Role of Medical Ozone in Improving Antioxidant Status in Multiple Drug-Resistant Tuberculosis Patients: A Quasi-experimental Study. ACTA ACUST UNITED AC 2019. [DOI: 10.5812/mejrh.97125] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
115
|
Worley JR, Parker GC. Effects of environmental stressors on stem cells. World J Stem Cells 2019; 11:565-577. [PMID: 31616535 PMCID: PMC6789190 DOI: 10.4252/wjsc.v11.i9.565] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 07/12/2019] [Accepted: 09/04/2019] [Indexed: 02/06/2023] Open
Abstract
Environmental toxicants are ubiquitous, and many are known to cause harmful health effects. However, much of what we know or think we know concerning the targets and long-term effects of exposure to environmental stressors is sadly lacking. Toxicant exposure may have health effects that are currently mischaracterized or at least mechanistically incompletely understood. While much of the recent excitement about stem cells (SCs) focuses on their potential as therapeutic agents, they also offer a valuable resource to give us insight into the mechanisms and risks of toxicant effects. Not only as a response to the increasing ethical pressure to reduce animal testing, SC studies allow us valuable insight into the true effects of human exposure to environmental stressors under controlled conditions. We present a review of the history of publications on the effects of environmental stressors on SCs, followed by a consolidation of the literature over the past five years on a subset of key environmental stressors of importance to human health and their effects on both embryonic and tissue SCs. The review will make constructive suggestions as to areas of toxicant research where further studies are needed, as well as making indications of the potential utility for advancing knowledge and directing research on environmental toxicology.
Collapse
Affiliation(s)
- Jessica R Worley
- Department of Pediatrics, Wayne State University School of Medicine, Detroit, MI 48202, United States
| | - Graham C Parker
- Department of Pediatrics, Wayne State University School of Medicine, Detroit, MI 48202, United States
| |
Collapse
|
116
|
Protective Effects of Aqueous Extract of Mentha suaveolens against Oxidative Stress-Induced Damages in Human Keratinocyte HaCaT Cells. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:5045491. [PMID: 31662774 PMCID: PMC6778877 DOI: 10.1155/2019/5045491] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 08/23/2019] [Indexed: 12/21/2022]
Abstract
Mentha suaveolens is an aromatic herb that has a wide range of biological activities, including antimicrobial, antifungal, anti-inflammatory, and hepatoprotective properties. Although there are a few reports on the antioxidant property of M. suaveolens, its cytoprotective activity against oxidative stress has not been reported yet. The objective of this study was to determine the protective activity of M. suaveolens aqueous extract (MSAE) against hydrogen peroxide- (H2O2-) induced oxidative stress and apoptosis in human keratinocyte HaCaT cells. MSAE pretreatment decreased H2O2-induced cytotoxicity and suppressed H2O2-induced intracellular ROS generation. Furthermore, MSAE suppressed expression levels of H2O2-induced apoptotic genes such as cleaved caspase-3, caspase-9, and cleaved poly (ADP-ribose) polymerase (PARP). Pretreatment with MSAE induced expression of phase II enzyme such as HO-1 through translocation of NF-E2-related factor (Nrf2) upon H2O2 exposure. These results revealed that the cytoprotective effect of MSAE against oxidative stress-induced cell death was associated with activation of Nrf2-mediated phase II enzyme expression.
Collapse
|
117
|
Ameli J, Banki A, Khorvash F, Simonetti V, Jafari NJ, Izadi M. Mechanisms of pathophysiology of blood vessels in patients with multiple sclerosis treated with ozone therapy: a systematic review. ACTA BIO-MEDICA : ATENEI PARMENSIS 2019; 90:213-217. [PMID: 31580307 PMCID: PMC7233748 DOI: 10.23750/abm.v90i3.7265] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Accepted: 06/14/2018] [Indexed: 02/08/2023]
Abstract
Multiple sclerosis (MS) defines as an intricate disease with numerous pathophysiological processes, including: inflammation, demyelination, oxidative stress, axonal damage, and repair mechanisms that interfere in this disease and highly related to the pathogenesis of MS. In parallel, recent studies have shown that the ozone administration could be very useful in treating neurological disorders and inflammatory and degenerative neurological diseases. In this review, we examine the recent literature on the pathophysiology of blood vessels in patients with multiple sclerosis treated with ozone therapy. (www.actabiomedica.it)
Collapse
Affiliation(s)
- Javad Ameli
- Department of Neurology, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | | | | | | | | | | |
Collapse
|
118
|
Guzel O, Gulcubuk A, Yildar E, Gursel FE, Akis I, Bagcigil F, Bamac OE, Ozturk GY, Ekiz B. Effects of antibiotic and intra-peritoneal ozone administration on proinflammatory cytokine formation, antioxidant levels and abdominal organ functions in the treatment of experimentally generated infectious peritonitis in rabbits. VET MED-CZECH 2019; 64:348-361. [DOI: 10.17221/97/2018-vetmed] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025] Open
|
119
|
Galiè M, Covi V, Tabaracci G, Malatesta M. The Role of Nrf2 in the Antioxidant Cellular Response to Medical Ozone Exposure. Int J Mol Sci 2019; 20:E4009. [PMID: 31426459 PMCID: PMC6720777 DOI: 10.3390/ijms20164009] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Revised: 08/15/2019] [Accepted: 08/15/2019] [Indexed: 02/07/2023] Open
Abstract
Ozone (O3) is a natural, highly unstable atmospheric gas that rapidly decomposes to oxygen. Although not being a radical molecule, O3 is a very strong oxidant and therefore it is potentially toxic for living organisms. However, scientific evidence proved that the effects of O3 exposure are dose-dependent: high dosages stimulate severe oxidative stress resulting in inflammatory response and tissue injury, whereas low O3 concentrations induce a moderate oxidative eustress activating antioxidant pathways. These properties make O3 a powerful medical tool, which can be used as either a disinfectant or an adjuvant agent in the therapy of numerous diseases. In this paper, the cellular mechanisms involved in the antioxidant response to O3 exposure will be reviewed with special reference to the activation of nuclear factor erythroid 2-related factor 2 (Nrf2) and its role in the efficacy of ozone therapy.
Collapse
Affiliation(s)
- Mirco Galiè
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Strada Le Grazie 8, I-37134 Verona, Italy
| | - Viviana Covi
- San Rocco Clinic, Via Monsignor G. V. Moreni 95, I-25018 Montichiari (BS), Italy
| | - Gabriele Tabaracci
- San Rocco Clinic, Via Monsignor G. V. Moreni 95, I-25018 Montichiari (BS), Italy
| | - Manuela Malatesta
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Strada Le Grazie 8, I-37134 Verona, Italy.
| |
Collapse
|
120
|
Mehraban F, Seyedarabi A, Ahmadian S, Mirzaaghaei V, Moosavi-Movahedi AA. Personalizing the safe, appropriate and effective concentration(s) of ozone for a non-diabetic individual and four type II diabetic patients in autohemotherapy through blood hemoglobin analysis. J Transl Med 2019; 17:227. [PMID: 31311548 PMCID: PMC6636166 DOI: 10.1186/s12967-019-1973-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 07/05/2019] [Indexed: 12/18/2022] Open
Abstract
Background Diabetes is a chronic disease associated with many problems and high costs. In recent decades, a lot of research has been carried out in order to improve methods of treatment of diabetic patients. One of the currently used complementary therapies for diabetes is ozone therapy or autohemotherapy. The beneficial effects of ozone has been proven in many diseases such as diabetes, but the critical issue is the determination of the safe and effective concentration of ozone reacting with blood and in particular hemoglobin. Methods A number of spectroscopic techniques including intrinsic fluorescence, circular dichroism and UV–VIS spectroscopies were used as well as SDS-PAGE, Native-PAGE and dynamic light scattering to analyze the effect of ozonation on hemoglobin of a non-diabetic individual and four diabetic patients in order to find the appropriate concentration(s) of ozone for personalized autohemotherapy. Results In this study, we determined the personalized concentration(s) for a safe and effective ozonation of a non-diabetic individual and four diabetic type II patients, based on blood hemoglobin analysis. Conclusions A number of techniques were used to determine the personalized ozone concentration(s) for a safe and effective autohemotherapy based on blood hemoglobin analysis. SDS-PAGE and dynamic light scattering were identified as the two main techniques needed for personalizing the ozone concentration(s) for each individual as otherwise hemoglobin in blood can oligomerise and cause serious damage if the inappropriate ozone concentration is used.
