101
|
Tanioka M, Mott KR, Hollern DP, Fan C, Darr DB, Perou CM. Identification of Jun loss promotes resistance to histone deacetylase inhibitor entinostat through Myc signaling in luminal breast cancer. Genome Med 2018; 10:86. [PMID: 30497520 PMCID: PMC6267061 DOI: 10.1186/s13073-018-0597-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 11/08/2018] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Based on promising phase II data, the histone deacetylase inhibitor entinostat is in phase III trials for patients with metastatic estrogen receptor-positive breast cancer. Predictors of sensitivity and resistance, however, remain unknown. METHODS A total of eight cell lines and nine mouse models of breast cancer were treated with entinostat. Luminal cell lines were treated with or without entinostat at their IC50 doses, and MMTV/Neu luminal mouse tumors were untreated or treated with entinostat until progression. We investigated these models using their gene expression profiling by microarray and copy number by arrayCGH. We also utilized the network-based DawnRank algorithm that integrates DNA and RNA data to identify driver genes of resistance. The impact of candidate drivers was investigated in The Cancer Genome Atlas and METABRIC breast cancer datasets. RESULTS Luminal models displayed enhanced sensitivity to entinostat as compared to basal-like or claudin-low models. Both in vitro and in vivo luminal models showed significant downregulation of Myc gene signatures following entinostat treatment. Myc gene signatures became upregulated on tumor progression in vivo and overexpression of Myc conferred resistance to entinostat in vitro. Further examination of resistance mechanisms in MMTV/Neu tumors identified a portion of mouse chromosome 4 that had DNA copy number loss and low gene expression. Within this region, Jun was computationally identified to be a driver gene of resistance. Jun knockdown in cell lines resulted in upregulation of Myc signatures and made these lines more resistant to entinostat. Jun-deleted samples, found in 17-23% of luminal patients, had significantly higher Myc signature scores that predicted worse survival. CONCLUSIONS Entinostat inhibited luminal breast cancer through Myc signaling, which was upregulated by Jun DNA loss to promote resistance to entinostat in our models. Jun DNA copy number loss, and/or high MYC signatures, might represent biomarkers for entinostat responsiveness in luminal breast cancer.
Collapse
Affiliation(s)
- Maki Tanioka
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.,Department of Genetics, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Kevin R Mott
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Daniel P Hollern
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Cheng Fan
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - David B Darr
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.,Lineberger Comprehensive Cancer Center, The Animal Study Core, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Charles M Perou
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA. .,Department of Genetics, University of North Carolina, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
102
|
Hollern DP, Contreras CM, Dance-Barnes S, Silva GO, Pfefferle AD, Xiong J, Darr DB, Usary J, Mott KR, Perou CM. A mouse model featuring tissue-specific deletion of p53 and Brca1 gives rise to mammary tumors with genomic and transcriptomic similarities to human basal-like breast cancer. Breast Cancer Res Treat 2018; 174:143-155. [PMID: 30484104 PMCID: PMC6418066 DOI: 10.1007/s10549-018-5061-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 11/16/2018] [Indexed: 12/20/2022]
Abstract
Purpose and methods In human basal-like breast cancer, mutations and deletions in TP53 and BRCA1 are frequent oncogenic events. Thus, we interbred mice expressing the CRE-recombinase with mice harboring loxP sites at TP53 and BRCA1 (K14-Cre; p53f/f Brca1f/f) to test the hypothesis that tissue-specific deletion of TP53 and BRCA1 would give rise to tumors reflective of human basal-like breast cancer. Results In support of our hypothesis, these transgenic mice developed tumors that express basal-like cytokeratins and demonstrated intrinsic gene expression features similar to human basal-like tumors. Array comparative genomic hybridization revealed a striking conservation of copy number alterations between the K14-Cre; p53f/f Brca1f/f mouse model and human basal-like breast cancer. Conserved events included MYC amplification, KRAS amplification, and RB1 loss. Microarray analysis demonstrated that these DNA copy number events also led to corresponding changes in signatures of pathway activation including high proliferation due to RB1 loss. K14-Cre; p53f/f Brca1f/f also matched human basal-like breast cancer for a propensity to have immune cell infiltrates. Given the long latency of K14-Cre; p53f/f Brca1f/f tumors (~ 250 days), we created tumor syngeneic transplant lines, as well as in vitro cell lines, which were tested for sensitivity to carboplatin and paclitaxel. These therapies invoked acute regression, extended overall survival, and resulted in gene expression signatures of an anti-tumor immune response. Conclusion These findings demonstrate that this model is a valuable preclinical resource for the study of human basal-like breast cancer. Electronic supplementary material The online version of this article (10.1007/s10549-018-5061-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Daniel P Hollern
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, 450 West Drive, CB#7264, Chapel Hill, NC, 27599, USA.,Department of Genetics, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Cristina M Contreras
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, 450 West Drive, CB#7264, Chapel Hill, NC, 27599, USA.,Department of Genetics, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Stephanie Dance-Barnes
- Department of Biological Sciences, Winston Salem State University, Winston-Salem, NC, 27110, USA
| | - Grace O Silva
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, 450 West Drive, CB#7264, Chapel Hill, NC, 27599, USA.,Department of Genetics, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Adam D Pfefferle
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, 450 West Drive, CB#7264, Chapel Hill, NC, 27599, USA.,Department of Genetics, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Jessie Xiong
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, 450 West Drive, CB#7264, Chapel Hill, NC, 27599, USA.,Department of Genetics, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - David B Darr
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, 450 West Drive, CB#7264, Chapel Hill, NC, 27599, USA
| | - Jerry Usary
- Arrow Genomics LLC, Chapel Hill, NC, 27517, USA
| | - Kevin R Mott
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, 450 West Drive, CB#7264, Chapel Hill, NC, 27599, USA.,Department of Genetics, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Charles M Perou
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, 450 West Drive, CB#7264, Chapel Hill, NC, 27599, USA. .,Department of Genetics, University of North Carolina, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
103
|
McGregor RJ, Chau YY, Kendall TJ, Artibani M, Hastie N, Hadoke PWF. WT1 expression in vessels varies with histopathological grade in tumour-bearing and control tissue from patients with breast cancer. Br J Cancer 2018; 119:1508-1517. [PMID: 30374123 PMCID: PMC6288121 DOI: 10.1038/s41416-018-0317-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 09/28/2018] [Accepted: 10/08/2018] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The Wilms' tumour protein (WT1), which influences tumour development and angiogenesis, is a promising therapeutic target in breast cancer. We hypothesised that WT1 expression would vary in endothelial cells in distinct sub-classifications of breast cancer. METHODS WT1 expression and vascular density were quantified by immunohistochemical analysis of human (n = 57) and murine breast cancers. Human tumours were sub-classified by histopathological grade, ER status and HER2 enrichment. RESULTS WT1 was identified in endothelial (and epithelial and smooth muscle) cells in tumours and tumour-free tissues (controls) from patients and mice with breast cancer. WT1 expression was higher in tumours than in controls, but this was not due to increased endothelial WT1. Vascular WT1 in cancers decreased as histopathological grade increased. WT1 was higher in ER-positive versus ER-negative cancers. Strikingly, reduced WT1 expression in controls correlated with an increased Nottingham Prognostic Index score. CONCLUSIONS Expression of WT1 is increased in breast cancers but this is not limited to the vascular compartment. The association between reduced WT1 in tumour-free tissue and poor prognosis suggests a protective role for WT1 in the healthy breast.
Collapse
Affiliation(s)
| | - You-Ying Chau
- University/BHF Centre for Cardiovascular Science, Edinburgh, UK.,MRC HGU at the MRC Institute of Genetics and Molecular Medicine (IGMM), Edinburgh, UK
| | - Timothy J Kendall
- MRC HGU at the MRC Institute of Genetics and Molecular Medicine (IGMM), Edinburgh, UK.,Division of Pathology, University of Edinburgh, Edinburgh, UK
| | - Mara Artibani
- Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Nicholas Hastie
- MRC HGU at the MRC Institute of Genetics and Molecular Medicine (IGMM), Edinburgh, UK
| | | |
Collapse
|
104
|
An Y, Adams JR, Hollern DP, Zhao A, Chang SG, Gams MS, Chung PED, He X, Jangra R, Shah JS, Yang J, Beck LA, Raghuram N, Kozma KJ, Loch AJ, Wang W, Fan C, Done SJ, Zacksenhaus E, Guidos CJ, Perou CM, Egan SE. Cdh1 and Pik3ca Mutations Cooperate to Induce Immune-Related Invasive Lobular Carcinoma of the Breast. Cell Rep 2018; 25:702-714.e6. [PMID: 30332649 PMCID: PMC6276789 DOI: 10.1016/j.celrep.2018.09.056] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 06/15/2018] [Accepted: 09/17/2018] [Indexed: 11/20/2022] Open
Abstract
CDH1 and PIK3CA are the two most frequently mutated genes in invasive lobular carcinoma (ILC) of the breast. Transcription profiling has identified molecular subtypes for ILC, one of which, immune-related (IR), is associated with gene expression linked to lymphocyte and macrophage infiltration. Here, we report that deletion of Cdh1, together with activation of Pik3ca in mammary epithelium of genetically modified mice, leads to formation of IR-ILC-like tumors with immune cell infiltration, as well as gene expression linked to T-regulatory (Treg) cell signaling and activation of targetable immune checkpoint pathways. Interestingly, these tumors show enhanced Rac1- and Yap-dependent transcription and signaling, as well as sensitivity to PI3K, Rac1, and Yap inhibitors in culture. Finally, high-dimensional immunophenotyping in control mouse mammary gland and IR-ILC tumors by mass cytometry shows dramatic alterations in myeloid and lymphoid populations associated with immune suppression and exhaustion, highlighting the potential for therapeutic intervention via immune checkpoint regulators.
Collapse
Affiliation(s)
- Yeji An
- Program in Cell Biology, The Peter Gilgan Center for Research and Learning, The Hospital for Sick Children, Toronto, ON M5G-0A4, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Jessica R Adams
- Program in Cell Biology, The Peter Gilgan Center for Research and Learning, The Hospital for Sick Children, Toronto, ON M5G-0A4, Canada
| | - Daniel P Hollern
- Lineberger Comprehensive Cancer Center, Departments of Genetics and Pathology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Anthony Zhao
- Program in Developmental and Stem Cell Biology, The Peter Gilgan Center for Research and Learning, The Hospital for Sick Children, Toronto, ON M5G-0A4, Canada; Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Stephen G Chang
- Program in Developmental and Stem Cell Biology, The Peter Gilgan Center for Research and Learning, The Hospital for Sick Children, Toronto, ON M5G-0A4, Canada; Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Miki S Gams
- Program in Developmental and Stem Cell Biology, The Peter Gilgan Center for Research and Learning, The Hospital for Sick Children, Toronto, ON M5G-0A4, Canada; Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Philip E D Chung
- Division of Cell and Molecular Biology, Toronto General Research Institute, University Health Network, and Department of Medicine, University of Toronto, Toronto, ON, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Xiaping He
- Lineberger Comprehensive Cancer Center, Departments of Genetics and Pathology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Rhea Jangra
- Program in Cell Biology, The Peter Gilgan Center for Research and Learning, The Hospital for Sick Children, Toronto, ON M5G-0A4, Canada
| | - Juhi S Shah
- Program in Cell Biology, The Peter Gilgan Center for Research and Learning, The Hospital for Sick Children, Toronto, ON M5G-0A4, Canada
| | - Joanna Yang
- Program in Cell Biology, The Peter Gilgan Center for Research and Learning, The Hospital for Sick Children, Toronto, ON M5G-0A4, Canada
| | - Lauren A Beck
- Program in Cell Biology, The Peter Gilgan Center for Research and Learning, The Hospital for Sick Children, Toronto, ON M5G-0A4, Canada
| | - Nandini Raghuram
- Program in Cell Biology, The Peter Gilgan Center for Research and Learning, The Hospital for Sick Children, Toronto, ON M5G-0A4, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Katelyn J Kozma
- Program in Cell Biology, The Peter Gilgan Center for Research and Learning, The Hospital for Sick Children, Toronto, ON M5G-0A4, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Amanda J Loch
- Program in Cell Biology, The Peter Gilgan Center for Research and Learning, The Hospital for Sick Children, Toronto, ON M5G-0A4, Canada
| | - Wei Wang
- Program in Cell Biology, The Peter Gilgan Center for Research and Learning, The Hospital for Sick Children, Toronto, ON M5G-0A4, Canada
| | - Cheng Fan
- Lineberger Comprehensive Cancer Center, Departments of Genetics and Pathology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Susan J Done
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada; The Campbell Family Institute for Breast Cancer Research at the Princess Margaret Cancer Centre and The Laboratory Medicine Program, University Health Network, Toronto, ON, Canada
| | - Eldad Zacksenhaus
- Division of Cell and Molecular Biology, Toronto General Research Institute, University Health Network, and Department of Medicine, University of Toronto, Toronto, ON, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Cynthia J Guidos
- Program in Developmental and Stem Cell Biology, The Peter Gilgan Center for Research and Learning, The Hospital for Sick Children, Toronto, ON M5G-0A4, Canada; Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Charles M Perou
- Lineberger Comprehensive Cancer Center, Departments of Genetics and Pathology, University of North Carolina, Chapel Hill, NC 27599, USA.
| | - Sean E Egan
- Program in Cell Biology, The Peter Gilgan Center for Research and Learning, The Hospital for Sick Children, Toronto, ON M5G-0A4, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
105
|
Munir MT, Ponce C, Powell CA, Tarafdar K, Yanagita T, Choudhury M, Gollahon LS, Rahman SM. The contribution of cholesterol and epigenetic changes to the pathophysiology of breast cancer. J Steroid Biochem Mol Biol 2018; 183:1-9. [PMID: 29733910 DOI: 10.1016/j.jsbmb.2018.05.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 04/12/2018] [Accepted: 05/03/2018] [Indexed: 12/30/2022]
Abstract
Breast cancer is one of the most commonly diagnosed cancers in women. Accumulating evidence suggests that cholesterol plays an important role in the development of breast cancer. Even though the mechanistic link between these two factors is not well understood, one possibility is that dysregulated cholesterol metabolism may affect lipid raft and membrane fluidity and can promote tumor development. Current studies have shown oxysterol 27-hydroxycholesterol (27-HC) as a critical regulator of cholesterol and breast cancer pathogenesis. This is supported by the significantly higher expression of CYP27A1 (cytochrome P450, family 27, subfamily A, polypeptide 1) in breast cancers. This enzyme is responsible for 27-HC synthesis from cholesterol. It has been shown that 27-HC can not only increase the proliferation of estrogen receptor (ER)-positive breast cancer cells but also stimulate tumor growth and metastasis in several breast cancer models. This phenomenon is surprising since 27-HC and other oxysterols generally reduce intracellular cholesterol levels by activating the liver X receptors (LXRs). Resolving this paradox will elucidate molecular pathways by which cholesterol, ER, and LXR are connected to breast cancer. These findings will also provide the rationale for evaluating pharmaceutical approaches that manipulate cholesterol or 27-HC synthesis in order to mitigate the impact of cholesterol on breast cancer pathophysiology. In addition to cholesterol, epigenetic changes including non-coding RNAs, and microRNAs, DNA methylation, and histone modifications, have all been shown to control tumorigenesis. The purpose of this review is to discuss the link between altered cholesterol metabolism and epigenetic modification during breast cancer progression.