Collapse
Affiliation(s)
- Fouad Mehraban
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Arefeh Seyedarabi
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran.
| | - Shahin Ahmadian
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | | | | |
Collapse
|
121
|
Hlusicka J, Loster T, Lischkova L, Vaneckova M, Diblik P, Urban P, Navratil T, Kacer P, Kacerova T, Zakharov S. Reactive carbonyl compounds, carbonyl stress, and neuroinflammation in methyl alcohol intoxication. MONATSHEFTE FUR CHEMIE 2019. [DOI: 10.1007/s00706-019-02429-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
122
|
Hlusicka J, Loster T, Lischkova L, Vaneckova M, Diblik P, Urban P, Navratil T, Kacer P, Kacerova T, Zakharov S. Markers of nucleic acids and proteins oxidative damage in acute methanol poisoning. MONATSHEFTE FUR CHEMIE 2019. [DOI: 10.1007/s00706-019-2370-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
123
|
Krunić J, Stojanović N, Đukić L, Roganović J, Popović B, Simić I, Stojić D. Clinical antibacterial effectiveness and biocompatibility of gaseous ozone after incomplete caries removal. Clin Oral Investig 2019; 23:785-792. [PMID: 29858659 DOI: 10.1007/s00784-018-2495-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Accepted: 05/24/2018] [Indexed: 12/11/2022]
Abstract
OBJECTIVES To evaluate local effect of gaseous ozone on bacteria in deep carious lesions after incomplete caries removal, using chlorhexidine as control, and to investigate its effect on pulp vascular endothelial growth factor (VEGF), neuronal nitric oxide synthase (nNOS), and superoxide dismutase (SOD). MATERIALS AND METHODS Antibacterial effect was evaluated in 48 teeth with diagnosed deep carious lesion. After incomplete caries removal, teeth were randomly allocated into two groups regarding the cavity disinfectant used: ozone (open system) or 2% chlorhexidine. Dentin samples were analyzed for the presence of total bacteria and Lactobacillus spp. by real-time quantitative polymerase chain reaction. For evaluation of ozone effect on dental pulp, 38 intact permanent teeth indicated for pulp removal/tooth extraction were included. After cavity preparation, teeth were randomly allocated into two groups: ozone group and control group. VEGF/nNOS level and SOD activity in dental pulp were determined by enzyme-linked immunosorbent assay and spectrophotometric method, respectively. RESULTS Ozone application decreased number of total bacteria (p = 0.001) and Lactobacillus spp. (p < 0.001), similarly to chlorhexidine. The VEGF (p < 0.001) and nNOS (p = 0.012) levels in dental pulp after ozone application were higher, while SOD activity was lower (p = 0.001) comparing to those in control pulp. CONCLUSIONS Antibacterial effect of ozone on residual bacteria after incomplete caries removal was similar to that of 2% chlorhexidine. Effect of ozone on pulp VEGF, nNOS, and SOD indicated its biocompatibility. CLINICAL RELEVANCE Ozone appears as effective and biocompatible cavity disinfectant in treatment of deep carious lesions by incomplete caries removal technique.
Collapse
Affiliation(s)
- Jelena Krunić
- Department of Dental Pathology, Faculty of Medicine, University of East Sarajevo, Studentska 5, 73300, Foca, Bosnia and Herzegovina.
| | - Nikola Stojanović
- Department of Dental Pathology, Faculty of Medicine, University of East Sarajevo, Studentska 5, 73300, Foca, Bosnia and Herzegovina
| | - Ljiljana Đukić
- Department of Pharmacology in Dentistry, School of Dental Medicine, University of Belgrade, Belgrade, Serbia
| | - Jelena Roganović
- Department of Pharmacology in Dentistry, School of Dental Medicine, University of Belgrade, Belgrade, Serbia
| | - Branka Popović
- Department of Human Genetics, School of Dental Medicine, University of Belgrade, Belgrade, Serbia
| | - Ivana Simić
- Department of Oral Rehabilitation, Faculty of Medicine, University of East Sarajevo, Foca, Bosnia and Herzegovina
| | - Dragica Stojić
- Department of Pharmacology in Dentistry, School of Dental Medicine, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
124
|
Wang X, Yuan ZL. Activation of Nrf2/HO-1 pathway protects retinal ganglion cells from a rat chronic ocular hypertension model of glaucoma. Int Ophthalmol 2019; 39:2303-2312. [PMID: 30637543 DOI: 10.1007/s10792-018-01071-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 12/31/2018] [Indexed: 01/28/2023]
Abstract
OBJECTIVE The objective of this work was to find out the effects of nuclear factor erythroid 2-related factor/heme oxygenase-1 (Nrf2/HO-1) pathway on retinal ganglion cell (RGC) injury in glaucoma. METHODS The chronic ocular hypertension (COH) rat models of glaucoma were constructed, and intraocular pressure (IOP) and RGC numbers were detected at different time points. Additionally, rats were divided into normal group (normal control rats), model group (COH model rats), and model + tBHQ group (COH model rats treated with Nrf activator, tBHQ). RGC apoptosis was detected by using TUNEL staining, and the expressions of Nrf2/HO-1 were detected by qRT-PCR and western blotting. RESULTS COH model rats showed significant IOP elevation and the increased mRNA and protein expressions of Nrf2 and HO-1 from 1 to 6 weeks after operation, with the evidently decreased RGC numbers at 4 weeks and 6 weeks after operation (all P < 0.05). Besides, rats in the model group had increased apoptosis index (AI) of RGCs and the elevated mRNA and protein expressions of Nrf2/HO-1 with remarkably reduced RGC numbers when compared with normal control rats, but the model rats treated with tBHQ exhibited an apparent decrease in AI of RGCs, as well as remarkable increases in RGC numbers and the mRNA and protein expression of Nrf2/HO-1 (all P < 0.05). CONCLUSION Activation of Nrf2/HO-1 pathway significantly reduced the apoptosis and injury of RGCs in rats with chronic ocular hypertension (COH), thereby protecting RGCs in glaucoma, which could be a promising clinical target to prevent RGC degeneration in glaucoma.
Collapse
Affiliation(s)
- Xue Wang
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing, 211166, China.,Department of Ophthalmology, The First People's Hospital of Lianyungang, Lianyungang, 222000, China
| | - Zhi-Lan Yuan
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing, 211166, China.
| |
Collapse
|
125
|
Low-Concentration Oxygen/Ozone Treatment Attenuated Radiculitis and Mechanical Allodynia via PDE2A-cAMP/cGMP-NF- κB/p65 Signaling in Chronic Radiculitis Rats. Pain Res Manag 2018; 2018:5192814. [PMID: 30651902 PMCID: PMC6311849 DOI: 10.1155/2018/5192814] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 11/22/2018] [Indexed: 11/22/2022]
Abstract
Background Oxygen/ozone therapy is a minimally invasive technique for the treatment of radiculitis from lumbar disc herniation. This study aimed at investigating whether intrathecal administration of low-concentration oxygen/ozone could attenuate chronic radiculitis and mechanical allodynia after noncompressive lumbar disc herniation and at elucidating the underlying mechanisms. Methods First, we transplanted autologous nucleus pulposus into dorsal root ganglions to establish chronic radiculitis in rats. Then, filtered oxygen or oxygen/ozone (10, 20, or 30 μg/mL) was intrathecally injected on day 1 after surgery. The ipsilateral paw withdrawal thresholds (PWTs) to mechanical stimuli were tested daily with von Frey filaments. The expression of the tumor necrosis factor- (TNF-) α, interleukin- (IL-) 1β, IL-6, cyclic adenosine monophosphate (cAMP), cyclic guanosine monophosphate (cGMP), phosphodiesterase 2A (PDE2A), and nuclear factor- (NF-) κB/p65 in spinal dorsal horns was measured by enzyme-linked immunosorbent assay, polymerase chain reaction, and western blot on day 7 after surgery. Results Chronic radiculitis was established in rats. Intrathecal administration of 10 μg/mL, 20 μg/mL, or 30 μg/mL oxygen/ozone significantly attenuated the decreased mechanical PWTs, downregulated the overexpression of spinal TNF-α, IL-1β, and IL-6, and increased the expression of cGMP and cAMP in chronic radiculitis rats. In addition, the effects of treatment with 20 μg/mL oxygen/ozone were greater than the effects of the 10 μg/mL or 30 μg/mL doses. Moreover, intrathecal administration of 20 μg/mL oxygen/ozone reversed the increased levels of spinal PDE2A and NF-κB/p65 mRNA and protein expressions in rats with chronic radiculitis. Conclusion Intrathecal administration of low-concentration oxygen/ozone alleviated mechanical allodynia and attenuated radiculitis, likely by a PDE2A-cGMP/cAMP-NF-κB/p65 signaling pathway in chronic radiculitis rats.
Collapse
|
126
|
Zhao X, Li Y, Lin X, Wang J, Zhao X, Xie J, Sun T, Fu Z. Ozone induces autophagy in rat chondrocytes stimulated with IL-1β through the AMPK/mTOR signaling pathway. J Pain Res 2018; 11:3003-3017. [PMID: 30568481 PMCID: PMC6267635 DOI: 10.2147/jpr.s183594] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Background Ozone injection is generally used for the management of pain in diseases such as osteoarthritis (OA). Recent studies have shown that reduced autophagy in chondrocytes plays an important role in the development of OA. The purpose of this study was to determine whether ozone treats OA by inducing autophagy in OA chondrocytes. Materials and methods In this study, primary chondrocytes were stimulated with IL-1β for 24 hours to simulate an OA chondrocyte model, followed by treatment with ozone (30 µg/ mL) or pretreatment with 3-methyladenine or compound C before ozone treatment. Then, cell viability was detected by a CCK-8 kit, and the AMPK/mTOR signaling pathway and autophagy were detected by Western blotting and immunofluorescence. The mRNA expression levels of IL-6, TNF-α, MMP-13 and TIMP-1 were measured by quantitative real-time PCR. Finally, autophagosomes in chondrocytes were observed by transmission electron microscopy. Results Ozone improved cell viability in chondrocytes stimulated by IL-1β. The decreased level of autophagy in IL-1β-stimulated chondrocytes improved with ozone treatment through activation of the AMPK/mTOR signaling pathway. In addition, the mRNA expression levels of IL-6 and TNF-α were suppressed by ozone treatment in chondrocytes stimulated with IL-1β. Ozone increased the mRNA level of TIMP-1 and decreased the mRNA level of MMP-13 in chondrocytes stimulated with IL-1β. Conclusion These results suggested that ozone improved the decreased level of autophagy in chondrocytes stimulated with IL-1β through activation of the AMPK/mTOR signaling pathway. Moreover, ozone treatment suppressed inflammation and helped maintain metabolic balance in chondrocytes stimulated with IL-1β.
Collapse
Affiliation(s)
- Xu Zhao
- Department of Pain Management, Shandong Provincial Hospital Affiliated to Shandong University, Shandong University, Jinan, Shandong Province 250021, P.R. China,
| | - Yun Li
- Department of Pain Management, Shandong Provincial Hospital Affiliated to Shandong University, Shandong University, Jinan, Shandong Province 250021, P.R. China,
| | - Xiaowen Lin
- Department of Pain Management, Shandong Provincial Hospital Affiliated to Shandong University, Shandong University, Jinan, Shandong Province 250021, P.R. China,
| | - Junnan Wang
- Department of Pain Management, Shandong Provincial Hospital Affiliated to Shandong University, Shandong University, Jinan, Shandong Province 250021, P.R. China,
| | - Xuejun Zhao
- Department of Pain Management, Shandong Provincial Hospital Affiliated to Shandong University, Shandong University, Jinan, Shandong Province 250021, P.R. China,
| | - Juntian Xie
- Department of Pain Management, Shandong Provincial Hospital Affiliated to Shandong University, Shandong University, Jinan, Shandong Province 250021, P.R. China,
| | - Tao Sun
- Department of Pain Management, Shandong Provincial Hospital Affiliated to Shandong University, Shandong University, Jinan, Shandong Province 250021, P.R. China,
| | - Zhijian Fu
- Department of Pain Management, Shandong Provincial Hospital Affiliated to Shandong University, Shandong University, Jinan, Shandong Province 250021, P.R. China,
| |
Collapse
|
127
|
Izadi M, Bozorgi M, Hosseine MS, Khalili N, Jonaidi-Jafari N. Health-related quality of life in patients with chronic wounds before and after treatment with medical ozone. Medicine (Baltimore) 2018; 97:e12505. [PMID: 30508881 PMCID: PMC6283103 DOI: 10.1097/md.0000000000012505] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Ozone therapy has been used to treat numerous diseases. Indications of its therapeutic application are increasing, and evidence for its usefulness is growing. Evidence of its antibacterial and proliferative activity suggests its efficacy in treating chronic wounds. The current study evaluated the effect of ozone therapy on the health-related quality of life of patients with chronic wounds.In the present cross-sectional study, the health-related quality of life was evaluated in 86 patients with chronic wounds undergoing ozone therapy. To measure quality of life, 2 previously established questionnaires were used, the Cardiff wound impact questionnaire and the SF-36 questionnaire. Questionnaires were completed through interviews with the patients.A total of 86 patients with chronic wounds undergoing ozone therapy participated in this study. The mean age of participants was 58.91 years; 69.8% of them were male, 91.9% had diabetes mellitus, and 50% were receiving insulin therapy. Patients were under local (26.7%), systemic (9.3%), and local plus systemic (64%) protocols of ozone therapy. Mean overall quality of life reported by the patients was 6.2, and mean overall quality of life satisfaction was 6.02 (measured by the Cardiff Wound Impact Questionnaire). Mean physical quality of life measured by the SF-36 questionnaire was 39.12, and mean mental quality of life was 44.37 (measured by the same questionnaire). Among the included variables, the number of ozone therapy sessions was the strongest predictor of quality of life in both questionnaires and remained significant after different levels of adjustment.In addition to the significant improvement observed in the healing of chronic wounds, medical O3 therapy has also shown to effect a significant improvement in the health-related quality of life of patients and could be a valuable therapeutic option in chronic wound cases.
Collapse
Affiliation(s)
- Morteza Izadi
- Ozonecrc, Baqiyatallah University of Medical Sciences
- Health Research Center, Baqiyatallah University of Medical Sciences, Tehran
| | - Majedeh Bozorgi
- Faculty of Economics and Administrative Sciences, University of Mazandaran, Babolsar, Iran
| | | | - Nahid Khalili
- Health Research Center, Baqiyatallah University of Medical Sciences, Tehran
| | | |
Collapse
|
128
|
Shin EJ, Hwang YG, Pham DT, Lee JW, Lee YJ, Pyo D, Jeong JH, Lei XG, Kim HC. Glutathione peroxidase-1 overexpressing transgenic mice are protected from neurotoxicity induced by microcystin-leucine-arginine. ENVIRONMENTAL TOXICOLOGY 2018; 33:1019-1028. [PMID: 30076769 DOI: 10.1002/tox.22580] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 05/15/2018] [Accepted: 05/20/2018] [Indexed: 06/08/2023]
Abstract
Although it has been well-recognized that microcystin-leucine-arginine (MCLR), the most common form of microcystins, induces neurotoxicity, little is currently known about the underlying mechanism for this neurotoxicity. Here, we found that MCLR (10 ng/μL/mouse, i.c.v.) induces significant neuronal loss in the hippocampus of mice. MCLR-induced neurotoxicity was accompanied by oxidative stress, as shown by a significant increase in the level of 4-hydroxynonenal, protein carbonyl, and reactive oxygen species (ROS). Superoxide dismutase-1 (SOD-1) activity was significantly increased, but glutathione peroxidase (GPx) level was significantly decreased following MCLR insult. In addition, MCLR significantly inhibited GSH/GSSG ratio, and significantly induced NFκB DNA binding activity. Because reduced activity of GPx appeared to be critical for the imbalance between activities of SODs and GPx, we utilized GPx-1 overexpressing transgenic mice to ascertain the role of GPx-1 in this neurotoxicity. Genetic overexpression of GPx-1 or NFκB inhibitor pyrrolidine dithiocarbamate (PDTC) significantly attenuated MCLR-induced hippocampal neuronal loss in mice. However, PDTC did not exert any additive effect on neuroprotection mediated by GPx-1 overexpression, indicating that NFκB is a neurotoxic target of MCLR. Combined, these results suggest that MCLR-induced neurotoxicity requires oxidative stress associated with failure in compensatory induction of GPx, possibly through activation of the transcription factor NFκB.
Collapse
Affiliation(s)
- Eun-Joo Shin
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Republic of Korea
| | - Yeong Gwang Hwang
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Republic of Korea
| | - Duc Toan Pham
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Republic of Korea
| | - Ji Won Lee
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Republic of Korea
| | - Yu Jeung Lee
- Clinical Pharmacy, College of Pharmacy, Kangwon National University, Republic of Korea
| | - Dongjin Pyo
- Department of Chemistry, College of Natural Sciences, Kangwon National University, Republic of Korea
| | - Ji Hoon Jeong
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, Republic of Korea
| | - Xin Gen Lei
- Department of Animal Science, Cornell University, New York
| | - Hyoung-Chun Kim
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Republic of Korea
| |
Collapse
|
129
|
Effect of Ozone in Freund's Complete Adjuvant-Induced Arthritis. Arch Rheumatol 2018; 33:137-142. [PMID: 30207561 DOI: 10.5606/archrheumatol.2018.6371] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 06/13/2017] [Indexed: 11/21/2022] Open
Abstract
Objectives This study aims to investigate the effectiveness and reliability of ozone (O3) in Freund's complete adjuvant (FCA)-induced arthritis, an animal model for rheumatoid arthritis. Patients and methods Thirty-six four- to five-month-old male Wistar rats weighing between 274-420 gr were used in this study. Saline was injected into the hind paws of half of these rats, and FCA was injected into the other half. At the end of two weeks, 40 μg of O3 was administered to nine rats from each group twice a week for seven total doses. The rats were followed-up in terms of clinical findings. At the sixth week, the rats were sacrificed and serum malondialdehyde, glutathione peroxidase, and superoxide dismutase levels were measured. In addition, ankle joints were separated for histopathological examination. Results Significant improvement was observed in terms of hind-paw diameter, severity of arthritis, and histopathological findings of inflammation after O3 treatment in the group with FCA-induced arthritis. Although it was not quite significant, an upward trend was detected in oxidative stress markers with O3 treatment. Conclusion This study, the first to investigate the effects of systemic O3 on the clinical and histopathological outcomes of rheumatoid arthritis, indicates that O3 is a highly effective and reliable treatment method in FCA-induced arthritis in animal models.
Collapse
|
130
|
Costanzo M, Boschi F, Carton F, Conti G, Covi V, Tabaracci G, Sbarbati A, Malatesta M. Low ozone concentrations promote adipogenesis in human adipose-derived adult stem cells. Eur J Histochem 2018; 62. [PMID: 30176704 PMCID: PMC6151336 DOI: 10.4081/ejh.2018.2969] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 08/13/2018] [Indexed: 12/11/2022] Open
Abstract
Ozone is a strong oxidant, highly unstable atmospheric gas. Its medical use at low concentrations has been progressively increasing as an alternative/adjuvant treatment for several diseases. In this study, we investigated the effects of mild ozonisation on human adipose-derived adult stem (hADAS) cells i.e., mesenchymal stem cells occurring in the stromal-vascular fraction of the fat tissue and involved in the tissue regeneration processes. hADAS cells were induced to differentiate into the adipoblastic lineage, and the effect of low ozone concentrations on the adipogenic process was studied by combining histochemical, morphometric and ultrastructural analyses. Our results demonstrate that ozone treatment promotes lipid accumulation in hADAS without inducing deleterious effects, thus paving the way to future studies aimed at elucidating the effect of mild ozonisation on adipose tissue for tissue regeneration and engineering.