Collapse
Affiliation(s)
- Maliha T Munir
- Nutritional Sciences, Texas Tech University, Lubbock, Texas, USA
| | | | - Catherine A Powell
- Department of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy, Texas A&M Health Sciences Center, College Station, Texas, USA
| | | | | | - Mahua Choudhury
- Department of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy, Texas A&M Health Sciences Center, College Station, Texas, USA
| | - Lauren S Gollahon
- Department of Biological Sciences, Texas Tech University, Lubbock, Texas, USA
| | - Shaikh M Rahman
- Nutritional Sciences, Texas Tech University, Lubbock, Texas, USA.
| |
Collapse
|
106
|
Dravis C, Chung CY, Lytle NK, Herrera-Valdez J, Luna G, Trejo CL, Reya T, Wahl GM. Epigenetic and Transcriptomic Profiling of Mammary Gland Development and Tumor Models Disclose Regulators of Cell State Plasticity. Cancer Cell 2018; 34:466-482.e6. [PMID: 30174241 PMCID: PMC6152943 DOI: 10.1016/j.ccell.2018.08.001] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 04/16/2018] [Accepted: 08/01/2018] [Indexed: 12/13/2022]
Abstract
Cell state reprogramming during tumor progression complicates accurate diagnosis, compromises therapeutic effectiveness, and fuels metastatic dissemination. We used chromatin accessibility assays and transcriptional profiling during mammary development as an agnostic approach to identify factors that mediate cancer cell state interconversions. We show that fetal and adult basal cells share epigenetic features consistent with multi-lineage differentiation potential. We find that DNA-binding motifs for SOX transcription factors are enriched in chromatin that is accessible in stem/progenitor cells and inaccessible in differentiated cells. In both mouse and human tumors, SOX10 expression correlates with stem/progenitor identity, dedifferentiation, and invasive characteristics. Strikingly, we demonstrate that SOX10 binds to genes that regulate neural crest cell identity, and that SOX10-positive tumor cells exhibit neural crest cell features.
Collapse
MESH Headings
- Adult
- Animals
- Breast Neoplasms/genetics
- Breast Neoplasms/pathology
- Cell Differentiation/genetics
- Cell Line, Tumor/transplantation
- Cell Plasticity/genetics
- Cell Transformation, Neoplastic/genetics
- Embryo, Mammalian
- Epigenesis, Genetic
- Female
- Gene Expression Profiling
- Gene Expression Regulation, Neoplastic
- Humans
- Mammary Glands, Animal/growth & development
- Mammary Glands, Animal/pathology
- Mammary Glands, Human/growth & development
- Mammary Glands, Human/pathology
- Mammary Neoplasms, Experimental/genetics
- Mammary Neoplasms, Experimental/pathology
- Mice
- Mice, Transgenic
- Neural Crest/growth & development
- Neural Crest/pathology
- SOXE Transcription Factors/genetics
- SOXE Transcription Factors/metabolism
- Stem Cells/pathology
Collapse
Affiliation(s)
- Christopher Dravis
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA.
| | - Chi-Yeh Chung
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Nikki K Lytle
- Sanford Consortium for Regenerative Medicine, La Jolla, CA 92037, USA; Departments of Pharmacology and Medicine, Moores Cancer Center, University of California San Diego School of Medicine, La Jolla, CA 92037, USA
| | - Jaslem Herrera-Valdez
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Gidsela Luna
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Christy L Trejo
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Tannishtha Reya
- Sanford Consortium for Regenerative Medicine, La Jolla, CA 92037, USA; Departments of Pharmacology and Medicine, Moores Cancer Center, University of California San Diego School of Medicine, La Jolla, CA 92037, USA
| | - Geoffrey M Wahl
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA.
| |
Collapse
|
107
|
Hüser S, Guth S, Joost HG, Soukup ST, Köhrle J, Kreienbrock L, Diel P, Lachenmeier DW, Eisenbrand G, Vollmer G, Nöthlings U, Marko D, Mally A, Grune T, Lehmann L, Steinberg P, Kulling SE. Effects of isoflavones on breast tissue and the thyroid hormone system in humans: a comprehensive safety evaluation. Arch Toxicol 2018; 92:2703-2748. [PMID: 30132047 PMCID: PMC6132702 DOI: 10.1007/s00204-018-2279-8] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Accepted: 07/31/2018] [Indexed: 02/06/2023]
Abstract
Isoflavones are secondary plant constituents of certain foods and feeds such as soy, linseeds, and red clover. Furthermore, isoflavone-containing preparations are marketed as food supplements and so-called dietary food for special medical purposes to alleviate health complaints of peri- and postmenopausal women. Based on the bioactivity of isoflavones, especially their hormonal properties, there is an ongoing discussion regarding their potential adverse effects on human health. This review evaluates and summarises the evidence from interventional and observational studies addressing potential unintended effects of isoflavones on the female breast in healthy women as well as in breast cancer patients and on the thyroid hormone system. In addition, evidence from animal and in vitro studies considered relevant in this context was taken into account along with their strengths and limitations. Key factors influencing the biological effects of isoflavones, e.g., bioavailability, plasma and tissue concentrations, metabolism, temporality (pre- vs. postmenopausal women), and duration of isoflavone exposure, were also addressed. Final conclusions on the safety of isoflavones are guided by the aim of precautionary consumer protection.
Collapse
Affiliation(s)
- S Hüser
- Institute for Food Toxicology, Senate Commission on Food Safety, University of Veterinary Medicine Hannover, Hannover, Germany
| | - S Guth
- Institute for Food Toxicology, Senate Commission on Food Safety, University of Veterinary Medicine Hannover, Hannover, Germany
| | - H G Joost
- Department of Experimental Diabetology, German Institute of Human Nutrition (DIfE), Nuthetal, Germany
| | - S T Soukup
- Department of Safety and Quality of Fruit and Vegetables, Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Haid-und-Neu-Str. 9, 76131, Karlsruhe, Germany
| | - J Köhrle
- Institut für Experimentelle Endokrinologie, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, CVK, Berlin, Germany
| | - L Kreienbrock
- Department of Biometry, Epidemiology and Information Processing, University of Veterinary Medicine Hannover, Hannover, Germany
| | - P Diel
- Department of Molecular and Cellular Sports Medicine, Institute of Cardiovascular Research and Sports Medicine, German Sport University Cologne, Cologne, Germany
| | - D W Lachenmeier
- Chemisches und Veterinäruntersuchungsamt Karlsruhe, Karlsruhe, Germany
| | - G Eisenbrand
- Division of Food Chemistry and Toxicology, Molecular Nutrition, Department of Chemistry, Technische Universität Kaiserslautern, Kaiserslautern, Germany
| | - G Vollmer
- Department of Biology, Molecular Cell Physiology and Endocrinology, Technische Universität Dresden, Dresden, Germany
| | - U Nöthlings
- Department of Nutrition and Food Sciences, Nutritional Epidemiology, Rheinische Friedrich-Wilhelms University Bonn, Bonn, Germany
| | - D Marko
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - A Mally
- Department of Toxicology, University of Würzburg, Würzburg, Germany
| | - T Grune
- Department of Molecular Toxicology, German Institute of Human Nutrition (DIfE), Nuthetal, Germany
| | - L Lehmann
- Department of Food Chemistry, Institute for Pharmacy and Food Chemistry, University of Würzburg, Würzburg, Germany
| | - P Steinberg
- Institute for Food Toxicology, University of Veterinary Medicine Hannover, Hannover, Germany
- Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Haid-und-Neu-Str. 9, 76131, Karlsruhe, Germany
| | - S E Kulling
- Department of Safety and Quality of Fruit and Vegetables, Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Haid-und-Neu-Str. 9, 76131, Karlsruhe, Germany.
| |
Collapse
|
108
|
Somatic loss of WWOX is associated with TP53 perturbation in basal-like breast cancer. Cell Death Dis 2018; 9:832. [PMID: 30082886 PMCID: PMC6079009 DOI: 10.1038/s41419-018-0896-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 07/11/2018] [Accepted: 07/12/2018] [Indexed: 12/16/2022]
Abstract
Inactivation of WW domain-containing oxidoreductase (WWOX), the gene product of the common fragile site FRA16D, is a common event in breast cancer and is associated with worse prognosis of triple-negative breast cancer (TNBC) and basal-like breast cancer (BLBC). Despite recent progress, the role of WWOX in driving breast carcinogenesis remains unknown. Here we report that ablation of Wwox in mammary tumor-susceptible mice results in increased tumorigenesis, and that the resultant tumors resemble human BLBC. Interestingly, copy number loss of Trp53 and downregulation of its transcript levels were observed in the Wwox knockout tumors. Moreover, tumors isolated from Wwox and Trp53 mutant mice were indistinguishable histologically and transcriptionally. Finally, we find that deletion of TP53 and WWOX co-occurred and is associated with poor survival of breast cancer patients. Altogether, our data uncover an essential role for WWOX as a bona fide breast cancer tumor suppressor through the maintenance of p53 stability.
Collapse
|
109
|
Targeting EZH2 reactivates a breast cancer subtype-specific anti-metastatic transcriptional program. Nat Commun 2018; 9:2547. [PMID: 29959321 PMCID: PMC6026192 DOI: 10.1038/s41467-018-04864-8] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 05/21/2018] [Indexed: 02/06/2023] Open
Abstract
Emerging evidence has illustrated the importance of epigenomic reprogramming in cancer, with altered post-translational modifications of histones contributing to pathogenesis. However, the contributions of histone modifiers to breast cancer progression are unclear, and how these processes vary between molecular subtypes has yet to be adequately addressed. Here we report that genetic or pharmacological targeting of the epigenetic modifier Ezh2 dramatically hinders metastatic behaviour in both a mouse model of breast cancer and patient-derived xenografts reflective of the Luminal B subtype. We further define a subtype-specific molecular mechanism whereby EZH2 maintains H3K27me3-mediated repression of the FOXC1 gene, thereby inactivating a FOXC1-driven, anti-invasive transcriptional program. We demonstrate that higher FOXC1 is predictive of favourable outcome specifically in Luminal B breast cancer patients and establish the use of EZH2 methyltransferase inhibitors as a viable strategy to block metastasis in Luminal B breast cancer, where options for targeted therapy are limited. Histone modifications in cancer can contribute to pathogenesis. Here, the authors demonstrate that targeting epigenetic modifier Ezh2 hinders metastatic behaviour in Luminal B breast cancer models, and highlight a mechanism where Ezh2 contributes to metastatic behaviour by repression of FOXC1.
Collapse
|
110
|
Yi M, Li J, Chen S, Cai J, Ban Y, Peng Q, Zhou Y, Zeng Z, Peng S, Li X, Xiong W, Li G, Xiang B. Emerging role of lipid metabolism alterations in Cancer stem cells. J Exp Clin Cancer Res 2018; 37:118. [PMID: 29907133 PMCID: PMC6003041 DOI: 10.1186/s13046-018-0784-5] [Citation(s) in RCA: 161] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 05/28/2018] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Cancer stem cells (CSCs) or tumor-initiating cells (TICs) represent a small population of cancer cells with self-renewal and tumor-initiating properties. Unlike the bulk of tumor cells, CSCs or TICs are refractory to traditional therapy and are responsible for relapse or disease recurrence in cancer patients. Stem cells have distinct metabolic properties compared to differentiated cells, and metabolic rewiring contributes to self-renewal and stemness maintenance in CSCs. MAIN BODY Recent advances in metabolomic detection, particularly in hyperspectral-stimulated raman scattering microscopy, have expanded our knowledge of the contribution of lipid metabolism to the generation and maintenance of CSCs. Alterations in lipid uptake, de novo lipogenesis, lipid droplets, lipid desaturation, and fatty acid oxidation are all clearly implicated in CSCs regulation. Alterations on lipid metabolism not only satisfies the energy demands and biomass production of CSCs, but also contributes to the activation of several important oncogenic signaling pathways, including Wnt/β-catenin and Hippo/YAP signaling. In this review, we summarize the current progress in this attractive field and describe some recent therapeutic agents specifically targeting CSCs based on their modulation of lipid metabolism. CONCLUSION Increased reliance on lipid metabolism makes it a promising therapeutic strategy to eliminate CSCs. Targeting key players of fatty acids metabolism shows promising to anti-CSCs and tumor prevention effects.
Collapse
Affiliation(s)
- Mei Yi
- Hunan Provincial Cancer Hospital and Cancer Hospital Affiliated to Xiangya Medical School, The Central South University, Changsha, 410013 Hunan China
- Department of Dermatology, Xiangya hospital of Central South University, Changsha, 410008 China
| | - Junjun Li
- Hunan Provincial Cancer Hospital and Cancer Hospital Affiliated to Xiangya Medical School, The Central South University, Changsha, 410013 Hunan China
- Cancer Research Institute, Xiangya School of Medicine, Central South University, Changsha, 410078 China
| | - Shengnan Chen
- Hunan Provincial Cancer Hospital and Cancer Hospital Affiliated to Xiangya Medical School, The Central South University, Changsha, 410013 Hunan China
- Cancer Research Institute, Xiangya School of Medicine, Central South University, Changsha, 410078 China
| | - Jing Cai
- Hunan Provincial Cancer Hospital and Cancer Hospital Affiliated to Xiangya Medical School, The Central South University, Changsha, 410013 Hunan China
- Cancer Research Institute, Xiangya School of Medicine, Central South University, Changsha, 410078 China
| | - Yuanyuan Ban
- Hunan Provincial Cancer Hospital and Cancer Hospital Affiliated to Xiangya Medical School, The Central South University, Changsha, 410013 Hunan China
- Cancer Research Institute, Xiangya School of Medicine, Central South University, Changsha, 410078 China
| | - Qian Peng
- Hunan Provincial Cancer Hospital and Cancer Hospital Affiliated to Xiangya Medical School, The Central South University, Changsha, 410013 Hunan China
- Cancer Research Institute, Xiangya School of Medicine, Central South University, Changsha, 410078 China
| | - Ying Zhou
- Hunan Provincial Cancer Hospital and Cancer Hospital Affiliated to Xiangya Medical School, The Central South University, Changsha, 410013 Hunan China
- Cancer Research Institute, Xiangya School of Medicine, Central South University, Changsha, 410078 China
| | - Zhaoyang Zeng
- Hunan Provincial Cancer Hospital and Cancer Hospital Affiliated to Xiangya Medical School, The Central South University, Changsha, 410013 Hunan China
- Cancer Research Institute, Xiangya School of Medicine, Central South University, Changsha, 410078 China
| | - Shuping Peng
- Hunan Provincial Cancer Hospital and Cancer Hospital Affiliated to Xiangya Medical School, The Central South University, Changsha, 410013 Hunan China
- Cancer Research Institute, Xiangya School of Medicine, Central South University, Changsha, 410078 China
| | - Xiaoling Li
- Hunan Provincial Cancer Hospital and Cancer Hospital Affiliated to Xiangya Medical School, The Central South University, Changsha, 410013 Hunan China
- Cancer Research Institute, Xiangya School of Medicine, Central South University, Changsha, 410078 China
| | - Wei Xiong
- Hunan Provincial Cancer Hospital and Cancer Hospital Affiliated to Xiangya Medical School, The Central South University, Changsha, 410013 Hunan China
- Cancer Research Institute, Xiangya School of Medicine, Central South University, Changsha, 410078 China
| | - Guiyuan Li
- Hunan Provincial Cancer Hospital and Cancer Hospital Affiliated to Xiangya Medical School, The Central South University, Changsha, 410013 Hunan China
- Cancer Research Institute, Xiangya School of Medicine, Central South University, Changsha, 410078 China
| | - Bo Xiang
- Hunan Provincial Cancer Hospital and Cancer Hospital Affiliated to Xiangya Medical School, The Central South University, Changsha, 410013 Hunan China
- Cancer Research Institute, Xiangya School of Medicine, Central South University, Changsha, 410078 China
| |
Collapse
|
111
|
Zuo Y, Ulu A, Chang JT, Frost JA. Contributions of the RhoA guanine nucleotide exchange factor Net1 to polyoma middle T antigen-mediated mammary gland tumorigenesis and metastasis. Breast Cancer Res 2018; 20:41. [PMID: 29769144 PMCID: PMC5956559 DOI: 10.1186/s13058-018-0966-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 04/06/2018] [Indexed: 12/31/2022] Open
Abstract
Background The RhoA activating protein Net1 contributes to breast cancer cell proliferation, motility, and invasion in vitro, yet little is known about its roles in mammary gland tumorigenesis and metastasis. Methods Net1 knockout (KO) mice were bred to mice with mammary gland specific expression of the polyoma middle T antigen (PyMT) oncogene. Mammary gland tumorigenesis and lung metastasis were monitored. Individual tumors were assessed for proliferation, apoptosis, angiogenesis, RhoA activation, and activation of PyMT-dependent signaling pathways. Primary tumor cells from wild-type and Net1 KO mice were transplanted into the mammary glands of wild-type, nontumor-bearing mice, and tumor growth and metastasis were assessed. Gene expression in wild-type and Net1 KO tumors was analyzed by gene ontology enrichment and for relative activation of gene expression signatures indicative of signaling pathways important for breast cancer initiation and progression. A gene expression signature indicative of Net1 function was identified. Human breast cancer gene expression profiles were screened for the presence of a Net1 gene expression signature. Results We show that Net1 makes fundamental contributions to mammary gland tumorigenesis and metastasis. Net1 deletion delays tumorigenesis and strongly suppresses metastasis in PyMT-expressing mice. Moreover, we observe that loss of Net1 reduces cancer cell proliferation, inhibits tumor angiogenesis, and promotes tumor cell apoptosis. Net1 is required for maximal RhoA activation within tumors and for primary tumor cell motility. Furthermore, the ability of PyMT to initiate oncogenic signaling to ERK1/2 and PI3K/Akt1 is inhibited by Net1 deletion. Primary tumor cell transplantation indicates that the reduction in tumor angiogenesis and lung metastasis observed upon Net1 deletion are tumor cell autonomous effects. Using a gene expression signature indicative of Net1 activity, we show that Net1 signaling is activated in 10% of human breast cancers, and that this correlates with elevated proliferation and PI3K pathway activity. We also demonstrate that human breast cancer patients with a high Net1 gene expression signature experience shorter distant metastasis-free survival. Conclusions These data indicate that Net1 is required for tumor progression in the PyMT mouse model and suggest that Net1 may contribute to breast cancer progression in humans. Electronic supplementary material The online version of this article (10.1186/s13058-018-0966-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yan Zuo
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, 6431 Fannin St, Houston, TX, 77030, USA
| | - Arzu Ulu
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, 6431 Fannin St, Houston, TX, 77030, USA
| | - Jeffrey T Chang
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, 6431 Fannin St, Houston, TX, 77030, USA.,School of Biomedical Informatics, University of Texas Health Science Center at Houston, 6431 Fannin St, Houston, TX, 77030, USA
| | - Jeffrey A Frost
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, 6431 Fannin St, Houston, TX, 77030, USA.
| |
Collapse
|
112
|
Dai C, Arceo J, Arnold J, Sreekumar A, Dovichi NJ, Li J, Littlepage LE. Metabolomics of oncogene-specific metabolic reprogramming during breast cancer. Cancer Metab 2018; 6:5. [PMID: 29619217 PMCID: PMC5881178 DOI: 10.1186/s40170-018-0175-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 02/16/2018] [Indexed: 01/01/2023] Open
Abstract
Background The complex yet interrelated connections between cancer metabolism and oncogenic driver genes are relatively unexplored but have the potential to identify novel biomarkers and drug targets with prognostic and therapeutic value. The goal of this study was to identify global metabolic profiles of breast tumors isolated from multiple transgenic mouse models and to identify unique metabolic signatures driven by these oncogenes. Methods Using mass spectrometry (GC-MS, LC-MS/MS, and capillary zone electrophoresis (CZE)-MS platforms), we quantified and compared the levels of 374 metabolites in breast tissue from normal and transgenic mouse breast cancer models overexpressing a panel of oncogenes (PyMT, PyMT-DB, Wnt1, Neu, and C3-TAg). We also compared the mouse metabolomics data to published human metabolomics data already linked to clinical data. Results Through analysis of our metabolomics data, we identified metabolic differences between normal and tumor breast tissues as well as metabolic differences unique to each initiating oncogene. We also quantified the metabolic profiles of the mammary fat pad versus mammary epithelium by CZE-MS/MS. However, the differences between the tissues did not account for the majority of the metabolic differences between the normal mammary gland and breast tumor tissues. Therefore, the differences between the cohorts were unlikely due to cellular heterogeneity. Of the mouse models used in this study, C3-TAg was the only cohort with a tumor metabolic signature composed of ten metabolites that had significant prognostic value in breast cancer patients. Gene expression analysis identified candidate genes that may contribute to the metabolic reprogramming. Conclusions This study identifies oncogene-induced metabolic reprogramming within mouse breast tumors and compares the results to that of human breast tumors, providing a unique look at the relationship between and clinical value of oncogene initiation and metabolism during breast cancer.
Collapse
Affiliation(s)
- Chen Dai
- 1Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556 USA.,2Harper Cancer Research Institute, University of Notre Dame, 1234 N Notre Dame Avenue, South Bend, IN 46617 USA
| | - Jennifer Arceo
- 1Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556 USA.,2Harper Cancer Research Institute, University of Notre Dame, 1234 N Notre Dame Avenue, South Bend, IN 46617 USA
| | - James Arnold
- 3Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030 USA
| | - Arun Sreekumar
- 3Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030 USA
| | - Norman J Dovichi
- 1Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556 USA.,2Harper Cancer Research Institute, University of Notre Dame, 1234 N Notre Dame Avenue, South Bend, IN 46617 USA
| | - Jun Li
- 2Harper Cancer Research Institute, University of Notre Dame, 1234 N Notre Dame Avenue, South Bend, IN 46617 USA.,4Department of Applied and Computational Mathematics and Statistics, University of Notre Dame, Notre Dame, IN 46556 USA
| | - Laurie E Littlepage
- 1Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556 USA.,2Harper Cancer Research Institute, University of Notre Dame, 1234 N Notre Dame Avenue, South Bend, IN 46617 USA
| |
Collapse
|
113
|
Cai Y, Lin JR, Zhang Q, O'Brien K, Montagna C, Zhang ZD. Epigenetic alterations to Polycomb targets precede malignant transition in a mouse model of breast cancer. Sci Rep 2018; 8:5535. [PMID: 29615825 PMCID: PMC5882905 DOI: 10.1038/s41598-018-24005-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 03/26/2018] [Indexed: 12/16/2022] Open
Abstract
Malignant breast cancer remains a major health threat to women of all ages worldwide and epigenetic variations on DNA methylation have been widely reported in cancers of different types. We profiled DNA methylation with ERRBS (Enhanced Reduced Representation Bisulfite Sequencing) across four main stages of tumor progression in the MMTV-PyMT mouse model (hyperplasia, adenoma/mammary intraepithelial neoplasia, early carcinoma and late carcinoma), during which malignant transition occurs. We identified a large number of differentially methylated cytosines (DMCs) in tumors relative to age-matched normal mammary glands from FVB mice. Despite similarities, the methylation differences of the premalignant stages were distinct from the malignant ones. Many differentially methylated loci were preserved from the first to the last stage throughout tumor progression. Genes affected by methylation gains were enriched in Polycomb repressive complex 2 (PRC2) targets, which may present biomarkers for early diagnosis and targets for treatment.
Collapse
Affiliation(s)
- Ying Cai
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Jhih-Rong Lin
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Quanwei Zhang
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Kelly O'Brien
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Cristina Montagna
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York, USA.,Department of Pathology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Zhengdong D Zhang
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York, USA.
| |
Collapse
|
114
|
Zhao N, Cao J, Xu L, Tang Q, Dobrolecki LE, Lv X, Talukdar M, Lu Y, Wang X, Hu DZ, Shi Q, Xiang Y, Wang Y, Liu X, Bu W, Jiang Y, Li M, Gong Y, Sun Z, Ying H, Yuan B, Lin X, Feng XH, Hartig SM, Li F, Shen H, Chen Y, Han L, Zeng Q, Patterson JB, Kaipparettu BA, Putluri N, Sicheri F, Rosen JM, Lewis MT, Chen X. Pharmacological targeting of MYC-regulated IRE1/XBP1 pathway suppresses MYC-driven breast cancer. J Clin Invest 2018; 128:1283-1299. [PMID: 29480818 DOI: 10.1172/jci95873] [Citation(s) in RCA: 153] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 01/16/2018] [Indexed: 12/20/2022] Open
Abstract
The unfolded protein response (UPR) is a cellular homeostatic mechanism that is activated in many human cancers and plays pivotal roles in tumor progression and therapy resistance. However, the molecular mechanisms for UPR activation and regulation in cancer cells remain elusive. Here, we show that oncogenic MYC regulates the inositol-requiring enzyme 1 (IRE1)/X-box binding protein 1 (XBP1) branch of the UPR in breast cancer via multiple mechanisms. We found that MYC directly controls IRE1 transcription by binding to its promoter and enhancer. Furthermore, MYC forms a transcriptional complex with XBP1, a target of IRE1, and enhances its transcriptional activity. Importantly, we demonstrate that XBP1 is a synthetic lethal partner of MYC. Silencing of XBP1 selectively blocked the growth of MYC-hyperactivated cells. Pharmacological inhibition of IRE1 RNase activity with small molecule inhibitor 8866 selectively restrained the MYC-overexpressing tumor growth in vivo in a cohort of preclinical patient-derived xenograft models and genetically engineered mouse models. Strikingly, 8866 substantially enhanced the efficacy of docetaxel chemotherapy, resulting in rapid regression of MYC-overexpressing tumors. Collectively, these data establish the synthetic lethal interaction of the IRE1/XBP1 pathway with MYC hyperactivation and provide a potential therapy for MYC-driven human breast cancers.
Collapse
Affiliation(s)
- Na Zhao
- Department of Molecular and Cellular Biology.,Lester and Sue Smith Breast Center, and.,Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas, USA
| | - Jin Cao
- Department of Molecular and Cellular Biology.,Lester and Sue Smith Breast Center, and.,Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas, USA
| | - Longyong Xu
- Department of Molecular and Cellular Biology.,Lester and Sue Smith Breast Center, and.,Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas, USA
| | - Qianzi Tang
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Lacey E Dobrolecki
- Department of Molecular and Cellular Biology.,Lester and Sue Smith Breast Center, and.,Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas, USA
| | - Xiangdong Lv
- Department of Molecular and Cellular Biology.,Lester and Sue Smith Breast Center, and.,Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas, USA
| | - Manisha Talukdar
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Yang Lu
- Department of Molecular and Cellular Biology.,Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas, USA
| | - Xiaoran Wang
- Department of Molecular and Cellular Biology.,Lester and Sue Smith Breast Center, and.,Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas, USA
| | - Dorothy Z Hu
- Harvard School of Dental Medicine, Boston, Massachusetts, USA
| | - Qing Shi
- Department of Molecular and Cellular Biology.,Lester and Sue Smith Breast Center, and.,Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas, USA
| | - Yu Xiang
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston McGovern Medical School, Houston, Texas, USA
| | - Yunfei Wang
- Department of Bioinformatics and Computational Biology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Xia Liu
- Department of Molecular and Cellular Biology.,Lester and Sue Smith Breast Center, and.,Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas, USA
| | - Wen Bu
- Department of Molecular and Cellular Biology.,Lester and Sue Smith Breast Center, and
| | - Yi Jiang
- Division of Biochemical Genetics, Baylor Genetics, Houston, Texas, USA
| | - Mingzhou Li
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Yingyun Gong
- Department of Molecular and Cellular Biology.,Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Zheng Sun
- Department of Molecular and Cellular Biology.,Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Haoqiang Ying
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Bo Yuan
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xia Lin
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas, USA
| | - Xin-Hua Feng
- Department of Molecular and Cellular Biology.,Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, Zhejiang, China.,Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas, USA
| | | | - Feng Li
- Department of Molecular and Cellular Biology
| | - Haifa Shen
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, Texas, USA
| | - Yiwen Chen
- Department of Bioinformatics and Computational Biology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Leng Han
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston McGovern Medical School, Houston, Texas, USA
| | - Qingping Zeng
- Fosun Orinove PharmaTech Inc., Suzhou, Jiangsu, China
| | | | | | | | - Frank Sicheri
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada.,Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Jeffrey M Rosen
- Department of Molecular and Cellular Biology.,Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas, USA
| | - Michael T Lewis
- Department of Molecular and Cellular Biology.,Lester and Sue Smith Breast Center, and.,Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas, USA
| | - Xi Chen
- Department of Molecular and Cellular Biology.,Lester and Sue Smith Breast Center, and.,Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
115
|
Chen J, Xu J, Li Y, Zhang J, Chen H, Lu J, Wang Z, Zhao X, Xu K, Li Y, Li X, Zhang Y. Competing endogenous RNA network analysis identifies critical genes among the different breast cancer subtypes. Oncotarget 2018; 8:10171-10184. [PMID: 28052038 PMCID: PMC5354650 DOI: 10.18632/oncotarget.14361] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 12/15/2016] [Indexed: 01/10/2023] Open
Abstract
Although competing endogenous RNAs (ceRNAs) have been implicated in many solid tumors, their roles in breast cancer subtypes are not well understood. We therefore generated a ceRNA network for each subtype based on the significance of both, positive co-expression and the shared miRNAs, in the corresponding subtype miRNA dys-regulatory network, which was constructed based on negative regulations between differentially expressed miRNAs and targets. All four subtype ceRNA networks exhibited scale-free architecture and showed that the common ceRNAs were at the core of the networks. Furthermore, the common ceRNA hubs had greater connectivity than the subtype-specific hubs. Functional analysis of the common subtype ceRNA hubs highlighted factors involved in proliferation, MAPK signaling pathways and tube morphogenesis. Subtype-specific ceRNA hubs highlighted unique subtype-specific pathways, like the estrogen response and inflammatory pathways in the luminal subtypes or the factors involved in the coagulation process that participates in the basal-like subtype. Ultimately, we identified 29 critical subtype-specific ceRNA hubs that characterized the different breast cancer subtypes. Our study thus provides new insight into the common and specific subtype ceRNA interactions that define the different categories of breast cancer and enhances our understanding of the pathology underlying the different breast cancer subtypes, which can have prognostic and therapeutic implications in the future.
Collapse
Affiliation(s)
- Juan Chen
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Juan Xu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Yongsheng Li
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Jinwen Zhang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Hong Chen
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Jianping Lu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Zishan Wang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Xueying Zhao
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Kang Xu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Yixue Li
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Xia Li
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Yan Zhang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| |
Collapse
|
116
|
Using gene expression data to direct breast cancer therapy: evidence from a preclinical trial. J Mol Med (Berl) 2018; 96:111-117. [PMID: 29313063 DOI: 10.1007/s00109-017-1620-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 12/08/2017] [Accepted: 12/29/2017] [Indexed: 12/31/2022]
Abstract
The heterogeneity both within and between breast cancers presents a significant clinical challenge for both diagnosis and therapy. This heterogeneity is present at all levels of analysis in breast cancer, ranging from genomic to metabolomic. A function of this heterogeneity is that numerous signaling networks are activated, and while treatment of one arm may be initially effective, this allows the tumor to be poised to evolve a resistance mechanism. Here we review the classification of breast cancers and discuss therapy of hormone positive, HER2 positive, and triple negative breast cancers. Model systems for breast cancer are examined allowing for a preclinical trial using a personalized medicine approach to be tested. This preclinical trial was based solely on cell signaling pathway activation and effectively and specifically blocked tumor growth in a preclinical model system.
Collapse
|
117
|
Hollern DP, Swiatnicki MR, Andrechek ER. Histological subtypes of mouse mammary tumors reveal conserved relationships to human cancers. PLoS Genet 2018; 14:e1007135. [PMID: 29346386 PMCID: PMC5773092 DOI: 10.1371/journal.pgen.1007135] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 11/28/2017] [Indexed: 01/03/2023] Open
Abstract
Human breast cancer has been characterized by extensive transcriptional heterogeneity, with dominant patterns reflected in the intrinsic subtypes. Mouse models of breast cancer also have heterogeneous transcriptomes and we noted that specific histological subtypes were associated with particular subsets. We hypothesized that unique sets of genes define each tumor histological type across mouse models of breast cancer. Using mouse models that contained both gene expression data and expert pathologist classification of tumor histology on a sample by sample basis, we predicted and validated gene expression signatures for Papillary, EMT, Microacinar and other histological subtypes. These signatures predict known histological events across murine breast cancer models and identify counterparts of mouse mammary tumor types in subtypes of human breast cancer. Importantly, the EMT, Adenomyoepithelial, and Solid signatures were predictive of clinical events in human breast cancer. In addition, a pan-cancer comparison revealed that the histological signatures were active in a variety of human cancers such as lung, oral, and esophageal squamous tumors. Finally, the differentiation status and transcriptional activity implicit within these signatures was identified. These data reveal that within tumor histology groups are unique gene expression profiles of differentiation and pathway activity that stretch well beyond the transgenic initiating events and that have clear applicability to human cancers. As a result, our work provides a predictive resource and insights into possible mechanisms that govern tumor heterogeneity.