Collapse
Affiliation(s)
- Manuela Costanzo
- University of Verona, Department of Neurosciences, Biomedicine and Movement Sciences.
| | | | | | | | | | | | | | | |
Collapse
|
131
|
Galiè M, Costanzo M, Nodari A, Boschi F, Calderan L, Mannucci S, Covi V, Tabaracci G, Malatesta M. Mild ozonisation activates antioxidant cell response by the Keap1/Nrf2 dependent pathway. Free Radic Biol Med 2018; 124:114-121. [PMID: 29864481 DOI: 10.1016/j.freeradbiomed.2018.05.093] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 05/30/2018] [Accepted: 05/31/2018] [Indexed: 12/13/2022]
Abstract
Treatment with low-dose ozone is successfully exploited as an adjuvant therapy in the treatment of several disorders. Although the list of medical applications of ozone therapy is increasing, molecular mechanisms underlying its beneficial effects are still partially known. Clinical and experimental evidence suggests that the therapeutic effects of ozone treatment may rely on its capability to mount a beneficial antioxidant response through activation of the nuclear factor erythroid-derived-like 2 (Nrf2) pathway. However, a conclusive mechanistic demonstration is still lacking. Here, we bridge this gap of knowledge by providing evidence that treatment with a low concentration of ozone in cultured cells promotes nuclear translocation of Nrf2 at the chromatin sites of active transcription and increases the expression of antioxidant response element (ARE)-driven genes. Importantly, we show that ozone-induced ARE activation can be reverted by the ectopic expression of the Nrf2 specific inhibitor Kelch-like ECH associated protein (Keap1), thus proving the role of the Nrf2 pathway in the antioxidant response induced by mild ozonisation.
Collapse
Affiliation(s)
- Mirco Galiè
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Strada Le Grazie 8, I-37134 Verona, Italy
| | - Manuela Costanzo
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Strada Le Grazie 8, I-37134 Verona, Italy
| | - Alice Nodari
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Strada Le Grazie 8, I-37134 Verona, Italy
| | - Federico Boschi
- Department of Computer Science, University of Verona, Strada Le Grazie 15, I-37134 Verona, Italy
| | - Laura Calderan
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Strada Le Grazie 8, I-37134 Verona, Italy
| | - Silvia Mannucci
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Strada Le Grazie 8, I-37134 Verona, Italy
| | - Viviana Covi
- San Rocco Clinic, Via Monsignor G. V. Moreni 95, 25018 Montichiari, BS, Italy
| | - Gabriele Tabaracci
- San Rocco Clinic, Via Monsignor G. V. Moreni 95, 25018 Montichiari, BS, Italy
| | - Manuela Malatesta
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Strada Le Grazie 8, I-37134 Verona, Italy.
| |
Collapse
|
132
|
Mehraban F, Seyedarabi A, Seraj Z, Ahmadian S, Poursasan N, Rayati S, Moosavi-Movahedi AA. Molecular insights into the effect of ozone on human hemoglobin in autohemotherapy: Highlighting the importance of the presence of blood antioxidants during ozonation. Int J Biol Macromol 2018; 119:1276-1285. [PMID: 30096397 DOI: 10.1016/j.ijbiomac.2018.08.028] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 08/05/2018] [Accepted: 08/07/2018] [Indexed: 01/31/2023]
Abstract
Ozone has been known for several decades, with its antiseptic and therapeutic effects determined by the hormesis theory. It is shown that the therapeutic efficacy of ozone therapy may be partly due to the controlled and moderate oxidative stress produced by the reaction of ozone with several biological components. In this study, the effect of ozone on healthy human hemoglobin (Hb) in the whole blood environment (in the presence of antioxidants) and in the purified form (in the absence of antioxidants) is investigated using a number of different techniques including intrinsic fluorescence, circular dichroism and UV-VIS absorption spectroscopy as well as SDS- and Native-PAGE and dynamic light scattering. The results show that the presence of antioxidants prevents damage to Hb while its absence means that as the exposure to ozone is increased, Hb is increasingly damaged. These results highlight the importance for the use of appropriate doses of ozone, for patients with different diseases and hence antioxidant levels, in autohemotherapy.
Collapse
Affiliation(s)
- Fouad Mehraban
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Arefeh Seyedarabi
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran.
| | - Zahra Seraj
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Shahin Ahmadian
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Najmeh Poursasan
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Saeed Rayati
- Department of Chemistry, K. N. Toosi University of Technology, P.O. Box 16315-1618, Tehran 15418, Iran
| | | |
Collapse
|
133
|
Fitzpatrick E, Holland OJ, Vanderlelie JJ. Ozone therapy for the treatment of chronic wounds: A systematic review. Int Wound J 2018; 15:633-644. [PMID: 29536625 PMCID: PMC7949634 DOI: 10.1111/iwj.12907] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 01/17/2018] [Accepted: 01/23/2018] [Indexed: 12/30/2022] Open
Abstract
Chronic wounds present a significant burden to the health care system and the patient. Ozone therapy has been proposed as a treatment for chronic wounds, potentially acting by eliciting mild oxidative stress or disinfection. The purpose of this systematic review is to evaluate the potential benefits and harms of ozone therapy as an advanced care intervention for chronic wounds. Studies were extracted from Google Scholar, PubMed, the Cochrane Library, and reference lists. General inclusion criteria included English-language randomised human trials reporting the use of ozone therapy in the topical treatment of chronic wounds. Primary outcome data included the extent of chronic wound healing, and secondary outcomes included adverse effects. Studies were assessed for level of bias and data quality. Nine studies (n = 453 patients) matched the inclusion criteria and underwent meta-analysis. Overall, there was a significant improvement in wound closure with ozone therapy. Results consistently favour the application of ozone as a treatment for chronic wounds; however, there is no conclusive evidence of ozone therapy as superior compared with standard treatments. Compared with standard care, ozone therapy as an advanced wound care treatment may improve the proportion of chronic wounds healed in a shorter amount of time, but further research is required.
Collapse
Affiliation(s)
- Erin Fitzpatrick
- School of Allied Health Sciences, Menzies Health Institute QueenslandGriffith UniversitySouthportAustralia
| | - Olivia J Holland
- School of Medical Science, Menzies Health Institute QueenslandGriffith UniversitySouthportAustralia
| | - Jessica J Vanderlelie
- School of Medical Science, Menzies Health Institute QueenslandGriffith UniversitySouthportAustralia
| |
Collapse
|
134
|
Bai Z, Li H, Guo X, Liu Y, Deng J, Wang C, Li Y, Qi X. Successful treatment of acute-on-chronic liver failure and hemolytic anemia with hepato-protective drugs in combination with intravenous ozone without steroids: A case report. Intractable Rare Dis Res 2018; 7:204-208. [PMID: 30181943 PMCID: PMC6119669 DOI: 10.5582/irdr.2018.01074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Both acute-on-chronic liver failure (ACLF) and autoimmune hemolytic anemia (AIHA) are common causes of jaundice. A co-occurrence of ACLF and AIHA is rare in clinical practice. This report describes a male elderly patient who developed persistently increased levels of total bilirubin and ascites after endoscopic retrograde cholangiopancreatography for the successful treatment of common bile duct stones. Eventually, he was diagnosed with ACLF and AIHA according to current diagnostic criteria. The patient was given conventional hepato-protective drugs, human albumin, and diuretics in combination with immune ozone without steroids, and he responded well. The therapeutic role of immune ozone in this case is also discussed. When immune ozone was given, total bilirubin gradually decreased; however, no change in total bilirubin was observed after immune ozone was stopped. Notably, when immune ozone was re-initiated, total bilirubin decreased again.
Collapse
Affiliation(s)
- Zhaohui Bai
- Department of Gastroenterology, General Hospital of Shenyang Military Area, Shenyang, China
- Postgraduate College, Shenyang Pharmaceutical University, Shenyang, China
| | - Hongyu Li
- Department of Gastroenterology, General Hospital of Shenyang Military Area, Shenyang, China
- Address correspondence to:Dr. Xingshun Qi and Prof. Hongyu Li, Department of Gastroenterology, General Hospital of Shenyang Military Area, No. 83 Wenhua Road, Shenyang, 110840 Liaoning Province, China. E-mail: (XQ); (HL)
| | - Xiaozhong Guo
- Department of Gastroenterology, General Hospital of Shenyang Military Area, Shenyang, China
| | - Yanqin Liu
- Department of Hematology, General Hospital of Shenyang Military Area, Shenyang, China
| | - Jiao Deng
- Department of Pharmacology, General Hospital of Shenyang Military Area, Shenyang, China
| | - Chunhui Wang
- Department of Hepatobiliary Surgery, General Hospital of Shenyang Military Area, Shenyang, China
| | - Yingying Li
- Department of Gastroenterology, General Hospital of Shenyang Military Area, Shenyang, China
- Postgraduate College, Jinzhou Medical University, Jinzhou, China
| | - Xingshun Qi
- Department of Gastroenterology, General Hospital of Shenyang Military Area, Shenyang, China
- Address correspondence to:Dr. Xingshun Qi and Prof. Hongyu Li, Department of Gastroenterology, General Hospital of Shenyang Military Area, No. 83 Wenhua Road, Shenyang, 110840 Liaoning Province, China. E-mail: (XQ); (HL)
| |
Collapse
|
135
|
Wang Z, Zhang A, Meng W, Wang T, Li D, Liu Z, Liu H. Ozone protects the rat lung from ischemia-reperfusion injury by attenuating NLRP3-mediated inflammation, enhancing Nrf2 antioxidant activity and inhibiting apoptosis. Eur J Pharmacol 2018; 835:82-93. [PMID: 30075224 DOI: 10.1016/j.ejphar.2018.07.059] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 07/27/2018] [Accepted: 07/30/2018] [Indexed: 12/12/2022]
Abstract
Ischemia-reperfusion injury (IRI) is a major cause of lung dysfunction during cardiovascular surgery, heart transplantation and cardiopulmonary bypass procedures, and the inflammatory response, oxidative stress, and apoptosis play key and allegedly maladaptive roles in its pathogenesis. The aim of this study was to initially elucidate whether ozone induces oxidative preconditioning by activating nuclear factor (erythroid-derived 2)-like 2 (Nrf2) and secondly to determine whether ozone oxidative preconditioning (OzoneOP) protects the lung from IRI by attenuating nucleotide-binding oligomerization domain-like receptor containing pyrin domain 3 (NLRP3)-mediated inflammation, enhancing the antioxidant activity of Nrf2 and inhibiting apoptosis. Rats treated with or without OzoneOP (2 ml containing 100 µg/kg/day) were subjected to 1 h of lung ischemia followed by 2 h of reperfusion for 10 days. Lung damage, antioxidant capacity, inflammation and apoptosis were evaluated and compared among different groups after reperfusion. OzoneOP significantly ameliorated changes in lung morphology and protected the lung from IRI by attenuating oxidative stress, inflammation-induced injury and lung apoptosis. Moreover, OzoneOP increased the expression of Nrf2 and decreased the levels of NLRP3, apoptosis-associated speck-like protein containing a caspase activation and recruitment domain (ASC), un-cleavable cysteine-requiring aspartate protease-1 (procaspase-1), cysteine-requiring aspartate protease-1 (caspase-1) and interleukin-1β (IL-1β) in the rat lungs. In summary, these results provide new insights into the molecular events modulated by ozone and suggest that ozone therapy may be an integrative support for patients with lung IRI.
Collapse
Affiliation(s)
- Zhiwen Wang
- Cardiovascular Surgery, The First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, Harbin, Heilongjiang 150001, China
| | - Ai Zhang
- General Hospital of Heilongjiang Province Land Reclamation Bureau, 235 Hashuang Road, Harbin, Heilongjiang 150088, China
| | - Weixin Meng
- Cardiovascular Surgery, The First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, Harbin, Heilongjiang 150001, China
| | - Tingting Wang
- Cardiovascular Surgery, The First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, Harbin, Heilongjiang 150001, China
| | - Dandan Li
- Institute of Keshan Disease, Harbin Medical University, 157 Baojian Road, Harbin, Heilongjiang 150081, China
| | - Zonghong Liu
- Cardiovascular Surgery, The First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, Harbin, Heilongjiang 150001, China
| | - Hongyu Liu
- Cardiovascular Surgery, The First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, Harbin, Heilongjiang 150001, China.
| |
Collapse
|
136
|
Akbudak IH, Kucukatay V, Kilic-Erkek O, Ozdemir Y, Bor-Kucukatay M. Investigation of the effects of major ozone autohemotherapy application on erythrocyte deformability and aggregation. Clin Hemorheol Microcirc 2018; 71:365-372. [PMID: 29914015 DOI: 10.3233/ch-180417] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND Ozone is used intensively worldwide in treatment and research of various pathologies due to its healing effects. OBJECTIVE The aim of this study is to investigate the effect of major ozone autohemotherapy on erythrocyte deformability and aggregation. METHODS 10 and 50μg/ml doses of ozone was applied for 20 minute to venous blood samples obtained from 10 healthy male volunteers. Erythrocyte aggregation, deformability were measured by an ektacytometer. Total oxidant status, total antioxidant status were measured via a commercial kit. The oxidative stress index was calculated. RESULTS Ozone at 10 and 50μg/ml doses did not alter erythrocyte aggregation. 50μg/ml ozone increased red blood cell (RBC) deformability measured at 0.53 Pa. Compared with the Control value, there was a significant increase in TOS, TAS for the doses of 10 and 50μg/ml. The increase in TAS was found to be more significant at 10μg/ml dose. The most obvious increase in OSI value was observed at 50μg/ml. CONCLUSION Our results demonstrate that although 10μg/ml ozone has no effect on hemorheology, 50μg/ml ozone concentration has positive effects on RBC deformability, thus circulation at 0.53 Pa corresponding to the shear stress encountered during venous circulation.
Collapse
Affiliation(s)
- Ismail Hakki Akbudak
- Department of Internal Medicine, Faculty of Medicine, Pamukkale University, Denizli, Turkey
| | - Vural Kucukatay
- Department of Physiology, Faculty of Medicine, Pamukkale University, Denizli, Turkey
| | - Ozgen Kilic-Erkek
- Department of Physiology, Faculty of Medicine, Pamukkale University, Denizli, Turkey
| | - Yasin Ozdemir
- Department of Physiology, Faculty of Medicine, Pamukkale University, Denizli, Turkey
| | - Melek Bor-Kucukatay
- Department of Physiology, Faculty of Medicine, Pamukkale University, Denizli, Turkey
| |
Collapse
|
137
|
Deng L, Meng W, Li D, Qiu D, Wang S, Liu H. The effect of ozone on hypoxia, hemolysis and morphological change of blood from patients with aortic dissection (AD): a preliminary in vitro experiment of ozonated autohemotherapy for treating AD. Am J Transl Res 2018; 10:1829-1840. [PMID: 30018723 PMCID: PMC6038082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 05/31/2018] [Indexed: 06/08/2023]
Abstract
This study aimed to investigate the effect of ozone on hypoxia, hemolysis and morphological change of blood from aortic dissection (AD) patients for providing preliminary evidence of application of ozonated autohemotherapy (Ozone-AHT) in AD patients. 20 AD patients and 20 healthy volunteers were consecutively included, and blood samples were collected from all participants and ozonized in vitro. PO2, SO2, malondialdehyde (MDA), superoxide dismutase (SOD), malformation percentage, morphology change and spatial distribution of filamentous actin (F-actin) in erythrocytes at different ozone concentrations were evaluated. After ozonation of whole blood, the median levels of PO2 and SO2 increased under Ozone concentrations at 40 μg/mL, 80 μg/mL and 160 μg/mL compared with samples exposed to 0 μg/mL in both AD group and control group. The MDA level was similar in samples exposed to 0 μg/mL, 40 μg/mL and 80 μg/mL ozone, while the levels of SOD increased in samples exposed to 40 μg/mL and 80 μg/mL in both AD group and control group. Compared with the samples exposed to 0 μg/mL ozone, FHb level only increased in samples exposed to 80 μg/mL and 160 μg/mL Ozone in both AD group and control group. In addition, overdosed ozone (160 μg/mL) but not therapeutic ozone concentrations (0 μg/mL, 40 μg/mL and 80 μg/mL) increased malformation percentage and morphology change of erythrocytes in both AD group and control group. In conclusion, Ozone improves oxygen content and reduces oxidative damage in blood from AD patients, and therapeutic dose ozone do not induce hemolysis and morphology change of erythrocytes.
Collapse
Affiliation(s)
- Li Deng
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Harbin Medical UniversityHarbin, China
| | - Weixin Meng
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Harbin Medical UniversityHarbin, China
| | - Dandan Li
- Institute of Keshan Disease, National Center for Endemic Disease Control, Harbin Medical UniversityHarbin, China
| | - Dongyun Qiu
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Harbin Medical UniversityHarbin, China
| | - Siqing Wang
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Harbin Medical UniversityHarbin, China
| | - Hongyu Liu
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Harbin Medical UniversityHarbin, China
| |
Collapse
|
138
|
Genetic overexpression of glutathione peroxidase-1 attenuates microcystin-leucine-arginine-induced memory impairment in mice. Neurochem Int 2018; 118:152-165. [PMID: 29908255 DOI: 10.1016/j.neuint.2018.06.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 05/14/2018] [Accepted: 06/12/2018] [Indexed: 11/21/2022]
Abstract
Microcystin-leucine-arginine (MCLR) is the most common form of microcystins, which are environmental toxins produced by cyanobacteria, and its hepatotoxicity has been well-documented. However, the neurotoxic potential of MCLR remains to be further elucidated. In the present study, we investigated whether intracerebroventricular (i.c.v.) infusion of MCLR induces mortality and neuronal loss in the hippocampus of mice. Because we found that MCLR impairs memory function in the hippocampus at a low dose (4 ng/μl/mouse, i.c.v.) without a significant neuronal loss, we focused on this dose for further analyses. Results showed that MCLR (4 ng/μl/mouse, i.c.v.) significantly increased oxidative stress (i.e., malondialdehyde, protein carbonyl, and synaptosomal ROS) in the hippocampus. In addition, MCLR significantly increased superoxide dismutase (SOD) activity without corresponding induction of glutathione peroxidase (GPx) activity, and thus led to significant decrease in the ratio of GPx/SODs activity. The GSH/GSSG ratio was also significantly reduced after MCLR treatment. GPx-1 overexpressing transgenic mice (GPx-1 Tg) were significantly protected from MCLR-induced memory impairment and oxidative stress. The DNA binding activity of nuclear factor erythroid-derived 2-related factor 2 (Nrf2) in these mice was significantly enhanced, and the ratios of GPx/SODs activity and GSH/GSSG returned to near control levels in the hippocampus. Importantly, memory function exhibited a significant positive correlation with the ratios of GPx/SODs activity and GSH/GSSG in the hippocampus of MCLR-treated non-transgenic (non-Tg)- and GPx-1 Tg-mice. Combined, our results suggest that MCLR induces oxidative stress and memory impairment without significant neuronal loss, and that GPx-1 gene constitutes an important protectant against MCLR-induced memory impairment and oxidative stress via maintaining antioxidant defense system homeostasis, possibly through the induction of Nrf2 transcription factor.