Collapse
Affiliation(s)
- Daniel P. Hollern
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, United States of America
| | - Matthew R. Swiatnicki
- Department of Physiology, Michigan State University, East Lansing, MI, United States of America
| | - Eran R. Andrechek
- Department of Physiology, Michigan State University, East Lansing, MI, United States of America
| |
Collapse
|
118
|
Griffith OL, Chan SR, Griffith M, Krysiak K, Skidmore ZL, Hundal J, Allen JA, Arthur CD, Runci D, Bugatti M, Miceli AP, Schmidt H, Trani L, Kanchi KL, Miller CA, Larson DE, Fulton RS, Vermi W, Wilson RK, Schreiber RD, Mardis ER. Truncating Prolactin Receptor Mutations Promote Tumor Growth in Murine Estrogen Receptor-Alpha Mammary Carcinomas. Cell Rep 2017; 17:249-260. [PMID: 27681435 DOI: 10.1016/j.celrep.2016.08.076] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 05/27/2016] [Accepted: 08/23/2016] [Indexed: 10/20/2022] Open
Abstract
Estrogen receptor alpha-positive (ERα+) luminal tumors are the most frequent subtype of breast cancer. Stat1(-/-) mice develop mammary tumors that closely recapitulate the biological characteristics of this cancer subtype. To identify transforming events that contribute to tumorigenesis, we performed whole genome sequencing of Stat1(-/-) primary mammary tumors and matched normal tissues. This investigation identified somatic truncating mutations affecting the prolactin receptor (PRLR) in all tumor and no normal samples. Targeted sequencing confirmed the presence of these mutations in precancerous lesions, indicating that this is an early event in tumorigenesis. Functional evaluation of these heterozygous mutations in Stat1(-/-) mouse embryonic fibroblasts showed that co-expression of truncated and wild-type PRLR led to aberrant STAT3 and STAT5 activation downstream of the receptor, cellular transformation in vitro, and tumor formation in vivo. In conclusion, truncating mutations of PRLR promote tumor growth in a model of human ERα+ breast cancer and warrant further investigation.
Collapse
Affiliation(s)
- Obi L Griffith
- McDonnell Genome Institute, Washington University School of Medicine, 4444 Forest Park Ave., St. Louis, MO 63108, USA; Department of Medicine, Washington University School of Medicine, 660 S Euclid Ave., St. Louis, MO 63110, USA; Siteman Cancer Center, Washington University School of Medicine, 4921 Parkview Pl., St. Louis, MO 63110, USA
| | - Szeman Ruby Chan
- Department of Pathology and Immunology, Washington University School of Medicine, 660 S Euclid Ave., St. Louis, MO 63110, USA
| | - Malachi Griffith
- McDonnell Genome Institute, Washington University School of Medicine, 4444 Forest Park Ave., St. Louis, MO 63108, USA; Siteman Cancer Center, Washington University School of Medicine, 4921 Parkview Pl., St. Louis, MO 63110, USA; Department of Genetics, Washington University School of Medicine, 660 S Euclid Ave., St. Louis, MO 63110, USA
| | - Kilannin Krysiak
- McDonnell Genome Institute, Washington University School of Medicine, 4444 Forest Park Ave., St. Louis, MO 63108, USA; Department of Medicine, Washington University School of Medicine, 660 S Euclid Ave., St. Louis, MO 63110, USA
| | - Zachary L Skidmore
- McDonnell Genome Institute, Washington University School of Medicine, 4444 Forest Park Ave., St. Louis, MO 63108, USA
| | - Jasreet Hundal
- McDonnell Genome Institute, Washington University School of Medicine, 4444 Forest Park Ave., St. Louis, MO 63108, USA
| | - Julie A Allen
- Department of Pathology and Immunology, Washington University School of Medicine, 660 S Euclid Ave., St. Louis, MO 63110, USA
| | - Cora D Arthur
- Department of Pathology and Immunology, Washington University School of Medicine, 660 S Euclid Ave., St. Louis, MO 63110, USA
| | - Daniele Runci
- Department of Pathology and Immunology, Washington University School of Medicine, 660 S Euclid Ave., St. Louis, MO 63110, USA
| | - Mattia Bugatti
- Section of Pathology, Department of Molecular and Translational Medicine, School of Medicine, University of Brescia, Piazza del Mercato, 15, 25121 Brescia, Italy
| | - Alexander P Miceli
- Department of Pathology and Immunology, Washington University School of Medicine, 660 S Euclid Ave., St. Louis, MO 63110, USA
| | - Heather Schmidt
- McDonnell Genome Institute, Washington University School of Medicine, 4444 Forest Park Ave., St. Louis, MO 63108, USA
| | - Lee Trani
- McDonnell Genome Institute, Washington University School of Medicine, 4444 Forest Park Ave., St. Louis, MO 63108, USA
| | - Krishna-Latha Kanchi
- McDonnell Genome Institute, Washington University School of Medicine, 4444 Forest Park Ave., St. Louis, MO 63108, USA
| | - Christopher A Miller
- McDonnell Genome Institute, Washington University School of Medicine, 4444 Forest Park Ave., St. Louis, MO 63108, USA; Department of Medicine, Washington University School of Medicine, 660 S Euclid Ave., St. Louis, MO 63110, USA
| | - David E Larson
- McDonnell Genome Institute, Washington University School of Medicine, 4444 Forest Park Ave., St. Louis, MO 63108, USA; Department of Genetics, Washington University School of Medicine, 660 S Euclid Ave., St. Louis, MO 63110, USA
| | - Robert S Fulton
- McDonnell Genome Institute, Washington University School of Medicine, 4444 Forest Park Ave., St. Louis, MO 63108, USA; Department of Genetics, Washington University School of Medicine, 660 S Euclid Ave., St. Louis, MO 63110, USA
| | - William Vermi
- Department of Pathology and Immunology, Washington University School of Medicine, 660 S Euclid Ave., St. Louis, MO 63110, USA; Section of Pathology, Department of Molecular and Translational Medicine, School of Medicine, University of Brescia, Piazza del Mercato, 15, 25121 Brescia, Italy
| | - Richard K Wilson
- McDonnell Genome Institute, Washington University School of Medicine, 4444 Forest Park Ave., St. Louis, MO 63108, USA; Department of Medicine, Washington University School of Medicine, 660 S Euclid Ave., St. Louis, MO 63110, USA; Siteman Cancer Center, Washington University School of Medicine, 4921 Parkview Pl., St. Louis, MO 63110, USA; Department of Genetics, Washington University School of Medicine, 660 S Euclid Ave., St. Louis, MO 63110, USA
| | - Robert D Schreiber
- Department of Pathology and Immunology, Washington University School of Medicine, 660 S Euclid Ave., St. Louis, MO 63110, USA; Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, 425 S Euclid Ave., St. Louis, MO 63110, USA.
| | - Elaine R Mardis
- McDonnell Genome Institute, Washington University School of Medicine, 4444 Forest Park Ave., St. Louis, MO 63108, USA; Department of Medicine, Washington University School of Medicine, 660 S Euclid Ave., St. Louis, MO 63110, USA; Siteman Cancer Center, Washington University School of Medicine, 4921 Parkview Pl., St. Louis, MO 63110, USA; Department of Genetics, Washington University School of Medicine, 660 S Euclid Ave., St. Louis, MO 63110, USA.
| |
Collapse
|
119
|
Abstract
Human cancers exhibit formidable molecular heterogeneity, to a large extent accounting for the incomplete and transitory efficacy of current anti-cancer therapies. However, neoplastic cells alone do not manifest the disease, but conscript a battery of non-tumor cells to enable and sustain hallmark capabilities of cancer. Escaping immunosurveillance is one of such capabilities. Tumors evolve immunosuppressive microenvironment to subvert anti-tumor immunity. In this review, we will focus on tumor-associated myeloid cells, which constitute an essential part of the immune microenvironment and reciprocally interact with cancer cells to establish malignancy toward metastasis. The diversity and plasticity of these cells constitute another layer of heterogeneity, beyond the heterogeneity of cancer cells themselves. We envision that immune microenvironment co-evolves with the genetic heterogeneity of tumor. Addressing the question of how genetically distinct tumors shape and are shaped by unique immune microenvironment will provide an attractive rationale to develop novel immunotherapeutic modalities. Here, we discuss the complex nature of tumor microenvironment, with an emphasis on the cellular and functional heterogeneity among tumor-associated myeloid cells as well as immune environment heterogeneity in the context of a full spectrum of human breast cancers.
Collapse
|
120
|
Wang R, Bhat-Nakshatri P, Padua MB, Prasad MS, Anjanappa M, Jacobson M, Finnearty C, Sefcsik V, McElyea K, Redmond R, Sandusky G, Penthala N, Crooks PA, Liu J, Zimmers T, Nakshatri H. Pharmacological Dual Inhibition of Tumor and Tumor-Induced Functional Limitations in a Transgenic Model of Breast Cancer. Mol Cancer Ther 2017; 16:2747-2758. [PMID: 28978719 DOI: 10.1158/1535-7163.mct-17-0717] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 09/12/2017] [Accepted: 09/21/2017] [Indexed: 12/17/2022]
Abstract
Breast cancer progression is associated with systemic effects, including functional limitations and sarcopenia without the appearance of overt cachexia. Autocrine/paracrine actions of cytokines/chemokines produced by cancer cells mediate cancer progression and functional limitations. The cytokine-inducible transcription factor NF-κB could be central to this process, as it displays oncogenic functions and is integral to the Pax7:MyoD:Pgc-1β:miR-486 myogenesis axis. We tested this possibility using the MMTV-PyMT transgenic mammary tumor model and the NF-κB inhibitor dimethylaminoparthenolide (DMAPT). We observed deteriorating physical and functional conditions in PyMT+ mice with disease progression. Compared with wild-type mice, tumor-bearing PyMT+ mice showed decreased fat mass, impaired rotarod performance, and reduced grip strength as well as increased extracellular matrix (ECM) deposition in muscle. Contrary to acute cachexia models described in the literature, mammary tumor progression was associated with reduction in skeletal muscle stem/satellite-specific transcription factor Pax7. Additionally, we observed tumor-induced reduction in Pgc-1β in muscle, which controls mitochondrial biogenesis. DMAPT treatment starting at 6 to 8 weeks age prior to mammary tumor occurrence delayed mammary tumor onset and tumor growth rates without affecting metastasis. DMAPT overcame cancer-induced functional limitations and improved survival, which was accompanied with restoration of Pax7, Pgc-1β, and mitochondria levels and reduced ECM levels in skeletal muscles. In addition, DMAPT restored circulating levels of 6 out of 13 cancer-associated cytokines/chemokines changes to levels seen in healthy animals. These results reveal a pharmacological approach for overcoming cancer-induced functional limitations, and the above-noted cancer/drug-induced changes in muscle gene expression could be utilized as biomarkers of functional limitations. Mol Cancer Ther; 16(12); 2747-58. ©2017 AACR.
Collapse
Affiliation(s)
- Ruizhong Wang
- Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana
| | | | - Maria B Padua
- Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana
| | - Mayuri S Prasad
- Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana
| | - Manjushree Anjanappa
- Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana
| | - Max Jacobson
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Courtney Finnearty
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Victoria Sefcsik
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Kyle McElyea
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Rachael Redmond
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - George Sandusky
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Narsimha Penthala
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Peter A Crooks
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Jianguo Liu
- Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana
| | - Teresa Zimmers
- Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana
| | - Harikrishna Nakshatri
- Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana. .,Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana.,Richard L Roudebush VA Medical Center, Indianapolis, Indiana
| |
Collapse
|
121
|
Abstract
Cellular heterogeneity is a common feature in breast cancer, yet an understanding of the coexistence and regulation of various tumor cell subpopulations remains a significant challenge in cancer biology. In the current study, we approached tumor cell heterogeneity from the perspective of Wnt pathway biology to address how different modes of Wnt signaling shape the behaviors of diverse cell populations within a heterogeneous tumor landscape. Using a syngeneic TP53-null mouse model of breast cancer, we identified distinctions in the topology of canonical Wnt β-catenin-dependent signaling activity and non-canonical β-catenin-independent Ror2-mediated Wnt signaling across subtypes and within tumor cell subpopulations in vivo. We further discovered an antagonistic role for Ror2 in regulating canonical Wnt/β-catenin activity in vivo, where lentiviral shRNA depletion of Ror2 expression augmented canonical Wnt/β-catenin signaling activity across multiple basal-like models. Depletion of Ror2 expression yielded distinct phenotypic outcomes and divergent alterations in gene expression programs among different tumors, despite all sharing basal-like features. Notably, we uncovered cell state plasticity and adhesion dynamics regulated by Ror2, which influenced Ras Homology Family Member A (RhoA) and Rho-Associated Coiled-Coil Kinase 1 (ROCK1) activity downstream of Dishevelled-2 (Dvl2). Collectively, these studies illustrate the integration and collaboration of Wnt pathways in basal-like breast cancer, where Ror2 provides a spatiotemporal function to regulate the balance of Wnt signaling and cellular heterogeneity during tumor progression.
Collapse
|
122
|
Yang Y, Yang HH, Hu Y, Watson PH, Liu H, Geiger TR, Anver MR, Haines DC, Martin P, Green JE, Lee MP, Hunter KW, Wakefield LM. Immunocompetent mouse allograft models for development of therapies to target breast cancer metastasis. Oncotarget 2017; 8:30621-30643. [PMID: 28430642 PMCID: PMC5458155 DOI: 10.18632/oncotarget.15695] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 02/18/2017] [Indexed: 01/05/2023] Open
Abstract
Effective drug development to combat metastatic disease in breast cancer would be aided by the availability of well-characterized preclinical animal models that (a) metastasize with high efficiency, (b) metastasize in a reasonable time-frame, (c) have an intact immune system, and (d) capture some of the heterogeneity of the human disease. To address these issues, we have assembled a panel of twelve mouse mammary cancer cell lines that can metastasize efficiently on implantation into syngeneic immunocompetent hosts. Genomic characterization shows that more than half of the 30 most commonly mutated genes in human breast cancer are represented within the panel. Transcriptomically, most of the models fall into the luminal A or B intrinsic molecular subtypes, despite the predominance of an aggressive, poorly-differentiated or spindled histopathology in all models. Patterns of immune cell infiltration, proliferation rates, apoptosis and angiogenesis differed significantly among models. Inherent within-model variability of the metastatic phenotype mandates large cohort sizes for intervention studies but may also capture some relevant non-genetic sources of variability. The varied molecular and phenotypic characteristics of this expanded panel of models should aid in model selection for development of antimetastatic therapies in vivo, and serve as a useful platform for predictive biomarker identification.
Collapse
Affiliation(s)
- Yuan Yang
- Lab of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Howard H. Yang
- High Dimension Data Analysis Group, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Ying Hu
- High Dimension Data Analysis Group, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Peter H. Watson
- British Columbia Cancer Agency, Vancouver Island Center, Victoria, British Columbia, Canada
| | - Huaitian Liu
- High Dimension Data Analysis Group, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Thomas R. Geiger
- Lab of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Miriam R. Anver
- Pathology Histotechnology Lab, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick MD, USA
| | - Diana C. Haines
- Pathology Histotechnology Lab, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick MD, USA
| | - Philip Martin
- Pathology Histotechnology Lab, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick MD, USA
| | - Jeffrey E. Green
- Lab of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Maxwell P. Lee
- High Dimension Data Analysis Group, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Kent W. Hunter
- Lab of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Lalage M. Wakefield
- Lab of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| |
Collapse
|
123
|
Trejo CL, Luna G, Dravis C, Spike BT, Wahl GM. Lgr5 is a marker for fetal mammary stem cells, but is not essential for stem cell activity or tumorigenesis. NPJ Breast Cancer 2017. [PMID: 28649656 PMCID: PMC5460261 DOI: 10.1038/s41523-017-0018-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The search for the bipotent mammary stem cells that drive mammary development requires markers to enable their prospective isolation. There is general agreement that bipotent mouse mammary stem cells are abundant in late fetal development, but their existence in the adult is vigorously debated. Among markers useful for mammary stem cell identification, the Wnt co-receptor Lgr5 has been suggested by some to be both "necessary and sufficient" for bipotency and transplantation of adult mammary stem cell activity, though other studies disagree. Importantly, the relevance of Lgr5 to the bipotency of fetal mammary stem cells has not been studied. We show here that expression of a fluorescent protein driven by the endogenous Lgr5 promoter enables significant fetal mammary stem cell enrichment. We used lineage tracing to demonstrate embryonic cells expressing Lgr5 are bipotent, while their adult counterparts are myoepithelial restricted. Importantly, our data conclusively demonstrate that Lgr5 is dispensable for both fetal and adult mammary stem cell activity and for the development of mammary tumors.