Collapse
|
139
|
Lanzinger S, Rosenbauer J, Sugiri D, Schikowski T, Treiber B, Klee D, Rathmann W, Holl RW. Impact of long-term air pollution exposure on metabolic control in children and adolescents with type 1 diabetes: results from the DPV registry. Diabetologia 2018; 61:1354-1361. [PMID: 29478096 DOI: 10.1007/s00125-018-4580-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 01/30/2018] [Indexed: 02/07/2023]
Abstract
AIMS/HYPOTHESIS Studies on the association between air pollution and metabolic control in children and adolescents with type 1 diabetes are rare and findings are inconsistent. We examined the relationship between air pollution variables (particulate matter with an aerodynamic diameter <10 μm [PM10], NO2 and accumulated ozone exposure [O3-AOT]) and metabolic variables (HbA1c and daily insulin dose [U/kg body weight]) in children and adolescents with type 1 diabetes. METHODS We investigated 37,372 individuals with type 1 diabetes aged <21 years, documented between 2009 and 2014 in 344 German centres of the prospective diabetes follow-up registry (Diabetes-Patienten-Verlaufsdokumentation [DPV]). Long-term air pollution exposure (annual and quinquennial means) data were linked to participants via the five-digit postcode areas of residency. Cross-sectional multivariable regression analysis was used to examine the association between air pollution and metabolic control. RESULTS After comprehensive adjustment, an interquartile range increase in O3-AOT was associated with a lower HbA1c (-3.7% [95% CI -4.4, -3.0]). The inverse association between O3-AOT and HbA1c persisted after additional adjustment for degree of urbanisation or additional adjustment for PM10. Moreover, the inverse association remained stable in further sensitivity analyses. No significant associations between HbA1c and PM10 or NO2 were found. No association was observed between any of the three air pollutants and insulin dose. CONCLUSIONS/INTERPRETATION The inverse association between O3-AOT and HbA1c could not be explained by regional differences in diabetes treatment or by other differences between urban and rural areas. Furthermore, our results remained stable in sensitivity analyses. Further studies on the association between air pollution and HbA1c in children and adolescents with type 1 diabetes are needed to confirm our observed association and to elucidate underlying mechanisms.
Collapse
Affiliation(s)
- Stefanie Lanzinger
- Institute of Epidemiology and Medical Biometry, Central Institution for Biomedical Engineering (ZIBMT), University of Ulm, Albert-Einstein-Allee 41, 89081, Ulm, Germany.
- German Centre for Diabetes Research (DZD), München, Neuherberg, Germany.
| | - Joachim Rosenbauer
- German Centre for Diabetes Research (DZD), München, Neuherberg, Germany
- Institute for Biometrics and Epidemiology, German Diabetes Centre, Leibniz Centre for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Dorothea Sugiri
- Leibniz Research Institute for Environmental Medicine (IUF), Düsseldorf, Germany
| | - Tamara Schikowski
- Leibniz Research Institute for Environmental Medicine (IUF), Düsseldorf, Germany
| | - Birgit Treiber
- Hospital for Children and Adolescents, Clinical Centre St Marien, Amberg, Germany
| | | | - Wolfgang Rathmann
- German Centre for Diabetes Research (DZD), München, Neuherberg, Germany
- Institute for Biometrics and Epidemiology, German Diabetes Centre, Leibniz Centre for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Reinhard W Holl
- Institute of Epidemiology and Medical Biometry, Central Institution for Biomedical Engineering (ZIBMT), University of Ulm, Albert-Einstein-Allee 41, 89081, Ulm, Germany
- German Centre for Diabetes Research (DZD), München, Neuherberg, Germany
| |
Collapse
|
140
|
Vendruscolo CDP, Moreira JJ, Seidel SRT, Fülber J, Neuenschwander HM, Bonagura G, Agreste FR, Baccarin RYA. Effects of medical ozone upon healthy equine joints: Clinical and laboratorial aspects. PLoS One 2018; 13:e0197736. [PMID: 29813093 PMCID: PMC5973567 DOI: 10.1371/journal.pone.0197736] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2017] [Accepted: 05/08/2018] [Indexed: 12/19/2022] Open
Abstract
OBJECTIVE The aim of this study was to verify whether transient inflammatory reactions induced by intra-articular medicinal ozone administration affect joint components, by in vivo evaluation of inflammatory (prostaglandin E2, Substance P, Interleukin-6, Interleukine-1, Tumor Necrosis Factor), anti-inflammatory (Interleukin-10) and oxidative (superoxide dismutase activity and oxidative burst) biomarkers and extracellular matrix degradation products (chondroitin sulphate and hyaluronic acid) in synovial fluid. METHODS The effects of medicinal ozone were analyzed at two ozone concentrations (groups A and B, 20 and 40 μg/ml, respectively), using oxygen-injected joints as controls (group C); each group received ten treatments (15 ml gas per treatment). Physical evaluation, evaluation of lameness, ultrasonography, and synovial fluid analysis were performed. RESULTS All joints presented mild and transient effusion throughout the study. Group B exhibited the highest lameness score on day 14 (P<0.05), detected by the lameness measurement system, probably because of the higher ozone concentration. All groups exhibited increased ultrasonography scores on day 14 (P < 0.05). Groups A and B exhibited increased proteins concentrations on day 21 (P<0.05). There was no change in hyaluronic acid concentration or the percentage of high-molecular weight hyaluronic acid throughout the experiment. Chondroitin sulfate concentrations decreased in group B, and did not change in group A and C, indicating that neither treatment provoked extracellular matrix catabolism. Cytokine and eicosanoid concentrations were not significantly changed. CONCLUSIONS The ozonetherapy did not cause significant inflammation process or cartilage degradation, therefore, ozonetherapy is safe at both evaluated doses.
Collapse
Affiliation(s)
- Cynthia do Prado Vendruscolo
- Department of Clinical Medicine, School of Veterinary Medicine and Animals Science, University of São Paulo, São Paulo, São Paulo, Brazil
- * E-mail:
| | - Juliana Junqueira Moreira
- Department of Clinical Medicine, School of Veterinary Medicine and Animals Science, University of São Paulo, São Paulo, São Paulo, Brazil
| | - Sarah Raphaela Torquato Seidel
- Department of Clinical Medicine, School of Veterinary Medicine and Animals Science, University of São Paulo, São Paulo, São Paulo, Brazil
| | - Joice Fülber
- Department of Clinical Medicine, School of Veterinary Medicine and Animals Science, University of São Paulo, São Paulo, São Paulo, Brazil
| | - Henrique Macedo Neuenschwander
- Department of Clinical Medicine, School of Veterinary Medicine and Animals Science, University of São Paulo, São Paulo, São Paulo, Brazil
| | - Giancarlo Bonagura
- Department of Large Animals Clinics, Anhembi Morumbi University, São Paulo, São Paulo, Brazil
| | - Fernanda Rodrigues Agreste
- Department of Clinical Medicine, School of Veterinary Medicine and Animals Science, University of São Paulo, São Paulo, São Paulo, Brazil
| | - Raquel Yvonne Arantes Baccarin
- Department of Clinical Medicine, School of Veterinary Medicine and Animals Science, University of São Paulo, São Paulo, São Paulo, Brazil
| |
Collapse
|
141
|
Wang Z, Han Q, Guo YL, Liu XH, Qiu T. Effect of ozone oxidative preconditioning on inflammation and oxidative stress injury in rat model of renal transplantation. Acta Cir Bras 2018; 33:238-249. [PMID: 29668774 DOI: 10.1590/s0102-865020180030000006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 02/22/2018] [Indexed: 11/22/2022] Open
Abstract
PURPOSE To investigate the effect of ozone oxidative preconditioning (OzoneOP) on inflammation and oxidative stress injury in rat model of renal transplantation. METHODS Thirty six male Sprague Dawley (SD) rats were randomly divided into three groups. Sham group: rats were treated with opening and closing abdomen. Kidney transplantation group (KT group): SD rat received the donor's left kidney derived from another SD rat. Ozone oxidative preconditioning and kidney transplantation (OOP+KT group): donor SD rats received OzoneOP treatments by transrectal insufflations before kidney transplantation. After transplantation, parameters of renal function of recipients were determined. Morphology and pathological changes of renal allograft were examined. Expression of NF-κBp65, HMGB-1 were also determined by Western-blot. RESULTS Compared to KT group, the morphology and pathological damages of renal allograft were less serious in OOP+KT group. Meanwhile, levels of SOD and GSH-Px of renal allograft in OOP+KT group were higher than those in KT group respectively. Western-blot showed that the expressions of NF-κBp65 and HMGB-1 in OOP+KT group were obviously less than those in KT group. CONCLUSION Ozone oxidative preconditioning could attenuate the inflammatory reaction and oxidative stress injury in renal allograft, which might be related with the enhancement of anti-oxidative system and suppression of inflammatory reaction.