Collapse
Affiliation(s)
- Christy L Trejo
- Salk Institute for Biological Studies, Gene Expression Laboratory, La Jolla, CA 92037 USA
| | - Gidsela Luna
- Salk Institute for Biological Studies, Gene Expression Laboratory, La Jolla, CA 92037 USA
| | - Christopher Dravis
- Salk Institute for Biological Studies, Gene Expression Laboratory, La Jolla, CA 92037 USA
| | - Benjamin T Spike
- Huntsman Cancer Institute, University of Utah, Salt Lake City, 84103 UT USA
| | - Geoffrey M Wahl
- Salk Institute for Biological Studies, Gene Expression Laboratory, La Jolla, CA 92037 USA
| |
Collapse
|
124
|
Camarda R, Williams J, Goga A. In vivo Reprogramming of Cancer Metabolism by MYC. Front Cell Dev Biol 2017; 5:35. [PMID: 28443280 PMCID: PMC5386977 DOI: 10.3389/fcell.2017.00035] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 03/23/2017] [Indexed: 12/22/2022] Open
Abstract
The past few decades have welcomed tremendous advancements toward understanding the functional significance of altered metabolism during tumorigenesis. However, many conclusions drawn from studies of cancer cells in a dish (i.e., in vitro) have been put into question as multiple lines of evidence have demonstrated that the metabolism of cells can differ significantly from that of primary tumors (in vivo). This realization, along with the need to identify tissue-specific vulnerabilities of driver oncogenes, has led to an increased focus on oncogene-dependent metabolic programming in vivo. The oncogene c-MYC (MYC) is overexpressed in a wide variety of human cancers, and while its ability to alter cellular metabolism is well-established, translating the metabolic requirements, and vulnerabilities of MYC-driven cancers to the clinic has been hindered by disparate findings from in vitro and in vivo models. This review will provide an overview of the in vivo strategies, mechanisms, and conclusions generated thus far by studying MYC's regulation of metabolism in various cancer models.
Collapse
Affiliation(s)
- Roman Camarda
- Department of Cell and Tissue Biology, University of California, San FranciscoSan Francisco, CA, USA
- Biomedical Sciences Graduate Program, University of California, San FranciscoSan Francisco, CA, USA
| | - Jeremy Williams
- Biomedical Sciences Graduate Program, University of California, San FranciscoSan Francisco, CA, USA
| | - Andrei Goga
- Department of Cell and Tissue Biology, University of California, San FranciscoSan Francisco, CA, USA
- Department of Medicine, University of California, San FranciscoSan Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San FranciscoSan Francisco, CA, USA
| |
Collapse
|
125
|
Holen I, Speirs V, Morrissey B, Blyth K. In vivo models in breast cancer research: progress, challenges and future directions. Dis Model Mech 2017; 10:359-371. [PMID: 28381598 PMCID: PMC5399571 DOI: 10.1242/dmm.028274] [Citation(s) in RCA: 122] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Research using animal model systems has been instrumental in delivering improved therapies for breast cancer, as well as in generating new insights into the mechanisms that underpin development of the disease. A large number of different models are now available, reflecting different types and stages of the disease; choosing which one to use depends on the specific research question(s) to be investigated. Based on presentations and discussions from leading experts who attended a recent workshop focused on in vivo models of breast cancer, this article provides a perspective on the many varied uses of these models in breast cancer research, their strengths, associated challenges and future directions. Among the questions discussed were: how well do models represent the different stages of human disease; how can we model the involvement of the human immune system and microenvironment in breast cancer; what are the appropriate models of metastatic disease; can we use models to carry out preclinical drug trials and identify pathways responsible for drug resistance; and what are the limitations of patient-derived xenograft models? We briefly outline the areas where the existing breast cancer models require improvement in light of the increased understanding of the disease process, reflecting the drive towards more personalised therapies and identification of mechanisms of drug resistance.
Collapse
Affiliation(s)
- Ingunn Holen
- Academic Unit of Clinical Oncology, University of Sheffield, Sheffield S10 2RX, UK
| | - Valerie Speirs
- Leeds Institute of Cancer and Pathology, University of Leeds, Leeds LS9 7TF, UK
| | - Bethny Morrissey
- Leeds Institute of Cancer and Pathology, University of Leeds, Leeds LS9 7TF, UK
| | - Karen Blyth
- Cancer Research UK Beatson Institute, Glasgow G61 1BD, UK
| |
Collapse
|
126
|
Federico L, Chong Z, Zhang D, McGrail DJ, Zhao W, Jeong KJ, Vellano CP, Ju Z, Gagea M, Liu S, Mitra S, Dennison JB, Lorenzi PL, Cardnell R, Diao L, Wang J, Lu Y, Byers LA, Perou CM, Lin SY, Mills GB. A murine preclinical syngeneic transplantation model for breast cancer precision medicine. SCIENCE ADVANCES 2017; 3:e1600957. [PMID: 28439535 PMCID: PMC5397135 DOI: 10.1126/sciadv.1600957] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2016] [Accepted: 03/01/2017] [Indexed: 05/05/2023]
Abstract
We previously demonstrated that altered activity of lysophosphatidic acid in murine mammary glands promotes tumorigenesis. We have now established and characterized a heterogeneous collection of mouse-derived syngeneic transplants (MDSTs) as preclinical platforms for the assessment of personalized pharmacological therapies. Detailed molecular and phenotypic analyses revealed that MDSTs are the most heterogeneous group of genetically engineered mouse models (GEMMs) of breast cancer yet observed. Response of MDSTs to trametinib, a mitogen-activated protein kinase (MAPK) kinase inhibitor, correlated with RAS/MAPK signaling activity, as expected from studies in xenografts and clinical trials providing validation of the utility of the model. Sensitivity of MDSTs to talazoparib, a poly(adenosine 5'-diphosphate-ribose) polymerase (PARP) inhibitor, was predicted by PARP1 protein levels and by a new PARP sensitivity predictor (PSP) score developed from integrated analysis of drug sensitivity data of human cell lines. PSP score-based classification of The Cancer Genome Atlas breast cancer suggested that a subset of patients with limited therapeutic options would be expected to benefit from PARP-targeted drugs. These results indicate that MDSTs are useful models for studies of targeted therapies, and propose novel potential biomarkers for identification of breast cancer patients likely to benefit from personalized pharmacological treatments.
Collapse
Affiliation(s)
- Lorenzo Federico
- Department of Systems Biology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Corresponding author.
| | - Zechen Chong
- Department of Bioinformatics and Computational Biology, University of Texas MD Anderson Cancer Center, Houston, TX 77230, USA
| | - Dong Zhang
- Department of Systems Biology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Daniel J. McGrail
- Department of Systems Biology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Wei Zhao
- Department of Systems Biology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Kang Jin Jeong
- Department of Systems Biology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Christopher P. Vellano
- Department of Systems Biology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Zhenlin Ju
- Department of Systems Biology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Mihai Gagea
- Department of Veterinary Medicine and Surgery, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Shuying Liu
- Department of Breast Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77230, USA
| | - Shreya Mitra
- Department of Systems Biology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jennifer B. Dennison
- Department of Systems Biology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Philip L. Lorenzi
- Department of Bioinformatics and Computational Biology, University of Texas MD Anderson Cancer Center, Houston, TX 77230, USA
| | - Robert Cardnell
- Department of Thoracic Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Lixia Diao
- Department of Bioinformatics and Computational Biology, University of Texas MD Anderson Cancer Center, Houston, TX 77230, USA
| | - Jing Wang
- Department of Bioinformatics and Computational Biology, University of Texas MD Anderson Cancer Center, Houston, TX 77230, USA
| | - Yiling Lu
- Department of Systems Biology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Lauren A. Byers
- Department of Thoracic Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Charles M. Perou
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | - Shiaw-Yih Lin
- Department of Systems Biology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Gordon B. Mills
- Department of Systems Biology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
127
|
Rennhack J, To B, Wermuth H, Andrechek ER. Mouse Models of Breast Cancer Share Amplification and Deletion Events with Human Breast Cancer. J Mammary Gland Biol Neoplasia 2017; 22:71-84. [PMID: 28124185 PMCID: PMC5313323 DOI: 10.1007/s10911-017-9374-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 01/17/2017] [Indexed: 11/25/2022] Open
Abstract
Breast tumor heterogeneity has been well documented through the use of multiplatform -omic studies in human tumors. However, there is no integrative database to capture the heterogeneity within mouse models of breast cancer. This project identifies genomic copy number alterations (CNAs) in 600 tumors across 27 major mouse models of breast cancer through the application of a predictive algorithm to publicly available gene expression data. It was found that despite the presence of strong oncogenic drivers in most mouse models, CNAs are extremely common but heterogeneous both between models and within models. Many mouse CNA events are largely conserved in human tumors and in the mouse we show that they are associated with secondary tumor characteristics such as tumor histology, metastasis, as well as enhanced oncogenic signaling. These data serve as an important resource in guiding investigators when choosing a mouse model to understand the gene copy number changes relevant to human breast cancer.
Collapse
Affiliation(s)
- Jonathan Rennhack
- Department of Physiology, Michigan State University, 2194 BPS Building, 567 Wilson Road, East Lansing, MI, 48824, USA
| | - Briana To
- Department of Physiology, Michigan State University, 2194 BPS Building, 567 Wilson Road, East Lansing, MI, 48824, USA
| | - Harrison Wermuth
- Department of Physiology, Michigan State University, 2194 BPS Building, 567 Wilson Road, East Lansing, MI, 48824, USA
| | - Eran R Andrechek
- Department of Physiology, Michigan State University, 2194 BPS Building, 567 Wilson Road, East Lansing, MI, 48824, USA.
| |
Collapse
|
128
|
Cai Y, Nogales-Cadenas R, Zhang Q, Lin JR, Zhang W, O’Brien K, Montagna C, Zhang ZD. Transcriptomic dynamics of breast cancer progression in the MMTV-PyMT mouse model. BMC Genomics 2017; 18:185. [PMID: 28212608 PMCID: PMC5316186 DOI: 10.1186/s12864-017-3563-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2016] [Accepted: 02/07/2017] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Malignant breast cancer with complex molecular mechanisms of progression and metastasis remains a leading cause of death in women. To improve diagnosis and drug development, it is critical to identify panels of genes and molecular pathways involved in tumor progression and malignant transition. Using the PyMT mouse, a genetically engineered mouse model that has been widely used to study human breast cancer, we profiled and analyzed gene expression from four distinct stages of tumor progression (hyperplasia, adenoma/MIN, early carcinoma and late carcinoma) during which malignant transition occurs. RESULTS We found remarkable expression similarity among the four stages, meaning genes altered in the later stages showed trace in the beginning of tumor progression. We identified a large number of differentially expressed genes in PyMT samples of all stages compared with normal mammary glands, enriched in cancer-related pathways. Using co-expression networks, we found panels of genes as signature modules with some hub genes that predict metastatic risk. Time-course analysis revealed genes with expression transition when shifting to malignant stages. These may provide additional insight into the molecular mechanisms beyond pathways. CONCLUSIONS Thus, in this study, our various analyses with the PyMT mouse model shed new light on transcriptomic dynamics during breast cancer malignant progression.
Collapse
Affiliation(s)
- Ying Cai
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY USA
| | | | - Quanwei Zhang
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY USA
| | - Jhih-Rong Lin
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY USA
| | - Wen Zhang
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY USA
| | - Kelly O’Brien
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY USA
| | - Cristina Montagna
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY USA
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY USA
| | - Zhengdong D. Zhang
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY USA
| |
Collapse
|
129
|
Tao L, Xiang D, Xie Y, Bronson RT, Li Z. Induced p53 loss in mouse luminal cells causes clonal expansion and development of mammary tumours. Nat Commun 2017; 8:14431. [PMID: 28194015 PMCID: PMC5316831 DOI: 10.1038/ncomms14431] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2016] [Accepted: 12/28/2016] [Indexed: 12/19/2022] Open
Abstract
Most breast cancers may have a luminal origin. TP53 is one of the most frequently mutated genes in breast cancers. However, how p53 deficiency contributes to breast tumorigenesis from luminal cells remains elusive. Here we report that induced p53 loss in Krt8+ mammary luminal cells leads to their clonal expansion without directly affecting their luminal identity. All induced mice develop mammary tumours with 9qA1 (Yap1) and/or 6qA2 (Met) amplification(s). These tumours exhibit a mammary stem cell (MaSC)-like expression signature and most closely resemble claudin-low breast cancer. Thus, although p53 does not directly control the luminal fate, its loss facilitates acquisition of MaSC-like properties by luminal cells and predisposes them to development of mammary tumours with loss of luminal identity. Our data also suggest that claudin-low breast cancer can develop from luminal cells, possibly via a basal-like intermediate state, although further study using a different luminal promoter is needed to fully support this conclusion.
Collapse
Affiliation(s)
- Luwei Tao
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA.,Department of Medicine, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Dongxi Xiang
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA.,Department of Medicine, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Ying Xie
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA.,Department of Medicine, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Roderick T Bronson
- Rodent Histopathology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Zhe Li
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA.,Department of Medicine, Harvard Medical School, Boston, Massachusetts 02115, USA
| |
Collapse
|
130
|
Fry EA, Taneja P, Inoue K. Oncogenic and tumor-suppressive mouse models for breast cancer engaging HER2/neu. Int J Cancer 2017; 140:495-503. [PMID: 27553713 PMCID: PMC5159240 DOI: 10.1002/ijc.30399] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 08/15/2016] [Accepted: 08/17/2016] [Indexed: 12/30/2022]
Abstract
The human c-ErbB2 (HER2) gene is amplified in ∼20% of human breast cancers (BCs), but the protein is overexpressed in ∼30% of the cases indicating that multiple different mechanisms contribute to HER2 overexpression in tumors. It has long been used as a molecular marker of BC for subcategorization for the prediction of prognosis and determination of therapeutic strategies. In comparison to ER(+) BCs, HER2-positive BCs are more invasive, but the patients respond to monoclonal antibody therapy with trastuzumab or tyrosine kinase inhibitors at least at early stages. To understand the pathophysiology of HER2-driven carcinogenesis and test HER2-targeting therapeutic agents in vivo, numerous mouse models have been created that faithfully reproduce HER2(+) BCs in mice. They include MMTV-neu (active mutant or wild type, rat neu or HER2) models, neu promoter-driven neuNT-transgenic mice, neuNT-knock-in mice at the neu locus and doxycycline-inducible neuNT-transgenic models. HER2/neu activates the Phosphatidylinositol-3 kinase-AKT-NF-κB pathway to stimulate the mitogenic cyclin D1/Cdk4-Rb-E2F pathway. Of note, overexpression of HER2 also stimulates the cell autonomous Dmp1-Arf-p53 tumor suppressor pathway to quench oncogenic signals to prevent the emergence of cancer cells. Hence tumor development by MMTV-neu mice was dramatically accelerated in mice that lack Dmp1, Arf or p53 with invasion and metastasis. Expressions of neuNT under the endogenous promoter underwent gene amplification, closely recapitulating human HER2(+) BCs. MMTV-HER2 models have been shown to be useful to test humanized monoclonal antibodies to HER2. These mouse models will be useful for the screening of novel therapeutic agents against BCs with HER2 overexpression.
Collapse
Affiliation(s)
- Elizabeth A. Fry
- Department of Pathology, Wake Forest University Health Sciences, Medical Center Boulevard, Winston-Salem, NC 27157 USA
| | - Pankaj Taneja
- Department of Biotechnology, Sharda University, Greater Noida, UP 201306, India
| | - Kazushi Inoue
- Department of Pathology, Wake Forest University Health Sciences, Medical Center Boulevard, Winston-Salem, NC 27157 USA
| |
Collapse
|
131
|
Fundamental Pathways in Breast Cancer 4: Signaling to Chromatin in Breast Development. Breast Cancer 2017. [DOI: 10.1007/978-3-319-48848-6_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
132
|
Liu JC, Wang DY, Egan SE, Zacksenhaus E. Common and distinct features of mammary tumors driven by Pten-deletion or activating Pik3ca mutation. Oncotarget 2016; 7:9060-8. [PMID: 26814435 PMCID: PMC4891026 DOI: 10.18632/oncotarget.6985] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2015] [Accepted: 01/18/2016] [Indexed: 11/25/2022] Open
Abstract
PTEN loss and PIK3CA activation both promote the accumulation of phosphatidylinositol (3, 4, 5)-trisphosphate (PIP3). While these proteins also have distinct biochemical functions, beyond the regulation of PIP3, little is known about the consequences of these differences in vivo. Here, we directly compared cancer signalling in mammary tumors from MMTV-Cre:Ptenf/f and MMTV-Cre:Pik3caLSL-H1047R mice. Using unsupervised hierarchical clustering we found that whereas MMTV-Cre:Pik3caLSL-H1047R-derived tumors fall into two separate groups, designated squamous-likeEx and class14Ex, MMTV-Cre:Ptenf/f tumors cluster as one group together with PIK3CAH1047R class14Ex, exhibiting a ‘luminal’ expression profile. Gene Set Enrichment Analysis (GSEA) of PtenΔ and PIK3CAH1047R class14Ex tumors revealed very similar profiles of signalling pathways as well as some interesting differences. Analysis of 18 signalling signatures revealed that PI3K signalling is significantly induced whereas EGFR signalling is significantly reduced in PtenΔ versus PIK3CAH1047R tumors. Thus, PtenΔ and PIK3CAH1047R tumors exhibit discernable differences that may impact tumorigenesis and response to therapy.
Collapse
Affiliation(s)
- Jeff C Liu
- Division of Advanced Diagnostics, Toronto General Research Institute - University Health Network, Toronto, Ontario, Canada
| | - Dong-Yu Wang
- Princess Margaret Cancer Center, Toronto, Ontario, Canada.,Campbell Family Institute for Breast Cancer Research, Princess Margaret Hospital, Toronto, Ontario, Canada
| | - Sean E Egan
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Eldad Zacksenhaus
- Division of Advanced Diagnostics, Toronto General Research Institute - University Health Network, Toronto, Ontario, Canada.,Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
133
|
Yanagawa T, Denda K, Inatani T, Fukushima T, Tanaka T, Kumaki N, Inagaki Y, Komada M. Deficiency of X-Linked Protein Kinase Nrk during Pregnancy Triggers Breast Tumor in Mice. THE AMERICAN JOURNAL OF PATHOLOGY 2016; 186:2751-60. [DOI: 10.1016/j.ajpath.2016.06.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 06/07/2016] [Accepted: 06/16/2016] [Indexed: 11/16/2022]
|
134
|
Ha NH, Long J, Cai Q, Shu XO, Hunter KW. The Circadian Rhythm Gene Arntl2 Is a Metastasis Susceptibility Gene for Estrogen Receptor-Negative Breast Cancer. PLoS Genet 2016; 12:e1006267. [PMID: 27656887 PMCID: PMC5033489 DOI: 10.1371/journal.pgen.1006267] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 07/28/2016] [Indexed: 12/23/2022] Open
Abstract
Breast cancer mortality is primarily due to metastasis rather than primary tumors, yet relatively little is understood regarding the etiology of metastatic breast cancer. Previously, using a mouse genetics approach, we demonstrated that inherited germline polymorphisms contribute to metastatic disease, and that these single nucleotide polymorphisms (SNPs) could be used to predict outcome in breast cancer patients. In this study, a backcross between a highly metastatic (FVB/NJ) and low metastatic (MOLF/EiJ) mouse strain identified Arntl2, a gene encoding a circadian rhythm transcription factor, as a metastasis susceptibility gene associated with progression, specifically in estrogen receptor-negative breast cancer patients. Integrated whole genome sequence analysis with DNase hypersensitivity sites reveals SNPs in the predicted promoter of Arntl2. Using CRISPR/Cas9-mediated substitution of the MOLF promoter, we demonstrate that the SNPs regulate Arntl2 transcription and affect metastatic burden. Finally, analysis of SNPs associated with ARNTL2 expression in human breast cancer patients revealed reproducible associations of ARNTL2 expression quantitative trait loci (eQTL) SNPs with disease-free survival, consistent with the mouse studies. Estrogen receptor-negative (ER-) breast cancer is a highly malignant form of breast cancer with poor prognosis. Like most solid tumors, the mortality associated with ER- breast cancer is due to the development of secondary tumors, or metastases, in vital organs distant from the original breast tumor. ER- breast tumors, particularly those also lacking HER (human epidermal growth factor receptor) expression, are particularly deadly because unlike ER+ or HER+ breast cancers, targeted therapies have not yet been developed that can effectively reduce or eliminate tumor cells that have disseminated throughout the patient. Therefore, better understanding of the etiology of metastasis in ER- patients would potentially have a large clinical benefit by providing new targets to eradicate single tumor cells before they develop into metastases. A better understanding of metastasis etiology may also provide methods to prevent the conversion of these disseminated cells into life-threatening lesions. In this study, we demonstrate that a commonly used model of metastatic breast cancer is capable of identifying genes that play a role in the metastatic progression of ER- breast cancers. Furthermore, we identify the circadian rhythm gene, Arntl2, as a gene associated with inherited susceptibility for the development of metastatic lesions. These studies provide additional information regarding the mechanisms associated with metastasis in ER- breast cancers.
Collapse
Affiliation(s)
- Ngoc-Han Ha
- Laboratory of Cancer Biology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Jirong Long
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Qiuyin Cai
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Xiao Ou Shu
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Kent W. Hunter
- Laboratory of Cancer Biology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
135
|
Increased metastasis with loss of E2F2 in Myc-driven tumors. Oncotarget 2016; 6:38210-24. [PMID: 26474282 PMCID: PMC4741994 DOI: 10.18632/oncotarget.5690] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 09/30/2015] [Indexed: 12/21/2022] Open
Abstract
In human breast cancer, mortality is associated with metastasis to distant sites. Therefore, it is critical to elucidate the biological mechanisms that underlie tumor progression and metastasis. Using signaling pathway signatures we previously predicted a role for E2F transcription factors in Myc induced tumors. To test this role we interbred MMTV-Myc transgenic mice with E2F knockouts. Surprisingly, we observed that the loss of E2F2 sharply increased the percentage of lung metastasis in MMTV-Myc transgenic mice. Examining the gene expression profile from these tumors, we identified genetic components that were potentially involved in mediating metastasis. These genes were filtered to uncover the genes involved in metastasis that also impacted distant metastasis free survival in human breast cancer. In order to elucidate the mechanism by which E2F2 loss enhanced metastasis we generated knockdowns of E2F2 in MDA-MB-231 cells and observed increased migration in vitro and increased lung colonization in vivo. We then examined genes that were differentially regulated between tumors from MMTV-Myc, MMTV-Myc E2F2−/−, and lung metastases samples and identified PTPRD. To test the role of PTPRD in E2F2-mediated breast cancer metastasis, we generated a knockdown of PTPRD in MDA-MB-231 cells. We noted that decreased levels of PTPRD resulted in decreased migration in vitro and decreased lung colonization in vivo. Taken together, these data indicate that E2F2 loss results in increased metastasis in breast cancer, potentially functioning through a PTPRD dependent mechanism.
Collapse
|
136
|
Manning HC, Buck JR, Cook RS. Mouse Models of Breast Cancer: Platforms for Discovering Precision Imaging Diagnostics and Future Cancer Medicine. J Nucl Med 2016; 57 Suppl 1:60S-8S. [PMID: 26834104 DOI: 10.2967/jnumed.115.157917] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Representing an enormous health care and socioeconomic challenge, breast cancer is the second most common cancer in the world and the second most common cause of cancer-related death. Although many of the challenges associated with preventing, treating, and ultimately curing breast cancer are addressable in the laboratory, successful translation of groundbreaking research to clinical populations remains an important barrier. Particularly when compared with research on other types of solid tumors, breast cancer research is hampered by a lack of tractable in vivo model systems that accurately recapitulate the relevant clinical features of the disease. A primary objective of this article was to provide a generalizable overview of the types of in vivo model systems, with an emphasis primarily on murine models, that are widely deployed in preclinical breast cancer research. Major opportunities to advance precision cancer medicine facilitated by molecular imaging of preclinical breast cancer models are discussed.
Collapse
Affiliation(s)
- H Charles Manning
- Vanderbilt University Medical Center, Nashville, Tennessee Vanderbilt-Ingram Cancer Center, Nashville, Tennessee Vanderbilt University Institute of Imaging Science, Nashville, Tennessee; and Vanderbilt Center for Molecular Probes, Nashville, Tennessee
| | - Jason R Buck
- Vanderbilt University Medical Center, Nashville, Tennessee Vanderbilt University Institute of Imaging Science, Nashville, Tennessee; and Vanderbilt Center for Molecular Probes, Nashville, Tennessee
| | - Rebecca S Cook
- Vanderbilt University Medical Center, Nashville, Tennessee Vanderbilt-Ingram Cancer Center, Nashville, Tennessee
| |
Collapse
|
137
|
Sigl V, Owusu-Boaitey K, Joshi PA, Kavirayani A, Wirnsberger G, Novatchkova M, Kozieradzki I, Schramek D, Edokobi N, Hersl J, Sampson A, Odai-Afotey A, Lazaro C, Gonzalez-Suarez E, Pujana MA, Cimba F, Heyn H, Vidal E, Cruickshank J, Berman H, Sarao R, Ticevic M, Uribesalgo I, Tortola L, Rao S, Tan Y, Pfeiler G, Lee EY, Bago-Horvath Z, Kenner L, Popper H, Singer C, Khokha R, Jones LP, Penninger JM. RANKL/RANK control Brca1 mutation- . Cell Res 2016; 26:761-74. [PMID: 27241552 PMCID: PMC5129883 DOI: 10.1038/cr.2016.69] [Citation(s) in RCA: 116] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2016] [Revised: 05/24/2016] [Accepted: 05/25/2016] [Indexed: 12/18/2022] Open
Abstract
Breast cancer is the most common female cancer, affecting approximately one in eight women during their life-time. Besides environmental triggers and hormones, inherited mutations in the breast cancer 1 (BRCA1) or BRCA2 genes markedly increase the risk for the development of breast cancer. Here, using two different mouse models, we show that genetic inactivation of the key osteoclast differentiation factor RANK in the mammary epithelium markedly delayed onset, reduced incidence, and attenuated progression of Brca1;p53 mutation-driven mammary cancer. Long-term pharmacological inhibition of the RANK ligand RANKL in mice abolished the occurrence of Brca1 mutation-driven pre-neoplastic lesions. Mechanistically, genetic inactivation of Rank or RANKL/RANK blockade impaired proliferation and expansion of both murine Brca1;p53 mutant mammary stem cells and mammary progenitors from human BRCA1 mutation carriers. In addition, genome variations within the RANK locus were significantly associated with risk of developing breast cancer in women with BRCA1 mutations. Thus, RANKL/RANK control progenitor cell expansion and tumorigenesis in inherited breast cancer. These results present a viable strategy for the possible prevention of breast cancer in BRCA1 mutant patients.
Collapse
Affiliation(s)
- Verena Sigl
- IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna 1030, Austria
| | - Kwadwo Owusu-Boaitey
- Department of Biological Sciences, University of Maryland-Baltimore County, Baltimore, MD 21250, USA
| | - Purna A Joshi
- Princess Margaret Cancer Centre, Toronto, Ontario, Canada M5G 1L7
| | - Anoop Kavirayani
- IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna 1030, Austria
| | - Gerald Wirnsberger
- IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna 1030, Austria
| | - Maria Novatchkova
- IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna 1030, Austria
| | - Ivona Kozieradzki
- IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna 1030, Austria
| | - Daniel Schramek
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, Ontario, Canada M5G 1X5.,Department of Molecular Genetics, University of Toronto, Ontario, Canada M5S 3E1
| | - Nnamdi Edokobi
- Department of Biological Sciences, University of Maryland-Baltimore County, Baltimore, MD 21250, USA
| | - Jerome Hersl
- Department of Pharmacology, University of Maryland, Baltimore, School of Medicine, Baltimore, MD 21201, USA
| | - Aishia Sampson
- Department of Pharmacology, University of Maryland, Baltimore, School of Medicine, Baltimore, MD 21201, USA
| | - Ashley Odai-Afotey
- Department of Biological Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Conxi Lazaro
- Hereditary Cancer Program, Catalan Institute of Oncology, IDIBELL, L'Hospitalet de Llobregat, Barcelona, Catalonia, Spain
| | - Eva Gonzalez-Suarez
- Cancer Epigenetics and Biology Program, IDIBELL, L'Hospitalet de Llobregat, Barcelona, Catalonia, Spain
| | - Miguel A Pujana
- ProCURE, Catalan Institute of Oncology, IDIBELL, L'Hospitalet de Llobregat, Barcelona, Catalonia, Spain
| | - For Cimba
- Department of Public and Primary Care, Centre for Cancer Genetic Epidemiology, University of Cambridge, Cambridge, UK
| | - Holger Heyn
- Cancer Epigenetics and Biology Program, IDIBELL, L'Hospitalet de Llobregat, Barcelona, Catalonia, Spain
| | - Enrique Vidal
- Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, University Pompeu Fabra, Barcelona, Catalonia, Spain
| | - Jennifer Cruickshank
- The Campbell Family Institute for Breast Cancer Research, University Health Network, Toronto, Ontario, Canada M5G 1Z5
| | - Hal Berman
- The Campbell Family Institute for Breast Cancer Research, University Health Network, Toronto, Ontario, Canada M5G 1Z5
| | - Renu Sarao
- IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna 1030, Austria
| | - Melita Ticevic
- IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna 1030, Austria
| | - Iris Uribesalgo
- IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna 1030, Austria
| | - Luigi Tortola
- IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna 1030, Austria
| | - Shuan Rao
- IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna 1030, Austria
| | - Yen Tan
- Departments of Obstetrics and Gynecology and Comprehensive Cancer Center, Medical University of Vienna, Vienna 1090, Austria
| | - Georg Pfeiler
- Departments of Obstetrics and Gynecology and Comprehensive Cancer Center, Medical University of Vienna, Vienna 1090, Austria
| | - Eva Yhp Lee
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, CA 92697, USA
| | - Zsuzsanna Bago-Horvath
- Department of Experimental Pathology and Pathology of Laboratory Animals, Medical University Vienna and University of Veterinary Medicine Vienna, Vienna 1090, Austria
| | - Lukas Kenner
- Department of Experimental Pathology and Pathology of Laboratory Animals, Medical University Vienna and University of Veterinary Medicine Vienna, Vienna 1090, Austria.,Ludwig Boltzmann Institute for Cancer Research (LBI-CR), Vienna, Austria
| | - Helmuth Popper
- Research Unit Molecular Lung and Pleura Pathology, Institute of Pathology, Medical University Graz, Graz 8010, Austria
| | - Christian Singer
- Departments of Obstetrics and Gynecology and Comprehensive Cancer Center, Medical University of Vienna, Vienna 1090, Austria
| | - Rama Khokha
- Princess Margaret Cancer Centre, Toronto, Ontario, Canada M5G 1L7
| | - Laundette P Jones
- Department of Pharmacology, University of Maryland, Baltimore, School of Medicine, Baltimore, MD 21201, USA
| | - Josef M Penninger
- IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna 1030, Austria
| |
Collapse
|
138
|
Pfefferle AD, Agrawal YN, Koboldt DC, Kanchi KL, Herschkowitz JI, Mardis ER, Rosen JM, Perou CM. Genomic profiling of murine mammary tumors identifies potential personalized drug targets for p53-deficient mammary cancers. Dis Model Mech 2016; 9:749-57. [PMID: 27149990 PMCID: PMC4958311 DOI: 10.1242/dmm.025239] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Accepted: 04/27/2016] [Indexed: 12/15/2022] Open
Abstract
Targeted therapies against basal-like breast tumors, which are typically 'triple-negative breast cancers (TNBCs)', remain an important unmet clinical need. Somatic TP53 mutations are the most common genetic event in basal-like breast tumors and TNBC. To identify additional drivers and possible drug targets of this subtype, a comparative study between human and murine tumors was performed by utilizing a murine Trp53-null mammary transplant tumor model. We show that two subsets of murine Trp53-null mammary transplant tumors resemble aspects of the human basal-like subtype. DNA-microarray, whole-genome and exome-based sequencing approaches were used to interrogate the secondary genetic aberrations of these tumors, which were then compared to human basal-like tumors to identify conserved somatic genetic features. DNA copy-number variation produced the largest number of conserved candidate personalized drug targets. These candidates were filtered using a DNA-RNA Pearson correlation cut-off and a requirement that the gene was deemed essential in at least 5% of human breast cancer cell lines from an RNA-mediated interference screen database. Five potential personalized drug target genes, which were spontaneously amplified loci in both murine and human basal-like tumors, were identified: Cul4a, Lamp1, Met, Pnpla6 and Tubgcp3 As a proof of concept, inhibition of Met using crizotinib caused Met-amplified murine tumors to initially undergo complete regression. This study identifies Met as a promising drug target in a subset of murine Trp53-null tumors, thus identifying a potential shared driver with a subset of human basal-like breast cancers. Our results also highlight the importance of comparative genomic studies for discovering personalized drug targets and for providing a preclinical model for further investigations of key tumor signaling pathways.