Collapse
Affiliation(s)
- Zhishun Wang
- The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qi Han
- Department of Nephrology, The Fifth Hospital of Wuhan, Wuhan, China
| | - Yong-Lian Guo
- The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiu-Heng Liu
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Tao Qiu
- Department of Organ Transplantation, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
142
|
The effect of ozone treatment on remote organ myocardial injury in an aortic ischemia-reperfusion model. TURK GOGUS KALP DAMAR CERRAHISI DERGISI-TURKISH JOURNAL OF THORACIC AND CARDIOVASCULAR SURGERY 2018; 26:207-213. [PMID: 32082736 DOI: 10.5606/tgkdc.dergisi.2018.15484] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 03/29/2018] [Indexed: 01/24/2023]
Abstract
Background This study aims to investigate the effect of ozone on myocardial ischemia-reperfusion injury occurring after occlusion - reperfusion of infrarenal abdominal aorta in rats. Methods Thirty-two Wistar albino rats (weighing 200-250 g) were randomized into four equal groups. The control (sham) group underwent laparotomy and dissection of the infrarenal abdominal aorta without occlusion. Intraperitoneal ozone was applied for 10 days 1 mg/kg/day in the control+ozone group. Afterwards, control+ozone group underwent laparotomy and dissection of the infrarenal abdominal aorta without occlusion. Aortic ischemia-reperfusion and aortic ischemia-reperfusion+ozone groups underwent dissection of the infrarenal abdominal aorta, followed by achieving ischemia and reperfusion by cross-clamping the infrarenal abdominal aorta for 60 minutes and removing the cross-clamp for 60 minutes, respectively. The tissue levels of malondialdehyde and activity levels of superoxide dismutase, catalase, and myeloperoxidase were measured in the myocardial specimens. The tumor necrosis factor, interleukin-6 and troponin-I levels were measured in the plasma. A histopathological examination of the myocardial specimens was undertaken. Results Biochemical analysis showed that aortic ischemia-reperfusion significantly increased (p<0.05 vs. control) while ozone significantly decreased (p<0.05 vs. aortic ischemia-reperfusion) the myocardial tissue levels of superoxide dismutase and catalase and level of plasma troponin-I. Histologically, in the aortic ischemia-reperfusion group, myocardial disorganization, myofiber swelling and myofiber eosinophilia in the myocardial tissue samples were significantly increased compared to the control group (p<0.05 vs. control). However, histopathological changes in the aortic ischemia-reperfusion+ozone group decreased compared to the aortic ischemia-reperfusion group. Conclusion The results of this experimental study indicate that ozone attenuates myocardial injury and oxidative stress that develop after infrarenal aortic ischemia-reperfusion through three markers; (i) decreased tissue superoxide dismutase and catalase levels, (ii) d ecreased p lasma t roponin-I l evels, a nd (iii) reduced histopathological changes, albeit not statistically significant.
Collapse
|
143
|
Elkholy WB, Al-Gholam MA. Role of medical ozone in attenuating age-related changes in the rat cerebellum. Microscopy (Oxf) 2018; 67:4964816. [PMID: 29635467 DOI: 10.1093/jmicro/dfy017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 03/24/2018] [Indexed: 11/12/2022] Open
Abstract
Aging is an inevitable biological process characterized by motor in coordination and decline in the ability to learn new motor skills. The purpose of this study is to investigate, for the first time, the beneficial antiaging effects of medical ozone (O3) on the age-related structural damage of the rat cerebellum. We have examined the cerebellum of albino rats at the ages of 6, 20 and 22, and the effect of intraperitoneal medical O3 administration (0.7 g/kg) by histological, immunohistochemical and morphometric studies. Age-related changes in the cerebellum were in the form of a significant reduction in the number of Purkinje cells (PCs), which appeared shrunken with a darkly stained cytoplasm and vacuolated spaces in all layers. The decrease in Nissl granule content of the PCs was also observed. A significant reduction in Mab2, Ki67 immunoreactivity associated with significant increase in glial fibrillary acidic protein, Caspase-3 and iNos immunoreactivity were also detected. Medical O3 administration reversed all these histopathological and immunohistochemical changes. This protective effect was mediated by reducing oxidative stress, apoptosis, astrocyte activation and improving both neuritogenesis and neurogenesis. We can conclude from the results of the present study that medical O3 can prevent the retardation of age-related changes in rat cerebellum.
Collapse
Affiliation(s)
- Wael B Elkholy
- Department of Anatomy and Embryology, Faculty of Medicine, Menoufia University, Shebin el Kom, 32511 Menoufia, Egypt
| | - Marwa A Al-Gholam
- Department of Anatomy and Embryology, Faculty of Medicine, Menoufia University, Shebin el Kom, 32511 Menoufia, Egypt
| |
Collapse
|
144
|
Hlusicka J, Loster T, Lischkova L, Vaneckova M, Seidl Z, Diblik P, Kuthan P, Urban P, Navratil T, Kacer P, Zakharov S. Role of activation of lipid peroxidation in the mechanisms of acute methanol poisoning. Clin Toxicol (Phila) 2018; 56:893-903. [DOI: 10.1080/15563650.2018.1455980] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Jiri Hlusicka
- Toxicological Information Centre, General University Hospital in Prague, Prague, Czech Republic
- Department of Occupational Medicine, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Tomas Loster
- Faculty of Informatics and Statistics, Department of Statistics and Probability, University of Economics, Prague, Czech Republic
| | - Lucie Lischkova
- Toxicological Information Centre, General University Hospital in Prague, Prague, Czech Republic
- Department of Occupational Medicine, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Manuela Vaneckova
- Department of Radiology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Zdenek Seidl
- Department of Radiology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Pavel Diblik
- Department of Ophthalmology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Pavel Kuthan
- Department of Ophthalmology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Pavel Urban
- Department of Occupational Medicine, First Faculty of Medicine, Charles University, Prague, Czech Republic
- Centre for Industrial Hygiene and Occupational Medicine, National Institute of Public Health, Prague, Czech Republic
| | - Tomas Navratil
- J. Heyrovsky Institute of Physical Chemistry, Czech Academy of Sciences, Prague, Czech Republic
- Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Petr Kacer
- Biocev, First Faculty of Medicine, Charles University in Prague, Czech Republic
| | - Sergey Zakharov
- Toxicological Information Centre, General University Hospital in Prague, Prague, Czech Republic
- Department of Occupational Medicine, First Faculty of Medicine, Charles University, Prague, Czech Republic
| |
Collapse
|
145
|
Yu M, Zhao Y, Zhang X. Gardenoside combined with ozone inhibits the expression of P2X3 and P2X7 purine receptors in rats with sciatic nerve injury. Mol Med Rep 2018; 17:7980-7986. [PMID: 29620177 DOI: 10.3892/mmr.2018.8803] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 09/01/2017] [Indexed: 11/06/2022] Open
Abstract
Neuropathic pain is a severe health problem for which there is a lack of effective therapy. Ozone and Gardenia fruits have been used separately in pain relief for many years; however, their underlying mechanisms remain unclear. To investigate the pain‑relieving effects of combined ozone and Gardenia, a chronic constriction sciatic nerve injury (CCI) rat model was constructed and treated with ozone and gardenoside (Ozo&Gar), which is a compound found in Gardenia fruits. A total of 70 rats were randomly divided into five groups: Control (Ctrl), Ctrl + Ozo&Gar, Sham, CCI, and CCI + Ozo&Gar. The rats in the Ctrl + Ozo&Gar and CCI + Ozo&Gar groups were administered an intravenous injection of 30 µg/ml ozone and 300 µmol/l gardenoside. The rats in the Ctrl, Sham and CCI groups were administered the same volume of saline. Pain behavior, mechanical hyperalgesia, thermal hyperalgesia, and the protein expression levels of P2X3 and P2X7 purine receptors in L4‑L5 dorsal root ganglion (DRG) were determined 15 days post‑surgery. The results demonstrated that treatment with a combination of ozone and gardenoside increased mechanical withdrawal threshold and thermal withdrawal latency, thus confirming their pain‑relieving effects. In addition, a significant increase in the mRNA and protein expression levels of P2X3 and P2X7 was detected in the DRG of rats in the CCI group compared with in the control groups; however, following treatment with a combination of ozone and gardenoside, the mRNA and protein expression levels of P2X3 and P2X7 receptors were significantly reduced compared with in the CCI group. These results indicated that the mechanism underlying the pain‑relieving effects of ozone and gardenoside may be mediated by inhibition of P2X3 and P2X7 purine receptors in the DRG. This finding suggested that ozone and gardenoside may be considered potential drug candidates that target P2X3 and P2X7 purine receptors.