Collapse
Affiliation(s)
- Adam D Pfefferle
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Yash N Agrawal
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Daniel C Koboldt
- The McDonnell Genome Institute, Washington University School of Medicine, St Louis, MO 63108, USA
| | - Krishna L Kanchi
- The McDonnell Genome Institute, Washington University School of Medicine, St Louis, MO 63108, USA
| | - Jason I Herschkowitz
- Department of Biomedical Sciences, University at Albany, Rensselaer, NY 12144, USA
| | - Elaine R Mardis
- The McDonnell Genome Institute, Washington University School of Medicine, St Louis, MO 63108, USA
| | - Jeffrey M Rosen
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Charles M Perou
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA
| |
Collapse
|
139
|
Bai L, Yang HH, Hu Y, Shukla A, Ha NH, Doran A, Faraji F, Goldberger N, Lee MP, Keane T, Hunter KW. An Integrated Genome-Wide Systems Genetics Screen for Breast Cancer Metastasis Susceptibility Genes. PLoS Genet 2016; 12:e1005989. [PMID: 27074153 PMCID: PMC4830524 DOI: 10.1371/journal.pgen.1005989] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 03/24/2016] [Indexed: 12/31/2022] Open
Abstract
Metastasis remains the primary cause of patient morbidity and mortality in solid tumors and is due to the action of a large number of tumor-autonomous and non-autonomous factors. Here we report the results of a genome-wide integrated strategy to identify novel metastasis susceptibility candidate genes and molecular pathways in breast cancer metastasis. This analysis implicates a number of transcriptional regulators and suggests cell-mediated immunity is an important determinant. Moreover, the analysis identified novel or FDA-approved drugs as potentially useful for anti-metastatic therapy. Further explorations implementing this strategy may therefore provide a variety of information for clinical applications in the control and treatment of advanced neoplastic disease. Metastasis, the spread and growth of tumor cells from the original tumor to secondary sites throughout the body, is the primary cause of cancer-related death for most solid tumor types. The process of metastasis is very complex, requiring multiple individual steps and the cooperation of different cell types during the dissemination and proliferation steps. Many genes are involved in this process, but at present few have been identified and characterized. In this study, we have integrated multiple genome-wide analysis methods to try to identify large numbers of candidate metastasis-associated genes and pathways based on a highly metastatic mouse model. Using this strategy, we have identified a number of genes that predict outcome of human breast cancer. These genes implicate specific molecular and cellular pathways in the metastatic process that might be used to intervene in the process. Furthermore, this integrated analysis implicates pre-existing drugs that might be re-purposed to help prevent or reduce metastatic burden in patients. The combined results obtained from this analytical strategy therefore provide an important platform for further genome-wide analysis into the etiology of metastatic disease.
Collapse
Affiliation(s)
- Ling Bai
- Laboratory of Cancer Biology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Howard H. Yang
- Laboratory of Cancer Biology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Ying Hu
- Center for Bioinformatics and Information Technology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Anjali Shukla
- Laboratory of Cancer Biology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Ngoc-Han Ha
- Laboratory of Cancer Biology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Anthony Doran
- Computational Genomics Program, Welcome Trust Sanger Centre, Hinxton, Cambridge, United Kingdom
| | - Farhoud Faraji
- Laboratory of Cancer Biology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Natalie Goldberger
- Laboratory of Cancer Biology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Maxwell P. Lee
- Laboratory of Cancer Biology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Thomas Keane
- Computational Genomics Program, Welcome Trust Sanger Centre, Hinxton, Cambridge, United Kingdom
| | - Kent W. Hunter
- Laboratory of Cancer Biology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
140
|
Cantrell MA, Ebelt ND, Pfefferle AD, Perou CM, Van Den Berg CL. c-Jun N-terminal kinase 2 prevents luminal cell commitment in normal mammary glands and tumors by inhibiting p53/Notch1 and breast cancer gene 1 expression. Oncotarget 2016; 6:11863-81. [PMID: 25970777 PMCID: PMC4494910 DOI: 10.18632/oncotarget.3787] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 04/13/2015] [Indexed: 12/19/2022] Open
Abstract
Breast cancer is a heterogeneous disease with several subtypes carrying unique prognoses. Patients with differentiated luminal tumors experience better outcomes, while effective treatments are unavailable for poorly differentiated tumors, including the basal-like subtype. Mechanisms governing mammary tumor subtype generation could prove critical to developing better treatments. C-Jun N-terminal kinase 2 (JNK2) is important in mammary tumorigenesis and tumor progression. Using a variety of mouse models, human breast cancer cell lines and tumor expression data, studies herein support that JNK2 inhibits cell differentiation in normal and cancer-derived mammary cells. JNK2 prevents precocious pubertal mammary development and inhibits Notch-dependent expansion of luminal cell populations. Likewise, JNK2 suppresses luminal populations in a p53-competent Polyoma Middle T-antigen tumor model where jnk2 knockout causes p53-dependent upregulation of Notch1 transcription. In a p53 knockout model, JNK2 restricts luminal populations independently of Notch1, by suppressing Brca1 expression and promoting epithelial to mesenchymal transition. JNK2 also inhibits estrogen receptor (ER) expression and confers resistance to fulvestrant, an ER inhibitor, while stimulating tumor progression. These data suggest that therapies inhibiting JNK2 in breast cancer may promote tumor differentiation, improve endocrine therapy response, and inhibit metastasis.
Collapse
Affiliation(s)
- Michael A Cantrell
- Institute of Cellular & Molecular Biology, College of Pharmacy, University of Texas at Austin, Dell Pediatric Research Institute, Austin, TX 78723, USA
| | - Nancy D Ebelt
- Institute of Cellular & Molecular Biology, College of Pharmacy, University of Texas at Austin, Dell Pediatric Research Institute, Austin, TX 78723, USA
| | - Adam D Pfefferle
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, NC 27599, USA.,Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, NC 27599, USA
| | - Charles M Perou
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, NC 27599, USA.,Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, NC 27599, USA.,Department of Genetics, University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, NC 27599, USA
| | - Carla Lynn Van Den Berg
- Institute of Cellular & Molecular Biology, College of Pharmacy, University of Texas at Austin, Dell Pediatric Research Institute, Austin, TX 78723, USA.,Division of Pharmacology &Toxicology, College of Pharmacy, University of Texas at Austin, Dell Pediatric Research Institute, Austin, TX 78723, USA
| |
Collapse
|
141
|
Usary J, Darr DB, Pfefferle A, Perou CM. Overview of Genetically Engineered Mouse Models of Distinct Breast Cancer Subtypes. CURRENT PROTOCOLS IN PHARMACOLOGY 2016; 72:14.38.1-14.38.11. [PMID: 26995547 PMCID: PMC4826719 DOI: 10.1002/0471141755.ph1438s72] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Advances in the screening of new therapeutic options have significantly reduced the breast cancer death rate over the last decade. Despite these advances, breast cancer remains the second leading cause of cancer death among women. This is due in part to the complexity of the disease, which is characterized by multiple subtypes that are driven by different genetic mechanisms and that likely arise from different cell types of origin. Because these differences often drive treatment options and outcomes, it is important to select relevant preclinical model systems to study new therapeutic interventions and tumor biology. Described in this unit are the characteristics and applications of validated genetically engineered mouse models (GEMMs) of basal-like, luminal, and claudin-low human subtypes of breast cancer. These different subtypes have different clinical outcomes and require different treatment strategies. These GEMMs can be considered faithful surrogates of their human disease counterparts. They represent alternative preclinical tumor models to cell line and patient-derived xenografts for preclinical drug discovery and tumor biology studies.
Collapse
Affiliation(s)
- Jerry Usary
- Dept. of Genetics, The University of North Carolina at Chapel Hill, 450 West Drive, Chapel Hill NC 27599, Tel: 919-843-5740
| | - David Brian Darr
- Dept. of Genetics, The University of North Carolina at Chapel Hill, 450 West Drive, Chapel Hill NC 27599, Tel: 919-843-5740
| | - Adam Pfefferle
- Dept. of Genetics, The University of North Carolina at Chapel Hill, 450 West Drive, Chapel Hill NC 27599, Tel: 919-843-5740
| | - Charles M. Perou
- Dept. of Genetics, The University of North Carolina at Chapel Hill, 450 West Drive, Chapel Hill NC 27599, Tel: 919-843-5740
| |
Collapse
|
142
|
Abstract
Tumor heterogeneity impinges on prognosis, response to therapy, and metastasis. As such, heterogeneity is one of the most important and clinically relevant areas of cancer research. Breast cancer displays frequent intra- and inter-tumor heterogeneity as the result of genetic and non-genetic alterations that often enhance the vigor of cancer cells. In-depth characterization and understanding of the origin of this phenotypic and molecular diversity is paramount to improving diagnosis, the definition of prognostic and predictive biomarkers, and the design of therapeutic strategies. Here, we summarize current knowledge about sources of breast cancer heterogeneity, its consequences, and possible counter-measures. We discuss especially the impact on tumor heterogeneity of the differentiation state of the cell-of-origin, cancer cell plasticity, the microenvironment, and genetic evolution. Factors that enhance cancer cell vigor are clearly detrimental for patients.
Collapse
Affiliation(s)
- Shany Koren
- Friedrich Miescher Institute for Biomedical Research (FMI), Basel, Switzerland
| | | |
Collapse
|
143
|
Inhibition of fatty acid oxidation as a therapy for MYC-overexpressing triple-negative breast cancer. Nat Med 2016; 22:427-32. [PMID: 26950360 PMCID: PMC4892846 DOI: 10.1038/nm.4055] [Citation(s) in RCA: 385] [Impact Index Per Article: 42.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 02/03/2016] [Indexed: 01/09/2023]
Abstract
Expression of the oncogenic transcription factor MYC is disproportionately elevated in triple-negative breast cancer (TNBC) compared to estrogen, progesterone and human epidermal growth factor 2 receptor-positive (RP) breast tumors1,2. We and others have shown that MYC alters metabolism during tumorigenesis3,4. However, the role of MYC in TNBC metabolism remains largely unexplored. We hypothesized that MYC-dependent metabolic dysregulation is essential for MYC-overexpressing (MO) TNBC and may thus identify novel therapeutic targets for this clinically challenging subset of breast cancer. Using a targeted metabolomics approach, we identified fatty acid oxidation (FAO) intermediates as being dramatically upregulated in a MYC-driven model of TNBC. A lipid metabolism gene signature was identified in patients with TNBC from The Cancer Genome Atlas (TCGA) database and multiple other clinical datasets, implicating FAO as a dysregulated pathway critical for TNBC metabolism. We find that MO-TNBC displays increased bioenergetic reliance upon fatty acid oxidation (FAO), and that pharmacologic inhibition of FAO catastrophically decreases energy metabolism of MO-TNBC, blocks growth of a MYC-driven transgenic TNBC model and that of MO-TNBC patient-derived xenografts. Our results demonstrate that inhibition of FAO is a novel therapeutic strategy against MO-TNBC.
Collapse
|
144
|
Holloway KR, Sinha VC, Bu W, Toneff M, Dong J, Peng Y, Li Y. Targeting Oncogenes into a Defined Subset of Mammary Cells Demonstrates That the Initiating Oncogenic Mutation Defines the Resulting Tumor Phenotype. Int J Biol Sci 2016; 12:381-8. [PMID: 27019623 PMCID: PMC4807158 DOI: 10.7150/ijbs.12947] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 11/03/2015] [Indexed: 02/05/2023] Open
Abstract
Breast cancers exhibit high intertumoral heterogeneity in genetic alterations as well as histopathological and other phenotypic characteristics. The contribution of the initiating oncogenic mutation to tumor phenotype remains controversial, largely due to the technical difficulties in delivering genetic alterations into well-defined subsets of mammary epithelial cells. To examine how different initiating oncogenes drive tumor phenotype, we somatically delivered two oncogenes (ErbB2, PyMT) into a narrow and distinct subset of the mouse mammary epithelium defined by the expression of the progenitor marker keratin 6a (Krt6a), and compared the phenotypes of the resulting mammary tumors. While PyMT-induced tumors were well-differentiated and displayed glandular and papillary features, ErbB2-induced tumors were poorly differentiated and exhibited epithelial-to-mesenchymal transition as well as β-catenin activation. These in vivo data demonstrate that the initiating oncogene plays a key role in driving mammary tumor phenotype.
Collapse
Affiliation(s)
- Kimberly R Holloway
- 1. Lester & Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA
| | - Vidya C Sinha
- 1. Lester & Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA;; 2. Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Wen Bu
- 1. Lester & Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA;; 2. Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Michael Toneff
- 2. Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Jie Dong
- 2. Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Yi Peng
- 3. National Center for International Research of Biological Targeting Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi 530021, China;; 4. Guangxi Key Laboratory of Biological Targeting Diagnosis and Therapy Research, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Yi Li
- 1. Lester & Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA;; 2. Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
145
|
Karginova O, Siegel MB, Van Swearingen AED, Deal AM, Adamo B, Sambade MJ, Bazyar S, Nikolaishvili-Feinberg N, Bash R, O'Neal S, Sandison K, Parker JS, Santos C, Darr D, Zamboni W, Lee YZ, Miller CR, Anders CK. Efficacy of Carboplatin Alone and in Combination with ABT888 in Intracranial Murine Models of BRCA-Mutated and BRCA-Wild-Type Triple-Negative Breast Cancer. Mol Cancer Ther 2016; 14:920-30. [PMID: 25824335 DOI: 10.1158/1535-7163.mct-14-0474] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Patients with breast cancer brain metastases have extremely limited survival and no approved systemic therapeutics. Triple-negative breast cancer (TNBC) commonly metastasizes to the brain and predicts poor prognosis. TNBC frequently harbors BRCA mutations translating to platinum sensitivity potentially augmented by additional suppression of DNA repair mechanisms through PARP inhibition. We evaluated brain penetrance and efficacy of carboplatin ± the PARP inhibitor ABT888, and investigated gene-expression changes in murine intracranial TNBC models stratified by BRCA and molecular subtype status. Athymic mice were inoculated intracerebrally with BRCA-mutant: SUM149 (basal), MDA-MB-436 (claudin-low); or BRCA-wild-type (wt): MDA-MB-468 (basal), MDA-MB-231BR (claudin-low). TNBC cells were treated with PBS control [intraperitoneal (IP), weekly], carboplatin (50 mg/kg/wk, IP), ABT888 (25 mg/kg/d, oral gavage), or their combination. DNA damage (γ-H2AX), apoptosis (cleaved caspase-3, cC3), and gene expression were measured in intracranial tumors. Carboplatin ± ABT888 significantly improved survival in BRCA-mutant intracranial models compared with control, but did not improve survival in BRCA-wt intracranial models. Carboplatin + ABT888 revealed a modest survival advantage versus carboplatin in BRCA-mutant models. ABT888 yielded a marginal survival benefit in the MDA-MB-436, but not in the SUM149 model. BRCA-mutant SUM149 expression of γ-H2AX and cC3 proteins was elevated in all treatment groups compared with control, whereas BRCA-wt MDA-MB-468 cC3 expression did not increase with treatment. Carboplatin treatment induced common gene-expression changes in BRCA-mutant models. Carboplatin ± ABT888 penetrates the brain and improves survival in BRCA-mutant intracranial TNBC models with corresponding DNA damage and gene-expression changes. Combination therapy represents a potential promising treatment strategy for patients with TNBC brain metastases warranting further clinical investigation.
Collapse
Affiliation(s)
- Olga Karginova
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina. Department of Medicine, The University of Chicago, Chicago, Illinois
| | - Marni B Siegel
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina. Department of Genetics, University of North Carolina, Chapel Hill, North Carolina
| | - Amanda E D Van Swearingen
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Allison M Deal
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina. Biostatistics Core Facility, Lineberger Comprehensive Cancer Center, Chapel Hill, North Carolina
| | - Barbara Adamo
- Medical Oncology Department, Vall d'Hebron Institute of Oncology, Barcelona, Spain
| | - Maria J Sambade
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Soha Bazyar
- Department of Radiology, University of North Carolina, Chapel Hill, North Carolina. Department of Biomedical Engineering, University of North Carolina, Chapel Hill, North Carolina
| | - Nana Nikolaishvili-Feinberg
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Ryan Bash
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, North Carolina
| | - Sara O'Neal
- Division of Pharmacotherapy and Experimental Therapeutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina
| | - Katie Sandison
- Division of Pharmacotherapy and Experimental Therapeutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina
| | - Joel S Parker
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina. Department of Genetics, University of North Carolina, Chapel Hill, North Carolina
| | - Charlene Santos
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - David Darr
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - William Zamboni
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina. Division of Pharmacotherapy and Experimental Therapeutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina. Translational Oncology and Nanoparticle Drug Development Initiative (TOND2I) Laboratory, University of North Carolina, Chapel Hill, North Carolina. Carolina Center of Cancer Nanotechnology Excellence, Chapel Hill, North Carolina. UNC Institute of Pharmacogenomics and Individualized Therapy, Chapel Hill, North Carolina
| | - Yueh Z Lee
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina. Department of Radiology, University of North Carolina, Chapel Hill, North Carolina. Biomedical Research Imaging Center, University of North Carolina, Chapel Hill, North Carolina
| | - C Ryan Miller
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina. Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, North Carolina. Neurology and Neurosciences Center, University of North Carolina, Chapel Hill, North Carolina
| | - Carey K Anders
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina. Department of Medicine, University of North Carolina, Chapel Hill, North Carolina.
| |
Collapse
|
146
|
The Six1 oncoprotein downregulates p53 via concomitant regulation of RPL26 and microRNA-27a-3p. Nat Commun 2015; 6:10077. [PMID: 26687066 PMCID: PMC4703841 DOI: 10.1038/ncomms10077] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Accepted: 11/02/2015] [Indexed: 12/18/2022] Open
Abstract
TP53 is mutated in 50% of all cancers, and its function is often compromised in cancers where it is not mutated. Here we demonstrate that the pro-tumorigenic/metastatic Six1 homeoprotein decreases p53 levels through a mechanism that does not involve the negative regulator of p53, MDM2. Instead, Six1 regulates p53 via a dual mechanism involving upregulation of microRNA-27a and downregulation of ribosomal protein L26 (RPL26). Mutation analysis confirms that RPL26 inhibits miR-27a binding and prevents microRNA-mediated downregulation of p53. The clinical relevance of this interaction is underscored by the finding that Six1 expression strongly correlates with decreased RPL26 across numerous tumour types. Importantly, we find that Six1 expression leads to marked resistance to therapies targeting the p53–MDM2 interaction. Thus, we identify a competitive mechanism of p53 regulation, which may have consequences for drugs aimed at reinstating p53 function in tumours. p53 is a tumour suppressor that is mutated in a large number of cancers and its expression is controlled largely by the ubiquitin ligase MDM2. Here, the authors show that the homeoprotein, Six1, can regulate p53 in an MDM2- independent manner via regulation of miR-27a and the RNA binding protein, RPL26.
Collapse
|
147
|
Zuo Y, Oh W, Ulu A, Frost JA. Minireview: Mouse Models of Rho GTPase Function in Mammary Gland Development, Tumorigenesis, and Metastasis. Mol Endocrinol 2015; 30:278-89. [PMID: 26677753 DOI: 10.1210/me.2015-1294] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Ras homolog (Rho) family small GTPases are critical regulators of actin cytoskeletal organization, cell motility, proliferation, and survival. Surprisingly, the large majority of the studies underlying our knowledge of Rho protein function have been carried out in cultured cells, and it is only recently that researchers have begun to assess Rho GTPase regulation and function in vivo. The purpose of this review is to evaluate our current knowledge of Rho GTPase function in mouse mammary gland development, tumorigenesis and metastasis. Although our knowledge is still incomplete, these studies are already uncovering important themes as to the physiological roles of Rho GTPase signaling in normal mammary gland development and function. Essential contributions of Rho proteins to breast cancer initiation, tumor progression, and metastatic dissemination have also been identified.
Collapse
Affiliation(s)
- Yan Zuo
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, Houston, Texas 77030
| | - Wonkyung Oh
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, Houston, Texas 77030
| | - Arzu Ulu
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, Houston, Texas 77030
| | - Jeffrey A Frost
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, Houston, Texas 77030
| |
Collapse
|
148
|
Sreekumar A, Roarty K, Rosen JM. The mammary stem cell hierarchy: a looking glass into heterogeneous breast cancer landscapes. Endocr Relat Cancer 2015; 22. [PMID: 26206777 PMCID: PMC4618079 DOI: 10.1530/erc-15-0263] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The mammary gland is a dynamic organ that undergoes extensive morphogenesis during the different stages of embryonic development, puberty, estrus, pregnancy, lactation and involution. Systemic and local cues underlie this constant tissue remodeling and act by eliciting an intricate pattern of responses in the mammary epithelial and stromal cells. Decades of studies utilizing methods such as transplantation and lineage-tracing have identified a complex hierarchy of mammary stem cells, progenitors and differentiated epithelial cells that fuel mammary epithelial development. Importantly, these studies have extended our understanding of the molecular crosstalk between cell types and the signaling pathways maintaining normal homeostasis that often are deregulated during tumorigenesis. While several questions remain, this research has many implications for breast cancer. Fundamental among these are the identification of the cells of origin for the multiple subtypes of breast cancer and the understanding of tumor heterogeneity. A deeper understanding of these critical questions will unveil novel breast cancer drug targets and treatment paradigms. In this review, we provide a current overview of normal mammary development and tumorigenesis from a stem cell perspective.
Collapse
Affiliation(s)
- Amulya Sreekumar
- Department of Molecular and Cellular BiologyBaylor College of Medicine, One Baylor Plaza, DeBakey Building M638, Houston, Texas 77030, USA
| | - Kevin Roarty
- Department of Molecular and Cellular BiologyBaylor College of Medicine, One Baylor Plaza, DeBakey Building M638, Houston, Texas 77030, USA
| | - Jeffrey M Rosen
- Department of Molecular and Cellular BiologyBaylor College of Medicine, One Baylor Plaza, DeBakey Building M638, Houston, Texas 77030, USA
| |
Collapse
|
149
|
Aupperlee MD, Zhao Y, Tan YS, Zhu Y, Langohr IM, Kirk EL, Pirone JR, Troester MA, Schwartz RC, Haslam SZ. Puberty-specific promotion of mammary tumorigenesis by a high animal fat diet. Breast Cancer Res 2015; 17:138. [PMID: 26526858 PMCID: PMC4630903 DOI: 10.1186/s13058-015-0646-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 10/15/2015] [Indexed: 12/25/2022] Open
Abstract
INTRODUCTION Increased animal fat consumption is associated with increased premenopausal breast cancer risk in normal weight, but not overweight, women. This agrees with our previous findings in obesity-resistant BALB/c mice, in which exposure to a high saturated animal fat diet (HFD) from peripuberty through adulthood promoted mammary tumorigenesis. Epidemiologic and animal studies support the importance of puberty as a life stage when diet and environmental exposures affect adult breast cancer risk. In this study, we identified the effects of peripubertal exposure to HFD and investigated its mechanism of enhancing tumorigenesis. METHODS Three-week-old BALB/c mice fed a low-fat diet (LFD) or HFD were subjected to 7,12-dimethylbenz[a]anthracene (DMBA)-induced carcinogenesis. At 9 weeks of age, half the mice on LFD were switched to HFD (LFD-HFD group) and half the mice on HFD were switched to LFD (HFD-LFD group). Tumor gene expression was evaluated in association with diet and tumor latency. RESULTS The peripubertal HFD reduced the latency of DMBA-induced mammary tumors and was associated with tumor characteristics similar to those in mice fed a continuous HFD. Notably, short-latency tumors in both groups shared gene expression characteristics and were more likely to have adenosquamous histology. Both HFD-LFD and continuous HFD tumors showed similar gene expression patterns and early latency. Adult switch from HFD to LFD did not reverse peripubertal HFD tumor promotion. Increased proliferation, hyperplasia, and macrophages were present in mammary glands before tumor development, implicating these as possible effectors of tumor promotion. Despite a significant interaction between pubertal diet and carcinogens in tumor promotion, peripubertal HFD by itself produced persistent macrophage recruitment to mammary glands. CONCLUSIONS In obesity-resistant mice, peripubertal HFD is sufficient to irreversibly promote carcinogen-induced tumorigenesis. Increased macrophage recruitment is likely a contributing factor. These results underscore the importance of early life exposures to increased adult cancer risk and are consistent with findings that an HFD in normal weight premenopausal women leads to increased breast cancer risk. Notably, short-latency tumors occurring after peripubertal HFD had characteristics similar to human basal-like breast cancers that predominantly develop in younger women.
Collapse
Affiliation(s)
- Mark D Aupperlee
- Breast Cancer and the Environment Research Program, Department of Physiology, Michigan State University, Biomedical and Physical Sciences Building, Room 2201, 567 Wilson Road, East Lansing, MI, 48824, USA.
| | - Yong Zhao
- Breast Cancer and the Environment Research Program, Department of Physiology, Michigan State University, Biomedical and Physical Sciences Building, Room 2201, 567 Wilson Road, East Lansing, MI, 48824, USA.
- Present address: College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao, 266109, People's Republic of China.
| | - Ying Siow Tan
- Breast Cancer and the Environment Research Program, Department of Physiology, Michigan State University, Biomedical and Physical Sciences Building, Room 2201, 567 Wilson Road, East Lansing, MI, 48824, USA.
- Present address: Novartis Institutes for BioMedical Research, 250 Massachusetts Avenue, Cambridge, MA, 02139, USA.
| | - Yirong Zhu
- Breast Cancer and the Environment Research Program, Department of Physiology, Michigan State University, Biomedical and Physical Sciences Building, Room 2201, 567 Wilson Road, East Lansing, MI, 48824, USA.
| | - Ingeborg M Langohr
- Department of Pathobiology and Diagnostic Investigation, Michigan State University, East Lansing, MI, USA.
- Present address: Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, 70803, USA.
| | - Erin L Kirk
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | - Jason R Pirone
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | - Melissa A Troester
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | - Richard C Schwartz
- Breast Cancer and the Environment Research Program, Department of Microbiology and Molecular Genetics, Michigan State University, Biomedical and Physical Sciences Building, Room 2201, 567 Wilson Road, East Lansing, MI, 48824, USA.
| | - Sandra Z Haslam
- Breast Cancer and the Environment Research Program, Department of Physiology, Michigan State University, Biomedical and Physical Sciences Building, Room 2201, 567 Wilson Road, East Lansing, MI, 48824, USA.
| |
Collapse
|
150
|
Wright KL, Adams JR, Liu JC, Loch AJ, Wong RG, Jo CEB, Beck LA, Santhanam DR, Weiss L, Mei X, Lane TF, Koralov SB, Done SJ, Woodgett JR, Zacksenhaus E, Hu P, Egan SE. Ras Signaling Is a Key Determinant for Metastatic Dissemination and Poor Survival of Luminal Breast Cancer Patients. Cancer Res 2015; 75:4960-72. [PMID: 26400062 DOI: 10.1158/0008-5472.can-14-2992] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Accepted: 07/28/2015] [Indexed: 11/16/2022]
Abstract
Breast cancer is associated with alterations in a number of growth factor and hormone-regulated signaling pathways. Mouse models of metastatic breast cancer typically feature mutated oncoproteins that activate PI3K, Stat3, and Ras signaling, but the individual and combined roles of these pathways in breast cancer progression are poorly understood. In this study, we examined the relationship between oncogenic pathway activation and breast cancer subtype by analyzing mouse mammary tumor formation in which each pathway was activated singly or pairwise. All three oncogenes showed cooperation during primary tumor formation, but efficient dissemination was only dependent on Ras. In addition, transcriptional profiling demonstrated that Ras induced adenocarcinomas with molecular characteristics related to human basal-like and HER2(+) tumors. In contrast, Ras combined with PIK3CA(H1047R), an oncogenic mutant linked to ERα(+)/luminal breast cancer in humans, induced metastatic luminal B-like tumors. Consistent with these data, elevated Ras signaling was associated with basal-like and HER2(+) subtype tumors in humans and showed a statistically significant negative association with estrogen receptor (ER) signaling across all breast cancer. Despite this, there are luminal tumors with elevated Ras signaling. Importantly, when considered as a continuous variable, Ras pathway activation was strongly linked to reduced survival of patients with ERα(+) disease independent of PI3K or Stat3 activation. Therefore, our studies suggest that Ras activation is a key determinant for dissemination and poor prognosis of ERα(+)/luminal breast cancer in humans, and hormone therapy supplemented with Ras-targeting agents may be beneficial for treating this aggressive subtype.
Collapse
Affiliation(s)
- Katherine L Wright
- Program in Developmental and Stem Cell Biology, The Peter Gilgan Center for Research and Learning, The Hospital for Sick Children, Toronto, Ontario, Canada. Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Jessica R Adams
- Program in Developmental and Stem Cell Biology, The Peter Gilgan Center for Research and Learning, The Hospital for Sick Children, Toronto, Ontario, Canada. Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Jeff C Liu
- Division of Cell and Molecular Biology, Toronto General Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Amanda J Loch
- Program in Developmental and Stem Cell Biology, The Peter Gilgan Center for Research and Learning, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Ruth G Wong
- Program in Developmental and Stem Cell Biology, The Peter Gilgan Center for Research and Learning, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Christine E B Jo
- Program in Developmental and Stem Cell Biology, The Peter Gilgan Center for Research and Learning, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Lauren A Beck
- Program in Developmental and Stem Cell Biology, The Peter Gilgan Center for Research and Learning, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Divya R Santhanam
- Program in Developmental and Stem Cell Biology, The Peter Gilgan Center for Research and Learning, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Laura Weiss
- Program in Developmental and Stem Cell Biology, The Peter Gilgan Center for Research and Learning, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Xue Mei
- Program in Developmental and Stem Cell Biology, The Peter Gilgan Center for Research and Learning, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Timothy F Lane
- Department of Obstetrics and Gynecology and Department of Biological Chemistry, David Geffen School of Medicine and Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, California
| | - Sergei B Koralov
- Department of Pathology, New York University Medical Center, New York, New York
| | - Susan J Done
- Campbell Family Institute for Breast Cancer Research, University Health Network, Toronto, Ontario, Canada
| | - James R Woodgett
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Eldad Zacksenhaus
- Division of Cell and Molecular Biology, Toronto General Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Pingzhao Hu
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Sean E Egan
- Program in Developmental and Stem Cell Biology, The Peter Gilgan Center for Research and Learning, The Hospital for Sick Children, Toronto, Ontario, Canada. Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|