Collapse
Affiliation(s)
- Mingdong Yu
- Department of Spine Surgery II, Weifang People's Hospital, Weifang, Shandong 261041, P.R. China
| | - Yong Zhao
- Department of Neurology, Weifang People's Hospital, Weifang, Shandong 261041, P.R. China
| | - Xiaoxia Zhang
- Department of Spine Surgery II, Weifang People's Hospital, Weifang, Shandong 261041, P.R. China
| |
Collapse
|
146
|
Biazzo A, Corriero AS, Confalonieri N. Intramuscular oxygen-ozone therapy in the treatment of low back pain. ACTA BIO-MEDICA : ATENEI PARMENSIS 2018; 89:41-46. [PMID: 29633741 PMCID: PMC6357609 DOI: 10.23750/abm.v89i1.5315] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 05/09/2016] [Indexed: 11/23/2022]
Abstract
Background and aim of the work: Intramuscular paravertebral injections of ozone are minimally invasive, safe and efficacy in reducing pain and disability. The aim of this paper is to present the early results of paravertebral lumbar ozone injections in the treatment of low back pain. Methods: Between February 2011 and December 2015, a total of 109 patients underwent intramuscular paravertebral lumbar injections of ozone due to low back pain. Of them, 42 interrupted the treatment at a medium of 5.4 injections and were lost to follow-up. Of the 67 remaining patients, only 24 answered to our questionnaire. Local and radiating pain was assessed using a 10-cm horizontal Visual Analogue Scale. Perceived functional status and disability were evaluated using the Oswestry Disability Index, administered before treatment and one month after the last injection. Results: Visual Analogue Scale reduction was demonstrated in 23 out of 29 cycles (79%) of ozone therapy. Regarding disability evaluation, Oswestry Disability Index score reduction was assessed in all except one. No complications were recorded. Our results are similar to the other reports: 79% of patients had VAS reduction of 2.3 points and all except one patient reported ODI reduction (average reduction of 9%). Conclusions: Lumbar paravertebral oxygen-ozone injections are minimally invasive, safe, cheaper and effective in relieving pain as well as disability. This technique is easy to perform, it doesn’t need computed-tomography or anesthesiologist support. We suggest its application in low back pain as first choice to replace intradiscal computed-tomography-guided infiltrations and to avoid or delay surgery. (www.actabiomedica.it)
Collapse
|
147
|
Currò M, Russo T, Ferlazzo N, Caccamo D, Antonuccio P, Arena S, Parisi S, Perrone P, Ientile R, Romeo C, Impellizzeri P. Anti-Inflammatory and Tissue Regenerative Effects of Topical Treatment with Ozonated Olive Oil/Vitamin E Acetate in Balanitis Xerotica Obliterans. Molecules 2018; 23:E645. [PMID: 29534008 PMCID: PMC6017296 DOI: 10.3390/molecules23030645] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 03/03/2018] [Accepted: 03/11/2018] [Indexed: 12/12/2022] Open
Abstract
Balanitis xerotica obliterans (BXO) is a chronic inflammatory skin disorder, considered the male genital variant of lichen sclerosus. Anti-inflammatory drugs are commonly used in BXO. We evaluated the effects of an innovative formulation of ozonated olive oil with vitamin E acetate (OZOILE®) on the inflammatory status and tissue remodeling in male children with BXO. The mRNA transcripts of proteins involved either in inflammation or in dynamics of tissue regeneration were analyzed by quantitative real-time PCR, in foreskins affected by BXO removed from patients untreated or treated with OZOILE® cream for 7 days before circumcision. We found a significant reduction in mRNA levels of IL-1β, TNF-α, INF-γ, transglutaminase 2 and NOS2 in foreskins treated with OZOILE® in comparison to untreated ones (p < 0.001). No significant differences were observed in NF-κB activation in the specimens obtained from treated and untreated patients. Hence, OZOILE® treatment up-regulated hypoxia-inducible factor (HIF)-1alpha, vascular endothelial growth factor (VEGF) and E-cadherin gene expression (p < 0.001). The treatment with OZOILE® showed effective results in children affected by BXO by reducing the inflammatory process and stimulating mechanisms for tissue regeneration of the foreskin. A randomized clinical trial on a large number of children affected by BXO might be useful to verify the efficacy of topical treatment with OZOILE®.
Collapse
Affiliation(s)
- Monica Currò
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Via Consolare Valeria, 98123 Messina, Italy.
| | - Tiziana Russo
- Department of Human Pathology of Adult and Childhood "Gaetano Barresi", University of Messina, Via Consolare Valeria, 98123 Messina, Italy.
| | - Nadia Ferlazzo
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Via Consolare Valeria, 98123 Messina, Italy.
| | - Daniela Caccamo
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Via Consolare Valeria, 98123 Messina, Italy.
| | - Pietro Antonuccio
- Department of Human Pathology of Adult and Childhood "Gaetano Barresi", University of Messina, Via Consolare Valeria, 98123 Messina, Italy.
| | - Salvatore Arena
- Department of Human Pathology of Adult and Childhood "Gaetano Barresi", University of Messina, Via Consolare Valeria, 98123 Messina, Italy.
| | - Saveria Parisi
- Department of Human Pathology of Adult and Childhood "Gaetano Barresi", University of Messina, Via Consolare Valeria, 98123 Messina, Italy.
| | - Patrizia Perrone
- Department of Human Pathology of Adult and Childhood "Gaetano Barresi", University of Messina, Via Consolare Valeria, 98123 Messina, Italy.
| | - Riccardo Ientile
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Via Consolare Valeria, 98123 Messina, Italy.
| | - Carmelo Romeo
- Department of Human Pathology of Adult and Childhood "Gaetano Barresi", University of Messina, Via Consolare Valeria, 98123 Messina, Italy.
| | - Pietro Impellizzeri
- Department of Human Pathology of Adult and Childhood "Gaetano Barresi", University of Messina, Via Consolare Valeria, 98123 Messina, Italy.
| |
Collapse
|
148
|
Zeng J, Lu J. Mechanisms of action involved in ozone-therapy in skin diseases. Int Immunopharmacol 2018; 56:235-241. [PMID: 29414657 DOI: 10.1016/j.intimp.2018.01.040] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Revised: 01/24/2018] [Accepted: 01/24/2018] [Indexed: 12/14/2022]
Abstract
Ozone-therapy initially applied in medicine by an empirical approach, has now reached a new stage where most of the biological mechanisms of ozone action have been clarified, that refers to antimicrobial effects, immunoregulation, antioxidant defenses and epigenetic modification. Current ozone medical preparation in dermatology mainly classified as ozone hydrotherapy, ozonated oil externally used and ozone autohemotherapy (OAHT). Admittedly, ozone is widely used in various fields against gram-negative and gram-positive bacteria, viruses, and fungi. More recently, great progress has been obtained in wound healing which is a multiphase process that consists of three overlapping but distinct stages: inflammation, tissue proliferation and remodeling. While the exact mechanisms of ozone-therapy still remain unclear. Therefore, more evidence is required before ozone can be presented as a promising method for the management and prevention of various skin diseases. In this review, we review the application status of ozone in dermatology and summarize possible mechanisms of ozone-therapy on skin diseases, aims to shed a light on providing a series of theoretical basis for its applications.
Collapse
Affiliation(s)
- Jinrong Zeng
- Department of Dermatology, Third Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Jianyun Lu
- Department of Dermatology, Third Xiangya Hospital of Central South University, Changsha, Hunan, China.
| |
Collapse
|
149
|
Effectiveness of radiotherapy + ozone on tumoral tissue and survival in tongue cancer rat model. Auris Nasus Larynx 2018; 45:128-134. [DOI: 10.1016/j.anl.2017.03.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 02/27/2017] [Accepted: 03/14/2017] [Indexed: 01/22/2023]
|
150
|
Siniscalco D, Trotta MC, Brigida AL, Maisto R, Luongo M, Ferraraccio F, D'Amico M, Di Filippo C. Intraperitoneal Administration of Oxygen/Ozone to Rats Reduces the Pancreatic Damage Induced by Streptozotocin. BIOLOGY 2018; 7:biology7010010. [PMID: 29324687 PMCID: PMC5872036 DOI: 10.3390/biology7010010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 01/08/2018] [Accepted: 01/09/2018] [Indexed: 12/27/2022]
Abstract
Background: The rat model of streptozotocin (STZ)-induced pancreatic damage was used to examine whether a systemic oxygen/ozone mixture could be beneficial for the pancreas by reducing the machinery of the local detrimental mediators released by STZ. Results: The results showed that oxygen/ozone administration (150 µg/Kg i.p.) for ten days in STZ rats increased the endogenous glutathione-s-transferase (GST) enzyme and nuclear factor-erythroid 2-related factor 2 (Nrf2) into the pancreatic tissue, together with reduction of 4-hydroxynonenal (4-HNE) and PARP-1 compared to STZ rats receiving O₂ only. Interestingly, these changes resulted in higher levels of serum insulin and leptin, and pancreatic glucagon immunostaining. Consequently, glucose metabolism improved as evidenced by the monitoring of glycemia throughout. Conclusions: This study provides evidence that systemic administration of oxygen/ozone reduces the machinery of detrimental mediators released by STZ into the pancreas with less local damage and better functionality.
Collapse
Affiliation(s)
- Dario Siniscalco
- Department of Experimental Medicine, Division of Pharmacology, University of Campania, via S. Maria di Costantinopoli 16, 80138 Naples, Italy.
| | - Maria Consiglia Trotta
- Department of Experimental Medicine, Division of Pharmacology, University of Campania, via S. Maria di Costantinopoli 16, 80138 Naples, Italy.
| | - Anna Lisa Brigida
- Department of Experimental Medicine, Division of Pharmacology, University of Campania, via S. Maria di Costantinopoli 16, 80138 Naples, Italy.
| | - Rosa Maisto
- Department of Experimental Medicine, Division of Pharmacology, University of Campania, via S. Maria di Costantinopoli 16, 80138 Naples, Italy.
| | - Margherita Luongo
- "Maria Guarino" Foundation-AMOR No Profit Association, 80078 Pozzuoli, Italy.
| | - Franca Ferraraccio
- Department of Physical and Mental Health and Preventive Medicine, University of Campania, 80138 Naples, Italy.
| | - Michele D'Amico
- Department of Experimental Medicine, Division of Pharmacology, University of Campania, via S. Maria di Costantinopoli 16, 80138 Naples, Italy.
| | - Clara Di Filippo
- Department of Experimental Medicine, Division of Pharmacology, University of Campania, via S. Maria di Costantinopoli 16, 80138 Naples, Italy.
| |
Collapse
|